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Epimorphisms between 2–bridge knot groups
and their crossing numbers

MASAAKI SUZUKI

Suppose that there exists an epimorphism from the knot group of a 2–bridge knot K

onto that of another knot K0 . We study the relationship between their crossing
numbers c.K/ and c.K0/ . More specifically, it is shown that c.K/ is greater than
or equal to 3c.K0/ , and we estimate how many knot groups a 2–bridge knot group
maps onto. Moreover, we formulate the generating function which determines the
number of 2–bridge knot groups admitting epimorphisms onto the knot group of a
given 2–bridge knot.

57M25; 57M27

1 Introduction

Let K be a knot and G.K/ the knot group, namely, the fundamental group of the
exterior of K in S3 . We denote by c.K/ the crossing number of K . Recently, many
authors have studied epimorphisms between knot groups. One of the main goals of
their papers was Simon’s conjecture: every knot group maps onto at most finitely many
knot groups. For example, Boileau, Boyer, Reid and Wang [4] showed that Simon’s
conjecture is true for 2–bridge knots. Finally, Agol and Liu [2] proved that Simon’s
conjecture holds for all knots.

In Kitano and Suzuki [12] and Horie, Kitano, Matsumoto and Suzuki [10], the existence
and nonexistence of a meridional epimorphism between knot groups of prime knots
with up to 11 crossings are determined completely. We say that a homomorphism
from G.K/ to G.K0/ is meridional if a meridian of G.K/ is sent to a meridian of
G.K0/; see also Cha and Suzuki [7]. This result raises the following question: if
there exists an epimorphism from G.K/ onto G.K0/, then is c.K/ greater than or
equal to c.K0/? This question is also mentioned in Kitano and Suzuki [13]. If the
answer is affirmative, then we obtain another proof for Simon’s conjecture. This paper
gives a partial affirmative answer for this question. That is to say, if there exists an
epimorphism from the knot group of a 2–bridge knot K onto that of another knot K0 ,
then c.K/ is greater than or equal to 3c.K0/.
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In order to prove this result, we make use of the Ohtsuki–Riley–Sakuma construc-
tion [18]; these authors established a systematic construction of epimorphisms between
2–bridge knot groups. Additionally, Garrabrant, Hoste and Shanahan [9] gave necessary
and sufficient conditions for any set of 2–bridge knots to have an upper bound with
respect to the Ohtsuki–Riley–Sakuma construction. Conversely, it is shown that all
epimorphisms between 2–bridge knot groups arise from the Ohtsuki–Riley–Sakuma
construction, as a consequence of Agol’s result announced in [1]. Aimi, Lee and
Sakuma [3] give another proof for this result.

In this paper, we consider the crossing numbers of 2–bridge knots whose knot groups
admit epimorphisms onto a 2–bridge knot group. By using this result, we estimate
how many knot groups a 2–bridge knot group maps onto. Furthermore, we formulate
the generating function which determines the number of 2–bridge knots K admitting
epimorphisms from G.K/ onto the knot group of a given 2–bridge knot.

Throughout this paper, we do not distinguish a knot from its mirror image, since their
knot groups are isomorphic and we discuss epimorphisms between knot groups. The
numberings of the knots with up to 10 and 11 crossings follow Rolfsen’s book [19]
and the web page KnotInfo [6] by Cha and Livingston, respectively

2 2–bridge knot and continued fraction expansion

In this section, we recall some well-known results on 2–bridge knots. See [5; 17] in
detail, for example.

A 2–bridge knot corresponds to a rational number r D q=p 2Q; we denote the knot
by K.q=p/. Schubert classified 2–bridge knots as follows.

Theorem 2.1 (Schubert) Let K.q=p/ and K.q0=p0/ be 2–bridge knots. These knots
are equivalent if and only if the following conditions hold:

(1) p D p0 .

(2) Either q �˙q0 .mod p/ or qq0 �˙1 .mod p/.

By using this theorem, it is sufficient to consider r 2Q\ .0; 1
2/. Note that K.0/ is the

trivial link and that K.1
2/ is the Hopf link. A rational number q=p 2Q\ .0; 1

2/ can
be expressed as a continued fraction expansion

q

p
D Œa1; a2; : : : ; am�1; am�D

1

a1C
1

a2C
1

: : : 1

am�1C
1

am

;
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where a1 > 0. Note that a rational number admits many continued fraction expansions.
For example, we have 29

81
D Œ3;�5; 4; 1;�2�D Œ2; 1; 3; 1; 5�. It is easy to see that the

following properties are satisfied. First, we can delete zeros in a continued fraction
expansion by using the equation

Œa1; a2; : : : ; ai�2; ai�1; 0; aiC1; aiC2; : : : ; am�

D Œa1; a2; : : : ; ai�2; ai�1C aiC1; aiC2; : : : ; am�:

If we consider a 2–bridge knot, we may assume that a1; am ¤˙1, since

Œa1; a2; : : : ; am�1;˙1�D Œa1; a2; : : : ; am�1˙ 1�

and K.Œa1; a2; : : : ; am�/ is equivalent to K.Œam; am�1; : : : ; a1�/ up to mirror image.
Moreover, the euclidean algorithm allows us to take a continued fraction expansion
such that all ai in Œa1; a2; : : : ; am� are positive.

If a rational number r is expressed as Œa1; a2; : : : ; am� with ai > 0 and a1; am � 2,
then the continued fraction expansion is called standard. By the above arguments, we
can always take the standard continued fraction expansion of the rational number r for
a 2–bridge knot K.r/. Furthermore, the standard continued fraction expansion gives us
the unique continued fraction expansion of the rational number which corresponds to a
2–bridge knot in the following sense. Let K.q=p/ and K.q0=p0/ be 2–bridge knots.
Suppose that these rational numbers are written as the standard continued fraction
expansions q=p D Œa1; a2; : : : ; am� and q0=p0 D Œa0

1
; a0

2
; : : : ; a0m0 �. It is known that

K.q=p/ and K.q0=p0/ are equivalent up to mirror image if and only if

.a1; a2; : : : ; am/D .a
0
1; a
0
2; : : : ; a

0
m0/ or .a0m0 ; a

0
m0�1; : : : ; a

0
1/:

Thistlethwaite [21], Kauffman [11] and Murasugi [15; 16] independently proved the
first Tait conjecture. Hence, we can determine the crossing number of a 2–bridge knot
by using the standard continued fraction expansion. Namely, the crossing number for
the standard continued fraction Œa1; a2; : : : ; am� is given by

c.K.Œa1; a2; : : : ; am�//D

mX
iD1

ai :

3 Epimorphisms between 2–bridge knot groups

We have the following remarkable result about epimorphisms between 2–bridge knot
groups: an epimorphism between 2–bridge knot groups is always meridional. Moreover,
the rational numbers for these 2–bridge knots have the following relationship.
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Theorem 3.1 (Ohtsuki, Riley and Sakuma [18], Agol [1], Aimi, Lee and Sakuma [3])
Let K.r/;K.zr/ be 2–bridge knots, where r D Œa1; a2; : : : ; am�. If there exists an
epimorphism 'W G.K.zr//!G.K.r//, then ' is meridional and zr can be written as

(�) zr D Œ"1a; 2c1; "2a�1; 2c2; "3a; 2c3; "4a�1; 2c4; : : : ; "2na�1; 2c2n; "2nC1a�;

where a D .a1; a2; : : : ; am/, a�1 D .am; am�1; : : : ; a1/, "i D ˙1 ."1 D 1/, and
ci 2 Z.

Remark If a rational number zr is expressed in the form (�), then we say that zr has
an expansion of type 2nC 1 with respect to aD .a1; a2; : : : ; am/.

(1) In this paper, we do not need to consider an expression of type 2n with respect
to a , since K.Œ"1a; 2c1; : : : ; 2c2n�1; "2na�1�/ is a 2–bridge link.

(2) If ci D 0 and "i � "iC1 D�1, then

zr D Œ: : : ; "i�1a˙1; 2ci�1; "ia
�1; 0; "iC1a˙1; 2ciC1; "iC2a�1; : : : �

D Œ: : : ; "i�1a˙1; 2ci�1; 0; 2ciC1; "iC2a�1; : : : �

D Œ: : : ; "i�1a˙1; 2.ci�1C ciC1/; "iC2a�1; : : : �:

It follows that zr has type 2n� 1. Hence we do not deal with the case ci D 0,
"i � "iC1 D�1.

Example 3.2 For example, we consider a 2–bridge knot K. 5
27/. The rational number

5
27

has continued fraction expansions

5
27
D Œ5; 2; 2�D Œ3; 0; 3;�2; 3�:

The second expression implies that the crossing number of K. 5
27/ is 9. The last

expression is of type 3 with respect to aD .3/. Therefore the knot group G.K. 5
27//

admits an epimorphism onto the trefoil knot group G.31/D G.K.1
3//D G.K.Œ3�//.

Similarly, we have

1
9
D Œ9�D Œ3; 0; 3; 0; 3�; 19

45
D Œ2; 2; 1; 2; 2�D Œ3;�2; 3;�2; 3�:

It follows that there exist epimorphisms from G.K.1
9// and G.K.19

45// onto the trefoil
knot group.

The previous papers [12] and [10] determined all the pairs of prime knots with up to 11

crossings which admit meridional epimorphisms between their knot groups. The results
in those works coincide with the above examples. Note that K.1

9/D 91 , K. 5
27/D 96 ,

and K.19
45/D 923 .
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In general, even if Œa1; : : : ; am� is the standard continued fraction expansion, and zr is
of type 2nC 1 with respect to .a1; : : : ; am/, this expansion of zr may not be standard.
However, we can get the standard continued fraction expansion and then determine the
crossing number of K.zr/.

Theorem 3.3 Let Œa1; : : : ; am� be the standard continued fraction expansion. Suppose
that a rational number zr has a continued fraction expansion of the form (�) of type
2nC1 with respect to aD .a1; : : : ; am/. Then the crossing number of K.zr/ is given by

c.K.zr//D .2nC 1/jajC

2nX
iD1

.2jci j � .i/� x .i//;

where jaj D
Pm

iD1 ai and

 .i/D

�
1 if "i � ci < 0;

0 if "i � ci � 0;
x .i/D

�
1 if ci � "iC1 < 0;

0 if ci � "iC1 � 0:

Note that
2nX

iD1

. .i/C x .i//

is the number of sign changes. To prepare for Theorem 3.3, we prove the following
lemma. Namely, negative integers in a continued fraction expansion can be changed
into positive integers.

Lemma 3.4 Let a1; : : : ; ak ; b1; : : : ; bl ; c1; : : : ; cm be integers. We have four cases:

(1) If l � 2, then

Œa1; : : : ; ak ;�b1;�b2; : : : ;�bl�1;�bl ; c1; : : : ; cm�

D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 1; b2; : : : ; bl�1; bl � 1; 1; c1� 1; c2; : : : ; cm�:

(2) If l D 1 and b1 � 2, then

Œa1; : : : ; ak ;�b1; c1; : : : ; cm�

D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 2; 1; c1� 1; c2; : : : ; cm�:

(3) If l � 2, then

Œa1; : : : ; ak ;�b1; : : : ;�bl �D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 1; b2; : : : ; bl �:

(4) If l D 1 and b1 � 2, then

Œa1; : : : ; ak ;�b1�D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 1�:
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Proof Recall the matrix representation of a continued fraction expansion (see for
instance [14]). For a continued fraction Œx1;x2; : : : ;xm�, we define p; q by�

x1 1

1 0

��
x2 1

1 0

�
� � �

�
xm 1

1 0

�
D

�
p �

q �

�
:

It is known that we have an equality

Œx1;x2; : : : ;xm�D
q

p
:

We will prove (1) by using the above matrix representation on both sides of the equation.
Let A;C be the matrices defined by

AD

�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

�
; C D

�
c2 1

1 0

�
� � �

�
cm 1

1 0

�
;

respectively, and define B by

B D

�
B11 B12

B21 B22

�
D

�
b2 1

1 0

�
� � �

�
bl�1 1

1 0

�
:

The matrix representation of the left-hand side of .1/ is�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak 1

1 0

��
�b1 1

1 0

��
�b2 1

1 0

�
� � �

�

�
�bl�1 1

1 0

��
�bl 1

1 0

��
c1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
DA

�
�akb1C 1 ak

�b1 1

��
.�1/lB11 .�1/lC1B12

.�1/lC1B21 .�1/lB22

��
�blc1C 1 �bl

c1 1

�
C

DA

�
akb1� 1 ak

b1 1

��
.�1/lB11 .�1/lB12

.�1/lB21 .�1/lB22

��
blc1� 1 bl

c1 1

�
C

D .�1/lA

�
akb1� 1 ak

b1 1

��
B11 B12

B21 B22

��
blc1� 1 bl

c1 1

�
C

D .�1/l
�

a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak � 1 1

1 0

��
1 1

1 0

�
�

�
b1� 1 1

1 0

��
b2 1

1 0

�
� � �

�
bl�1 1

1 0

��
bl � 1 1

1 0

�
�

�
1 1

1 0

��
c1� 1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
:

The last expression is .�1/l times the matrix representation of the right-hand side
of (1). Therefore the rational numbers on both sides of (1) coincide.
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Next, we examine the matrix representation of the left-hand side of (2):�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak 1

1 0

��
�b1 1

1 0

��
c1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
DA

�
�akb1c1C ak C c1 �akb1C 1

�b1c1C 1 �b1

�
C

D .�1/A

�
akb1c1� ak � c1 akb1� 1

b1c1� 1 b1

�
C

D .�1/

�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak � 1 1

1 0

��
1 1

1 0

��
b1� 2 1

1 0

�
�

�
1 1

1 0

��
c1� 1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
:

The last expression is also .�1/ times the matrix representation of the right-hand side
of (2). Hence these continued fraction expressions represent the same rational number.

A similar proof works for (3) and (4).

Example 3.5 Suppose that the rational number 29
81

is expressed as Œ3;�5; 4; 1;�2�.
The above arguments show that

Œ3;�5; 4; 1;�2�D Œ2; 1; 3; 1; 3; 0; 1; 1�D Œ2; 1; 3; 1; 4; 1�D Œ2; 1; 3; 1; 5�:

The last expression is the standard continued fraction expansion, and then the crossing
number of K.29

81/ is

c.K.29
81//D c.K.Œ3;�5; 4; 1;�2�//D c.K.Œ2; 1; 3; 1; 5�//D 12:

In Lemma 3.4, if all ai ; bi ; ci are positive, then the integers on the right-hand sides
of the equations are positive or zero. Hence, we can obtain the standard continued
fraction expansion and determine the crossing number of a 2–bridge knot.

Corollary 3.6 Let ai ; bi ; ci be positive integers. If l ¤ 1 or b1 � 2, then we have

(1) c.K.Œa1; : : : ; ak ;�b1; : : : ;�bl ; c1; : : : ; cm�//D
kP

iD1

ai C

lP
iD1

bi C

mP
iD1

ci � 2,

(2) c.K.Œa1; : : : ; ak ;�b1; : : : ;�bl �//D
kP

iD1

ai C

lP
iD1

bi � 1.

Corollary 3.6 suggests how to determine the crossing number without using the explicit
standard continued fraction expansion. To be precise, it is sufficient to compute the
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sum of the absolute values in a continued fraction expansion and to count the number
of sign changes. In the above example, the signs of components in Œ3;�5; 4; 1;�2� are
changed three times. Then the crossing number is

c.K.Œ3;�5; 4; 1;�2�//D j3jC j� 5jC j4jC j1jC j� 2j � 3D 12:

These arguments prove Theorem 3.3.

Proof of Theorem 3.3 The sum of the absolute values of components in zr is

.2nC 1/jajC

2nX
iD1

.2jci j/:

By Lemma 3.4, if the signs in a continued fraction expansion of zr are changed k times,
then the crossing number of K.zr/ is decreased by k from the above value. The number
of sign changes in zr is

2nX
iD1

. .i/C x .i//

by definition. Since zr is an expression of type 2nC 1 with respect to standard a , we
can apply Corollary 3.6. Therefore this completes the proof.

We define xci to be 2jci j � .i/� x .i/. Then xci is not negative.

Proposition 3.7 Suppose that zr is as above. Then xci � 0 for 1� i � 2n.

Proof If ci ¤ 0, then 2jci j � 2. On the other hand,  .i/ and x .i/ are 0 or 1, and
then we get xci � 0. If ci D 0, then  .i/D 0 and x .i/D 0 by definition. Therefore
xci D 0 in this case.

4 Simon’s conjecture

Simon’s conjecture for 2–bridge knots is proved in [4], and for all knots in [2], as
mentioned in Section 1. In this section, we investigate how many knot groups a 2–bridge
knot group maps onto.

Let EK.n/ be the maximal number of knots whose knot groups a 2–bridge knot group
with n crossings admits epimorphisms onto. Theorem 3.3 and Proposition 3.7 imply
the following, which is one of the main results in this paper. It gives us a rough estimate
of EK.n/.
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Theorem 4.1 Let K.zr/ be a 2–bridge knot. If there exists an epimorphism from
G.K.zr// onto the knot group of another knot K , then

c.K.zr//� 3c.K/:

In particular, all the 2–bridge knots K with up to 8 crossings are minimal, that is to
say, if G.K/ admits an epimorphism onto a knot group G.K0/, then K0 is equivalent
to K or the trivial knot.

Proof By [4, Corollary 1.3] and [20, Proposition 2.4], if G.K.zr// admits an epimor-
phism onto G.K/, then K is also a 2–bridge knot or the trivial knot. In the case that
K is the trivial knot, the desired inequality obviously holds.

Next, we assume that K is a 2–bridge knot and that r is the corresponding rational
number. Take the standard continued fraction expansion Œa1; a2; : : : ; am� of r . Then zr
has an expansion of type 2nC1 with respect to aD .a1; a2; : : : ; am/. By Theorem 3.3,
we have

c.K.zr//D .2nC 1/jajC

2nX
iD1

.2jci j � .i/� x .i//

D .2nC 1/c.K/C

2nX
iD1

xci

� .2nC 1/c.K/ (by Proposition 3.7)

� 3c.K/:

Furthermore, since a nontrivial knot has at least 3 crossings, all the 2–bridge knots
with up to 8 crossings are minimal.

Remark The previous paper [12] shows that there are seven knots with less than
9 crossings whose knot groups admit epimorphisms onto the trefoil knot group. To
be precise, they are the 3–bridge knots 85 , 810 , 815 , 818 , 819 , 820 , 821 . So the
inequality of Theorem 4.1 does not hold for 3–bridge knots.

Ernst and Sumners [8] determined the number TK.n/ of 2–bridge knots in terms of
the crossing number n� 3 as follows:

TK.n/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1
3
.2.n�3/C 2.n�4/=2/ if n� 0 .mod 4/;

1
3
.2.n�3/C 2.n�3/=2/ if n� 1 .mod 4/;

1
3
.2.n�3/C 2.n�4/=2� 1/ if n� 2 .mod 4/;

1
3
.2.n�3/C 2.n�3/=2C 1/ if n� 3 .mod 4/:

Algebraic & Geometric Topology, Volume 17 (2017)
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Then we can estimate EK.n/ by using Theorem 4.1:

EK.n/�
bn=3cX
kD3

TK.k/:

These numbers are obtained as shown in the following table:

n 9–11 12–14 15–17 18–20 21–23 24–26 27–29 30–32 33–35 36–38 39–41Pbn=3c
kD3

TK.k/ 1 2 4 7 14 26 50 95 186 362 714

In particular, we obtain that the knot groups of 2–bridge knots with 12, 13 or 14

crossings map onto at most two knot groups, which are the trefoil knot group G.31/ and
the figure eight knot group G.41/. On the other hand, Garrabrant, Hoste and Shanahan
studied an upper bound for a set of 2–bridge knots with respect to epimorphisms between
their knot groups. We recall their arguments more precisely. Let aD .a1; a2; : : : ; a2n/

be a vector such that

(1) each ai is in f�2; 0; 2g,

(2) a1 ¤ 0 and a2n ¤ 0,

(3) if ai D 0, then ai�1 D aiC1 D˙2.

For such an a , we call Œa1; a2; : : : ; a2n� an even standard continued fraction expansion.
If we consider aD .a1; a2; : : : ; a2n/ up to the equivalence relations aD˙b and aD

˙b�1 , where b�1 is b read backwards, then a 2–bridge knot can be expressed uniquely
as K.Œa1; a2; : : : ; a2n�/ by using an even standard continued fraction expansion:

Proposition 4.2 (Garrabrant, Hoste and Shanahan [9]) Let Œa1; a2; : : : ; a2n� and
Œb1; b2; : : : ; b2n� be even standard continued fraction expansions of the same length.
If a 2–bridge knot group admits epimorphisms onto G.K.Œa1; a2; : : : ; a2n�// and
G.K.Œb1; b2; : : : ; b2n�//, then .a1; a2; : : : ; a2n/D .b1; b2; : : : ; b2n/.

For example, the trefoil is 31 DK.Œ2;�2�/ and the figure eight knot is 41 DK.Œ2; 2�/.
Since the lengths of these even standard continued fraction expansions are the same,
there does not exist a 2–bridge knot whose knot group admits epimorphisms onto
G.31/ and G.41/ simultaneously, by Proposition 4.2. Similarly, a 2–bridge knot group
maps onto the knot group of at most one of f51; 52; 61; 62; 63g, since

51 DK.Œ2;�2; 2;�2�/; 52 DK.Œ2;�2; 0;�2�/;

61 DK.Œ2; 0; 2; 2�/; 62 DK.Œ2; 2;�2; 2�/; 63 DK.Œ2;�2;�2; 2�/:

In order to extend this argument, we consider the relationship between the length of an
even standard continued fraction expansion and the crossing number.
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Proposition 4.3 Let Œa1; a2; : : : ; a2n� be an even standard continued fraction expan-
sion. Then the crossing number c.K.Œa1; a2; : : : ; a2n�// satisfies the inequalities

2nC 1� c.K.Œa1; a2; : : : ; a2n�//� 4n:

Proof First of all, we delete zeros in .a1; a2; : : : ; a2n/ as before:

Œa1; a2; : : : ; a2n�D Œa
0
1; a
0
2; : : : ; a

0
2n0 �;

where a0i 2 2Znf0g. Let ` be the number of zeros in .a1; a2; : : : ; a2n/. Then we have
2`D 2n� 2n0 and

2n0X
iD1

.ja0i j � 2/D 2`:

It follows that
2n0X
iD1

ja0i j D 2`C 4n0 D 2nC 2n0:

By the same argument as in the proof of Theorem 3.3, we obtain

c.K.Œa1; a2; : : : ; a2n�//D c.K.Œa01; a
0
2; : : : ; a

0
2n0 �//D

2n0X
iD1

ja0i j � k D

2nX
iD1

jai j � k;

where k is the number of sign changes in .a0
1
; a0

2
; : : : ; a0

2n0/. Note that 0� k � 2n0�1.
(If all a0i are positive or negative, then kD 0. If a0i �a

0
iC1

< 0 for all i .0� i � 2n0�1/,
then k D 2n0� 1.) Since jai j � 2, we have

2nX
iD1

jai j � k � 4n:

Moreover, we obtain
2n0X
iD1

ja0i j � k D 2nC 2n0� k

� 2nC 2n0� .2n0� 1/

D 2nC 1:

This completes the proof.

By Proposition 4.2, if two distinct 2–bridge knots K;K0 have even standard continued
fraction expansions of the same length, then there does not exist a 2–bridge knot
whose knot group maps onto G.K/ and G.K0/. Combined with Proposition 4.2 and
Proposition 4.3, we can estimate EK.n/ more precisely.
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Theorem 4.4 The number EK.n/ satisfies

EK.n/�
j

n�3

6

k
:

Proof Let K be a 2–bridge knot with n crossings. If G.K/ admits an epimorphism
onto G.K0/, then the crossing number of K0 is at most bn=3c, by Theorem 4.1. Let
Œa1; a2; : : : ; a2m� be the even standard continued fraction expansion of K0 , namely
K0DK.Œa1; a2; : : : ; a2m�/. By Proposition 4.2, EK.n/ is less than or equal to the num-
ber of the lengths of even standard continued fraction expansions. By Proposition 4.3,
we have

2m� bn=3c� 1:

Hence we obtain
EK.n/�

j
bn=3c�1

2

k
D

j
n�3

6

k
:

For example, the knot group of a 2–bridge knot with 50 crossings maps onto at most
seven distinct knot groups. Actually, we can get the precise number EK.n/ for n� 30

by computer program:

EK.n/D

8<:
0 if nD 3; 4; 5; 6; 7; 8;

1 if nD 9; 10; 11; 12; 13; 14; 18; 19; 20; 24;

2 if nD 15; 16; 17; 21; 22; 23; 25; 26; 27; 28; 29; 30:

In particular, EK.n/ is less than 3 for all n � 30. On the other hand, it is easy to
see that G.K.Œ45�// maps onto G.K.Œ3�//, G.K.Œ5�/, G.K.Œ9�// and G.K.Œ15�//. It
follows that EK.45/� 4.

Problem Does there exist a 2–bridge knot with less than 45 crossings whose knot
group maps onto three (or four) distinct knot groups? In general, determine EK.n/
explicitly for all n� 31.

5 The generating function

As shown in Example 3.2, there exist three distinct 2–bridge knots with 9 crossings
whose knot groups admit epimorphisms onto the trefoil knot group. In this section,
we generalize this result. Namely, for a given 2–bridge knot K.r/, we determine the
number of 2–bridge knots K.zr/ which admit epimorphisms 'W G.K.zr//!G.K.r//,
in terms of c.K.zr//.

Theorem 5.1 For a given rational number r , we take the standard continued fraction
expansion Œa1; a2; : : : ; am� of r and define the generating function f as follows:
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(1) If .a1; a2; : : : ; am/¤ .am; : : : ; a2; a1/, then

f .r/D

1X
nD1

1X
kD0

22n
� 2nCk�1

k

�
t .2nC1/c.K.r//Ck :

(2) If .a1; a2; : : : ; am/D .am; : : : ; a2; a1/, then

f .r/D

1X
nD1

1X
kD0

g.n; k/ t .2nC1/c.K.r//Ck ;

where

g.n; k/D

(
22n�1

�
2nCk�1

k

�
for k odd;

22n�1
�
2nCk�1

k

�
C 2n�1

�nCk=2�1
k=2

�
for k even:

Here
�

a
b

�
D

a!
b!.a�b/!

. Then the number of 2–bridge knots K.zr/ which admit epimor-
phisms 'W G.K.zr//!G.K.r// is the coefficient of tc.K.zr// in f .r/.

Proof We will count the number of 2–bridge knots with .2nC1/c.K.r//Ck crossings
which correspond to rational numbers of the form (�). The crossing number c.K.r//

is
Pm

iD1 ai . Compared with Theorem 3.3, we have

k D

2nX
iD1

xci D

2nX
iD1

2jci j � .i/� x .i/;

where xci � 0 by Proposition 3.7.

Suppose that xci D j (� 0). Then ."ia
˙1; 2ci ; "iC1a�1/, which is a part of zr , has the

following possibilities:

(1) if j is even and "i D 1, then

."ia
˙1; 2ci ; "iC1a�1/D .a˙1; j ; a�1/ or .a˙1;�.j C 2/; a�1/I

(2) if j is even and "i D�1, then

."ia
˙1; 2ci ; "iC1a�1/D .�a˙1;�j ;�a�1/ or .�a˙1; j C 2;�a�1/I

(3) if j is odd and "i D 1, then

."ia
˙1; 2ci ; "iC1a�1/D .a˙1; j C 1;�a�1/ or .a˙1;�.j C 1/;�a�1/I

(4) if j is odd and "i D�1, then

."ia
˙1; 2ci ; "iC1a�1/D .�a˙1; j C 1; a�1/ or .�a˙1;�.j C 1/; a�1/:
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Therefore ."ia
˙1; 2ci ; "iC1a�1/ always has two possibilities. Besides, there are�

2nCk�1
k

�
cases for .xc1; : : : ; xc2n/, namely

.xc1; xc2; : : : ; xc2n/D .k; 0; : : : ; 0/; .k � 1; 1; : : : ; 0/; : : : ; .0; 0; : : : ; 0; k/:

Hence there are 22n
�
2nCk�1

k

�
2–bridge knots with .2nC 1/c.K.r//C k crossings,

and we get the generating function of (1).

In the case when .a1; : : : ; am/D .am; : : : ; a1/, we see

K.Œ"1a; 2c1; "2a�1; : : : ; 2c2n; "2nC1a�/DK.Œ"2nC1a; 2c2n; : : : ; "2a�1; 2c1; "1a�/:

It implies that if zr is not symmetric, that is, if zr is not in the form

Œ"1a; 2c1; : : : ; 2cn; "nC1a˙1; 2cn; : : : ; 2c1; "1a�;

we counted the same knot twice. Then the number of knots is

1

2

�
22n

�2nCk�1

k

�
� 2n

�nCk=2�1

k=2

��
C 2n

�nCk=2�1

k=2

�
D 22n�1

�2nCk�1

k

�
C 2n�1

�nCk=2�1

k=2

�
:

Notice that if k is odd, then zr must not be symmetric. As we saw in Section 2, if
the standard continued fraction expansions are not the same, then the 2–bridge knots
are not equivalent. We can get the standard fraction expansion of zr by Lemma 3.4. It
shows that these knots which are obtained by the Ohtsuki–Riley–Sakuma construction
are not equivalent. This completes the proof.

Example 5.2 First, we apply Theorem 5.1 to the trefoil knot. The generating function
for the trefoil K.1

3/DK.Œ3�/ is

f .1
3/D 3t9

C 4t10
C 7t11

C 8t12
C 11t13

C 12t14

C 25t15
C 48t16

C 103t17
C 180t18

C 309t19
C 472t20

C 743t21
C 1180t22

C 2045t23
C 3584t24

C 6391t25
C � � � :

Then the number of 2–bridge knots with 9 crossings whose knot groups admit epimor-
phisms onto the trefoil knot group is the coefficient of t9 , which is 3. These 2–bridge
knots are 91 , 96 , 923 , as shown in Example 3.2.

Similarly, as shown in [12], there are four distinct 2–bridge knots with 10 crossings
whose knot groups admit epimorphisms onto the trefoil knot group, namely 105 , 109 ,
1032 , 1040 ; as shown in [10], there are seven distinct such 2–bridge knots with 11

crossings, namely 11a117 , 11a175 , 11a176 , 11a203 , 11a236 , 11a306 , 11a355 .
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Another example shows the generating function for 52 DK.3
7/DK.Œ2; 3�/:

f .3
7/D 4t15

C 8t16
C 12t17

C 16t18
C 20t19

C 24t20

C 28t21
C 32t22

C 36t23
C 40t24

C 60t25
C 112t26

C 212t27
C 376t28

C 620t29
C 960t30

C � � � :
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