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Link homology and equivariant gauge theory

PRAYAT POUDEL

NIKOLAI SAVELIEV

Singular instanton Floer homology was defined by Kronheimer and Mrowka in
connection with their proof that Khovanov homology is an unknot detector. We study
this theory for knots and two-component links using equivariant gauge theory on
their double branched covers. We show that the special generator in the singular
instanton Floer homology of a knot is graded by the knot signature mod 4 , thereby
providing a purely topological way of fixing the absolute grading in the theory. Our
approach also results in explicit computations of the generators and gradings of the
singular instanton Floer chain complex for several classes of knots with simple double
branched covers, such as two-bridge knots, some torus knots, and Montesinos knots,
as well as for several families of two-component links.

57M27; 57R58

1 Introduction

This paper studies the Floer homology I�.†;L/ of two-component links L � † in
homology 3–spheres defined by Kronheimer and Mrowka [24] using singular SO.3/
instantons. An important special case of this theory is the singular instanton knot
Floer homology I \.k/ for knots k � S3 obtained by applying I�.S

3;L/ to the link L
which is a connected sum of k with the Hopf link. The Floer homology I�.†;L/
has a relative Z=4 grading, which can be upgraded to an absolute Z=4 grading in the
special case of I \.k/. Kronheimer and Mrowka [24] used I \.k/ and its close cousin
I ].k/ to prove that the reduced Khovanov homology is an unknot-detector.

The definition of the groups I�.†;L/ uses singular gauge theory, which makes them
difficult to compute. We propose a new approach to these computations which uses
equivariant gauge theory in place of the singular one. Given a two-component link L
in an integral homology sphere †, we pass to the double branched cover M !† with
branch set L and observe that the singular connections on † used in the definition of
I�.†;L/ pull back to equivariant smooth connections on M . The generators of the
Floer chain complex IC�.†;L/, whose homology is I�.†;L/, are then derived from
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the equivariant representations �1M ! SO.3/, and their Floer gradings are computed
using equivariant rather than singular index theory.1

As our first application of this approach, we determine the grading of the special
generator in the Floer chain complex IC \.k/ of a knot k � S3 ; see Section 5. This
fixes the absolute Z=4 grading on I \.k/ and confirms the conjecture of Hedden, Herald
and Kirk [20, Section 12.6].

Theorem For any knot k � S3 , the grading of the special generator in the Floer chain
complex IC \.k/ equals sign k .mod 4/.

We also achieve significant simplifications in computing the Floer chain complexes
IC \.k/ and IC�.†;L/ for knots and links with simple double branched covers, such as
torus and Montesinos knots and links, whose double branched covers are Seifert fibered
manifolds. Explicit calculations for these knots and links are possible because the gauge
theory on Seifert fibered manifolds is sufficiently well developed; see Fintushel and
Stern [15] and, in the equivariant setting, Collin and Saveliev [11] and Saveliev [36].
Here are sample results of our calculations:

(1) The Floer chain complex IC \.k/ of a two-bridge knot k is calculated in Section 7.1.
For example, the Floer chain complex of the figure-eight knot consists of free abelian
groups of ranks .1; 1; 2; 1/. In fact, the Kronheimer–Mrowka spectral sequence [24] is
known to collapse for all two-bridge knots k , which implies that IC \.k/D I \.k/ for
all such knots.

(2) The Floer chain complex IC \.k/ of a Montesinos knot k D k.p; q; r/ whose
double branched cover is a Brieskorn homology sphere †.p; q; r/ consists of free
abelian groups of ranks .1Cb; b; b; b/, where b equals �2 times the Casson invariant
of †.p; q; r/; see Section 7.2. General Montesinos knots are discussed in Section 7.3.

(3) The Floer chain complex IC�.S
3;L/ of two-component Montesinos links LD

K..a1; b1/; : : : ; .an; bn// whose double branched cover is a homology S1 � S2 is
calculated in Section 8.3. For example, the chain complex of the pretzel link L D
P .2;�3;�6/ consists of free abelian groups of ranks .2; 0; 2; 0/ up to cyclic permuta-
tion; see Section 8.2. It has zero differential, hence IC�.S

3;L/D I�.S
3;L/.

(4) Our calculations for torus knots are less satisfactory because the equivariant index
theory in this setting is less well developed. For instance, we prove that the Floer chain
complex IC \.k/ of a torus knot k D Tp;q with odd coprime integers p and q has
rank 1C4a, where aD� sign.Tp;q/=4, and we conjecture that the Floer chain groups

1The theory I�.†;L/ is different from I \.†;L/ studied in [24]: the latter is a Floer homology of a
three-component link obtained by summing L with the Hopf link.
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have ranks .1Ca; a; a; a/; see Section 7.4.2 A complete calculation of the Floer chain
complex of the torus knot T3;4 can be found in Example 7.9.

Some of the above results concerning two-bridge and torus knots were obtained earlier
by Hedden, Herald, and Kirk [20] using pillowcase techniques, which are completely
different from our equivariant methods. We do not discuss the more difficult problem of
computing the boundary operators in the Floer chain complexes IC \.k/ and IC�.†;L/.
Such calculations are still out of reach except in a few special cases. However, it may
be worth investigating whether our equivariant techniques can shed some light on
this problem.

Here is an outline of the paper. It begins with a sketch of the definition of I�.†;L/
mainly following Kronheimer and Mrowka [24] but using the language of projective
representations developed in Ruberman and Saveliev [33]; see also Dostoglou and
Salamon [13]. We obtain a purely algebraic description of the generators in IC�.†;L/
as well as of a certain natural Z=2˚Z=2 action on them, which is crucial to the rest
of the paper.

Equivariant gauge theory is developed in Section 3. The section begins with a computa-
tion of Z=2 cohomology rings of double branched covers M !† of two-component
links, followed by a computation of the characteristic classes of SO.3/–bundles on M

pulled back from orbifold bundles on †. The results are used to establish a bijective
correspondence between equivariant SO.3/ representations of �1M and orbifold
SO.3/ representations of �1†. In the rest of the section, we discuss equivariant index
theory which is used later in the paper to compute Floer gradings of the generators
in IC�.†;L/. Our equivariant index theory approach is also used to recover the
Kronheimer–Mrowka singular index formulas [24, Lemma 2.11] along the lines of
Wang’s paper [42].

The next five sections are dedicated to the singular knot Floer homology I \.k/ for
knots k � S3 . Section 4 describes generators in the chain complex IC \.k/ in terms
of equivariant representations �1Y ! SO.3/ on the double branched cover Y ! S3

with branch set the knot k . These representations fall into three categories: trivial,
reducible nontrivial, and irreducible.

The trivial representation � W �1Y !SO.3/ gives rise to a special generator ˛ 2 IC \.k/

which is used in [24] to fix an absolute grading on I \.k/. This generator is dealt with
in Section 5. We pass to the double branched cover and use Taubes index theory [40] on
manifolds with periodic ends to show that the Floer grading of ˛ equals sign k .mod 4/.

2Extensive calculations for torus knots have recently been done by Anvari [2] using similar equivariant
techniques.
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Having computed the absolute grading of ˛ , we only need to compute the relative
gradings of the remaining generators. We derive formulas for these gradings in Section 6
using equivariant index calculations on double branched covers, and apply these for-
mulas to Montesinos and torus knots in Section 7.

Section 8 contains calculations of IC�.†;L/ for several two-component links L not
of the form k\ . For the pretzel link L D P .2;�3;�6/ in the 3–sphere we obtain a
complete calculation of the Floer homology groups of P .2;�3;�6/ and not just of
the Floer chain complex. The same answer is independently confirmed by computing
the Floer homology of Harper and Saveliev [19] for this two-component link: the latter
theory is isomorphic to I�.†;L/ but does not use singular connections in its definition.

Finally, Section 8.3 contains proofs of some topological results, which were postponed
earlier in the paper for the sake of exposition.

Acknowledgements We are thankful to Ken Baker, Paul Kirk, and Daniel Ruberman
for useful discussions. Both authors were partially supported by NSF Grant 1065905.

2 Link homology

In this section, we will sketch the definition of the singular instanton Floer homology
I�.†;L/ of a two-component link L�† in an integral homology 3–sphere. We will
follow Kronheimer and Mrowka [24] closely, deviating in just two respects: we will
use the language of projective representations to describe the generators in the Floer
chain complex, and will introduce a canonical Z=2˚Z=2 action on these generators.

2.1 The Chern–Simons functional

Given a two-component link L in an integral homology sphere †, the second homology
of its exterior X D†� int N.L/ is isomorphic to a copy of Z spanned by either one
of the boundary tori of X . Let P !X be the unique SO.3/–bundle with a nontrivial
second Stiefel–Whitney class w2.P / 2H 2.X IZ=2/D Z=2. The flat connections in
this bundle serve as the starting point for building I�.†;L/. Since w2.P / evaluates
nontrivially on the boundary tori, these connections are necessarily irreducible and
have order-2 holonomy along the meridians of the link components. Therefore, they
give rise to flat connections in an orbifold SO.3/–bundle on †, which we again call
P . The homology sphere † itself is viewed as an orbifold with the orbifold singularity
L, equipped with a Riemannian metric with cone angle � along the singular set.

Kronheimer and Mrowka [24] interpreted the gauge equivalence classes of the orbifold
flat connections in P as the critical points of an orbifold Chern–Simons functional

(1) csW B.†;L/!R=Z;
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and defined I�.†;L/ as its Morse homology. An important feature of this construction
is the use of the restricted orbifold gauge group GS in the definition of the configuration
space,

B.†;L/DA.†;L/=GS ;

where A.†;L/ is an affine space of orbifold connections and GS is the quotient of the
determinant-1 orbifold gauge group G. LP / of Kronheimer and Mrowka [24, Section 2.6]
by its center f˙1g. The group GS is a normal subgroup of the full orbifold gauge
group G with the quotient G=GS DH 1.X IZ=2/DZ=2˚Z=2. The full gauge group G
acts on A.†;L/ preserving the gradient of cs, thereby giving rise to the residual action
of H 1.X IZ=2/ on the configuration space B.†;L/ and on the critical point set of the
Chern–Simons functional.

We will next describe the critical points of the functional (1) algebraically using the
holonomy correspondence between flat connections and representations of the funda-
mental group. A variant of this classical correspondence which applies to the situation
at hand was described in [33, Section 3.2] using projective SU.2/ representations. We
will review these first; see [33, Section 3.1] for details.

2.2 Projective representations

Let G be a finitely presented group and view the center of SU.2/ as Z=2D f˙1g. A
map �W G! SU.2/ is called a projective representation if

c.g; h/D �.gh/�.h/�1�.g/�1
2 Z=2 for all g; h 2G:

The function cW G � G ! Z=2 is a 2–cocycle on G defining a cohomology class
Œc� 2 H 2.GIZ=2/. This class has the following interpretation. The composition of
�W G! SU.2/ with AdW SU.2/! SO.3/ is a representation Ad �W G! SO.3/. As
such, it induces a continuous map BG! B SO.3/ which is unique up to homotopy.
The pullback of the universal Stiefel–Whitney class w2 2H 2.B SO.3/IZ=2/ via this
map is our class Œc�D w2.Ad �/ 2H 2.GIZ=2/. It serves as an obstruction to lifting
Ad �W G! SO.3/ to an SU.2/ representation.

Let PRc.GISU.2// be the space of conjugacy classes of projective representations
�W G ! SU.2/ whose associated cocycle is c . The topology on PRc.GISU.2// is
supplied by the algebraic set structure. One can easily see that PRc.GISU.2// is
determined uniquely up to homeomorphism by the cohomology class of c . The group
H 1.GIZ=2/D Hom.G;Z=2/ acts on PRc.GISU.2// by sending � to � � � for any
� 2 Hom.G;Z=2/. The orbits of this action are in a bijective correspondence with the
conjugacy classes of representations G! SO.3/ whose second Stiefel–Whitney class
equals Œc�. The bijection is given by taking the adjoint representation.
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Projective representations �W G ! SU.2/ can also be described in terms of a pre-
sentation G D F=R. Consider a homomorphism 
 W R! Z=2 defined by its values

 .r/D˙1 on the relators r 2R and by the condition that it is constant on the orbits
of the adjoint action of F on R. Also, choose a set-theoretic section sW G! F in the
exact sequence

1!R
i
�!F

�
�!G! 1

and let r W G�G!R be the function defined by the formula s.gh/D r.g; h/s.g/s.h/.

Proposition 2.1 A choice of a section sW G ! F establishes a bijective correspon-
dence between the conjugacy classes of projective representations �W G ! SU.2/
with the cocycle c.g; h/D 
 .r.g; h// and the conjugacy classes of homomorphisms
� W F ! SU.2/ such that i�� D 
 . A different choice of s results in a cohomologous
cocycle.

Proof We begin by checking that c.g; h/D
 .r.g; h// is a cocycle. For any g; h; k2G,
we have

s.ghk/D r.gh; k/s.gh/s.k/D r.gh; k/r.g; h/s.g/s.h/s.k/;

s.ghk/D r.g; hk/s.g/s.hk/D r.g; hk/s.g/r.h; k/s.h/s.k/;

which results in r.gh; k/r.g; h/D r.g; hk/s.g/r.h; k/s.g/�1 . Since the homomor-
phism 
 is constant on the orbits of the adjoint action of F on R, its application to
the above equality gives the cocycle condition c.gh; k/c.g; h/D c.g; hk/c.h; k/ as
desired.

Now, given a homomorphism � W F!SU.2/ such that i�� D 
 , define �W G!SU.2/
by the formula �.g/D �.s.g//. Then

�.gh/D �.s.gh//D �.r.g; h/s.g/s.h//

D 
 .r.g; h//�.s.g//�.s.h//D c.g; h/�.g/�.h/;

hence � is a projective representation with cocycle c . It is clear that conjugate repre-
sentations � define conjugate projective representations � , and that a different choice
of s leads to a cohomologous cocycle c .

The inverse correspondence is defined as follows. Given a projective representation
�W G ! SU.2/, write elements of F in the form r � s.g/ with r 2 R and g 2 G ,
and define � W F ! SU.2/ by the formula �.r � s.g// D 
 .r/�.g/. That � is a
homomorphism can be checked by a straightforward calculation using the fact that
c.g; h/D 
 .r.g; h//.
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Example 2.2 Let G D �1M be the fundamental group of a manifold M obtained
by 0–surgery on a knot k in an integral homology sphere †. The group �1M is
obtained from �1K by imposing the relation �D 1, where � is a canonical longitude
of k . Therefore, �1M admits a presentation �1M D F=R with � being one of the
relators. Let 
 .�/D�1 and 
 .r/D 1 for the rest of the relators r 2R. It has been
known since Floer [16] that the action of H 1.M IZ=2/DZ=2 on the set of conjugacy
classes of projective representations � W F ! SU.2/ with i�� D 
 is free, providing
a two-to-one correspondence between this set and the set of the conjugacy classes of
representations �1M ! SO.3/ with nontrivial w2 2H 2.M IZ=2/D Z=2.

2.3 Holonomy correspondence

We will now apply the general theory of Section 2.2 to the group G D �1X , where
X is the exterior of a two-component link L in an integral homology sphere †. We
begin with the following simple observation.

Lemma 2.3 Unless the link L is split, H 2.X IZ=2/DH 2.�1X IZ=2/D Z=2. For
split links, I�.†;L/D 0.

Proof For a split link L, the splitting sphere generates the group H2.X IZ/ D Z.
Since there are no flat connections on this sphere with nontrivial w2.P /, the group
I�.†;L/ must vanish. For a nonsplit link, the claimed equality follows from the Hopf
exact sequence

�2.X /!H2.X /!H2.�1X /! 0

and the vanishing of the Hurewicz homomorphism �2.X /!H2.X /.

From now on, we will assume that the link L�† is not split. The holonomy correspon-
dence of [33, Section 3.1] identifies the critical point set of the functional (1) with the set
PRc.X;SU.2// of conjugacy classes of projective representations �W �1X ! SU.2/,
for any choice of cocycle c such that 0¤ Œc�D w2.P / 2H 2.X IZ=2/D Z=2. Note
that this identification commutes with the H 1.X IZ=2/ action, and that the orbits
of this action on PRc.X;SU.2// are in bijective correspondence with the conjugacy
classes of representations Ad �W �1X ! SO.3/ having w2.Ad �/¤ 0.

Lemma 2.4 Any representation Ad �W �1X ! SO.3/ with w2.Ad �/ ¤ 0 is irre-
ducible, that is, its image is not contained in a copy of SO.2/� SO.3/.

Proof The restriction of � to either boundary torus of X has nontrivial second Stiefel–
Whitney class, which implies that it does not lift to an SU.2/ representation. However,
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any reducible representation �1T 2! SO.3/ admits an SU.2/ lift, therefore, the image
of � cannot be contained in a copy of SO.2/� SO.3/. It is essential here that H1.T

2/

has no 2–torsion: a nontrivial SO.3/ representation of Z=2 is reducible but does not
admit an SU.2/ lift.

2.4 Floer gradings

Given flat orbifold connections � and � in the orbifold bundle P !†, consider an
arbitrary orbifold connection A in the pullback bundle on the product R�† matching
� and � near the negative and positive ends, respectively. Equip R �† with the
orbifold product metric and consider the ASD operator

(2) DA .�; �/D�d�A˚ dC
A
W �1.R�†; ad P /! .�0

˚�2
C/.R�†; ad P /

completed in the orbifold Sobolev L2 norms as in [24, Section 3.1]. Since � and �
are irreducible, this operator will be Fredholm if we further assume that � and � are
nondegenerate as the critical points of the Chern–Simons functional (1). Define the
relative Floer grading as

(3) gr.�; �/D indDA .�; �/ .mod 4/:

This grading is well defined because replacing either � or � by its gauge equivalent
within the restricted gauge group GS results in adding a multiple of four to the index
of DA , see [24, Section 2.5]. This is no longer true if we use the full gauge group.
The following lemma makes it precise; it will be proved in Section 3.7.

Lemma 2.5 Let �1 and �2 be the generators of H 1.X IZ=2/D Z=2˚Z=2 dual to
the meridians of the link LD `1[ `2 . Then

gr.�1 � �; �/D gr.�2 � �; �/D gr.�; �/C 2 � ı .mod 4/;

and similarly for the action on � , where

ı D

�
0 if `k.`1; `2/ is odd;
1 if `k.`1; `2/ is even:

2.5 Perturbations

The critical points of the Chern–Simons functional need not be nondegenerate, therefore
we may have to perturb it to define I�.†;L/. The perturbations used in [24, Section 3.4]
are the standard Wilson loop perturbations along loops in † disjoint from the link L.
There are sufficiently many such perturbations to guarantee the nondegeneracy of the
critical points of the perturbed Chern–Simons functional as well as the transversality
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properties for the moduli spaces of trajectories of its gradient flow. This allows us to
define the boundary operator and to complete the definition of I�.†;L/.

3 Equivariant gauge theory

In this section, we survey some equivariant gauge theory on the double branched cover
M !† of a homology sphere † with branch set a two-component link L. It will be
used in the forthcoming sections to make headway in computing the link homology
I�.†;L/.

3.1 Topological preliminaries

Let † be an integral homology 3–sphere and LD `1[ `2 a link of two components
in †. The link exterior X D †� int N.L/ is a manifold whose boundary consists
of two tori, with H1.X IZ/ D Z2 spanned by the meridians �1 and �2 of the link
components. The homomorphism �1X ! Z=2 sending �1 and �2 to the generator
of Z=2 gives rise to a regular double cover zX ! X , and also to a double branched
cover � W M ! † with branching set L and the covering translation � W M ! M .
Denote by �.t/ the one-variable Alexander polynomial of L.

Proposition 3.1 The first Betti number of M is 1 if �.�1/D 0 and 0 otherwise. In
the latter case, H1.M IZ/ is a finite group of order j�.�1/j. The induced involution
��W H1.M /!H1.M / is multiplication by �1.

Proof This is essentially proved in Kawauchi [21, Section 5.5]. The statement about ��
follows from an isomorphism of ZŒt; t�1� modules H1.M /DH1.E/=.1C t/H1.E/,
where E is the infinite cyclic cover of X , established in [21, Theorem 5.5.1]. A
completely different proof for the special case of double branched covers of S3 with
branch set a knot can be found in Ruberman [31, Lemma 5.5].

Proposition 3.2 Let M be the double branched cover of an integral homology sphere
with branch set a two-component link. Then Hi.M IZ=2/DH i.M IZ=2/ is isomor-
phic to Z=2 if i D 0; 1; 2; 3, and is zero otherwise. The cup product

H 1.M IZ=2/�H 1.M IZ=2/!H 2.M IZ=2/

is given by the linking number `k.`1; `2/ .mod 2/.

The proof of Proposition 3.2 will be postponed until Section 8.3 for the sake of
exposition.

An important example of L to consider is the two-component link k\ obtained as
the connected sum of a knot k � S3 with the Hopf link. The double branched
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cover M ! S3 in this case is the connected sum M D Y # RP3 , where Y is the
double branched cover of k . Proposition 3.2 easily follows because H�.Y IZ=2/D
H�.S

3IZ=2/.

3.2 The orbifold exact sequence

We will view † DM=� as an orbifold with the singular set L. To be precise, the
regular double cover zX ! X is a 3–manifold whose boundary consists of two tori,
and

M D zX [h N.L/;

where the gluing homeomorphism hW @ zX ! @N.L/ identifies ��1.�i/ with the merid-
ian �i for i D 1; 2. The involution � W M !M acts by meridional rotation on N.L/,
thereby fixing the link L, and by covering translation on zX . Define the orbifold
fundamental group

�V
1 .†;L/D �1X=h�1

2
D �2

2
D 1i:

Then the homotopy exact sequence of the covering zX !X gives rise to a split short
exact sequence, called the orbifold exact sequence,

(4) 1! �1M
��
�!�V

1 .†;L/
j
�!Z=2! 1:

The homomorphism j maps the meridians �1; �2 to the generator of Z=2 and one
obtains a splitting by sending this generator to either �1 or �2 .

It follows from the definition of the orbifold fundamental group �V
1
.†;L/ that its

abelianization is given by

H1.X /=h�1
2
D �2

2
D 1i DH1.X IZ=2/D Z=2˚Z=2;

with the canonical generators �1 and �2 . The homomorphism �� of the orbifold
exact sequence (4) then induces a map ��W H1.M IZ=2/!H1.X IZ=2/, which can
be described as follows.

Lemma 3.3 The homomorphism ��W H1.M IZ=2/!H1.X IZ=2/ sends the gener-
ator of H1.M IZ=2/D Z=2 to the sum of the meridians �1C�2 2H1.X IZ=2/.

Proof That H1.M IZ=2/DZ=2 follows from Proposition 3.2. An explicit generator
of this group is described in the proof of Proposition A.2 as the circle ��1.w/, where
w is an embedded arc in † with endpoints on the two different components of L. The
commutative diagram
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�1M �V
1
.†;L/

�1
zX �1X

��

��

gives rise to the commutative diagram in homology

H1.M IZ=2/ H1.X IZ=2/

H1. zX IZ=2/ H1.X IZ=2/

��

��

The cycle ��1.w/ in M is homologous to a cycle in zX which consists of the two
arcs ��1.w/\ zX whose endpoints on each of the tori in @ zX are connected by an arc.
The map ��W H1. zX IZ=2/!H1.X IZ=2/ takes the homology class of this cycle to
�1C�2 , and the result follows.

3.3 Pulled-back bundles

Let P ! † be the orbifold SO.3/–bundle used in the definition of I�.†;L/ in
Section 2. It pulls back to an orbifold SO.3/–bundle Q!M because the projection
map � W M ! † is regular in the sense of Chen and Ruan [10]. The bundle Q is
in fact smooth because orbifold connections on P with order-2 holonomy along the
meridians of L lift to connections in Q with trivial holonomy along the meridians of
the two-component link zLD ��1.L/.

Proposition 3.4 The bundle Q!M is nontrivial.

The rest of this section is dedicated to the proof of this proposition. We will accomplish
it by showing that w2.Q/ 2H 2.M IZ=2/D Z=2 is nonvanishing. Our argument will
split into two cases, corresponding to the parity of the linking number between the
components of L.

Suppose that `k.`1; `2/ is even and consider the regular double cover � W M � zL!
†�L. It gives rise to the Gysin exact sequence

� � � H 1.†�LIZ=2/ H 2.†�LIZ=2/ H 2.M � zLIZ=2/
[w1 ��

H 2.†�LIZ=2/ H 3.†�LIZ=2/ � � �
[w1

where [w1 means taking the cup product with the first Stiefel–Whitney class of the
cover. The cup product on H�.†�LIZ=2/ can be determined from the following
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commutative diagram:

H 1.†�LIZ=2/�H 1.†�LIZ=2/ H 2.†�LIZ=2/

H2.†;LIZ=2/�H2.†;LIZ=2/ H1.†;LIZ=2/

PD PD

[

�

where PD stands for the Poincaré duality isomorphism and the dot in the upper row
for the intersection product. Note that Seifert surfaces of knots `1 and `2 generate
H2.†;LIZ=2/DZ=2˚Z=2, and any arc in † with one endpoint on `1 and the other
on `2 generates H1.†;LIZ=2/D Z=2. An easy calculation shows that, with respect
to these generators, the intersection product is given by the matrix�

0 `k.`1; `2/

`k.`1; `2/ 0

�
:

Since `k.`1; `2/ is even, this gives a trivial cup product structure on the link com-
plement †�L. Therefore, the map [w1 in the Gysin sequence is zero and the map
��W H 2.†�LIZ=2/!H 2.M�zLIZ=2/ is injective. Since w2.P /2H 2.†�LIZ=2/
is nonzero we conclude that ��.w2.P //¤ 0. This implies that w2.Q/¤ 0 because
QD ��P over M � zL.

Now suppose that `k.`1; `2/ is odd. The above calculation implies that the second
Stiefel–Whitney class of ��P vanishes in H 2.M � zLIZ=2/. We will prove, however,
that w2.Q/ 2H 2.M IZ=2/ is nonzero, by showing that Q carries a flat connection
with nonzero w2 .

Note that the orbifold bundle P carries a flat SO.3/ connection whose holonomy is a
representation ˛W �V

1
.†;L/! SO.3/ of the orbifold fundamental group �V

1
.†;L/D

�1X=h�1
2 D �2

2 D 1i sending the two meridians to Ad i and Ad j . This flat
connection pulls back to a flat connection on Q with holonomy ��˛W �1M ! SO.3/.
We wish to compute the second Stiefel–Whitney class of ��˛ .

Lemma 3.5 The representation ��˛W �1M ! Z=2˚Z=2 is nontrivial.

Proof Our proof will rely on the orbifold exact sequence (4). Assume that ��˛ is
trivial. Then �1M � ker.��˛/, hence ˛ factors through �V

1
.†;L/=��.�1M /!

Z=2˚Z=2. Since �V
1
.†;L/=��.�1M /D Z=2, we obtain a contradiction with the

surjectivity of ˛ .

Since the group Z=2˚Z=2 is abelian, the representation ��˛W �1M ! Z=2˚Z=2
factors through a homomorphism H1.M /! Z=2˚ Z=2 which is uniquely deter-
mined by its two components � , � 2 Hom.H1.M /;Z=2/ D H 1.M IZ=2/ D Z=2;
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see Proposition 3.2. A calculation identical to that in [33, Proposition 4.3] shows that
w2.�

�˛/D �[ �C �[�C�[� (note that, unlike in [33], the classes �[ � and �[�
need not vanish). Since � and � cannot both be trivial by Lemma 3.5, we may assume
without loss of generality that � ¤ 0. If �D 0 then w2.�

�˛/D � [ � . If �¤ 0 then
� D � due to the fact that H 1.M IZ=2/DZ=2, and therefore again w2.�

�˛/D �[� .
Since `k.`1; `2/ is odd, it follows from Proposition 3.2 that w2.�

�˛/¤ 0.

3.4 Pulled-back representations

Assuming that L � † is nonsplit, we identified in Section 2.3 the critical point set
of the Chern–Simons functional (1) with the space PRc.X;SU.2// of the conjugacy
classes of projective representations �1X ! SU.2/ on the link exterior, for any
choice of cocycle c not cohomologous to zero. We further identified the quotient of
PRc.X;SU.2// by the natural H 1.X IZ=2/ action with the subspace Rw.X ISO.3//
of the SO.3/ character variety of �1X cut out by the condition w2 ¤ 0. The latter
condition implies that both meridians �1 and �2 are represented by SO.3/ matrices
of order 2, which leads to a natural identification of this subspace with

R!.†;LISO.3//D
˚
�W �V

1 .†;L/! SO.3/ j w2.�/¤ 0
	
=Ad SO.3/;

where the condition w2.�/ ¤ 0 applies to the representation � restricted to X. To
summarize, the group H 1.X IZ=2/ acts on PRc.X;SU.2// with the quotient map

PRc.X;SU.2//!R!.†;LISO.3//:

We now wish to study R!.†;LISO.3// using representations on the double branched
cover M !† equivariant with respect to the covering translation � W M !M .

Lemma 3.6 Let �W �V
1
.†;L/ ! SO.3/ be a representation with w2.�/ ¤ 0 and

���W �1M ! SO.3/ its pullback via the homomorphism �� of the orbifold exact
sequence (4). Then there exists an element u 2 SO.3/ of order 2 such that ��.���/D
u � .���/ �u�1 .

Proof Let zX!X be the regular double cover as in Section 3.2. Choose a basepoint b

in one of the boundary tori of zX and consider the commutative diagram

�1. zX ; b/ �1. zX ; �.b// �1. zX ; b/

�1.X; �.b// �1.X; �.b//

��

�� �� ��

'

 f
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whose maps  f and ' are defined as follows. Given a path f W Œ0; 1�! X from b

to �.b/, take its inverse xf .s/ D f .1 � s/ and define the map  f by the formula
 f .ˇ/D f �ˇ � xf . Since �.b/D �.�.b//, the path f projects to a loop in X based
at �.b/, and the map ' is the conjugation by that loop. In fact, one can choose the
path f to project onto the meridian �i of the boundary torus on which �.b/ lies so
that '.x/ D �i � x � �

�1
i . After filling in the solid tori, we obtain the commutative

diagram

�V
1
.†;L/ �V

1
.†;L/

�1M �1M

'

��

�� ��

which tells us that, for any �W �V
1
.†;L/! SO.3/, the pullback representation ���

has the property that ��.���/D u � .���/ �u�1 with uD �.�i/ of order 2.

Example 3.7 Let L� S3 be the Hopf link. Then M DRP3 and the orbifold exact
sequence (4) takes the form

1! Z=2
��
�!Z=2˚Z=2

j
�!Z=2! 1

with the two copies of Z=2 in the middle group generated by the meridians �1 and �2 .
Define �W Z=2˚Z=2!SO.3/ on the generators by �.�1/DAd i and �.�2/DAd j ;
up to conjugation, this is the only representation Z=2! SO.3/ with w2.�/¤ 0. The
pullback representation ���W Z=2! SO.3/ sends the generator to Ad i �Ad j DAd k .
Since ��.���/ D ��� , the identity ��.���/ D u � .���/ � u�1 holds for multiple
choices of u, including the second-order u of the form uD Ad q , where q is any unit
quaternion such that �qk D kq .

Given a double branched cover � W M ! † with branch set L and the covering
translation � W M !M , define

R!.M ISO.3//D
˚
ˇW �1M ! SO.3/ j w2.ˇ/¤ 0

	
=Ad SO.3/:

Since w2.�
�ˇ/Dw2.ˇ/2H 2.M IZ=2/DZ=2, the pullback of representations via �

gives rise to a well defined involution

(5) ��W R!.M ISO.3//!R!.M ISO.3//:

Its fixed point set Fix.��/ consists of those conjugacy classes of representations
ˇW �1M ! SO.3/ such that w2.ˇ/¤ 0 and there exists an element u 2 SO.3/ having
the property that ��ˇ D u �ˇ �u�1 . Consider the subvariety

(6) R�w.M ISO.3//� Fix.��/
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defined by the condition that the conjugating element u can be chosen to be of order 2.
This subvariety is well defined because all elements of order 2 in SO.3/ are conjugate
to each other. The following proposition is the main result of this section.

Proposition 3.8 The homomorphism ��W �1M ! �V
1
.†;L/ of the orbifold exact

sequence (4) induces via the pullback a homeomorphism

��W R!.†;LISO.3//!R�!.M ISO.3//:

Proof Orbifold representations �V
1
.†;L/! SO.3/ with nontrivial w2 pull back to

representations �1M ! SO.3/ with nontrivial w2 ; see Section 3.3. In addition, these
pullback representations are equivariant in the sense of Lemma 3.6. Therefore, the map

��W R!.†;LISO.3//!R�!.M ISO.3//

is well defined. To finish the proof, we will construct an inverse of �� . Given
ˇW �1M ! SO.3/ whose conjugacy class belongs to R�!.M ISO.3//, there exists an
element u2SO.3/ of order 2 such that ��ˇDu�ˇ �u�1 . The pair .ˇ;u/ then defines an
SO.3/ representation of �V

1
.†;L/D�1M ÌZ=2 by the formula �.x; t`/D ˇ.x/ �u` ,

where x 2 �1M and t is the generator of Z=2.

3.5 Equivariant index

All orbifolds we encounter in this paper are obtained by taking the quotient of a smooth
manifold by an orientation-preserving involution. The orbifold elliptic theory on such
global quotient orbifolds is equivalent to the equivariant elliptic theory on their branched
covers; see for instance [42]. In particular, the orbifold index of the ASD operator (2)
can be computed as an equivariant index as explained below.

Let X be a smooth oriented Riemannian 4–manifold without boundary, which may or
may not be compact. If X is not compact, we assume that its only noncompactness
comes from a product end .0;1/�Y equipped with a product metric. Let � W X !X

be a smooth orientation-preserving isometry of order 2 with nonempty fixed point set F

making X into a double branched cover over X 0 with branch set F 0 . Let P !X be
an SO.3/–bundle to which � lifts so that its action on the fibers over the fixed point
set of � has order 2. This lift will be denoted by z� W P ! P . The quotient of P by
the involution z� is naturally an orbifold SO.3/–bundle P 0!X 0 , and any equivariant
connection A in P gives rise to an orbifold connection A0 in P 0 . The ASD operator

DA .X /D�d�A˚ dC
A
W �1.X; ad P /! .�0

˚�2
C/.X; ad P /

associated with A is equivariant in that the diagram

Algebraic & Geometric Topology, Volume 17 (2017)



2650 Prayat Poudel and Nikolai Saveliev

�1.X; ad P / .�0˚�2
C/.X; ad P /

�1.X; ad P / .�0˚�2
C/.X; ad P /

z�� z��

DA .X /

DA .X /

commutes, giving rise to the orbifold operator

DA0 .X
0/W �1.X 0; ad P 0/! .�0

˚�2
C/.X

0; ad P 0/:

From this we immediately conclude that

(7) indDA0 .X
0/D indD�A.X /;

where D�
A
.X / is the operator DA .X / restricted to the .C1/–eigenspaces of the invo-

lution z�� . If X is closed, the operators in (7) are automatically Fredholm. If X has
a product end, we ensure Fredholmness by completing with respect to the weighted
Sobolev norms

k'kL2
k;ı
.X / D kh �'kL2

k
.X /;

where hW X !R is a smooth function which is �–invariant and which, over the end,
takes the form h.t;y/ D eıt for a sufficiently small positive ı . We choose to work
with these particular norms to match the global boundary conditions of Atiyah, Patodi
and Singer [4].

In particular, if � and � are nondegenerate critical points of the orbifold Chern–Simons
functional on †, they pull back to the flat connections ��� and ��� on the double
branched cover M !†. The formula (3) for the relative Floer grading can then be
written as

gr.�; �/D indD�A.�
��; ���/ .mod 4/;

where A is an equivariant connection on R � Y whose limits at the negative and
positive ends are ��� and ��� , respectively. The index in the above formula can
be understood as the L2

ı
index for any sufficiently small ı � 0 because the operator

D�
A
.���; ���/ is Fredholm in the usual L2 Sobolev completion.

3.6 Index formulas

Let us continue with the setup of the previous subsection. One can easily see that

indD�A.X /D
1
2

indDA .X /C
1
2

ind.�;DA /.X /;

where
ind.�;DA /.X /D tr.z��j kerDA .X //� tr.z��j cokerDA .X //:
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We will use this observation together with the standard index theorems to obtain explicit
formulas for the index of the operators in question.

Proposition 3.9 Let X be a closed manifold. Then

indD�A.X /D�p1.P /�
3
4
.�.X /C�.X //C 1

4
.�.F /CF �F /:

Proof The index of DA .X / can be expressed topologically using the Atiyah–Singer
index theorem [6]. Since the operator DA has the same symbol as the positive chiral
Dirac operator twisted by SC˝ .ad P /C (see [3]), we obtain

indDA .X /D

Z
X

yA.X / ch.SC/ ch.ad P /C

D

Z
X

�2p1.A/�
1
2
p1.TX /� 3

2
e.TX /

D�2p1.P /�
3
2
.�.X /C�.X //;

using the Hirzebruch signature theorem in the last line. A similar expression for
ind.�;DA /.X / is obtained using the G–index theorem of Atiyah and Singer [6].
For the twisted Dirac operator in question, an explicit calculation in Shanahan [39,
Section 19] leads us to the formula

ind.�;DA /.X /D�
1

2

Z
F

.e.TF /C e.NF // chg.ad P /C D
1
2
.�.F /CF �F /:

Here TF and NF are the tangent and the normal bundle of the fixed point set F �X ,
and the zero-order term in chg.ad P /C equals �1 because this is the trace of the
second-order SO.3/ operator acting on the fiber. Adding these formulas together, we
obtain the desired formula.

Remark 3.10 Our formula matches the formulas for indDA0 .X
0/ of Kronheimer and

Mrowka [24, Lemma 2.11] and Wang [42, Theorem 18],

indDA0 .X
0/D�p1.P /�

3
2
.�.X 0/C�.X 0//C�.F 0/C 1

2
F 0 �F 0;

after taking into account that F 0�F 0D2.F �F /, �.F /D�.F 0/, 2�.X 0/D�.X /C�.F /,
and 2�.X 0/D �.X /CF �F ; see for instance Viro [41].

Next, let X be a manifold with a product end .0;1/ � Y , where Y need not be
connected, and work with the L2

ı
norms for sufficiently small ı > 0. In a temporal

gauge over the end, the operator DA .X / takes the form DA .X /D @=@t CKA.t/ .
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Proposition 3.11 Let X be a manifold with product end as above, and A an equivari-
ant connection whose limit over the end is a flat connection ˇ . Then

indD�A.X /D
1

2

Z
X

yA.X / ch.SC/ ch.ad P /C

C
1
4
.�.F /CF �F /� 1

4
.hˇ � �ˇ.0//�

1
4
.h�ˇ � �

�
ˇ.0//:

The notation here is as follows:

� hˇ is the dimension of H 0.Y I adˇ/˚H 1.Y I adˇ/;

� h�
ˇ

is the trace of the map induced by z�� on H 0.Y I adˇ/˚H 1.Y I adˇ/;

� �ˇ.0/ is the Atiyah–Patodi–Singer spectral asymmetry of Kˇ ; and

� ��
ˇ
.0/ its equivariant version, defined as follows. For any eigenvalue � of the

operator Kˇ , the �–eigenspace W
ˇ

�
is acted upon by z�� with trace tr.z��jW ˇ

�
/.

The infinite series

��ˇ.s/D
X
�¤0

sign� � tr.z��jW ˇ

�
/j�j�s

converges for Re.s/ large enough and has a meromorphic continuation to the
entire complex s–plane with no pole at s D 0; see Donnelly [12]. This makes
��
ˇ
.0/ a well-defined real number.

Proof of Proposition 3.11 The index indDA .X / can be computed using the index
theorem of Atiyah, Patodi and Singer [4] as

indDA .X /D

Z
X

yA.X / ch.SC/ ch.ad P /C �
1
2
.hˇ � �ˇ.0//.Y /;

and ind.�;DA /.X / using its equivariant counterpart, the G–index theorem of Don-
nelly [12], as

ind.�;DA /.X /D
1

2

Z
F

.e.TF /C e.NF //� 1
2
.h�ˇ � �

�
ˇ.0//.Y /:

The desired formula now follows because, according to the Gauss–Bonnet theorem,Z
F

e.TF /D �.F / and
Z

F

e.NF /D F �F:

Example 3.12 Let P ! Y be a trivial SO.3/–bundle with an involution z� acting as
a second-order operator on the fibers. Application of Proposition 3.11 to the product
connection A on the manifold X DR�Y results in the formula indD�

�
.X /D�1, which

corresponds to the fact that the .C1/–eigenspace of the involution z��W H 0.X I ad �/!
H 0.X I ad �/ is 1–dimensional.
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3.7 Proof of Lemma 2.5

Since both � and � are irreducible and nondegenerate, we have gr.�1 � �; �/ D

gr.�1 � �; �/C gr.�; �/. Therefore, we only need to compute gr.�1 � �; �/ .mod 4/.

Let g 2 G be a gauge transformation matching � and �1 � � . The mapping torus of g

is an orbifold bundle P0 over S1 �†, and

gr.�1 � �; �/D indDA .S
1
�†/ .mod 4/

for any choice of orbifold connection A in P0 . Let M be the double branched cover
of † with branch set L. Then the index in the above formula, treated as an equivariant
index on S1 �M , equals �p1.Q0/ by the formula of Proposition 3.9 applied to the
pullback bundle Q0 D �

�P0 . This reduces the above formula to

gr.�1 � �; �/D�p1.Q0/ .mod 4/:

To compute the Pontryagin number p1.Q0/ we observe that the bundle Q0 on S1�M

can be obtained from the bundle QD��P on M as the mapping torus of a gauge trans-
formation matching ��� with ��.�1 ��/D � ��

�� , where �D ���1 2H 1.M IZ=2/.
According to Braam and Donaldson [8, Part II, Propositions 1.9 and 1.13],

p1.Q0/D 2 � .�[w2.Q/C �[ �[ �/ŒM � .mod 4/:

We already know that w2.Q/ is a generator of H 2.M IZ=2/DZ=2; see Proposition 3.4.
It follows from Lemma 3.3 that the class � is a generator of H 1.M IZ=2/DZ=2. The
desired formula now follows from the calculation of the cohomology ring H�.M IZ=2/
in Proposition 3.2.

4 Knot homology: the generators

We will now use the equivariant theory of Section 3 to better understand the chain
complex IC \.k/ which computes the singular instanton knot homology I \.k/ D

I�.S
3; k\/ of Kronheimer and Mrowka [24]. In this section, we will describe the

conjugacy classes of projective SU.2/ representations on the exterior of k\ with
nontrivial Œc� and separate them into the orbits of the canonical Z=2˚Z=2 action.
The next two sections will be dedicated to computing Floer gradings.

4.1 Projective representations

Given a knot k � S3 , denote by K D S3 � int N.k/ its exterior and by K\ D

S3 � int N.k\/ the exterior of the two-component link k\ D k [ ` obtained as the
connected sum of k with the Hopf link. The Wirtinger presentation

�1K D ha1; a2; : : : ; an j r1; : : : ; rmi
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with meridians ai and relators rj gives rise to the Wirtinger presentation

�1K\
D ha1; a2; : : : ; an; b j r1; : : : ; rm; Œa1; b�D 1i;

where b stands for the meridian of the component `. Since the link k\ is not split, it
follows from Lemma 2.3 that H 2.�1K\IZ=2/DH 2.K\IZ=2/DZ=2. The generator
of the latter group evaluates nontrivially on both boundary components of K\ , which
makes it Poincaré dual to any arc connecting these two boundary components. It follows
from Proposition 2.1 that the projective representations with nontrivial Œc� which we
are interested in are precisely the homomorphisms �W F ! SU.2/ of the free group F

generated by the meridians a1; : : : ; an; b such that

�.r1/D � � � D �.rn/D 1 and �.Œa1; b�/D�1:

Representations � are uniquely determined by the SU.2/ matrices Ai D �.ai/ and
B D �.b/ subject to the above relations, and the space PRc.K

\;SU.2// consists of
all such tuples .A1; : : : ;AnIB/ up to conjugation.

The relation A1B D�BA1 implies that, up to conjugation, A1D i and B D j . Since
the Wirtinger relations r1 D 1; : : : ; rm D 1 are of the form aiaj a�1

i D ak , all the
matrices Ai must have zero trace. In particular, the matrices A1 D � � � D An D i

and B D j satisfy all of the relations, thereby giving rise to the special projective
representation ˛ D .i; i; : : : ; i I j /. On the other hand, if we assume that not all Ai

commute with each other, we have an entire circle of projective representations,

(8) .i; ei'A2e�i' ; : : : ; ei'Ane�i'
I j /:

It is parametrized by e2i' 2 S1 because the center of SU.2/ is the stabilizer of
the adjoint action of SU.2/ on itself. Note that two tuples like (8) are conjugate
if and only if they are equal to each other. One can easily see that the formula
 .A1; : : : ;AnIB/D .A1; : : : ;An/ defines a surjective map

(9)  W PRc.K
\;SU.2//!R0.K;SU.2//;

where R0.K;SU.2// is the space of the conjugacy classes of traceless representations
�0W �1K ! SU.2/. If �0 is irreducible, the fiber C.�0/ D  �1.Œ�0�/ is a circle
of the form (8). The special projective representation ˛ is a fiber of (9) in its own
right over the unique (up to conjugation) reducible traceless representation �1K!

H1.K/! SU.2/ sending all the meridians to the same traceless matrix i . Therefore,
assuming that R0.K;SU.2// is nondegenerate, the space PRc.K

\;SU.2// consists of
an isolated point and finitely many circles, one for each conjugacy class of irreducible
representations in R0.K;SU.2//. The same result holds in general after perturbation.
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4.2 The action of H 1.K \IZ=2/

The group H 1.K\IZ=2/ D Z=2˚ Z=2 generated by the duals �k and �` of the
meridians of the link k\ D k [ ` acts on the space of projective representations
PRc.K

\;SU.2// as explained in Section 2.2. In terms of the tuples (8), the generators
�k and �` send .i; ei'A2e�i' ; : : : ; ei'Ane�i' I j / to

.�i;�ei'A2e�i' ; : : : ;�ei'Ane�i'
I j / and .i; ei'A2e�i' ; : : : ; ei'Ane�i'

I �j /;

respectively. The isolated point ˛ D .i; i; : : : ; i I j / is a fixed point of this action since

.�i;�i; : : : ;�i I j /Dj �.i; i; : : : ; i I j /�j�1; .i; i; : : : ; i I �j /D i �.i; i; : : : ; i I j /�i�1:

To describe the action of �` on the circle C.�0/ for an irreducible �0 , conjugate
.i; ei'A2e�i' ; : : : ; ei'Ane�i' I �j / by i to obtain

.i; ei.'C�=2/A2e�i.'C�=2/; : : : ; ei.'C�=2/Ane�i.'C�=2/
I j /:

Since the circle C.�0/ is parametrized by e2i' , we conclude that the involution �`
acts on C.�0/ via the antipodal map.

The action of �k on the circle C.�0/ for an irreducible �0 will depend on whether
�0 is a binary dihedral representation or not. Recall that a representation �0W �1K!

SU.2/ is called binary dihedral if it factors through a copy of the binary dihedral
subgroup S1[j �S1�SU.2/, where S1 stands for the circle of unit complex numbers.
Equivalently, �0 is binary dihedral if its adjoint representation Ad.�0/W �1K! SO.3/
is dihedral in that it factors through a copy of O.2/ embedded into SO.3/ via the map
A! .A; det A/.

One can show that a representation �0 is binary dihedral if and only if ���0 is conjugate
to �0 , where �W �1K! Z=2 is the generator of H 1.KIZ=2/ D Z=2. Note that �
defines an involution on R0.K;SU.2// which makes the following diagram commute:

PRc.K
\;SU.2// R0.K;SU.2//

PRc.K
\;SU.2// R0.K;SU.2//

�k �

�

�

The action of �k can now be described as follows. If an irreducible �0W �1K! SU.2/
is not binary dihedral, the involution �k takes the circle C.�0/ to the circle C.� � �0/.
Since � � �0 is not conjugate to �0 , these two circles are disjoint from each other,
and �k permutes them. If an irreducible �0W �1K! SU.2/ is binary dihedral, there
exists u 2 SU.2/ such that uiu�1 D �i and uAiu

�1 D �Ai for i D 2; : : : ; n. The
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irreducibility of �0 also implies that u2 D�1, so after conjugation we may assume
that uD k . Now conjugate

�k � .i; e
i'A2e�i' ; : : : ; ei'Ane�i'

I j /D .�i;�ei'A2e�i' ; : : : ;�ei'Ane�i'
I j /

by j to obtain

.i; j .�ei'A2e�i'/j�1; : : : ; j .�ei'Ane�i'/j�1
I j /

D .i;�e�i'jA2j�1ei' ; : : : ;�e�i'jAnj�1ei'
I j /

D .i;�.ie�i'/kA2k�1.i�1ei'/; : : : ;�.ie�i'/kAnk�1.i�1ei'/I j /

D .i; ei.�=2�'/A2e�i.�=2�'/; : : : ; ei.�=2�'/Ane�i.�=2�'/
I j /:

Therefore, �k acts on C.�0/ by sending e2i' to �e�2i' , which is an involution on
the complex unit circle with two fixed points, i and �i .

Finally, observe that the quotient of R0.K;SU.2// by the involution � is precisely the
space R0.K;SO.3// of the conjugacy classes of representations Ad �0W �1K!SO.3/.
Since H 2.KIZ=2/D 0, every SO.3/ representation lifts to an SU.2/ representation,
hence R0.K;SO.3// can also be described as the space of the conjugacy classes of
representations �1K! SO.3/ sending the meridians to SO.3/ matrices of trace �1.
Compose (9) with the projection R0.K;SU.2//!R0.K;SO.3// to obtain a surjec-
tive map  W PRc.K

\;SU.2//! R0.K;SO.3//. The above discussion can now be
summarized as follows.

Proposition 4.1 The group H 1.K\IZ=2/ D Z=2˚Z=2 acts on PRc.K
\;SU.2//

preserving the fibers of the map  W PRc.K
\;SU.2//!R0.K;SO.3//. Furthermore:

(a) For the unique reducible in R0.K;SO.3//, the fiber of  consists of just one
point, which is the conjugacy class of the special projective representation ˛ .
This point is fixed by both �k and �` .

(b) For any dihedral representation in R0.K;SO.3//, the fiber of  is a circle. The
involution �k is a reflection of this circle with two fixed points, while �` is the
antipodal map.

(c) Otherwise, the fiber of  consists of two circles. The involution �k permutes
these circles, while �` acts as the antipodal map on both.

It should be noted that perturbing the Chern–Simons functional (1) may easily break
the Z=2˚Z=2 symmetry. Finding a perturbation which preserves this symmetry runs
as usual into the equivariant transversality problem, which we do not try to address
here. It should be noted, however, that such a problem was successfully solved in [33]
in a similar setting.
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4.3 Double branched covers

Next, we would like to describe the space PRc.K
\;SU.2// using the equivariant

theory of Section 3. We could proceed as in that section, by passing to the double
branched cover M ! S3 with branch set the link k\ and working with the equivariant
representations �1M ! SO.3/. However, in the special case at hand, one can observe
that M is simply the connected sum Y # RP3 , where Y is the double branched cover
of S3 with branch set the knot k , hence the same information about PRc.K

\;SU.2//
can be extracted more easily by working directly with Y and using Proposition 4.1.
The only missing step in this program is a description of R0.K;SO.3// in terms of
equivariant representations �1Y ! SO.3/, which we will take up next.

Every representation �W �1K! SO.3/ gives rise to a representation of the orbifold
fundamental group �V

1
.S3; k/D �1K=h�2 D 1i, where we choose �D a1 to be our

meridian. The latter group can be included into the split orbifold exact sequence

1! �1Y
��
�!�V

1 .S
3; k/

j
�!Z=2! 1:

Proposition 4.2 Let Y be the double branched cover of S3 with branch set a knot k

and let � W Y ! Y be the covering translation. The pullback of representations via the
map �� in the orbifold exact sequence establishes a homeomorphism

��W R0.K;SO.3//!R� .Y;SO.3//;

where R� .Y / is the fixed point set of the involution ��W R.Y;SO.3//!R.Y;SO.3//.
The unique reducible representation in R0.K;SO.3// pulls back to the trivial represen-
tation of �1Y , and the dihedral representations in R0.K;SO.3// are precisely those
that pull back to reducible representations of �1Y .

Proof A slight modification of the argument of Proposition 3.8 (see also [11, Proposi-
tion 3.3]), establishes a homeomorphism between R0.K;SO.3// and the subspace of
R� .Y;SO.3// consisting of the conjugacy classes of representations ˇW �1Y ! SO.3/
such that ��ˇ D u � ˇ � u�1 for some u 2 SO.3/ of order 2. The proof of the first
statement of the proposition will be complete after we show that this subspace in fact
comprises the entire space R� .Y;SO.3//.

If ˇW �1Y ! SO.3/ is reducible, it factors through a representation H1.Y /! SO.2/.
According to Proposition 3.1, the involution �� acts on H1.Y / as multiplication by �1.
Therefore, ��ˇ D ˇ�1 , and the latter representation can obviously be conjugated to ˇ
by an element u 2 SO.3/ of order 2. If ˇW �1Y ! SO.3/ is irreducible, the condition
ˇ 2 Fix.��/ implies that there exists a unique u 2 SO.3/ such that ��ˇ D u �ˇ �u�1

and u2 D 1. If u D 1, then ��ˇ D ˇ , which implies that ˇ is the pullback of a
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representation of �V
1
.S3; k/ which sends the meridian � to the identity matrix and

hence factors through �1S3 D 1. This contradicts the irreducibility of ˇ .

To prove the second statement of the proposition, observe that the homomorphism j

in the above orbifold exact sequence sending � to the generator of Z=2 is in fact the
abelianization homomorphism. This implies that the unique reducible representation in
R0.K;SO.3// pulls back to the trivial representation of �1Y . Since �1Y is the com-
mutator subgroup of �V

1
.S3; k/, any dihedral representation �W �V

1
.S3; k/!O.2/

must map �1Y to the commutator subgroup of O.2/, which happens to be SO.2/.
This ensures that the pullback of � is reducible. Conversely, if the pullback of � is
reducible, its image is contained in a copy of SO.2/, and the image of � itself in its
2–prime extension. The latter group is of course just a copy of O.2/� SO.3/.

Remark 4.3 For future use note that, for any projective representation �W �1K\!

SU.2/ in C.�0/ described by a tuple (8), the adjoint representation Ad �W �1K\!

SO.3/ pulls back to an SO.3/ representation of �1.Y # RP3/ D �1Y �Z=2 of the
form ˇ � 
 W �1Y �Z=2! SO.3/, where ˇ D ��Ad �0 and 
 W Z=2! SO.3/ sends
the generator of Z=2 to Ad i �Ad j D Ad k . The representation ˇ � 
 is equivariant,
��.ˇ�
 /Du�.ˇ�
 /�u�1 , with the conjugating element u given by Ad �0.a1/DAd i .

5 Knot homology: grading of the special generator

Given a knot k � S3 , we will continue using the notation K for its exterior and K\

for the exterior of the two-component link k\ D k [ ` obtained as the connected sum
of k with the Hopf link h. The special projective representation ˛W �1K\! SU.2/,
which sends all the meridians of k to i and the meridian of ` to j , is a generator in
the chain complex IC \.k/. In this section, we compute its absolute Floer grading.

Theorem 5.1 For any knot k in S3 , we have gr.˛/D sign k .mod 4/.

Before we go on to prove this theorem, recall the definition of gr.˛/ .mod 4/. Let
.W 0;S/ be a cobordism of pairs .S3;u/ and .S3; k/, where u is an unknot in S3 .
The manifold W 0 is required to be oriented but the surface S is not. Construct a new
cobordism .W 0;S 0/ of the pairs .S3; h/ and .S3; k\/ by letting S 0 be the disjoint
union of S with the normal circle bundle along a path in S connecting the two
boundary components (the surface S 0 is called S \ in [24, Section 4.3]). According to
[24, Proposition 4.4], the generator ˛ has grading

(10) gr.˛/D� indDA0 .˛u; ˛/�
3
2
.�.W 0/C �.W 0//��.S 0/ .mod 4/;

where ˛u stands for the special generator in the Floer chain complex of u, and we use
the fact that �.S/D �.S 0/. The operator DA0 .˛u; ˛/ refers to the ASD operator on
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the noncompact manifold obtained from W 0 by attaching cylindrical ends to the two
boundary components; this manifold is again called W 0 . The connection A0 can be
any connection on W 0 which is singular along the surface S 0 and whose limits on the
two ends are flat connections with holonomies ˛u and ˛ . The index of DA0 .˛u; ˛/ is
understood as the L2

ı
index for a small positive ı .

5.1 Constructing the cobordism

Our calculation of the Floer index gr.˛/ will use a specific cobordism .W 0;S 0/ con-
structed as follows.

Let † be the double branched cover of S3 with branch set the knot k . Choose a Seifert
surface F 0 of k and push its interior slightly into the ball D4 so that the resulting
surface, which we still call F 0 , is transverse to @D4 D S3 . Let V be the double
branched cover of D4 with branch set the surface F 0 . Then V is a smooth simply
connected spin 4–manifold with boundary †, which admits a handle decomposition
with only 0– and 2–handles; see Akbulut and Kirby [1, page 113].

Next, choose a point in the interior of the surface F 0 � D4 . Excising a small open
4–ball containing that point from .D4;F 0/ results in a manifold W 0

1
diffeomorphic to

I �S3 together with the surface F 0
1
D F 0� int D2 properly embedded into it, thereby

providing a cobordism .W 0
1
;F 0

1
/ from an unknot to the knot k . The double branched

cover W1!W 0
1

with branch set F 0
1

is a cobordism from S3 to †. The manifold W1

is simply connected because it can be obtained from the simply connected manifold V

by excising an open 4–ball.

Similarly, consider the manifold W 0
2
D I�S3 and surface F 0

2
D I�h�W 0

2
providing a

product cobordism from the Hopf link h to itself. The double branched cover W2!W 0
2

with branch set F 0
2

is then a cobordism W2 D I �RP3 from RP3 to itself.

As the final step of the construction, consider a path 
 0
1

in the surface F 0
1

connecting
its two boundary components. Similarly, consider a path 
 0

2
of the form I �fpg in the

surface F 0
2
D I �H . Remove tubular neighborhoods of these two paths and glue the

resulting manifolds and surfaces together using an orientation-reversing diffeomorphism
1� hW I �S2! I �S2 . The resulting pair .W 0;S 0/ is the desired cobordism of the
pairs .S3; h/ and .S3; k\/. One can easily see that

(11) �.W 0/D �.W 0/D 0 and �.S 0/D �.F 0/� 1:

Note that the double branched cover W !W 0 with branch set S 0 is a cobordism from
RP3 to † # RP3 which can be obtained from the cobordisms W1 and W2 by taking a
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connected sum along the paths 
1 �W1 and 
2 �W2 lifting, respectively, the paths

 0

1
and 
 0

2
. To be precise,

(12) W DW ı1 [W ı2 ;

where W ı
1

and W ı
2

are obtained from W1 and W2 by removing tubular neighborhoods
of 
1 and 
2 . The identification in (12) is done along a copy of I �S2 . In particular,
we see that �1W D Z=2.

5.2 L2–index

We will rely on Ruberman [32] and Taubes [40] in our index calculations.

Let � W W ! W 0 be the double branched cover with branch set S 0 constructed in
the previous section, and � W W ! W the covering translation. Let us consider a
representation �W �V

1
.W 0;S 0/! SO.3/ sending the two sets of meridians of S 0 to

Ad i and Ad j . Then the representation ���W �1W ! SO.3/ sends the generator of
�1W to Ad k and it is equivariant in that ��.���/ D u � ��� � u�1 with u D Ad i ;
compare with Example 3.7. The representation � restricts to ˛u and ˛ over the two ends
of W 0 , therefore ��� makes W into a flat cobordism between 
 W �1.RP3/! SO.3/
and � � 
 W �1†��1.RP3/! SO.3/, where 
 is the representation of Example 3.7.

Let A and A0 be flat connections on W and W 0 whose holonomies are, respectively,
��� and � . We will use A0 as the twisting connection of the operator DA0 .˛u; ˛/.
Instead of computing the index of this operator, we will compute the equivariant index
indD�

A
.
; � � 
 / of its pullback to W . The latter index equals minus the equivariant

index of the elliptic complex

(13) �0.W; ad P /
�dA
���!�1.W; ad P /

d
C

A
��!�2

C.W; ad P /:

The equivariance here is understood with respect to a lift of � W W !W to the bundle
ad P which has second order on the fibers over the fixed point set. The connection A

is equivariant with respect to this lift, hence it splits the coefficient bundle ad P into a
sum of three real line bundles corresponding to Ad k D diag.�1;�1; 1/. Accordingly,
the complex (13) splits into a sum of three elliptic complexes, one with the trivial real
coefficients and two with the twisted coefficients. Application of [32, Proposition 4.1]
to the former complex and of [32, Corollary 4.2] to the latter two reduces the index
problem to computing the singular cohomology

H k.W I ad���/DH k.W IR/˚H k.W IR�/˚H k.W IR�/ for k D 0; 1; 2;

where R� stands for the real line coefficients on which Z=2 acts as multiplication
by �1, and their equivariant versions.
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The zeroth equivariant cohomology of the complex (13) vanishes since H 0.W IR�/D0

and the lift of � acts as minus identity on the remaining group H 0.W IR/DR. This
vanishing result could also be derived directly from the irreducibility of the singular
connection A0 . The next two subsections are dedicated to computing the first and
second cohomology of (13).

5.3 Trivial coefficients

Our computation will be based on the Mayer–Vietoris exact sequence applied twice,
first to compute cohomology of W ı

1
and W ı

2
, and then to compute cohomology of

W DW ı
1
[W ı

2
.

The cohomology groups of W ı
1

and W1DW ı
1
[ .I �D3/ are related by the following

Mayer–Vietoris exact sequence:

0 H 1.W1IR/ H 1.W ı
1
IR/ 0

H 2.W1IR/ H 2.W ı
1
IR/ H 2.I �S2IR/

H 3.W1IR/ H 3.W ı
1
IR/ 0

ı

Since W1 and therefore W ı
1

are simply connected, both H 1.W1IR/ and H 1.W ı
1
IR/

vanish. Applying the Poincaré–Lefschetz duality to the manifold W1 and using the
long exact sequence of the pair .W1; @W1/, we obtain

H 3.W1IR/DH1.W1; @W1IR/D zH0.@W1IR/DR:

Similarly, viewing W ı
1

as a manifold whose boundary is a connected sum of the two
boundary components of W1 , we obtain

H 3.W ı1 IR/DH1.W
ı

1 ; @W
ı

1 IR/D
zH0.@W

ı
1 IR/D 0:

Therefore, the connecting homomorphism ı in the above exact sequence must be an
isomorphism, which leads to the isomorphisms

H 2.W ı1 IR/DH 2.W1IR/DH 2.V IR/:

A similar long exact sequence relates the cohomology of W ı
2

and W2DW ı
2
[.I�D3/,

implying that

H 2.W ı2 IR/DH 2.W2IR/DH 2.RP3
IR/D 0:
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Since �1W2D �1W ı
2
DZ=2, both H 1.W2IR/ and H 1.W ı

2
IR/ vanish. The Mayer–

Vietoris exact sequence of the splitting W DW ı
1
[W ı

2
,

0 H 1.W IR/ H 1.W ı
1
IR/˚H 1.W ı

2
IR/ 0

H 2.W IR/ H 2.W ı
1
IR/˚H 2.W ı

2
IR/ H 2.I �S2IR/

H 3.W IR/ H 3.W ı
1
IR/˚H 3.W ı

2
IR/ 0

together with the isomorphisms H 3.W IR/DH1.W; @W IR/D zH0.@W IR/DR and
�1W D Z=2, implies that

H 1.W IR/D 0 and H 2.W IR/DH 2.V IR/:

5.4 Twisted coefficients

We will now do a similar calculation using the Mayer–Vietoris sequence of W D

W ı
1
[W ı

2
with twisted coefficients. Since W ı

1
is simply connected, the twisted

coefficients R� pull back to the trivial R–coefficients over W ı
1

and the cohomology
calculations from the previous section are unchanged. A direct calculation using
homotopy equivalences W2 'RP3 and W ı

2
'RP2 shows that

H 1.W ı2 IR�/D 0 and H 2.W ı2 IR�/DR:

The latter isomorphism is induced by the inclusion I � S2 ! W ı
2

, which can be
easily seen from the Mayer–Vietoris exact sequence of W2 DW ı

2
[ .I �D3/. Now,

consider the Mayer–Vietoris exact sequence of the splitting W D W ı
1
[W ı

2
with

twisted R–coefficients:

0 H 1.W IR�/ H 1.W ı
1
IR/˚H 1.W ı

2
IR�/ 0

H 2.W IR�/ H 2.W ı
1
IR/˚H 2.W ı

2
IR�/ H 2.I �S2IR/

H 3.W IR�/ H 3.W ı
1
IR/˚H 3.W ı

2
IR�/ 0

Keeping in mind that the map H 2.W ı
1
IR/!H 2.I �S2IR/ in this sequence is zero

and the map H 2.W ı
2
IR�/!H 2.I �S2IR/ is an isomorphism R!R, we conclude

that
H 1.W IR�/D 0 and H 2.W IR�/DH 2.V IR/:

5.5 Equivariant cohomology

Combining results of the previous two sections, we obtain H 1.W I ad P / D 0 and
H 2.W I ad P /DH 2.V IR3/. The action of � is compatible with these isomorphisms,
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from which we immediately conclude that

H 1
� .W I ad P /D 0

and H 2
� .W I ad P / is the fixed point set of the map H 2.V IR3/!H 2.V IR3/ obtained

by twisting ��W H 2.V IR/!H 2.V IR/ by the action on the coefficients R3!R3 .
The involution �� is minus the identity, which follows from the usual transfer argument
applied to the covering V !D4 , while the action on the coefficients is given by an
SO.3/ operator of second order. Such an operator must have a single eigenvalue 1

and a double eigenvalue �1, which leads us to the conclusion that rk H 2
� .W I ad P /D

2 � b2.V /. Similarly,
rk H 2

�;C.W I ad P /D 2 � bC
2
.V /:

5.6 Proof of Theorem 5.1

It follows from the discussion in Section 5.2 and the calculation in Section 5.5 that

indDA0 .˛u; ˛/D rk H 1
� .W I ad P /� rk H 2

C;� .W I ad P /D�2 � bC
2
.V /:

Taking into account (10) and (11), we obtain the formula

gr.˛/D 2 � bC
2
.V /��.F 0/C 1 .mod 4/:

To simplify it, let us compute �.V / in two different ways: �.V /D 1CbC
2
.V /Cb�

2
.V /

by definition, and �.V / D 2�.D4/� �.F 0/ D 2� �.F 0/ using the fact that V is a
double branched cover of D4 with branch set F 0 . Combining these formulas with the
knot signature formula of Viro [41], we obtain the desired result (remember that sign k

is always even):

gr.˛/D� sign V D� sign k D sign k .mod 4/:

6 Knot homology: gradings of other generators

Proposition 4.1 identified the critical points of the Chern–Simons functional with the
fibers of the map  W PRc.K

\;SU.2//! R0.K;SO.3//. Assuming that the space
R0.K;SO.3// is nondegenerate, all of these fibers (with the exception of the special
generator ˛ ) are Morse–Bott circles. In this section, we will compute their Floer
gradings using the equivariant index theory of Section 3.5. The actual generators of
the chain complex IC \.k/ are then obtained by perturbing each Morse–Bott circle of
index � into two points of indices � and �C 1, as in [20]. Our index calculation
will depend on whether an irreducible trace-free representation �0W �1K ! SO.3/
giving rise to the Morse–Bott circle C.�0/ is dihedral or not. The two cases will be
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considered separately, starting with the case when �0 is dihedral. If R0.K;SO.3//
fails to be nondegenerate, similar results hold after additional perturbations.

6.1 Dihedral representations

Let �0W �1K! SO.3/ be an irreducible trace-free dihedral representation. The pull-
back via � W M ! † identifies the Morse–Bott circle C.�0/ with the circle of the
conjugacy classes of equivariant representations of the form ˇ�
 W �1Y �Z=2!SO.3/,
where ˇ is a nontrivial reducible representation of �1Y and 
 is the representation
of Z=2 sending the generator to Ad k . These representations are equivariant in that
��.ˇ � 
 /D u � .ˇ � 
 / �u�1 with uD Ad i ; see Remark 4.3.

We wish to compute the equivariant index indD�
A
.ˇ � 
; � � 
 /, where A is any equi-

variant connection on the cylinder R� .Y # RP3/ whose limits are the flat connections
ˇ � 
 and � � 
 over the negative and positive ends, respectively. The Morse–Bott
index of the circle corresponding to ˇ � 
 will then equal

(14) �D indD�A.ˇ � 
; � � 
 /C sign k .mod 4/:

Proposition 6.1 Let ˇW �1Y ! SO.3/ be a nontrivial equivariant reducible represen-
tation. Then for any equivariant connection B on the cylinder R�Y whose limits are
the flat connections ˇ and � over the negative and positive ends,

indD�A.ˇ � 
; � � 
 /D indD�B.ˇ; �/ .mod 4/:

Proof To compute the index on the left-hand side of this formula, we will apply the
formula of Proposition 3.11 to the manifold X D R� .Y # RP3/ with two product
ends. Since the metric on X is a product metric, the terms p1.TX / and e.TX / in the
integrand

yA.X / ch.SC/ ch.ad P /C D�2p1.A/�
1
2
p1.TX /� 3

2
e.TX /

will vanish, as will the topological terms �.F / and F �F , leading to the formula

indD�A.ˇ � 
; � � 
 /D�
Z

X

p1.A/�
1
4
.h��
 � ���
 /�

1
4
.hˇ�
 C �ˇ�
 /

�
1
4
.h���
 � �

�
��
 /�

1
4
.h�ˇ�
 C �

�
ˇ�
 /;

where �ˇ�
 D �ˇ�
 .0/� �� .0/ and ��
ˇ�

D ��

ˇ�

.0/� ��

�
.0/ are �–invariants of the

manifold Y # RP3 .

The connection A in this formula is any equivariant connection whose limits are the
flat connections ˇ � 
 and � � 
 at the two ends of X , hence we are free to choose A
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to equal 
 over R� .RP3�D3/ and to be trivial in the gluing region. This determines
the integral term in the above formula as follows:Z

X

p1.A/D

Z
R�Y

p1.A/:

To evaluate the �–invariants, build a cobordism W from the disjoint union Y [RP3

to the connected sum Y # RP3 by attaching a 1–handle to Œ0; 1�� .Y [RP3/. The flat
connection ˇ�
 extends to W making it into a flat cobordism from .Y; ˇ/[ .RP3; 
 /

to .Y # RP3; ˇ � 
 /. It then follows from [5, Theorem 2.4] that

�ˇ�
 � �ˇ � �
 D signˇ�
 W � 3 sign W;

where �ˇ and �
 are �–invariants of the manifolds Y and RP3 , respectively. One can
easily see from the description of W that both signature terms in the above formula
vanish, implying that �ˇ�
 D �ˇC�
 . Since the involution � extends to W , a similar
argument using the index theorem of Donnelly [12] instead of [5, Theorem 2.4] shows
that ��

ˇ�

D ��

ˇ
C ��
 . Similar formulas also hold with � � 
 in place of ˇ � 
 .

Plugging all of this back into the above index formula and keeping in mind that
�� D �

�
�
D 0, we obtain

indD�A.ˇ � 
; � � 
 /D�
Z

R�Y

p1.A/

�
1
4
.hˇ�
 C �ˇ/�

1
4
h��
 �

1
4
.h�ˇ�
 C �

�
ˇ/�

1
4
h���
 :

On the other hand, one can apply the formula of Proposition 3.11 to the manifold
X DR�Y to obtain

indD�A.ˇ; �/D�
Z

R�Y

p1.A/�
1
4
.hˇC �ˇ/�

1
4
h� �

1
4
.h�ˇC �

�
ˇ/�

1
4
h�� :

Therefore,

indD�A.ˇ � 
; � � 
 /� indD�A.ˇ; �/D�
1
4
.hˇ�
 � hˇ/�

1
4
.h��
 � h� /

�
1
4
.h�ˇ�
 � h�ˇ/�

1
4
.h���
 � h�� /;

and the proof of the proposition reduces to a calculation with twisted cohomology.

Since Y is a rational homology sphere, H 1.Y I ad �/D 0, which implies that

h� D dim H 0.Y I ad �/D 3 and h�� D tr.Ad u/D�1:

It follows from a calculation in Section 5 that H 1.Y # RP3I ad.� �
 //D 0. Therefore,
h��
 D dim H 0.Y I ad.� �
 //D 1 because H 0.Y I ad.� �
 // is the .C1/–eigenspace
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of Ad.k/W so.3/ ! so.3/. The operator Ad i acts as minus identity on the .C1/–
eigenspace of Ad k , making h�

��

D�1.

The calculation with ˇ � 
 will rely on the Mayer–Vietoris exact sequence of the
splitting Y # RP3 D Y0[RP3

0
with twisted coefficients:

0!H 0.Y # RP3
I ad.ˇ � 
 //!H 0.Y I adˇ/˚H 0.RP3

I ad 
 /

!H 0.S2
I ad �/!H 1.Y # RP3

I ad.ˇ � 
 //

!H 1.Y I adˇ/˚H 1.RP3
I ad 
 /! 0:

Since ˇ is reducible but nontrivial, H 0.Y I adˇ/ D R. Therefore, keeping in mind
that H 0.S2I ad �/DR3, H 0.RP3I ad 
 /DR, and H 1.RP3I ad 
 /D 0, we obtain

hˇ�
 � hˇ D 2 � dim H 0.Y # RP3
I ad.ˇ � 
 //:

The involution � induces involutions z�� on each of the groups in the Mayer–Vietoris
exact sequence comprising a chain map. Keeping in mind that the traces of z�� are
equal to �1 on both H 0.S2I ad �/DR3 and H 0.RP3I ad 
 /DR, we obtain

h�ˇ�
 � h�ˇ D 2 tr
�
z��jH 0.Y # RP3

I ad.ˇ � 
 //
�
� 2 tr

�
z��jH 0.Y I adˇ/

�
:

Even though both ˇ and 
 are reducible, the representation ˇ � 
 may be either
reducible or irreducible. In the former case, H 0.Y # RP3I ad.ˇ � 
 // D R is the
.C1/–eigenspace of the operator Ad kW so.3/! so.3/ on which z�� acts as minus
identity, therefore

hˇ�
 � hˇ D 2 and h�ˇ�
 � h�ˇ D 0:

In the latter case, H 0.Y # RP3I ad.ˇ � 
 //D 0, therefore

hˇ�
 � hˇ D 0 and h�ˇ�
 � h�ˇ D 2:

In both cases, we conclude that

indD�A.ˇ � 
; � � 
 /D indD�A.ˇ; �/:

The result now follows from the fact that indD�
A
.ˇ; �/ D indD�

B
.ˇ; �/ .mod 4/ for

any choice of connections A and B on the cylinder R�Y whose limits are ˇ and �
over the negative and positive ends.

Remark 6.2 The formula of Proposition 6.1 holds as well for equivariant irreducible
representations ˇ , the proof requiring just minor adjustments.

Combining Proposition 6.1 with formula (14), we obtain the following formula for the
Floer grading.
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Corollary 6.3 Let ˇW �1Y ! SO.3/ be a nontrivial equivariant reducible representa-
tion. Then the Floer grading of the Morse–Bott circle arising from ˇ � 
 is given by

�D indD�B.ˇ; �/C sign k .mod 4/;

where B is an arbitrary equivariant connection on the infinite cylinder R�Y whose
limits are ˇ and � over the negative and positive ends.

The index indD�
B
.ˇ; �/ in the above corollary can be computed using the formula

(15) indD�B.ˇ; �/D
1
2

indDB.ˇ; �/C
1
2

ind.�;DB/.ˇ; �/:

According to Donnelly [12],

ind.�;DB/.ˇ; �/D
1

2

Z
F

.e.TF /Ce.NF //� 1
2
.h�� ��

�
� .0//.Y /�

1
2
.h�ˇC�

�
ˇ.0//.Y /;

where the integral term vanishes and h�
ˇ
D h�

�
D�1 as in the proof of Proposition 6.1.

Therefore,

(16) ind.�;DB/.ˇ; �/D 1� 1
2
� ��ˇ.Y /:

The �–invariants in this formula are difficult to compute in general but they can be
shown to vanish in several special cases, for example for two-bridge knots, as discussed
in Section 7.1.

6.2 Nondihedral representations

Let �0W �1K! SO.3/ be an irreducible trace-free representation which is not dihedral,
and assume that it is nondegenerate. Proposition 4.1(c) then tells us that the fiber C.�0/

consists of two circles which are permuted by the involution �k .

Lemma 6.4 The involution �k permuting the two circles in C.�0/ has degree zero
mod 4.

Proof This follows as in Lemma 2.5 whose proof in Section 3.7 needs to be amended
to allow for the 1–dimensional critical point sets C.�0/. This is easily accomplished
by replacing gr.�1 � �; �/ with gr.�1 � �; �/C 1 in the first two displayed formulas.

Therefore, the two circles in C.�0/ have the same Morse–Bott index �. Perturbing
both of them, we obtain four generators, two of grading � and two of grading �C 1.
The calculation of the previous section leading up to the formula of Corollary 6.3 can
be easily amended to work in the current situation, producing the following result.
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Proposition 6.5 Let ˇW �1Y ! SO.3/ be an irreducible representation. Then the
Floer grading of the two Morse–Bott circles arising from ˇ � 
 is

�D indD�B.ˇ; �/C sign k .mod 4/;

where B is an arbitrary equivariant connection on the infinite cylinder R�Y whose
limits are ˇ and � over the negative and positive ends.

The index indD�
B
.ˇ; �/ in this proposition can be computed using the formula (15).

Since h�
ˇ

now vanishes, the formula (16) takes the form

(17) ind.�;DB/.ˇ; �/D
1
2
�

1
2
� ��ˇ.Y /:

Remark 6.6 Let �.t/ be the Alexander polynomial of a knot k � S3 normalized so
that �.t/D�.t�1/ and �.1/D1. The knots k with �.�1/D1 are precisely the knots
whose double branched covers Y are integral homology spheres, and which are known
to have no dihedral representations in R0.K;SO.3//; see [23, Theorem 10] or [11,
Proposition 3.4]. Therefore, all the generators in IC \.k/ are of the nondihedral type
studied in this section. In addition, sign kD0 .mod 8/ because 1D�.�1/Ddet.i �Q/,
where Q is the (even) quadratic form of the knot.

7 Knot homology: explicit calculations

The equivariant techniques work particularly well for Montesinos knots, including
two-bridge and pretzel knots, as we will demonstrate in this section. We begin with
two-bridge knots, then discuss the Montesinos knots whose double branched covers
are integral homology spheres, and then move on to the general Montesinos knots. We
finish with a short section on torus knots.

7.1 Two-bridge knots

Let p be an odd positive integer and k a two-bridge knot of type �p=q in the 3–sphere.
Its double branched cover Y is the lens space L.p; q/ oriented as the .�p=q/–surgery
on an unknot in S3 . One can use Proposition 3.1 to show that all representations
ˇW �1Y ! SO.3/ are equivariant. The invariant ��

ˇ
.Y / of formula (16) has been

shown to vanish in [36, Proposition 27]. Therefore, ind.�;DB/.ˇ; �/D 1 and formula
(15) reduces to

indD�B.ˇ; �/D
1
2
.indDB.ˇ; �/C 1/ .mod 4/:
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Let ˇW �1Y ! SO.3/ be a representation sending the canonical generator of �1Y to
the adjoint of exp.2� i`=p/. The quantity indDB.ˇ; �/C 1 .mod 8/ was shown by
Sasahira [34, Corollary 4.3] (see also Austin [7]) to equal

2N1.k1; k2/CN2.k1; k2/ .mod 8/;

where the integers 0<k1<p and 0<k2<p are uniquely determined by the equations

k1 D ` .mod p/; k2 D�r` .mod p/; qr D 1 .mod p/;

and

N1.k1; k2/D #
˚
.i; j / 2 Z2

j i C qj D 0 .mod p/; ji j< k1; jj j< k2

	
;

N2.k1; k2/D #
˚
.i; j / 2 Z2

j i C qj D 0 .mod p/ and
either ji j D k1; jj j< k2 or ji j< k1; jj j D k2

	
:

Example 7.1 The figure-eight knot k is the two-bridge knot of type �5
3

. Its double
branched cover is the lens space L.5; 3/, whose fundamental group has no irreducible
representations and has two nontrivial reducible representations, up to conjugacy. For
these two representations, ` equals 1 and 2 and, by Sasahira’s formula, indDB.ˇ; �/C1

equals 2 and 4 mod 8, respectively. Since sign k D 0, the corresponding Morse–Bott
circles have indices � D 1 and 2 mod 4 by Corollary 6.3. After perturbation, they
contribute the generators of Floer indices 1, 2 and 2, 3 mod 4, respectively. The ranks
of the chain groups IC \.k/ are then equal to .1; 0; 0; 0/C .0; 1; 1; 0/C .0; 0; 1; 1/D
.1; 1; 2; 1/. This equals the Khovanov homology of (the mirror image of) k , hence we
conclude from the Kronheimer–Mrowka spectral sequence that the ranks of I \.k/ also
equal .1; 1; 2; 1/.

7.2 Special Montesinos knots

Let p , q , and r be pairwise relatively prime positive integers, and view the Brieskorn
homology sphere †.p; q; r/ as the link of the singularity at zero of the complex
polynomial xpCyqC zr . The involution � induced by complex conjugation on the
link makes †.p; q; r/ into a double branched cover of S3 with branch set a Montesinos
knot which will be called k.p; q; r/; see for instance [36, Section 7].

Since †.p; q; r/ is an integral homology sphere, apart from the trivial one, all rep-
resentations ˇW �1.†.p; q; r// ! SO.3/ are irreducible. Fintushel and Stern [15]
showed that all irreducible representations ˇ are nondegenerate and, up to conjuga-
tion, there are �2�.†.p; q; r// of them, where �.†.p; q; r// is the Casson invariant
of †.p; q; r/. The representations ˇ are also equivariant (see [36, Proposition 8]),
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hence each conjugacy class of them contributes four generators to the chain complex
IC \.k.p; q; r//, two of grading �.ˇ/ and two of grading �.ˇ/C 1.

Theorem 7.2 The ranks of the chain groups IC \.k.p; q; r// are .1Cb; b; b; b/, where
b D�2�.†.p; q; r//.

Proof Our proof will use the flat cobordism of Fintushel and Stern [15], which is
constructed as follows. The mapping torus of the Seifert fibration †.p; q; r/! S2

is an orbifold with three singular points whose neighborhoods are open cones over
lens spaces. The compact manifold obtained from W by excising these cones is an
equivariant flat cobordism W0 between †.p; q; r/ and the lens spaces. One can easily
see that the intersection form on H 2.W0IR/DR is negative definite.

An equivariant version of [5, Theorem 2.4] together with the vanishing of the ��–
invariants of lens spaces [36, Proposition 27] imply that

��ˇ.†.p; q; r//D signˇ.�;W0/� sign� .�;W0/;

where
signˇ.�;W0/D tr.z��jH 2

C.W0I adˇ//� tr.z��jH 2
�.W0I adˇ//;

and similarly for sign� .�;W0/. It follows from [15, Proposition 2.5 and Lemma 2.6] that
H 2.W0I adˇ/D 0, hence ��

ˇ
.†.p; q; r//D tr.Ad u/D�1 and ind.�;DB/.ˇ; �/D 1

by formula (17). Proposition 6.5 and formula (15) now imply that

�.ˇ/D 1
2
.indDB.ˇ; �/C 1/:

The index indDB.ˇ; �/ in this formula can be computed explicitly using either [15]
or Corollary 7.7, however, this alone will not lead us to the closed-form formula of
Theorem 7.2.

Instead, we will use the 4–periodicity in the instanton Floer homology due to Frøyshov
[17, Theorem 2]. In the case at hand, the Floer homology of †.p; q; r/ equals its Floer
chain complex, whose generators are the conjugacy classes of irreducible represen-
tations ˇ , hence the 4–periodicity simply means that there is a (noncanonical) free
involution of degree 4 on these generators. For any pair of generators ˇ1 and ˇ2 ,

�.ˇ2/��.ˇ1/D
1
2
.indDB.ˇ2; �/� indDB.ˇ1; �// .mod 4/;

which is exactly half the relative grading of the generators ˇ1 and ˇ2 in the Floer
chain complex of †.p; q; r/. For any involutive pair .ˇ1; ˇ2/, we have

�.ˇ2/��.ˇ1/D 2 .mod 4/;

therefore, each such pair contributes .2; 2; 2; 2/ to the chain complex IC \.k.p; q; r//.
The special generator ˛ resides in degree zero so the result follows.
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Example 7.3 †.2; 3; 7/ is a double branched cover of S3 whose branch set k.2; 3; 7/

is the pretzel knot P .�2; 3; 7/. Since �.†.2; 3; 7//D�1, we conclude that the ranks
of the chain groups IC \.P .�2; 3; 7// are .3; 2; 2; 2/. This is consistent with the
calculation in [18, Section 5].

We expect that the formula of Theorem 7.2 can be proved for all Seifert fibered ho-
mology spheres †.a1; : : : ; an/ and the corresponding Montesinos knots k.a1; : : : ; an/

using �–equivariant perturbations of [38] modeled after the perturbations of Kirk
and Klassen [22]. Note that the action of H 1.KIZ=2/ on the conjugacy classes of
projective representations is free hence it causes no equivariant transversality issues.

7.3 General Montesinos knots

Let .a1; b1/; : : : ; .an; bn/ be pairs of integers such that, for each i , the integers ai

and bi are relatively prime and ai is positive. Burde and Zieschang [9, Chapter 7]
associated with these pairs a Montesinos link K..a1; b1/; : : : ; .an; bn// and showed
that its double branched cover is a Seifert fibered manifold Y with unnormalized Seifert
invariants .a1; b1/; : : : ; .an; bn/. In particular,

�1Y D hx1; : : :xn; h j h central; x
ai

i D h�bi ; x1 � � �xn D 1i;

with the covering translation � W Y ! Y acting on the fundamental group by the rule

��.h/D h�1; ��.xi/D x1 � � �xi�1x�1
i x�1

i�1 � � �x
�1
1 for i D 1; : : : ; nI

see Burde and Zieschang [9, Proposition 12.30]. The knots k.a1; : : : ; an/ of the
previous section are of the type K..a1; b1/; : : : ; .an; bn//; we omitted the parameters
.b1; : : : ; bn/ from the notation because they can be uniquely recovered from the pairwise
relatively prime a1; : : : ; an up to isotopy of the knot. All two-bridge and pretzel knots
and links are special cases of Montesinos knots and links. In this section, we will only
be interested in Montesinos knots; the case of Montesinos links of two components
will be addressed in Section 8.3.

Let k be a Montesinos knot K..a1; b1/; : : : ; .an; bn// and Y the double branched
cover of S3 with branch set k . The manifold Y need not be an integral homology
sphere; in fact, one can easily see that its first homology is a finite abelian group of
order

jH1.Y IZ/j D

� nX
iD1

bi=ai

�
� a1 � � � an:

Note that this integer is always odd because Y is a Z=2 homology sphere.
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All reducible representations ˇW �1Y ! SO.3/ are equivariant because the involution
��W H1.Y /! H1.Y / acts as multiplication by �1; see Proposition 3.1. There are
no irreducible representations for n � 2. If n D 3, all irreducible representations
are nondegenerate and equivariant, which can be shown using a minor modification
of the arguments of [15, Proposition 2.5] and [36, Proposition 30]. For n � 4, one
encounters positive-dimensional manifolds of representations; the action of �� on
these manifolds was described in [38], together with equivariant perturbations making
them nondegenerate. This discussion, together with Propositions 4.1 and 4.2, identifies
the generators of the chain complex IC \.k/ for all Montesinos knots in terms of
representations for Seifert fibered manifolds, which are well known. An independent
calculation of the generators of IC \.k/ for pretzel knots k with nD 3 can be found
in Zentner [43].

Let W0 be the mapping cylinder of the Seifert fibration Y ! S2 with excised open
cones around its singular points. Then W0 is a cobordism from a disjoint union of the
lens spaces L.ai ;�bi/ to Y .

Lemma 7.4 W0 is a flat cobordism provided a1 � � � anD lcm.a1; : : : ; an/�jH1.Y IZ/j.

Proof The fundamental group �1W0 is obtained from �1Y by setting the homotopy
class h 2 �1Y of the circle fiber equal to one. Since h is a central element in �1Y ,
every irreducible representation ˇW �1Y ! SO.3/ has the property that ˇ.h/D 1. This
property need not hold for reducible representations but it does if hD 1 in the first
homology group H1.Y /. The algebraic condition of the lemma ensures exactly that;
see Lee and Raymond [26, page 331].

To avoid dealing with perturbations, we will assume from now on that our knot k is a
Montesinos knot of type K..a1; b1/.a2; b2/; .a3; b3// and that W0 is a flat cobordism.
We wish to calculate Floer gradings of the generators in the chain complex IC \.k/.
Recall that every conjugacy class of nontrivial reducible representations ˇW �1Y !

SO.3/ gives rise to two generators of gradings �.ˇ/ and �.ˇ/C1, and every conjugacy
class of irreducible representations to four generators, two of grading �.ˇ/ and two of
grading �.ˇ/C 1. The trivial representation as usual gives rise to just one generator ˛
of grading sign k .

Lemma 7.5 For any nontrivial representation ˇW �1Y ! SO.3/, we have

�.ˇ/D sign kC 1
2
.indDB.ˇ; �/C 1/ .mod 4/:

Proof This formula holds for all irreducible representations ˇ by the same argument
as in the proof of Theorem 7.2. That argument can be easily amended for nontrivial
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reducible representations ˇW �1Y ! SO.3/ by using (16) in place of (17). The �–
invariant in formula (16) is given by the formula

��ˇ.Y /D signˇ.�;W0/� sign� .�;W0/;

with sign� .�;W0/D 1. To compute the cohomology of W0 with coefficients in adˇ ,
write ad P DR˚L, where L is a line bundle with a nontrivial flat connection. Then
H 2.W0IL/D 0 by the argument of [15, Lemma 2.6] and H 2.W0IR/DR. Since the
manifold W0 is negative definite, we easily conclude that signˇ.�;W0/D 1. Therefore,
��
ˇ
.Y /D 0, and the result follows.

To complete the calculation of Floer gradings, we only need to compute the index
indDB.ˇ; �/. This can be done by extending the formulas of Fintushel and Stern [15]
from integral homology spheres to the more general situation at hand. We will restrict
ourselves to the relatively easy case of odd ai and leave the case of even ai open
because it would require passing to a double branched cover as in the proof of [15,
Theorem 3.7].

Given a flat cobordism W0 , any representation ˇW �1.Y /! SO.3/ gives rise to a
representation �1.W0/! SO.3/ and to representations ˇi W �1.L.ai ;�bi//! SO.3/.
Let us assume that ai are odd and ˇi ¤ � for i D 1; : : : ;m, and that ˇi D � for
i DmC 1; : : : ; 3. Applying the excision principle for the ASD operator twice, first
to R�L.ai ;�bi/ with i D 1; : : : ;m, and then to W0 with the attached product ends,
we obtain

�3D indDB.�; �/D indDB.�; ˇi/C1C indDB.ˇi ; �/

�3D indDB.W0; �; �/D

mX
iD1

.indDB.�; ˇi/C1/C indDB.W0/C1C indDB.ˇ; �/;

where DB.W0/ stands for the ASD operator on W0 twisted by a flat connection B

whose holonomy is the representation �1.W0/! SO.3/. A similar argument with
even ai does not work because representations ˇi and � may end up living in different
SO.3/–bundles.

Lemma 7.6 Let ˇW �1.Y /! SO.3/ be a nontrivial representation. Then indDB.W0/

D�1 if ˇ is reducible, and indDB.W0/D 0 if ˇ is irreducible.

Proof The proof of [15, Proposition 3.3] implies the formula for irreducible ˇ imme-
diately, and for reducible ˇ after a minor modification. To be precise, let us assume
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that ˇ is reducible. The index at hand equals h1�h0�h2 , where h0 , h1 , and h2 are
the Betti numbers of the elliptic complex

0!�0.W0; ad P /
�dB
���!�1.W0; ad P /

d
C

B
��!�2

C.W0; ad P /:

Since B has 1–dimensional stabilizer we immediately conclude that h0 D 1. To
compute the remaining Betti numbers, write ad P DR˚L, where L is a line bundle
with a nontrivial flat connection. The argument of [15, Lemma 2.6] can be used to show
that the homomorphisms H 1.W0IL/ ! H 1.Y IL/ and H 2.W0IL/ ! H 2.Y IL/

induced by the inclusion Y ! W0 are injective. Both H 1.W0IR/ and H 1.Y IR/
vanish, and the long exact sequence of the pair .W0;Y / shows that the kernel of the
map H 2.W0IR/!H 2.Y IR/ is 1–dimensional. Keeping in mind that the manifold
W0 is negative definite, we conclude as in the proof of [15, Proposition 3.3] that
h1 D h2 D 0.

Corollary 7.7 Let ˇW �1.Y /! SO.3/ be a nontrivial representation such that ai is
odd and ˇi ¤ � for i D 1; : : : ;m, and ˇi D � for i DmC 1; : : : ; 3. Then

�.ˇ/D sign k � 1C
1

2

mX
iD1

.indDB.ˇi ; �/C 3/ .mod 4/;

where the index indDB.ˇi ; �/ on the infinite cylinder R�L.ai ;�bi/ can be computed
as in Section 7.1.

Example 7.8 Let us view the pretzel knot k D P .�2; 3; 3/ as the Montesinos knot
K..2;�1/; .3; 1/; .3; 1//. It obviously satisfies the condition of Lemma 7.4. Its dou-
ble branched cover is a Seifert fibered manifold Y whose fundamental group has
presentation

hx1;x2;x3;x4; h j h central; x2
1 D h; x3

2 D h�1; x3
3 D h�1; x1x2x3 D 1i:

This group admits one nontrivial reducible representation ˇ with ˇ.x1/D 1, ˇ.x2/D

Ad.exp.2� i=3// and ˇ.x3/D Ad.exp.�2� i=3// contributing generators of gradings
� and �C 1 to the chain complex IC \.k/. To compute �, we apply the formulas
of Section 7.1 to the lens space L.3;�1/DL.3; 2/ twice to obtain indDB.ˇ2; �/D

indDB.ˇ3; �/D 1 .mod 8/. Since sign k D 2 .mod 4/, it follows from Corollary 7.7
that �D 1 .mod 4/ hence the contribution of ˇ to the chain complex is .0; 1; 1; 0/.
The special generator ˛ contributes .0; 0; 1; 0/.

The group �1Y also admits one irreducible representation ˇ such that all of the
induced representations ˇ1W �1.L.2; 1//! SO.3/ and ˇ2; ˇ3W �1.L.3; 2//! SO.3/
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are nontrivial. Corollary 7.7 no longer applies, hence we can only conclude that the
contribution of this representation to IC \.k/ is .2; 2; 0; 0/ up to cyclic permutation.

This information can be combined with the fact that the Kronheimer–Mrowka spectral
sequence of the knot k D P .�2; 3; 3/ is trivial and that the Khovanov homology
groups of k have ranks .2; 1; 1; 1/; see Lobb and Zentner [28]. It then follows that
the ranks of the chain groups IC \.k/ must be .2; 1; 2; 2/, with the contribution of the
irreducible being .2; 0; 0; 2/, and that the boundary operator IC

\
2
.k/! IC

\
3
.k/ must

be nontrivial.

A similar calculation can be done for all Montesinos knots K..a1; b1/; : : : ; .an; bn//

satisfying the condition of Lemma 7.4 with the help of the equivariant perturbations
of [38].

7.4 Torus knots

Let p and q be positive integers which are odd and relatively prime. The double
branched cover of the right-handed .p; q/–torus knot Tp;q is the Brieskorn homol-
ogy sphere †.2;p; q/. According to Fintushel and Stern [15], all irreducible SO.3/
representations of the fundamental group of †.2;p; q/ are nondegenerate and, up
to conjugacy, there are � sign.Tp;q/=4 of them. All of these representations are
equivariant [11, Section 4.2], hence each of them contributes four generators to the
chain complex of I \.Tp;q/, two of index � and two of index �C 1. Calculating �
would require equivariant index theory on the double branched cover of Tp;q which is
currently not sufficiently well developed. We know that the special generator resides in
degree zero because sign Tp;q D 0 .mod 8/, and we conjecture that the ranks of the
chain groups IC \.Tp;q/ are

.1C a; a; a; a/; where aD� sign.Tp;q/=4:

This conjecture is consistent with the calculations for torus knots by Hedden, Herald
and Kirk [20].

Let us now assume that p and q are relatively prime positive integers such that
p is odd and q D 2r is even. The double branched cover Y , which is no longer
an integral homology sphere, is the link of the singularity at zero of the complex
polynomial x2C yp C z2r D 0, with the covering translation given by the formula
�.x;y; z/D .�x;y; z/. Neumann and Raymond [30] showed that Y admits a fixed-
point-free circle action making it into a Seifert fibration over S2 with the Seifert
invariants

f.a1; b1/; : : : ; .an; bn/g D f.1; b1/; .p; b2/; .p; b2/; .r; b3/g;
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where b1 � pr C 2b2 � r C b3 � p D 1. In principle, this allows for calculation of the
generators in the Floer chain complex IC \.Tp;q/.

Example 7.9 Let us consider the torus knot T3;4 . The Seifert invariants of the mani-
fold Y are f.1;�1/; .2; 1/; .3; 1/; .3; 1/g, while those of the manifold in Example 7.8
are f.2;�1/; .3; 1/; .3; 1/g. These match for the good reason that P .�2; 3; 3/ and T3;4

are the same knot. The calculation of Example 7.8 then tells us that the ranks
of the chain groups IC \.T3;4/ are .2; 1; 2; 2/, with a nontrivial boundary operator
IC

\
2
.T3;4/! IC

\
3
.T3;4/. This is consistent with [20].

8 Link homology of general two-component links

This section deals with general two-component links LD `1[`2 and not just the links
L D k\ used in the definition of the knot Floer homology I \.k/. After computing
the Euler characteristic of I�.†;L/, we explicitly compute the Floer chain groups for
some links L with particularly simple double branched covers.

8.1 Euler characteristic

Let L D `1 [ `2 be a two-component link in an integral homology sphere †. The
linking number `k.`1; `2/ is well defined up to a sign for nonoriented links L.

Theorem 8.1 The Euler characteristic of the Floer homology I�.†;L/ of a two-
component link LD `1[ `2 equals ˙`k.`1; `2/.

Proof The Floer excision principle can be used as in [24] to establish an isomorphism
between I�.†;L/ and the sutured Floer homology of L. The latter is the Floer homol-
ogy of the 3–manifold X' obtained by identifying the two boundary components of
S3� int N.L/ via an orientation-reversing homeomorphism 'W T 2! T 2 . According
to [19, Lemma 2.1], the homeomorphism ' can be chosen so that X' has integral
homology of S1 �S2 . The result then follows from [19, Theorem 2.3], which asserts
that the Euler characteristic of the sutured Floer homology of L equals ˙`k.`1; `2/.

Theorem 8.1 implies in particular that the Euler characteristic of I \.k/ equals ˙1,
which is the linking number of the two components of the link k\ . This also follows
from the fact that the critical point set of the orbifold Chern–Simons functional used to
define I \.k/ consists of an isolated point and finitely many isolated circles, possibly
after a perturbation. An absolute grading on I \.k/ was fixed in [24] so that the grading
of the isolated point is even; this is consistent with our Theorem 5.1 because sign k is
always even. The Euler characteristic of I \.k/ then equals C1. We do not know how
to fix an absolute grading on I�.†;L/ for a general two-component link L.
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8.2 Pretzel link P.2 ;�3;�6/

This is the two-component link L whose double branched cover is the Seifert fibered
manifold M with unnormalized Seifert invariants .2; 1/, .3;�1/, and .6;�1/; see for
instance [37, Section 4]. In particular,

�1M D hx;y; z; h j h central; x2
D h�1; y3

D h; z6
D h; xyz D 1i;

with the covering translation � W M !M acting on the fundamental group by the rule

��.h/D h�1; ��.x/D x�1; ��.y/D xy�1x�1; ��.z/D xyz�1y�1x�1
I

see Burde and Zieschang [9, Proposition 12.30]. The manifold M has integral homol-
ogy of S1 �S2 . In fact, it can be obtained by 0–surgery on the right-handed trefoil,
so that �1M D �1K=h�i, where K is the exterior of the trefoil and � is its longitude.
The relation �D 1 shows up as the relation z6 D h in the above presentation of �1M .

We will use this surgery presentation of M to describe representations �1M ! SO.3/
with nontrivial w2 2H 2.M IZ=2/D Z=2. According to Example 2.2, the conjugacy
classes of such representations are in one-to-two correspondence with the conjugacy
classes of representations �W �1K! SU.2/ such that �.�/D�1. In the terminology
of Section 2.2, these � are projective representations �W �1M ! SU.2/, and the
group H 1.M IZ=2/ D Z=2 acts on them freely, providing the claimed one-to-two
correspondence. Therefore, we wish to find all the SU.2/ matrices �.h/, �.x/, �.y/,
and �.z/ such that

�.x/2 D �.h/�1; �.y/3 D �.h/; �.z/6 D��.h/; �.x/�.y/�.z/D 1

and such that �.h/ commutes with �.x/, �.y/, and �.z/. Since � is irreducible, we
conclude as in Fintushel and Stern [15, Section 2] that �.h/D�1 and that �.x/ is con-
jugate to i , �.y/ is conjugate to e�i=3 , and �.z/ is conjugate to either e�i=3 or e2�i=3 .
These give rise to two conjugacy classes of projective representations �W �1M!SU.2/
corresponding to a single conjugacy class of representations Ad �W �1M ! SO.3/.

The arguments of [15, Proposition 2.5] and [36, Proposition 8] can be easily adapted to
conclude that the representation Ad � is nondegenerate and equivariant. It gives rise
to a single Z=2˚Z=2 orbit of generators in IC�.S

3;L/. Since the linking number
between the components of L is even, Lemma 2.5 tells us that the (relative) Floer
indices of these four generators are 0; 0; 2; 2 .mod 4/. The boundary operators then
must vanish, and we conclude that the Floer homology groups Ik.S

3;L/ are free
abelian groups of ranks .2; 0; 2; 0/, up to cyclic permutation.

Remark 8.2 The same result can be obtained independently using the isomorphism
between I�.S

3;L/ and the sutured Floer homology of L defined in [25]. The latter
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is the Floer homology of the manifold X' obtained by identifying the two boundary
components of X D S3 � int N.L/ via an orientation-reversing homeomorphism
'W T 2 ! T 2 . A surgery description of X' can be found in [19]; computing its
Floer homology is then an exercise in applying the Floer exact triangle to this surgery
description.

8.3 Montesinos links

Let .a1; b1/; : : : ; .an; bn/ be pairs of integers such that, for each i , the integers ai

and bi are relatively prime and ai is positive. Associated with these pairs is the
Montesinos link K..a1; b1/; : : : ; .an; bn//, whose definition can be found for instance
in [9, Chapter 7]. All two-bridge and pretzel links are Montesinos links; for example,
the link P .2;�3;�6/ considered in the previous section is the Montesinos link with the
parameters .2; 1/, .3;�1/ and .6;�1/. The double branched covers M of Montesinos
links were described in Section 7.3. In this section, we will only be interested in
Montesinos links whose double branched covers have integral homology of S1 �S2 ,
a condition that is easily checked by abelianizing �1M . This condition guarantees
that the unique SO.3/–bundle P !M with nontrivial w2.P / 2H 2.M IZ=2/DZ=2
does not carry any reducible connections.

The generators of Floer chain complex of the link K..a1; b1/; : : : ; .an; bn// and their
gradings can be computed explicitly using the equivariant theory developed in this
paper; here is a brief outline.

Since M is Seifert fibered, the representations �1M ! SO.3/ with nontrivial w2

can be described in terms of their rotation numbers using a slight modification of
the Fintushel–Stern algorithm [15]; complete details can be found in [35]. If nD 3,
there are finitely many conjugacy classes of such representations, all of which are
nondegenerate and equivariant with the conjugating element of order 2. If n � 4,
the same conclusion holds after using �–equivariant perturbations similar to those
described in [38]. Note that no equivariant transversality issues are caused by the action
of H 1.M IZ=2/ or H 1.X IZ=2/ because both actions are free. In what follows, we
will restrict ourselves to the case when nD 3; however, we expect that the same results
will hold for all n.

The relative indices of the operator DA on R�M were computed explicitly in [35]
and shown to be even. The relative Floer gradings of the generators in the Floer
chain complex of the link K..a1; b1/; .a2; b2/; .a3; b3// are equal to one half times
those indices, by the argument of [36, Section 5.2] modified to take into account the
nontriviality of the bundle P !M .
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The final outcome of this calculation can be stated in terms of the Floer homology
groups I�.M;P / of the unique admissible bundle P !M as follows. The groups
I�.M;P / are free abelian of ranks .n0; n1; n2; n3/, up to cyclic permutation, with
either n0 D n2 D 0 or n1 D n3 D 0. Assume for the sake of concreteness that
n0 D n2 D 0. Then the Floer chain groups of K..a1; b1/; : : : ; .an; bn//, up to cyclic
permutation, have the ranks

(18) .2n1; 2n3; 2n1; 2n3/:

Example 8.3 The double branched cover M of the Montesinos link

LDK..2; 1/; .5;�2/; .10;�1//

can be obtained by 0–surgery on the right-handed torus knot T2;5 . Applying the Floer
exact triangle to this surgery, we see that I�.M;P /˚I�C4.M;P /D I�.†.2; 15; 11//,
where we use the mod 8 grading in both groups. Fintushel and Stern [15] showed3 that
the groups Ik.†.2; 5; 11// are free abelian of the ranks .0; 1; 0; 2; 0; 1; 0; 2/. Therefore
n1 D 1, n3 D 2, and the Floer chain groups of the link L have the ranks .2; 4; 2; 4/.

In fact, the integers n1 and n3 in the formula (18) can be computed much more easily
in terms of classical knot invariants without any reference to the Floer homology. They
are known to satisfy the equations

�n1� n3 D �
0.M / and � n1C n3 D x�

0.M /;

where �0.M / is the Casson invariant of M and x�0.M / its Neumann invariant [29].
The former equation follows from the Casson surgery formula and the latter from [37].
The Casson and Neumann invariants can then be computed explicitly using the formulas

�0.M /D�1
2
��00M .1/ and x�0.M /D˙`k.`1; `2/;

where �M .t/ is the Alexander polynomial of M normalized so that �M .1/D 1 and
�.t/D�.t�1/, and `k.`1; `2/ is the linking number between the components of the
link L. Note that there is no need to fix the sign in the above formula because switching
that sign preserves the answer (18) up to cyclic permutation.

Appendix: Homology of double branched covers

This section contains a proof of Proposition 3.2 which was postponed until later in
Section 3.1.

3We adjusted the formulas of [15] to take into account that Fintushel and Stern work with SD rather
than ASD equations.
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A.1 Computing H�.M IZ=2/

In this section, we will compute the groups H�.M IZ=2/ using the transfer homomor-
phism approach of [27].

The transfer homomorphisms can be defined in the following two equivalent ways;
see for instance [14, Section 3]. For each singular simplex � W � ! †, choose a
lift z� W � ! M and define the chain map �!W C�.†/ ! C�.M / by the formula
�!.�/ D z� C � ı z� . This map is obviously independent of the choice of z� , and
it induces homomorphisms �!W H�.†/ ! H�.M / and � !W H�.M / ! H�.†/ in
homology and cohomology with arbitrary coefficients, called transfer homomorphisms.
Another way to define �! is as the map that makes the diagram

H�.†/ H�.†/

H�.M / H�.M /

�! ��

PD

PD

commute, where PD stands for the Poincaré duality isomorphism, and similarly for � ! .

From now on, all chain complexes and (co)homology will be assumed to have Z=2
coefficients. It is then immediate from the definition of �!W C�.†/! C�.M / that
ker�! D C�.L/ and that we have a short exact sequence of chain complexes

0 C�.†;L/ C�.M / C�.†/ 0.
�! ��

This exact sequence induces long exact sequences in homology

0 H3.†;L/ H3.M / H3.†/
�!

H2.†;L/ H2.M / H2.†/
�!

H1.†;L/ H1.M / H1.†/ 0
�!

and in cohomology

0 H 1.†/ H 1.M / H 1.†;L/
� !

H 2.†/ H 2.M / H 2.†;L/
� !

H 3.†/ H 3.M / H 3.†;L/ 0.
� !

Combining these with the long exact sequence of the pair .†;L/, we obtain the
following result.

Algebraic & Geometric Topology, Volume 17 (2017)



Link homology and equivariant gauge theory 2681

Proposition A.1 Let � W M ! † be a double branched cover over an integral ho-
mology sphere † with branching set a two-component link L. Then Hi.M IZ=2/D
H i.M IZ=2/ is isomorphic to Z=2 if i D 0; 1; 2; 3, and is zero otherwise.

A.2 The cup product on H �.M IZ=2/

This section is devoted to the proof of the following result. We continue working with
Z=2 coefficients.

Proposition A.2 The cup product H 1.M /�H 1.M /!H 2.M / is the bilinear form
Z=2�Z=2! Z=2 with the matrix `k.`1; `2/ .mod 2/.

Proof We will reduce the cup product calculation to intersection theory using the
commutative diagram

H 1.M /�H 1.M / H 2.M /

H2.M /�H2.M / H1.M /

PD PD

[

�

where PD stands for the Poincaré duality isomorphisms and � for the intersection
product. The transfer homomorphism �!W H�.†;L/!H�.M / will give us explicit
generators of H1.M / and H2.M / that we need to proceed with this approach.

We begin with the group H1.M /. Note that H1.†;L/ D Z=2 is generated by the
homology class Œw� of any embedded arc w � † whose endpoints belong to two
different components of L. The transfer homomorphism �!W H1.†;L/! H1.M /

maps the homology class of w to that of the circle ��1.w/. Since �! is an isomorphism,
we conclude that the circle ��1.w/ represents a generator of H1.M /.

To describe a generator of H2.M /, observe that H2.†;L/DZ=2˚Z=2 is generated
by the homology classes of Seifert surfaces S1 and S2 of the knots `1 and `2 . We
will assume that S1 and S2 intersect transversely in a finite number of circles and
arcs, and note that S1\S2 is homologous to `k.`1; `2/ �w . We claim that the closed
orientable surfaces ��1.S1/ and ��1.S2/, representing the homology classes �!.ŒS1�/

and �!.ŒS2�/, are homologous to each other and generate H2.M /. To see this, we will
appeal to Theorem 2 of [27], which supplies us with the commutative diagram with an
exact row

0 H3.†/ H2.†;L/ H2.M / 0

H1.L/

d� �!

@�
f
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where f .Œ†�/D Œ`1�C Œ`2� and @� is the connecting homomorphism in the long exact
sequence of the pair .†;L/. One can easily see that @� is an isomorphism. Since
@�.ŒS1�C ŒS2�/D Œ`1�C Œ`2�D f .Œ†�/, we conclude that ŒS1�C ŒS2� 2 im d� D ker�!

and hence �!.ŒS1�/D �!.ŒS2�/ is a generator of H2.M /.

The calculation of the intersection form H2.M /�H2.M /!H1.M / is now completed
as follows:

Œ��1.S1/� � Œ�
�1.S2/�D Œ�

�1.S1/\�
�1.S2/�

D Œ��1.S1\S2/�D `k.`1; `2/ � Œ�
�1.w/�:

Remark A.3 Let ˇ 2H 1.M /D Z=2 be a generator and assume that `k.`1; `2/ is
odd. Proposition A.2 implies that ˇ[ˇ 2H 2.M / is nontrivial, and a straightforward
argument with Poincaré duality shows that ˇ[ˇ[ˇ generates H 3.M /. If `k.`1; `2/

is even then ˇ[ˇD 0, and the cup product of ˇ with a generator of H 2.M / generates
H 3.M /. This gives a complete description of the cohomology ring H�.M /.

Example A.4 The real projective space RP3 is a double branched cover over the Hopf
link in S3 with linking number ˙1. Choose Seifert surfaces S1 and S2 to be the
obvious disks intersecting in a single interval w . Then ��1.S1/ and ��1.S2/ are two
copies of RP2 , each represented as a double branched cover of a disk with branching set
a disjoint union of a circle and a point. These two copies of RP2 intersect in the circle
��1.w/, thereby recovering the familiar cup product structure on H�.RP3IZ=2/.
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