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Coarse medians and Property A

JÁN ŠPAKULA

NICK WRIGHT

We prove that uniformly locally finite quasigeodesic coarse median spaces of finite
rank and at most exponential growth have Property A. This offers an alternative proof
of the fact that mapping class groups have Property A.

20F65; 30L05

1 Introduction

Coarse median spaces and groups were invented by Bowditch [4; 5; 6] as (we are
guessing here) a device offering a unified approach to hyperbolic groups and mapping
class groups.

Indeed, hyperbolic groups are precisely coarse median groups of rank 1 [4, Theorem
2.1], and mapping class groups are instances of coarse median groups of finite rank [4,
Theorem 2.5].

Furthermore, groups that are relatively hyperbolic with respect to a collection of coarse
median groups are again coarse median [5]. This provides more examples of coarse
median groups, for instance geometrically finite Kleinian groups and Sela’s limit groups.

The coarse median approach to these classes of groups is quite powerful: in this series
of papers, Bowditch uses it to give unified proofs of some properties, for instance
the rapid decay property and quadratic isoperimetric inequality, and to compute the
dimension of asymptotic cones.

Intuitively, a coarse median space is a metric space endowed with a ternary structure
(a map assigning a point to every triple of points), which is metrically a controlled
amount away from being an actual median structure. (Finite) sets with an actual
median structure are just (vertex sets of) CAT.0/ cube complexes. Hence one may
loosely regard coarse median structures as coarse versions of (metrized) CAT.0/ cube
complexes. This analogy works exactly in the “rank one” situation, where the CAT.0/
cube complexes are trees, and hyperbolic groups are “coarsely tree-like”. For the actual
definitions, see Section 2.
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The main result of this piece is that quasigeodesic coarse median spaces of finite rank,
which are uniformly locally finite and have at most exponential growth, have Yu’s
Property A. For proving Property A we use a criterion which is an adaptation of Brown
and Ozawa’s proof [9] that hyperbolic groups act amenably on the boundary. As a
side-effect, we obtain a quick proof of Property A for finite-dimensional CAT.0/ cube
complexes, a fact originally established by Brodzki, Campbell, Guentner, Niblo and
Wright [8] by a different, more combinatorial method. Our proof for coarse median
spaces is a coarsification of this short argument.

As a consequence, we obtain an alternative proof of the result that mapping class groups
have Property A (ie are exact), originally proved by Hamenstädt [12] and Kida [15].

Finally, we would like to mention a related notion of hierarchically hyperbolic spaces
(and groups), developed recently by Behrstock, Hagen and Sisto [1; 3]. While this
property is stronger (see [1, Section 7]), and somewhat more involved than coarse
medians, it is also substantially more powerful: it implies even finite asymptotic
dimension; see Behrstock, Hagen and Sisto [2]. Having finite asymptotic dimension is
a strictly stronger property than Property A. We close off with a question: do coarse
median groups of finite rank have finite asymptotic dimension?

The structure of the paper is as follows: In Section 2 we recall the relevant definitions
and facts. Section 3 explains Brown and Ozawa’s criterion for Property A. In Section 4
we outline the quick proof of Property A for CAT.0/ cube complexes. In Section 5 we
establish some facts about (metric) median algebras; and finally Section 6 contains the
proof of the main result.

Acknowledgements Špakula thanks Goulnara Arzhantseva for her encouragement,
continuing support, and the initial impetus for this work.

2 Preliminaries

2.1 CAT.0/ cube complexes

We recall the notions related to CAT.0/ cube complexes. For details, please consult
[7; 16].

A cube complex is a polyhedral complex in which the cells are Euclidean cubes of side
length one, the attaching maps are isometries identifying the faces of a given cube with
cubes of lower dimension and the intersection of two cubes is a common face of each.
One-dimensional cubes are called edges; and the complex is finite-dimensional if there
is a bound on the dimension of its cubes.
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Recall that we can endow a cube complex with a naturally defined geodesic metric.
Furthermore, we can endow the set of vertices of a cube complex with an edge-path
metric; in the finite-dimensional case, this metric is coarsely equivalent to (the restriction
of) the geodesic metric [8, Proposition 1.7].

A cube complex is a CAT.0/ cube complex if the underlying topological space is
simply connected and the complex satisfies Gromov’s link condition [10]. In the finite-
dimensional case, this is equivalent to asking that the geodesic metric should satisfy
the CAT.0/ inequality [7].

A hyperplane H (or a wall) is a geometric hyperplane which cuts each cube that it
intersects exactly in half. Such an H divides the vertex set into two path-connected
subspaces, which are referred to as half-spaces. Two hyperplanes cross if each of the
four possible intersections of the associated half-spaces is nonempty. We say that H

separates two vertices if every edge-path connecting them crosses H . For two sets of
vertices A and B , we shall write A jH B if H separates every vertex in A from every
vertex in B , ie A and B are in different half-spaces determined by H . The interval
Œx;y� between two vertices x and y is the intersection of all half-spaces containing
both vertices.

Every n–dimensional cube in a CAT.0/ cube complex defines n pairwise intersecting
hyperplanes (which it crosses) and, conversely, a collection of n pairwise intersecting
hyperplanes defines a unique n–cube (which crosses exactly these hyperplanes).

Note that the set of vertices of a CAT.0/ cube complex is a median algebra in the
sense defined below — the median of three points x , y , z is the unique vertex in the
intersection Œx;y�\ Œy; z�\ Œz;x�; see [19]. Equivalently the median of x , y , z is the
unique point lying on a geodesic between x and y , on a geodesic between y and z

and a geodesic between z and x . Furthermore, the notions of an interval, wall, etc, are
the same whether defined as here, or using the median structure (below).

In a CAT.0/ cube complex, each collection of pairwise intersecting hyperplanes deter-
mines a unique cube and, conversely, each cube (of dimension k ) provides k pairwise
intersecting hyperplanes. A cube path from a vertex x to a vertex y in a CAT.0/ cube
complex X is a sequence of cubes C0; : : : ;Cn such that x is a vertex of C0 , y is a
vertex of Cn , and every two consecutive cubes intersect in exactly one vertex. A normal
cube path from x to y is a cube path from x to y such that every hyperplane separating
x and y is crossed exactly once, with the maximal number of hyperplanes crossed
at each step [16]. Note that if X is finite-dimensional, then 1

d
�.x;y/� n� �.x;y/,

where d is the dimension of X and � denotes the edge-path distance. We also refer
to the sequence of the common vertices between the consecutive cubes on the normal
cube path as the normal cube path.
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2.2 Metric median algebras

We summarise the notions that we need for this paper. For a more thorough account
on median structures, we refer to [4; 6]. The median algebras can be thought of as an
abstraction of CAT.0/ cube complexes — every finite median algebra is actually the
vertex set of a finite CAT.0/ cube complex. While one direction of this link works
in general, median algebras can be “larger” (for instance R–trees are also median
algebras).

A median algebra is a set, ˆ, equipped with a ternary operation, �W ˆ3! ˆ, such
that for all a; b; c; d; e 2ˆ we have

(M1) �.a; b; c/D �.b; c; a/D �.b; a; c/,

(M2) �.a; a; b/D a, and

(M3) �.a; b; �.c; d; e//D �.�.a; b; c/; �.a; b; d/; e/.

While this is the formal definition, we prefer to think about finite median algebras as
the vertex sets of finite CAT.0/ cube complexes (with the natural median structure).

Given a; b 2ˆ, the interval Œa; b� is defined to be Œa; b�D fc 2ˆ j �.a; b; c/D cg. A
subset H �ˆ is convex if Œa; b��H for all a; b 2H .

For A � ˆ, define the convex hull, denoted by hull.A/, to be the smallest convex
subset of ˆ containing A. Note that hull.fa; bg/D Œa; b� for a; b 2ˆ. Furthermore,
for A � ˆ, define the join, J.A/ D

S
a;b2AŒa; b�. Continuing inductively, we put

J 0.A/D J.A/ and J i.A/D J.J i�1.A//. In general, there always exists some p 2N
such that J p.A/D hull.A/, and moreover we know that p can be taken to be no larger
than the rank of ˆ; see [4, Lemma 5.5].

A wall, W , is a partition fH�.W /;HC.W /g of ˆ into two nonempty convex subsets.
We say that two walls W and W 0 cross if each of the sets H�.W / \ H�.W 0/,
H�.W /\HC.W 0/, HC.W /\H�.W 0/ and HC.W /\HC.W 0/ is nonempty.

We say that ˆ has rank at most d if there is no collection of d C 1 pairwise crossing
walls of ˆ.

By a topological median algebra we mean a topological space ˆ endowed with a
structure of a median algebra �W ˆ3! ˆ such that � is continuous in the induced
topology. When the topology on ˆ comes from a metric � , we say that ˆ is a metric
median algebra.

Let ˆ be a metric median algebra as above. We also recall one of the conditions used
in [6] to obtain the embedding result:

(L2) There exists K � 1 such that for all a; b; c; d 2ˆ, �.�.a; b; c/; �.a; b; d//�
K�.c; d/.
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Let us mention that the main embedding result of [6] states that if a metric median
algebra ˆ satisfies (L2), is Lipschitz path-connected and is �–colourable,1 then it
bilipschitzly embeds into a product of � R–trees.

2.3 Coarse median spaces

In this subsection, we recall the definitions and facts related to coarse medians. For
more details, we refer to [4; 6].

Let .X; �/ be a metric space, and let �W X 3!X be a ternary operation. We say that
� is a coarse median and that .X; �; �/ is a coarse median space if the following
conditions hold:

(C1) There are constants K � 1 and H.0/� 0 such that for all a; b; c; a0; b0; c0 2X

we have

�.�.a; b; c/; �.a0; b0; c0//�K.�.a; a0/C �.b; b0/C �.c; c0//CH.0/:

(C2) There is a function H W N! Œ0;1/ with the following property: Suppose that
A�X with 1� jAj � p <1. Then there is a finite median algebra .…;�…/
and maps � W A!… and � W …!X such that for all x;y; z 2… we have

�.��….x;y; z/; �.�x; �y; �z//�H.p/

and
�.a; ��a/�H.p/

for all a 2A.

We refer to K and H as the parameters of .X; �; �/.

Without loss of generality, we may assume that � satisfies the axioms (M1) and (M2),
by [4, page 22].

We say that X has rank at most d if we can always choose … to have rank at most d .

Let us recall the asymptotic cones from [4, Section 9; 6, Section 8]: Let .X; �; �/ be a
coarse median space, let .rn/ be a sequence of positive reals such that rn!1, let
.xn/�X be a sequence of points in X , and finally fix a nonprincipal ultrafilter on N .
With this data, we can construct an ultralimit .X1; �1; �1/ of pointed coarse median
spaces ..X; �=rn; �/;xn/. This ultralimit is referred to as an asymptotic cone of X

(with the given data), and it is a complete2 metric median algebra satisfying (L2) (with
the constant K being the same as in the definition of coarse median). Moreover, if X

has rank at most d , then X1 also has rank at most d .
1This is a more restrictive version of rank, which is equivalent to rank for intervals.
2The completeness here refers to the metric.
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2.4 Property A

Property A is a coarse geometric property of metric spaces (or more generally coarse
spaces), first defined by G Yu [21] as a criterion that (for discrete countable groups)
implies the coarse Baum–Connes conjecture, and hence the Novikov conjecture. The
catchphrase here is “nonequivariant amenability” or “coarse amenability”. Since its
inception, many equivalent formulations were discovered, including analytic (exactness
of the reduced group C �–algebra, nuclearity of the uniform Roe algebra [11; 18]) and
dynamical (admitting an amenable action on a compact topological space [13]).

We shall recall one of the possible definitions (the one used in Proposition 3.1) for
completeness; we refer to [20] for the whole spectrum.

Let .X; �/ be a uniformly locally finite discrete metric space. We say that X has
Property A if for all R; " > 0 there exists a map �W X ! `1.X / from X into the
Banach space `1.X / such that

� k�.x/k1 D 1 for all x 2X ;
� for all x;y 2X with �.x;y/�R, we have k�.x/� �.y/k1 � ";
� there exists S > 0 such that �.x/ is supported in the closed ball B.xIS/ around

x with radius S for each x 2X .

2.5 Geodesicity

We shall say that a metric space .X; �/ is quasigeodesic if there exist constants G1

and G2 such that there exists a .G1;G2/–quasigeodesic between any pair of points
in X . Note that when X is a quasigeodesic coarse median space, all its asymptotic
cones are Lipschitz path-connected. This is required for applying the embedding result
of Bowditch [6] (and is a blanket assumption in [4; 6]).

3 A criterion

We extract a criterion from a proof of Brown and Ozawa [9, Theorem 5.3.15] for
proving Property A. Its proof is just an excerpt from [9], which is in turn inspired
by [14].

Proposition 3.1 Let X be a uniformly finite, discrete metric space. Suppose that we
have an assignment of a set S.x; k; l/�X to every l 2N , k 2 f1; : : : ; 3lg and x 2X

such that:

(i) For every l 2 N there exists Sl > 0 such that S.x; k; l/ � B.x;Sl/ for all
x 2X and k 2 f1; : : : ; 3lg.
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(ii) For every x;y 2 X , l � �.x;y/ and k 2 fl C 1; : : : ; 2lg, we have inclu-
sions S.x; k��.x;y/; l/�S.x; k; l/\S.y; k; l/ and S.x; k; l/[S.y; k; l/�

S.x; kC �.x;y/; l/.

(iii) There exists a function p such that jS.x; k; l/j � p.l/ for every x 2X , l 2N
and k 2 f1; : : : ; 3lg with limn!1 p.n/1=n D 1.

Then X has Property A.

To have some mental picture, let us recall that Brown and Ozawa apply this criterion
to hyperbolic groups � , defining the sets as follows: fix a point u 2 @� . Given x , k

and l , the set S.x; k; l/ consists of points that are exactly 3l steps along a geodesic
between a point within the k –ball around x and u. With this definition, the conditions
(i) and (ii) follow from the triangle inequality, and (iii) uses the stability of geodesics
in hyperbolic spaces (in this case p can be taken to be a linear function).

Proof Consider the Banach space `1.X / and for A�X denote by �A 2 `
1.X / the

normalised characteristic function of A. Given n 2N and x 2X , define

�n.x/D
1

n

2nX
kDnC1

�S.x;k;n/:

Note that k�n.x/k D 1 and supp.�n.x//� B.x;Sn/ for all x 2X by (i).

To establish Property A, we use the formulation from [20, Theorem 1.2.4(2)], recalled
also in Section 2.4. We need to show that, for a fixed m, we have

lim
n!1

sup
�.x;y/Dm

k�n.x/� �n.y/k D 0:

First, observe that for any A;B �X , we have

k�A��Bk D 2

�
1�

jA\Bj

maxfjAj; jBjg

�
� 2

�
1�
jA\Bj

jA[Bj

�
:

Take x;y 2X with �.x;y/Dm and assume n�2m. Then for any k 2fnC1; : : : ; 2ng,
applying (ii),

k�S.x;k;n/��S.y;k;n/k � 2

�
1�
jS.x; k �m; n/j

jS.x; kCm; n/j

�
:

Consequently,

k�n.x/� �n.y/k �
1

n

2nX
kDnC1

k�S.x;k;n/��S.y;k;n/k
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� 2

�
1�

1

n

2nX
kDnC1

jS.x; k �m; n/j

jS.x; kCm; n/j

�

� 2

�
1�

� 2nY
kDnC1

jS.x; k �m; n/j

jS.x; kCm; n/j

�1=n �

D 2

�
1�

� QnCm
jDnC1�m jS.x; j ; n/jQ2nCm

jD2nC1�m jS.x; j ; n/j

�1=n �
� 2.1�p.n/�2m=n/:

We have used the inequality between the arithmetic and geometric mean in the middle
step, magic cancellation of many terms in the penultimate step, and the last step uses
(iii) plus a simple estimate of the sizes of sets by 1 from below. By (iii), the last
expression converges to 0 as n converges to 1. We are done.

Remark 3.2 In condition (iii), we ask for a bound in terms of l . However, it is
apparent from the proof that a bound in terms of k with an analogous property also
suffices.

Remark 3.3 It is clear from the proof of the proposition that we need to define
the sets S.x; k; l/ only for an infinite sequence of indices l (and the corresponding
k 2 f1; : : : ; 3lg), not necessarily for all l 2N .

4 CAT.0/ cube complexes

Proposition 3.1 allows us to quickly prove that finite-dimensional CAT.0/ cube com-
plexes have Property A. This was first proved in [8] using a more combinatorial
approach.

Proposition 4.1 Let X be a finite-dimensional CAT.0/ cube complex. Then X has
Property A.

Proof Fix a base vertex x0 2X . Given a vertex x 2X , l 2N and k 2 f1; : : : ; 3lg,
consider the normal cube path from y to x0 , where �.y;x/ � k . We define the set
S.x; k; l/ to contain the 3l th vertex on such a normal cube path (or x0 if we run
out of space). Note that conditions (i) and (ii) from Proposition 3.1 are automatically
satisfied, courtesy of the triangle inequality. To be more precise, if z 2 S.x; k; l/, then
�.x; z/� 6ld , where d D dim.X /.

To prove condition (iii) of Proposition 3.1, we shall argue that if z 2 S.x; k; l/, then
z 2 Œx;x0�. Or, equivalently:
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Claim Every half-space containing both x and x0 contains also z .

Each hyperplane that we need to consider (ie such that one of the associated half-spaces
contains both x and x0 ) either separates x and x0 from y or it does not. In the latter
case, the same half-space also clearly contains z , so it remains to deal with the former
case.

Denote by C0;C1; : : : ;Cm the normal cube path from y to x0 , and denote by y D

v0; v1; : : : ; vm D x0 the vertices on this cube path. We shall argue that any hyperplane
separating y from x and x0 is “used” within the first �.x;y/ steps on the cube
path. Suppose that the cube Ci does not cross any hyperplane H with fyg jH fx;x0g.
Hence every hyperplane K crossing Ci satisfies fy;xg jK fx0; viC1g. If there was
a hyperplane L with fyg jL fx;x0g which was not “used” before Ci on the cube
path, then necessarily fy; viC1g jL fx;x0g, hence L crosses all the hyperplanes K

crossing Ci . This contradicts the maximality of this step on the normal cube path.
Thus there is no such L, and so all the hyperplanes H with fyg jH fx;x0g must be
crossed within the first �.x;y/ steps (as there at most �.x;y/ such hyperplanes).

Since z is the 3l th vertex on the cube path and �.x;y/� k � 3l , all the hyperplanes
H with fyg jH fx;x0g must have been crossed before z . Thus any such H actually
also satisfies fyg jH fx;x0; zg. We have proved our claim.

Coming back to showing condition (iii) of Proposition 3.1, observe that the interval
Œx;x0� embeds isometrically into the cube complex Rd [8, Theorem 1.14], hence it has
polynomial growth. This means that as S.x; k; l/� Œx;x0�\B.x; 6ld/, its cardinality
is bounded by a polynomial in l (of degree d ). This finishes the proof.

For the record, we note that dropping the finite-dimensionality assumption renders
the statement false, namely infinite-dimensional CAT.0/ cube complexes do not have
Property A; this follows from [17], as they contain isometric copies of .Z=2Z/n for
arbitrarily large n.

5 Median algebras

Definition 5.1 Let ˆ be a median algebra. Let n� 2 and x1; : : : ;xn; b 2ˆ. Define

�.x1I b/ WD x1

and inductively, for 1� k < n� 1,

�.x1; : : : ;xkC1I b/ WD �.�.x1; : : : ;xk I b/;xkC1; b/:

Note that this definition “agrees” with the original median map �, since �.x1;x2I b/D

�.x1;x2; b/.
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Intuitively, �.x1; : : : ;xnI b/ should be thought of as a projection of b onto the set
hullfx1; : : : ;xng, just as �.x1;x2; b/ is the projection of b onto Œx1;x2�. However,
we do not prove this in this note (but see Lemma 5.3).

Lemma 5.2 The � symbol from Definition 5.1 is symmetric in x1; : : : ;xn .

Proof Recalling that interchanging the points in �. � ; � ; � / is one of the axioms of
a median algebra, it is clearly sufficient to prove that, for n D 3, we can switch x2

with x3 . However, applying axioms of median algebras, we have that

�.x1;x2;x3I b/D �.�.x1;x2; b/;x3; b/

D �.�.x3; b;x1/; �.x3; b; b/;x2/

D �.�.x1;x3; b/;x2; b/

D �.x1;x3;x2I b/:

We are done.

In fact, it is easy to see that Œx1; b�\ Œx2; b�D Œ�.x1;x2; b/; b� and then by induction
that

Tn
kD1Œxk ; b�D Œ�.x1; : : : ;xnI b/; b�.

Lemma 5.3 Let ˆ be a median algebra. Let x1; : : : ;xn; b 2ˆ.

(i) A wall separates x1; : : : ;xn from b if and only if it separates �.x1; : : : ;xnI b/

from b .

(ii) If �.x1; : : : ;xn�1I b/ 6D �.x1; : : : ;xnI b/ then there exists a wall separating
x1; : : : ;xn�1 from xn and b .

(iii) If, in addition, ˆ has rank at most d, then there exists fy1; : : : ;ykg�fx1; : : : ;xng

with k � d such that �.y1; : : : ;yk I b/D �.x1; : : : ;xnI b/.

(iv) If a 2ˆ and x1; : : : ;xn 2 Œa; b�, then fx1; : : : ;xng � Œa; �.x1; : : : ;xnI b/�.

Proof Since �.x;y; b/ 2 Œx;y�D J.fx;yg/, we can easily prove by induction that
�.x1; : : : ;xnI b/ 2 J n�1.fx1; : : : ;xng/ � hullfx1; : : : ;xng. The “only if” statement
in (i) follows. For the converse, assume for contradiction that there exists a wall
W that separates b from �.x1; : : : ;xnI b/ but does not separate b from (say, using
Lemma 5.2) xn . As half-spaces are convex, the whole interval Œb;xn� is in the same
half-space as b . But as �. � ;xn; b/ 2 Œb;xn�, this contradicts the assumption that b is
separated from �.x1; : : : ;xnI b/D �.�.x1; : : : ;xn�1I b/;xn; b/.

For (ii), write c D �.x1; : : : ;xn�1I b/ and note that �.x1; : : : ;xnI b/ D �.c;xn; b/.
Hence c 6D �.x1; : : : ;xnI b/ implies c 62 Œxn; b�. As fcg and Œxn; b� are convex, this
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implies, by [4, Lemma 6.1], that there is a wall separating c from xn and b . By (i),
this wall separates x1; : : : ;xn�1 from xn and b .

For (iii), we proceed by contradiction. Assume that there are at least d C 1 points in
fx1; : : : ;xng which cannot be removed from the expression �.x1; : : : ;xnI b/ without
changing the result. The previous part of the lemma, together with Lemma 5.2, implies
that there exist at least dC1 different walls which all intersect (for instance, if one wall
separates x1; : : : ;xn�1 from xn and b , and another one separates x1; : : : ;xn�2;xn

from xn�1 and b , they clearly intersect). This contradicts the rank assumption (see [4,
Proposition 6.2]).

Part (iv) follows by induction from the following statement: if x;y 2 Œa; b�, then
x;y 2 Œa; �.x;y; b/� (so in particular Œa;x�� Œa; �.x;y; b/�). It is of course sufficient
to prove that x 2 Œa; �.x;y; b/�, which is done using median axioms as follows:

�.a;x; �.x;y; b//D �.�.a;x;x/; �.a;x; b/;y/D �.x;x;y/D x:

We are done.

Lemma 5.4 Let ˆ be a median algebra and let a; b;x;y 2 ˆ satisfy x;y 2 Œa; b�.
Then y 2 Œa;x� implies x 2 Œy; b�.

Proof We compute

�.y; b;x/D �.�.a;x;y/; b;x/D �.�.b;x; a/; �.b;x;x/;y/D �.x;x;y/D x;

using the median axioms and the lemma’s assumptions.

Proposition 5.5 Let ˆ be a topological median algebra of rank at most d . Given an
interval Œa; b��ˆ and a compact set C � Œa; b�, there exists h1; : : : ; hd 2C , such that
C � Œa; �.h1; : : : ; hd I b/�.

If ˆ is moreover a metric median algebra satisfying the condition (L2), then we have
�.a; �.h1; : : : ; hd I b//� 3dKd max1�i�d �.a; hi/� 3dKd suph2C �.a; h/.

Proof Consider the compact space C d . Given a tuple � 2 C d , write �.�I b/ for the
short. Given � 2 C d , define

A� D f� 2 C d
j �.�I b/ 2 Œ�.�I b/; b�g D f� 2 C d

j Œa; �.�I b/�� Œa; �.�I b/�g:

Note that the two conditions are equivalent: if �.�I b/2 Œ�.�I b/; b�, then by Lemma 5.4
�.�I b/ 2 Œa; �.�I b/�, hence Œa; �.�I b/�� Œa; �.�I b/�. Conversely, the last inclusion
implies �.�I b/ 2 Œa; �.�I b/�, so again by Lemma 5.4 we have �.�I b/ 2 Œ�.�I b/; b�.
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Observe that each set A� is closed: in fact it is exactly the inverse image of the closed3

set Œ�.�I b/; b��ˆ under the continuous map �. � I b/W C d !ˆ.

Finally, the collection fA� j � 2C dg of subsets of C d has the finite intersection property.
Given �; � 2 C d , by Lemma 5.3(iii) there is ! 2 C d such that �.!I b/D �.� [�I b/.
However, from the definition of � and Lemma 5.2, we know that �.� [ �I b/ belongs
to both Œ�.�I b/; b� and Œ�.�I b/; b�. In other words, ! 2A� \A� .

Now, as C d is compact, there exists � 2
T
�2C d A� . Thus Œa; �.�I b/�� Œa; �.�I b/�

for all � 2 C d . In particular, by Lemma 5.3(iv), � � Œa; �.�I b/� � Œa; �.�I b/� for
all � 2 C d , so Œa; �.�I b/� contains all the points of C . Now just enumerate � as
h1; : : : ; hd .

For the second part of the proposition, we do inductive estimates using (L2). Write
T D max1�i�d �.a; hi/. Then, as the first step, �.a; �.h1I b//D �.a; h1/ � T . We
show inductively that �.a; �.h1; : : : ; hi I b//� 3i�1Ki�1T . Assuming this inequality
for i , writing �.h1; : : : ; hi I b/D gi we estimate

�.a; �.h1; : : : ; hiC1I b//D �.a; �.gi ; hiC1I b//

� �.a;gi/C �.�.gi ;gi ; b/; �.gi ; hiC1; b//

� 3i�1Ki�1T CK�.gi ; hiC1/

� 3i�1Ki�1T CK.3i�1Ki�1T CT /

D T .3i�1Ki
C 3i�1Ki�1

CK/� 3iKiT:

We are done.

6 Coarse medians

We shall adapt the idea of “moving deep into the interval” from the CAT.0/ cube
complex setting to the more general coarse median spaces.

To explain the idea, consider two points a and b and the context-appropriate notion of
the interval Œa; b�. In the CAT.0/ cube complex case, we have moved deep into this
interval by stepping sufficiently far along the cube path from a to b . In the coarse
median case we shall, roughly speaking, be looking for “the other end” of the convex
hull of B.a; l/\ Œa; b� (see the second bullet in Corollary 6.3). Along the lines of [6],
this is done by going to the asymptotic cone (where the results of Section 5 can be
applied).

We begin by fixing a fair amount of notation.

3Intervals are closed in topological median algebras; this just uses continuity of � .
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For the rest of this section, when we say that X is a coarse median space, we mean that
X is a coarse median space, with metric denoted by � , the median function denoted
by �, and with parameters K and H . These will be fixed throughout.

When convenient, we shall be using the notation x �s y for �.x;y/� s .

Given � � 0 and a; b 2 X , we shall denote by Œa; b�� the coarse interval between a

and b , ie Œa; b�� WD fx 2X j �.a; b;x/�� xg.

We will denote by � � 0 a constant (depending only on K and H ) such that for all
x;y; z 2X we have �.x;y; z/ 2 Œx;y�� ; its existence is proved in [6, Lemma 9.2].

Recall that since the median axiom (M3) holds exactly in median algebras, it does hold in
coarse median spaces up to a constant 
 �0 depending only on the parameters K and H

of the coarse median structure (actually 
 D3K.3KC2/H.5/C.3KC2/H.0/). By this
we mean �.x;y; �.z; v; w//�
 �.�.x;y; z/; �.x;y; v/; w/ for all x;y; z; v; w 2X .
We shall be using 
 and this fact throughout this section.

Fixing some more notation, given r; t � 0, let

L1.r/D .KC 1/r CK�C 
 C 2H.0/;

L2.r/D .KC 2/r CH.0/;

L3.r; t/D 3dKd r t C r:

The point is that L1 and L2 are linear functions of r , and L3 is linear in r with t

fixed, and bounded by a linear function of r t (for t � 1).

Lemma 6.1 Let X be a coarse median space, r � 0, and let a; b 2X and x 2 Œa; b�� .
Then Œa;x�r � Œa; b�L1.r/ .

Proof Let z 2 Œa;x�r . Thus �.a;x; z/�r z and by assumption also �.a; b;x/�� x .
Hence,

�.a; b; z/�KrCH .0/ �.a; b; �.a;x; z//

�
 �.�.a; b; a/; �.a; b;x/; z/

�K�CH .0/ �.a;x; z/�r z:

Thus �.�.a; b; z/; z/ � .K C 1/r CK�C 
 C 2H.0/ D L1.r/, which means by
definition that z 2 Œa; b�L1.r/ .

In what follows, r can be thought of as “a scale” and t as “a distance”. In other words,
the statements can read as “given a distance (t ) at which we want the space to behave,
there exists a scale (rt / such that on all larger scales (r � rt ) it behaves as a median
space, with an error proportional to r ”.
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Proposition 6.2 Let X be a quasigeodesic coarse median space of rank at most d .
For every � > 0 and t > 0, there exists rt > 0 such that for all r � rt , a; b 2 X and
A� B.a; r t/\ Œa; b�� with sep.A/� r , there exists h 2 Œa; b�L1.r/ such that

� �.a; h/�L3.r; t/, and
� A� Œa; h�r .

Corollary 6.3 Let X be a quasigeodesic coarse median space of rank at most d . For
every � > 0 and t > 0, there exists rt > 0 such that for all r � rt and a; b 2X there
exists h 2 Œa; b�L1.r/ such that

� �.a; h/�L3.r; t/, and
� B.a; r t/\ Œa; b�� � Œa; h�L2.r/ .

Proof This readily follows from Proposition 6.2, by noting that we may choose A to be
a maximal r –separated subset of B.a; r t/\Œa; b�� . Then any point x2B.a; r t/\Œa; b��
is at most r –far from a point ax 2A, hence the condition A� Œa; h�r implies that

�.a; h;x/�KrCH .0/ �.a; h; ax/�r ax �r x:

Since we wrote Kr CH.0/C r C r DL2.r/, the above reads x 2 Œa; h�L2.r/ .

Proof of Proposition 6.2 We proceed by contradiction: Suppose that for some � and
t the statement is not true, ie there exists a sequence 0 < r1 < r2 < � � � 2 R and for
each n 2N there exist an; bn 2X and An � Œan; bn��\B.an; rnt/ with sep.An/� rn

such that for all h 2 Œan; bn�L1.rn/ with �.an; h/�L3.rn; t/ there exists x 2An with
�.x; �.an; h;x// > rn .

It follows from [6, Lemma 9.7] that we can assume that the cardinalities jAnj are
uniformly bounded by a constant p depending on K , H , d , � and t .

The next step is to argue that we can arrange that the distances from an to bn are linear
in rn .

Claim There exist constants ı1; ı2; �1 � 0 (depending only on K;H; �; t and p ) and
points b0n 2 Œan; bn�� such that �.an; b

0
n/� ı1rnC ı2 and An � Œan; b

0
n��1

.

The claim follows from [6, Lemma 9.6], which says that in our situation there are
constants � , � and �0 (depending only on K;H; �; t and p ) and points cn; dn 2 X

such that An � Œcn; dn��0 and diam.An [ fcn; dng/ � � diam.An/C � � 2�rnt C � .
Since An � B.an; rnt/, by the proof of that lemma we can assume that cn D an for
every n. Finally, we define b0n D �.an; bn; dn/ 2 Œan; bn�� and check that

b0n D �.an; bn; dn/�K.2�rntC�/CH .0/ �.dn; bn; dn/D dn �2�rntC� an;
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and, for every x 2An (so that �.an; bn;x/�� x and �.an; dn;x/��0 x ),

�.an; b
0
n;x/D �.an; �.an; bn; dn/;x/

�
 �.�.an;x; bn/; �.an;x; dn/; an/

�K.�C�0/CH .0/ �.x;x; an/D x:

So, altogether, we put �1 D K.� C �0/CH.0/C 
 , ı1 D 2.K C 1/�t and ı2 D
.KC 1/�CH.0/ and the claim is proved.

We have now set up the situation so that we can conclude the proof by going to the
asymptotic cone.

Let .X1; �1; �1/ be an asymptotic cone of X , with the sequence of scales .rn/,
basepoints .an/ and any nonprincipal ultrafilter on N .

The sequences .an/ and .b0n/ determine points a; b 2X1 (with �1.a; b/� ı1 ), and
the intervals Œan; b

0
n��1

converge to the interval Œa; b� in X1 . Also the sets An converge
to a (finite, 1–separated) set A� Œa; b�\B.a; t/.

By Proposition 5.5, there exists h 2 Œa; b� such that A� B.a; t/\ Œa; b�� Œa; h� and
�1.a; h/� 3dKd t . This implies that we have a sequence of points hn 2X , eventu-
ally in Œan; b

0
n�rn

,4 such that lim �.an; hn/=rn � 3dKd t , thus eventually �.an; hn/�

3dKd rnt C rn DL3.rn; t/.

Since b0n2 Œan; bn�� and hn2 Œan; b
0
n�rn

, by Lemma 6.1 we have that hn2 Œan; bn�L1.rn/ .
Hence, by our original assumption, there (eventually) exist points xn 2 An with
�.xn; �.an; hn;xn// > rn . The sequence of xn yields a point x 2 A such that
�1.x; �1.a; h;x//� 1. This point witnesses that A 6� Œa; h�, which is a contradiction.

Lemma 6.4 Let X be a coarse median space. There exist constants ˛; ˇ � 0 (de-
pending only on the parameters of the coarse median structure) such that the following
holds: Let a; b; h;m 2X and r � 0 satisfy m 2 Œa; h�L2.r/ and h 2 Œa; b�L1.r/ . Then
p D �.m; b; h/ satisfies �.h;p/� ˛r Cˇ .

Proof Note that the assumptions say that m�L2.r/�.a; h;m/ and h�L1.r/�.a; b; h/.
We estimate

p D �.m; b; h/�KL2.r/CH .0/ �.�.a; h;m/; b; h/

�
 �.�.b; h; h/; �.b; h; a/;m/

�KL1.r/CH .0/ �.h; h;m/D h:

Altogether, �.h;p/�K.L1.r/CL2.r//C2H.0/C
 , which is a linear function of r .

4Since �.a; b; h/D h , we have �.hn; �.an; b
0
n; hn//=rn! 0 , hence the claim.
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Theorem 6.5 Let X be a uniformly locally finite, quasigeodesic, of at most exponen-
tial growth, coarse median space of finite rank. Then X has Property A.

Proof The proof follows the idea of our proof for CAT.0/ cube complexes, which
relies on Proposition 3.1. We shall verify its assumptions. Let ˛; ˇ > 0 be the constants
from Lemma 6.4 and fix a basepoint x0 2X .

We now apply Corollary 6.3 for �D� and all t 2N to obtain a sequence rt 2N , so that
the conclusion of the corollary holds. Furthermore, we can choose the rt inductively
to arrange that the sequence t 7! lt D .t rt �H.0//=.3K/ for t 2N is increasing.

For a moment, fix x 2X , t 2N and k 2f1; : : : ; 3ltg. For every y 2B.x; k/, Corollary
6.3 applied to aD y , b D x0 and r D rt produces for us a point hy 2 Œy;x0�L1.rt / .
We collect these points into the set

S.x; k; lt /D fhy 2X j y 2 B.x; k/g:

Loosely speaking, the set S.x; k; lt / contains one point associated to each y 2B.x; k/,
which should be thought of as being “t rt –deep” inside the interval Œy;x0�� .

Defined like this, condition (ii) of Proposition 3.1 is automatic, (i) follows from the
first bullet of Corollary 6.3, and finally (iii) requires some checking:

Take y 2B.x; k/, with notation as above. Write myD�.x;y;x0/. Then my 2 Œy;x0��
and

�.y;my/�K�.x;y/CH.0/�K � 3lt CH.0/D t rt :

Thus the second bullet of Corollary 6.3 implies my 2 Œy; hy �L2.rt / . Since we also know
that hy 2 Œy;x0�L1.rt / , Lemma 6.4 implies that the point pyD�.my ;x0;hy/2 Œmy ;x0��
satisfies �.hy ;py/ � ˛rt C ˇ . As my D �.x;y;x0/ 2 Œx;x0�� , Lemma 6.1 implies
py 2 Œx;x0�L1.�/ .

To summarise, for each hy 2 S.x; k; lt / we can associate a point py 2 Œx;x0�L1.�/

satisfying �.hy ;py/� ˛rt Cˇ , and consequently also

�.x;py/� �.x;y/C �.y; hy/C �.hy ;py/� 3lt C 3dKd t rt C rt C˛rt Cˇ;

which clearly depends linearly on lt . Hence, by [6, Proposition 9.8], the number of
possible points py is bounded by P .lt / for some polynomial P (depending only on
H , K , d and uniform local finiteness of X ). Since we assume at most exponential
growth of X , it follows that the cardinality of S.x; k; lt / is at most P .lt /c

0crt for
some constants c; c0 � 1. Finally, as lt !1 means by definition also t !1, it is
easy to see that also rt= lt ! 0, thus .P .lt /c

0crt /1= lt ! 1. This finishes the proof of
condition (iii) of Proposition 3.1 and we are done.
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