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A note on cobordisms of algebraic knots

JÓZSEF BODNÁR

DANIELE CELORIA

MARCO GOLLA

We use Heegaard Floer homology to study smooth cobordisms of algebraic knots
and complex deformations of cusp singularities of curves. The main tool will be the
concordance invariant �C : we study its behaviour with respect to connected sums,
providing an explicit formula in the case of L–space knots and proving subadditivity
in general.

14B05, 14B07, 57M25; 57M27, 57R58

1 Introduction

A cobordism between two knots K and K0 in S3 is a smoothly and properly embedded
surface F �S3�Œ0; 1�, with @F DK�f0g[K0�f1g. Carving along an arc connecting
the two boundary components of F , one produces a slice surface for the connected
sum K # K0 , where K is the mirror of K . Two knots are concordant if there is a
genus-0 cobordism between them; this is an equivalence relation, and the connected
sum endows the quotient C of the set of knots with a group operation; C is therefore
called the (smooth) concordance group. A knot is smoothly slice if it is concordant to
the unknot.

Litherland [14] used Tristram–Levine signatures to show that torus knots are linearly
independent in C . In fact, Tristram–Levine signatures provide a lower bound for the
slice genus of knots. Sharp lower bounds for the slice genus of torus knots are provided
by the invariants � in Heegaard Floer homology — see Ozsváth and Szabó [21] — and
s in Khovanov homology; see Rasmussen [25].

More recently, Ozsváth, Stipsicz and Szabó [19] defined the concordance invariant ‡ ;
Livingston and Van Cott [15] used ‡ to improve on the bounds given by signatures
along some families of connected sums of torus knots.

In this note we consider algebraic knots, ie links of irreducible curve singularities
(cusps), and more generally L–space knots. Given two algebraic knots K and L, we
give lower bounds on the genus of a cobordism between them by using the concordance
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invariant �C defined by Hom and Wu [12]. This is computed in terms of the semigroups
of the two corresponding singularities, �K and �L , and the corresponding enumerating
functions �K . � / and �L. � /.

Theorem 1.1 If K and L are algebraic knots with enumerating functions �K . � / and
�L. � /, respectively, then

�C.K # L/Dmax
˚
g.K/�g.L/Cmax

n�0
f�L.n/��K .n/g; 0

	
:

In Section 2.3 we define an appropriate enumerating function for L–space knots;
Theorem 3.1 below mimics the statement above in this more general setting, and
directly implies Theorem 1.1; the key of the definition and of the proofs is the reduced
Floer complex defined by Krcatovich [13].

As an application of Theorem 1.1, we give a different proof of a result of Gorsky
and Némethi [10] on the semicontinuity of the semigroup of an algebraic knot under
deformations of singularities in the cuspidal case. A similar result was obtained by
Borodzik and Livingston [7] under stronger assumptions (see Section 4 for details).

Theorem 1.2 Assume there exists a deformation of an irreducible plane curve singu-
larity with semigroup �K to an irreducible plane curve singularity with semigroup �L .
Then for each nonnegative integer n

#.�K \ Œ0; n//� #.�L\ Œ0; n//:

In fact, there is an analogue of Theorem 1.2 when the deformation has multiple (not
necessarily irreducible) singularities; see Theorem 5.2 below for a precise statement.
As an immediate corollary, we obtain that the multiplicity decreases under deformations.
More precisely, we have the following:

Corollary 1.3 Let K and L be two links of irreducible singularities as above, and
m.K/ and m.L/ denote their multiplicities. Then m.L/�m.K/.

It is worth noting that the multiplicity of an irreducible singularity can be interpreted
topologically as the braid index of the knot, ie the minimal number of strands among
all braids whose closure is the given knot.

Finally, we turn to proving some properties of the function �C . The first one reflects
analogous properties for other invariants (signatures, � , s , etc.) and gives lower bounds
for the unknotting number and related concordance invariants (see Section 5 below).

Theorem 1.4 If KC is obtained from K� by changing a negative crossing into a
positive one, then

�C.K�/� �
C.KC/� �

C.K�/C 1:
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Theorem 1.5 The function �C is subadditive. Namely, for any two knots K;L� S3,

�C.K # L/� �C.K/C �C.L/:

As an application, we consider some concordance invariants, also studied by Owens
and Strle [18]. Recall that the concordance unknotting number uc.K/ of a knot K is
the minimum of unknotting numbers among all knots that are concordant to K ; the
slicing number us.K/ of K is the minimal number of crossing changes needed to turn
K into a slice knot; finally, the 4–ball crossing number c�.K/ is the minimal number
of double points of an immersed disc in the 4–ball whose boundary is K . It is quite
remarkable that there are knots for which these quantities disagree [18].

Proposition 1.6 The unknotting number, concordance unknotting number, slicing
number and 4–ball crossing number of K are all bounded below by �C.K/C �C.K/.

1.1 Organisation of the paper

In Section 2 we recall some facts about Heegaard Floer correction terms and reduced
knot Floer complex. In Section 3 we prove Theorem 1.1 as a corollary of Theorem 3.1,
and in Section 4 we prove Theorem 1.2. In Section 5 we study cobordisms between
arbitrary knots and prove Theorem 1.4 and Proposition 1.6; in Section 6 we prove
Theorem 1.5. Finally, in Section 7 we study some concrete examples.

Acknowledgements We would like to thank Paolo Aceto, Maciej Borodzik, Matt
Hedden, and Kouki Sato for interesting conversations, Maciej Borodzik for providing
us with some computational tools, Peter Feller for pointing out Corollary 1.3 and the
anonymous referee for useful comments. Bodnár has been supported by the ERC grant
LDTBud at MTA Alfréd Rényi Institute of Mathematics. Celoria has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 674978). Golla was partially
supported by the PRIN–MIUR research project 2010–11 Varietà reali e complesse:
geometria, topologia e analisi armonica and by the FIRB research project Topologia e
geometria di varietà in bassa dimensione.

2 Singularities and Heegaard Floer homology

2.1 Links of curve singularities

In what follows, K and L will be two algebraic knots. We will recall briefly what this
means and also what invariants can be associated with such knots. For further details,
we refer to [8; 9; 26].
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Assume F 2CŒx;y� is an irreducible polynomial which defines an isolated irreducible
plane curve singularity. This means that F.0; 0/ D 0 and, in a sufficiently small
neighbourhood B" D fjxj

2C jyj2 � "2g for some " > 0 of the origin, @1F.x;y/D

@2F.x;y/D0 holds if and only if .x;y/D .0; 0/. The link of the singularity is the zero
set of F intersected with a sphere of sufficiently small radius: KDfF.x;y/D0g\@B" .
Since F is irreducible, K is a knot, rather than a link, in the 3–sphere @B" . A knot
is called algebraic if its isotopy type arises in the above described way. All algebraic
knots are iterated torus knots, ie they arise by iteratively cabling a torus knot.

The zero set of every isolated irreducible plane curve singularity admits a local parametri-
sation, ie there exist x.t/;y.t/2CŒŒt �� such that F.x.t/;y.t//�0 and t 7! .x.t/;y.t//

is a bijection for jt j < �� 1 to a neighbourhood of the origin in the zero set of F .
Consider the set of integers

�K D
˚

ordt G.x.t/;y.t// jG 2CŒŒx;y��; F does not divide G
	
:

It can be seen easily that �K is an additive semigroup. It depends only on the local
topological type of the singularity; therefore, it can be seen as an invariant of the isotopy
type of the knot K . We will say that �K is the semigroup of the algebraic knot K .

We denote by N D f0; 1; : : : g the set of nonnegative integers. The semigroup �K

is a cofinite set in N ; in fact, jN n �K j D ıK <1 and the greatest element not in
�K is 2ıK � 1. The number ıK is called the ı–invariant of the singularity. It is
well-known that ıK is the Seifert genus of K : ıK D g.K/.

We also write �K .n/ for the nth element of �K with respect to the standard ordering
of N , with the convention that �K .0/ D 0. The function �K . � / will be called the
enumerating function of �K .

2.2 Heegaard Floer and concordance invariants

Heegaard Floer homology is a family of invariants of 3–manifolds introduced by
Ozsváth and Szabó [22]; in this paper we are concerned with the “minus” version over
the field F D Z=2Z with two elements. It associates to a rational homology sphere Y

equipped with a spinc structure t a Q–graded F ŒU �–module HF�.Y; t/; the action of
U decreases the degree by 2.

The group HF�.Y; t/ further splits as a direct sum of F ŒU �–modules F ŒU �˚HF�red.Y; t/.
We call F ŒU � the tower of HF�.Y; t/. The degree of the element 1 2 F ŒU � is called
the correction term of .Y; t/, and it is denoted by1 d.Y; t/.

1Note that our definition of d.Y; t/ would differ by 2 from the original definition of [20]; however, it
is more convenient for our purposes to use a shifted grading in HF� .
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When Y is obtained as an integral surgery along a knot K in S3, one can recover the
correction terms of Y in terms of a family of invariants introduced by Rasmussen [24]
and then further studied by Ni and Wu [16] and Hom and Wu [12]. We call these
invariants fVi.K/gi�0 , adopting Ni and Wu’s notation instead of Rasmussen’s — who
used hi.K/ — as this seems to have become more standard.

Recall that there is an indexing of spinc structures on S3
n .K/, as defined in [23,

Section 2.4]: S3
n .K/ is the boundary of the surgery handlebody Wn.K/ obtained

by attaching a single 2–handle with framing n along K � @B4. Notice that, if we
orient K , there is a well-defined generator ŒF � of H2.Wn.K/IZ/ obtained by capping
off a Seifert surface of K with the core of the 2–handle. The spinc structure tk on
S3

n .K/ is defined as the restriction of a spinc structure s on Wn.K/ such that

(1) hc1.s/; ŒF �i � nC 2k .mod 2n/:

Theorem 2.1 [24; 16] The sequence fVi.K/gi�0 takes values in N and is eventu-
ally 0. Moreover, Vi.K/� 1� ViC1.K/� Vi.K/ for every i .

With the spinc labelling defined in (1) above, for every integer n we have

(2) d.S3
n .K/; ti/D�2 maxfVi.K/;Vn�i.K/gC

.n� 2i/2� n

4n
:

Definition 2.2 [12] The minimal index i such that Vi.K/D 0 is called �C.K/.

2.3 Reduced knot Floer homology

Krcatovich [13] introduced the reduced knot Floer complex CFK�.K/ associated to
a knot K in S3. This complex is graded by the Maslov grading and filtered by the
Alexander grading; the differential decreases the Maslov grading by 1 and respects the
Alexander filtration.

Without going into technical details, for which we refer to [13], any knot Floer complex
CFK�.K/ can be recursively simplified until the differential on the graded object
associated to the Alexander filtration becomes trivial (while the differential on the
filtered complex is, in general, nontrivial). Moreover, CFK�.K/ still retains an F ŒU �–
module structure.

The power of Krcatovich’s approach relies in the application to connected sums; if
we need to compute CFK�.K1 # K2/ Š CFK�.K1/˝F ŒU � CFK�.K2/ we can first
reduce CFK�.K1/, and then take the tensor product CFK�.K1/˝F ŒU � CFK�.K2/.
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This is particularly effective when dealing with L–space knots, ie knots that have a
positive integral surgery Y such that HF�.Y; t/ D F ŒU � for every spinc structure t

on Y . Notice that all algebraic knots are L–space knots [11, Theorem 1.8].

In this case, CFK�.K/ is isomorphic to F ŒU � as an F ŒU �–module, and it has at most
one generator in each Alexander degree. If we call x the homogeneous generator
of CFK�.K/ as an F ŒU �–module, then CFK�.K/ D F ŒU �x , and fU nxgn�0 is a
homogeneous basis of CFK�.K/.

We denote by �K .n/ the quantity g.K/�A.U n �x/, where A is the Alexander degree,
and we call �K . � / the enumerating function of K . As observed by Borodzik and
Livingston [6, Section 4], when K is an algebraic knot, the function �K . � / coincides
with the enumerating function of the semigroup associated to K as defined above.
Accordingly, for an arbitrary L–space knot K , we define the semigroup of K as the
image of �K .

Example 2.3 In general, �K . � / is not the enumerating function of a semigroup; to
this end, consider the pretzel knot K D P .�2; 3; 7/D 12n242 . K is an L–space knot
with Alexander polynomial t�5 � t�4C t�2 � t�1C 1� t C t2 � t4C t5, hence the
function �K . � / takes values 0, 3, 5, 7, 8, 10, 11, 12; : : : . Since 3 is in the image
of �K . � / but 6 is not, �K . � / is not the enumerating function of a semigroup.

2.4 An example

We are going to show an application of the reduced knot Floer complex in a concrete
case. Consider the knot K D T3;7 # T4;5 . The genera, signatures and � –function [19]
of T3;7 and T4;5 all agree: g.T3;7/ D g.T4;5/ D 6, �.T3;7/ D �.T4;5/ D 8, and
�.T3;7/D�.T4;5/D�4. It follows that �.K/D s.K/D�.K/D�.K/D 0. However,
we can show the following:

Proposition 2.4 The knot K satisfies �C.K/D �C.K/D 1.

Proof We need to compute a Floer complex of T3;7 , T4;5 and their mirrors, as well
as the reduced Floer complex of T3;7 and T4;5 . Let K1 D T3;7 and K2 D T4;5 .

For an L–space knot L, and in particular for every positive torus knot, each of the
knot Floer complexes CFK�.L/ and CFK�.L/ is determined by a staircase complex;
the staircase for L is obtained by reflecting the one for L across the diagonal of the
second and fourth quarters, and switching the direction of all arrows. For example,
when LD T2;3 the two staircases are:

CFK�.L/ CFK�.L/
� �oo

��
�

�
��
� �oo
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In the case of K1 and K2 , we have:

CFK�.K1/ CFK�.K2/

� �oo

��
� �oo

��
� �oo

��
� �oo

��
�

� �oo

��
� �oo

��
� �oo

��
�

The reduced complex CFK�.K1/, on the other hand, has a single generator in each of
the following bidegrees .�i; j / (where �i records the U –power and j records the
Alexander grading):

.0; 6/; .�1; 3/; .�2; 0/; .�3;�1/; .�4;�3/; .�5;�4/; .�6�n;�6�n/; n�0:

The reduced complex CFK�.K2/ has a generator in each of the bidegrees

.0; 6/; .�1; 2/; .�2; 1/; .�3;�2/; .�4;�3/; .�5;�4/; .�6�n;�6�n/; n�0:

In both cases, the U –action carries a generator with i –coordinate k to one with i –
coordinate k � 1. Taking the tensor product over F ŒU �, one gets twisted staircases as
follows, with a generator in bidegree .0; 0/ (marked with a ?):

CFK�.K1/˝CFK�.K2/ CFK�.K2/˝CFK�.K1/

ı

|| ��

ı

��

��

�
��

?

��

� �

�

ı

����

�
��

�

xx ��

?

		

� � � �oo

��
�

The generators marked with a ı exhibit the fact that V0.K1 # K2/ and V0.K2 # K1/

are both strictly positive (see [13, Section 4] for details).

3 Computing the invariant

In this section we are going to prove a version of Theorem 1.1 for L–space knots.
Given an integer x we denote by .x/C the quantity .x/C Dmaxf0;xg.
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Theorem 3.1 Let K and L be two L–space knots with enumerating functions
�K . � /; �L. � /W N!N . Then

�C.K # L/D
�
g.K/�g.L/Cmax

n�0
f�L.n/��K .n/g

�
C
:

Notice that, since algebraic knots are L–space knots, Theorem 1.1 is an immediate
corollary. Theorem 3.1 will in turn be a consequence of the following proposition:

Proposition 3.2 In the notation of Theorem 3.1, let f0 D a1 < � � � < ad D g.L/g

be the image of the function n 7! �L.n/� n, and define a0
k
D g.L/� adC1�k for

k D 1; : : : ; d . Then

�C.K # L/D
�
g.K/�g.L/C max

1�k�d
fak C a0k ��K .a

0
k/g
�
C
:

Proof Let ıK Dg.K/, ıLDg.L/. Consider the complex CFK�.K/˝F ŒU �CFK�.L/
that computes the knot Floer homology of K # L. Recall that the function �K . � /

describes the reduced Floer complex: CFK�.K/ has a generator xk in each bidegree
.�k; ıK ��K .k//. Moreover, U �xk D xkC1 .

As observed by Krcatovich [13, Section 4], the sequences fakg and fa0
k
g determine

a “twisted staircase” knot Floer complex CFK�.L/ for L: the generator of the tower
F ŒU � in HFK�.L/ is represented by the sum of d generators U a0

1y1; : : : ;U
a0

d yd ,
where yk sits in bidegree .0; a0

k
C ak � ıL/. In more graphical terms, ak will be the

Alexander grading of U a0
k yk , ie its j –coordinate, and �a0

k
will be its i –coordinate.

The tensor product CFK�.K/˝CFK�.L/ has a staircase in Maslov grading 0 gener-
ated by the chain zD

Pd
kD1 x0˝U a0

k yk . Notice that x0˝U a0
k yk D xa0

k
˝yk sits in

Alexander degree A.xa0
k
/CA.yk/DıK��.a

0
k
/CakCa0

k
�ıL . Therefore, the maximal

Alexander degree in the chain z is precisely M D ıK �ıLCmaxfakCa0
k
��K .ak/g,

and we claim that if M � 0, then �C.K # L/DM .

We let A�
k

be the filtration sublevel of C#DCFK�.K/˝CFK�.L/ defined by j � k ,
ie generated by all elements with Alexander filtration level at most k .

If M �k , the entire staircase is contained in the subcomplex A�k . That is, the inclusion
A�

k
! C# induces a surjection onto the tower, hence �C.K # L/� k . In particular, if

M � 0, then �C.K # L/D 0D .M /C .

If M > 0, for each k <M the complex A�
k

misses at least one of the generators of
the chain; this implies that the inclusion A�

k
!CFK�.K/ does not induce a surjection

onto the tower. It follows that Vk.K # L/ > 0. Hence, by definition of �C , we have
�C.K # L/DM D .M /C , as desired.
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Proof of Theorem 3.1 As remarked above, the values of ak and a0
k

determine
the positions of the generators in the staircase. By the symmetry of the Alexander
polynomial (and hence of the staircases), �L.a

0
k
/�a0

k
D ak for each k (compare with

[13, Section 4]).

Moreover, for any a0
k
� n< a0

kC1
, we have �L.n/�nD ak , and for every a0

d
� n we

have �L.n/�nD ad . Furthermore, as �K . � / is strictly increasing, n 7! �K .n/�n is
nondecreasing; therefore, for any a0

k
� n< a0

kC1
we have �K .a

0
j /� a0j � �K .n/� n,

so
ak C a0k ��K .a

0
k/D .�L.a

0
k/� a0k/� .�K .a

0
k/� a0k/

D max
a0

k
�n<a0

kC1

f.�L.n/� n/� .�K .n/� n/g

D max
a0

k
�n<a0

kC1

f�L.n/��K .n/g:

Remark The same argument shows that, for every m� V0.K # L/,

minf i j Vi.K # L/Dm g D
�
g.K/�g.L/Cmax

n�0
f�L.n/��K .nCm/g

�
C
;

thus allowing one to compute all correction terms of K # L from the enumerating
functions of K and L.

4 Semicontinuity of the semigroups

In this section we prove Theorem 1.2 about the deformations of plane curve singularities.
We note here that our Theorem 1.2 differs slightly from both of the results mentioned
in the introduction: it reproves [10, Proposition 4.5.1] in the special case when both
the central and the perturbed singularity are irreducible, but (in the spirit of [7]) using
only smooth topological (not analytic) methods; however, we do not restrict ourselves
to ı–constant deformations, as opposed to [7, Theorem 2.16].

In the context of deformations, inequalities which hold for certain invariants are usually
referred to as semicontinuity of that particular invariant. Our result can be viewed as
the semicontinuity of the semigroups (resembling the spectrum semicontinuity; see
also [7, Section 3.1.B]).

For a brief introduction to the topic of deformations, we follow mainly [7, Section 1.5]
and adapt the notions and definitions from there. By a deformation of a singularity
with link K we mean an analytic family fFsg of polynomials parametrised by jsj< 1

such that there exists a ball B �C2 with the following properties:

� the only singular point of F0 inside B is at the origin;

Algebraic & Geometric Topology, Volume 17 (2017)
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� fFs D 0g intersects @B transversely and fFs D 0g \ @B is isotopic to K for
every jsj< 1;

� the zero set of Fs has only isolated singular points in B for every jsj< 1;
� all the singular points of Fs inside B are irreducible for every jsj< 1;
� all fibres Fs with s ¤ 0 have the same collection of local topological type of

singularities.

For simplicity, we also assume that there is only one singular point of Fs inside B

for each s . If such an analytic family of polynomials fFsg exists, we say that the
singularity of F0 at the origin has a deformation to the singularity of F1=2 .

Consider now a sufficiently small ball B2 around the singular point of F1=2 such
that fF1=2 D 0g \ @B2 is isotopic to L, the link of the perturbed singular point.
Then V D fF1=2 D 0g \B nB2 is a genus-g cobordism between K and L, where
g D g.K/�g.L/. By a slight abuse of notation, we also say that L is a deformation
of K .

Let K and L be two L–space knots, with corresponding semigroups �K and �L ,
respectively. We define the semigroup counting functions RK ;RLW N ! N as
RK .n/ D #Œ0; n/ \ �K and RL.n/ D #Œ0; n/ \ �L . For simplicity, we allow n to
run on negative numbers as well: if n < 0, then we define RK .n/DRL.n/D 0. In
this section, we will assume that g.K/D ıK � ıL D g.L/.

Proposition 4.1 Assume there is a genus-g cobordism between two L–space knots
K and L. Then for any a 2 Z we have

RK .aC ıK /�RL.aC ıLCg/:

Proof Since �C is a lower bound for the cobordism genus, by Theorem 1.1 for any
m 2N we have

ıK � ıLC�L.m/��K .m/� g;

equivalently,
�L.m/� ıL�g � �K .m/� ıK :

Notice that since �K .m/ D a implies RK .a/ D m, and the largest a for which
RK .a/ D m is a D �K .m/ (and analogously for �L ), the above inequality can be
interpreted as

RK .aC ıK /�RL.aC ıLCg/:

The proposition above should be compared with [7, Theorem 2.14]. There, Borodzik
and Livingston introduced the concept of positively self-intersecting concordance, and
their result is the counterpart of Proposition 4.1 above: their assumption is on the
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double point count of the positively self-intersecting concordance, while ours is on the
cobordism genus. The former is related to the 4–ball crossing number considered in
Proposition 1.6.

The assumption in [7] allowed Borodzik and Livingston to treat ı–constant deformations
(because irreducible singularities can be perturbed to transverse intersections). However,
equipped with Proposition 4.1, we can prove the semigroup semicontinuity even if the
deformation is not ı–constant (but assuming that there is only one singularity in the
perturbed curve fF1=2 D 0g).

Recall that, with the definition of the function R in place, Theorem 1.2 asserts that if
L is a deformation of K then RK .n/�RL.n/ for each nonnegative integer n.

Proof of Theorem 1.2 Apply Proposition 4.1 with aD n� ıK and recall that g D

ıK � ıL in this case.

Remark In [7, Section 3], the example of torus knots T6;7 and T4;9 was extensively
studied. The semigroup semicontinuity proved in Theorem 1.2 obstructs the existence
of a deformation between the corresponding singularities. Since the difference of the
ı–invariants is 3, a deformation from T6;7 to T4;9 would produce a genus-3 cobordism
between the two knots. However, the bound coming from �C is 4 (compare with [7,
Remark 3.1]).

We now turn to proving Corollary 1.3, ie that the braid index/multiplicity is nonincreas-
ing under deformations.

Proof of Corollary 1.3 The multiplicity m.L/ of the singularity whose link is L is
the minimal positive element in �L . In particular, RL.m.L//D 2, and RL.m/D 1

for 0 � m < m.L/; symmetrically, RK .m/ � 2 for every m � m.K/. Let us ap-
ply Theorem 1.2 with n D m.L/; we obtain RK .m.L// � RL.m.L// D 2, hence
m.L/�m.K/, as desired.

5 Bounds on the slice genus and concordance
unknotting number

Recall that �C.K/ � g�.K/ for every knot K ; as outlined in the introduction, this
shows that �C.K # L/ gives a lower bound on the genus of cobordisms between K

and L. Notice that �C.L # K/ gives a bound, too, and the two bounds are often
different.

We now state a preliminary lemma that we will use to prove Theorem 1.4, ie that
trading a negative crossing for a positive one does not decrease �C , nor does it increase
it by more than 1.
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Lemma 5.1 If there is a genus-g cobordism between two knots K and L then, for
each m� 0,

VmCg.K/� Vm.L/:

As a consequence, �C.K/� �C.L/Cg .

Before proving the lemma, we observe some of its consequences. Most notably, it
allows us to generalise Theorem 1.2 to the case of more than one irreducible singularity
(both in the central and deformed fibre).

Remark In the case of algebraic knots, the lemma is equivalent to Proposition 4.1.
Indeed, using the symmetry property of the semigroup, one has that RK .aC ıK /D

RK .ıK �a/Ca and RL.aC ıLCg/DRL.ıL�a�g/CaCg for every integer a.
Using these substitutions in both sides of the statement of Proposition 4.1, we obtain

RK .ıK � a/�RL.ıL� a�g/Cg:

If we now set aD�g�m, we get

RK .ıK CmCg/�RL.ıLCm/Cg;

and by [3, Equation (5.1)] we have RK .ıK CmC g/ D VmCg.K/CmC g and
RL.ıLCm/D Vm.L/Cm, thus proving the equivalence of the two statements.

Since the proof of Theorem 1.2 relies on Proposition 4.1, which is in turn equivalent
to Lemma 5.1, we can use the latter to generalise its statement. In order to do so,
we introduce the concept of the infimum convolution of two functions [6; 4]: given
R1;R2W N!N bounded below, we define the infimum convolution of R1 and R2 as

.R1 ˘R2/.n/ WD min
iCjDn

R1.i/CR2.j /:

Theorem 5.2 Let fFsgjsj<1 be a deformation of F0 , and suppose that F0 has only irre-
ducible singularities K1; : : : ;Ka , while F1=2 has irreducible singularities L1; : : : ;Lb

(and possibly other reducible singularities). Then, for each nonnegative integer n,

.RK1
˘ � � � ˘RKa

/.n/� .RL1
˘ � � � ˘RLb

/.n/:

Proof (sketch) Similarly as how we argued in Section 4, it is easy to show that a
deformation gives rise to a cobordism †0 from the link K1[ � � � [Ka in the disjoint
union of a copies of S3 to the link L1 [ � � � [Lb in the disjoint union of b copies
of S3, living in S4 with aC b open balls removed. This cobordism will be singular if
there are reducible singularities in F1=2 .
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Figure 1: The Borromean knot KB;1 . The Borromean knot KB;g is the
connected sum of g copies of KB;1 .

We resolve all singularities of †0 , replacing each of them with the Milnor fibre of the
corresponding reducible singularity and obtain a smooth cobordism, †1 ; note that the
difference g.†1/�g.†0/ is the sum of all ı–invariants of the reducible singularities
of F1=2 .

We can now carve paths along the cobordism †1 connecting all the boundary compo-
nents containing a Ki and all boundary components containing an Lj , thus obtaining
a smooth cobordism † from K DK1 # � � � # Ka to LDL1 # � � � # Lb . Note that this
does not change the genus, ie g.†/D g.†1/.

Similarly as in the irreducible case, we have g.†/D g.K/�g.L/; using [6, Theorems
5.4 and 5.6] we know that Vi.K/C i D .RK1

˘� � �˘RKa
/.g.K/C i/ and Vi.L/C i D

.RL1
˘ � � � ˘RLb

/.g.L/C i/.

The statement now follows from Lemma 5.1 and the remark following the lemma, as
in the proof of Theorem 1.2.

Proof of Lemma 5.1 Consider the 4–manifold W obtained by attaching a 4–dimen-
sional 2–handle to S3 � Œ0; 1� along L� f1g � S3 � f1g, with framing n� 2�C.L/.

The cobordism is a genus-g embedded surface F in S3 � Œ0; 1�, whose boundary
components are K � f0g and L� f1g. Capping off the latter boundary component
in W , and taking the cone over .S3 � f0g;K/, we obtain a singular genus-g surface
yF �W 0 DW [B4, whose only singularity is a cone over K .

As argued in [3, Section 4; 5, Theorem 3.1], the boundary @N of a regular neighbour-
hood N of yF in W 0 is diffeomorphic to the 3–manifold Yn obtained as n–surgery
along the connected sum of K and the Borromean knot KB;g in #2g.S2 � S1/. It
follows that Z D�.W 0 nN / can be viewed as a cobordism from S3

n .L/ to Yn .

We can view N as the surgery cobordism from #2g.S2 � S1/ to Yn , filled with a
1–handlebody; since the class of Œ yF � generates both H2.N / and H2.�W 0/, we obtain
that the restriction of any spinc structure on �W 0 to Z induces an isomorphism
between (torsion) spinc structure on its two boundary components that respects the
surgery-induced labelling. Moreover, we also obtain that bC

2
.Z/D 0.
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The 3–manifold Yn has standard HF1 [3; 5], and its bottom-most correction terms
have been computed in [3, Proposition 4.4; 5, Theorem 6.10]:

db.Yn; tm/D min
0�k�g

f2k �g� 2VmCg�2k.K/g�
n� .2m� n/2

4n
:

We observe that, choosing k D 0 in the minimum, we obtain the inequality

db.Yn; tm/� �g� 2VmCg.K/�
n� .2m� n/2

4n
:

Applying the last inequality and [2, Theorem 4.1] to Z , seen as a negative semidefinite
cobordism from S3

n .L/ to Yn , we get

d.S3
n .L/; tm/� db.Yn; tm/Cg;

from which we get

�2Vm.L/� �g� 2VmCg.K/Cg () VmCg.K/� Vm.L/:

The last part of the statement now follows from the observation that V�C.L/Cg.K/�

V�C.L/.L/D 0, hence �C.K/� �C.L/Cg , as desired.

We are now in position to prove Theorem 1.4, which asserts that, if KC and K�
differ at a single crossing (which is positive for KC and negative for K� ), then
�C.K�/� �

C.KC/� �
C.K�/C 1.

Proof of Theorem 1.4 The inequality �C.K�/� �C.KC/ readily follows from [4,
Theorem 6.1]: the latter states that for each nonnegative integer n we have Vn.K�/�

Vn.KC/. Applying the inequality with nD �C.KC/, we obtain V�C.KC/
.K�/� 0,

hence �C.K�/� �C.KC/, as desired.

The inequality �C.KC/� �C.K�/C 1 follows from Lemma 5.1 above; in fact, there
is a genus-1 cobordism from K� to KC obtained by smoothing the double point of
the regular homotopy associated with the crossing change, and the previous lemma
concludes the proof.

Remark In fact, the second inequality follows from [4, Theorem 6.1] as well: Borodzik
and Hedden prove that, in the notation of the proposition, VmC1.KC/� Vm.K�/, and
the claim about �C follows as in the proof of Lemma 5.1. However, Lemma 5.1 is
stronger than [4, Theorem 6.1], and we think it might be of independent interest.

We now turn to applications to other, more geometrically defined, concordance invari-
ants, and we prove Proposition 1.6.
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Proof of Proposition 1.6 We need at least �C.K/ negative crossing changes and at
least �C.K/ positive crossing changes to turn K into a knot K0 such that �C.K0/D

�C.K0/D 0. In particular, we need to change at least �C.K/C �C.K/ crossings to
make K slice, hence us.K/� �

C.K/C �C.K/.

As for the concordance unknotting number, one simply observes that �C.K/ and
�C.K/ are concordance invariants, hence every knot in the same concordance class of
K has unknotting number at least �C.K/C �C.K/.

Finally, [18, Proposition 2.1] asserts that every immersed concordance can be factored
into two concordances and a sequence of crossing changes. That is, given an immersed
concordance from K to the unknot with c double points, there exist knots K0 and
K1 such that K0 is slice, K1 is concordant to K , and there is a sequence of c

crossing changes from K0 to K1 ; from the proposition above, it follows that c �

�C.K0 # K1/C �
C.K0 # K1/D �

C.K/C �C.K/.

6 Subadditivity of �C

The goal of this section is to prove Theorem 1.5. We start with a preliminary proposition.
In the course of the proof, we will make use of twisted correction terms, as defined in [2].
These are a generalisation of ordinary and bottom-most correction terms to arbitrary
3–manifolds; specifically, given a torsion spinc structure t on a 3–manifold Y , there
is an associated rational number d.Y; t/, which is a rational homology cobordism
invariant of the pair .Y; t/.

When Y is a rational homology sphere, d.Y; t/D d.Y; t/. If, on the other hand, Y is
obtained as 0–surgery along a knot in S3, equipped with its unique torsion spinc

structure t, then d.Y; t/D db.Y; t/ (see [2, Section 3.3]).

Moreover, much like db , the twisted correction term d behaves well under negative
semidefinite cobordisms (see [2, Section 4]).

Proposition 6.1 For any two knots K;L� S3 and any two nonnegative integers m

and n, we have
VmCn.K # L/� Vm.K/CVn.L/:

Proof Consider the surgery diagrams in Figure 2 and Figure 3, representing a
closed 4–manifold X and a 4–dimensional cobordism W from �S3

2.mCn/
.K # L/

to �.S3
2m
.K/ # S3

2n
.L//. One should be careful with orientation reversals here; in

particular, notice that in Figure 3 we represent the cobordism W obtained by turning
W upside down.
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2m 2n

K L

0

0 [ 4–handle

Figure 2: The surgery diagram for the closed 4–manifold X

h2mi h2ni

K L

0

Figure 3: The surgery diagram for the upside-down cobordism W from
S3

2m
.K/# S3

2n
.L/ to S3

2.mCn/
.K # L/ . The coefficients in brackets represent

the negative boundary @�W .

As observed by Owens and Strle [17], if m; n> 0, then W �X is a negative definite
cobordism from S3

2m
.K/ # S3

2n
.L/ to S3

2.mCn/
.K # L/ with H2.W IZ/ D Z and

�.W /D 1. When mD 0 or nD 0, W has signature �.W /D 0; therefore, regardless
of positivity of m and n, W is negative semidefinite. Moreover, W is obtained from
@�W by attaching a single 2–handle, and this does not decrease the first Betti number
of the boundary. It follows that we are in the right setup to apply [2, Theorem 4.1].

The 4–manifold X is even; since 0 is a characteristic vector, it is the first Chern class
of a spinc structure s0 on X . The spinc structure s0 restricts to the spinc structure
on W with trivial first Chern class, hence c1.s0/

2 D 0.

Notice also that X nW is the disjoint union of two 4–manifolds: one is the boundary
connected sum of the surgery handlebodies for S3

2m
.K/ and S3

2n
.L/, and the other is

the surgery handlebody for S3
2.mCn/

.K #L/ with the reversed orientation. In particular,
labelling of the restriction of s0 onto the two boundary components of W is determined
by the evaluation of c1.s0/ on the generators of the second cohomology of the two
pieces [23, Section 2.4].

With the chosen convention for labelling spinc structures (1), since c1.s0/D 0, the
spinc structure s0 restricts to tm on S3

2m
.K/, to tn on S3

2n
.L/, and to tmCn on

S3
2.mCn/

.K/.
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We observe here that

d.�S3
0 .K/; t0/C

1
2
b1.�S3

0 .K//D 2V0.K/;

and the same holds for L and K # L (compare with [20, Proposition 4.12] and [2,
Example 3.9]). When m> 0, however,

d.�S3
2m.K/; tm/C

1
2
b1.�S3

2m.K//D d.�S3
2m.K/; tm/D

1
4
C 2Vm.K/;

and analogous formulae hold for L and K # L.

We now apply additivity of d [2, Proposition 3.7] and [2, Theorem 4.1] to W to obtain
the inequality

(3) b�2 .W /C 4d
�
�.S3

2m.K/ # S3
2n.L//; tm # tn

�
C 2b1.�.S

3
2m.K/ # S3

2n.L///

�4d.�S3
2m.K/; tm/C2b1.�S3

2m.K//C4d.�S3
2n.L/; tn/C2b1.�S3

2n.L//:

When m and n are both positive, (3) becomes

1C 1C 8VmCn.K # L/� 1C 8Vm.K/C 1C 8Vn.L/:

When exactly one among m and n vanishes, say mD 0, (3) turns into

1C 8Vn.K # L/� 8V0.K/C 1C 8Vn.L/:

Finally, when mD nD 0, (3) reads

8V0.K # L/� 8V0.K/C 8V0.L/:

In all cases, we have proved that VmCn.K # L/� Vm.K/CVn.L/, as desired.

We are now ready to prove Theorem 1.5, ie that �C is subadditive.

Proof of Theorem 1.5 This now follows from Proposition 6.1 by setting mD �C.K/

and nD �C.L/. In fact, since Vm.K/D Vn.L/D 0,

VmCn.K # L/� Vm.K/CVn.L/D 0I

that is, �C.K # L/�mC nD �C.K/C �C.L/.

7 Examples

In this section we study a 3–parameter family of pairs of torus knots on which the
lower bound given by �C is sharp. We first start with a 1–parameter subfamily that
we study in some detail, and we then turn to the whole family. The techniques used
here are inspired by Baader’s “scissor equivalence” [1].
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Example 7.1 We are going to present an example in which the bound provided by
�C on the genus of a cobordism between torus knots is stronger than the ones given by
the Tristram–Levine signature function, � , s and ‡ , and moreover it is sharp.

2p=3p
2p=3pD

a=p a1=p

a2=p

a3=p

Figure 4: The knot Ka;p ; the boxes indicate the number of full twists. Equal-
ity holds whenever aD a1C a2C a3 .

3p=2p
3p=2pD

b=p b1=p

b2=p

Figure 5: The knot K0
b;p

; the boxes indicate the number of full twists. Equal-
ity holds whenever b D b1C b2 .

Define the two families of links Ka;p and K0
b;p

as the closure of the braids pictured in
Figures 4 and 5. Notice that Ka;p and K0b;p are .p; s/–cables of the trefoil for some s ,
and that they are knots if and only if gcd.a;p/D 1 and gcd.b;p/D 1, respectively.
Moreover, Ka;p is the product of 2p.3p � 1/C a.p � 1/ positive generators of the
braid group on 3p strands, hence its closure represents a transverse knot in the standard
contact 3–sphere with self-linking number 6p2C .a� 5/p� a. Since for closures of
positive braids the self-linking number agrees with the Seifert genus, we can compute
the cabling parameter s D 6pC a. In conclusion, we have shown that Ka;p is the
.p; 6pC a/–cable of T2;3 .

The same argument applies to K0
b;p

, the self-linking number computation yields
6p2C .b � 5/p � b , hence showing that K0

b;p
is the .p; 6pC b/–cable of T2;3 . In

particular Ka;p and K0
b;p

are isotopic if and only if aD b .

Now consider the knots K12;p DK0
12;p

. Denote by �i the i th elementary generator
of the braid group, and, whenever i < j , denote by �i;j the product �i�iC1 � � � �j .
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Setting a1 D a2 D a3 D 4 in the right-hand side of Figure 4 exhibits K12;p as the
closure of the braid

�
2p
1;3p�1

�

…‚ …„ ƒ
�4

1;p�1„ƒ‚…
†4

1

� �4
pC1;2p�1„ ƒ‚ …

†4
2

� �4
2pC1;3p�1„ ƒ‚ …

†4
3

:

The three elements †1 , †2 and †3 commute, hence …D .†1†2†3/
4. Now, notice

that †1�p†2�2p†3 D �1;3p�1 . Since adding a generator �i corresponds to attaching
a band between two strands, we produce a cobordism built out of 8 bands from K12;p

to T2pC4;3p ; if p is coprime with 6, both ends of the cobordism are connected, and
its genus is 4.

An analogous argument, setting b1D b2D 6 in the right-hand side of Figure 5 produces
a 6–band, genus-3 cobordism from K0

12;p
to T2p;3pC6 whenever p is coprime with 6.

Suppose now that p� 5 .mod 6/ and p� 11. Gluing the two cobordisms above yields
a genus-7 cobordism between K D T2pC4;3p and LD T2p;3pC6 .

Applying Proposition 3.2 above we obtain a sharp bound on the slice genus; in fact, in
the same notation as in Proposition 3.2, we have
� 2ıK D 2g.K/D 6p2C 7p� 3 and 2ıL D 2g.L/D 6p2C 7p� 5;
� �K .2/D 3p and �L.2/D 3pC 6;
� �K .3/D 4pC 8 while �L.3/D 4p .

It follows that
�C.K # L/� 1C�L.2/��K .2/D 7;

�C.L # K/� �1C�K .3/��L.3/D 7:

A direct computation using [19, Theorem 1.15] shows that for p D 11, 17, 23, 29 the
bound given by ‡ is 3, the one given by the Tristram–Levine signatures is either 2

or 5, and the one given by � and s is 1.

Moreover, we need at least 7 positive and 7 negative crossing changes to turn K

into L, hence their Gordian distance is at least 14. Additionally, suppose that we have
a factorisation of the cobordism above into genus-1 cobordisms, and suppose that one
of these cobordisms goes from K1 to K2 . Then both �C.K2/ D �

C.K1/� 1 and
�C.K2/D �

C.K1/� 1.

Example 7.2 We can promote the family above to a family parametrised by suitable
triples of integers .p; q; r/ as follows: Instead of considering the .p; 6pC 12/–cable
of the trefoil K12;p D K0

12;p
we can consider the .p; qr.p C 2//–cable K

p
q;r of

T WD Tq;r . The first condition we impose on the triple .p; q; r/ is that q < r and
gcd.q; r/D 1.
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By looking at K
p
q;r as a cable of T seen as the closure of an r –braid, we can glue

2q � .r � 1/ bands to K
p
q;r and obtain K D Tq.pC2/;rp . Call x1 D q.p C 2/ and

x2 D rp the two generators of the semigroup �K .

By viewing K
p
q;r as a cable of T seen as the closure a q–braid instead, we see that

we can glue 2r � .q�1/ bands to K
p
q;r and obtain LD Tqp;r.pC2/ . Call y1 D qp and

y2 D r.pC 2/ the two generators of the semigroup �L .

If gcd.p; 2qr/D gcd.pC 2; 2qr/D 1, both K and L have one component, ie they
are torus knots; eg both equalities hold if p ��1 .mod 2qr/. Moreover, ıK � ıL D
g.K/�g.L/D r�q , and above we produced a cobordism of genus 2qr�q�r between
K and L, made of 4qr�2q�2r bands. Hence, �C.K #L/; �C.L#K/� 2qr�q�r .

Choose p sufficiently large; it is elementary to check that if p � 2qr � 1 then, for
n1 D ıT C q� 1 and n2 D ıT C r � 1, we have

�T .n1/D .q� 1/r; �T .n2/D .r � 1/q;

�K .n1/D .q� 1/x2 D .q� 1/rp; �K .n2/D .r � 1/x1 D .r � 1/q.pC 2/;

�L.n1/D .q� 1/y2 D .q� 1/r.pC 2/; �L.n2/D .r � 1/y1 D .r � 1/qp:

If we set nD n1 in Theorem 1.1 we obtain

�C.K # L/� ıK � ıLC�L.n1/��K .n1/D 2qr � q� r:

Reversing the roles of K and L and setting nD n2 yields

�C.L # K/� ıL� ıK C�K .n2/��L.n2/D 2qr � q� r:

The lower bound for the genus given by �C is in this case is tight, as the upper and
lower bounds match, and moreover the Gordian distance between K and L is at least
4qr � 2q� 2r .
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