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Higher Toda brackets and the Adams spectral sequence
in triangulated categories

J DANIEL CHRISTENSEN

MARTIN FRANKLAND

The Adams spectral sequence is available in any triangulated category equipped
with a projective or injective class. Higher Toda brackets can also be defined in a
triangulated category, as observed by B Shipley based on J Cohen’s approach for
spectra. We provide a family of definitions of higher Toda brackets, show that they
are equivalent to Shipley’s and show that they are self-dual. Our main result is that
the Adams differential dr in any Adams spectral sequence can be expressed as an
.rC1/–fold Toda bracket and as an r th order cohomology operation. We also show
how the result simplifies under a sparseness assumption, discuss several examples
and give an elementary proof of a result of Heller, which implies that the 3–fold Toda
brackets in principle determine the higher Toda brackets.

55T15; 18E30

1 Introduction

The Adams spectral sequence is an important tool in stable homotopy theory. Given
finite spectra X and Y , the classical Adams spectral sequence is

E
s;t
2
D Exts;tA .H

�Y;H�X / H) Œ†t�sX;Y ^p �;

where H�X WDH�.X IFp/ denotes mod p cohomology and ADH F�p H Fp denotes
the mod p Steenrod algebra. Determining the differentials in the Adams spectral
sequence generally requires a combination of techniques and much ingenuity. The
approach that provides a basis for our work is found in [28], where Maunder showed
that the differential dr in this spectral sequence is determined by r th order cohomology
operations, which we now review.

A primary cohomology operation in this context is simply an element of the Steenrod
algebra, and it is immediate from the construction of the Adams spectral sequence
that the differential d1 is given by primary cohomology operations. A secondary
cohomology operation corresponds to a relation among primary operations, and is
partially defined and multivalued: it is defined on the kernel of a primary operation
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and takes values in the cokernel of another primary operation. Tertiary operations
correspond to relations between relations, and have correspondingly more complicated
domains and codomains. The pattern continues for higher operations. Using that
cohomology classes are representable, secondary cohomology operations can also
be expressed using 3–fold Toda brackets involving the cohomology class and two
operations whose composite is null. However, what one obtains in general is a subset
of the Toda bracket with less indeterminacy. This observation will be the key to
our generalization of Maunder’s result to other Adams spectral sequences in other
categories.

The starting point of this paper is the following observation. On the one hand, the
Adams spectral sequence can be constructed in any triangulated category equipped
with a projective class or an injective class, as shown by Christensen [14]. For example,
the classical Adams spectral sequence is constructed in the stable homotopy category
with the injective class consisting of retracts of products

Q
i †

ni H Fp . On the other
hand, higher Toda brackets can also be defined in an arbitrary triangulated category.
This was done by Shipley in [40], based on Cohen’s construction [15] for spaces and
spectra, and was studied further by Sagave [36]. The goal of this paper is to describe
precisely how the Adams dr can be described as a particular subset of an .rC1/–fold
Toda bracket which can be viewed as an r th order cohomology operation, all in the
context of a general triangulated category.

Triangulated categories arise throughout mathematics, so our work applies in various
situations. As an example, we give calculations involving the Adams spectral sequence
in the stable module category of a group algebra. Even in stable homotopy theory,
there are a variety of Adams spectral sequences, such as the Adams–Novikov spectral
sequence or the motivic Adams spectral sequence, and our results apply to all of them.
Moreover, by working with minimal structure, our approach gains a certain elegance.

Organization and main results

In Section 2, we review the construction of the Adams spectral sequence in a triangulated
category equipped with a projective class or an injective class. In Section 3, we review
the construction of 3–fold Toda brackets in a triangulated category and some of their
basic properties. Section 4 describes how the Adams d2 is given by 3–fold Toda
brackets. This section serves as a warm-up for Section 6.

In Section 5, we recall the construction of higher Toda brackets in a triangulated
category via filtered objects. We provide a family of alternate constructions, and prove
that they are all equivalent. The main result is Theorem 5.11, which says roughly the
following.
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Theorem There is an inductive way to compute an n–fold Toda bracket hfn; : : : ; f1i�

T .†n�2X0;Xn/, where the inductive step picks three consecutive maps and reduces
the length by one. The .n� 2/! ways of doing this yield the same subset, up to an
explicit sign.

As a byproduct, we obtain Corollary 5.13, which would be tricky to prove directly
from the filtered object definition.

Corollary Toda brackets are self-dual up to suspension: hfn; : : : ;f1i�T .†n�2X0;Xn/

corresponds to the Toda bracket computed in the opposite category

hf1; : : : ; fni � T op.†�.n�2/Xn;X0/D T .X0; †
�.n�2/Xn/:

Section 6 establishes how the Adams dr is given by .rC1/–fold Toda brackets. Our
main results are Theorems 6.1 and 6.5, which say roughly the following.

Theorem Let Œx� 2 E
s;t
r be a class in the Er term of the Adams spectral sequence.

As subsets of E
sCr;tCr�1
1

, we have

dr Œx�D h†
r�1d1; : : : ; †

2d1; †d1; †psC1; ısxi

D h†r�1d1
!
; : : :

!
; †d1

!
; d1;xi:

Here, d1 , psC1 and ıs are maps appearing in the Adams resolution of Y , where
each d1 is a primary cohomology operation. The first expression for dr Œx� is an
.rC1/–fold Toda bracket. The second expression (with the superscripts !) denotes
an appropriate subset of the bracket h†r�1d1; : : : ; †d1; d1;xi with some choices
dictated by the Adams resolution of Y . This description exhibits dr Œx� as an r th order
cohomology operation applied to x .

In Section 7, we show that when certain sparseness assumptions are made, the subset
h†r�1d1

!; : : : !; †d1
!; d1;xi coincides with the full Toda bracket, and we give examples

of this phenomenon. See Theorem 7.14, Proposition 7.15 and Example 7.17. The main
application is to computing maps in the homotopy category of R–module spectra, for
a ring spectrum R whose coefficient ring ��R is sufficiently sparse, such as ku. See
Example 7.21.

In Appendix A, we compute examples of Toda brackets in stable module categories.
In particular, Proposition A.1 provides an example where the inclusion d2Œx� �

h†d1; d1;xi is proper. Appendix B provides for the record a short, simple proof
of a theorem due to Heller, that 3–fold Toda brackets determine the triangulated
structure. As a corollary, we note that the 3–fold Toda brackets indirectly determine
the higher Toda brackets.
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Related work

Detailed treatments of secondary operations can be found in [1, Section 3.6], where
Adams used secondary cohomology operations to solve the Hopf invariant one problem;
see Mosher and Tangora [32, Chapter 16] and Harper [19, Chapter 4].

There are various approaches to higher order cohomology operations and higher Toda
brackets in the literature, many of which use some form of enrichment in spaces, chain
complexes or groupoids; see for instance Spanier [42], Maunder [29], Kochman [24]
and Klaus [23]. In this paper, we work solely with the triangulated structure, without
enhancement, and provide no comparison to those other approaches.

In [6; 7], Baues and Jibladze express the Adams d2 in terms of secondary cohomology
operations, and this is generalized to higher differentials by Baues and Blanc in [5].
Their approach starts with an injective resolution as in diagram (2-3), and witnesses
the equations d1d1 D 0 by providing suitably coherent null-homotopies, described
using mapping spaces. Using this coherence data, the authors express a representative
of dr Œx� as a specific element of the Toda bracket h†r�1d1; : : : ; †d1; d1;xi. While
this approach makes use of an enrichment, we suspect that by translating the (higher
dimensional) null-homotopies into lifts to fibers or extensions to cofibers, one could
relate their expression for dr Œx� to ours.

Acknowledgments We thank Robert Bruner, Dan Isaksen, Peter Jorgensen, Fernando
Muro, Irakli Patchkoria, Steffen Sagave and Dylan Wilson for helpful conversations, as
well as the referee for their useful comments. Frankland also thanks the Max-Planck-
Institut für Mathematik for its hospitality. Frankland was partially funded by a grant of
the DFG SPP 1786: Homotopy Theory and Algebraic Geometry.

2 The Adams spectral sequence

In this section, we recall the construction of the Adams spectral sequence in a triangu-
lated category, along with some of its features. We follow [14, Section 4], or rather its
dual. Some references for the classical Adams spectral sequence are [2, Section III.15],
[26, Chapter 16] and [10]. Background material on triangulated categories can be found
in [33, Chapter 1; 26, Appendix 2; 44, Chapter 10]. We assume that the suspension
functor † is an equivalence, with chosen inverse †�1 . Moreover, we assume we have
chosen natural isomorphisms ††�1 Š id and †�1†Š id making † and †�1 into
an adjoint equivalence. We silently use these isomorphisms when needed, eg when we
say that a triangle of the form †�1Z!X ! Y !Z is distinguished.
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Definition 2.1 [14, Proposition 2.6] A projective class in a triangulated category T
is a pair .P;N /, where P is a class of objects and N is a class of maps satisfying the
following properties:

(1) A map f W X ! Y is in N if and only if the induced map

f�W T .P;X /! T .P;Y /

is zero for all P in P . In other words, N consists of the P –null maps.
(2) An object P is in P if and only if the induced map

f�W T .P;X /! T .P;Y /

is zero for all f in N .

(3) For every object X , there is a distinguished triangle P ! X
f
�! Y ! †P ,

where P is in P and f is in N .

In particular, the class P is closed under arbitrary coproducts and retracts. The objects
in P are called projective.

Definition 2.2 A projective class is stable if it is closed under shifts, ie P 2P implies
†nP 2 P for all n 2 Z.

We will assume for convenience that our projective class is stable. We suspect that many
of the results can be adapted to unstable projective classes, with a careful treatment of
shifts.

Definition 2.3 Let P be a projective class and f W X ! Y be a map.
(1) f is P –epic if the map

f�W T .P;X /! T .P;Y /

is surjective for all P 2 P . Equivalently, the map to the cofiber Y ! Cf is
P –null.

(2) f is P –monic if the map

f�W T .P;X /! T .P;Y /

is injective for all P 2 P . Equivalently, the map from the fiber †�1Cf !X is
P –null.

Example 2.4 Let T be the stable homotopy category and P the projective class
consisting of retracts of wedges of spheres

W
i Sni . This is called the ghost projective

class, studied for instance in [14, Section 7].

Now we dualize everything.
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Definition 2.5 An injective class in a triangulated category T is a projective class in
the opposite category T op . Explicitly, it is a pair .I;N /, where I is a class of objects
and N is a class of maps satisfying the following properties:

(1) A map f W X ! Y is in N if and only if the induced map

f �W T .Y; I/! T .X; I/

is zero for all I in I .

(2) An object I is in I if and only if the induced map

f �W T .Y; I/! T .X; I/

is zero for all f in N .

(3) For every object X , there is a distinguished triangle †�1I !W
f
�!X ! I ,

where I is in I and f is in N .

In particular, the class I is closed under arbitrary products and retracts. The objects
in I are called injective. Just as for projective classes, we will assume for convenience
that our injective class is stable.

Example 2.6 Let T be the stable homotopy category. Take N to be the class of maps
inducing zero on mod p cohomology and I to be the retracts of (arbitrary) productsQ

i †
ni H Fp with ni 2Z. One can generalize this example to any cohomology theory

(spectrum) E instead of H Fp , letting IE denote the injective class consisting of
retracts of products

Q
i †

ni E .

Definition 2.7 Let I be an injective class and f W X ! Y be a map.

(1) f is I–monic if the map

f �W T .Y; I/! T .X; I/

is surjective for all I 2 I . Equivalently, the map from the fiber †�1Cf !X is
I–null.

(2) f is I–epic if the map

f �W T .Y; I/! T .X; I/

is injective for all I 2 I . Equivalently, the map to the cofiber Y !Cf is I–null.
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Remark 2.8 The projectives and P–epic maps determine each other via the lifting
property:

X

f
����

P

>>

// Y

Dually, the injectives and I–monic maps determine each other via the extension
property:

X //

��

f
��

I

Y

??

This is part of the equivalent definition of a projective (resp. injective) class described
in [14, Proposition 2.4].

Convention 2.9 We will implicitly use the natural isomorphism

T .A;B/Š T .†kA; †kB/

sending a map f to †kf .

Definition 2.10 An Adams resolution of an object X in T with respect to a projective
class .P;N / is a diagram

(2-1)

X DX0

i0
// X1

ı0~~

i1
// X2

ı1~~

i2
// X3

ı2~~

// � � �

P0

p0

````

P1

p1

````

P2

p2

````

where every Ps is projective, every map is is in N , and every triangle

Ps

ps
�!Xs

is
�!XsC1

ıs
�!†Ps

is distinguished. Here the arrows ısW XsC1�!ı Ps denote degree-shifting maps, namely,
maps ısW XsC1!†Ps .

Dually, an Adams resolution of an object Y in T with respect to an injective class .I;N /
is a diagram

(2-2)

Y D Y0
��

p0 ��

Y1
��

p1 ��

i0
oo Y2

��

p2 ��

i1
oo Y3

i2
oo � � �oo

I0

ı0

??

I1

ı1

??

I2

ı2

??
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where every Is is injective, every map is is in N , and every triangle

†�1Is
†�1ıs
�! YsC1

is
�! Ys

ps
�! Is

is distinguished.

From now on, fix a triangulated category T and a (stable) injective class .I;N / in T .

Lemma 2.11 Every object Y of T admits an Adams resolution.

Given an object X and an Adams resolution of Y , applying T .X;�/ yields an exact
coupleL

s;t T .†t�sX;Ys/
i D

L
.is/�

//
L

s;t T .†t�sX;Ys/

p D
L
.ps/�uuL

s;t T .†t�sX; Is/

ı D
L
.ıs/�

ii

and thus a spectral sequence with E1 term

E
s;t
1
D T .†t�sX; Is/Š T .†tX; †sIs/

and differentials
dr W E

s;t
r !EsCr;tCr�1

r

given by dr D p ı i�.r�1/ ı ı , where i�1 means choosing an i –preimage. This is
called the Adams spectral sequence with respect to the injective class I abutting to
T .†t�sX;Y /.

Lemma 2.12 The E2 term is given by

E
s;t
2
D Exts;tI .X;Y / WD ExtsI.†

tX;Y /;

where ExtsI.X;Y / denotes the sth derived functor of T .X;�/ (relative to the injective
class I ) applied to the object Y .

Proof The Adams resolution of Y yields an I–injective resolution of Y

(2-3) 0 // Y
p0
// I0

.†p1/ı0
// †I1

.†2p2/.†ı1/
// †2I2

// � � � :

Remark 2.13 We do not assume that the injective class I generates, ie that every
nonzero object X admits a nonzero map X ! I to an injective. Hence, we do not
expect the Adams spectral sequence to be conditionally convergent in general; compare
[14, Proposition 4.4].
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Example 2.14 Let E be a commutative (homotopy) ring spectrum. A spectrum is
called E–injective if it is a retract of E ^W for some W [22, Definition 2.22]. A
map of spectra f W X ! Y is called E–monic if the map E ^ f W E ^X !E ^Y is
a split monomorphism. The E–injective objects and E–monic maps form an injective
class in the stable homotopy category. The Adams spectral sequence associated to this
injective class is the Adams spectral sequence based on E–homology, as described
in [35, Definition 2.2.4], also called the unmodified Adams spectral sequence in [22,
Section 2.2]. Further assumptions are needed in order to identify the E2 term as Ext
groups in E�E–comodules.

Definition 2.15 The I–cohomology of an object X is the family of abelian groups
H I .X / WD T .X; I/ indexed by the injective objects I 2 I .

A primary operation in I–cohomology is a natural transformation H I .X /!H J .X /

of functors T op ! Ab. Equivalently, by the (additive) Yoneda lemma, a primary
operation is a map I ! J in T .

Example 2.16 The differential d1 is given by primary operations. More precisely, let
x 2E

s;t
1

be a map xW †t�sX ! Is . Then d1.x/ 2EsC1;t
1

is the composite

†t�sX
x
// Is

ıs
// †YsC1

†psC1
// †IsC1:

In other words, d1.x/ is obtained by applying the primary operation

d1 WD .†psC1/ısW Is!†IsC1

to x .

Proposition 2.17 A primary operation � W I ! J appears as d1W Is�!ı IsC1 in some
Adams resolution if and only if � admits a factorization into an I–epic followed by an
I–mono.

Proof The condition is necessary by construction. In the factorization d1D.†psC1/ıs ,
the map ıs is I–epic while psC1 is I–monic.

To prove sufficiency, assume given a factorization � D iqW I ! W ! J , where
qW I � W is I–epic and i W W ,! J is I–monic. Taking the fiber of q twice yields
the distinguished triangle

†�1W // Y0
// // I

q
// // W;

which we relabel
Y1

i0
// Y0

//
p0
// I

ı0
// // †Y1:

Algebraic & Geometric Topology, Volume 17 (2017)
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Relabeling the given map i W W ,! J as †p1W †Y1 ,! †I1 , we can continue the
usual construction of an Adams resolution of Y0 as illustrated in diagram (2-2), in
which � D iq appears as the composite .†p1/ı0 . Note that by the same argument, for
any s � 0, � appears as d1W Is�!ı IsC1 in some (other) Adams resolution.

Example 2.18 Not every primary operation appears as d1 in an Adams resolution. For
example, consider the stable homotopy category with the projective class P generated
by the sphere spectrum S D S0 , that is, P consists of retracts of wedges of spheres.
The P –epis (resp. P –monos) consist of the maps which are surjective (resp. injective)
on homotopy groups. The primary operation 2W S ! S does not admit a factorization
into an I–epic followed by an I–mono.

Indeed, assume that 2 D iqW S � W ,! S is such a factorization. We will show
that this implies �2.S=2/ D Z=2˚Z=2, contradicting the known fact �2.S=2/ D

Z=4. Here S=2 denotes the mod 2 Moore spectrum, sitting in the cofiber sequence
S

2
�! S ! S=2.

By the octahedral axiom applied to the factorization 2D iq , there is a diagram

S
q
// // W
��

i
��

// Cq

˛
��

//
ı0
// S1

S
2
// S

j
����

// S=2

ˇ
��

ı
// S1

Ci Ci

with distinguished rows and columns. The long exact sequence in homotopy yields
�nCq D 2�n�1S , where the induced map �n.ı

0/W �nCq! �nS1 corresponds to the
inclusion 2�n�1S ,!�n�1S . Likewise, we have �nCi D .�nS/=2, where the induced
map �n.j /W �nS ! �nCi corresponds to the quotient map �nS � .�nS/=2. The
defining cofiber sequence S

2
�! S ! S=2 yields the exact sequence

�nS
2
// �nS

�n
// .S=2/

�nı
// �n�1S

2
// �n�1S;

which in turn yields the short exact sequence

0 // .�nS/=2 // �n.S=2/
�nı
//
2�n�1S // 0:

The map �n.˛/W 2�n�1S ! �n.S=2/ is a splitting of this sequence, because of the
equality �n.ı/�n.˛/D �n.ı˛/D �n.ı

0/. However, the short exact sequence does not
split in the case nD 2, by the isomorphism �2.S=2/D Z=4. For references, see [38,
Proposition II.6.48], [37, Proposition 4] and [27].
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3 3–fold Toda brackets

In this section, we review different constructions of 3–fold Toda brackets and some of
their properties.

Definition 3.1 Let X0

f1
�!X1

f2
�!X2

f3
�!X3 be a diagram in a triangulated cate-

gory T . We define subsets of T .†X0;X3/ as follows:

� The iterated cofiber Toda bracket hf3; f2; f1icc�T .†X0;X3/ consists of all maps
 W †X0!X3 that appear in a commutative diagram

(3-1)

X0

f1
// X1

// Cf1

'
��

// †X0

 
��

X0

f1
// X1

f2
// X2

f3
// X3

where the top row is distinguished.

� The fiber-cofiber Toda bracket hf3; f2; f1ifc � T .†X0;X3/ consists of all com-
posites ˇ ı†˛W †X0!X3 , where ˛ and ˇ appear in a commutative diagram

(3-2)

X0

˛
��

f1
// X1

†�1Cf2
// X1

f2
// X2

// Cf2

ˇ
��

X2

f3
// X3

where the middle row is distinguished.

� The iterated fiber Toda bracket hf3; f2; f1iff � T .†X0;X3/ consists of all maps
†ıW †X0!X3 where ı appears in a commutative diagram

(3-3)

X0

ı
��

f1
// X1



��

f2
// X2

f3
// X3

†�1X3
// †�1Cf3

// X2

f3
// X3

where the bottom row is distinguished.

Algebraic & Geometric Topology, Volume 17 (2017)
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Remark 3.2 In the literature, there are variations of these definitions, which some-
times differ by a sign. With the notion of cofiber sequence implicitly used in [43],
our definitions agree with Toda’s. The Toda bracket also depends on the choice of
triangulation. Given a triangulation, there is an associated negative triangulation whose
distinguished triangles are those triangles whose negatives are distinguished in the
original triangulation; see [3]. Negating a triangulation negates the 3–fold Toda
brackets. Dan Isaksen has pointed out to us that in the stable homotopy category there
are 3–fold Toda brackets which are not equal to their own negatives. For example,
Toda showed in [43, Section VI.v and Theorems 7.4 and 14.1] that the Toda bracket
h2�; 8; �i has no indeterminacy and contains an element � of order 8. We give another
example in Example A.4.

The following proposition can be found in [36, Remark 4.5 and Figure 2] and was
kindly pointed out by Fernando Muro. It is also proved in [31, Section 4.6]. We provide
a different proof, more in the spirit of this article. In the case of spaces, it was originally
proved by Toda [43, Proposition 1.7].

Proposition 3.3 The iterated cofiber, fiber-cofiber and iterated fiber definitions of Toda
brackets coincide. More precisely, for any diagram X0

f1
�!X1

f2
�!X2

f3
�!X3 in T ,

we have the following equalities of subsets of T .†X0;X3/:

hf3; f2; f1icc D hf3; f2; f1ifc D hf3; f2; f1iff:

Proof We will prove the first equality; the second equality is dual.

(�) Let ˇ.†˛/ 2 hf3; f2; f1ifc be obtained from maps ˛ and ˇ as in diagram (3-2).
Now consider the diagram with distinguished rows

X0

˛
��

f1
// X1

// Cf1

'

��

// †X0

†˛
��

†�1Cf2
// X1

f2
// X2

// Cf2

ˇ

��

X2

f3
// X3

where there exists a filler 'W Cf1
!X2 . The commutativity of the tall rectangle on the

right exhibits the membership ˇ.†˛/ 2 hf3; f2; f1icc .
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(�) Let  2 hf3; f2; f1icc be as in diagram (3-1). The octahedral axiom comparing
the cofibers of q1 , ' and ' ı q1 D f2 yields a commutative diagram

†�1C'

�†�1�
��

†�1C'

�†�1�

��

X0

˛
��

f1
// X1

q1
// Cf1

'

��

�1
// †X0

†˛

��

 

��

�†f1
// †X1

†�1Cf2

�†�1�2
// X1

f2
// X2

q

��

f3
$$

q2
// Cf2

�

��

ˇzz

�2
// †X1

X3

C'

� 99

C'

where the rows and columns are distinguished. By exactness of the sequence

T .Cf2
;X3/

.†˛/�
// T .†X0;X3/

.�†�1�/�
// T .†�1C' ;X3/

there exists a map ˇW Cf2
!X3 satisfying  D ˇ.†˛/ if and only if the restriction of

 to the fiber †�1C' of †˛ is zero. That condition does hold: one readily checks
the equality  .�†�1�/ D 0. The chosen map ˇW Cf2

! X3 might not satisfy the
equation ˇq2 D f3 , but we will correct it to another map ˇ0 which does. The error
term f3�ˇq2 is killed by restriction along ' , and therefore factors through the cofiber
of ' , ie there exists a factorization

f3�ˇq2 D ��

for some � W C'!X3 . The corrected map ˇ0 WDˇC��W Cf2
!X3 satisfies ˇ0q2Df3 .

Moreover, this corrected map ˇ0 still satisfies ˇ0.†˛/ D  D ˇ.†˛/, since the
correction term satisfies ��.†˛/D 0.

Thanks to the proposition, we can write hf3; f2; f1i if we do not need to specify a
particular definition of the Toda bracket.

We also recall this well-known fact, and leave the proof as an exercise.

Lemma 3.4 For any diagram X0

f1
�!X1

f2
�!X2

f3
�!X3 in T , the subset hf3; f2; f1i

of T .†X0;X3/ is a coset of the subgroup

.f3/� T .†X0;X2/C .†f1/
� T .†X1;X3/:
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The displayed subgroup is called the indeterminacy, and when it is trivial, we say that
the Toda bracket has no indeterminacy.

Lemma 3.5 Consider maps X0

f1
�!X1

f2
�!X2

f3
�!X3

f4
�!X4 . The following in-

clusions of subsets of T .†X0;X4/ hold:

(a) f4hf3; f2; f1i � hf4f3; f2; f1i;

(b) hf4; f3; f2if1 � hf4; f3; f2f1i;

(c) hf4f3; f2; f1i � hf4; f3f2; f1i;

(d) hf4; f3; f2f1i � hf4; f3f2; f1i:

Proof Inclusions (a)–(b) are straightforward.

For (c)–(d), using the iterated cofiber definition, the subset hf4f3; f2; f1icc consists
of the maps  W †X0!X4 appearing in a commutative diagram

X0

f1
// X1

// Cf1

'

��

// †X0

 
��

X0

f1
// X1

f2
// X2

f3
// X3

f4
// X4

where the top row is distinguished. Given such a diagram, the diagram

X0

f1
// X1

// Cf1

f3'

  

// †X0

 
��

X0

f1
// X1

f2
// X2

f3
// X3

f4
// X4

exhibits the membership  2 hf4; f3f2; f1icc . A similar argument can be used to
prove the inclusion hf4; f3; f2f1iff � hf4; f3f2; f1iff .

Example 3.6 The inclusion hf4f3; f2; f1i � hf4; f3f2; f1i need not be an equality.
For example, consider the maps X 0

�! Y 1
�! Y 0

�! Z 1
�! Z . The Toda brackets

being compared are

h1Z 0; 1Y ; 0i D h0; 1Y ; 0i D f0g;

h1Z ; 01Y ; 0i D h1Z ; 0; 0i D T .†X;Z/:
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Definition 3.7 In the setup of Definition 3.1, the restricted Toda brackets are the
subsets of the Toda bracket

hf3; f2
˛
;f1ifc � hf3; f2; f1ifc;

hf3
ˇ
;f2; f1ifc � hf3; f2; f1ifc

consisting of all composites ˇ.†˛/W †X0!X3 , where ˛ and ˇ appear in a commu-
tative diagram (3-2) where the middle row is distinguished, with the prescribed map
˛W X0!†�1Cf2

(resp. ˇW Cf2
!X3 ).

The lift to the fiber ˛W X0!†�1Cf2
is a witness of the equality f2f1 D 0. Dually,

the extension to the cofiber ˇW Cf2
!X3 is a witness of the equality f3f2 D 0.

Remark 3.8 Let X1

f2
�! X2

q2
�! Cf2

�2
�! †X1 be a distinguished triangle. By

definition, we have equalities of subsets

hf3; f2
˛
;f1ifc D hf3; f2

1
; �†�1�2ifc.†˛/;

hf3
ˇ
;f2; f1ifc D ˇhq2

1
;f2; f1ifc:

4 Adams d2 in terms of 3–fold Toda brackets

In this section, we show that the Adams differential dr can be expressed in several ways
using 3–fold Toda brackets. One of these expressions is as a secondary cohomology
operation.

Given an injective class I , an Adams resolution of an object Y as in diagram (2-2),
and an object X , consider a class Œx� 2 Es;t

2 represented by a cycle x 2 E
s;t
1
D

T .†t�sX; Is/. Recall that d2Œx� 2EsC2;tC1
2

is obtained as illustrated in the diagram

� � � Ys
oo

  

ps   

YsC1
!!

psC1 !!

is
oo YsC2

!!

psC2 !!

isC1
oo YsC3

isC2
oo � � �oo

Is

ıs

<<

IsC1

ısC1

==

IsC2

ısC2

==

†t�sX

x

OO
zx

66

d2.x/

44

Explicitly, since x satisfies d1.x/D.†psC1/ısxD0, we can choose a lift zxW†t�sX�!ı

†YsC2 of ısx to the fiber of †psC1 . Then the differential d2 is given by

d2Œx�D Œ.†psC2/zx �:
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From now on, we will unroll the distinguished triangles and keep track of the suspen-
sions. Following Convention 2.9, we will use the identifications

E
sC2;tC1
1

D T .†t�s�1X; IsC2/Š T .†t�sX; †IsC2/Š T .†t�sC1X; †2IsC2/:

Proposition 4.1 Denote by d2Œx��E
sC2;tC1
1

the subset of all representatives of the
class d2Œx� 2E

sC2;tC1
2

. Then the following equalities hold:

(a) d2Œx�D h†d1

†2psC2
; †psC1; ısxifc

D h†d1; †psC1; ısxi;

(b) d2Œx�D .†
2psC2/h†ısC1

1
;†psC1; ısxifc

D .†2psC2/h†ısC1; †psC1; ısxi;

(c) d2Œx�D h†d1
ˇ
;d1;xifc;

where ˇ is the composite C
ž

�!†2YsC2

†2psC2

�����!†2IsC2 and ž is obtained from the
octahedral axiom applied to the factorization d1D .†psC1/ısW Is!†YsC1!†IsC1 .

In (c), ˇ is a witness to the fact that the composite .†d1/d1 of primary operations is
zero, and so the restricted Toda bracket is a secondary operation.

Proof Note that t plays no role in the statement, so we will assume without loss of
generality that t D s holds.

(a) The first equality holds by definition of d2Œx�, namely choosing a lift of ısx to the
fiber of †psC1 . The second equality follows from the fact that †2psC2 is the unique
extension of †d1 D .†

2psC2/.†ısC1/ to the cofiber of †psC1 . Indeed, †ısC1 is
I–epic and †IsC2 is injective, so that the restriction map

.†ısC1/
�
W T .†2YsC2; †

2IsC2/! T .†IsC1; †
2IsC2/

is injective.

(b) The first equality holds by Remark 3.8. The second equality holds because †ısC1

is I–epic and †IsC2 is injective, as in part (a).

(c) The map d1W Is ! †IsC1 is the composite Is
ıs
�! †YsC1

†psC1

�! †IsC1 . The
octahedral axiom applied to this factorization yields the dotted arrows in a commutative
diagram
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Is

ıs
// †YsC1

†psC1

��

†is
// †Ys

z̨
��

�†ps
// †Is

Is

d1
// †IsC1

†ısC1
��

q
// Cd1

ž

��

�
// †Is

†2YsC2

�†2isC1
��

†2YsC2

��

†2YsC1

†2is
// †2Ys

where the rows and columns are distinguished and the equation .�†2isC1/ ž D .†ıs/�

holds. The restricted bracket h†d1
ˇ; d1;xifc consists of the maps †X ! †2IsC2

appearing as downward composites in the commutative diagram

†X

†˛
��

�†x
// †Is

Is

d1
// †IsC1

q
// Cd1

ž

zz

ˇ

��

�
// †Is

†2YsC2
†2psC2

$$

†IsC1
†d1

//

†ısC1
::

†2IsC2

(�) Let ˇ.†˛/2hd1
ˇ
;d1;xifc . By definition of ˇ , we have ˇ.†˛/D.†2psC2/ ž.†˛/.

Then ž.†˛/W †X !†2YsC2 is a valid choice of the lift zx in the definition of d2Œx�:

.†2isC1/ ž.†˛/D�.†ıs/�.†˛/

D�.†ıs/.�†x/

D†.ısx/:

(�) Given a representative .†psC2/zx2d2Œx�, we will show that †zxW †X!†2YsC2

factors as †X †˛
�! Cd1

ž
�! †2YsC2 for some †˛ , yielding a factorization of the

desired form:
.†2psC2/.†zx/D .†

2psC2/ ž.†˛/

D ˇ.†˛/:
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By construction, the map .†2is/.�†
2isC1/W †

2YsC2!†2Ys is a cofiber of ž. The
condition

.†2is/.†
2isC1/.†zx/D .†

2is/†.ısx/D 0

guarantees the existence of some lift †˛W †X!Cd1
of †zx . The chosen lift †˛ might

not satisfy �.†˛/D�†x , but we will correct it to a lift †˛0 which does. The two sides
of the equation become equal after applying �†ıs , ie .�†ıs/.�†x/D .�†ıs/�.†˛/

holds. Hence, the error term factors as

�†x� �†˛ D .�†ps/.†�/

for some †� W †X ! †Ys , since �†ps is a fiber of �†ıs . The corrected map
†˛0 WD†˛Cz̨.†�/W †X!Cd1

satisfies �.†˛0/D�†x and still satisfies ž.†˛0/D
ž.†˛/D†zx , since the correction term z̨.†�/ satisfies žz̨.†�/D 0.

Proposition 4.2 The following inclusions of subsets hold in E
sC2;tC1
1

:

d2Œx�� .†
2psC2/h†ısC1; d1;xi � h†d1; d1;xi:

Proof The first inclusion is

d2Œx�D .†
2psC2/h†ısC1; †psC1; ısxi � .†2psC2/h†ısC1; .†psC1/ıs;xi;

whereas the second inclusion is

.†2psC2/h†ısC1; d1;xi � h.†
2psC2/.†ısC1/; d1;xi;

both using Lemma 3.5.

Proposition 4.3 The inclusion .†2psC2/h†ısC1; d1;xi � h†d1; d1;xi need not be
an equality in general.

It was pointed out to us by Robert Bruner that this can happen in principle. We give an
explicit example in Proposition A.1.

5 Higher Toda brackets

We saw in Section 3 that there are several equivalent ways to define 3–fold Toda
brackets. Following the approach given in [30], we show that the fiber-cofiber definition
generalizes nicely to n–fold Toda brackets. There are .n � 2/! ways to make this
generalization, and we prove that they are all the same up to a specified sign. We also
show that this Toda bracket is self-dual.
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Other sources that discuss higher Toda brackets in triangulated categories are [40,
Appendix A], [18, Chapter IV, Section 2] and [36, Section 4], which all give definitions
that follow Cohen’s approach for spectra or spaces [15]. We show that our definition
agrees with those of [40] and [36]. (We believe that it sometimes differs in sign
from [15]. We have not compared carefully with [18].)

Definition 5.1 Let X0

f1
�!X1

f2
�!X2

f3
�!X3 be a diagram in a triangulated cate-

gory T . We define the Toda family of this sequence to be the collection T.f3; f2; f1/

consisting of all pairs .ˇ;†˛/, where ˛ and ˇ appear in a commutative diagram

X0

˛
��

f1
// X1

†�1Cf2
// X1

f2
// X2

// Cf2

ˇ
��

X2

f3
// X3

with distinguished middle row. Equivalently,

†X0

†˛
��

�†f1
// †X1

X1

f2
// X2

// Cf2

ˇ
��

// †X1

X2

f3
// X3

where the middle row is again distinguished. (The negative of †f1 appears, since
when a triangle is rotated, a sign is introduced.) Note that the maps in each pair form a
composable sequence †X0

†˛
�! Cf2

ˇ
�! X3 , with varying intermediate object, and that

the collection of composites ˇ ı†˛ is exactly the Toda bracket hf3; f2; f1i, using the
fiber-cofiber definition; see diagram (3-2). (Also note that the Toda family is generally
a proper class, but this is only because the intermediate object can be varied up to
isomorphism, and so we will ignore this.)

More generally, if S is a set of composable triples of maps, starting at X0 and ending
at X3 , we define T.S/ to be the union of T.f3; f2; f1/ for each triple .f3; f2; f1/

in S .

Definition 5.2 Let X0

f1
�!X1

f2
�!X2

f3
�! � � �

fn
�!Xn be a diagram in a triangulated

category T . We define the Toda bracket hfn; : : : ; f1i inductively as follows. If nD 2,
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it is the set consisting of just the composite f2f1 . If n> 2, it is the union of the sets
hˇ;†˛;†fn�3; : : : ; †f1i, where .ˇ;†˛/ is in T.fn; fn�1; fn�2/.

In fact, there are .n�2/! such definitions, depending on a sequence of choices of which
triple of consecutive maps to apply the Toda family construction to. In Theorem 5.11
we will enumerate these choices and show that they all agree up to sign.

Example 5.3 Let us describe 4–fold Toda brackets in more detail. We have

hf4; f3; f2; f1i D

[
ˇ;˛

hˇ;†˛;†f1i D

[
ˇ;˛

[
ˇ0;˛0

fˇ0 ı†˛0g

with .ˇ;†˛/ 2 T.f4; f3; f2/ and .ˇ0; †˛0/ 2 T.ˇ;†˛;†f1/. These maps fit into a
commutative diagram

†2X0
†˛0

// C†˛ //

ˇ0

��

†2X1 row = �†2f1

†X1
†˛

// Cf3
//

ˇ
##

OO

†X2 row = �†f2

X2

f3
// X3

OO

f4

// X4

0

OO

where the horizontal composites are specified as above, and each “snake”

� // �

� // �

OO

is a distinguished triangle. The middle column is an example of a 3–filtered object as
defined below.

Next, we will show that Definition 5.2 coincides with the definitions of higher Toda
brackets in [40, Appendix A] and [36, Section 4], which we recall here.

Definition 5.4 Let n� 1 and consider a diagram in T

Y0

�1
// Y1

�2
// Y2

// � � �
�n�1

// Yn�1
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consisting of n�1 composable maps. An n–filtered object Y based on .�n�1; : : : ; �1/

consists of a sequence of maps

0D F0Y
i0
// F1Y

i1
// � � �

in�1
// FnY D Y

together with distinguished triangles

Fj Y
ij
// FjC1Y

qjC1
// †j Yn�1�j

ej
// †Fj Y

for 0� j � n� 1, such that for 1� j � n� 1, the composite

†j Yn�1�j

ej
// †Fj Y

†qj
// †j Yn�j

is equal to †j�n�j . In particular, the n–filtered object Y comes equipped with maps

� 0Y W Yn�1 Š F1Y ! Y;

�Y W Y D FnY !†n�1Y0:

Definition 5.5 Let X0

f1
�!X1

f2
�!X2

f3
�! � � �

fn
�!Xn be a diagram in a triangulated

category T . The Toda bracket in the sense of Shipley and Sagave, hfn; : : : ; f1iSS �

T .†n�2X0;Xn/, is the set of all composites appearing in the middle row of a commu-
tative diagram

Xn�1

� 0
X
��

fn

##

†n�2X0

†n�2f1 %%

// X

�X
��

// Xn

†n�2X1

where X is an .n�1/–filtered object based on .fn�1; : : : ; f3; f2/.

Example 5.6 For a 3–fold Toda bracket hf3; f2; f1iSS , a 2–filtered object X based
on f2 amounts to a cofiber of �f2 , more precisely, a distinguished triangle

X2

� 0X
// X

�X
// †X1

†f2
// †X2:

Using this, one readily checks the equality hf3; f2; f1iSS D hf3; f2; f1ifc , as noted in
[36, Definition 4.5].
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Example 5.7 For a 4–fold Toda bracket hf4; f3; f2; f1iSS , a 3–filtered object X

based on .f3; f2/ consists of the data displayed in the diagram

F3X DX
q3D�X

// †2X1

†X1

�†�1e2
// F2X

q2
//

i2

OO

†X2 row = �†f2

X2

�†�1e1
// F1X

i1

OO

q1

Š
// X3 row = �f3

F0X D 0

i0

OO

where the two snakes are distinguished. The bracket consists of the maps †2X0!X4

appearing as composites of the dotted arrows in a commutative diagram

†2X0
// X

�X
//

��

†2X1 row = †2f1

†X1

�†�1e2
// F2X

q2
//

OO

†X2 row = �†f2

X2

�f3
// X3

OO

f4
// X4

0

OO

where the two snakes are distinguished. By negating the first and third map in each
snake, this recovers the description in Example 5.3, thus proving the equality of subsets

hf4; f3; f2; f1iSS D hf4; f3; f2; f1i:

Proposition 5.8 Definitions 5.2 and 5.5 agree. In other words, we have the equality

hfn; : : : ; f1iSS D hfn; : : : ; f1i

of subsets of T .†n�2X0;Xn/.

Proof This is a straightforward generalization of Example 5.7.
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We define the negative of a Toda family T.f3; f2; f1/ to consist of pairs .ˇ;�†˛/ for
.ˇ;†˛/ 2 T.f3; f2; f1/. (Since changing the sign of two maps in a triangle doesn’t
affect whether it is distinguished, it would be equivalent to put the minus sign with
the ˇ .)

Lemma 5.9 Let X0

f1
�!X1

f2
�!X2

f3
�!X3

f4
�!X4 be a diagram in a triangulated

category T . Then the two sets of pairs T.T.f4;f3;f2/;†f1/ and T.f4;T.f3;f2;f1//

are negatives of each other.

This is stronger than saying the two ways of computing the Toda bracket hf4; f3; f2; f1i

are negatives, and the stronger statement will be used inductively to prove Theorem 5.11.

Proof We will show that the negative of T.T.f4; f3; f2/; †f1/ is contained in the
family T.f4;T.f3; f2; f1//. The reverse inclusion is proved dually.

Suppose .ˇ;†˛/ is in T.T.f4; f3; f2/; †f1/, that is, .ˇ;†˛/ is in T.ˇ0; †˛0; †f1/ for
some .ˇ0; †˛0/ in T.f4; f3; f2/. This means that we have the following commutative
diagram, in which the long row and column are distinguished triangles:

†X1

�†f2
//

†˛0

��

†X2

X2

f3
// X3

f4   

// Cf3

ˇ0~~

//

��

†X2

X4

C†˛0

ˇ
``

��

†2X0

†˛
>>

�†2f1
  

†2X1

Using the octahedral axiom, there exists a map ıW Cf2
!X3 in the following diagram

making the two squares commute, and such that the diagram can be extended as shown,
with all rows and columns distinguished:
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†X0



}}

�†f1

!!

X2
// Cf2

//

ı

��

†X1

�†f2
//

†˛0

��

†X2

X2

f3
// X3

f4

!!

//

��

Cf3

ˇ0}}

//

��

†X2

X4

Cı

��

C†˛0

ˇaa

��

†2X0

†˛
==

�†2f1
!!

†


}}

†Cf2
// †2X1

Define †
 to be the composite †2X0! C†˛0 D Cı ! †Cf2
, where the first map

is †˛ . Then the small triangles at the top and bottom of the last diagram commute
as well. Therefore, .ı; 
 / is in T.f3; f2; f1/. Moreover, this diagram shows that
.ˇ;�†˛/ is in T.f4; ı; 
 /, completing the argument.

To concisely describe different ways of computing higher Toda brackets, we introduce
the following notation. For 0 � j � n� 3, write Tj .fn; fn�1; : : : ; f1/ for the set of
tuples

f.fn; fn�1; : : : ; fn�jC1; ˇ;†˛;†fn�j�3; : : : ; †f1/g;

where .ˇ;†˛/ is in T.fn�j ; fn�j�1; fn�j�2/. (There are j maps to the left of the
three used for the Toda family.) If S is a set of n–tuples of composable maps, we define
Tj .S/ to be the union of the sets Tj .fn; fn�1; : : : ; f1/ for .fn; fn�1; : : : ; f1/ in S .
With this notation, the standard Toda bracket hfn; : : : ; f1i consists of the composites
of all the pairs occurring in the iterated Toda family

T.fn; : : : ; f1/ WD T0.T0.T0. � � �T0.fn; : : : ; f1/ � � � ///:

A general Toda bracket is of the form Tj1
.Tj2

.Tj3
. � � �Tjn�2

.fn; : : : ; f1/ � � � ///, where
j1; j2; : : : ; jn�2 is a sequence of natural numbers with 0� ji < i for each i . There
are .n� 2/! such sequences.

Remark 5.10 There are six ways to compute the 5–fold Toda bracket hf5;f4;f3;f2;f1i
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as the set of composites of the pairs of maps in one of the following sets:

T0.T0.T0.f5; f4; f3; f2; f1///D T.T.T.f5; f4; f3/; †f2/; †
2f1/;

T0.T0.T1.f5; f4; f3; f2; f1///D T.T.f5;T.f4; f3; f2//; †
2f1/;

T0.T1.T1.f5; f4; f3; f2; f1///D T.f5;T.T.f4; f3; f2/; †f1//;

T0.T1.T2.f5; f4; f3; f2; f1///D T.f5;T.f4;T.f3; f2; f1///;

T0.T0.T2.f5; f4; f3; f2; f1///;

T0.T1.T0.f5; f4; f3; f2; f1///:

The last two cannot be expressed directly just using T.

Now we can prove the main result of this section.

Theorem 5.11 The Toda bracket computed using the sequence j1; j2; : : : ; jn�2 equals
the standard Toda bracket up to the sign .�1/

P
ji .

Proof Let j1; j2; : : : ; jn�2 be a sequence with 0 � ji < i for each i . Lemma 5.9
tells us that if we replace consecutive entries k; kC 1 with k; k in any such sequence,
the two Toda brackets agree up to a sign. To begin with, we ignore the signs. We will
prove by induction on ` that the initial portion j1; : : : ; j` of such a sequence can be
converted into any other sequence, using just the move allowed by Lemma 5.9 and its
inverse, and without changing ji for i > `. For `D 1, there is only one sequence 0.
For `D 2, there are two sequences: 0; 0 and 0; 1, and Lemma 5.9 applies. For ` > 2,
suppose our goal is to produce the sequence j 0

1
; : : : ; j 0

`
. We break the argument into

three cases:

j 0
`

D j` We can directly use the induction hypothesis to adjust the entries in the first
`� 1 positions.

j 0
`

> j` By induction, we can change the first `� 1 entries in the sequence j so that
the entry in position `� 1 is j` , since j` < j 0

`
� `� 1. Then, using Lemma 5.9, we

can change the entry in position ` to j` C 1. Continuing in this way, we get j 0
`

in
position `, and then we are in the first case.

j 0
`

< j` Since the moves are reversible, this is equivalent to the second case.

To handle the sign, first note that signs propagate through the Toda family construction.
More precisely, suppose S is a set of n–tuples of maps, and let S 0 be a set obtained
by negating the k th map in each n–tuple for some fixed k . Then Tj .S/ has the same
relationship to Tj .S

0/, possibly for a different value of k .
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As a result, applying the move of Lemma 5.9 changes the resulting Toda bracket by
a sign. That move also changes the parity of

P
i ji . Since we get a plus sign when

each ji is zero, it follows that the difference in sign in general is .�1/
P

i ji .

An animation of this argument is available at [13]. It was pointed out by Dylan Wilson
that the combinatorial part of the above proof is equivalent to the well-known fact that
if a binary operation is associative on triples, then it is associative on n–tuples.

In order to compare our Toda brackets to the Toda brackets in the opposite category,
we need one lemma.

Lemma 5.12 If X0

f1
�!X1

f2
�!X2

f3
�!X3 is a diagram in a triangulated category T , then

the Toda family T.†f3; †f2; †f1/ is the negative of the suspension of T.f3; f2; f1/.
That is, it consists of .†ˇ;�†2˛/ for .ˇ;†˛/ in T.f3; f2; f1/.

Proof Given a distinguished triangle †�1Cf2

k
�!X1

f2
�!X2

�
�!Cf2

, a distinguished
triangle involving †f2 is

Cf2

�†k
// †X1

†f2
// †X2

†�
// †Cf2

:

Because of the minus sign at the left, the maps that arise in the Toda family based on
this triangle are �†2˛ and †ˇ , where †˛ and ˇ arise in the Toda family based on
the starting triangle.

Given a triangulated category T , the opposite category T op is triangulated in a natural
way. The suspension in T op is †�1 and a triangle

Y0

g1
// Y1

g2
// Y2

g3
// †�1Y0

in T op is distinguished if and only if the triangle

††�1Y0 Y1

g0
1

oo Y2

g2
oo †�1Y0

g3
oo

in T is distinguished, where g0
1

is the composite of g1 with the natural isomorphism
Y0 Š††

�1Y0 .

Corollary 5.13 The Toda bracket is self-dual up to suspension. More precisely, let
X0

f1
�! X1

f2
�! X2

f3
�! � � �

fn
�! Xn be a diagram in a triangulated category T . Then

the subset

hf1; : : : ; fni
T op
� T op.†�.n�2/Xn;X0/D T .X0; †

�.n�2/Xn/
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defined by taking the Toda bracket in T op is sent to the subset

hfn; : : : ; f1i
T
� T .†n�2X0;Xn/

defined by taking the Toda bracket in T under the bijection †n�2WT .X0;†
�.n�2/Xn/!

T .†n�2X0;Xn/.

Proof First we compare Toda families in T and T op . It is easy to see that the Toda
family TT op

.f1; f2; f3/ computed in T op consists of the pairs .˛;†�1ˇ/ for .†˛; ˇ/
in the Toda family TT .f3; f2; f1/ computed in T . In short, one has to desuspend and
transpose the pairs.

Using this, one can see that the iterated Toda family

TT op
.TT op

� � �TT op
.f1; f2; f3/; : : : ; †

�.n�3/fn/

is equal to the transpose of

†�1TT �†�.n�3/fn; †
�1TT .†�.n�4/fn�1; †

�1TT
� � �†�1TT .f3; f2; f1/ � � � /

�
:

By Lemma 5.12, the desuspensions pass through all of the Toda family constructions,
introducing an overall sign of .�1/1C2C3C���C.n�3/ , and producing

†�.n�2/TT .fn;TT .fn�1;TT
� � �TT .f3; f2; f1/ � � � //:

By Theorem 5.11, composing the pairs gives the usual Toda bracket up to the sign
.�1/0C1C2C���C.n�3/ . The two signs cancel, yielding the result.

We do not know a direct proof of this corollary. To summarize, our insight is that
by generalizing the corollary to all .n� 2/! methods of computing the Toda bracket,
we were able to reduce the argument to the 4–fold case (Lemma 5.9) and some
combinatorics.

Remark 5.14 As with the 3–fold Toda brackets (see Remark 3.2), the higher Toda
brackets depend on the triangulation. If the triangulation is negated, the n–fold Toda
brackets change by the sign .�1/n .

6 Higher order operations determine dr

In this section, we show that the higher Adams differentials can be expressed in terms
of higher Toda brackets, in two ways. One of these expressions is as an r th order
cohomology operation.
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Given an injective class I , an Adams resolution of an object Y as in diagram (2-2)
and an object X , consider a class Œx� 2 E

s;t
r represented by an element x 2 E

s;t
1
D

T .†t�sX; Is/. The class dr Œx� is the set of all .†psCr /zx , where zx runs over lifts
of ısx through the .r�1/–fold composite †.isC1 � � � isCr�1/ which appears across
the top edge of the Adams resolution.

Our first result will be a generalization of Proposition 4.1(a), expressing dr in terms of
an .rC1/–fold Toda bracket.

Theorem 6.1 As subsets of E
sCr;tCr�1
1

, we have

dr Œx�D h†
r�1d1; : : : ; †

2d1; †d1; †psC1; ısxi:

Proof We compute the Toda bracket, applying the Toda family construction starting
from the right, which introduces a sign of .�1/1C2C���C.r�2/ , by Theorem 5.11. We
begin with the Toda family T.†d1; †psC1; ısx/. There is a distinguished triangle

†YsC2

†isC1
// †YsC1

†psC1
// †IsC1

†ısC1
// †2YsC2;

with no needed signs. The map †d1 factors through †ısC1 as †2psC2 , and this
factorization is unique because †ısC1 is I–epic and †2IsC2 is injective. The other
maps in the Toda family are †x1 , where x1 is a lift of ısx through †isC1 . So

T.†d1; †psC1; ısx/D f.†2psC2; †x1/ j x1 a lift of ısx through †isC1g:

(The Toda family also includes .†2psC2 �; �
�1.†x1//, where � is any isomorphism,

but these contribute nothing additional to the later computations.) The composites of
such pairs give d2Œx�, up to suspension, recovering Proposition 4.1(a).

Continuing, for each such pair we compute

T.†2d1; †
2psC2; †x1/D�†T.†d1; †psC2;x1/

D�†f.†2psC3; †x2/ j x2 a lift of x1 through †isC2g:

The first equality is Lemma 5.12, and the second reuses the work done in the previous
paragraph, with s increased by 1. Composing these pairs gives �d3Œx�. The sign
which is needed to produce the standard Toda bracket is .�1/1 , and so the signs cancel.

At the next step, we compute

T.†3d1;†
3psC3;�†

2x2/D�†
2T.†d1;†psC3;x2/

D�†2
f.†2psC4; †x3/ jx3 a lift of x2 through †isC3g:
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Again, the composites give �d4Œx�. Since it was a double suspension that passed
through the Toda family, no additional sign was introduced. Similarly, the sign to
convert to the standard Toda bracket is .�1/1C2 , and since 2 is even, no additional
sign was introduced. Therefore, the signs still cancel.

The pattern continues. In total, there are 1C 2C � � � C .r � 2/ suspensions that pass
through the Toda family, and the sign to convert to the standard Toda bracket is also
based on that number, so the signs cancel.

Remark 6.2 Theorem 6.1 can also be proved using the definition of Toda brackets
based on r –filtered objects, as in Definitions 5.4 and 5.5. However, one must work in
the opposite category T op . In that category, there is a unique r –filtered object, up to
isomorphism, based on the maps in the Toda bracket. One of the dashed arrows in the
diagram from Definition 5.5 is also unique, and the other corresponds naturally to the
choice of lift in the Adams differential.

In the remainder of this section, we describe the analog of Proposition 4.1(c). We begin
by defining restricted higher Toda brackets, in terms of restricted Toda families.

Consider a Toda family T.gh1;g1h0;g0h/, where the maps factor as shown, there are
distinguished triangles

(6-1) Zi

gi
// Ji

hi
// ZiC1

ki
// †Zi

for i D 0; 1, and g and h are arbitrary maps Z2 ! A and B ! Z0 , respectively.
This information determines an essentially unique element of the Toda family in the
following way. The octahedral axiom applied to the factorization g1h0 yields the
dotted arrows in a commutative diagram

J0

h0
// Z1

g1

��

k0
// †Z0

˛2

��

�†g0
// †J0

J0

g1h0
// J1

h1
��

q
// W2

ˇ2
��

�
// †J0

Z2

k1
��

Z2


2
��

†Z1

†k0
// †2Z0
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where the rows and columns are distinguished and 
2 WD .†k0/k1 . It is easy to see
that �†.g0h/ lifts through � as ˛2.†h/, and that gh1 extends over q as gˇ2 . We
define the restricted Toda family to be the set T.gh1

!;g1h0
!;g0h/ consisting of the pairs

.gˇ2; ˛2.†h// that arise in this way. Since ˛2 and ˇ2 come from a distinguished
triangle involving a fixed map 
2 , such pairs are unique up to the usual ambiguity of
replacing the pair with .gˇ2�; �

�1˛2.†h//, where � is an isomorphism. Similarly,
given any map xW B! J0 , we define T.gh1

!;g1h0;x/ to be the set consisting of the
pairs .gˇ2; †˛/, where ˇ2 arises as above and †˛ is any lift of �†x through �.

Definition 6.3 Given distinguished triangles as in (6-1), for i D 1; : : : ; n� 1, and
maps gW Zn!A and xW B! J1 , we define the restricted Toda bracket

hghn�1
!
;gn�1hn�2

!
; : : :

!
;g3h2

!
;g2h1;xi

inductively as follows. If nD 2, it is the set consisting of just the composite gh1x . If
nD 3, it is the set of composites of the pairs in T.gh2

!;g2h1;x/. If n > 3, it is the
union of the sets

hgˇ2
!
; ˛2.†hn�3/

!
; †.gn�3hn�4/

!
; : : : ; †xi;

where .gˇ2; ˛2.†hn�3// is in T.ghn�1
!;gn�1hn�2

!;gn�2hn�3/.

Remark 6.4 Despite the notation, we want to make it clear that these restricted Toda
families and restricted Toda brackets depend on the choice of factorizations and on the
distinguished triangles in (6-1). Moreover, the elements of the restricted Toda families
are not simply pairs, but also include the factorizations of the maps in those pairs, and the
distinguished triangle involving ˛2 and ˇ2 . This information is used in the .n�1/–fold
restricted Toda bracket that is used to define the n–fold restricted Toda bracket.

Recall that the maps d1 are defined to be .†psC1/ıs , and that we have distinguished
triangles

Ys

ps
// Is

ıs
// †YsC1

†is
// †Ys

for each s . The same holds for suspensions of d1 , with the last map changing sign
each time it is suspended. Thus for xW †t�sX ! Is in the E1 term, the .rC1/–fold
restricted Toda bracket h†r�1d1

!; : : : !; †d1
!; d1;xi makes sense for each r , where

we are implicitly using the defining factorizations and the triangles from the Adams
resolution.

Theorem 6.5 As subsets of E
sCr;tCr�1
1

, we have

dr Œx�D h†
r�1d1

!
; : : :

!
; †d1

!
; d1;xi:
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This is a generalization of Proposition 4.1(c). The data in the Adams resolution is the
witness that the composites of the primary operations are zero in a sufficiently coherent
way to permit an r th order cohomology operation to be defined.

Proof The restricted Toda bracket h†r�1d1
!; : : : !; †d1

!; d1;xi is defined recursively,
working from the left. Each of the r �2 doubly restricted Toda families has essentially
one element. The first one involves maps ˛2 , ˇ2 and 
2 that form a distinguished
triangle, and 
2 is equal to Œ.�1/r†r isCr�2�Œ�.�1/r†r isCr�1�. We will denote
the corresponding maps in the following octahedra ˛k , ˇk and 
k , where each 
k

equals Œ.�1/r†r isCr�k � 
k�1 , and so 
k D �.�1/rk†r .isCr�k � � � isCr�1/. One is
left to compute the singly restricted Toda family h†r psCrˇr�1

!; ˛r�1†
r�2ıs; †

r�2xi,
where ˛r�1 and ˇr�1 fit into a distinguished triangle

†r�1YsC1

˛r�1
// Wr�1

ˇr�1
// †r YsCr


r�1
// †r YsC1;

and 
r�1 D�†
r .isC1 � � � isCr�1/. Thus, to compute the last restricted Toda bracket,

one uses the following diagram, obtained as usual from the octahedral axiom:

†t�sCr�1X

�†r�1x
��

†r�2Is
†r�2ıs

// †r�1YsC1

˛r�1

��

.�1/r†r�1is
// †r�1Ys

˛r

��

�†r�1ps
// †r�1Is

†r�2Is
// Wr�1

ˇr�1
��

qr�1
// Wr

ˇr
��

�r�1
// †r�1Is

†r IsCr †r YsCr

†r psCr
oo


r�1

��

†r YsCr


r

��

†r YsC1

.�1/r †r is
// †r Ys

Up to suspension, both dr Œx� and the last restricted Toda bracket are computed by
composing certain maps zxW †t�sCr�2X ! †r YsCr with †r psCr . For dr Œx�, the
maps zx must lift †r�1.ısx/ through �
r�1 . For the last bracket, the maps zx are of
the form ˇr y , where yW †t�sCr�1X !Wr is a lift of �†r�1x through �r�1 . As in
the proof of Proposition 4.1(c), one can see that the possible choices of zx coincide.

We next give a description of dr Œx� using higher Toda brackets defined using filtered
objects, as in Definitions 5.4 and 5.5. The computation of the restricted Toda bracket
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above produces a sequence

(6-2) 0DW0

q0
// W1

q1
// � � �

qr�1
// Wr ;

where Wk is the fiber of the k –fold composite †r .isCr�k � � � isCr�1/. (The map 
k

may differ in sign from this composite, but that doesn’t affect the fiber.) For each k ,
we have a distinguished triangle

Wk

qk
// WkC1

�k
// †r�1IsCr�k�1

�.†˛k/.†
r�1ısCr�k�1/

// †Wk ;

where we extend downwards to k D 0 by defining W1 D†
r�1IsCr�1 and using the

nonobvious triangle

W0

q0D0
// W1

�0D�1
// †r�1IsCr�1

0
// †W0:

One can check that

.†�k�1/.�†˛k/.†
r�1ısCr�k�1/D .†

r psCr�k/.†
r�1ısCr�k�1/

D†r�1d1

D†k.†r�k�1d1/;

where †r�k�1d1 is the map appearing in the .kC 1/st spot of the Toda bracket. In
other words, the sequence (6-2) is an r –filtered object based on .†r�2d1; : : : ; d1/.

The natural map �W W Wr!†r�1Is is �r�1 , and the natural map � 0
W
W †r�1IsCr�1Š

W1!Wr is the composite qr�1 � � � q1�0 D�qr�1 � � � q1 . The Toda bracket computed
using the filtered object W consists of all composites appearing in the middle row of
this commutative diagram:

(6-3)

†r�1IsCr�1

� 0
W
��

†r�1d1

&&

†t�sCr�1X

†r�1x ''

a
// Wr

�W
��

b
// †r IsCr

†r�1Is

We claim that there is a natural choice of extension b . Since

†r�1d1 D .†
r psCr /.†

r�1ısCr�1/;
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it suffices to extend †r�1ısCr�1 over � 0
W

. Well, ˇ2 by definition is an extension
of †r�1ısCr�1 over q1 , and each subsequent ˇk gives a further extension. Because
�0 D�1, �.†r psCr /ˇr is a valid choice for b .

On the other hand, as described at the end of the previous proof, the lifts a of †r�1x

through �W D �r�1 , when composed with �.†r psCr /ˇr , give exactly the Toda
bracket computed there.

In summary, we have the following theorem.

Theorem 6.6 Given an Adams resolution of Y and r � 2, there is an associated
r –filtered object W and a choice of a map b in diagram (6-3), such that for any X and
class Œx� 2E

s;t
r , we have

dr Œx�D h†
r�1d1; : : : ; †d1; d1;xi;

where the Toda bracket is computed only using the r –filtered object W and the chosen
extension b .

7 Sparse rings of operations

In this section, we focus on injective and projective classes which are generated by an
object with a “sparse” endomorphism ring. In this context, we can give conditions under
which the restricted Toda bracket appearing in Theorem 6.5 is equal to the unrestricted
Toda bracket, producing a cleaner correspondence between Adams differentials and
Toda brackets. We begin in Section 7.1 by giving the results in the case of an injective
class, and then briefly summarize the dual results in Section 7.2. Section 7.3 gives
examples.

Let us fix some notation and terminology, also discussed in [36; 34; 39, Section 2; 8].

Definition 7.1 Let N be a natural number. A graded abelian group R� is N –sparse
if R� is concentrated in degrees which are multiples of N , ie Ri D 0 whenever
i 6� 0 .mod N /.

7.1 Injective case

Notation 7.2 Let E be an object of the triangulated category T . Define the E–
cohomology of an object X to be the graded abelian group E�X given by EnX WD

T .X; †nE/. Postcomposition makes E�X into a left module over the graded endo-
morphism ring E�E .
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Assumption 7.3 For the remainder of Section 7.1, we assume the following:

(1) The triangulated category T has infinite products.

(2) The graded ring E�E is N –sparse for some N � 2.

Let IE denote the injective class generated by E , as in Example 2.6. Explicitly, IE

consists of retracts of (arbitrary) products
Q

i †
ni E .

Lemma 7.4 With this setup, we have the following:

(1) Let I be an injective object such that E�I is N –sparse. Then I is a retract of a
product

Q
i †

mi N E .

(2) If, moreover, W is an object such that E�W is N –sparse, then we have
T .W; †tI/D 0 for t 6� 0 .mod N /.

Proof (1) I is a retract of a product P D
Q

i †
ni E , with a map �W I ,! P and

retraction � W P � I . Consider the subproduct P 0 D
Q

N jni
†ni E , with inclusion

�0W P 0 ,! P (via the zero map into the missing factors) and projection � 0W P � P 0 .
Then the equality

�0� 0�D �W I ! P

holds, using the fact that E�I is N –sparse. Therefore, we obtain ��0� 0�D ��D 1I ,
so that I is a retract of P 0 .

(2) By the first part, T .W; †tI/ is a retract of

T .W; †t
Y

i

†mi N E/D T .W;
Y

i

†mi NCtE/

D

Y
i

T .W; †mi NCtE/

D

Y
i

Emi NCtW

D 0;

using the assumption that E�W is N –sparse.

Lemma 7.5 Let I0

f1
�! I1

f2
�! I2! � � �

fr
�! Ir be a diagram in T , with r �N C 1.

Assume that each object Ij is injective and that each E�.Ij / is N –sparse. Then
the iterated Toda family T.fr ; fr�1; : : : ; f1/ is either empty or consists of a single
composable pair †r�2I0! C ! Ir , up to automorphism of C .
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Proof In the case r D 2, there is nothing to prove, so we may assume r � 3.
The iterated Toda family is obtained by r � 2 iterations of the 3–fold Toda family
construction. The first iteration computes the Toda family of the diagram

Ir�3

fr�2
// Ir�2

fr�1
// Ir�1

fr
// Ir :

Choose a cofiber of fr�1 , ie a distinguished triangle Ir�2

fr�1
�! Ir�1! C1!†Ir�2 .

A lift of fr�2 to the fiber †�1C1 , if it exists, is determined up to

T .Ir�3; †
�1Ir�1/D T .†Ir�3; Ir�1/;

which is zero by Lemma 7.4(2). Likewise, an extension of fr to the cofiber C1 , if it
exists, is determined up to

T .†Ir�2; Ir /D 0:

Hence, T.fr ; fr�1; fr�2/ is either empty or consists of a single pair .ˇ1; †˛1/, up to
automorphisms of C1 . It is easy to see that the object C1 has the following property:

(7-1) If E�W D 0 for � � 0; 1 .mod N /, then T .W;C1/D 0.

For r � 4, the next iteration computes the Toda family of the diagram

†Ir�4

†fr�3
// †Ir�3

†˛1
// C1

ˇ1
// Ir :

The respective indeterminacies are

T .†2Ir�4;C1/;

which is zero by property (7-1), and

T .†2Ir�3; Ir /;

which is zero by Lemma 7.4(2), since N � 3 in this case. Hence, T.ˇ1; †˛1; †fr�3/

is either empty or consists of a single pair .ˇ2; †˛2/, up to automorphism of the cofiber
C2 of †˛1 . Repeating the argument inductively, the successive iterations compute the
Toda family of a diagram

†j Ir�3�j

†jfr�2�j
// †j Ir�2�j

†˛j
// Cj

ˇj
// Ir

for 0� j � r � 3, where Cj has the following property:

(7-2) If E�W D 0 for � � 0; 1; : : : ; j .mod N /, then T .W;Cj /D 0.
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The indeterminacies T .†jC1Ir�3�j ;Cj/ and T .†jC1Ir�2�j ;Ir/ again vanish. Hence,
T. ǰ ; † j̨ ; †

jfr�2�j / is either empty or consists of a single pair . ǰC1; † j̨C1/,
up to automorphism of CjC1 . Note that the argument works until the last iteration
j D r � 3, by the assumption r � 2<N .

We will need the following condition on an object Y .

Condition 7.6 Y admits an IE –Adams resolution Y� (see (2-2)) such that for each
injective Ij in the resolution, E�.†j Ij / is N –sparse.

Remark 7.7 (1) Condition 7.6 implies that E�Y is itself N –sparse, because of
the surjection E�I0 � E�Y .

(2) The condition can be generalized to: there is an integer m such that for each j ,
E�.†j Ij / is concentrated in degrees � � m .mod N /. We take m D 0 for
notational convenience.

(3) We will see in Propositions 7.9 and 7.10 situations in which Condition 7.6 holds.

Theorem 7.8 Let X and Y be objects in T and consider the Adams spectral sequence
abutting to T .X;Y / with respect to the injective class IE . Assume that Y satisfies
Condition 7.6. Then for all r � N , the Adams differential is given, as a subset of
EsCr;tCr�1

1
, by

dr Œx�D h†
r�1d1; : : : ; †d1; d1;xi:

In other words, the restricted bracket appearing in Theorem 6.5 coincides with the full
Toda bracket.

Proof We will show that

h†r�1d1
!
; : : :

!
; †d1

!
; d1;xi D h†

r�1d1; : : : ; †d1; d1;xi:

Consider the diagram

Is
d1
// †IsC1

†d1
// †2IsC2

// � � � // †r�1Ir�1

†r�1d1
// †r IsCr

X

x
OO

whose Toda bracket is being computed. The corresponding Toda family is

T.†r�1d1; : : : ; †d1; d1;x/D T
�
T.†r�1d1; : : : ; †d1; d1/; †

r�2x
�
:

We know that

T.†r�1d1
!
; : : :

!
; †d1

!
; d1/� T.†r�1d1; : : : ; †d1; d1/:
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By Lemma 7.5, the Toda family on the right has at most one element, up to automor-
phism. But fully restricted Toda families are always nonempty, so the inclusion must
be an equality. Write †r�2Is

f
�! C

g
�!†r IsCr for an element of these families. It

remains to show that the inclusion

hg
!
; f;†r�2xi � hg; f;†r�2xi

is an equality, ie that the extension of g to the cofiber of f is unique. This follows
from the equality T .†r�1Is; †

r IsCr /D 0, which uses the assumption on the injective
objects Ij and that r � 1<N .

Next, we describe situations in which Theorem 7.8 applies.

Proposition 7.9 Assume that every product of the form
Q

i †
mi N E has cohomology

E�
�Q

i †
mi N E

�
which is N –sparse. Then every object Y such that E�Y is N –

sparse also satisfies Condition 7.6.

Proof Let .yi/ be a set of nonzero generators of E�Y as an E�E–module. Then the
corresponding map Y !

Q
i †
jyi jE is IE –monic into an injective object; we take this

map as the first step p0W Y0! I0 , with cofiber †Y1 . By our assumption on Y , each
degree jyi j is a multiple of N , and thus E�I0 is N –sparse, by the assumption on E .
The distinguished triangle Y1! Y0

p0
�! I0!†Y1 induces a long exact sequence on

E–cohomology which implies that the map I0!†Y1 is injective on E–cohomology.
It follows that E�.†Y1/ is N –sparse as well. Repeating this process, we obtain an
IE –Adams resolution of Y such that for every j , E�.†j Yj / and E�.†j Ij / are
N –sparse.

The condition on E is discussed in Example 7.17.

Proposition 7.10 Assume that the ring E�E is left coherent, and that E�Y is N –
sparse and finitely presented as a left E�E–module. Then Y satisfies Condition 7.6.

Proof Since E�Y is finitely generated over E�E , the map p0W Y !I0 can be chosen
so that I0 D

Q
i †

mi N E Š
L

i †
mi N E is a finite product. It follows that E�I0 is

N –sparse and finitely presented. We have that E��1Y1 D ker.p�
0
W E�I0 � E�Y /.

This is N –sparse, since E�I0 is, and is finitely presented over E�E , since both E�I0

and E�Y are, and E�E is coherent [9, Section I.2, Exercises 11–12]. Repeating this
process, we obtain an IE –Adams resolution of Y such that for every j , †j Ij is a
finite product of the form

Q
i †

mi N E .
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7.2 Projective case

The main applications of Theorem 7.8 are to projective classes instead of injective
classes. For future reference, we state here the dual statements of the previous subsection
and adopt a notation inspired from stable homotopy theory.

Notation 7.11 Let R be an object of the triangulated category T . Define the homotopy
(with respect to R) of an object X as the graded abelian group ��X given by

�nX WD T .†nR;X /:

Precomposition makes ��X a right module over the graded endomorphism ring ��R.

Assumption 7.12 For the remainder of Section 7.2, we assume the following:

(1) The triangulated category T has infinite coproducts.

(2) The graded ring ��R is N –sparse for some N � 2.

Let PR denote the stable projective class spanned by R, as in Example 2.4. Explicitly,
PR consists of retracts of (arbitrary) coproducts

L
i †

ni R.

Condition 7.13 X admits a PR –Adams resolution X� as in diagram (2-1) such that
��.†

�j Pj / is N –sparse for each projective Pj .

Theorem 7.14 Let X and Y be objects in T and consider the Adams spectral se-
quence abutting to T .X;Y / with respect to the projective class PR . Assume that X sat-
isfies Condition 7.13. Let Œy�2E

s;t
r be a class represented by y2E

s;t
1
DT .†t�sPs;Y /.

Then for all r �N , the Adams differential is given, as a subset of E
sCr;tCr�1
1

, by

dr Œy�D hy; d1; †
�1d1; : : : ; †

�.r�1/d1i:

Note that we used Corollary 5.13 to ensure that the equality holds as stated, not merely
up to sign.

Proposition 7.15 Assume that every coproduct of the form
L

i †
mi N R has homotopy

��
�L

i †
mi N R

�
which is N –sparse. Then every object X such that ��X is N –

sparse also satisfies Condition 7.13.

Recall the following terminology.

Definition 7.16 An object X of T is compact if the functor T .X;�/ preserves
infinite coproducts.
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Example 7.17 If the object R is compact in T , then R satisfies the assumption of
Proposition 7.15. This follows from the isomorphism

��

�M
i
†mi N R

�
Š

M
i
��.†

mi N R/D
M

i
†mi N��R

and the assumption that ��R is N –sparse. The same argument works if R is a retract
of a coproduct of compact objects.

Dually, if E is cocompact in T , then E satisfies the assumption of Proposition 7.9.
This holds more generally if E is a retract of a product of cocompact objects.

Remark 7.18 Some of the related literature deals with compactly generated triangu-
lated categories. As noted in Remark 2.13, we do not assume that the object R is a
generator, ie that the condition ��X D 0 implies X D 0.

Proposition 7.19 Assume that the ring ��R is right coherent, and that ��X is N –
sparse and finitely presented as a right ��R–module. Then X satisfies Condition 7.13.

The following is a variant of [34, Lemma 2.2.2], where we do not assume that R is a
generator. It identifies the E2 term of the spectral sequence associated to the projective
class PR . The proof is straightforward.

Proposition 7.20 Assume that the object R is compact.

(1) Let P be in the projective class PR . Then the map of abelian groups

T .P;Y /! Hom��R.��P; ��Y /

is an isomorphism for every object Y .

(2) There is an isomorphism

ExtsPR
.X;Y /Š Exts��R.��X; ��Y /

which is natural in X and Y .

7.3 Examples

Theorem 7.14 applies to modules over certain ring spectra. We describe some examples,
along the lines of [34, Examples 2.4.6–7].
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Example 7.21 Let R be an A1 ring spectrum, and let hModR denote the homotopy
category of the stable model category of (right) R–modules [39, Example 2.3(ii); 17,
Section III]. Then R itself, the free R–module of rank 1, is a compact generator
for hModR . The R–homotopy of an R–module spectrum X is the usual homotopy
of X , as suggested by the notation

hModR.†
nR;X /Š hModS .S

n;X /D �nX:

In particular, the graded endomorphism ring ��R is the usual coefficient ring of R.

The projective class PR is the ghost projective class [14, Section 7.3], generalizing
Example 2.4, where R was the sphere spectrum S . The Adams spectral sequence
relative to PR is the universal coefficient spectral sequence

Exts��R.†
t��X; ��Y / H) hModR.†

t�sX;Y /

as described in [17, Section IV.4] and [14, Corollary 7.12]. We used Proposition 7.20
to identify the E2 term.

Some A1 ring spectra R with sparse homotopy ��R are discussed in [34, Sections 4.3,
5.3 and 6.4]. In view of Proposition 7.20, the Adams spectral sequence in hModR

collapses at the E2 page if ��R has (right) global dimension less than 2.

The Johnson–Wilson spectrum E.n/ has coefficient ring

��E.n/D Z.p/Œv1; : : : ; vn; v
�1
n �; jvi j D 2.pi

� 1/;

which has global dimension n and is 2.p�1/–sparse. Hence, Theorem 7.14 applies in
this case to the differentials dr with r � 2.p�1/, while dr is zero for r > n. Likewise,
connective complex K–theory ku has coefficient ring

��kuD ZŒu�; juj D 2;

which has global dimension 2 and is 2–sparse.

Example 7.22 Let R be a differential graded (dg for short) algebra over a commutative
ring k , and consider the category of dg R–modules dgModR . The homology H�X

of a dg R–module is a (graded) H�R–module. The derived category D.R/ is defined
as the localization of dgModR with respect to quasi-isomorphisms. The free dg R–
module R is a compact generator of D.R/. The R–homotopy of an object X of D.R/

is its homology ��X D H�X . In particular, the graded endomorphism ring of R

in D.R/ is the graded k –algebra H�R.

The Adams spectral sequence relative to PR is an Eilenberg–Moore spectral sequence

ExtsH�R.†
tH�X;H�Y / H) D.R/.†t�sX;Y /
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from ordinary Ext to differential Ext, as described in [4, Section 8, 10]. See also [25,
Section III.4; 21, Example 10.2(b); 16].

Remark 7.23 Example 7.22 can be viewed as a special case of Example 7.21. Letting
HR denote the Eilenberg–MacLane spectrum associated to R, the categories ModHR

and dgModR are Quillen equivalent, by [39, Example 2.4(i)] and [41, Corollary 2.15],
yielding a triangulated equivalence hModHRŠD.R/. The generator HR corresponds
to the generator R via this equivalence.

Example 7.24 Let R be a ring, viewed as a dg algebra concentrated in degree 0. Then
Example 7.22 yields the ordinary derived category D.R/. The graded endomorphism
ring of R in D.R/ is H�R, which is R concentrated in degree 0. This is N –sparse
for any N � 2.

The Adams spectral sequence relative to PR is the hyperderived functor spectral
sequence

ExtsH�R.†
tH�X;H�Y /D

Y
i2Z

ExtsR.Hi�tX;HiY /

H) D.R/.†t�sX;Y /D Exts�t
R .X;Y /

from ordinary Ext to hyper Ext, as described in [44, Section 5.7 and 10.7].

Appendix A: Computations in the stable module category of
a group

In this appendix, we give some computations in the stable module category of a group
algebra kG , where k is a field and G is a finite group. These computations are used
in Proposition 4.3.

Write R for the group algebra kG . We will work in the stable module category
T WD StMod.R/. This is the category whose objects are (left) R–modules, and whose
morphisms from M to N consist of the R–module homomorphisms from M to N

modulo those that factor through a projective module. An isomorphism in StMod.R/
is called a stable equivalence, and two R–modules M and N are stably equivalent if
and only if there are projectives P and Q such that M ˚P ŠN ˚Q. The category
StMod.R/ is triangulated. The suspension †M is defined by choosing an embedding
of M into an injective module and taking the quotient, the desuspension �M is
defined by choosing a surjection from a projective to M and taking the kernel, and
these are inverse to each other because the projectives and injectives coincide. Given a
short exact sequence

0!M1!M2!M3! 0
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and an embedding of M1 into an injective module I , one can choose maps

(A-1)

0 // M1
// M2

//

��

M3
//

��

0

0 // M1
// I // †M1

// 0

making the diagram commute in ModR . The distinguished triangles are defined to be
those triangles isomorphic in StMod.R/ to one of the form

M1!M2!M3!†M1

constructed in this way.

Rather than working with respect to an injective class in T , we will consider the
ghost projective class P , which is generated by the trivial module k . More precisely,
P consists of the retracts of coproducts

L
i †

ni k , and the associated ideal consists of
the maps which induce the zero map in Tate cohomology. See [12, Section 4.2] for
details.

Proposition A.1 Let G be the cyclic group C4 D hg j g
4 D 1i, let k D F2 , and

write R D kG . There exists an R–module M , an Adams resolutions of M with
respect to the ghost projective class, and a map �W M !M such that the inclusion
h�; d1; ıi.†p/� h�; d1; d1i from Proposition 4.2 (dualized) is proper.

Proof To produce our counterexample, we will consider the Adams spectral sequence
abutting to StMod.M; ��M /, where M is a two-dimensional module with basis
vectors that are interchanged by g .

In order to make concrete computations, it will be helpful to observe that, as a k –algebra,
R is the truncated polynomial algebra

RD kŒg�=.g4
� 1/D kŒg�=.g� 1/4 D kŒx�=x4;

where we define x WD g� 1 2R. In this notation, the trivial module k is R=x and
the module M is R=x2 .

We will need to compute their desuspensions, which are given, as R–modules, by

�k D ker.R � k/D kfx;x2;x3
g ŠR=x3;

�2k D ker.R � R=x3/D kfx3
g ŠR=x D k;

�M D ker.R � R=x2/D kfx2;x3
g ŠR=x2

DM;

where curly brackets denote the k –vector space with the given generating set.
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In order to produce a P –epic map to M , we need to know the maps from suspensions
of k to M . Since k is 2–periodic, the following calculations give us what we need:

T .k;M /DModR.k;M /=�ŠModR.R=x;R=x
2/=�Dkf�xg=�Dkf�xg;

T .�k;M /DModR.�k;M /=�DModR.R=x
3;R=x2/=�Dkf�1;�xg=�Dkf�1g;

where f � g if f �g factors through a projective, and �r W R=x
m!R=xn denotes

the R–module map given by multiplication by r 2R (when this is well-defined). Here,
we used the fact that �x W R=x

3!R=x2 is stably null, since it factors as

R=x3
�x
// R

�1
// R=x2:

Using this, we obtain a P–epic map p WD �x C �1W k ˚�k ! M . Since p is
surjective, its fiber is its kernel. This kernel is generated by .1;x/ and is readily
seen to be isomorphic to M . Under the identification of �M with M , the natural
map �M !M (using the dual of Equation (A-1)) is �x . Since we are working at
the prime 2, fiber sequences and cofiber sequences agree, so we obtain the following
Adams resolution of M :

M
�x

// M

ı||

�x
// M

ı||

�x
// M

ı||

// � � �

k˚�k

p

bbbb

k˚�k

p

bbbb

k˚�k

p

bbbb

where ı D
� �1
�x

�
, and we have chosen to put the degree shifts on the horizontal arrows.

We will be considering the Adams spectral sequence formed by applying the functor
T .�;M /. The map d1 D ıpW k ˚�k ! k ˚�k is

�
0 �1
�x2 �x

�
, which simplifies

to
�

0 �1
�x2 0

�
, using the fact that �x W �k!�k is stably null, because we have that

it factors as �k
�x
�! R

�1
�! �k . The stable maps k ˚�k ! M are of the form

Œa�x b�1� for a and b in k , and all composites Œa�x b�1� are stably null. Using
this twice for d1 ’s in different positions, one sees that if �W k˚�k!M is any map,
then d2Œ�� is defined and has no indeterminacy.

Now consider h�; d1; ıi.†p/. One part of the indeterminacy here consists of maps
of the form f †.ı/†.p/ D f †.d1/, for f W †.k ˚�k/!M . As above, all such
composites are zero. The other part of the indeterminacy consists of maps of the form
�f †.p/, for f W †M ! k˚�k , and again, one can show that all such composites
are zero. So h�; d1; ıi.†p/ has no indeterminacy and therefore equals d2Œ��.

Algebraic & Geometric Topology, Volume 17 (2017)



2730 J Daniel Christensen and Martin Frankland

Finally, consider h�; d1; d1i. The part of the indeterminacy involving d1 is again zero.
The other part consists of all composites �f , for f W †.k˚�k/! k˚�k . Since
there is an isomorphism †.k˚�k/! k˚�k , this indeterminacy is nonzero if and
only if � is nonzero.

Since nonzero maps �W k˚�k!M exist, we conclude that the containment

h�; d1; ıi.†p/� h�; d1; d1i

can be proper.

Remark A.2 If in the proof above we take � to be the map Œ�x 0�W k˚�k!M ,
then using the same techniques one can show that

h�; d1; ıi D f1M g;

h�; d1; ıi.†p/D f†pg D d2Œ��D fŒ�1 �x �g;

h�; d1; d1i D fŒ�1 b�x � j b 2 F2g;

as subsets of T .�k˚k;M /Š T .†.k˚�k/;M /, where we identify M with �M

and †M , as before.

Remark A.3 Theorem 7.14 does not apply to the example in Proposition A.1. Indeed,
the graded endomorphism ring of k in StMod.kG/ is the Tate cohomology ring
zH n.GI k/D StMod.kG/.�nk; k/ [11, Section 6]. This ring is not sparse, as we have
zH�1.GI k/¤ 0.

Example A.4 The following example illustrates the fact that a Toda bracket need not
be equal to its own negative, as noted in Remark 3.2.

Consider the ground field k D F3 and the group algebra RD kC3 Š kŒx�=x3 , where
we denote x D g� 1 2R for g 2 C3 a generator. Consider the R–modules k DR=x

and M DR=x2 . Let us compute the Toda bracket of the diagram

M
�1
// k

�x
// M

�1
// k

in the triangulated category T D StMod.R/. We will use appropriate isomorphisms
†k ŠM and †M Š k , and in particular compute the Toda bracket as a subset of
T .k; k/ Š T .†M; k/. Via these isomorphisms, the suspension †�1W †M ! †k
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equals �x W k!M . Consider the commutative diagram in T

k

†˛
��

��x
// M

k
�x
// M

�1
// k

ˇ
��

�x
// M

M
�1
// k

where the middle row is distinguished. The only choices for the dotted arrows are
†˛ D�1k and ˇ D 1k , from which we conclude

h�1; �x; �1ifc D f�1kg � T .k; k/:

Appendix B: 3–fold Toda brackets determine the
triangulated structure

Heller proved the following theorem in [20, Theorem 13.2]. We present an arguably
simpler proof here. The argument was kindly provided by Fernando Muro.

Theorem B.1 In a triangulated category T , the diagram X
f
�! Y

g
�!Z

h
�!†X is

a distinguished triangle if and only if the following two conditions hold:

(1) The sequence of abelian groups

T .A; †�1Z/
.†�1h/�

// T .A;X /
f�
// T .A;Y /

g�
// T .A;Z/

h�
// T .A; †X /

is exact for every object A of T .

(2) The Toda bracket hh;g; f i � T .†X; †X / contains the identity map 1†X .

Proof .)/ A distinguished triangle satisfies the first condition. For the second
condition, consider the following commutative diagram:

X
f
// Y

g
// Z

1Z
��

h
// †X

1†X
��

X
f
// Y

g
// Z

h
// †X

Since the top row is distinguished, this diagram exhibits the membership 1†X 2

hh;g; f i.

.(/ Assume that 1†X 2 hh;g; f i holds. By definition of the Toda bracket, there
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exists a map 'W Cf !Z making the diagram

X
f
// Y

q
// Cf

�
//

'
��

†X

1†X
��

X
f
// Y

g
// Z

h
// †X

commute, where the top row is distinguished. To show that the bottom row is dis-
tinguished, it suffices to show that 'W Cf ! Z is an isomorphism. By the Yoneda
lemma, it suffices to show that '�W T .A;Cf /! T .A;Z/ is an isomorphism for every
object A of T .

Consider the following diagram:

(B-1)
X

f
// Y

q
// Cf

�
//

'
��

†X

1†X
��

�†f
// †Y

1†Y
��

X
f
// Y

g
// Z

h
// †X

�†f
// †Y

Applying T .A;�/ yields the following diagram of abelian groups:

T .A;X /
f�
// T .A;Y /

q�
// T .A;Cf /

��
//

'�
��

T .A; †X /

1
��

.�†f /�
// T .A; †Y /

1
��

T .A;X /
f�
// T .A;Y /

g�
// T .A;Z/

h�
// T .A; †X /

.�†f /�
// T .A; †Y /

The top row is exact, since the top row of (B-1) is a cofiber sequence, and the bottom
row is exact, using the first condition. By the five lemma, '� is an isomorphism.

Remark B.2 Here are some remarks about the first condition.

(1) It implies gf D g�f�.1X /D 0 and hg D h�g�.1Y /D 0.

(2) It is equivalent to the exactness of the long sequence (infinite in both directions)

� � �! T .A;†nX /
.†nf /�

// T .A;†nY /
.†ng/�

// T .A;†nZ/
.†nh/�

// T .A;†nC1X /!� � �

for every object A of T .

(3) It is a weaker version of what is sometimes called a pretriangle [33, Section 1.1].
Indeed, the condition states that the sequence

H.†�1Z/
H.†�1h/

// H.X /
H.f /

// H.Y /
H.g/

// H.Z/
H.h/

// H.†X /

is exact for every decent homological functor H W T !Ab of the form H D T .A;�/.
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Corollary B.3 Given the suspension functor †W T ! T , 3–fold Toda brackets in T
determine the triangulated structure. In particular, 3–fold Toda brackets determine the
higher Toda brackets, via the triangulation.

Remark B.4 It is unclear to us if the higher Toda brackets can be expressed directly
in terms of 3–fold brackets.

References
[1] J F Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72

(1960) 20–104 MR

[2] J F Adams, Stable homotopy and generalised homology, Univ. of Chicago Press (1974)
MR

[3] P Balmer, Triangulated categories with several triangulations (2002) Available at
http://www.math.ucla.edu/~balmer/Pubfile/TriangulationS.pdf

[4] T Barthel, J P May, E Riehl, Six model structures for DG-modules over DGAs: model
category theory in homological action, New York J. Math. 20 (2014) 1077–1159 MR

[5] H-J Baues, D Blanc, Higher order derived functors and the Adams spectral sequence,
J. Pure Appl. Algebra 219 (2015) 199–239 MR

[6] H-J Baues, M Jibladze, Secondary derived functors and the Adams spectral sequence,
Topology 45 (2006) 295–324 MR

[7] H-J Baues, M Jibladze, Dualization of the Hopf algebra of secondary cohomology
operations and the Adams spectral sequence, J. K-Theory 7 (2011) 203–347 MR

[8] D Benson, H Krause, S Schwede, Realizability of modules over Tate cohomology,
Trans. Amer. Math. Soc. 356 (2004) 3621–3668 MR

[9] N Bourbaki, Commutative algebra, Chapters 1–7, Hermann, Paris (1972) MR

[10] R R Bruner, An Adams spectral sequence primer (2009) Available at http://
www.math.wayne.edu/~rrb/papers/adams.pdf

[11] J F Carlson, Modules and group algebras, Birkhäuser, Basel (1996) MR

[12] S K Chebolu, J D Christensen, J Mináč, Ghosts in modular representation theory,
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