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Non-L–space integral homology 3–spheres
with no nice orderings

XINGHUA GAO

We give infinitely many examples of non-L–space irreducible integer homology 3–
spheres whose fundamental groups do not have nontrivial ePSL2.R/ representations.

57M50; 57M25, 57M27

1 Introduction

Before stating the main result, I will review some definitions. A rational homology
3–sphere Y is called an L–space if rkbHF.Y / D jH1.Y IZ/j, ie its Heegaard Floer
homology is minimal. An L–space does not admit any coorientable taut foliation, by
Bowden [1], Kazez and Roberts [13] and Ozsváth and Szabó [15]. A nontrivial group
G is called left-orderable if there exists a strict total ordering of G invariant under
left multiplication. Boyer, Gordon and Watson conjectured in [2] that an irreducible
rational homology 3–sphere is a non-L–space if and only if its fundamental group
is left-orderable. A stronger conjecture states that for an irreducible Q–homology
3–sphere, being a non-L–space, having left-orderable fundamental group and admitting
a coorientable taut foliation are the same (see eg Culler and Dunfield [5]).

To show the fundamental group �1.Y / of a 3–manifold Y is orderable, it is most
common to consider ePSL2.R/ representations of �1.Y /. In fact, in many cases,
ePSL2.R/ representations are sufficient to define an order on �1.Y /; see [5]. However,

Theorem 1 in this paper shows that, even in the case of non-L–space integral homology
spheres, orders coming from ePSL2.R/ are not enough to prove the conjecture of Boyer,
Gordon and Watson.

It is conjectured that any integer homology 3–sphere different from the 3–sphere
admits an irreducible representation in SU2.C/ (see eg Kirby’s problem list [14,
Problem 3.105]). Zentner [20] showed that if one enlarges the target group to SL2.C/,
then every such integral homology 3–sphere has an irreducible representation. By
contrast, I will give examples where there are no irreducible PSL2.R/ representations.
Let M be the manifold m137— see Callahan, Hildebrand and Weeks [3] — and
M.1; n/ be the integral homology sphere obtained by .1; n/ Dehn fillings on M. The
main result of this paper states:
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Theorem 1 For all n� 0, the manifold M.1; n/ is a hyperbolic integral homology
3–sphere where

(a) �1.M.1; n// does not have a nontrivial ePSL2.R/ representation;

(b) M.1; n/ is not an L–space.

This means that we can not produce an order on �1.M.1; n// simply by pulling back
the action of ePSL2.R/ on R.

Section 2 is devoted to proving Theorem 1(a). Let X0.M/ be the component of
the SL2.C/ character variety of M containing the character of an irreducible rep-
resentation (see Culler and Shalen [7] for the definition). Here is an outline of the
approach. Let X0;R.M/ be the real points of X0.M/. Define Œ�� 2 X0;R.M/ and
denote by s the trace of �.�/, where � is the homological longitude of M. The
proof is divided into two parts. In the first part, I show that points on the jsj < 2

components of X0;R.M/ all correspond to SU2.C/ representations, while points on
the jsj> 2 components correspond to SL2.R/ representations. In the second part, I
show that SL2.R/ representations of �1.M/ give rise to no SL2.R/ representations of
�1.M.1; n// when n� 0. This part of the proof is basically analyzing real solutions
to the A–polynomial of M under the relation ��n D 1 given by .1; n/ Dehn filling,
where � is a choice of meridian of @M.

In Section 3, by applying techniques in the paper by Rasmussen and Rasmussen [17]
and Gillespie [11], I show that none of the .1; n/ Dehn fillings on m137 is an L–space,
completing the proof of Theorem 1.

Acknowledgements The author was partially supported by NSF grants DMS-1510204,
and Campus Research Board grant RB15127. I would like to pay special thanks to my
advisor, Nathan Dunfield for suggesting me this problem and offering me extraordinary
help. I would also like to thank the referee for detailed and helpful comments and
suggestions.

2 APSL2.R/ representations

I will prove Theorem 1(a) in this section.

SnapPy [6] gives us the following presentation of the fundamental group of MDm137:

�1.M/D h˛; ˇ j ˛3ˇ2˛�1ˇ�3˛�1ˇ2
i:

The peripheral system of M can be represented as

f�; �g D f˛�1ˇ2˛4ˇ2; ˛�1ˇ�1
g D fˇ2��1ˇ�3��1ˇ2; �g;
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where � is the homological longitude and � is a choice of meridian. Then we can
rewrite the fundamental group as

(2-1) �1.M/D h�; ˇ j ˇ�1��1ˇ�1��1ˇ2�D �ˇ�2��1ˇ2
i;

and the meridian becomes �D ˇ2��1ˇ�3��1ˇ2 under this presentation.

Remark The triangulation of m137 we used (included in [9]) to get these presentations
is different from SnapPy’s default triangulation. We got it by performing random
Pachner moves on the default triangulation in SnapPy. In particular, our notations for
longitude and meridian in the peripheral system are meridian and longitude, respectively,
in SnapPy’s default notations.

We will first look at irreducible SL2.C/ representations of the fundamental group of
M before we look at those of Dehn fillings of M. Denote by X.M/ the SL2.C/
character variety of M, that is, the geometric invariant theory quotient

Hom.�1.M/;SL2.C//==SL2.C/:

It is an affine variety [7]. Suppose �W �1.M/ �! SL2.C/ is a representation of the
fundamental group of M. Recall that a representation � of G in SL2.C/ is irreducible
if the only subspaces of C2 invariant under �.G/ are f0g and C2 [7]. This is equivalent
to saying that � can’t be conjugated to a representation by upper triangular matrices.
Otherwise � is called reducible. We will call a character irreducible (reducible) if the
corresponding representation is irreducible (reducible).

First, I determine which components of X.M/ contain characters of irreducible repre-
sentations. Computation with SnapPy [6] shows that the Alexander polynomial �M of
m137 is 1, which has no root. So there are no reducible nonabelian representations [4,
Section 6.1]. Therefore all the reducible representations are abelian. Since H1.M/DZ,
there is only one such component and it is parametrized by the image of ˇ and is
isomorphic to Hom.Z;SL2.C//==SL2.C/ ' C . Moreover, it is disjoint from any
component of X.M/ containing the character of an irreducible representation [4,
Section 6.2]. For more details, we refer the readers to Tillmann’s note [19], where he
studied m137 as an example.

If an abelian representation of �1.M/ induces an abelian representation of �1.M.1; n//

then it factors through the abelianization ab
�
�1.M.1; n//

�
D 1. So they correspond to

trivial SL2.C/ representations and we don’t need to worry about them.

Now we consider components of X.M/ that contain the character of an irreducible
representation. We have:

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 2 There is a single component X0.M/ of X.M/ containing an irreducible
character. The functions s D tr �.�/D tr �.˛�1ˇ�1/D tr �.˛ˇ/ and t D tr �.ˇ/ give
complete coordinates on X0.M/, which is the curve in C2 cut out by

.�2� 3sC s3/t4C .4C 4s� s2
� s3/t2� 1D 0:

Moreover, w WD tr �.�ˇ/D tr �..�ˇ/�1/D t � 1=.t.sC 1//.

Proof Let X0.M/ be X.M/� freducible charactersg. From the discussion above,
we know that all the reducible characters form a single component of X.M/ and this
component is disjoint from any other component of X.M/. So X0.M/ is Zariski
closed. We will show later that X0.M/ is actually an irreducible algebraic variety, as
claimed in the lemma.

Suppose Œ�� 2 X0.M/. So � is an irreducible representation. By conjugating � if
necessary, we can assume that � has the form

�.�/D

�
z 1

0 1=z

�
; �.ˇ/D

�
x 0

y 1=x

�
:

From the relator of �1.M/ in (2-1) we have �.ˇ/�1�.�/�1ˇ�1�.�/�1�.ˇ/2�.�/D

�.�/�.ˇ/�2�.�/�1�.ˇ/2 . Comparing the entries of the matrices on both sides, we
get four equations. These four equations together with s D z C 1=z , t D x C 1=x
and w D zxC z�1x�1C y form a system S which defines X0.M/. By computing
a Gröbner basis of this system, SageMath [18] gives the following generators of the
radical ideal I D I.X0.M//:

stw� t2�w2
� sC 2;(2-2)

t3�w3
C st � sw� 2t Cw;(2-3)

st2� tw�w2
� sC 1;(2-4)

sw3
� s2t C s2w� t2w� tw2

C st � swC t:(2-5)

Subtracting (2-4) from (2-2), we get

w D t �
1

t.sC 1/
:(2-6)

Eliminating w , we get a defining equation for X0.M/:

(2-7) 0D .�2� 3sC s3/t4C .4C 4s� s2
� s3/t2� 1

D .s� 2/.sC 1/2t4� .s� 2/.sC 2/.sC 1/t2� 1:

Thus, we can think of X0.M/ as living in C2 .
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To prove the lemma, we must show that X0.M/ is irreducible or, equivalently, the
polynomial P.s; t/ WD .s�2/.sC1/2t4� .s�2/.sC2/.sC1/t2�1 in (2-7) does not
factor in CŒs; t �. Assume P.s; t/ factors. Suppose it factors as

.at2CbtCc/
�
dt2Cet�

1

c

�
Dadt4C.aeCbd/t3C

�
cd�

a

c
Cbe

�
t2C

�
ce�

b

c

�
t�1;

where a; b; d; e 2CŒs� and c 2C�f0g. Setting the coefficients of t and t3 to be 0,
we get b D c2e and ae D �c2de . If e ¤ 0, then a D �c2d . But this is impossible
as ad D .s� 2/.sC 1/2 is a polynomial in s of odd degree. So e D 0 and it follows
that b D 0. Comparing the coefficients of t2 and t4 , we get

ad D .s� 2/.sC 1/2;(2-8)

cd �
a

c
D�.s� 2/.sC 2/.sC 1/:(2-9)

So degree.a/C degree.d/ D 3 and maxfdegree.a/; degree.d/g � 3, which implies
exactly one of a and d has degree 3 and the other has degree 0. Without loss of
generality, we can assume that degree.a/D 3 and degree.d/D 0. Multiplying both
sides of (2-9) by c , we get a D c2d C c.s � 2/.sC 2/.sC 1/. So the coefficient of
s3 in a is c . Comparing with the coefficient of s3 in (2-8), we see that d D 1=c .
Eliminating a and d gives us an equality 1C .s� 2/.sC 2/.sC 1/D .s� 2/.sC 1/2 ,
which does not hold.

Otherwise, suppose P.s; t/ factors as

.atCc/
�
bt3Cdt2Cet�

1

c

�
D abt4C.adCcb/t3C.cdCae/t2C

�
ce�

a

c

�
t�1;

where a; b; d; e 2CŒs� and c 2C�f0g. Setting the coefficients of t and t3 to be 0,
we get aD c2e and b D ced . Comparing the coefficients of t2 and t4 , we get

c3de2
D .s� 2/.sC 1/2;(2-10)

cd C c2e2
D�.s� 2/.sC 2/.sC 1/:(2-11)

So degree.d/C2 degree.e/D 3 and maxfdegree.d/; 2 degree.e/g � 3, which implies
degree.d/ D 3 and degree.e/ D 0. Comparing the coefficients of s3 in (2-10) and
(2-11), we know that c2e2 D�1. Plugging into (2-10), we get cd D .s� 2/.sC 1/2 ,
which when plugging into (2-11) implies c2e2 D�.sC 1/.s� 2/, a contradiction. So
P.s; t/ is irreducible over C . Therefore, X0.M/ has only one component.

To find irreducible SL2.R/ representations of �1.M/, we need to check all real points
on X0.M/, which correspond to real solutions of (2-7). Notice that (2-7) has no
solutions when s D�1 or 2, so (2-7) is a quadratic equation in t2 . In order for t to
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be real, t2 has to be real and nonnegative. Then first we need the discriminant to be
nonnegative. That is,

�1 D .sC 1/
2.s� 2/.s3

C 2s2
� 4s� 4/� 0:

So s 2U WD .�1; p1�[ Œp2; p3�[ .2;1/, where p1��2:9032, p2��0:8061 and
p3 � 1:7093 are the three roots of the cubic polynomial s3C 2s2� 4s� 4.

The following lemma will help us determine when a SL2.C/ representation of �1.M/

can be conjugated into SL2.R/ by simply checking where it lies on the character
variety.

Lemma 3 The set of real points X0;R.M/DX0.M/\R2 of X0.M/ has 6 connected
components:

� Points on the two components with jsj< 2 correspond to SU2.C/ representations.

� Points on the four components with jsj> 2 correspond to SL2.R/ representations.

Remark The above lemma shows that, in our case, the absolute value of one character
being smaller than 2 implies that the representation is SU2.C/. But, in general, this is
not true.

To prove this lemma, we need to determine when Œ�� 2 X0;R.M/ corresponds to
� 2 SU2.C/ and when it corresponds to � 2 SL2.R/. It can’t be in both because
otherwise it would be reducible [5, Lemma 2.10] and we know X0.M/ contains only
irreducible characters. The tool we use is a reformulation of Proposition 3.1 in [12],
which states that given three angles �i 2 Œ0; ��, i D 1; 2; 3, there exist three SU2.C/
matrices Ci satisfying C1C2C3 D I with eigenvalues exp.˙i�i /, respectively, if and
only if these angles satisfy

j�1� �2j � �3 �minf�1C �2; 2� � .�1C �2/g:(2-12)

We want to rewrite the above inequality in terms of traces of C1 , C2 and C3 . We have
the following lemma:

Lemma 4 Suppose t1; t2; t3 2 .�2; 2/ are the traces of C1; C2; C3 2 SL2.C/ which
satisfy C1C2C3 D I . Then C1 , C2 and C3 are simultaneously conjugate in SU2.C/
if and only if

.2t3� t1t2/
2
� .4� t21 /.4� t

2
2 /:

Proof Suppose t1D 2 cos �1 , t2D 2 cos �2 and t3D 2 cos �3 with �1; �2; �3 2 Œ0; ��.

If 0 � �1 C �2 � � , then the inequality (2-12) becomes j�1 � �2j � �3 � �1 C �2 .
Taking cosines, we get cos.�1C �2/� cos �3 � cos.�1� �2/.
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If � � �1C �2 � 2� , then the inequality becomes j�1 � �2j � �3 � 2� � .�1C �2/.
Taking cosines, we also get cos.�1C �2/� cos �3 � cos.�1� �2/.

Using the relations t1D 2 cos �1 , t2D 2 cos �2 and t3D 2 cos �3 , we get in both cases
that

t1t2

4
�

s�
1�

t21
4

��
1�

t22
4

�
�
t3

2
�
t1t2

4
C

s�
1�

t21
4

��
1�

t22
4

�
:

Then

�

s�
1�

t21
4

��
1�

t22
4

�
�
t3

2
�
t1t2

4
�

s�
1�

t21
4

��
1�

t22
4

�
:

So we have ˇ̌̌̌
t3

2
�
t1t2

4

ˇ̌̌̌
�

s�
1�

t21
4

��
1�

t22
4

�
:

Squaring both sides and simplifying, we get

.2t3� t1t2/
2
� .4� t21 /.4� t

2/;

as desired.

With the criterion of Lemma 4 in hand, we now can prove Lemma 3.

Proof of Lemma 3 The six components correspond to s2.�1;p1�[Œp2;p3�[.2;1/

and t 2 .�1; 0/[ .0;1/.

Set C1D �.�/, C2D �.ˇ/ and C3D �.ˇ
�1��1/D �..�ˇ/�1/. Then t1D s , t2D t

and t3 D w . Applying Lemma 4 we have

.2w� st/2 � .4� s2/.4� t2/:(2-13)

Plugging (2-6) into (2-13) and simplifying,

.s� 2/2t2C
4.s� 2/

sC 1
C

4

t2.sC 1/2
� .4� s2/.4� t2/:

Multiplying both sides by t2.sC 1/2 , we get

.sC 1/2.s� 2/2t4C 4.s� 2/.sC 1/t2C 4� .4� s2/.sC 1/2.4� t2/t2;

which simplifies to

�.sC 1/2.s� 2/t4C .s2
C 3sC 3/.s� 2/.sC 1/t2C 1� 0:

Plugging in (2-7), we get
.sC 1/3.s� 2/t2 � 0;

which always holds when s 2 .p2; p3/� .�0:8061; 1:7093/� .�2; 2/.
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So, points on X0;R.M/ correspond to SU2.C/ representations if and only if jsj< 2
and correspond to SL2.R/ representations if and only if jsj> 2.

Proof of Theorem 1(a) Lemma 3 tells us a SL2.C/ representation � of m137 is real
if and only if eigenvalues of �.�/ are real. Moreover, the condition ��n D 1 forces
the eigenvalues of �.�/ to also be real in this case. So we could restrict our attention
to jsj > 2 and look at the A–polynomial instead (see eg [4] for the definition of the
A–polynomial). Recall that z is an eigenvalue of �.�/. Denote by m the eigenvalue
of �.�/ which shares its eigenvector with z . The A–polynomial of m137 is computed
by SageMath [18] as

.z4
C 2z5

C 3z6
C z7

� z8
� 3z9

� 2z10
� z11/Cm2.�1� 3z� 2z2

� z3

C 2z4
C 4z5

C z6
C 4z7

C z8
C 4z9

C 2z10
� z11

� 2z12
� 3z13

� z14/

Cm4.�z3
� 2z4

� 3z5
� z6
C z7

C 3z8
C 2z9

C z10/:

Write A D �1� 2z � 3z2 � z3C z4C 3z5C 2z6C z7 D .z � 1/.z2C zC 1/3 and
BD1C3zC2z2Cz3�2z4�4z5�z6�4z7�z8�4z9�2z10Cz11C2z12C3z13Cz14 .
So the A–polynomial can be simplified as �z4A�Bm2C z3Am4 . We are interested
in the real solutions of

(2-14) �z4A�Bm2
C z3Am4

D 0:

Now consider the .1; n/ Dehn filling on m137. Then we are adding an extra relation
��n D 1, which is �.�/�.�/n D I under the representation � , ie

�.�/D �.�/�n
D

�
z�n �

0 zn

�
:

Restricting to @M gives us the relation mD z�n .

When n is negative, we shall write n0D�n. So we have mD zn0

. Plugging into (2-14)
and dividing both sides by z4 , we get

(2-15) �A�Bz2n0�4
CAz4n0�1

D 0:

We will show the following lemma is true, completing the proof of Theorem 1(a).

Lemma 5 Equation (2-15) has no real solutions when n0 is large enough.

Proof Define F.z/D A.z4n0�1� 1/�Bz2n0�4 . We’ll show F.z/ > 0.

First notice that AD 0 only when z D 1. And A > 0 when z > 1 while A < 0 when
z < 1. The polynomial B has 6 real roots, which are all simple: �2:3396, �1:4121,
�0:7082, �0:4274, 0:8684, 1:1516 (rounded to the fourth digit).
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As we saw earlier, the domain for s is

U WD .�1; p1/[ Œp2; p3�[ .2;1/� .�1;�2:9032�[ Œ�0:8061; 1:7093�[ .2;1/:

So the jsj> 2 condition restricts s to .�1; p1�[ .2;1/. Then

z 2 V WD .�1;�2:5038�[ Œ�0:3994; 0/[ .0; 1/[ .1;1/:

Notice that z7A.1=z/D�A.z/ and z14B.1=z/DB.z/. Interchanging z with 1=z in
F.z/ gives us F.1=z/D A.1=z/.z�.4n0�1/� 1/�B.1=z/z�.2n0�4/ D F.z/=z4n0C6 .
So we can assume jzj< 1.

Case 1 (0:8684�z<1) In this case, we have A.z/<0, B.z/�0 and z4n0�1�1<0.
So F.z/ > 0.

Case 2 (�0:3994 � z < 0:8684 and z ¤ 0) In this case, we have A.z/ < C5 < 0

and C6 >B.z/ > 0 for some constants C5 and C6 . When n0 is large enough, we have
jC5j�j.z

4n0�1�1/j>C6z
2n0�4 . So A.z4n0�1�1/D jAj�j.z4n0�1�1/j>Bz2n0�4

and it follows that F.z/ > 0.

Therefore, when n0D�n is large enough, we always have F.z/ > 0 on the domain V .
So (2-15) has no real solution when n0� 0.

It follows from the above lemma that (2-14) has no real solution when n� 0 and thus
the equality �.�/�.�/n D I does not hold for n� 0.

From all the discussion above, we can now conclude that M.1; n/ has no nontrivial
SL2.R/ representation and thus no nontrivial PSL2.R/ representation for n�0. Since
the first Betti number of M.1; n/ is 0, the lift of a trivial PSL2.R/ representation of
�1.M.1; n// into ePSL2.R/ will be trivial. So all representations of �1.M.1; n// into
ePSL2.R/ are trivial for n� 0, proving Theorem 1(a).

In contrast, when n is positive there are examples of nontrivial SL2.R/ representations.

Plugging mD z�n into (2-14) and multiplying both sides by z4n�3 , we get

�ACBz2n�3
CAz4nC1

D 0:

Similarly define G.z/DA.z4nC1�1/CBz2n�3. Since G.1/D�4 and G.0:8684/>0,
G.z/ must have at least one root in Œ0:8684; 1/. So �1.M.1; n// has at least one
nontrivial SL2.R/ representation for any n> 0. They lift to ePSL2.R/ representations,
since the Euler number of any representation of an integral homology sphere vanishes
[10, Section 6].
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3 No L–space fillings

In this section, I will prove Theorem 1(b) using results from Gillespie [11], which
are based on Rasmussen and Rasmussen [17]. In fact, I will show that none of the
nonlongitudinal fillings of m137 is an L–space. The homology groups in this section
are all homology with integral coefficients.

Suppose Y is a compact connected 3–manifold with a single torus as boundary. I will
follow Gillespie’s notation [17]. Define the set of slopes on @Y as

Sl.Y /D fa 2H1.@Y / j a is primitiveg=˙1:

Define the set of L–space filling slopes of Y

L.Y /D fa 2 Sl.Y / j Y.a/ is an L–spaceg:

Moreover, Y is said to have genus 0 if H2.Y; @Y / is generated by a surface of genus 0.

We will use [11, Theorem 1.2], which is stated as:

Theorem 6 The following are equivalent:

(1) L.Y /D Sl.Y /�flg.
(2) Y has genus 0 and has an L–space filling.

Proof of Theorem 1(b) Let l 2 Sl.M/ be the homological longitude. In our case l
can be taken to be Œ��. I will show that none of the .1; n/ fillings to M is an L–space.

I will find one non-L–space filling first. SnapPy [6] shows that .1;�1/ filling on the knot
820 complement with homological framing is homeomorphic to m011.2; 3/, which is
also homeomorphic to M.1;�3/. Ozsváth and Szabó showed that if some .1; p/ Dehn
filling of a knot complement in S3 with homological framing is an L–space, then the
Alexander polynomial of the knot has coefficients ˙1 [16, Corollary 1.3]. We can com-
pute with SnapPy [6] that the Alexander polynomial of 820 is x4�2x3C3x2�2xC1.
So M.1;�3/ is not an L–space. Therefore,

�3l C Œ�� … L.M/¤ Sl.M/�flg 3 �3l C Œ��;

By Theorem 6, either M has no L–space fillings or M has positive genus.

The manifold M can be viewed as the complement of a knot K in S2 �S1 [8]. This
knot K intersects each S2 three times. So ŒK� ¤ 0 in H1.S

2 � S1IZ/. It follows
that H2.M; @M/ is generated by genus 0 surface .S2 � fP g/\M for generic point
P on K . So M has genus 0, which forces M to have no L–space filling. Therefore,
none of the integral homology spheres M.1; n/ is an L–space.
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