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Homotopy decompositions of gauge groups
over real surfaces

MICHAEL WEST

We analyse the homotopy types of gauge groups of principal U.n/–bundles associated
to pseudoreal vector bundles in the sense of Atiyah. We provide satisfactory homotopy
decompositions of these gauge groups into factors in which the homotopy groups are
well known. Therefore, we substantially build upon the low-dimensional homotopy
groups as provided by Biswas, Huisman and Hurtubise.

55P15, 55Q52; 30F50

1 Introduction

Recently, the topology of gauge groups over real surfaces has received widespread
interest due to their intimate ties with the moduli spaces of stable vector bundles; see
Biswas, Huisman and Hurtubise [3] and Schaffhauser [8]. Indeed, there have been
explicit calculations of some of the topological invariants of these gauge groups. For
instance, real vector bundles over real surfaces were originally classified in [3] but
more recently in Georgieva and Zinger [4]. Cohomology calculations of the classifying
spaces appeared in Liu and Schaffhauser [6] and Baird [1; 2]. Furthermore, some
of the low-dimensional homotopy groups were presented in [3]. The purpose of this
paper is to extend the calculations of these homotopy groups by providing homotopy
decompositions of the gauge groups into products of known factors.

In the coming section, we define our objects of interest and state their classification
results. We go on to state the results of this paper, and then proofs are provided in
Section 2. In Section 3, we present tables of homotopy groups and compare them to
those provided in [3] in which we highlight a discrepancy.
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1.1 Definitions

The pair .X; �/, where X is a compact connected Riemann surface and � is an
antiholomorphic involution, will be called a real surface.

To a real surface .X; �/, we associate the triple .g.X /; r.X /; a.X //, where

� g.X / is the genus of X ;

� r.X / is number of path components of the fixed set X � ;

� a.X /D 0 if X=� is orientable and a.X /D 1 otherwise.

We note that the path components of X � are each homeomorphic to S1 . The following
classification of real surfaces was studied in Weichold [13].

Theorem 1.1 (Weichold) Let .X; �/ and .X 0; � 0/ be real surfaces. Then there is a
isomorphism X !X 0 (in the category of real surfaces) if and only if

.g.X /; r.X /; a.X //D .g.X 0/; r.X 0/; a.X 0//:

Furthermore, if a triple .g; r; a/ satisfies one of the following conditions:

(1) if aD 0, then 1� r � gC 1 and r � .gC 1/ mod 2;

(2) if aD 1, then 0� r � g ;

then there is a real surface .X; �/ such that .g; r; a/D .g.X /; r.X /; a.X //.

Therefore, a real surface .X; �/ is completely determined by its triple .g; r; a/, which
we call the type of the real surface.

Let � W P !X be a principal U.n/–bundle over the underlying Riemann surface X

of the real surface .X; �/. A lift of � is a map z� W P ! P satisfying

(1) �� D �z� ;

(2) z�.p �g/D z�.p/ � xg for all p 2 P;g 2 U.n/;

where xg represents the entrywise complex conjugate of g 2 U.n/. We remark that,
due to property 2 of a lift, the fixed point set P z� has the structure of a principal
O.n/–bundle over the real points X � .

Let z� be a lift. Then we say that .P; z�/! .X; �/ is a real principal U.n/–bundle (or
real bundle) if z� further satisfies

(3) z�2.p/D p for all p 2 P ;

Algebraic & Geometric Topology, Volume 17 (2017)



Homotopy decompositions of gauge groups over real surfaces 2431

or if n is even, we say that .P; z�/! .X; �/ is a quaternionic principal U.n/–bundle
(or quaternionic bundle) if z� satisfies

(3 0 ) z�2.p/D p � .�In/ for all p 2 P ;

where In represents the n� n identity matrix. Such bundles were classified in [3].

Proposition 1.2 (Biswas, Huisman, Hurtubise) Let .X; �/ be a type-.g; r; a/ real
surface, and denote its fixed components by Xi for 1 � i � r . Then real principal
U.n/–bundles .P; z�/! .X; �/ are classified by the first Stiefel–Whitney classes of
the restriction to bundles Pi!Xi over the fixed components

!1.Pi/ 2H 1.Xi ;Z=2/Š Z=2;

and by the first Chern classes of the bundle over X ,

c1.P / 2H 2.X;Z/Š Z;

subject to the relation

c1.P /�
X

w1.Pi/ mod .2/:

Furthermore, given any such characteristic classes there is a real principal U.n/–bundle
that realises them.

We write

.c; w1; w2; : : : ; wr / WD .c1.P /; w1.P1/; w1.P2/; : : : ; w1.Pr //;

and we will refer to the tuple .c; w1; w2; : : : ; wr / 2Z�
Q

r Z2 as the class of the real
principal U.n/–bundle .P; z�/.

Proposition 1.3 (Biswas, Huisman, Hurtubise) Let .X; �/ be a real surface of type
.g; r; a/, and let n be even. Then quaternionic principal U.n/–bundles .P; z�/! .X; �/

are classified by their first Chern class which must be even. Furthermore, given any
such Chern class, there is a quaternionic principal U.n/–bundle that realises it.

We recall that we only cater for quaternionic bundles of even rank. However, a similar
result for the case when n is odd is also handled in [3].

Writing c D c1.P /, we will therefore refer to c 2 2Z as the class of the quaternionic
principal U.n/–bundle .P; z�/.
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Let .P; z�/! .X; �/ be a real or quaternionic principal U.n/–bundle. An automor-
phism of .P; z�/ is a U.n/–equivariant map �W P!P such that the following diagrams
commute:

P
�
//

��

P

��

X
idX
// X

and
P

�
//

z�
��

P

z�
��

P
�
// P

Let Map.P;P / denote the set of self maps of P endowed with the compact open
topology.

Definition 1.4 The (unpointed) gauge group G .P; z�/ is the subspace of Map.P;P /
whose elements are automorphisms of .P; z�/.

It will be convenient to provide decompositions for certain subspaces of the gauge
group.

Definition 1.5 Choose a basepoint �X of .X; �/ such that �.�X / D �X if r > 0.
Then the (single)-pointed gauge group G �.P; z�/ consists of the elements of G .P; z�/

that restrict to the identity above �X .

Another pointed gauge group of interest was considered in [3]. Let .X; �/ be a real
surface of type .g; r; a/; then for each 1� i � r , choose a designated point �i contained
in the fixed component Xi . Further, if aD 1, choose another designated point �rC1

that is not fixed by the involution. By convention, we choose �1 to be �X as in
Definition 1.5.

Definition 1.6 The .rCa/–pointed gauge group G �
.rCa/ .P; z�/ consists of the ele-

ments of G .P; z�/ that restrict to the identity above these .r C a/ designated points
of .X; �/.

1.2 Main results for real bundles

In this section, we aim to present the main results pertaining to homotopy decompo-
sitions of gauge groups of real principal U.n/–bundles. To ease notation, we will
sometimes use the following:
� G ..g; r; a/I .c; w1; w2; : : : ; wr // to represent the unpointed gauge group of a

real bundle of class .c; w1; w2; : : : ; wr / over a real surface of type .g; r; a/;
� G �..g; r; a/I .c; w1; w2; : : : ; wr // to represent the single-pointed gauge group

of the real bundle as above;
� G �

.rCa/ ..g; r; a/I .c; w1; w2; : : : ; wr // to represent the .rCa/–pointed gauge
group of the real bundle as above.
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We first present the results relating to when gauge groups of different real bundles have
the same homotopy type. For .rCa/–pointed gauge groups this is always the case.

Proposition 1.7 Let .P; z�/ and .P 0; � 0/ be real principal U.n/–bundles over a real
surface .X; �/ of arbitrary type .g; r; a/, then there is a homotopy equivalence

B G
�.rCa/ .P; z�/' B G

�.rCa/ .P 0; � 0/:

However, this is not necessarily the case for the single-pointed and unpointed gauge
groups, although we do have the following results.

Proposition 1.8 For any c; c0; w1; w
0
1

, there is a homotopy equivalence

B G
�..g; r; a/I .c; w1; w2; : : : ; wr //' B G

�..g; r; a/I .c0; w01; w2; : : : ; wr //:

Proposition 1.9 Let the following be classifying spaces of rank-n gauge groups. Then
there are isomorphisms of gauge groups

G ..g; r; a/I .c; w1; w2; : : : ; wr //Š G ..g; r; a/I .cC 2n; w1; w2; : : : ; wr //:

Proposition 1.10 Let n be odd. Then there are isomorphisms of rank-n gauge groups

(1) G ..g; r; a/I .c; w1; w2; : : : ; wr //Š G ..g; r; a/I .c;
Pr

iD1wi ; 0; : : : ; 0//;
(2) G �..g; r; a/I .c; w1; w2; : : : ; wr //Š G �..g; r; a/I .c;

Pr
iD1wi ; 0; : : : ; 0//.

It would be better to provide stronger statements of Propositions 1.7 and 1.8, such as
in the form of the isomorphisms of Propositions 1.9 and 1.10. Indeed, the proofs of the
latter invoke a conceptually simple argument and it may be the case that Propositions 1.7
and 1.8 can be given stronger statements using a similar approach.

We now state homotopy decompositions for .rCa/–pointed gauge groups.

Theorem 1.11 Let .P; z�/ be of arbitrary class. Then there are integral homotopy
decompositions:

type decompositions for G �
.rCa/.P; z�/

.g; 0; 1/ for g even G �..0; 0; 1/I 0/�
Q
g
�U.n/

.g; 0; 1/ for g odd G �..1; 0; 1/I 0/�
Q

g�1

�U.n/

.g; r; 0/ �2.U.n/=O.n//�
Q

.g�rC1/C.r�1/

�U.n/�
Q

r�1

�O.n/

.g; r; 1/
g� r even G �..1; 1; 1/I .0; 0//�

Q
.g�r/C.r�1/C1

�U.n/�
Q

r�1

�O.n/

.g; r; 1/
g� r odd G �..1; 1; 1/I .0; 0//�

Q
.g�r�1/C.r�1/C2

�U.n/�
Q

r�1

�O.n/
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In the single-pointed case, we have to be a little more careful with regards to the class
of the underlying real bundle. For the cases where G �

.rCa/ .P; z�/¤ G �.P; z�/, that is
when r C a> 1, we have the following results.

Theorem 1.12 Let n be odd or let .P; z�/ be of class .c; w1; 0; : : : ; 0/. Let rCa> 1.
Then there are integral homotopy decompositions:

type decompositions for G �.P; z�/

.g; r; 0/ �2.U.n/=O.n//�
Q

g�rC1

�U.n/�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.g; r; 1/
g�r even G �..1; 1; 1/I .0; 0//�

Q
g�r

�U.n/�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.g; r; 1/
g�r odd G �..1; 1; 1/I .0; 0//�

Q
.g�r�1/C1

�U.n/�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

The remaining cases seem to integrally indecomposable; however, we will obtain the
following localised homotopy decompositions for odd-rank gauge groups.

Theorem 1.13 Let p ¤ 2 be prime and let n be odd. Then there are the following
p–local homotopy equivalences

(1) G �..0; 0; 1/I c/'p �
2.U.n/=O.n//��.U.n/=O.n//;

(2) G �..1; 0; 1/I c/'p �
2.U.n/=O.n//��.U.n/=O.n//��U.n/;

(3) G �..1; 1; 1/I .c; w1//'p �
2.U.n/=O.n//��.U.n/=O.n//��O.n/.

This result relies upon a self map of U.n/=O.n/ as studied in Harris [5], which is a
p–local homotopy equivalence if and only if n is odd. Hence it seems to be difficult
to provide such satisfactory decompositions in the even-rank case.

We move on to some integral homotopy decompositions for unpointed gauge groups.
The reader is invited to compare the tables of Theorems 1.14 and 1.12.

Theorem 1.14 Let .P; z�/ be of class .c; w1; w2; : : : ; wr /. Then there are integral
homotopy decompositions:

(1)

type decompositions for G .P; z�/

.g; r; 0/ G ..r � 1; r; 0/I .c; w1; : : : ; wr //�
Q

g�rC1

�U.n/

.g; r; 1/
g� r even G ..r; r; 1/I .c; w1; : : : ; wr //�

Q
g�r

�U.n/

.g; r; 1/
g� r odd G ..r C 1; r; 1/I .c; w1; : : : ; wr //�

Q
g�r�1

�U.n/
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(2) G ..2; 1; 1/I .c; w1//' G ..1; 1; 1/I .c; w1//��U.n/:

Further, for r � 1 and when .P; z�/ is of class .c; w1; 0; : : : ; 0/ or n is odd, there are
integral homotopy decompositions:

(3)

type decompositions for G .P; z�/

.r � 1; r; 0/ G ..0; 1; 0/I .c; †wi//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.r; r; 1/ G ..1; 1; 1/I .c; †wi//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.r C 1; r; 1/ G ..2; 1; 1/I .c; †wi//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

The remaining unfamiliar spaces in Theorem 1.14 seem to be integrally indecomposable;
however, localising at particular primes permits further decompositions.

Theorem 1.15 Let n be a positive integer and let p be a prime with p − n.

(1) Let the following be gauge groups of rank n. Then there are p–local homotopy
equivalences
(a) G ..g; 1; a/I .c; 0//'p O.n/�G �..g; 1; a/I .c; 0//;
further, if p ¤ 2 and n is odd, then there are p–local homotopy equivalences
(b) G ..0; 0; 1/I c/'p SO.n/��2.U.n/=SO.n//;
(c) G ..1; 0; 1/I c/'p SO.n/��2.U.n/=SO.n//��U.n/.

(2) Let the following be gauge groups of rank p . Then there are p–local homotopy
equivalences
(a) G ..g; 1; a/I .c; 0//'p O.p/�G �..g; 1; a/I .c; 0//;
further, if p ¤ 2, then there are p–local homotopy equivalences
(b) G ..0; 0; 1/I c/'p SO.p/��2.U.p/=SO.p//;
(c) G ..1; 0; 1/I c/'p SO.p/��2.U.p/=SO.p//��U.p/.

1.3 Main results for quaternionic bundles

To distinguish the notation of quaternionic gauge groups from the real case, we will
use a subscript Q, for example GQ.P; z�/. Further, to ease notation we will sometimes
use the following:

� GQ..g; r; a/I c/ to represent the unpointed gauge group of a quaternionic bundle
of class c over a real surface of type .g; r; a/;

� G �Q ..g; r; a/I c/ to represent the single-pointed gauge group of the quaternionic
bundle as above;
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� G �
.rCa/

Q ..g; r; a/I c/ to represent the .rCa/–pointed gauge group of the quater-
nionic bundle as above.

We present results in the same order as we did in the real case. In the quaternionic case,
the homotopy types of the pointed and .rCa/–pointed gauge groups are independent
of the class of the bundle.

Proposition 1.16 Let .X; �/ be a real surface of fixed type .g; r; a/. Let .P; z�/
and .P 0; � 0/ be quaternionic principal U.2n/–bundles over .X; �/. Then there are
homotopy equivalences

(1) B G �Q .P; z�/' B G �Q .P
0; � 0/;

(2) B G �
.rCa/

Q .P; z�/' B G �
.rCa/

Q .P 0; � 0/.

For the unpointed case, we have an analogue of Proposition 1.9.

Proposition 1.17 Let .X; �/ be a real surface of fixed type .g; r; a/ and let the follow-
ing be gauge groups of quaternionic bundles of rank 2n. Then for any even integer c ,
there is an isomorphism of topological groups

GQ..g; r; a/I c/Š GQ..g; r; a/I cC 4n/:

We now present homotopy decompositions for pointed gauge groups in the quaternionic
case. The reader is invited to compare the following results to their real analogues.

Theorem 1.18 Let .P; z�/ be a quaternionic principal U.2n/–bundle of class c . Then
there are integral homotopy decompositions:

type decompositions for G �
.rCa/

Q .P; z�/

.g; 0; 1/ for g even G �Q ..0; 0; 1/I 0/�
Q
g
�U.2n/

.g; 0; 1/ for g odd G �Q ..1; 0; 1/I 0/�
Q

g�1

�U.2n/

.g; r; 0/ �2.U.2n/=Sp.n//�
Q
g
�U.2n/�

Q
r�1

�Sp.n/

.g; r; 1/ for g� r even G �Q ..1; 1; 1/I 0/�
Q
g
�U.2n/�

Q
r�1

�Sp.n/

.g; r; 1/ for g� r odd G �Q ..1; 1; 1/I 0/�
Q
g
�U.2n/�

Q
r�1

�Sp.n/

For the cases where G �
.rCa/

Q .P; z�/¤ G �Q .P; z�/, that is when r C a> 1, we have:
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Theorem 1.19 For .P; z�/ of class c , there are integral homotopy decompositions:

type decompositions for G �Q .P; z�/

.g; r; 0/ �2.U.2n/=Sp.n//�
Q

g�rC1

�U.2n/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//

.g; r; 1/
g� r even G �Q ..1; 1; 1/I 0/�

Q
g�r

�U.2n/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//

.g; r; 1/
g� r odd G �Q ..1; 1; 1/I 0/�

Q
g�r

�U.2n/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//

Again, the remaining cases seem to be integrally indecomposable; however, we will
obtain the following localised decompositions.

Theorem 1.20 Let p ¤ 2 be prime. Then there are p–local homotopy equivalences

(1) G �Q ..0; 0; 1/I 0/'p �
2.U.2n/=Sp.n//��.U.2n/=Sp.n//I

(2) G �Q ..1; 0; 1/I 0/'p �
2.U.2n/=Sp.n//��.U.2n/=Sp.n//��U.2n/;

(3) G �Q ..1; 1; 1/I 0/'p �
2.U.2n/=Sp.n//��.U.2n/=Sp.n//��Sp.n/.

We now present homotopy decompositions for the unpointed case.

Theorem 1.21 For .P; z�/ of class c , there are integral homotopy decompositions:

type decompositions for GQ.P; z�/

.g; 0; 1/
g even GQ..0; 0; 1/I c/�

Q
g
�U.n/

.g; 0; 1/
g odd GQ..1; 0; 1/I c/�

Q
g�1

�U.n/

.g; r; 0/ GQ..0; 1; 0/I c/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//�
Q

g�rC1

�U.n/

.g; r; 1/ GQ..1; 1; 1/I c/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//�
Q

g�r
�U.n/

The remaining unfamiliar spaces in Theorem 1.21 seem to be integrally fundamental;
however, localising at a particular prime permits further decompositions.

Theorem 1.22 Let n be a positive integer and let p be a prime such that p − 2n. Let
the following be gauge groups of a quaternionic bundle of rank 2n. Then there are
p–local homotopy equivalences

(1) GQ..g; 1; a/I c/'p Sp.n/�B G �Q ..g; 1; a/I c/;

(2) GQ..0; 0; 1/I c/'p Sp.n/��2.U.2n/=Sp.n//;
(3) GQ..1; 0; 1/I c/'p Sp.n/��2.U.2n/=Sp.n//��U.2n/.
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2 Proofs of statements

For the sake of clarity, we focus on the proofs of statements in the real case, and then
we elaborate on some of the details in the quaternionic case in Section 2.5. We look to
decompose the gauge groups by studying an equivariant mapping space as provided
in [1].

Throughout our analysis, we think of real surfaces as Z2 –spaces. For Z2 –spaces Y

and Z , let MapZ2
.Y;Z/ denote the space of Z2 –maps from Y to Z . We note that the

fixed points of Y must be mapped to the fixed points of Z . If Y and Z are pointed,
we denote a pointed version of this mapping space by Map�Z2

.Y;Z/. Further, recall
the “basepoints” �i of .X; �/ from just before Definition 1.6. Let

A WD

rC1a
iD1

�iq �.�rC1/;

and let Map�.rCa/

Z2
.X;Z/ denote the subspace of MapZ2

.X;Z/ whose elements
send A to �Z .1 Let xX denote the cofibre of A ,! X , and notice that there is a
homeomorphism

Map�.rCa/

Z2
.X;Z/ŠMap�Z2

. xX ;Z/:

A universal real principal U.n/–bundle is given by

.EU.n/; z&/! .BU.n/; &/;

where & is induced by complex conjugation and hence BU.n/& D BO.n/. Using this
Z2 –structure, [1] provides the following theorem.

Theorem 2.1 (Baird) There are homotopy equivalences

(1) B G .P; z�/'MapZ2
.X;BU.n/IP /;

(2) B G �.P; z�/'Map�Z2
.X;BU.n/IP /;

(3) B G �
.rCa/ .P; z�/'Map�.rCa/

Z2
.X;BU.n/IP /ŠMap�Z2

. xX ;BU.n/IP /;

where on the right-hand side, we pick the path component of MapZ2
.X;BU.n// that

induces .P; z�/.

The following lemma can be shown by adapting the proof in the nonequivariant case.
We will frequently require this lemma throughout the paper.

1Of course, it may be necessary to assume that �Z is fixed by the Z2 –action.
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Lemma 2.2 Let Y and Z be Z2 –spaces with basepoints fixed by the action, and
with Y locally compact Hausdorff. Then there are equivalences

(1) �Map�Z2
.X;Y /ŠMap�Z2

.†X;Y /;

(2) Map�Z2
.X; �Y /ŠMap�Z2

.†X;Y /.

Throughout this section, there are a number of Z2 –spaces that will often appear; here
we provide a dictionary:

� .X; id/: any space X with the trivial involution;

� .X _X; sw/: the wedge X _X equipped with the involution that swaps the
factors;

� .Sn;� id/: the sphere Sn equipped with the antipodal involution;

� .Sn; he/: the sphere Sn equipped with the involution that reflects along the
equator.

2.1 Real surfaces as Z2–complexes

In order to provide homotopy decompositions for the gauge groups, it will prove useful
to provide a Z2 CW-complex structure for real surfaces. The following is essentially a
restatement of the structures provided in [3]. We let †p;q denote a Riemann surface of
genus p with q open discs removed.

Type .g; 0; 1/ We first study the case where g is even. We can think of X as two
copies of †g=2;1 glued along their boundary components, each a copy of S1 . The
involution restricted to S1 is the antipodal map and extends to swap the two copies
of †g=2;1 .

We give a CW-structure of X as follows: Let X 0 be two 0–cells, � and �.�/. There
are 2gC 2 1–cells

˛1; : : : ; ˛g=2; ˇ1; : : : ; ˇg=2; ;

�.˛1/; : : : ; �.˛g=2/; �.ˇ1/; : : : ; �.ˇg=2/; �. /:

The boundaries of ˛i ; ˇi are glued to �, and the boundaries of �.˛i/; �.ˇi/ are glued
to �.�/. One end of  is glued to � and the other to �.�/, whilst the same is done
for �. / with the opposite orientation. There are two 2–cells glued on, one with
attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g=2ˇg=2˛
�1
g=2ˇ

�1
g=2�. /;

and the other with the same attaching map but with ˛i ; ˇi replaced with �.˛i/; �.ˇi/

and �. / replaced with �. / .
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As the notation suggests, the involution swaps cells that differ by � . In particular, this
is a � –equivariant CW-structure and hence descends to a CW-structure of X=� .

Now assume that g is odd, and let g0 D .g � 1/. We see that X can be thought of
as two copies of †g0=2;2 glued along their boundaries; two copies of S1 in X . The
involution swaps these copies of S1 but reverses orientations, and it extends to X to
swap the two copies of †g0=2;2 .

There are two 0–cells, � and �.�/, and 2g 1–cells

˛1; : : : ; ˛g0=2; ˇ1; : : : ; ˇg0=2; ; ı;

�.˛1/; : : : ; �.˛g0=2/; �.ˇ1/; : : : ; �.ˇg0=2/; �. /; �.ı/;

where ˛i ; ˇi ; �.˛i/; �.ˇi/; ; �. / are glued as before, but the boundary of ı is glued
to � and �.ı/ to �.�/. Now there are two 2–cells, one with boundary map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0=2ˇg0=2˛
�1
g0=2ˇ

�1
g0=2ı�.ı/

�1

and the other glued equivariantly. The cells ı and �.ı/ correspond to the copies of S1

above, and here  is a cell joining these copies of S1 .

Type .g; r; 0/ Let the involution fix r circles and let g0 D 1
2
.g� r C 1/. Then X=�

is a †g0;r , and X can be thought of as two copies of †g0;r glued along the r boundary
components.

In this case, the basepoint is preserved under � ; however, X 0 is given r 0–cells, one
for each fixed component. The 1–cells are then

˛1; : : : ; ˛g0 ; ˇ1; : : : ; ˇg0 ; 2; : : : ; r ; ı1; : : : ; ır ;

�.˛1/; : : : ; �.˛g0/; �.ˇ1/; : : : ; �.ˇg0/; �.2/; : : : ; �.r /;

where ˛i ; ˇi are as before and i joins the basepoint to the i th fixed component which
is represented by ıi . One of the two 2–cells has attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rır

�1
r ;

and we again define the other one equivariantly.

Type .g; r; 1/ for r > 0 Let the involution fix r circles. We first consider the case
where g � r mod 2. Let g0 D 1

2
.g � r/. Then X can be thought of as two copies

of †g0;rC1 glued along the boundary components. The involution fixes the first r of
these components whilst restricting to the antipodal map on the extra copy of S1 .
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Now X 0 is given rC2 0–cells �i , one for each fixed component and two for the
extra S1. The 1–cells are then

˛1; : : : ; ˛g0 ; ˇ1; : : : ; ˇg0 ; 2; : : : ; rC1; ı1; : : : ; ır ; ı;

�.˛1/; : : : ; �.˛g0/; �.ˇ1/; : : : ; �.ˇg0/; �.2/; : : : ; �.rC1/; �.ı/;

where ˛i ; ˇi are as before and i joins the basepoint to the i th boundary circle. Each
fixed component is represented by ıi , and ı joins �rC1 to �rC2 ; therefore, ı�.ı/
represents the extra copy of S1 . One of the two 2–cells has attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rır

�1
r rC1ı�.ı/

�1
rC1;

and we again define the other one equivariantly.

For the case where g � r C 1 mod 2, we let g0 D 1
2
.g � r � 1/. Now X can be

thought of as two copies of †g0;rC2 glued along the boundary components. Again, the
involution fixes r of these components, whilst swapping the final two copies of S1,
but reversing orientation.

Again X 0 is given rC2 0–cells, one for each fixed component and one for each of
the extra two copies of S1 . The 1–cells are then

˛1; : : : ; ˛g0 ; ˇ1; : : : ; ˇg0 ; 2; : : : ; rC2; ı1; : : : ; ırC1;

�.˛1/; : : : ; �.˛g0/; �.ˇ1/; : : : ; �.ˇg0/; �.2/; : : : ; �.rC2/; �.ırC1/;

where ˛i ; ˇi are as before and i joins the basepoint to the i th boundary circle. Each
fixed component is represented by ıi for i � r , and ırC1 and �.ırC1/ represent the
extra copies of S1 . One of the two 2–cells has attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rC1ırC1

�1
rC1rC2�.ırC1/

�1
rC2;

and we again define the other one equivariantly.

2.2 Equivalent components of mapping spaces

In this section, we aim to prove Propositions 1.7–1.10. The proofs are motivated from
the analysis of nonequivariant mapping spaces found in [10].

Proof of Proposition 1.7 We study the actions of �2.BU.n// and �1.BO.n// on
the components of Map�Z2

. xX ;BU.n//. In [10], an action of �2.BU.n// on the space
Map.X;BU.n// was defined via

(1) X
pinch
���!X _S2 f_˛

���! BU.n/_BU.n/
fold
��! BU.n/

with ˛ 2 �2.BU.n// and f 2Map�.X;BU.n//.
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We now consider the equivariant case for r D 0. Let S1 be the loop that is pinched
under xX ! xX _S2 , similar to the first map in (1). Due to equivariance, we are also
forced to pinch the loop �.S1/ producing an extra factor of S2, and the action becomes

xX
pinch
���! xX _S2

_ �.S2/
f_˛_x̨
�����! BU.n/_BU.n/_BU.n/

fold
��! BU.n/;

where x̨ D &˛ . Since � and & are both orientation-reversing, the action of

˛ 2 �2.BU.n//Š Z

alters the class Œf � by 2˛ . Hence for 2c 2 Œ xX ;BU.n/�Z2
Š 2Z, this action gives

homotopy equivalences

Map�Z2
.X;BU.n/I 2c/'Map�Z2

.X;BU.n/I 2cC 2˛/:

In particular, this gives the required homotopy equivalences for the case when r D 0.

When r > 0, the path components of Map�Z2
. xX ;BU.n// are classified by the tuple

.c; w1; w2; : : : ; wr / 2 Z�
Y

r

Z2

subject to c �
Pr

iD1wi mod 2. We wish to construct an action of �1.BO.n// to alter
each wi . For ˇ 2�1.BO.n//, we note that the inclusion of the image of ˇ into BU.n/

is nullhomotopic, so there is an extension ˇ0W D2 ! BU.n/ of ˇ . Now, consider
.S2; he/ and denote the fixed equator by E , the upper hemisphere by U and the lower
hemisphere by L. We can extend ˇ to a map žW .S2; he/! BU.n/, where

ž jUD ˇ
0 and ž jLD &ˇ

0;

and therefore, žjE D ˇ . Due to the discussion preceding Proposition 4.12 in [3],
the extension ž can be chosen so that the class Œ ž� 2 Z�Z2 is .0; 0/ if ˇ is trivial or
.˙1; 1/ otherwise.

Let .S1; he/ ,! xX be an inclusion such that the fixed points of .S1; he/ are mapped to
the i th fixed component Xi of xX . As in (1), we apply the pinch map to this copy of
.S1; he/ in xX and hence produce a factor of .S2; he/. Now the action becomes

xX
pinch
���! xX _ .S2; he/

f_ž

���! BU.n/_BU.n/
fold
��! BU.n/:

For ž of class .˙1; 1/, we conclude that this action gives a homotopy equivalence
between the components .c; w1; w2; : : : ; wr / and .c ˙ 1; w1; : : : ; wi C 1; : : : ; wr /.
Combining the actions of �2.BU.n// and �1.BO.n// gives homotopy equivalences
between all the components of Map�Z2

. xX ;BU.n//.
2We note that Proposition 4.1 in [3] is stated as Proposition 1.2 in this paper.
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Proof of Proposition 1.8 Recall from the preamble to Definition 1.6 that we chose �1

as the basepoint of .X; �/. We define actions of �2.BU.n// and �1.BO.n// on
Map�Z2

.X;BU.n// in a similar fashion to the proof of Proposition 1.7, and this obtains
the result. We cannot extend this result as in the .rCa/–pointed case due to the
“unpointed” fixed circles.

We cannot hope to use the actions of �1 and �2 on the unpointed mapping space due
to the lack of basepoint. But, by tensoring the bundle .P; z�/ with a real U.1/–bundle,
we can provide some equivalences between components.

Proof of Proposition 1.9 Let � W .P; z�/! .X; �/ be a real principal U.n/–bundle
of class .c; w1; w2; : : : ; wr / over a real surface of type .g; r; a/. The idea will be to
tensor P with a real U.1/–bundle �QW .Q; �/! .X; �/ of class .2; 0; : : : ; 0/.

Using the inclusion of the centre U.1/ ,! U.n/, there is a U.1/–action on .P; z�/. In
the principal bundle setting, the tensor of .P; z�/ and .Q; �/ is the pullback�

��.P �U.1/Q/; ��.z� � �/
�

//

��

.P �U.1/Q; z� � �/

z�

��

.X; �/
�

// .X; �/� .X; �/

where � is the diagonal map and z� D � ��Q . In a similar fashion to the discussion
preceding Proposition 4.1 in [3], we calculate that .c C 2n; w1; w2; : : : ; wr / is the
class of the pullback .��.P �U.1/Q/;��.z� � �//.

We then define

‚W G .P; z�/! G
�
��.P �U.1/Q/; ��.z� � �/

�
to be the map that sends �W P ! P to ��.� � id/. Then an inverse to ‚ is defined
in the same way as ‚, except that we replace the inclusion U.1/ ,! U.n/ with the
conjugate inclusion defined via

a 7!

0BBB@
xa 0 � � � 0

0 xa � � � 0
:::
:::
: : :

:::

0 0 � � � xa

1CCCA :
Proof of Proposition 1.10 Let � W .P; z�/! .X; �/ be a real principal U.n/–bundle
of class .c; w1; w2; : : : ; wr / over a real surface of type .g; r; a/. The statement is
proven using the same method as Proposition 1.9, except that we tensor with a real
U.1/–bundle . zQ; z�/ of class

�
0;
Pr

iD2wi ; w2; : : : ; wr

�
. If n is odd, the class of the

pullback .��.P �U.1/
zQ/; ��.z� � z�// is then

�
c;
Pr

iD1wi ; 0; : : : ; 0
�
.
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An isomorphism ‚W G .P; z�/! G .��.P �U.1/
zQ/; ��.z� � z�// is then defined in the

same way as for Proposition 1.9.

2.3 Pointed gauge groups

In our analysis, it will be necessary to distinguish the following types of real surfaces:

(0) r D 0 .D) aD 1/;

(1) r > 0 and aD 0;

(2) r > 0 and aD 1.

Generally, we will analyse the gauge groups in order of ease; we first analyse the
.rCa/–pointed gauge group, and then the single-pointed gauge group. Our results for
the single-pointed gauge groups will then be used to analyse the unpointed case.

2.3.1 Integral decompositions For the underlying Riemann surface X of a real
surface .X; �/, the attaching map f W S1 !

W
2g S1 of the top cell is a sum of

Whitehead products, and hence the suspension †f is nullhomotopic. In the real
surface case, we see Whitehead products appearing in the attaching maps of Section 2.1.
Therefore, we still see trivialities appearing in the suspension of these attaching maps,
and these trivialities will provide a large class of homotopy decompositions.

We will use the notation as defined in Section 2.1, and furthermore, we require the
following notation in this section. Let g0 denote the number of 1–cells of X which
are of the form ˛i ; ˇi in X . Explicitly,

g0 D

8<:
g� r C 1 when aD 0;

g� r when aD 1 and g� r is even,
g� r � 1 when aD 1 and g� r is odd.

Proposition 2.3 Let X˛ˇ D
W

S1 be the 1–cells ˛i ; �.˛i/; ˇi ; �.ˇi/ in the decom-
position of .X; �/. Then the map � in the Z2 –cofibration sequence

X˛ˇ ,!X !X 0
�
�!†.X˛ˇ/

is Z2 –nullhomotopic.

Proof We recall that the attaching map of one of the 2–cells in a real surface of type
.g; r; 0/ is

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rır

�1
r :
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� �1 �2ı1 ı2

2

�.2/

s
sw

Figure 1: For a type-.5; 2; 0/ real surface, the map s collapses the 1–cells
ı1 , ı2 , 2 and �.2/ .

The attaching map involving the cells ˛i and ˇi is a sum of Whitehead products. The
idea is to collapse the rest of the cells.

Now in the general case, let X be a type-.g; r; a/ real surface, let †g0=2 be a Riemann
surface of genus 1

2
g0 and denote by

sW X ! .†g0=2 _†g0=2; sw/

the map that collapses the 1–skeleton of X other than the cells ˛i ; �.˛i/; ˇi and �.ˇi/.

An example for the map s is illustrated in Figure 1. Note that four of the “holes” are
undisturbed by s ; these correspond to the 1–cells of the form ˛i ; �.˛i/; ˇi and �.ˇi/.

There is a commutative diagram

X˛ˇ // X //

s

��

X 0

s0

��

�
// †.X˛ˇ/

X˛ˇ // .†g0=2 _†g0=2; sw/ // .S2 _S2; sw/
†f_†f

// †.X˛ˇ/

where the rows are Z2 –cofibration sequences, s0 is an induced map on cofibers and f
is the attaching map of the Riemann surface †g0=2 . The Z2 –triviality of � therefore
follows from the triviality of †f .

We deduce the following theorem which greatly contributes to Theorems 1.11 and 1.12.

Theorem 2.4 With notation as above, there are homotopy equivalences

(1) G �.P; z�/' G �..g�g0; r; a/I .c; w1; : : : ; wr //�
Q

g0 �U.n/;

(2) G
.rCa/�.P; z�/' G

.rCa/�..g�g0; r; a/I .c; w1; : : : ; wr //�
Q

g0 �U.n/:
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Proof We use the notation of Proposition 2.3 and run through details for part (1). By
Theorem 2.1, there is a homotopy fibration sequence

G .P; z�/!�Map�Z2
.X˛ˇ;BU.n//

��

��!Map�Z2
.X 0;BU.n/I .c; w1; : : : ; wr //;

and by Lemma 2.2, we can see that �� is induced from � in Proposition 2.3. But
Proposition 2.3 showed that � is nullhomotopic, and the result follows. The proof for
part (2) is similar.

We note that for real surfaces of type .g; 0; 1/, Theorem 2.4 leaves only types .0; 0; 1/
and .1; 0; 1/ to consider. The gauge groups of these types seem to be integrally
indecomposable and so we leave their analysis until later.

2.3.2 The case r > 0, a D 0 Although we restrict to the case a D 0, we will see
that many of the methods in this section will also transfer to the case when aD 1.

Due to Theorem 2.4, we restrict to the case when .X; �/ is of type .r � 1; r; 0/. For
.P; z�/ of class .0; 0; : : : ; 0/, we utilise Theorem 2.1 and Lemma 2.2, and obtain the
equivalences

G
�r .P; z�/'Map�Z2

.†. xX /;BU.n//I

G
�.P; z�/'Map�Z2

.†.X /;BU.n//:

The aim of this section is to prove Theorems 1.11 and 1.12 for types .g; r; 0/, which is
restated below.

Theorem 2.5 Let .P; z�/ be a real bundle of class .c; w1; : : : ; wr / over a real surface
.X; �/ of type .r � 1; r; 0/. Then

(1) there is a homotopy equivalence

G
�r .P; z�/'�2.U.n/=O.n//�

Y
r�1

�O.n/�
Y
r�1

�U.n/I

(2) if wi D 0 for all i > 1 or if n is odd, then there is a homotopy equivalence

G
�.P; z�/'�2.U.n/=O.n//�

Y
r�1

�O.n/�
Y
r�1

�.U.n/=O.n//:

Recall the Z2 –structure of a type-.g; r; 0/ surface in Section 2.1. In the following, X
will be the subcomplex of the 1–cells of X that are denoted by either i or �.i/.

Proposition 2.6 Let .X; �/ be as above. Then in the Z2 –cofibration sequence

X
�
�!X ! zX

�0

�!†.X /;

there is a left Z2 –homotopy inverse to �. In particular, �0 is Z2 –nullhomotopic.
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� ı1

1

�.1/

1

�.1/

zjcollapse

ı1

X2=ı1

he

j2

Figure 2: The map j2 projects to the factor .S1; he/ and j2 factors through X2=ı1 .

XlC1 Xl
X2=ı1

j 0
lC1

.S1 _S1; sw/

Figure 3: Collapse a copy of .S1 _S1; sw/ to obtain the wedge X2=ı1 _Xl .

Proof We will use induction on r , the number of fixed circles of X . Let Xr denote a
real surface of type .r � 1; r; 0/, and let .Xr / be the subcomplex of Xr with 1–cells
denoted by either i or �.i/. We aim to define left homotopy inverses jr W Xr! .Xr /
of � for each r .

Note that the space .Xr / is the wedge
W

r�1.S
1; he/, and hence the first nontrivial

case is when r D 2. In this case, one can see that X2 is the product

.S1; id/� .S1; he/:

We define j2 to be the projection onto the second factor; Figure 2 illustrates this map.

For r D l , we assume that jl exists. For r D l C 1, we first use a map j 0lC1 that
collapses a copy of .S1 _S1; sw/ in XlC1 such that the image is homeomorphic to
Xl_X2=ı1 , where X2=ı1 is a copy of X2 with the 1–cell ı1 collapsed. The map j 0

lC1

is illustrated in Figure 3.
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Figure 2 also shows that j2 factors through the space X2=ı1 . We therefore define jlC1

to be the composition

XlC1

j 0
lC1

���!X2=ı1 _Xl

zj_jl
���! .XlC1/ ;

where zj is defined in Figure 2.

As an easy consequence of Proposition 2.6, we obtain the homotopy equivalences

†X '† zX _†X and † xX '† zX _† xX :

We shall see that the factors †X and † xX give the factors
Qr�1

1 �U.n/ andQr�1
1 �.U.n/=O.n//, respectively, in Theorem 2.5, and that the factor † zX produces

the factors �2.U.n/=O.n// �
Qr�1

1 �O.n/. However, the map jr automatically
induces a map

Map�Z2
.X ;BU.n//!Map�Z2

.X;BU.n/I .0; 0; : : : ; 0//:

Hence we only obtain a splitting on the level of mapping spaces in this trivial case.

We now restrict to this trivial case for the rest of this section. For the other cases,
Proposition 1.7 will then give results for Theorem 2.5(1) and Propositions 1.8 and 1.10
will give results for Theorem 2.5(2). We provide further decompositions at the level of
the real surface to continue the proof of Theorem 2.5.

Proposition 2.7 Let Xı be the 1–cells in zX denoted by ı2; : : : ; ır . Then in the
Z2 –cofibration

Xı
�0

�! zX ! .S2; he/
�00

��!†.Xı/;

the map �00 is Z2 –nullhomotopic.

Proof The space zX is the quotient of a type-.r �1; r; 0/ real surface with the 1–cells
denoted by 2; : : : ; r collapsed to a point. Recall that the attaching map of X is

(2) ı12ı2
�1
2 3ı3

�1
3 � � � rır

�1
r ;

and the induced attached map in zX becomes

ı1ı2 � � � ır :

We conclude that zX is a sphere .S2; he/ with r of its fixed points identified.

Let U denote the upper “hemisphere” of zX ; it is homeomorphic to a disc with r of its
boundary points identified, and notice that zX DU [�.U /. Now there is a deformation
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retract H W U � I ! U of U onto the wedge
Wr

iD2 ıi . Therefore, we define a left
inverse to the map �0 via

x 7!

�
H.x; 1/ for x 2 U;

H.� zX .x/; 1/ for x 2 � zX .U /;

and the result follows.

We deduce that
† zX '†Xı _†.S

2; he/:

The factor †Xı D
Wr�1

1 .S1; id/ provides the factor
Qr�1

1 �O.n/ for both cases in
Theorem 2.5. We now show that the spaces †.S2; he/ and †X provide the other
factors.

Lemma 2.8 There are homotopy equivalences

(1) Map�Z2
.†X ;BU.n//'

Q
r�1�.U.n/=O.n//I

(2) Map�Z2
.† xX ;BU.n//'

Q
r�1�U.n/.

Proof The space †.X / is the same as the wedge
W

r�1†.S
1; he/. Looking at the

r –pointed case, the 0–skeleton of †.X / is collapsed, and the space †.X / becomes
the wedge †

W
r�1.S

1 _S1; sw/. This shows part (2) of the lemma.

For part (1), we introduce a pullback similar to the pullbacks used in [1]. The space
Map�Z2

..S1; he/;BU.n// fits into the following pullback diagram:

Map�Z2
..S1; he/;BU.n//

zr
��

zu
// Map�.D1;BU.n//

r

��

Map�Z2
..S0; id/;BU.n//

u
// Map�.S0;BU.n//

Here zr restricts to the fixed points of .S1; he/, and zu restricts to the upper hemisphere
of .S1; he/ and then forgets about equivariance. Since

Map�Z2
..S0; id/;BU.n//' BO.n/;

the map u is just the inclusion BO.n/ ,! BU.n/, and hence the homotopy fibre of u

is U.n/=O.n/. Since r is a fibration, the square is also a homotopy pullback. We note
that the space Map�.D1;BU.n// is contractible, and so the result follows.
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Lemma 2.9 There is a homotopy equivalence

Map�Z2
..S2; he/;BU.n/I .0; 0//'�.U.n/=O.n//0;

where �.U.n/=O.n//0 denotes the connected component of �.U.n/=O.n// contain-
ing the basepoint.

Proof There is a similar pullback as in Lemma 2.8:

Map�Z2
..S2; he/;BU.n//

zr
��

zu
// Map�.D2;BU.n//

r
��

Map�Z2
..S1; id/;BU.n//

u
// Map�.S1;BU.n//

This time the map u is homotopic to the inclusion O.n/ ,!U.n/, and so the homotopy
fibre of u is �.U.n/=O.n//. The space Map�.D2;BU.n// is contractible, and so
there is an equivalence

Map�Z2
..S2; he/;BU.n//'�.U.n/=O.n//;

and the result follows.

Proof of Theorem 2.5 For (1), it is enough to deal with the trivial component
of Map�Z2

.X;BU.n// by Proposition 1.7. Using a similar method to the proof of
Theorem 2.4, we have that Proposition 2.6 and Lemma 2.8 contribute the factorQ

r�1�U.n/, Proposition 2.7 contributes the factor
Q

r�1�O.n/ and Lemma 2.9
contributes the factor �2.U.n/=O.n//.

For (2), the proof is similar, but one has to be careful with the nontrivial components.

2.3.3 The case r > 0, a D 1 We use the techniques and notation of the previous
section. In particular, let .P; z�/ be a bundle of class .0; 0; : : : ; 0/ over a real surface
.X; �/ of type .g; r; 1/. We first note that by Proposition 2.3, we can restrict to the
cases

(3) g D r or g D r C 1:

With these cases in mind, the main aim will be to prove the following theorem which
is a restatement of Theorems 1.11 and 1.12 for real surfaces of type .g; r; 1/.

Theorem 2.10 For notation as above and g as in (3), there are homotopy equivalences

(1) G �.P; z�/' G �..g� r C 1; 1; 1/I .0; 0//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//;

(2) G �rC1.P; z�/' G �2..g� r C 1; 1; 1/I .0; 0//�
Q

r�1

�O.n/�
Q

r�1

�U.n/.
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We note that after we have proven the above theorem, the only cases we have left to
analyse will be gauge groups over real surfaces of type .2; 1; 1/ and type .1; 1; 1/.

For the proof of the theorem, we will essentially follow the methods of the previous
section. Let X denote the subcomplex of X consisting of the 1–cells denoted by
either i or �.i/ for 2� i � r .

Proposition 2.11 Let .X; �/ be as above. Then in the Z2 –cofibration sequence

X
�
�!X ! zX

�
�!†.X /;

the map � is Z2 –nullhomotopic.

Proof We define a left inverse to � . First, in X , collapse the cells

rC1; �.rC1/; ırC1; �.ırC1/

and the cells rC2; �.rC2/ if they exist. We are left with a space Z2 –homeomorphic
to a real surface of type .r �1; r; 0/; we now use the map jr as defined in the proof of
Proposition 2.6.

The proof of the next proposition is identical to that of Proposition 2.7 except we
exchange .S2; he/ for a real surface X 0 of type either .2; 1; 1/ or .1; 1; 1/.

Proposition 2.12 Let Xı be the 1–cells in zX denoted by ı2; : : : ; ır . Then in the
Z2 –cofibration

Xı
�0

�! zX !X 0
�0

�!†.Xı/;

the map �0 is Z2 –nullhomotopic.

Proof of Theorem 2.10 This follows from Lemma 2.8 together with Propositions
2.12 and 2.11.

From Theorem 2.10, we reduce our study to the gauge groups

G
�..1; 1; 1/I .0; 0// and G

�..2; 1; 1/I .0; 0//I

G
�2..1; 1; 1/I .0; 0// and G

�2..2; 1; 1/I .0; 0//:

The following theorem provides the remaining integral homotopy decompositions that
we can obtain for these gauge groups. The theorem contributes to results in the last
two rows of Theorem 1.11 and the last row in Theorem 1.12.
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Theorem 2.13 There are integral homotopy equivalences

(1) G �2..1; 1; 1/I .0; 0//' G �..1; 1; 1/I .0; 0//�U.n/;

(2) G �2..2; 1; 1/I .0; 0//' G �..1; 1; 1/I .0; 0//�U.n/�U.n/;

(3) G �..2; 1; 1/I .0; 0//' G �..1; 1; 1/I .0; 0//�U.n/.

We analyse the structure of a type-.2; 1; 1/ real surface X 0 .

Proposition 2.14 Let X 0 be a type-.2; 1; 1/ real surface, and let X 0 be the 1–cells
2; 3; �.2/; �.3/ of X 0 . Then in the Z2 –cofibration

X 0
�00

�!X 0!X 0=X 0
�00

�!†.X 0 /;

the map �00 is Z2 –nullhomotopic.

Proof We define a left inverse to �00 . In X 0, collapse the cell ı1 , and then collapse
a copy of .S1 _S1; sw/ so that X 0=� is the wedge ..†1=�/_ .†1=�/; sw/, where
.†1=�/ is a torus with ı1 collapsed. We now project to .S1 _S1; sw/ as we did in
the proof of Proposition 2.6; in fact, the left inverse is similar to the map j3 from this
proposition.

In the following, we show that the space X 0=X 0 is Z2 –homotopy equivalent to a
.1; 1; 1/ real surface .X; �/. We first recall the Z2 –decomposition of .X; �/. The
0–skeleton X 0 is given three 0–cells �i for 1� i � 3. The 1–cells are then

ı1; ı; �.ı/; 2; �.2/;

where the fixed circle is represented by ı1 , and ı joins �2 to �3 ; therefore, ı�.ı/
represents the copy of .S1;� id/. The 1–cell 2 joins �1 to �2 , and �.2/ joins �1

to �3 . One of the two 2–cells has attaching map

ı12ı�.ı/
�1
2 ;

and we define the other one equivariantly.

On the other hand, the space X 0=X 0 has an induced Z2 –complex structure as follows.
There is one 0–cell �, to which we attach the 1–cells

ı01; ı
0 and �.ı0/:

There are two 2–cells, one of which is attached to the above 1–skeleton via

ı1ı
0�.ı0/;
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and the other is glued equivariantly. However, the subcomplex given by 2 [ �.2/

of .X; �/ is Z2 –contractible, and therefore, .X; �/ is homotopy equivalent to the
Z2 –complex structure of X 0=X 0 .

Proof of Theorem 2.13(2) and (3) By Proposition 2.14, we obtain the homotopy
equivalences

†X 0 '†X 0 _†X 0=X 0 I

† xX 0 '† xX 0 _†X 0=X 0 :

In the first case, the factor †X 0 is the same as the suspension of .S1_S1; sw/. We see
that collapsing the 0–skeleton of †X 0 provides the suspension of

W
2.S

1 _S1; sw/,
and hence this corresponds to the factor † xX 0 in the second equivalence. The result
follows.

Proof of Theorem 2.13(1) We use the Z2 –structure provided after Proposition 2.14.
In this 2–pointed case, we identify the three 0–cells �1;�2;�3 to produce xX . Let

X D 2[ �.2/;

and let xX be the image in the quotient xX . There is a left inverse to the inclusion

xX ,! xX

using a similar map to j2 in the proof of Proposition 2.6. Therefore, there is a homotopy
equivalence

† xX '† xX _†. xX= xX /;

but by the comments after Proposition 2.14, the factor †. xX= xX / is Z2 –homotopy
equivalent to the suspension of a real surface of type .1; 1; 1/. This finishes the proof.

2.3.4 Nonintegral decompositions By the previous sections, we have reduced our
study of the pointed gauge groups to those over real surfaces of the types

.0; 0; 1/; .1; 0; 1/ and .1; 1; 1/:

These spaces seem fundamental in some way, and for the single-pointed case we do
not obtain any further integral decompositions.

However, one may expect these spaces to become easier to examine when we choose
to invert 2 since the involution has order 2 and the 2–torsion in O.n/ vanishes. This
turns out to be the case, and we will find that localising at a prime p ¤ 2 will prove
particularly fruitful.
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In the coming sections, we aim to prove Theorem 1.13, dealing with each part in turn.
The proof of each part is quite laborious, but we only provide full details for part (1).
We outline the main parts of the proof of Theorem 1.13(1):

� The existence of the pullback (4) gives the existence of the map (6).
� We use an argument of [5] to prove that (6) is a p–local homotopy equivalence

for primes p ¤ 2.
� We calculate the homotopy fibre of qr in (6).

The proofs of Theorem 1.13(2) and (3) will then invoke similar methods.

The case .0; 0; 1/ Let .S2;� id/ be a real surface of type .0; 0; 1/. By Proposition 1.8,
all of the pointed gauge groups over .S2;� id/ are homotopy equivalent, so we assume
that .P; z�/ is of class 0. In this section, we aim to prove the following theorem which
is a restatement of Theorem 1.13(1).

Theorem 2.15 For a prime p¤ 2 and odd n, there is a p–local homotopy equivalence

G
�.P; z�/'p �.U.n/=O.n//��

2.U.n/=O.n//:

Let uW B G �.P; z�/!Map�2.D2;BU.n// be the map that restricts to the upper hemi-
sphere of .S2;� id/ and forgets about equivariance. Let

r W B G
�.P; z�/!Map�Z2

..S1
_S1; sw/;BU.n//

be the map restricting to the 1–skeleton of .S2;� id/. These maps fit into the pullback

(4)

B G �.P; z�/
u

//

r

��

Map�2.D2;BU.n//

r 0

��

Map�Z2
..S1 _S1; sw/;BU.n//

u0
// Map�.S1 _S1;BU.n//

where r 0 restricts to the 1–skeleton and u0 forgets about equivariance.

Let y& W U.n/!U.n/ denote complex conjugation and note that u0 is homotopic to the
map x�W U.n/! U.n/�U.n/, where x�.˛/D .˛; y&˛/. Also note that the map r 0 is
homotopic to the map ��1W U.n/!U.n/�U.n/, where ��1.˛/D .˛; ˛�1/. Let Q

be the strict pullback of x� and ��1 as in the following diagram:

Q

�1

��

�2
// U.n/

��1

��

U.n/
x�
// U.n/�U.n/
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We will see that Q retracts off B G �.P; z�/ after inverting the prime 2.

The map r 0 in diagram (4) is a fibration, and hence this diagram is a homotopy pullback.
Therefore, there is an induced homotopy commuting diagram

(5)

Q

�1

  

�2

((

z�

$$

B G �.P; z�/
u

//

r

��

U.n/

��1

��

U.n/
x�

// U.n/�U.n/

where we have replaced the pullback square (4) with a homotopy equivalent square.

Lemma 2.16 The pullback Q is homeomorphic to U.n/=O.n/.

Proof The pullback Q is the space

fA 2 U.n/ jA�1
D y&.A/g:

Let f W U.n/! Q be defined by f .A/ D Ay&.A/�1 . For matrices A 2 U.n/ and
W 2 U.n/y& DO.n/, we have

.AW /y&.AW /�1
DAW y&.W �1/y&.A�1/DAy&.A/�1

since y& is a homomorphism. Hence f induces a map f 0W U.n/=O.n/!Q.

We show that f 0 is a bijection. For injectivity, let A;B 2 U.n/, and suppose that
Ay&.A/�1 D By&.B/�1 . Then

In D B�1Ay&.A/�1
y&.B/D .B�1A/y&.B�1A/�1

for In 2U.n/ the identity matrix. Hence B�1A 2U.n/y& , and so AU.n/y& �BU.n/y& .

For surjectivity, let A 2 Q. Then A is symmetric, and due to the Autonne–Takagi
factorisation (see [14]), there is a unitary matrix P such that AD PDP t , where D is
a diagonal matrix with real entries. Let

p
D be a diagonal matrix (hence an element

of Q) in U.n/ such that
p

D2 DD . We have

AD P
p

D
p

DP t
D P
p

Dy&.P
p

D/�1;

and therefore, f 0..P
p

D/O.n//DA.

The map f 0 is therefore a continuous bijection, and since U.n/=O.n/ is compact and
Q is Hausdorff, it is a homeomorphism.
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The above diagram and Lemma 2.16 give the following composition

(6) 'W U.n/=O.n/
f 0

�!Q
z�
�! B G

�.P; z�/
r
�! U.n/

q
�! U.n/=O.n/

for q the quotient map. From the properties of �1 , we see that ' is homotopic to
a map that sends an element AO.n/ to AAtO.n/. For odd n, [5] showed that the
related map

(7) SU.n/=SO.n/! SU.n/=SO.n/; A SO.n/ 7!AAt SO.n/;

is a homotopy equivalence when localised at a prime p ¤ 2. Our aim is to show that
the same is true for ' .

Lemma 2.17 For a prime p ¤ 2, there is an p–local homotopy equivalence

U.n/=O.n/'p U.n/=SO.n/:

Proof Consider the following pullback diagram where the downward arrows represent
taking universal covers:

U.n/=SO.n/ //

��

B SO.n/

��

// BU.n/

U.n/=O.n/ //

��

BO.n/

��

// BU.n/

K.Z2; 1/ K.Z2; 1/

The result immediately follows.

We now show that U.n/=SO.n/ further decomposes into the product

SU.n/=SO.n/�S1:

The map B SO.n/!BU.n/ factors through B SU.n/. Hence we obtain the following
commutative diagram which defines the maps i and j :

(8)

U.n/

��

U.n/

f
��

SU.n/=SO.n/ i
// U.n/=SO.n/

��

j
// S1

��

SU.n/=SO.n/ // B SO.n/

��

// B SU.n/

��

BU.n/ BU.n/
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It is not too much more work to show the following lemma.

Lemma 2.18 There is a homotopy equivalence

�W SU.n/=SO.n/�S1 '
�! U.n/=SO.n/:

Proof There is a right inverse l to the map f and there is an action of U.n/ on
U.n/=SO.n/; hence the composition

�W S1
�SU.n/=SO.n/

l�i
��! U.n/�U.n/=SO.n/

“action”
�����! U.n/=SO.n/

is the required homotopy equivalence.

Let ' be the composition in (6), and then define

sW U.n/=SO.n/! U.n/=SO.n/

to be the composition

U.n/=SO.n/
'
�! U.n/=O.n/

'
�! U.n/=O.n/

'
�! U.n/=SO.n/:

Our aim is to show that s restricts to the factors SU.n/=SO.n/ and S1 in a nice
enough way.

Lemma 2.19 There exist maps

s00W SU.n/=SO.n/! SU.n/=SO.n/ and s0W S1
! S1

such that the following is a homotopy commuting square:

SU.n/=SO.n/�S1 s00�s0
//

�

��

SU.n/=SO.n/�S1

�

��

U.n/=SO.n/ s
// U.n/=SO.n/

Furthermore, these maps can be chosen such that s00 is homotopic to the map

A SO.n/ 7!AAt SO.n/;

and s0 is homotopic to the map x 7! x2 .

Proof Let zsW SU.n/=SO.n/�S1! SU.n/=SO.n/�S1 be the composition

SU.n/=SO.n/�S1 �
�! U.n/=SO.n/

s
�! U.n/=SO.n/

��1

��! SU.n/=SO.n/�S1

Algebraic & Geometric Topology, Volume 17 (2017)



2458 Michael West

for a homotopy inverse ��1 of �. Let �W SU.n/=SO.n/! SU.n/=SO.n/� S1 and
�W S1! SU.n/=SO.n/�S1 be the inclusions. We note that � is homotopic to

SU.n/=SO.n/
i
�! U.n/=SO.n/

��1

��! SU.n/=SO.n/�S1;

where i is as in diagram (8). By the way the homotopy equivalences are defined in
Lemmas 2.17 and 2.18, we see that the composition si is homotopic to

B SO.n/ 7! BBt SO.n/ for B 2 SU.n/;

and hence the image of this map lands in the image of i . We deduce that zs� has image
in SU.n/=SO.n/, and we define

s00 D zs�:

Similarly, zs� has image in S1 and we define s0 D zs� . We see that s00 is homotopic
to a map defined via A SO.n/ 7! AAt SO.n/, and that s0 is homotopic to the map
x 7! x2 .

We immediately obtain the following homotopy commuting diagram where the rows
are homotopy fibrations:

(9)

SU.n/=SO.n/

s00

��

i
// U.n/=SO.n/

s

��

// S1

s0

��

SU.n/=SO.n/ i
// U.n/=SO.n/ // S1

By Lemma 2.19, the map s00 is homotopic to the map in (7), and hence it is a p–local
equivalence when n is odd and p ¤ 2 is a prime. We note that s0 is also a p–local
equivalence. Finally, the spaces in (9) are connected; hence s is also a p–local
equivalence. We are now able to deduce the following.

Proposition 2.20 With the notation as in (6), we let F be the homotopy fibre of
qr W B G �.P; z�/! U.n/=O.n/. Then for n odd and for any prime p ¤ 2, there is a
p–local homotopy equivalence

G
�.P; z�/'p �.U.n/=O.n//��F:

Proof Recall the maps f 0 and z� from (6). Then the above discussion has shown that
z�f 0 provides a p–local homotopy section to the homotopy fibration

F ! B G
�.P; z�/

qr
�! U.n/=O.n/;

and the result follows.

Therefore, to prove Theorem 2.15 it only remains to identify the fibre F .
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Proposition 2.21 For any prime p ¤ 2, there is a p–local homotopy equivalence

F 'p �.U.n/=O.n//:

Proof The map qr from (6) is defined as a composition; hence there is a homotopy
commutative diagram

F

��

// B G �.P; z�/
qr
//

r
��

U.n/=O.n/

O.n/ // U.n/
q

// U.n/=O.n/

where the left square is a homotopy pullback square. The map r is a fibration since it is
induced by i W .S1;� id/ ,! .S2;� id/, the inclusion of the meridian copy of .S1;� id/
into .S2;� id/. Therefore, the space F is homotopy equivalent to the strict pullback
of O.n/! U.n/ r

 � B G �.P; z�/, which is the relative mapping space

Map�Z2

�
..S2;� id/; .S1;� id//; .BU.n/;BO.n//I 0

�
:

We will associate another pullback square with this description of F . There is a map
T W F !Map�Z2

�
.S2;� id/; .BU.n/; id/I 0

�
given by

T .f /.x/D

�
f .x/ for x in the upper hemisphere including the equator,
f .� id.x// for x in the lower hemisphere excluding the equator.

Let i W .S1;� id/ ,! .S2;� id/ be defined as above. Then i induces the following
homotopy pullback diagram:

F
T
//

i�

��

Map�Z2
..S2;� id/; .BU.n/; id/I 0/

i�

��

O.n/
� � // U.n/

There is a homeomorphism

Map�Z2

�
.S2;� id/; .BU.n/; id/I 0

�
ŠMap�.RP2;BU.n/I 0/;

but for a prime p ¤ 2, the space RP2 is p–locally contractible. Therefore, p–locally,
we have identified the space F as the fibre of the inclusion O.n/! U.n/, and the
result follows.

Proof of Theorem 2.15 Use Propositions 2.20 and 2.21.

The case .1; 0; 1/ Let .T; �/ be a real surface of type .1; 0; 1/, and since all pointed
gauge groups over .T; �/ are homotopy equivalent, we restrict to the case where .P; z�/
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is a bundle of class 0 over .T; �/. We will use similar techniques to the even genus
case to obtain the following theorem, which is a restatement of Theorem 1.13(2).

Theorem 2.22 For a prime p¤ 2 and n odd, there is a p–local homotopy equivalence

G
�.P; z�/'p �.U.n/=O.n//��

2.U.n/=O.n//��U.n/:

Proof Let uW B G �.P; z�/!Map�.C;BU.n// be the map that forgets about equivari-
ance and restricts to the upper half of .T; �/, which is homeomorphic to a cylinder C .
Let i be the inclusion of the boundary circles of C . Then i induces a pullback

(10)

B G �.P; z�/
u

//

r

��

Map�.C;BU.n//

r 0

��

Map�Z2
..S1 _S1; sw/;BU.n//

u0
// Map�.S1 tS1;BU.n//

where r 0 D i� and r is the restriction to the 1–skeleton of .X; �/.

In a similar fashion to the way we obtained diagram (5), we replace (10) with a
homotopy equivalent square and obtain the diagram:

Q

  

))$$

B G �.P; z�/
u

//

r

��

U.n/

��1

��

U.n/
x�

// U.n/�LBU.n/

Here LBU.n/ is the free loop space of U.n/, and Q is the strict pullback of the diagram

U.n/
x�
�! U.n/�LBU.n/

��1

 ��� U.n/:

Hence Q is again the symmetric matrices in U.n/. We deduce that U.n/=O.n/ also
p–locally retracts off B G �.P; z�/.

It is clear that, as in the even case, there is a similar description for the fibre F of the
map B G �.P; z�/!U.n/=O.n/. The space F fits into the following pullback diagram:

F //

��

Map�Z2

�
.T; �/; .BU.n/; id/I 0

�
xr

��

O.n/
� � // U.n/
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We note that if we let K be a Klein bottle, then there is an homeomorphism

Map�Z2

�
.T; �/; .BU.n/; id/I 0

�
ŠMap�.K;BU.n/I 0/:

The map xr is induced by the inclusion S1 ,!K which on fundamental groups induces
the quotient

Z! Z�Z2; a 7! .0; Œa�2/;

onto the right factor. We see that for a prime p ¤ 2, the map xr is p–locally nullho-
motopic, and we obtain

�F 'p �
2.U.n/=O.n//��Map�.K;BU.n/I 0/:

Now for p¤ 2 prime, we have a p–local homotopy equivalence K'p S1 because K

is a K.Z�Z2; 1/. Therefore, the space �Map�.K;BU.n/I 0/ is homotopy equivalent
to �U.n/ when localised away from 2, and Theorem 2.22 follows.

The case .1; 1; 1/ Let .X; �/ be a real surface of type .1; 1; 1/. For convenience,
we choose .P; z�/ to be a bundle of class .0; 0/ over .X; �/. We use a very similar
method to the previous sections to prove the following theorem. This theorem is a
more general statement than Theorem 1.13(3), whose statement claims to only be valid
for odd n.

Theorem 2.23 For any prime p ¤ 2, there is a p–local homotopy equivalence

G
�.P; z�/'p G

�..S2;� id/I 0/��O.n/:

Proof We first recall the Z2 –decomposition of .X; �/. The 0–skeleton X 0 is given
three 0–cells �i for 1� i � 3. The 1–cells are then

ı1; ı; �.ı/; 2; �.2/;

where the fixed circle is represented by ı1 , and ı joins �2 to �3 ; therefore, ı�.ı/
represents the copy of .S1;� id/. The 1–cell 2 joins �1 to �2 , and �.2/ joins �1

to �3 . One of the two 2–cells has attaching map

ı12ı�.ı/
�1
2 ;

and we define the other one equivariantly.

Since the subspace 2[�.2/ is Z2 –contractible, we amend the above decomposition
to have only three 1–cells ı1; ı; �.ı/ and amend the attaching map to

ı1ı�.ı/:
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We obtain a pullback similar to that of the previous section:

B G �.P; z�/
u

//

r

��

Map�3.D2;BU.n//

r 0

��

Map�Z2

�
.S1; id/_ .S1 _S1; sw/; BU.n/Iw1

� u0
// Map�.S1 _S1 _S1; BU.n//

where r is the restriction to the 1–skeleton of .X; �/, and u restricts to one of the
2–cells and forgets about equivariance.

In a similar fashion to the way we obtained diagram (5), we obtain the diagram

(11)

O.n/

f1

""

f2

**

f3

&&

B G �.P; z�/
u

//

r

��

U.n/�U.n/

r 0

��

SO.n/�U.n/
u0
// U.n/�U.n/�U.n/

where f1; f2 and f3 are to be defined momentarily.

The map r 0W U.n/�U.n/! U.n/�U.n/�U.n/ is the map

r 0.A;B/D .B�1A�1;A;B/;

and the map u0W SO.n/�U.n/! U.n/�U.n/�U.n/ is the map

u0.C;D/D .C;D; xD/:

We can hence define maps f1W O.n/!SO.n/�U.n/ and f2W O.n/!U.n/�U.n/ by

f1.X /D .X
�2;X / and f2.Y /D .Y;Y /

such that u0f1 D r 0f2 . Since (11) is a homotopy pullback, there exists a map

f3W O.n/! B G
�.P; z�/

such that the composition

�W O.n/
f3
�! B G

�.P; z�/
r
�!O.n/�U.n/

p1
�!O.n/

sends an element X to X�2 . Then observe that � has image lying in SO.n/, and
therefore, when � is restricted to SO.n/, it is the inverse of the H –space squaring map.
We conclude that the restriction of � to SO.n/ is a p–local homotopy equivalence for
p ¤ 2, and therefore, SO.n/ retracts off B G .P; z�/.
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The map p1r is just the restriction to the fixed points of the involution. Hence the fibre
of this map is the space B G �..0; 0; 1/I 0/, which we have already studied. We finish
by noting that �SO.n/ and �O.n/ are homeomorphic.

2.4 Unpointed gauge groups

In the last section, we showed that certain trivialities of the attaching map of the top
cells of X led to homotopy decompositions in the pointed case. We will see that these
decompositions somewhat extend to the unpointed case.

2.4.1 Integral decompositions Let .X; �/ be a real surface of type .g; r; a/. In the
following proposition, g0 will denote the number of ˛i and ˇi cells in the description
of .X; �/ in Section 2.1. Explicitly,

g0 D

8<:
g� r C 1 when aD 0;

g� r when aD 1 and g� r is even,
g� r � 1 when aD 1 and g� r is odd.

We now present Proposition 2.24 which is a restatement of Theorem 1.14(1).

Proposition 2.24 There are homotopy equivalences

G ..g; r; a/I .c; w1; : : : ; wr //' G ..g�g0; r; a/I .c; w1; : : : ; wr //�
Y
g0

�U.n/:

Proof In essence, we follow the proof of [11, Proposition 2.1]. For convenience, we
write

.c; xw/ WD .c; w1; : : : ; wr /:

Let X˛ˇD
W

g0.S
1_S1; sw/ be subcomplex of X represented by ˛i ; �.˛i/; ˇi ; �.ˇi/.

Recall the Z2 –cofibration sequence of Proposition 2.3:

X˛ˇ ,!X
q
�!X 0

�
�!†.X˛ˇ/:

Then the map q induces the diagram

�B
@.c; xw/

// Map�Z2
.X 0;BU.n/I .c; xw//

q�

��

// MapZ2
.X 0;BU.n/I .c; xw//

ev
//

q�

��

B

�B
'.c; xw/

// Map�Z2
.X;BU.n/I .c; xw// // MapZ2

.X;BU.n/I .c; xw//
ev
// B

where

B D

�
BU.n/ if r D 0;

BO.n/ otherwise.
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The equation '.c; xw/ D q�@.c; xw/ results in the diagram

Map�.†.X /;BU.n/I .c; xw//

��

Map�Z2
.†X;BU.n/I .c; xw//

.†i/�

��

G .g�g0/
h0
// G ..g; r; a/I .c; xw//

h
//

��

Map�Z2
.†.X˛ˇ/;BU.n//

��

��

G .g�g0/ // �B
@.c; xw/

//

'.c; xw/

��

Map�Z2
.X 0;BU.n/I .c; xw//

q�

��

Map�Z2
.X;BU.n/I .c; xw// Map�Z2

.X;BU.n/I .c; xw//

which defines the maps h and h0 , and in which G .g�g0/ WD G ..g�g0; r; a/I .c; xw//.
By Proposition 2.3, the map �� is trivial. Hence there is a section to the map .†i/� ,
so there is also a section to h, and the result follows.

The quotient map q in Proposition 2.24 induced an isomorphism on �0 between

Map�Z2
.X;BU.n/I .c; xw// and Map�Z2

.X 0;BU.n/I .c; xw//:

However, for a fixed cell ıi of .X; �/, the quotient map zqW X !X=ıi automatically
induces the map

MapZ2
.X=ıi ;BU.n//

q�

�!MapZ2
.X;BU.n/I 0/;

hence the requirement for wi D 0 in Theorem 1.14(3). Whilst there is an equivalence

Map�Z2
.X;BU.n/I .c; 0//'Map�Z2

.X;BU.n/I .c; 1//;

there is not necessarily an equivalence in the unpointed case in general. Hence there
is not enough information to guarantee the commutativity of the diagram needed to
induce a homotopy decomposition.

Omitting such nontrivialities allows further splittings; let X1 be a subset of the 1–cells
of X such that

(1) if there is a fixed cell ıi �X1 , then wi D 0;

(2) for appropriate components, the induced map

g�W Map�Z2
.†X1;BU.n/I . xw//!Map�Z2

.X=X1;BU.n/I .c; xw//

is Z2 –nullhomotopic.

Under these assumptions, it is clear that the methods in the previous proposition would
yield further homotopy decompositions.
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Proof of Theorem 1.14(2) and (3) The above conditions apply to the 1–cells con-
sidered in Propositions 2.6, 2.11 and 2.14 for bundles of arbitrary type.

Additionally, the conditions are satisfied by the 1–cells considered in Propositions 2.7
and 2.12 for bundles of type .c; w1; 0; : : : ; 0/. When n is odd, we can take advantage
of Proposition 1.10 to obtain the table in Theorem 1.14(3). We have now finished the
proof of Theorem 1.14.

2.4.2 Analysing the boundary map Let .P; z�/! .X; �/ be a real bundle of class
.c; w1; : : : ; wr / over a real surface .X; �/ of type .g; r; a/. Let

B D

�
BO.n/ if r > 0;

BU.n/ otherwise,

and consider the homotopy fibration sequence induced from the map that evaluates at
the basepoint of X :

(12) G .P; z�/!�B
@P
��!Map�Z2

.X;BU.n/IP /!MapZ2
.X;BU.n/IP /! B:

Since G .P; z�/ appears as the homotopy fibre of the boundary map @P , we aim to gather
information about G .P; z�/ by studying @P . Our method will involve comparing @P to
a map arising from a similar homotopy fibration sequence found in [12]. This approach
is particularly fruitful when X � is nonempty, that is, when r > 0. We reserve analysis
of the r D 0 cases not handled by Section 2.4.1 to later sections, however, we will
require discussion from this section and Section 2.3.4.

Note that
�0

�
Map.S2;BU.n//

�
Š Z;

and for d 2 Z, we obtain a fibration sequence

(13) U.n/
@d
�!Map�.S2;BU.n/I d/!Map.S2;BU.n/I d/! BU.n/:

The trivialities of the map @d were extensively studied in [12]. We state the relevant
results from this paper.

Theorem 2.25 (Theriault) Let p be a prime, and let

@d W U.n/!Map�.S2;BU.n/I d/

be as in (13). Then

(1) if p − n, then @d is p–locally trivial;

(2) if nD p with p j d , then @d is p–locally trivial.
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The case nD p − d was also studied in [12]; the map @d is not p–locally trivial, but
the homotopy fibre was identified. The following two propositions adapt some of the
trivialities of @d to our setting.

Proposition 2.26 Fix d 2 Z, and let @d be the boundary map in (13). Let .P; z�/
be a real principal U.n/–bundle of class .2d; 0; : : : ; 0/ over a real surface of type
.g; r; a/. Let

@P W �B! B G
�..g; r; a/I .2d; 0; : : : ; 0//

be the boundary map of the evaluation fibration in (12). For a prime q , if @d is
(q–locally) trivial, then

(1) if r > 0, then @P is (q–locally) trivial;

(2) if r D 0, then the composition

O.n/ ,! U.n/
@P
��! B G

�..g; r; a/I .2d; 0; : : : ; 0//

is (q–locally) trivial.

Proof The key will be to compare both maps to another evaluation boundary map in-
volving the Z2 –space Y D .S2_S2; sw/. Note that components of Map�Z2

.Y;BU.n//

are classified by even integers.

Let S2 i1
�! S2 _S2 D Y be the inclusion onto the left factor, and note that this is not

a Z2 –map. The following diagram commutes:

(14)

O.n/
x@2d
//

� _

��

Map�Z2
.Y;BU.n/I 2d/

i�
1
��

// MapZ2
.Y;BU.n/I 2d/

��

// BO.n/� _

��

U.n/
@d
// Map�.S2;BU.n/I d/ // Map.S2;BU.n/I d/ // BU.n/

Now there is an inverse to i�
1

which sends a map f in Map�.S2;BU.n/I d/ to the
composition

S2
_S2 f_f

���! BU.n/_BU.n/
id_�BU.n/

�������! BU.n/_BU.n/
fold
��! BU.n/;

which is Z2 –equivariant because the involution on S2 _S2 swaps the factors. Note
that the map induced on the unpointed mapping spaces does not have an inverse because
the basepoint of Y must land in BO.n/. We conclude that if @d is q–locally trivial,
then so is x@2d .
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Let qW X ! Y be the map that collapses the 1–skeleton of the real surface .X; �/.
We obtain the following commutative diagram:

O.n/
x@2d
//

f
��

Map�Z2
.Y;BU.n/I 2d/

q�

��

// MapZ2
.Y;BU.n/I 2d/

��

// BO.n/

��

�B
@P
// Map�Z2

.X;BU.n/IP / // MapZ2
.X;BU.n/IP / // B

The map f is an equivalence if r > 0 and is the inclusion O.n/ ,! U.n/ otherwise.
Since x@2d is (q–locally) trivial, the result follows.

Proposition 2.27 Let p be a prime such that p − d , and let .P; z�/ be a real principal
U.p/–bundle of class .2d; 0; : : : ; 0/ over a real surface of type .g; r; a/. Let

@P W �B! B G
�..g; r; a/I .2d; 0; : : : ; 0//

be the boundary map of the evaluation fibration. Then
(1) if r > 0, then @P is p–locally trivial;
(2) if r D 0, then the composition

O.p/ ,! U.p/
@P
��! B G

�..g; r; a/I .2d; 0; : : : ; 0//

is p–locally trivial.

Proof We assume that p − d is a prime and that all spaces and maps are localised at p .
Let Y D .S2 _S2; sw/ be as above. Then there is a homotopy commuting diagram

(15)

O.p/
x@2d

//
� _

i
��

Map�Z2
.Y;BU.n/I 2d/

'

��

U.p/
@d

// �U.p/0

U.p/
@1

//

e
��

�U.p/0

d

OO

.�e/0
��Qp�1

iD0
S2iC1

proj
// S2p�1 ˛

// �S3 incl
//
Qp�1

jD1
�S2jC1

where the top square is from diagram (14) and the bottom two squares are found in [12],
specifically in Proposition 4.1 and the proof of Theorem 1.1(b) and (c).

The d th power map d W �U.p/0!�U.p/0 is a homotopy equivalence because p − d .
Furthermore, the maps e and .�e/0 are homotopy equivalences provided in [9]. Now
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for p ¤ 2 prime, there is a p–local homotopy equivalence

SO.p/'p

.p�1/=2Y
iD1

S4i�1;

and furthermore, the inclusion O.p/ ,! U.p/ is in fact the inclusion of these factors
into

Qp�1
iD0

S2iC1 . We conclude that the composition

(16) �W O.p/ ,! U.p/!

p�1Y
iD0

S2iC1
proj
��! S2p�1

is nullhomotopic, and therefore, so is x@2d .

For p D 2, the space O.2/ is homeomorphic to S1 q S1 . Since � in (16) has
target space S3 , we conclude that � and hence x@2d are nullhomotopic in this case,
too. The result then follows in a similar way to the last paragraph in the proof of
Proposition 2.26.

Proof of Theorem 1.15(1a) and (2a) Theorem 2.25 and Proposition 2.26 immedi-
ately obtain (1a). Similarly, Theorem 2.25 and Proposition 2.26 obtain (2a) when p j d ,
and Proposition 2.27 then gives the remaining case when p − d .

2.4.3 The case .0; 0; 1/ We restrict to analysing gauge groups above real surfaces
of type .0; 0; 1/. Fix an even integer c . Then we wish to analyse the boundary map @c

of the evaluation fibration.

For a Z2 –space A, let x�W A!A�A be the composition

(17) A
�
�!A�A

id��A
����!A�A:

Let u be the composition

B G
�..0; 0; 1/I c/

'
�!Map�Z2

.S2;BU.n/I c/
zu
�!Map�2.D2;BU.n//

'
�! U.n/;

where zu restricts to the upper hemisphere of .S2;� id/ and forgets about equivariance
except at � and �.�/. The last equivalence follows since D2 with two points identified
is homotopy equivalent to S1 . The maps u and x� are the same as in (5), and they fit
into the commutative diagram

U.n/
@c

//

x�
��

B G �..0; 0; 1/I c/

u

��

// B G ..0; 0; 1/I c/

��

// BU.n/

x�
��

U.n/�U.n/
�

// U.n/ // Map.D2;BU.n//
ev2
// BU.n/�BU.n/
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where ev2 evaluates at two antipodal points on the boundary of D2 , and � is defined
via this diagram.

Since D2 is contractible, the map ev2 is homotopic to the diagonal map

�W BU.n/! BU.n/�BU.n/:

Therefore, the map � is homotopic to the map defined by .A;B/ 7! AB�1 . Let
f W U.n/! U.n/ be defined as f .A/DAAt and we conclude that u@c ' f .

After localising the map f at a prime p ¤ 2, we have the composition

(18) SO.n/�U.n/=SO.n/
f
�! SO.n/�U.n/=SO.n/

p2
�! U.n/=SO.n/;

where p2 is the projection map. Recall the map ' from (6) and compare with f .
For p ¤ 2, we showed that ' is a p–local homotopy equivalence, and we conclude
that restricting the composition (18) to the factor U.n/=SO.n/ also obtains a p–local
homotopy equivalence. We have shown the following proposition.

Proposition 2.28 Let n be odd. Then localised at a prime p ¤ 2, the following
composition is a homotopy equivalence:

U.n/=SO.n/ ,! U.n/
@c
�! B G

�..0; 0; 1/I c/
u
�! U.n/! U.n/=SO.n/:

With this proposition, we have enough ammunition to prove Theorem 1.15(1b) and (2b).

Proof of Theorem 1.15(1b) and (2b) We first prove part (1b). Localise at a prime
p ¤ 2 such that p − n, and reconsider the fibration sequence

G ..0; 0; 1/I c/! SO.n/�U.n/=SO.n/
@c
�! B G

�..0; 0; 1/I c/:

By Proposition 2.28, the factor U.n/=SO.n/ retracts off B G �..0; 0; 1/I c/, and by
Proposition 2.26(2) the factor SO.n/ retracts off G ..0; 0; 1/I c/ under a lift

l W SO.n/! G ..0; 0; 1/I c/

of the inclusion SO.n/ ,! U.n/. Then the composition

SO.n/��2.U.n/=SO.n//
l�id
���! G ..0; 0; 1/I c/��

2.U.n/=SO.n//
“action”
������! G ..0; 0; 1/I c/

is a homotopy equivalence, and the result follows. The proof of part (2b) is similar.
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2.4.4 The case .1; 0; 1/ We now analyse unpointed gauge groups above a real
surface .T; �/ of type .1; 0; 1/. We use a similar method to the .0; 0; 1/ case and adopt
some of its notation.

As in the proof of Theorem 2.22, let u0W B G �..1; 0; 1/I c/!Map�.C;BU.n// be the
map that forgets about equivariance and restricts to the upper half of .T; �/, which is
homeomorphic to a cylinder C . Let x� be as in (17). Then we obtain the diagram

U.n/
@c

//

x�
��

B G �..1; 0; 1/I c/

u0

��

// B G ..1; 0; 1/I c/

��

// BU.n/

x�
��

U.n/�U.n/
�0
// Map�2.C;BU.n// // Map.C;BU.n//

ev2
// BU.n/�BU.n/

where ev2 is another double evaluation map; viewing C as a subcomplex of .T; �/,
the map ev2 evaluates at the basepoint �1 and its image under the involution �.�1/.
Again, the map �0 is defined via this diagram.

As in the previous case, we aim to study the homotopy type of the map �0 x�. However,
it is not immediately clear on the homotopy type of the “boundary” map �0 . We note
that C ' S1 under a deformation retract fixing �1 and taking �.�1/ to �1 . Therefore,
if we let LBU.n/ be the free loop space of BU.n/, we deduce that there is a homotopy
commutative diagram

Map.C;BU.n//

'

��

ev2
// BU.n/�BU.n/

LBU.n/
ev

// BU.n/

�

OO

where ev evaluates at the basepoint �1 and � is the diagonal map. Given that � ev is
a composition, we obtain the homotopy commutative diagram

U.n/�U.n/

�0

��

U.n/�U.n/

z�
��

U.n/
h0
// Map�2.C;BU.n//

��

h
// U.n/

�

��

U.n/ // LBU.n/

� ev
��

ev
// BU.n/

�
��

BU.n/�BU.n/ BU.n/�BU.n/

Algebraic & Geometric Topology, Volume 17 (2017)



Homotopy decompositions of gauge groups over real surfaces 2471

where the map � is the inclusion of the homotopy fibre, which is nullhomotopic. The
middle square is a homotopy pullback, and hence the maps h and h0 are defined using
this diagram.

By the triviality of the middle right vertical, there is a right homotopy inverse i to h and
a left inverse q to h0 . Therefore, the space Map�2.C;BU.n// is homotopy equivalent
to the product U.n/�U.n/.3 Therefore, the homotopy type of

�0W U.n/�U.n/!Map�2.C;BU.n//

can be determined by studying q�0 and h�0 . It is clear that q�0 � � and h�0 � z� .
However, z� is the same as the map �W U.n/ � U.n/! U.n/ in case .0; 0; 1/, and
therefore, it is homotopic to the map .A;B/ 7!AB�1 .

We conclude that �0 is homotopic to a map

U.n/�U.n/! U.n/�U.n/; .A;B/ 7! .In;AB�1/:

Proof of Theorem 1.15(1c) and (2c) We first prove part (1c). Let p ¤ 2 be a prime
with p − n. Then localised at p , in the same way as Proposition 2.28, we see that the
factor U.n/=SO.n/ in

U.n/'p U.n/=SO.n/�SO.n/

retracts off B G �..1; 0; 1/I c/ via

U.n/=SO.n/ ,! U.n/
@c
�! B G

�..1; 0; 1/I c/
u0

�! U.n/! U.n/=SO.n/:

Additionally, by Proposition 2.26(2), the factor SO.n/ retracts off the gauge group
G ..1; 0; 1/I c/. We then find the required homotopy equivalence as in the proof of
Theorem 1.15(1b). The proof of (2c) is similar.

2.5 The quaternionic case

From here on, we restrict to the quaternionic case. Again, our method of attack will be to
study some mapping spaces related to these gauge groups. In fact, these mapping spaces
are the same as in the real case, except BU.2n/ is endowed with an involution so that

.EU.2n/; z&Q/! .BU.2n/; &Q/

is a universal quaternionic bundle. Recall that in the real case, the involution & was
induced by complex conjugation y& W U.n/! U.n/. In this case, the involution &Q is

3Of course, this can be seen directly by studying the homotopy type of C .

Algebraic & Geometric Topology, Volume 17 (2017)



2472 Michael West

induced from the homomorphism

y&QW U.n/! U.n/; A 7! J�1AJ;

where

J D

0BBBBBBBBB@

0 1 0 0 � � � 0 0

�1 0 0 0 � � � 0 0

0 0 0 1 � � � 0 0

0 0 �1 0 � � � 0 0
:::
:::
:::
:::
: : :

:::
:::

0 0 0 0 � � � 0 1

0 0 0 0 � � � �1 0

1CCCCCCCCCA
:

Most of the results in the real case come from geometric properties of .X; �/; hence
we will see that these results transfer to the quaternionic setting without too much
hassle. Furthermore, since .BG/&Q D B Sp.n/, we will see that a number of results
will be easier to prove due to the high connectivity of B Sp.n/.

For the Z2 –space .BU.2n/; &Q/ as above, we write

MapQ.X;BU.2n// WDMapZ2
.X;BU.2n//

to distinguish from the real case, and use similar notation for the pointed cases. Now
let xX be as in the preamble to Theorem 2.1, and we state the quaternionic analogue of
Theorem 2.1.

Theorem 2.29 Let .P; z�/ be a quaternionic principal U.2n/–bundle of class c over
a real surface .X; �/ of type .g; r; a/. Then there are homotopy equivalences

(1) B GQ.P; z�/'MapQ.X;BU.2n/IP /;

(2) B G �Q .P; z�/'Map�Q.X;BU.2n/IP /;

(3) B G �
.rCa/

Q .P; z�/'Map�.rCa/

Q .X;BU.2n/I c/'Map�Q. xX ;BU.2n/IP /;

where on the right-hand side, we pick the path component of MapQ.X;BU.n// that
induces .P; z�/.

We now sketch the proofs for the results in Section 1.3.

Proof of 1.16 We use the action of �2.BU.2n// on Œ.X; �/; .BU.2n/; &Q/�Z2
as

presented in the proof of Proposition 1.7.

As in the real case, the lack of a �2.BU.2n// action means that we cannot provide an
analogue for B GQ.P; z�/.
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Proof of 1.17 The idea is to tensor the quaternionic bundle .P; z�/ with a real U.1/–
bundle �QW .Q; �/ ! .X; �/ of class .2; 0; : : : ; 0/. The required isomorphism of
gauge groups is then defined as in the proof of Proposition 1.9.

We sketch the proofs for the results related to homotopy decompositions of the gauge
groups.

Proof of 1.18 and 1.19 The proof is similar to those in Sections 2.3.1–2.3.3, except
that in this case, BU.2n/&Q D B Sp.n/. We recall that decompositions involving fixed
circles in the real case needed to be handled delicately, but this does not occur in the
quaternionic case due to the high connectivity of B Sp.n/.

Our aim is to now prove Theorem 1.20 using a similar method to that of Theorem 2.15.
Localised at a prime p ¤ 2 and for n odd, we obtained a p–local decomposition in
the real case due to the fact that the p–local homotopy equivalence

U.n/=O.n/! U.n/=O.n/; AO.n/ 7!AAtO.n/;

factored through the space B G �..0; 0; 1/I 0/. We shall see that a similar map involving
U.2n/=Sp.n/ also factors through the quaternionic analogue of this gauge group. Let

uW B G
�
Q ..0; 0; 1/I 0/!Map�2.D2;BU.2n//

be the map that restricts to the upper hemisphere of .S2;� id/ and forgets about
equivariance, considering the image as landing in Map�2.D2;BU.2n//. Let

r W B G
�
Q ..0; 0; 1/I 0/!Map�Z2

..S1
_S1; sw/;BU.2n//

be the map restricting to the 1–skeleton of .S2;� id/. We obtain a homotopy commut-
ing diagram similar to diagram (5):

Q

##

**''

B G �Q ..0; 0; 1/I 0/
u

//

r
��

U.2n/

��1

��

U.2n/
�Q

// U.2n/�U.2n/

where �Q is the map A 7! .A; y&QA/. Here Q is the strict pullback of the diagram

U.2n/
�Q

��! U.2n/�U.2n/
��1

 ��� U.2n/;

and B G �Q ..0; 0; 1/I 0/ is the homotopy pullback of the same diagram. Once again, we
aim to show that Q retracts off B G �Q ..0; 0; 1/I 0/.
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Lemma 2.30 The pullback Q is homeomorphic to U.2n/=Sp.n/.

Proof This is essentially the same proof as Lemma 2.16, but we must elaborate on
the details for surjectivity of the map

f 0W U.2n/=Sp.n/!Q; A Sp.n/ 7!Ay&Q.A/
�1:

It can be shown that a matrix A is in Q if and only if AJ is skew-symmetric, and
hence due to the Youla lemma [14], there is a unitary matrix P such that AJ DPJP t .
Therefore,

AD PJP tJ�1
D P .J�1 xPJ /�1

D f 0.P Sp.n//;

and the result follows.

Similar to the map in (6), we obtain the composition

(19) 'W U.2n/=Sp.n/
f 0

�!Q! B G
�
Q ..0; 0; 1/I 0/

r
�! U.2n/

q
�! U.2n/=Sp.n/;

where q is the quotient map. The map ' sends an element A Sp.n/ to the element
Ay&Q.A/

�1 Sp.n/. It was shown in [5] that the related map

(20) s0W SU.2n/=Sp.n/! SU.2n/=Sp.n/; A Sp.n/ 7!Ay&Q.A/
�1 Sp.n/;

is a homotopy equivalence when localised at a prime p ¤ 2.

Clearly, there are analogue statements to Lemmas 2.18 and 2.19 and Proposition 2.21.

Lemma 2.31 There is a homotopy equivalence

�W U.2n/=Sp.n/�S1 '
�! U.2n/=Sp.n/:

Lemma 2.32 There exist maps

s00W SU.n/=SO.n/! SU.n/=SO.n/ and s0W S1
! S1

such that the following is a homotopy commuting square:

SU.2n/=Sp.n/�S1 s00�s0
//

�
��

SU.2n/=Sp.n/�S1

�
��

U.2n/=Sp.n/ s
// U.2n/=Sp.n/

Furthermore, s00 and s0 are p–local equivalences.

Proposition 2.33 Let F be the homotopy fibre of the composition

B G
�
Q ..0; 0; 1/I 0/

r
�! U.2n/

q
�! U.2n/=Sp.n/:
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Then for any prime p ¤ 2, there is a p–local homotopy equivalence

F 'p �.U.2n/=Sp.n//:

Proof of Theorem 1.20(1) For a prime p¤ 2, we have shown that there is a p–local
section to the principal homotopy fibration

�2.U.2n/=Sp.n//! G
�
Q ..0; 0; 1/I 0/

�.qr/
����!�.U.2n/=Sp.n//;

and the result follows.

Proof of Theorem 1.20(2) and (3) These follow using the same proofs as Theorems
2.22 and 2.23.

In the unpointed case, the theorems involving integral decompositions follow immedi-
ately from the real case.

Proof of Theorem 1.21 The results presented in Section 2.3.1 do not depend on
the fixed point set of the involution on BU.n/, and hence Theorem 1.21 follows
immediately.

We proceed to prove the quaternionic analogues of Section 2.4.2. Let

B D

�
B Sp.n/ if r > 0;

BU.2n/ otherwise,

and recall the evaluation fibration

(21) �B
@P
��!Map�Q.X;BU.n/IP /!MapQ.X;BU.n/IP /! B:

The following proposition can be proven using the same method as Proposition 2.26.

Proposition 2.34 Fix d 2 Z and let @d be the boundary map in (13). Denote by

@P W �B! B G
�
Q ..g; r; a/I 2d/

the boundary map of the evaluation fibration as in (21). If @d is (q–locally) trivial, then

(1) if r > 0, then @P is (q–locally) trivial;

(2) if r D 0, then the following composition is (q–locally) trivial:

Sp.n/ ,! U.2n/
@P
��! B G

�
Q ..g; r; a/I 2d/:

Proof of Theorem 1.22(1) Let p be a prime such that p − 2n. Then by Theorem 2.25,
the map @2n is p–locally trivial. The result then follows from Proposition 2.34.

Algebraic & Geometric Topology, Volume 17 (2017)



2476 Michael West

real �0.G
�.rCa/.P; z�// �0.G .P; z�// �1.G

�.rCa/.P; z�// �1.G .P; z�//

n> 2 ZgCa � .Z2/
r Zg � .Z2/

rC1 Z Z� .Z2/
r

nD 2 ZgCaCr ZgCr �Z2 Z ZrC1

nD 1 ZgCa Zg �Z2 0 0

quat.
rank 2n

ZgCa Zg � .Z2/
a Z Z

Table 1: Results of [3]: the low-dimensional homotopy groups of rank n

gauge groups above a real surface of type .g; r; a/ . The underlined entries
disagree with the author’s results.

Proof of Theorem 1.22(2) and (3) This is similar to the proofs of Theorem 1.15(1b)
and (1c). We do require that p ¤ 2, but this is automatic with the assumption that
p − 2n.

3 Tables of homotopy groups

We present homotopy groups of the .rCa/–pointed and unpointed gauge groups. We
only present these for the trivial components, that is,

� .c; w1; : : : ; wr /D .0; 0; : : : ; 0/ for real bundles;

� c D 0 for quaternionic bundles;

with the understanding that results can be obtained for different components using the
results in Section 1. Specifically, in the .rCa/–pointed case, we can obtain results for
all of the components using Propositions 1.7 and 1.16, and in the unpointed case, we can
obtain results for some of the different components using Propositions 1.9, 1.10 and 1.17.

We first recall the status of the calculation of the homotopy groups before this paper;
that is, we present the low-dimensional homotopy groups from [3] in Table 1.

From the results in Sections 1.2 and 1.3, we can see that our homotopy decompositions
usually contain factors involving U.n/, O.n/ and Sp.n/. Due to Bott periodicity, it is
easy to calculate some of the higher homotopy groups for high-rank gauge groups. We
present such results in Tables 2 and 3 where � is defined via

�D �.g; r; a/D

�
1 if r > 0 and aD 1;

0 otherwise:

Some of the results in Table 2 are a consequence of localised homotopy equivalences
and hence may provide incomplete information. To highlight these localised results we
use the following notation:
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G �
.rCa/.P; z�/ G .P; z�/

�8j Zg�1 �Zr�1
2
� .Z1Ca/p � .Z

1C�
2

/p Zg�1 �Zr�1
2
� .Z/p � .Z

1C�
2

/p

�8jC1 .Z1Ca
2

/p Zr�1
2
� .Z2C�

2
/p

�8jC2 ZgCr�2 � .Z1C�/p � .Za
2
/p Zg�1 �Zr�1

2
� .Z/p � .Z

�
2
/p

�8jC3 .Z/p .Z2/p

�8jC4 Zg�1 � .Z1Ca/p Zg�1 � .Z/p
�8jC5 0 0

�8jC6 ZgCr�2 � .Z1C�/p Zg�1 � .Z1��/p

�8jC7 Zr�1
2
� .Z/p � .Z

�
2
/p Zr�1

2
� .Z2/p � .Z

�
2
/p

Table 2: Homotopy groups for high-rank gauge groups of real bundles, that
is, the homotopy groups �i when the rank n> i C 2 . The results in the first
two rows correspond to the top row in Table 1.

� groups surrounded by .�/p are understood to have come from p–local homotopy
equivalences where p and the rank n of the gauge groups satisfy the requirements
of Theorems 1.13 and 1.15.

Similarly, some of the results in Table 3 are a consequence of localised homotopy
equivalences and hence may provide incomplete information. To highlight these
localised results we use the following notation:

� groups surrounded by .�/p are understood to have come from p–local homotopy
equivalences where p is prime and the rank 2n of the gauge groups satisfy the
requirements of Theorems 1.20 and 1.22.

Due to the properties of Bott periodicity, Table 3 is a translation of Table 2. We note
that additional calculations can be made for the lower-rank cases. We point the reader
to [7, Section 3.2] where explicit homotopy groups of some of the relevant factors can
be found.

We note that the author’s results disagree with the Z–summands underlined in Table 1.
In the pointed case, this Z–summand arises in [3] by studying a fibration arising from
restricting the gauge group to the 1–skeleton of the real surface.

For example, the corresponding fibration for a type-.g; r; 0/ real surface is

�2U.n/! G
�.P; z�/!

gY
1

�U.n/�

rY
1

�O.n/;
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G �
.rCa/

Q .P; z�/ GQ.P; z�/

�8j Zg�1 � .Z1Ca/p Zg�1 � .Z/p
�8jC1 0 0

�8jC2 ZgCr�2 � .Z1C�/p Zg�1 � .Z1��/p

�8jC3 Zr�1
2
� .Z/p � .Z

�
2
/p Zr�1

2
� .Z2/p � .Z

�
2
/p

�8jC4 Zg�1 �Zr�1
2
� .Z1Ca/p � .Z

1C�
2

/p Zg�1 �Zr�1
2
� .Z/p � .Z

1C�
2

/p

�8jC5 .Z1Ca
2

/p Zr�1
2
� .Z2C�

2
/p

�8jC6 ZgCr�2 � .Z1C�/p � .Za
2
/p Zg�1 �Zr�1

2
� .Z/p � .Z

�
2
/p

�8jC7 .Z/p .Z2/p

Table 3: Homotopy groups for high-rank gauge groups of quaternionic bun-
dles, that is, the homotopy groups �i when the rank 2n > 1

4
.i C 1/ . The

results in the first two rows correspond to the bottom row in Table 1.

and we obtain the exact sequence

0! �2.G
�.P; z�//

�
�! ZgCr

! Z
�
�! �1.G

�.P; z�//! 0:

The claim in [3] is that the map � can be thought in terms of the classification of bundles
over S2^X . Further, since � is induced by a map that collapses the 1–skeleton of X ,
the map � is essentially providing an identification of the second Chern class, and
hence is an isomorphism.

The author agrees that this argument holds in the nonequivariant case. Indeed, if we
consider X as a Riemann surface, we obtain that S2 ^X is a wedge of spheres, and
then � is induced by a map that collapses all but the top copy of S4 .

However, we now demonstrate that �1.G
�.P; z�// cannot contain a Z–summand, at

least for the type-.0; 1; 0/ case. We assume that �1.G
�.P; z�// contains a Z–summand,

and that subsequently the map � is an isomorphism. Therefore, � is an isomorphism,
and we recall that it is induced by the map r 0 which restricts to the 1–skeleton of X .
The map r 0 fits into the commutative diagram

G �.P; z�/
u0

//

r 0
��

�Map�.D2;BU.n//

r
��

�Map�Z2
..S1; id/;BU.n/I 0/

u
// �Map�.S1;BU.n//

where u0 is the map that forgets about equivariance and restricts to the upper hemisphere
of X .
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Now u is homotopic to the inclusion �O.n/ ,!�U.n/, and hence, by assumption,
the induced map

u�� D .ur 0/�W ZŠ �2.G
�.P; z�//! �2.�U.n//Š Z

is multiplication by 2. But ru0 is nullhomotopic because it factors through the con-
tractible space �Map�.D2;BU.n//, and we obtain a contradiction. We conclude
that � cannot be an isomorphism.

It remains to show that the other underlined entries in Table 1 cannot contain Z–
summands. However, these entries were obtained from the calculation in the pointed
case, and therefore, we argue that these cannot contain Z–summands either.
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