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Categorical models for equivariant classifying spaces
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Starting categorically, we give simple and precise models for classifying spaces of
equivariant principal bundles. We need these models for work in progress in equi-
variant infinite loop space theory and equivariant algebraic K–theory, but the models
are of independent interest in equivariant bundle theory and especially equivariant
covering space theory.
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Introduction

Let … and G be topological groups and let G act on …, so that we have a semidirect
product � D…Ì G and a split extension

(0-1) 1!…
�
�!�

q
�!G! 1

The underlying space of � is …�G , and the product is given by

.�;g/.�; h/D .�.g � �/;gh/:

There is a general theory of .G;…G/–bundles — see Lashof [6], Lashof and May [7],
May [13] and tom Dieck [3] — corresponding to such extensions. Here …G denotes …
together with its given action of G . We shall only be interested in principal .G;…G/–
bundles pW E! B .

Definition 0.2 Let pW E!B be a principal …–bundle, where B is a G –space. Then
p is a principal .G;…G/–bundle if the (free) action of … on E extends to an action
of � and p is a �–map, where � acts on B through the quotient map �!G .

The more general theory of .…I�/–bundles applicable to nonsplit extensions � is
included in Lashof and May [7] and May [12; 13]. The theory is especially familiar when
G acts trivially on …, so that � DG�…. With …DO.n/ or U.n/, the trivial action
case gives classical equivariant bundle theory and equivariant topological K–theory.
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Definition 0.3 A principal .G;…G/–bundle pW E ! B is universal if for all G–
spaces X of the homotopy types of G –CW complexes, pullback of p along G –maps
f W X ! B induces a natural bijection from the set of homotopy classes of G–maps
X ! B to the set of equivalence classes of .G;…G/–bundles over X .

For applications in equivariant infinite loop space theory and equivariant algebraic K–
theory, we need to understand classifying G –spaces for .G;…G/–bundles as classifying
spaces of categories. Nonequivariantly, it was already emphasized in Segal’s classical
paper [19, Section 3] that the universal principal …–bundle of a topological group …
can be constructed on the level of topological categories, and the intuition is that we
are giving the equivariant generalization of his classical construction.

One motivation is to give new constructions of E1 operads of G –categories and G –
spaces. This much only requires trivial actions of G on …. By definition, the j th space
of an E1 operad of G –spaces is a universal principal .G; †j /–bundle. Having various
category level models for such classifying spaces allows us to construct examples of
E1 G –spaces from E1 categories, and these feed into equivariant infinite loop space
machines to construct interesting G –spectra. This is discussed in Guillou and May [4]
and in work in progress by Guillou, May, Merling and Osorno.

The examples relevant to the equivariant algebraic K–theory of G –rings, namely rings
with G –action by automorphisms, require more general split extensions. If R is a G –
ring, then G acts entrywise on GL.n;R/. The classifying spaces of .G;GL.n;R/G/–
bundles are central to the definition of the genuine equivariant algebraic K–theory
spectrum KG.R/ of R; see Guillou and May [4] and Merling [14]. Our treatment
of the fixed point spaces of the classifying spaces of equivariant bundles is crucial to
determining the fixed point spectra of the KG.R/. The paradigmatic example is a finite
Galois extension E=F with Galois group G . As explained in [4], it is an immediate
application of examples in this paper, which demonstrate the relevance of Hilbert’s
Theorem 90, that the fixed point spectrum KG.E/

H is the classical nonequivariant
K–theory spectrum of the fixed field EH . The use of genuine G –spectra in algebraic
K–theory is new and is explored in [14].

The results we need are close to those of [6; 7; 12] and those stated by Murayama
and Shimakawa [16],1 but we require a more precise and rigorous categorical and
topological understanding than the literature affords. This is intended as a service paper
that displays the relevant constructions in their fullblown simplicity.

We start with the topologized equivariant version of the elementary theory of chaotic
categories in Section 1. We analyze a general construction that specializes to give

1But see Scholium 3.12.
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our classifying G–spaces in Section 2. We show how it gives universal equivariant
bundles in Section 3. Our explicit description of the classifying spaces of .G;…G/–
bundles as classifying spaces of categories allows us to compute their fixed point spaces
categorically in Section 4. This gives precise information already on the category level,
before passage to classifying spaces, and that is essential to our applications.

The main results of the paper are summarized in the following two theorems; the
first gives a categorical model for equivariant universal bundles and their classifying
spaces, and the second gives a description of the fixed points of the classifying spaces
of equivariant bundles. Details of the first are in Theorems 3.10 and 3.11 and details of
the second are in Theorems 4.18, 4.23, and 4.24. We need some preliminary definitions
and notations to state these results.

Let G be discrete and let EG denote the unique contractible groupoid with object set G .
It is a (right) G –category, meaning that G acts on both objects and morphisms, and it
has a unique morphism between any two objects. We agree to identify the topological
group … with the topological groupoid with a single object and morphism space ….
Then the action of G on … makes it a G –groupoid.

For small topological categories A and B , let Cat.A ;B/ denote the category of all
continuous functors A ! B and all natural transformations. When A and B are
G –categories, Cat.A ;B/ inherits an action of G , given by conjugation. We shall give
more details in Section 1.1.

We assume that the reader is familiar with the classifying space functor B from
categories to spaces, or more generally from topological categories to spaces. It works
equally well to construct G –spaces from topological G –categories. It is the composite
of the nerve functor N from topological categories to simplicial spaces (eg May [11,
Section 7]) and geometric realization j � j from simplicial spaces to spaces (eg May
[10, Section 11]), both of which are product-preserving functors.

Theorem 0.4 If G is discrete and … is either discrete or a compact Lie group, then
the canonical map

BCat.EG; E…/! BCat.EG;…/

is a universal principal .G;…G/–bundle.

Thus the classifying space of the G –category Cat.EG;…/ is a G –space that classifies
.G;…G/–bundles.

Crossed homomorphisms, their automorphism groups, and the nonabelian cohomology
group H 1.GI…G/ are defined in Definitions 4.1, 4.11, and 4.17.
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Theorem 0.5 The fixed point category Cat.EG;…/G is the disjoint union of the
groups Aut˛ , where ˛ runs over crossed homomorphisms representing the elements of
H 1.GI…G/. Equivalently, Cat.EG;…/G is the disjoint union of the groups …\N�ƒ,
where ƒ runs over the …–conjugacy classes of subgroups ƒ of � such that ƒ\…D e .
Therefore BCat.EG;…/G is the disjoint union of the classifying spaces B.…\N�ƒ/.

With more work, our hypotheses on G and … could surely be weakened. We should
admit that we are especially interested in discrete groups in many of our current
applications. Since … is the relevant structural group, we are then studying equivariant
covering spaces. However, it is important for some applications to allow … to have
a topology. For example, in Merling [14], equivariant algebraic K–theory is related
to equivariant topological K–theory and to Atiyah’s real K–theory. There it is crucial
that … be allowed to be compact Lie in Theorem 0.4.

There is an earlier topological analogue of our categorical construction in terms of
mapping spaces rather than mapping categories; see May [12]. It applies in considerably
greater topological generality, but it does not generally start categorically. We compare
the categorical and topological constructions in Section 5.

The choices of … relevant to equivariant infinite loop space theory and equivariant
algebraic K–theory, namely symmetric groups and the general linear groups of G –rings,
have alternative categorical models, which play a key role. These alternative categorical
models are given in Section 6, which is entirely algebraic, with all groups discrete.
We call special attention to Section 6.2, where we relate crossed homomorphisms to
skew group rings and their skew modules. The algebraic ideas here may not be as well
known as they should be and deserve further study.

The letter B for the classifying space functor from categories to spaces would sometimes
be awkward in our context, since the classifying space functor will also be used to
construct universal bundles rather than classifying spaces for bundles, hence we agree
to write out jN�j rather than B whenever B seems likely to confuse.

This notation also displays a key technical problem that is sometimes overlooked in
the literature. The functor j�j is a left adjoint and therefore preserves all colimits,
such as passage to orbits in the equivariant setting. The functor N is a right adjoint
and it generally does not preserve colimits or passage to orbits, as we illustrate with
elementary examples. This problem is the subject of Babson and Kozlov [1]. For
topological categories, there is no discussion in the literature. Exceptionally, N does
commute with passage to orbits in the key examples that appear in equivariant bundle
theory. Clear understanding of passage to orbits is essential to our calculations of fixed
point spaces.
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Remark 0.6 The functor Cat.EG;�/ from G–categories to G–categories plays a
central role in our work. Its G –fixed category was introduced by Thomason [22, (2.1)],
who called it the lax limit of the action of G on C and denoted it by CatG.EG;C /.
The relevance to equivariant bundle theory of the equivariant precursor Cat.EG;B/

was first noticed by Murayama and Shimakawa [16] and Shimakawa [21].

Acknowledgements Merling thanks Matthew Morrow and Liang Xiao for answers
to her questions that pointed out the striking relevance to our work of H 1.GI…/ and
Serre’s general version of Hilbert’s Theorem 90. We are grateful to an anonymous
referee for a careful reading and suggestions for improving the notations and exposition.
Guillou was partially supported by Simons Collaboration Grant No. 282316 and by NSF
grant DMS-1710379 and Merling was partially supported by NSF grant DMS-1709461.

1 Preliminaries on chaotic and translation categories

The definitions we start with are familiar and elementary. However, to keep track of
categorical data and group actions later, we shall be pedantically precise.

1.1 Preliminaries on topological G –categories

Let Cat be the category of categories and functors. We may also view it as the 2–
category of categories, with 0–cells, 1–cells, and 2–cells the categories, functors,
and natural transformations. From that point of view, Cat.A ;B/ is the internal hom
category whose objects are the functors A !B and whose morphisms are the natural
transformations between them; they enrich Cat over itself.

For a group G , a G–category A is a category with an action of G specified by a
homomorphism from G to the automorphism group of A . Regarding G as a groupoid
with one object, the action is specified by a functor G! Cat . We have the 2–category
GCat of G –categories, G –functors, and G –natural transformations, where the latter
notions are defined in the evident way: everything must be equivariant.

We may view GCat as the underlying 2–category of a category enriched over GCat .
The 0–cells are still G–categories, but now we have the G–category Cat.A ;B/ as
the internal hom between them. Its underlying category is Cat.A ;B/, and G acts by
conjugation on functors and natural transformations. Thus, for F W A !B , g 2G , and
A either an object or a morphism of A , we have .gF /.A/D gF.g�1A/. Similarly,
for a natural transformation �W E! F and an object A of A ,

.g�/A D g�g�1AW gE.g�1A/! gF.g�1A/:
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The category GCat.A ;B/ is the same as the G –fixed category Cat.A ;B/G , and we
sometimes vary the choice of notation.

We can topologize the definitions so far, starting with the 2–category of categories
internal to the category U of (compactly generated) spaces, together with continuous
functors and continuous natural transformations. Recall that a category A internal to a
cartesian monoidal category V has object and morphism objects in V and structure
maps source, target, identity and composition in V . These maps are denoted by S , T ,
I and C , and the usual category axioms must hold. When V DU , we refer to internal
categories as topological categories; we refer to them as topological G–categories
when V DGU . These are more general than (small) topologically enriched categories,
which have discrete sets of objects. We can now allow G to be a topological group
in the equivariant picture. We continue to use the notations already given in the more
general topological situation.

1.2 Chaotic topological G –categories

Definition 1.1 A small category C is chaotic if there is exactly one morphism from b

to a for each pair of objects a and b . The unique morphism from a to b must then be
inverse to the unique morphism from b to a. Thus C is a groupoid, and its classifying
space is contractible since every object is initial and terminal; in fact, it is the unique
contractible groupoid with the given object set. A topological category C is chaotic
if its underlying category is chaotic. Its classifying space is again contractible (see
Remark 2.11), but there are other topological groupoids with the given object space and
contractible classifying spaces. Similarly, a topological G–category is chaotic if its
underlying category is chaotic. It is then contractible but not usually G –contractible.

The senior author remembers hearing the name “chaotic” long ago, but we do not know
its source. The idea is that everything is the same as everything else, which does seem
rather chaotic.2

Lemma 1.2 If A is any category and B is a chaotic category, then the category
Cat.A ;B/ is again chaotic.

Proof The unique natural map �W E! F between functors E;F W A !B is given
on an object A of A by the unique map �AW E.A/! F.A/ in B .

2Some category theorists suggest the name “indiscrete category”, by formal analogy with indiscrete
spaces in topology. The key difference is that indiscrete spaces are of no interest, whereas we hope to
convince the reader that chaotic categories are of considerable interest.
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Lemma 1.3 If A is any topological G–category and B is a chaotic topological
G–category, then the topological G–category Cat.A ;B/ and its G–fixed category
GCat.A ;B/ are again chaotic.

Proof Since Cat.A ;B/ is just the category Cat.A ;B/ with its conjugation action
by G , Lemma 1.2 implies the conclusion for Cat.A ;B/. The conclusion is inherited
by GCat.A ;B/D Cat.A ;B/G since the unique natural transformation between G –
functors E and F is necessarily a G –natural transformation.

Definition 1.4 The chaotic topological category EX generated by a space X is the
topological category with object space X and morphism space X �X . The source,
target, identity, and composition maps are defined by

S D �2W X �X !X; T D �1W X �X !X; I D�W X !X �X;

C D id� "� idW .X �X /�X .X �X /ŠX �X �X !X �X;

where "W X !� is the trivial map. On elements, S.y;x/D x , T .y;x/D y , I.x/D

.x;x/ and C.z;y;x/ D .z;x/. Forgetting the topology, the element .y;x/ is the
unique morphism x! y . Reversing the order of source and target in the notation this
way, so that .z;y/ ı .y;x/D .z;x/, will turn out to be helpful later.

A map f W X ! Y induces the functor Qf W EX ! zY given by f on objects and
f � f on morphisms. When X is a (left or right) G–space, we give EX the action
specified by the given action on the object space X and the diagonal action on the
morphism space X �X ; EX is then a chaotic topological G –category. Sending X to
EX specifies a functor from the category GU of G –spaces to the category GGpd of
topological G –groupoids (a full subcategory of GCat).

1.3 The adjunction between G –spaces and topological G –groupoids

Sending a category to its set of objects restricts to an object functor ObW GGpd!GU .

Lemma 1.5 The chaotic category functor is right adjoint to the object functor, so that

GCat.C ; EX /ŠGMap.ObC ;X /

for a topological G –category C with object space ObC and a topological G –space X .
If C is chaotic with object G–space X , then the unit of the adjunction is an isomor-
phism of topological G –groupoids �W C ! EX .
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Proof Let MorC be the morphism G –space of C . The functor C ! EX determined
by a continuous G –map f W ObC !X is f on object G –spaces and the composite

MorC
.T;S/

//ObC �ObC
f�f

//X �X

on morphism G –spaces. The last statement rephrases the meaning of chaotic.

1.4 Translation categories and chaotic categories

We use another simple definition to relate chaotic categories to other familiar categories.
Let G be a topological group and Y be a left G–space. Generalizing how we think
of G as a one object category, we can think of Y together with its action by G as
the functor Y W G! U that sends the single object � to Y and is given on morphism
spaces by the map G!Map.Y;Y / adjoint to the action map G �Y ! Y .

Definition 1.6 Let Y be a left G–space. Define the translation category T .G;Y /

as follows. The object space is Y and the morphism space is G � Y . We think of
.g;y/ as a morphism gW y! gy . The map I W Y ! G � Y sends y to .e;y/. The
maps S and T send .g;y/ to y and gy , respectively. The domain of composition,
.G � Y / �Y .G � Y /, can be identified with .G �G/ � Y , and composition sends
.h;g;y/ to .hg;y/. The construction is functorial in Y , for fixed G , and in the pair
.G;Y / in general. If Y has a right action by G that commutes with the left action,
then T .Y;G/ is a right G–category via the given right action on the object space Y

and on the second coordinate of the morphism space G �Y .

Remark 1.7 The definition makes sense when G is only a monoid, not necessarily
a group. When Y is a point, T .Y;G/ is G regarded as a one object category. When
G is a group, T .Y;G/ is the standard groupoid associated to a G –space, but it is not
generally chaotic.

Proposition 1.8 For left G–spaces Y , there is a natural comparison functor
�W T .G;Y /! zY . If Y has a right action that commutes with its left action, then
� is a map of right G –categories. The functor �W T .G;G/! EG is an isomorphism
of right G –categories.

Proof Define � to be the identity map on object spaces and the map that sends .g;y/
to .gy;y/ on morphism spaces. Since zY is chaotic, this is the unique functor that
is the identity on objects, and it is easy to check equivariance when Y has a right
G –action. When Y DG with left action and right action given by its product, � is an
isomorphism with ��1.h;g/D .hg�1;g/ on morphism spaces.
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In view of the differing group actions on the morphism spaces G�G , namely action on
the right coordinate in T .G;G/ and diagonal action in EG , the isomorphism between
T .G;G/ and EG must not be viewed as a tautology.

Remark 1.9 When we return to the split extension (0-1), the group … there will play
a role close to that of the group denoted G in Definition 1.6 and Proposition 1.8. When
G D e , we would then specialize to Y D… with its natural left … action and see the
usual universal principal …–bundle. When G ¤ e , the relevant specialization is a little
less obvious; see Lemma 3.4, which is a follow up of Proposition 1.8.

2 The category Cat.EX; …/

We let X be a space and … be a topological group in this section. We regard …
as a category with one object without change of notation; it should be clear from
the context when we mean the group … and when we mean the category …. From
now on, functors and natural transformations are to be continuous (in the topological
sense), even when we neglect to say so. We are especially interested in the functor
categories Cat.EX; E…/, which are chaotic by Lemma 1.2, and in the functor categories
Cat.EX;…/, which are not. The right action of … on E… induces a right action of …
on Cat.EX; E…/.

This section and the next give a pedantically explicit description of Cat.EX;…/ and
of the induced map

Cat.EX; E…/! Cat.EX;…/;

showing in particular that it is obtained by passage to orbits over …. When X DG ,
this elementary analysis will be at the heart of all our proofs. We defer adding in the
second group G that appears in the bundle theory until after we have this description
in place since a group defined solely in terms of the diagonal on X and the product
on … plays a central role in the description.

2.1 An explicit description of Cat.EX; …/

By the adjunction given in Lemma 1.5 (with GD e ), the object space of the chaotic cat-
egory Cat.EX; E…/ can be identified with the space Map.X;…/ of maps X!… with
its standard (compactly generated) function space topology. Therefore Cat.EX; E…/
can be identified with the chaotic category EMap.X;…/.

Definition 2.1 Define the pointwise product � on Map.X;…/ by

.˛ �ˇ/.x/D ˛.x/ˇ.x/
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for ˛; ˇW X !…. The unit element " is given by ".x/ D e and inverses are given
by ˛�1.x/ D ˛.x/�1 . The topological group Map.X;…/ contains … as a (closed)
subgroup, where we regard an element � 2… as the constant map � W X!… at � . The
inclusion of … in Map.X;…/ and composition give Map.X;…/ its right …–action.

Definition 2.2 Choose a basepoint x0 2 X . There is a unique representative map
˛ such that ˛.x0/ D e in each orbit of Map.X;…/ under the right action by ….
Let O.X;…/ � Map.X;…/ denote the subspace of such representative maps. It is
a subgroup of Map.X;…/. The …–action and the product � on Map.X;…/ are
related by ˛� D ˛ � � for � 2…, and � restricts to a homeomorphism of …–spaces
O.X;…/�…!Map.X;…/. Write elements of Map.X;…/ in the form ˛� , where
˛.x0/D e . Passage to orbits restricts to a homeomorphism O.X;…/ŠMap.X;…/=….
Observe that the product � on Map.X;…/ induces a left action of Map.X;…/ on
O.X;…/ by sending .ˇ; ˛/ to the orbit representative of ˇ �˛ .

The proofs of the follow three lemmas are simple exercises from the fact that there is a
unique morphism .y;x/ from x to y in EX ; compare Lemma 1.2.

Lemma 2.3 A functor EW EX ! … is given by the trivial map X ! � of object
spaces and a map EW X �X ! … of morphism spaces such that E.x;x/ D e and
E.z;y/E.y;x/ D E.z;x/. Define ˛ 2 O.X;…/ by ˛.x/ D E.x;x0/. Then ˛

determines E by the formula

E.y;x/DE.y;x0/E.x0;x/D ˛.y/˛.x/
�1:

Writing E D E˛ , sending E˛ to ˛ specifies a homeomorphism from the space of
functors EX !… to O.X;…/.

Lemma 2.4 For E˛;EˇW EX !…, a natural transformation �W E˛!Eˇ is given
by a map �W X !… such that �.y/E˛.y;x/DEˇ.y;x/�.x/ for x;y 2X . If � 2…
is defined by � D �.x0/, then the pair .ˇ�; ˛/ determines � by the formula

�.x/DEˇ.x;x0/�.x0/E˛.x;x0/
�1
D .ˇ� �˛�1/.x/:

Writing �D �� , sending �� to .ˇ�; ˛/ specifies a homeomorphism from the space of
morphisms of Cat.EX;…/ to the space Map.X;…/�O.X;…/.

Lemma 2.5 Identify the object and morphism spaces of Cat.EX;…/ with

O.X;…/ and M .X;…/�Map.X;…/�O.X;…/
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via the homeomorphisms of the previous two lemmas. Then the identity map I sends
˛ to .˛e; ˛/ and the source and target maps S and T send .ˇ�; ˛/ to ˛ and to ˇ .
The S D T pullback

M .X;…/�O.X ;…/M .X;…/

can be identified with Map.X;…/�Map.X;…/�O.X;…/ via

.. �; ˇ/; .ˇ�; ˛//$ . �; ˇ�; ˛/

and the composition map C sends . �; ˇ�; ˛/ to . ��; ˛/.

Proof If we compose �� W Eˇ!E with �� W E˛!Eˇ , we obtain

�� � �� D 
�1� �ˇ �ˇ�1� �˛ D �1�� �˛;

which corresponds to the given description.

2.2 Two identifications of Cat.EX; …/

We show here that Proposition 1.8 leads to one identification of Cat.EX;…/, and
the lemmas of the previous section lead to a closely related one. These elementary
identifications commute passage to orbits with the functor Cat.EX;�/, and that will
be crucial to understanding BCat.EG;…/ as an equivariant classifying space.

Notation 2.6 The category … is isomorphic to the orbit category E…=…. The
quotient functor pW E… ! … is the trivial map … ! � on object spaces and is
given on morphism spaces by the map pW …�…! .…�…/=…Š… specified by
p.�; �/D ���1 . Let q denote the functor

Cat.id;p/W Cat.EX; E…/! Cat.EX;…/:

We also let q denote the functor between translation categories

T .Map.X;…/;Map.X;…//! T .Map.X;…/;O.X;…//

that is induced by the quotient map pW Map.X;…/!Map.X;…/=…Š O.X;…/.

Theorem 2.7 There is a commutative diagram of topological categories in which �, � ,
and � are isomorphisms:

T .Map.X;…/;Map.X;…//
�

//

q

��

Cat.EX; E…/
p

vv

q

��

T .Map.X;…/;O.X;…//
�
// Cat.EX; E…/=…

�

// Cat.EX;…/
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Proof The map p is the quotient map given by passage to orbits over …. Since q

on the right is a …–map with … acting trivially on Cat.EX;…/, q factors through a
map � that makes the triangle commute. Since Cat.EX; E…/ is the chaotic category
whose object space is the topological group Map.X;…/, Proposition 1.8 gives the
isomorphism �. Since q on the left is obtained by passage to orbits from the relevant
action of …, it is clear that � induces an isomorphism � making the left trapezoid
commute.

All that remains is to prove that � is an isomorphism, and that follows from the
results of Section 2.1. For a functor E˛W EX ! …, the maps ˛W X ! … and
˛�˛W X�X!…�… define the object and morphism maps of a functor F W EX!E….
The functoriality properties of E˛ show that p ı F D E˛ , so that q is surjec-
tive on objects. If we also have p ı F 0 D E˛ , then a quick check shows that
F.x/�1F 0.x/ D F.y/�1F 0.y/ for all x;y 2 X . If the common value is denoted
by � , then F 0.x/ D F.x/� for all x . In view of the specification of p and q in
Notation 2.6, this implies that � is a homeomorphism on object spaces.

Let E˛;EˇW EX!… be any two functors. For any chosen functors F;F 0W EX! E…
such that qıF DE˛ and qıF 0DEˇ , define �W X!…�… by �.x/D .F.x/;F 0.x//.
Then � is a map from the object space of EX to the morphism space of E…. A quick
check shows that � is a natural transformation F ! F 0 such that �D q ı � is a natural
transformation E˛ ! Eˇ with �x0

D F 0.x0/F.x0/
�1 . Via our enumeration of the

possible choices, this implies that q restricted to the inverse image of the space of natural
transformations E˛!Eˇ can be identified with the quotient map pW …�…!… of
Notation 2.6. It follows that � is a homeomorphism on morphism spaces.

2.3 The nerve functor and classifying spaces

We recall the definition of the nerve functor N in more detail than might be thought
warranted at this late date since, in the presence of the left-right action dichotomy
of multiple group actions, the original definitions in category theory can cause real
problems arising from categorical dyslexia. There are two standard conventions in the
literature, and we must choose. Let C be a topological category with object space O

and morphism space M . Then N0C D O and, for q > 0,

NqC DM �O � � � �O M ;

with q factors M . The pullbacks are over pairs of maps .S;T /. To avoid dyslexia,
we remember that g ıf means first f and then g , and choose to forget the picture

�
f1
�! �

f2
�! �! � � � ! �

fq�1
��! �

fq
�! �
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of q composable arrows and instead remember that the picture

(2-8) x0
f1
 �x1

f2
 �x2 � � �  xq�2

fq�1
 ��xq�1

fq
 �xq

corresponds to an element Œf1; : : : ; fq � of NqC , so that S.fi/D T .fiC1/. For x 2O ,
we write idD I.x/ generically. Then

d0Œf �D T .f /; d1Œf �D S.f /; and s0.x/D Œidx �:

For q � 2,

di Œf1; : : : ; fq �D

8<:
Œf2; : : : ; fq � if i D 0;

Œf1; : : : ; fi�1; fi ıfiC1; fiC2; : : : ; fq � if 0< i < q;

Œf1; : : : ; fq�1� if i D q;

and, for q � 1,

si Œf1; : : : ; fq �D Œf1; : : : ; fi ; id; fiC1; : : : ; fq �:

Of course, these can and should be expressed in terms of the maps S , T , I , and C ,
so as to remember the topology and check continuity.

Recall that a (right) action of a group G on a simplicial space Y� is specified by
levelwise group actions such that the di and si are G –maps; formally, Y� is a simplicial
object in the category of (right) G–spaces. Orbit and fixed point simplicial spaces
are constructed levelwise, .Y�=G/q D Yq=G and .Y�/Gq D Y G

q . For a G –category C ,
N.C G/Š .N C /G since N is a right adjoint, but it is rarely the case that N.C =G/Š

.N C /=G , as the following counterexample should make clear.

Example 2.9 Let G be a group and let G act on itself by conjugation. Let A be the
abelianization of G . Regarding G and A as categories with a single object, G=GŠA,
and NA is generally much smaller than NG=G . Here Œg1; : : : ;gq � and Œh1; : : : ; hq �

are in the same orbit under the conjugation action if and only if there is a single g such
that ggig

�1 D ghig
�1 for all i . For example if G is a finite simple group of order n,

then A is trivial but NqG=G has at least nq�1 elements.

In this example, NG is the simplicial space, often denoted by B�G , whose geometric
realization is the classifying space BG . Parametrizing with a left G–space Y gives
a familiar simplicial space B�.�;G;Y / (eg [11, Section 7]). Write qW E�G! B�G

for the map
B�.�;G;G/! B�.�;G;�/Š B�.�;G;G/=G

induced by G!�. The isomorphism on the right is obvious, but it is in fact an example
of an isomorphism of the form N.C =G/Š .N C /=G , as the following observations
make clear. Recall the translation category from Definition 1.6.
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Lemma 2.10 The simplicial space N T .G;Y / is isomorphic to B�.�;G;Y /.

Proof A typical q–tuple (2-8) in NqT .G;Y / has i th term

fi D .gi ;giC1 � � �gqy/W giC1 � � �gqy! gigiC1 � � �gqy

for elements gi 2G and y 2 Y . It corresponds to Œg1; : : : ;gq �y in Bq.�;G;Y /.

Remark 2.11 For any space X , N EX is the simplicial space denoted by D�X in [10,
page 97]. Our choice of S and T on EX is consistent with (2-8) and the usual notation
.x0; : : : ;xq/ for q–simplices. The claim in Definition 1.1 that jN EX j is contractible
is immediate from [10, 10.4], which says that D�X is simplicially contractible. The
isomorphism N�W N T .G;G/!N EG implied by Proposition 1.8 coincides with the
isomorphism ˛�W E�G!D�G of [10, 10.4].

Applying geometric realization, write B.�;G;Y /D jB�.�;G;Y /j, and similarly for
EG and BG . Then B.�;G;Y /Š B.�;G;G/�G Y DEG �G Y . By Lemma 2.10,

BT .Y;G/DEG �G Y:

A relevant example is Y DG=H for a (closed) subgroup H of G . The space

BT .G;G=H /DEG �G .G=H /Š .EG/=H

is a classifying space BH since EG is a free contractible H –space.

In particular, take G D Map.X;…/ and H D … for a space X and group …, re-
membering that Cat.EX; E…/ is the chaotic category with object space the group
Map.X;…/. Applying the classifying space functor to the diagram of Theorem 2.7
and using Lemma 2.10, we obtain the following commutative diagram, in which the
horizontal maps are homeomorphisms and, up to canonical homeomorphisms, the
vertical maps are obtained by passage to orbits over …:

E.Map.X;…// Š
//

��

BCat.EX; E…/

��

D
// BCat.EX; E…/

��

.E Map.X;…//=…
Š
// B.Cat.EX; E…/=…/

Š
// BCat.EX;…/

Ignoring minor topological niceness conditions,3 for any space X the diagram gives
isomorphic categorical models for the universal principal …–bundle E…! B….

3The identity element of the group Map.X;…/ should be a nondegenerate basepoint and the space
Map.X;…/ should be paracompact; see [11, 9.10].
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3 Categorical universal equivariant principal bundles

3.1 Preliminaries on actions by the semidirect product �

Now return to the split extension (0-1) of the introduction. For a �–category or �–space,
passage to orbits with respect to … gives a G –category or a G –space. It is standard in
equivariant bundle theory to let G act from the left and … act from the right. Thus
suppose that X is a left G and right … object in any category. Using elementwise
notation, turn the right action of … into a left action by setting �x D x��1 .

By an action of � on X , we mean a left action that coincides with the given actions when
restricted to the subgroups GD e�G and …D…�e of � . Since .�;g/D .�; e/.e;g/,
the action must be defined by

(3-1) .�;g/x D .�; e/.e;g/x D .�; e/gx D �gx D .gx/��1:

For now, we will denote the action of G on … by � , but we just use juxtaposition for
the prescribed actions of G and … on X . Since the action by g on … is a group
homomorphism, g � .��/D .g � �/.g � �/ and g � ��1 D .g � �/�1 . The interaction of
… and G in � is given by the twisted commutation relation

.e;g/.�; e/D .g � �;g/D .g � �; e/.e;g/;

or the same relation with � replaced by ��1 . Therefore (3-1) gives an action of � if
and only if the given actions of … and G satisfy the twisted commutation relation

(3-2) g.x�/D .gx/.g � �/:

The placement of parentheses is crucial: we are taking group actions in different orders.
When the action of G on … is trivial, g � � D � , this is the familiar statement that
commuting left and right actions define an action by the product G �….

Lemma 3.3 For a G–category A , the left G and right …–actions on Cat.A ; E…/
extend naturally to a �–action.

Proof We must verify that g.F�/ D .gF /.g � �/ for g 2 G , � 2… and a functor
F W A !…. The unique natural transformation E! F between a pair of functors E

and F will then necessarily be given by �–maps. The verification is formal from the
fact that G acts by conjugation, so that the action of G on … is part of the prescription
of the action of G on F . Recall that the left action of G on Cat.A ; E…/ is given by
conjugation, .gF /.a/ D g �F.g�1a/ for g 2 G and an object or morphism a 2 A .
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The right action of … is given by .F�/.a/D F.a/� . Then

.g.F�//.a/D g � .F�/.g�1a/

D g � .F.g�1a/�/

D .g �F.g�1a//.g � �/

D ..gF /.a//.g � �/

D ..gF /.g � �//.a/:

In particular, let A D EX for a left G–space X . Then the given action of G on the
object space X and the diagonal action of G on the morphism space X �X give a left
G –action on the category EX . Lemma 3.3 shows that the left G and right …–action
on Cat.EX; E…/ give it an action by � . Explicitly, the conjugation left action by G

and the evident right action by … on the object space Map.X;…/ induce diagonal
actions on the morphism space Map.X;…/�Map.X;…/, and these specify left G

and right …–actions on Cat.EX;…/ that satisfy the commutation relation required for
a �–action.

Specializing further to X D G , we have the following equivariant elaboration of
Proposition 1.8. We change the group G there to the group Map.G;…/ here and
remember that the product on Map.G;…/ is just the pointwise product induced by the
product on …, with no dependence on the product of G . Ignoring the group action, we
may identify the chaotic right Map.G;…/–category with object space Map.G;…/ with
the category Cat.EG; E…/. The following lemma identifies group actions. Remember
that … is a subgroup of Map.G;…/.

Lemma 3.4 The isomorphism of right Map.G;…/–categories

�W T .Map.G;…/;Map.G;…//! Cat.EG; E…/

is an isomorphism of �–categories, where the G–action on both source and target
categories is given by the conjugation action on the object space Map.G;…/ and the
resulting diagonal action on the morphism space Map.G;…/�Map.G;…/.

Proof Since � is an isomorphism and a …–map, we can and must give the source
category the unique G–action such that � is a G–map. Since � is the identity map
on object spaces, the action must be the conjugation action on the object space. On an
element .ˇ; ˛/ of the morphism space, we must define

g.ˇ; ˛/D��1.g�.ˇ; ˛//D��1.g.ˇ˛/;g˛/D��1..gˇ/.g˛/;g˛/D .gˇ;g˛/:
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Lemma 3.5 With X DG , the diagram of Theorem 2.7 is a commutative diagram of �–
categories and maps of �–categories, where � acts through the quotient homomorphism
�!G on the three categories on the bottom row.

Proof Since the trapezoid is obtained by passing to orbits under the action of …, it is
a diagram of �–categories by Lemma 3.4. The functor pW E…!… of Notation 2.6 is
a G –map since

g� .�; �/D g � .���1/D .g � �/.g � �/�1
D p.g � �;g � �/:

It follows that the right vertical arrow qDCat.EG;p/ is a map of �–categories. Letting
ŒF � denote the orbit of a functor F W EG! E… under the right action of …, the functor
� is specified by �ŒF �D p ıF , and it follows that � is �–equivariant.

3.2 Universal principal .G; …G /–bundles

Observe that for any G–category A , the corepresented functor Cat.A ;�/ from G–
categories to G–categories is a right adjoint and therefore preserves all limits. We
take A to be the G–category EG from now on, and we use the functor Cat.EG;�/

to obtain a convenient categorical description of universal principal .G;…G/–bundles.
Variants of the construction are given in [12; 16].

Definition 3.6 Let G and … be topological groups and let G act on …. De-
fine E.G;…G/ to be the �–space BCat.EG; E…/ D jN Cat.EG; E…/j and define
B.G;…G/ to be the orbit G–space E.G;…G/=…. Let pW E.G;…G/! B.G;…G/

be the quotient map.

We need a lemma in order to prove that p is a universal .G;…G/–bundle in favorable
cases. We defer the proof to the next section. We believe that the result is true more
generally, but there are point-set topological issues obstructing a proof. We shall
not obscure the simplicity of our work by seeking maximum generality. As usual in
equivariant bundle theory, we assume that all given subgroups are closed.

Lemma 3.7 Let ƒ be a subgroup of � . If ƒ\…¤ e , then the fixed point category
Cat.EG; E…/ƒ is empty. At least if G is discrete, if ƒ\…D e , then Cat.EG; E…/ƒ

is nonempty and chaotic.

The following result is [7, Theorem 9], but the details of the proof are in [6, Section 2].
A principal .G;…G/–bundle is numerable if it is trivial over the subspaces of B in a
numerable open cover.
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Theorem 3.8 A numerable principal .G;…G/–bundle pW E! B is universal if and
only if Eƒ is contractible for all (closed) subgroups ƒ of � such that ƒ\…D feg.

We comment on the hypotheses. Recall from point-set topology that a space X is
completely regular if for every closed subspace C and every point x not in C , there
is a continuous function f W X ! Œ0; 1� such that f .x/D 0 and f .C /D 1. This is a
weak condition that is satisfied by reasonable spaces, such as CW complexes.

Remark 3.9 Specializing [7, Propositions 4 and 5], a principal .G;…G/–bundle
with completely regular total space is locally trivial, and a locally trivial principal
.G;…G/–bundle over a paracompact base space (such as a CW complex) is numerable.
Therefore, modulo weak point-set topological conditions, the fixed point condition in
Theorem 3.8 is the essential criterion for a universal bundle.

Therefore Lemma 3.7 has the following consequence. Its condition on … serves only
to ensure that p is a numerable principal .G;…G/–bundle.

Theorem 3.10 If G is discrete and … is either discrete or a compact Lie group, the
map

pW E.G;…G/! B.G;…G/

obtained by passage to orbits over … is a universal principal .G;…G/–bundle.

The classifying space B.G;…G/D jN Cat.EG; E…/j=… is obtained by first applying
the classifying space functor and then passing to orbits. On the other hand, the space
BCat.EG;…/DjN Cat.EG;…/j is obtained by first passing to orbits on the categorical
level and then applying the classifying space functor. The category Cat.EG;…/ is
thoroughly understood, as explained in Section 2. The key virtue of our model for
B.G;…G/ is that these two G –spaces can be identified, by Theorem 2.7.

Theorem 3.11 The canonical map

B.G;…G/D jN Cat.EG; E…/j=…! jN Cat.EG;…/j D BCat.EG;…/

is a homeomorphism of G –spaces. Therefore, if G is discrete and … is either discrete
or a compact Lie group, the map

BqW BCat.EG; E…/! BCat.EG;…/

is a universal principal .G;…G/–bundle.
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Scholium 3.12 For finite groups G , this result is claimed in [16, page 1294]. For more
general groups G , [16, 3.1] states an analogous result, but with E…!… replaced by a
functor defined in terms of the nonequivariant universal bundle E…! B…, resulting
in a much larger construction. The replacement is needed for the proof of their analogue
[16, 3.3] of our Lemma 3.7. A commutation relation of the form N.C =…/D .N C /=…

for their larger construction is stated (five lines above [16, 3.1]), but there is no hint of a
proof or of the need for one. It is not altogether clear to us that the commutation relation
stated there is true, and we view the commutation relation Theorem 2.7 as the main
point of the proof of Theorem 3.11. Nevertheless, Murayama and Shimakawa [16] had
the insightful right idea that led to our work.

4 Determination of fixed points

4.1 The fixed point spaces of E.G; …G /

We must prove Lemma 3.7, but we place no restrictions on G and … until they are
needed. Since … acts freely on Cat.EG; E…/, it is clear that Cat.EG; E…/ƒ is empty
if ƒ\…¤ e . Thus assume that ƒ\…D e . By Lemma 1.3, the fixed point category
Cat.EG; E…/ƒ is chaotic. It remains to prove that it is nonempty, and Lemma 1.5
implies that this is so if and only if the space Map.G;…/ƒ is nonempty. Thus it
suffices to show that Map.G;…/ has a ƒ–fixed point, which means that there is a
ƒ–map f W G!…. We prove this using the following standard generalization of a
homomorphism and a variant needed later.

Definition 4.1 A function ˛W G!… is a crossed homomorphism if

(4-2) ˛.gh/D ˛.g/.g �˛.h//

for all g; h 2G . In particular,

(4-3) ˛.e/D e; ˛.g/�1
D g �˛.g�1/ and ˛.g�1/�1

D g�1
�˛.g/:

A map ˛W G!… is a crossed antihomomorphism if

(4-4) ˛.gh/D .g �˛.h//˛.g/:

Note that we should require the function ˛ to be continuous in our general topological
context. However, the continuity is sometimes automatic, as indicated in the following
lemma. Remember that we understand subgroups to be closed.
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Lemma 4.5 All subgroups ƒ of � such that ƒ\…D e are of the form

ƒ˛ D f.˛.h/; h/ j h 2H g;

where H is a subgroup of G and ˛W H !… is a crossed homomorphism. At least if
G is discrete or � is compact, ˛ is continuous.

Proof Clearly ƒ˛ is a subgroup of � such that ƒ˛\…De . Conversely, let ƒ\…De .
Define H to be the image of the composite of the inclusion �W ƒ�� and the projection
� W � ! G . Since ƒ\… D e , the composite � ı � is injective and so restricts to a
continuous isomorphism �W ƒ! H . For h 2 H , define ˛.h/ D � , where � is the
unique element of … such that .�; h/2ƒ. Thus ˛ is the composite of �ı��1W H!�

and the projection �W � !…. If G is discrete or if � and therefore ƒ is compact,
then � is a homeomorphism and ˛ is continuous. For h; k 2H ,

.˛.h/; h/.˛.k/; k/D .˛.h/.h �˛.k//; hk/ 2ƒ;

so ˛.hk/D ˛.h/.h �˛.k//. Thus ˛ is a crossed homomorphism and ƒDƒ˛ .

Proof of Lemma 3.7 We must obtain a ƒ–map f W G!…, where ƒ D ƒ˛ for a
crossed homomorphism ˛ . By the definition of the action by ƒ, this means that

f .g/D .h �f .h�1g//˛.h/�1

or equivalently
h �f .h�1g/D f .g/˛.h/

for all h 2H and g 2G . We choose right coset representatives fgig to write G as a
disjoint union of cosets Hgi . We then define f W G!… by

f .kgi/D ˛.k/
�1

for k 2 H . By using (4-2), writing out the inverse of a product as the product of
inverses, using that h�1� and h� are group homomorphisms and that � is a group action,
and finally using (4-3) and, again, that � is a group action, we see that

h �f .h�1kgi/D h �˛.h�1k/�1

D h �
�
˛.h�1/.h�1

�˛.k//
��1

D h �
�
.h�1

�˛.k//�1.˛.h�1//�1
�

D
�
h � .h�1

�˛.k/�1/
��

h � .˛.h�1/�1/
�

D ˛.k/�1
�
h � .h�1

�˛.h//
�

D f .kgi/˛.h/
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for all h 2H . Thus f is a ƒ–map. We have assumed that G is discrete in order to
ensure that f is continuous.

Remark 4.6 If we relax the condition that G is discrete, we do not see how to prove
that f is continuous, as would be needed for a more general result.

4.2 The fixed point categories of Cat.EG; …/

For H � G , the structure of the fixed point space B.G;…G/
H is known (up to

homotopy), for example by specialization of more general results in [7]. We show
here how to see that structure on the category level. In fact, we identify the fixed point
categories Cat.EG;…/H , with no restrictions on … and G . However, the reader may
prefer to assume that G is discrete for the rest of Section 4.

Since the functor B commutes with fixed points, this gives a categorically precise
interpretation of the fixed point space B.G;…G/

H .

We return to Section 2, taking X D G there. The H –fixed functors and H –natural
transformations in Cat.EG;…/ are the H –equivariant functors and natural transfor-
mations, in accord with our notational convention Cat.EG;…/H D HCat.EG;…/.
Since EG and zH are both H –free contractible categories, they are equivalent as
H –categories. Therefore,

(4-7) Cat.EG;…/H ' Cat. zH ;…/H DHCat. zH ;…/:

This implies that we may restrict to the case G D H and deduce conclusions in
general. The objects and morphisms of GCat.EG;…/ are the G –equivariant functors
EW EG ! … and the G–equivariant natural transformations �. In Lemma 2.3, we
described a functor E in terms of the map ˛W G!… defined by ˛.h/DE.h; e/.

Lemma 4.8 The G–action on functors EW EG!… induces the G –action on maps
˛W G!… specified by

.g˛/.h/D
�
g � .˛.g�1h//.g �˛.g�1/�1/

�
:

Proof .gE/.h; e/D g �E.g�1h;g�1/D g � .E.g�1h; e/E.e;g�1//:

Lemma 4.9 The space of objects of GCat.EG;…/ can be identified with the subspace
of Map.G;…/ consisting of the crossed antihomomorphisms ˛W G!….
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Proof Setting g˛ D ˛ and applying g�1 � .�/ to the formula for the action of G

on ˛ , we obtain
g�1
�˛.h/D ˛.g�1h/˛.g�1/�1:

Replacing g�1 by g and multiplying on the right by ˛.g/, this gives

˛.gh/D .g �˛.h//˛.g/

for all g; h 2G , which says that ˛ is a crossed antihomomorphism.

Similarly, as in Lemma 2.4, a natural transformation �W E˛!Eˇ is determined by
� D �.e/. Explicitly,

�.g/DEˇ.g; e/�.e/E˛.g; e/
�1
D ˇ.g/�˛.g/�1

for g 2 G . Now a G–fixed natural transformation � satisfies �.gh/ D g � �.h/ for
g; h 2G and thus �.g/D �.ge/D g ��.e/D g �� . Therefore the naturality square for
G –fixed natural transformations translates into

g � � D ˇ.g/�˛.g/�1

or, equivalently,

(4-10) ˇ.g/� D .g � �/˛.g/:

We use the following definitions and lemma to put things together.

Definition 4.11 Let G act on …. Define the crossed functor category Cat�.G;…/ to
be the category whose objects are the crossed homomorphisms G!… and whose
morphisms � W ˛! ˇ are the elements � 2… such that ˇ.g/.g � �/D �˛.g/; they
are called isomorphisms of crossed homomorphisms. The composite � ı � , where
� W ˇ!  , is given by �� . Define the centralizer …˛ of a crossed homomorphism
˛W G!… to be the subgroup

…˛ D f� 2… j ˛.g/.g � �/D �˛.g/ for all g 2Gg

of …. It is the automorphism group Aut.˛/ of the object ˛ in Cat�.G;…/.

Definition 4.12 Define the anticrossed functor category Cat��.G;…/ to have objects
the crossed antihomomorphisms ˛W G!… and morphisms � W ˛! ˇ the elements
� 2 … such that ˇ.g/� D .g � �/˛.g/, with � ı � D �� . The centralizer …˛ of a
crossed antihomomorphism ˛W G!… is

…˛ D f� 2… j ˛.g/� D .g � �/˛.g/ for all g 2Gg:

Again, …˛ D Aut.˛/ in Cat��.G;…/.
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If the action of G on … is trivial, then the crossed functor category is just the func-
tor category Cat.G;…/ since homomorphisms ˛W G ! … correspond to functors
˛W G!… and elements � 2… such that ˇ.g/� D �˛.g/ for g 2 G correspond to
natural transformations ˛! ˇ . In that case,

…˛ D f� 2… j ��1˛.g/� D ˛.g/ for all g 2Gg

is the usual centralizer of ˛ in …, and then the following identification is obvious.

Lemma 4.13 The categories Cat�.G;…/ and Cat��.G;…/ of crossed homomor-
phisms and crossed antihomomorphisms are canonically isomorphic.

Proof For a crossed homomorphism ˛W G!…, define x̨W G!… by

x̨.g/D g �˛.g�1/:

Then

x̨.gh/D .gh/ �˛.h�1g�1/D g � h � .˛.h�1/.h�1
�˛.g�1//D .g � x̨.h//.x̨.g//;

so that x̨ is a crossed antihomomorphism. If � is a morphism ˛! ˇ in Cat�.G;…/,
then ˇ.g/.g � �/D �˛.g/. It follows that

x̌.g/� D .g �ˇ.g�1//� D g � .ˇ.g�1/.g�1
� �//D g � .�˛.g�1//D .g � �/x̨.g/;

so that � is also a morphism x̨ ! x̌ in Cat��.G;…/. The construction of the inverse
isomorphism is similar.

Returning to the G –fixed category of interest, we summarize our discussion in terms
of these definitions and results.

Theorem 4.14 The fixed point category GCat.EG;…/DCat.EG;…/G is isomorphic
to the anticrossed functor category Cat��.G;…/. Therefore it is also isomorphic to the
crossed functor category Cat�.G;…/.

Corollary 4.15 For H �G , the fixed point category Cat.EG;…/H is equivalent to
the anticrossed functor category Cat��.H;…/. Therefore it is also equivalent to the
crossed functor category Cat�.H;…/.

Remark 4.16 The appearance of antihomomorphisms in this context is not new; see
eg [23]. As we have seen, it is also innocuous. We have chosen not to introduce
opposite groups, but the anti-isomorphism .�/�1W …!…op is relevant.
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4.3 Fixed point categories, H 1.G I …G /, and Hilbert’s Theorem 90

Since GCat.EG;…/ is a groupoid, it is equivalent to the coproduct of its subcategories
Aut.˛/, where we choose one ˛ from each isomorphism class of objects. The following
definition is standard when … and G are discrete but makes sense in general.

Definition 4.17 The first nonabelian cohomology group H 1.GI…G/ is the pointed
set of isomorphism classes of (continuous) crossed homomorphisms G!…. We write
Œ˛� for the isomorphism class of ˛ . The basepoint of H 1.GI…G/ is Œ"�, where " is
the trivial crossed homomorphism given by ".g/D e for g 2G .

With this language, (4-7) and Corollary 4.15 can be restated as follows.

Theorem 4.18 For H � G , Cat.EG;…/H is equivalent to the coproduct of the
categories Aut.˛/, where the coproduct runs over Œ˛� 2H 1.H I…H /.

Here Aut.˛/ implicitly refers to the ambient group … Ì H , not � D … Ì G . By
(4-7) or, more concretely, Lemma 4.22 below, we obtain the same group Aut.˛/ for ˛
considered as an object of Cat. zK;…/H for any H �K �G .

For any G –category A , we have a natural map of G –categories

�W A ! Cat.EG;A /:

It is induced by the unique G–functor EG ! �, where � is the trivial G–category
with one object and its identity morphism. The G–fixed point functor �G played a
central role in Thomason [22]. When A D… for a G–group …, � sends the unique
object of … to the basepoint Œ"� 2H 1.GI…/.

We shall describe the groups Aut.˛/ in familiar group-theoretic terms in the next
section. As a special case, Aut."/D…G and �G restricts to the identity functor from
…G to Aut."/. This implies the following result.

Proposition 4.19 The functor �G W …G ! Cat.EG;…/G is an equivalence of cate-
gories if and only if H 1.GI…G/D Œ"�.

Example 4.20 Let E be a Galois extension of a field F with Galois group G .
Then G acts on E and EG D F . Let G act entrywise on GL.n;E/. Then Serre’s
general version of Hilbert’s Theorem 90 [20, Chapter 10, Proposition 3] gives that
H 1.GIGL.n;E/G/D Œ"�. Since GL.n;E/G D GL.n;F /, we conclude that �G is an
equivalence of categories

GL.n;F /! Cat.EG;GL.n;E//G :
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More generally �H for H �G is an equivalence of categories

GL.n;EH /! Cat.EG;GL.n;E/H :

As explained in [4] this gives precisely the information that ensures that the algebraic
K–theory fixed point spectrum KG.E/

H is equivalent to K.EH /. We shall return to
consideration of G –rings such as E in Section 6.

We recall the easy calculation of H 1.GI…/ in group-theoretic terms. Here we must
restrict G since the proof depends on Lemma 3.7.

Lemma 4.21 At least if G is discrete, the set H 1.GI…/ is in bijective correspondence
with the set of …–conjugacy classes of subgroups ƒ of � such that ƒ\…D e and
q.ƒ/DG .

Proof By Lemma 3.7, the subgroups ƒ of � such that ƒ\…D e are of the form

ƒ˛ D f.˛.h/; h/ j h 2H g

for a crossed homomorphism ˛W H ! …. If � 2 …, then �ƒ˛��1 \… D e and
therefore �ƒ˛��1 Dƒˇ for some crossed homomorphism ˇ . The equality forces ˇ
and ˛ to be defined on the same subgroup H and to satisfy ˇ.g/.g ��/D �˛.g/. We
are concerned only with the case H DG , and then this says that � is a morphism and
thus an isomorphism ˛! ˇ in Cat�.G;…/.

4.4 The fixed point spaces of B.G; …G /

We here identify the automorphism groups Aut.˛/ group-theoretically and so complete
the identification of Cat.EG;…/G .

Lemma 4.22 Let ˛W H ! … be a crossed homomorphism and … be a G–group,
where H � G . Then the crossed centralizer …˛ is the intersection … \ N�ƒ˛ .
Therefore this intersection is the same for all �K D…Ì K , H �K �G .

Proof Let .�;g/ 2…Ì G and h 2H . Calculating in � D…Ì G , we have

.�;g/�1.˛.h/; h/.�;g/D .g�1
� ��1;g�1/.˛.h/; h/.�;g/

D ..g�1
� ��1/.g�1

�˛.h//;g�1h/.�;g/

D
�
.g�1

� ��1/.g�1
�˛.h//..g�1h/ � �/;g�1hg

�
:

Therefore, .�;g/ is in N�ƒ˛ if and only if g is in NGH and

˛.g�1hg/D .g�1
� ��1/.g�1

�˛.h//..g�1h/ � �/
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for all h 2 H . When g D e , so that � D .�; e/ is a typical element of …\N�ƒ˛ ,
this simplifies to

˛.h/D ��1˛.h/.h � �/:

Passing to classifying spaces from Theorem 4.18 gives the following result.

Theorem 4.23 For H �G ,

B.G;…G/
H
D BCat.EG;…/H '

a
B Aut.˛/;

where the coproduct runs over Œ˛� 2H 1.H I…H /.

By Lemmas 4.21 and 4.22, at least when G is discrete we can restate Theorem 4.23 as
follows.

Theorem 4.24 Let � D…Ì G , where G is discrete. For a subgroup H of G ,

B.G;…G/
H
'

a
B.…\N�ƒ/;

where the coproduct runs over the …–conjugacy classes of subgroups ƒ of � such
that ƒ\…D e and q.ƒ/DH .

Of course, we are only entitled to consider B.G;…G/ as a classifying space for
principal �–bundles when Theorem 3.11 applies. The fixed point spaces B.…I�/H of
classifying spaces are studied more generally in [7] when � is given by a not necessarily
split extension of compact Lie groups

(4-25) 1!…! �
q
�!G! 1:

For such groups � , Theorem 10 of [7] gives an entirely different bundle-theoretic proof
that the conclusion of Theorem 4.24 still holds as stated, but without the restriction
on G . However, when [7] was written, no particularly nice model for the homotopy
type B.…I�/ was known.

5 The comparison between BCat.EG; …/ and
Map.EG; B…/

A convenient model pW E.…I�/! B.…I�/ for a universal principal .…I�/–bundle
was later given in terms of mapping spaces [12]. Here we assume given an extension
(4-25), with no restrictions on our topological groups.4 Start with the classical models

4We do assume their identity elements are nondegenerate basepoints.
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in Section 2.3 for universal principal …, G , and �–bundles and let EqW E�!EG

be the map induced by the quotient homomorphism qW � ! G . Let Sec.EG;E�/

denote the �–space of sections f W EG!E� , so that Eq ı f D id. The following
result is part of [12, Theorem 5].

Theorem 5.1 The quotient map pW Sec.EG;E�/!Sec.EG;E�/=… is a universal
principal .…I�/–bundle.

Now let the extension be split, so that � D…Ì G . The given action of G induces
a left action of G on E… that, together with the free right action by …, makes it a
�–space. Taking EG to be a left G–space and letting � act through q on EG , we
have the product �–space E…�EG . It is free as a �–space because E… is free as a
…–space and EG is free as a G –space. Since it is contractible, we may as well take
E� D E…�EG . Since the second coordinate of a section f W EG ! E…�EG

must be the identity, we then have

Sec.EG;E�/DMap.EG;E…/:

Its �–action is defined just as was the �–action on Cat.EG;…/ in Lemma 3.3. This
gives the following specialization of Theorem 5.1, which is the space level forerunner
of the categorical Theorem 3.10.

Theorem 5.2 The quotient map pW Map.EG;E…/!Map.EG;E…/=… is a uni-
versal principal .G;…G/–bundle.

We also have the mapping space Map.EG;B…/. The canonical map E…! B…

induces a map qW Map.EG;E…/!Map.EG;B…/. Then there is an induced map
� that makes the following diagram commute:

Map.EG;E…/

p

uu

q

��

Map.EG;E…/=…
�

// Map.EG;B…/

The analogy with the triangle in Theorem 2.7 should be evident. As observed in
[12, Theorem 5], elementary covering space theory gives the following space level
forerunner of the categorical Theorem 3.11.

Theorem 5.3 If … is discrete, then �W Map.EG;E…/=…! Map.EG;B…/ is a
homeomorphism and therefore qW Map.EG;E…/! Map.EG;B…/ is a universal
principal .G;…G/–bundle.
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Note that G but not … is required to be discrete in Theorem 3.11, whereas … but not
G is required to be discrete in Theorem 5.3.5 There is an obvious comparison map
relating the categorical and space level constructions. For any G –categories A and B ,
we have the evaluation G –functor

"W Cat.A ;B/�A !B:

Applying the classifying space functor and taking adjoints, this gives a G –map

(5-4) �W BCat.A ;B/!Map.BA ;BB/:

When A and B are both discrete (in the topological sense), there is a simple analysis
of this map in terms of the simplicial mapping space Map�.N A ;N B/. The following
two lemmas are well-known nonequivariantly.

Lemma 5.5 For discrete categories A and B , there is a natural isomorphism

�W N Cat.A ;B/ŠMap�.N A ;N B/;

and this is an isomorphism of simplicial G –sets if A and B are G –categories.

Proof Let �n be the poset f0; 1; : : : ; ng, viewed as a category. The n–simplices of
Cat.A ;B/ are the functors �n! Cat.A ;B/. By adjunction, they are the functors
A ��n!B . Since N is full and faithful, these functors are the maps of simplicial
sets

N A �N�n ŠN.A ��n/!N B:

By definition, these maps are the n–simplices of Map�.N A ;N B/. These identifi-
cations give the claimed isomorphism of simplicial sets. The compatibility with the
actions of G when A and B are G –categories is clear.

Lemma 5.6 For simplicial sets K and L, there is a natural map

�W jMap�.K;L/j !Map.jKj; jLj/:

If K and L are simplicial G –sets, � is a map of G –spaces, and it is a weak equivalence
of G –spaces when L is a Kan complex.

5When G is a compact Lie group acting trivially on a compact abelian Lie group … , results of [8]
imply that the map � is a weak G –equivalence; in [18], Charles Rezk proves that this remains true when
… is a finite extension of a torus (a compact Lie homotopy 1–type).
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Proof The evaluation map Map�.K;L/�K!L induces a map

jMap�.K;L/j � jKj Š jMap�.K;L/�Kj ! jLj

whose adjoint is � . When L is a Kan complex, so is Map�.K;L/ (eg [9, 6.9]),
and the natural maps L! S jLj and Map�.K;L/! S jMap�.K;L/j are homotopy
equivalences, where S is the total singular complex functor. A diagram chase shows
that � induces a bijection on homotopy classes of maps

��W ŒjJ j; jMap�.K;L/j�!
�
jJ j;Map.jKj; jLj/

�
for any simplicial set J . Letting G act trivially on J , all functors in sight commute
with passage to H –fixed points, and the equivariant conclusions follow.

Now the following result is immediate from the definitions and lemmas above.

Proposition 5.7 For discrete G–categories A and B , the map � of (5-4) is the
composite � ı�, and it is a weak G –equivalence if B is a groupoid.

Returning to the topological setting, take A D EG and write EG D jN EGj, as we
may. Recalling that E…! B… is obtained by applying B to the functor E…!…,
we obtain the following commutative diagram:

BCat.EG; E…/

��

// Map.EG;E…/

��

BCat.EG; E…/=…

��

// Map.EG;E…/=…

��

BCat.EG;…/ // Map.EG;B…/

Theorems 3.10 and 5.2 say that the top two vertical arrows are often universal principal
.…I�/–bundles, in which case the top two horizontal arrows are equivalences. Theo-
rems 3.11 and 5.3 say that the lower two vertical arrows and therefore also the bottom
horizontal arrow are also often equivalences. When both … and G are discrete, the
equivalences are immediate from Proposition 5.7. More elaborate arguments might
prove all of these results in greater topological generality.

6 Other categorical models for classifying spaces B.G; …G /

For particular G–groups …, there are alternative categorical models for universal
principal .G;…G/–bundles that are important in our applications in [4; 14]. They lead
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to equivalent, but more intuitive, constructions of categorical models for a number of
interesting G –spectra, in particular suspension G –spectra and the equivariant K–theory
spectra of rings with actions by G .

Perhaps surprisingly, the symmetric groups †n with trivial G –action are of particular
importance in equivariant infinite loop space theory. For a ring R with an action of
a group G via ring maps, the general linear groups GL.n;R/ with G–action on all
matrix entries are of particular importance. We give alternative models for universal
principal bundles applicable to these cases. We focus on the total spaces here and
explain additional structure on the resulting classifying spaces in [4]. We assume that G

is finite, although some of the definitions make sense and are interesting more generally.

6.1 A model zEG .n/ for E.G; †n/

Definition 6.1 Let U be a countable ambient G–set that contains countably many
copies of each orbit G=H . The action of G on U fixes bijections gW A! gA for all
finite subsets A of U , denoted by a 7! g � a.

Let nD f1; : : : ; ng and view elements � 2†n as functions n! n, so that �.i/D � � i
gives a left action of †n on n.

Definition 6.2 For n � 0, let zEG.n/ denote the chaotic .†n �G )-category whose
set Ob of objects is the set of pairs .A; ˛/, where A is an n–element subset of U

and ˛W n!A is a bijection. Let G act on Ob on the left by postcomposition and let
†n act on the right by precomposition. Thus g.A; ˛/D .gA;g ı ˛/ for g 2 G , and
.A; ˛/� D .A; ˛ ı �/ for � 2†; of course,

.g ı˛/ ı � D g ı˛ ı � D g ı .˛ ı �/:

The action of †n �G is given by .�;g/.A; ˛/D .gA;g ı ˛ ı ��1/. Since zEG.n/ is
chaotic, this fixes the actions on the morphism set, which the map .S;T / identifies
with O b �Ob with †n �G acting diagonally.

Proposition 6.3 For each n, the classifying space jN zEG.n/j is a universal principal
.G; †n/–bundle.

Proof For each A, choose a base bijection �AW n! A. The function sending � to
.A; �Aı�/ is an isomorphism of right †n –sets from †n to the set of objects .A; ˛/; its
inverse sends .A; ˛/ to ��1

A
ı˛ . Thus †n acts freely on zEG.n/. Since zEG.n/ is chaotic,

it suffices to show that the set of objects of zEG.n/
ƒ is nonempty if ƒ\†n D feg. As
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usual, ƒD f.�.h/; h/ j h 2H g, where H is a subgroup of G and �W H ! †n is a
homomorphism.

Let H act through � on n, so that h � i D �.h/.i/. Since U contains a copy of every
finite G–set, there is a bijection of G–sets ˇW G �H n ! B � U . Its restriction
to n gives a bijection of H –sets ˛W n ! A � B . We claim that this .A; ˛/ is
a ƒ–fixed object. Obviously hA D A for h 2 H . By Definition 6.2, we have
.�.h/; h/.A; ˛/D .A; h ı˛ ı �.h/�1/, where

.h ı˛ ı �.h/�1/.i/D h �˛.�.h/�1.i//D h � h�1
�˛.i/D ˛.i/:

Definition 6.4 Define EG.n/ to be the orbit G –category zEG.n/=†n .

By Proposition 6.3 and Section 2.3, BEG.n/ is a classifying space B.G; †n/. Up to
isomorphism, the G –category EG.n/ admits the following more explicit description.

Lemma 6.5 The objects of EG.n/ are the n–pointed subsets A of U . The morphisms
are the bijections ˛W A! B , with the evident composition and identities. The group
G acts by translation on objects and by conjugation on morphisms. That is, g sends A

to gA and ˛ to g˛ , where g˛ D g ı˛ ıg�1 , so that .g˛/.g � a/D g �˛.a/.

Proof The objects .A; ˛/ are all in the same orbit, denoted by A, and the bijections
�A chosen in the proof of Proposition 6.3 give orbit representatives for the objects
of EG.n/. In zEG.n/, we have a unique morphism �ˇW .A; �A/ ! .B; ˇ/ for each
bijection ˇW n! B , and these morphisms give orbit representatives for the set of
morphisms A ! B in EG.n/. Letting the orbit of �ˇ correspond to the bijection
˛D ˇ ı��1

A
W A!B and noting that ˛D �B ı� ı�

�1
A

for a unique � 2†n , we obtain
the claimed description of EG.n/. Since �A specifies an ordering on A, �gA is fixed
as g ı �A . Then, if ˛ D ˇ ı ��1

A
,

g ı˛ ıg�1
D g ı .ˇ ı ��1

A / ı .�A ı �
�1
gA/D g ıˇ ı ��1

gAW gA! gB:

6.2 G –rings, G –ring modules, and crossed homomorphisms

By a G–ring we understand a ring R with a left action of G on R through ring
automorphisms. We do not assume that R is commutative, although that is the
case of greatest interest to us. Following the literature, we write g.r/ D rg for
the automorphism gW R!R determined by g 2G . Then rgh D g.h.r//D .rh/g .

When R is a subquotient of Q, the only automorphism of R is the identity and the
action of G must be trivial, but nontrivial examples abound. One important example is
the action of the Galois group on a Galois extension E of a field F .
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In the next section we will give an analogue of zEG.n/ but with …D†n replaced by
…DGL.n;R/ with the entrywise action of G . We will need a tiny bit of what appears
to us to be a relatively undeveloped part of representation theory.

For a G –ring R, there are standard notions of a “crossed product” ring, a “group-graded
ring”, and, as a special case of both, a “skew group ring”, variously denoted R Ì G

or R�G . We shall use the notation RG ŒG� for the last of these notions. If the action
of G on R is given by the homomorphism � W G! Aut.R/, a more precise notation
would be R� ŒG�. Observe that R is a k –algebra, where k denotes the intersection of
the center of R with RG .

Definition 6.6 As an R–module, RG ŒG� is the same as the group ring RŒG�, which
is the case when G acts trivially on R. We define the product on RG ŒG� by k –linear
(not R–linear) extension of the relation

.rg/ .sh/D rsg gh

for r; s 2R and g; h 2G . Thus R and kŒG� are subrings of RG ŒG� and

g r D rg g:

Definition 6.7 We call (left) RG ŒG�–modules “G –ring modules” or “skew G –mod-
ules”. Such an M is a left R–module and a left kŒG�–module such that g.rm/ D

rg.gm/ for m 2M . If M is R–free, we call M a skew representation of G over R.

Although special cases have appeared and there is a substantial literature on crossed
products, group-graded rings, and skew group rings (for example [2; 15; 17]), we have
not found a systematic study of these representations in the literature. Kawakubo [5]
gives a convenient starting point. The following relationship with crossed homomor-
phisms is [5, 5.1].

Theorem 6.8 Let R be a G–ring. Then the set of isomorphism classes of RG ŒG�–
module structures on the R–module Rn is in canonical bijective correspondence with
H 1.GIGL.n;R//. In detail, let feig be the standard basis for Rn . Then the formula

gei D �.g/.ei/

establishes a bijection between RG ŒG�–module structures on Rn and crossed homo-
morphisms �W G! GL.n;R/. Moreover, two RG ŒG�–modules with underlying R–
module Rn are isomorphic if and only if their corresponding crossed homomorphisms
are isomorphic.
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Proof Given an RG ŒG�–module structure on Rn , define the matrix �.g/ in GL.n;R/
by letting its i th column be .si;j /, where

gei D

X
j

si;j ej :

Conversely, given � , write �.g/D .si;j / and define gei by the same formula. From
either starting point, we have gei D �.g/.ei/. For a second element h 2 G , write
�.h/D .ti;j /, where �.h/ is either determined by an RG ŒG�–module structure or is
given by a crossed homomorphism � . Since g r D rg g in RG ŒG� and g .ri;j /D .r

g
i;j /

in GL.n;R/, the relation .gh/ei D g.hei/ required of an RG ŒG�–module is the same
as the relation �.g/�.h/.ei/D �.g/.g�.h//.ei/ required of a crossed homomorphism.
Indeed, .gh/ei D �.gh/.ei/ and

g.hei/D g�.h/.ei/D
X

j

g.ti;j ej /D
X

j

t
g
i;j gej D

X
j

X
k

t
g
i;j sj ;kek

D �.g/

�X
j

t
g
i;j ej

�
D �.g/.g�.h/.ei/:

The remaining compatibilities, in particular for the transitivity relation required of a
module, are equally straightforward verifications, as is the verification of the statement
about isomorphisms.

The following easy observation specifies the permutation skew representations. For a
set A, let RŒA� denote the free R–module on the basis A.

Proposition 6.9 Let A be a G –set and define

g

�X
a

raa

�
D

X
a

rg
a ga

for g 2G , ra 2R and a 2A. Then RŒA� is an RG ŒG�–module.

In view of Theorem 6.8, this has the following immediate consequence.

Corollary 6.10 For a G –ring R, any n–pointed G –set A canonically gives rise to a
crossed homomorphism �AW G! GL.n;R/.

We shall need to embed skew representations in permutation skew representations to
apply these notions in equivariant bundle (or covering space) theory. Of course, in
classical representation theory over C , every representation embeds in a permutation
representation. We need an analogue for skew representations.
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Definition 6.11 A G–ring R is amenable if there is a monomorphism of RG ŒG�–
modules that embeds any finite-dimensional skew representation of G over R into a
finite-dimensional permutation skew representation.

Example 6.12 Let G act trivially on nD f1; : : : ; ng. The trivial permutation skew
representation RŒn� is the RG ŒG�–module corresponding to the trivial crossed homo-
morphism "W G ! GL.n;R/. Thus, when H 1.GIGL.n;R// D Œ"� for all n, every
skew representation of G over R is isomorphic to a permutation skew representation
and R is amenable. This holds, for example, when G is the Galois group of a Galois
extension RDK over a field k .

More generally, we have the following analogue of the situation in classical represen-
tation theory, which shows that amenability is not an unduly restrictive condition. It
is proven in Passman [17, 4.1 in Chapter 1]. Even in this generality, he ascribes it to
Maschke.

Lemma 6.13 Let N �M be RG ŒG�–modules with no jGj–torsion. If M DN˚V as
an R–module, then there is an RG ŒG�–submodule P �M such that jGjM �N ˚P .

An irreducible skew representation is one that has no nontrivial proper skew subrepre-
sentations.

Theorem 6.14 Suppose that R is semisimple and jGj�1 2 R. Then every RG ŒG�–
module is completely reducible and R is amenable.

Proof By the lemma, if N �M , then M DN ˚P . That is, the complete reducibility
of R–modules implies the complete reducibility of RG ŒG�–modules. If N is an
irreducible RG ŒG�–module, then any choice of an element n¤ 0 determines a map of
RG ŒG�–modules f W RG ŒG�!N such that f .1/D n. The image of f is a submodule
of N , and it is all of N since N is irreducible. By complete reducibility, Ker.f / has
a complement in RG ŒG�, and that complement must be isomorphic to N . Thus N

is a direct summand of the permutation skew representation RG ŒG�. Therefore, by
complete reducibility, all skew representations are direct summands of permutation
skew representations.

6.3 A model eGL G .n; R/ for E.G; GL.n; R/G /

Again let R be a G–ring, and assume that R is amenable. We have the entrywise
left action of G on GL.n;R/, and we have the right action of GL.n;R/ on GL.n;R/
given by matrix multiplication.
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Lemma 6.15 The left action of G and the right action of GL.n;R/ on GL.n;R/
specify an action of GL.n;R/Ì G on GL.n;R/ via .�;g/.x/D .gx/��1 for g 2G ,
x 2 GL.n;R/, and � 2 GL.n;R/.

Proof The required relation g � .x�/D .g �x/.g � �/ is immediate from the fact that
gW R!R is an automorphism of rings.

Recall the G–set U from Definition 6.1. By Proposition 6.9, RŒU � is an RG ŒG�–
module with

(6-16) g � .ru/D rggu for g 2G; r 2R and u 2 U:

Similarly, we have the entrywise (equivalently, diagonal) left action of g on Rn ,
g � .rei/ D rgei , where we think of G as acting trivially on the set feig. Regard
elements � 2 GL.n;R/ as homomorphisms � W Rn!Rn . That fixes the left action of
GL.n;R/ on Rn given by matrix multiplication, where elements of Rn are thought of
as row matrices.

Definition 6.17 We define the chaotic general linear category eGL G.n;R/. The
objects of eGL G.n;R/ are the monomorphisms of left R–modules ˛W Rn! RŒU �.
Let G act from the left on objects by g˛ D g ı˛ ıg�1 . By (6-16), we have

.g ı˛ ıg�1/
�X

riei

�
D

X
i

.g ı˛/.r
g�1

i ei//D
X

i

g.r
g�1

i /˛.ei/

D

X
i

r
g�1g
i .g �˛.ei//D

X
i

ri.g �˛.ei//:

In particular, .g˛/.ei/ D g � ˛.ei/. Let GL.n;R/ act from the right on objects by
˛� D ˛ ı � W Rn!RŒU �; this uses the left, not the right, action of GL.n;R/ on Rn .
Since eGL G.n;R/ is chaotic, this fixes the actions on the morphism set, which the
map .S;T / identifies with the product of two copies of the object set.

Proposition 6.18 The actions of G and GL.n;R/ on eGL G.n;R/ determine a left
action of GL.n;R/Ì G via

.�;g/˛ D .g˛/��1:

The classifying space jN eGL G.n;R/j is a universal principal .G;GL.n;R/G/–bundle.

Proof For the first claim, we must show that g.˛�/D .g˛/.g � �/W Rn!RŒU � for
˛W Rn!RŒU �, g 2G , and � D .ti;j / 2 GL.n;R/. On elements ei ,
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g.˛�/.ei/D g � .˛�/.ei/D g �

�
˛

�X
j

ti;j ej

��
D g �

X
j

.ti;j˛.ej //D
X

j

t
g
i;j .g �˛.ej //

D .g˛/

�X
j

t
g
i;j ej

�
D .g˛/.g � �/.ei/:

For each free R–module M �RŒU �, choose an R–linear isomorphism �M W R
n!M .

Sending ˛W Rn !M to ��1
M
ı ˛ specifies an isomorphism of right GL.n;R/–sets

from the set of objects ˛ with image M to GL.n;R/; the inverse sends � 2GL.n;R/
to �M ı � . Therefore GL.n;R/ acts freely on eGL G.n;R/. Since eGL G.n;R/ is
chaotic, it only remains to show that the set of objects of eGL G.n;R/

ƒ is nonempty if
ƒ\GL.n;R/Dfeg. By Lemma 4.5, ƒDf.�.h/; h/ j h2H g, where H is a subgroup
of G and �W H ! GL.n;R/ is a crossed homomorphism.

By Theorem 6.8, we may use � to endow Rn with a structure of left RH ŒH �–module.
By the assumed amenability of R, there is a monomorphism of left RH ŒH �–modules
Rn ! RŒA� for some finite H –set A. We can embed A in the finite G–set B D

G �H A and then B is isomorphic to a sub-G –set of U . This fixes a monomorphism
˛W Rn!RŒU � of left RH ŒH �–modules. Writing �.h/D .si;j / and �.h/�1 D .ti;j /,
we have

h˛.ej /D ˛.�.h/.ej //D ˛

�X
k

sj ;kek

�
D

X
k

sj ;k˛.ek/

and therefore, using the display in Definition 6.17,

..h˛/�.h/�1/.ei/D .h˛/

�X
j

ti;j ej

�
D

X
j

ti;j h �˛.ej /

D

X
j

X
k

ti;j sj ;k˛.ek/D ˛.ei/:

Definition 6.19 Let GLG.n;R/ be the orbit G –category eGL G.n;R/=GL.n;R/.

The classifying space jN GLG.n;R/j is a model for B.G;GL.n;R/G/. Up to isomor-
phism, the G –category GLG.n;R/ admits the following explicit description.

Lemma 6.20 The objects of GLG.n;R/ are the n–dimensional free R–submodules
M of RŒU �. The morphisms ˛W M ! N are the isomorphisms of R–modules.
The group G acts by translation on objects, so that gM D fgm j m 2M g, and by
conjugation on morphisms, so that .g˛/.gm/D ˛.m/ for m 2M and g 2G .

Algebraic & Geometric Topology, Volume 17 (2017)



Categorical models for equivariant classifying spaces 2601

Proof The objects ˛ of eGL G.n;R/ with a fixed image M are all in the same orbit.
Choose �M W R

n ! M to fix an orbit representative. In eGL G.n;R/, we have a
unique morphism �W �! ˇ for each object ˇW Rn! N . We define ˛W M ! N to
be the composite ˇ ı ��1

M
. The ˛ are isomorphisms of R–modules that give orbit

representatives specifying the morphisms of GLG.n;R/. As in the proof of Lemma 6.5,
the description of the action of G follows.
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