Volume 17, issue 4 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Geometric embedding properties of Bestvina–Brady subgroups

Hung Cong Tran

Algebraic & Geometric Topology 17 (2017) 2499–2510

We compute the relative divergence of right-angled Artin groups with respect to their Bestvina–Brady subgroups and the subgroup distortion of Bestvina–Brady subgroups. We also show that for each integer n 3, there is a free subgroup of rank n of some right-angled Artin group whose inclusion is not a quasi-isometric embedding. The corollary answers the question of Carr about the minimum rank n such that some right-angled Artin group has a free subgroup of rank n whose inclusion is not a quasi-isometric embedding. It is well known that a right-angled Artin group AΓ is the fundamental group of a graph manifold whenever the defining graph Γ is a tree with at least three vertices. We show that the Bestvina–Brady subgroup HΓ in this case is a horizontal surface subgroup.

Bestvina–Brady subgroups, geometric embedding properties, subgroup distortion, relative divergence
Mathematical Subject Classification 2010
Primary: 20F65, 20F67
Secondary: 20F36
Received: 23 August 2016
Revised: 20 October 2016
Accepted: 1 January 2017
Published: 3 August 2017
Hung Cong Tran
Department of Mathematics
The University of Georgia
Athens, GA
United States