
msp
Algebraic & Geometric Topology 17 (2017) 2763–2806

Stable Postnikov data of Picard 2–categories
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Picard 2–categories are symmetric monoidal 2–categories with invertible 0–, 1– and
2–cells. The classifying space of a Picard 2–category D is an infinite loop space, the
zeroth space of the K–theory spectrum KD . This spectrum has stable homotopy
groups concentrated in levels 0 , 1 and 2 . We describe part of the Postnikov data
of KD in terms of categorical structure. We use this to show that there is no strict
skeletal Picard 2–category whose K–theory realizes the 2–truncation of the sphere
spectrum. As part of the proof, we construct a categorical suspension, producing a
Picard 2–category †C from a Picard 1–category C , and show that it commutes
with K–theory, in that K†C is stably equivalent to †KC .

55S45; 18C20, 18D05, 19D23, 55P42

1 Introduction

This paper is part of a larger effort to refine and expand the theory of algebraic models
for homotopical data, especially that of stable homotopy theory. Such modeling has
been of interest since May [46] and Segal [53] gave K–theory functors which build
connective spectra from symmetric monoidal categories. Moreover, Thomason [57]
proved that symmetric monoidal categories have a homotopy theory which is equivalent
to that of all connective spectra.

Our current work is concerned with constructing models for stable homotopy 2–types
using symmetric monoidal 2–categories. Preliminary foundations for this appear, for
example, in Gurski and Osorno [31], Gurski, Johnson and Osorno [29], Johnson and
Osorno [33] and Schommer-Pries [52]. In forthcoming work [30], we prove that
all stable homotopy 2–types are modeled by a special kind of symmetric monoidal
2–categories, which we describe below and call strict Picard 2–categories.

Research leading to the methods in [30] has shown that the most difficult aspect of
this problem is replacing a symmetric monoidal 2–category modeling an arbitrary
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connective spectrum (see Gurski, Johnson and Osorno [29]) by a strict Picard 2–
category with the same stable homotopy 2–type. This paper can then be interpreted as
setting a minimum level of complexity for such a categorical model of stable homotopy
2–types. Furthermore, we intend to construct the Postnikov tower for a stable homotopy
2–type entirely within a categorical context, and the results here give some guidance
as to the assumptions we can make on those Postnikov towers.

This paper has three essential goals. First, we explicitly describe part of the Postnikov
tower for strict Picard 2–categories. Second, and of independent interest, we show that
the K–theory functor commutes with suspension up to stable equivalence. This allows
us to bootstrap previous results on Picard 1–categories to give algebraic formulas for
the two nontrivial Postnikov layers of a Picard 2–category. Third, we combine these to
show that, while strict Picard 2–categories are expected to model all stable homotopy
2–types, strict and skeletal Picard 2–categories cannot. We prove that there is no strict
and skeletal Picard 2–category modeling the truncation of the sphere spectrum.

1.1 Background and motivation

Homotopical invariants, and therefore homotopy types, often have a natural interpreta-
tion as categorical structures. The fundamental groupoid is a complete invariant for
homotopy 1–types, while pointed connected homotopy 2–types are characterized by
their associated crossed module or Cat1 –group structure; see Brown and Spencer [11],
Conduché [16], Loday [43], MacLane and Whitehead [44] and Whitehead [58]. Such
characterizations provide the low-dimensional cases of Grothendieck’s homotopy hy-
pothesis [23].

Homotopy hypothesis There is an equivalence of homotopy theories between Gpd n ,
weak n–groupoids equipped with categorical equivalences, and Topn , homotopy n–
types equipped with weak homotopy equivalences.

Restricting attention to stable phenomena, we replace homotopy n–types with stable
homotopy n–types: spectra X such that �iX D 0 unless 0� i � n. On the categorical
side, we take a cue from May [46] and Thomason [57] and replace n–groupoids with a
grouplike, symmetric monoidal version that we call Picard n–categories. The stable
version of the homotopy hypothesis is then the following.

Stable homotopy hypothesis There is an equivalence of homotopy theories between
Picn , Picard n–categories equipped with categorical equivalences, and Spn

0
, stable

homotopy n–types equipped with stable equivalences.
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For nD 0, Pic0 is the category of abelian groups Ab with weak equivalences given by
group isomorphisms. It is equivalent to the homotopy theory of Eilenberg–Mac Lane
spectra. For n D 1, a proof of the stable homotopy hypothesis appears in Johnson
and Osorno [33], and a proof for nD 2 will appear in [30]. The advantage of being
able to work with categorical weak equivalences is that the maps in the homotopy
category between two stable 2–types modeled by strict Picard 2–categories are realized
by symmetric monoidal pseudofunctors between the two strict Picard 2–categories,
instead of having to use general zigzags. In fact, as will appear in [30], the set of
homotopy classes between two strict Picard 2–categories D and D0 is the quotient of
the set of symmetric monoidal pseudofunctors D!D0 by the equivalence relation
F �G if there exists a pseudonatural transformation F )G .

More than a proof of the stable homotopy hypothesis, we seek a complete dictionary
translating between stable homotopical invariants and the algebra of Picard n–categories.
The search for such a dictionary motivated three questions that lie at the heart of this
paper. First, how can we express invariants of stable homotopy types in algebraic terms?
Second, how can we construct stable homotopy types of interest, such as Postnikov
truncations of the sphere spectrum, from a collection of invariants? Third, can we make
simplifying assumptions, such as strict inverses, about Picard n–categories without
losing homotopical information?

The results in this paper provide key steps toward answering these questions. In
particular, we characterize the three stable homotopy groups of a strict Picard 2–
category in terms of equivalence classes of objects, isomorphism classes of 1–cells
and 2–cells, respectively, and deduce that a map of Picard 2–categories is a stable
equivalence if and only if it is a categorical equivalence (Proposition 3.3). This fact is
used in [30] to prove the stable homotopy hypothesis for nD 2.

1.2 Postnikov invariants and strict skeletalization

It has long been folklore that the symmetry in a Picard 1–category should model the
bottom k –invariant, k0 . Along with a proof of the stable homotopy hypothesis in
dimension 1, this folklore result was established in Johnson and Osorno [33]. This
shows that a Picard 1–category is characterized by exactly three pieces of data: an
abelian group �0 of isomorphism classes of objects, an abelian group �1 of automor-
phisms of the unit object, and a group homomorphism k0W �0˝Z=2! �1 (ie a stable
quadratic map from �0 to �1 ) corresponding to the symmetry. Such a characterization
is implied by the following result.

Theorem 1.1 [33, Theorem 2.2] Every Picard category is equivalent to one which is
both strict and skeletal.
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We call this phenomenon strict skeletalization. This theorem is quite surprising given
that it is false without the symmetry. Indeed, Baez and Lauda [3] give a good account
of the failure of strict skeletalization for 2–groups (the nonsymmetric version of Picard
1–categories), and how it leads to a cohomological classification for 2–groups. Johnson
and Osorno [33] show, in effect, that the relevant obstructions are unstable phenomena
which become trivial upon stabilization.

When we turn to the question of building models for specific homotopy types, the strict
and skeletal ones are the simplest: given a stable 1–type X , a strict and skeletal model
will have objects equal to the elements of �0X and automorphisms of every object
equal to the elements of �1X , with no morphisms between distinct objects. All that
then remains is to define the correct symmetry isomorphisms, and these are determined
entirely by the map k0 .

As an example, a strict and skeletal model for the 1–truncation of the sphere spectrum
has objects the integers, each hom-set of automorphisms the integers mod 2, and k0

given by the identity map on Z=2 corresponding to the fact that the generating object
1 has a nontrivial symmetry with itself. One might be tempted to build a strict and
skeletal model for the 2–type of the sphere spectrum (the authors here certainly were,
and such an idea also appears in Bartlett [4, Example 5.2]). But here we prove that this
is not possible for the sphere spectrum, and in fact a large class of stable 2–types.

Theorem 1.2 (Theorem 3.14) Let D be a strict skeletal Picard 2–category with
k0 surjective. Then the 0–connected cover of KD splits as a product of Eilenberg–
Mac Lane spectra. In particular, there is no strict and skeletal model of the 2–truncation
of the sphere spectrum.

Our proof of this theorem identifies both the bottom k –invariant k0 and the first
Postnikov layer k1i1 (see Section 3) of KD explicitly, using the symmetric monoidal
structure for any strict Picard 2–category D. In addition, we provide a categorical
model of the 1–truncation of KD in Proposition 3.6. This provides data which is
necessary, although not sufficient, for a classification of stable 2–types akin to the
cohomological classification in Baez and Lauda [3]. Remaining data, to be studied in
future work, must describe the connection of �2 with �0 . For instance, stable 2–types
X with trivial �1 are determined by a map H.�0X /! †3H.�2X / in the stable
homotopy category. For general X , the third cohomology group of the 1–truncation of
X with coefficients in �2X has to be calculated. In the spectral sequence associated
to the stable Postnikov tower of X (see Greenlees and May [22, Appendix B]), the
connection between �0 and �2 becomes apparent in the form of a d3 differential.
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In addition to clarifying the relationship between Postnikov invariants and the property
of being skeletal, Theorem 1.2 suggests a direction for future work developing a 2–
categorical structure that adequately captures the homotopy theory of stable 2–types.
Such structure ought to be more specific than that of strict Picard 2–categories but more
general than strict, skeletal Picard 2–categories. Interpretations of this structure which
are conceptual (in terms of other categorical structures) and computational (in terms of
homotopical or homological invariants, say) will shed light on both the categorical and
topological theory.

1.3 Categorical suspension

In order to give a formula for the first Postnikov layer, we must show that K–theory
functors are compatible with suspension. More precisely, given a strict monoidal
category C , one can construct a one-object 2–category †C , where the category of
morphisms is given by C , with composition defined using the monoidal structure.
Further, if C is a permutative category then †C is naturally a symmetric monoidal
2–category, with the monoidal structure also defined using the structure of C . Unstably,
it is known that this process produces a categorical delooping: if C is a strict monoidal
category with invertible objects, the classifying space B.†C / is a delooping of BC ;
see Carrasco, Cegarra and Garzón [12] and Jardine [32]. We prove the stable analogue.

Theorem 1.3 (Theorem 3.11) For any permutative category C , the spectra K.†C /

and †.KC / are stably equivalent.

Here K.�/ denotes both the K–theory spectrum associated to a symmetric monoidal
category — see May [46] and Segal [53] — and the K–theory spectrum associated to a
symmetric monoidal 2–category; see Gurski and Osorno [31] and Gurski, Johnson and
Osorno [29].

This theorem serves at least three purposes beyond being a necessary calculation
tool. A first step in the proof is Corollary 2.35, which shows that the categories of
permutative categories and of one-object permutative Gray monoids are equivalent;
this is a strong version of one case of the Baez–Dolan stabilization hypothesis [2],
stronger than the usual proofs in low dimensions; see Cheng and Gurski [13; 14; 15].
The second purpose of this theorem is to justify, from a homotopical perspective, the
definition of permutative Gray monoid, the construction of the K–theory spectrum,
and the categorical suspension functor. The suspension functor of spectra and the K–
theory spectrum of a permutative category are both central features of stable homotopy
theory, so any generalization of the latter should respect the former. A final purpose
of this theorem will appear in future work, namely in the categorical construction of
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stable Postnikov towers. Suspension spectra necessarily appear in these towers, and
Theorem 3.11 and Corollary 2.35 together allow us to replicate these features of a
Postnikov tower entirely within the world of symmetric monoidal 2–categories.

1.4 Relation to supersymmetry and supercohomology

The theory of Picard 2–categories informs recent work in mathematical physics related
to higher supergeometry — see Kapranov [36] — and invertible topological field theo-
ries; see Freed [19]. Kapranov [36] links the Z–graded Koszul sign rule appearing in
supergeometry to the 1–truncation of the sphere spectrum. He describes how higher
supersymmetry is governed by higher truncations of the sphere spectrum, which one
expects to be modeled by the free Picard n–category on a single object. Likewise,
Freed [19] describes examples using the Picard bicategory of complex invertible super
algebras related to twisted K–theory; see Freed, Hopkins and Teleman [20].

The failure of strict skeletalization for a categorical model of the 2–truncation of the
sphere spectrum shows that already for nD 2 capturing the full higher supersymmetry
in algebraic terms is more complicated than one might expect.

Furthermore, it would be interesting to relate examples appearing in physics literature
about topological phases of matter — see Gu and Wen [24] and Bhardwaj, Gaiotto and
Kapustin [6] — to cohomology with coefficients in Picard n–categories. The superco-
homology in Gu and Wen [24] is assembled from two different classical cohomology
groups of a classifying space BG with a nontrivial symmetry. One expects that this
supercohomology can be expressed as the cohomology of BG with coefficients in a
Picard 1–category, and similarly, for the extension of this supercohomology in [6] as
cohomology with coefficients in a Picard 2–category.

Outline

In Section 2 we sketch the basic theory of Picard categories and Picard 2–categories.
This includes some background to fix notation and some recent results of Gurski,
Johnson and Osorno [29] about symmetric monoidal 2–categories. In Section 3 we
develop algebraic models for some of the Postnikov data of the spectrum associated
to a Picard 2–category, giving formulas for the two nontrivial layers in terms of the
symmetric monoidal structure. This section closes with applications showing that strict
skeletal Picard 2–categories cannot model all stable 2–types. Section 4 establishes
formal strictification results for 2–categorical diagrams using 2–monad theory. We use
those results in Section 5 to prove that the K–theory functor commutes with suspension.
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2 Picard categories and Picard 2–categories

This section introduces the primary categorical structures of interest which we call
Picard 2–categories, as well as the particularly relevant variant of strict skeletal Picard
2–categories. Note that we use the term 2–category in its standard sense [38], and in
particular all composition laws are strictly associative and unital.

Notation 2.1 We let Cat denote the category of categories and functors, and let
2Cat denote the category of 2–categories and 2–functors. Note that these are both
1–categories.

Notation 2.2 We let Cat2 denote the 2–category of categories, functors, and natural
transformations. This can be thought of as the 2–category of categories enriched
in Set . Similarly, we let 2Cat2 denote the 2–category of 2–categories, 2–functors and
2–natural transformations; the 2–category of categories enriched in Cat .

2.1 Picard categories

We will begin by introducing all of the 1–categorical notions before going on to discuss
their 2–categorical analogues. First we recall the notion of a permutative category (ie
symmetric strict monoidal category); the particular form of this definition allows an
easy generalization to structures on 2–categories.

Definition 2.3 A permutative category C consists of a strict monoidal category
.C;˚; e/ together with a natural isomorphism

C �C C �C

C

�
//

˚||˚ ""
)ˇ
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where � W C �C !C �C is the symmetry isomorphism in Cat , such that the following
axioms hold for all objects x , y and z of C :

� ˇy;xˇx;y D idx˚y .
� ˇe;x D idx D ˇx;e .
� ˇx;y˚z D .y˚ˇx;z/ ı .ˇx;y ˚ z/.

Remark 2.4 We will sometimes say that a symmetric monoidal structure on a category
is strict if its underlying monoidal structure is. Note that this does not imply that the
symmetry is the identity, even though the other coherence isomorphisms are. Thus a
permutative category is nothing more than a strict symmetric monoidal category.

Notation 2.5 Let PermCat denote the category of permutative categories and symmet-
ric, strict monoidal functors between them.

Next we require a notion of invertibility for the objects in a symmetric monoidal
category.

Definition 2.6 Let .C;˚; e/ be a monoidal category. An object x is invertible if
there exists an object y together with isomorphisms x˚y Š e and y˚x Š e .

Definition 2.7 A Picard category is a symmetric monoidal category in which all of
the objects and morphisms are invertible.

The terminology comes from the following example.

Example 2.8 Let R be a commutative ring, and consider the symmetric monoidal
category of R–modules. We have the subcategory PicR of invertible R–modules and
isomorphisms between them. The set of isomorphism classes of objects of PicR is the
classical Picard group of R.

Remark 2.9 If we drop the symmetric structure in Definition 2.7 above, we get the
notion of what is both called a categorical group [34] or a 2–group [3]. These are
equivalent to crossed modules [58; 43], and hence are a model for pointed connected
homotopy 2–types (ie spaces X for which �i.X /D 0 unless i D 1; 2).

One should consider Picard categories as a categorified version of abelian groups. Just
as abelian groups model the homotopy theory of spectra with trivial homotopy groups
aside from �0 , Picard categories do the same for spectra with trivial homotopy groups
aside from �0 and �1 .

Theorem 2.10 [33, Theorem 1.5] There is an equivalence of homotopy theories
between the category of Picard categories, Pic1 , equipped with categorical equivalences,
and the category of stable 1–types, Sp1

0
, equipped with stable equivalences.
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Forthcoming work [30] proves the 2–dimensional analogue of Theorem 2.10. This
requires a theory of Picard 2–categories, which began in [29] and motivated the work
of the current paper. We now turn to such theory.

2.2 Picard 2–categories

To give the correct 2–categorical version of Picard categories, we must first describe
the analogue of a mere strict monoidal category: such a structure is called a Gray
monoid. It is most succinctly defined using the Gray tensor product of 2–categories,
written A˝B for a pair of 2–categories A and B. We will not give the full definition
of ˝ here (see [29; 27; 8; 9]) but instead give the reader the basic idea. The objects
of A˝B are tensors a˝ b for a 2A and b 2 B, but the 1–cells are not tensors of
1–cells as one would find in the cartesian product. Instead they are generated under
composition by 1–cells f ˝ 1 and 1˝g for f W a! a0 a 1–cell in A and gW b! b0

a 1–cell in B. These different kinds of generating 1–cells do not commute with each
other strictly, but instead up to specified isomorphism 2–cells

†f;gW .f ˝ 1/ ı .1˝g/Š .1˝g/ ı .f ˝ 1/;

which obey appropriate naturality and bilinearity axioms. We call these † the Gray
structure 2–cells. The 2–cells of A˝B are defined similarly, generated by ˛˝ 1,
1˝ˇ and the †f;g . The function .A;B/ 7!A˝B is the object part of a functor of
categories

2Cat � 2Cat ! 2Cat ;

which is the tensor product for a symmetric monoidal structure on 2Cat with unit the
terminal 2–category.

Definition 2.11 A Gray monoid is a monoid object .D;˚; e/ in the monoidal category
.2Cat ;˝/.

Remark 2.12 By the coherence theorem for monoidal bicategories [21; 27], every
monoidal bicategory is equivalent (in the appropriate sense) to a Gray monoid. There is
a stricter notion, namely that of a monoid object in .2Cat ;�/, but a general monoidal
bicategory will not be equivalent to one of these.

We now turn to the symmetry.

Definition 2.13 A permutative Gray monoid D consists of a Gray monoid .D;˚; e/
together with a 2–natural isomorphism

D˝D D˝D

D

�
//

˚||˚ ""
)ˇ
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where � W D˝D!D˝D is the symmetry isomorphism in 2Cat for the Gray tensor
product, such that the following axioms hold:

� The following pasting diagram is equal to the identity 2–natural transformation
for the 2–functor ˚:

D˝D D˝D D˝D

D

�
//

�
//

˚
%%

˚

��
˚

yy

1

))

)ˇ )ˇ

� The following pasting diagram is equal to the identity 2–natural transformation
for the canonical isomorphism 1˝DŠD:

1˝D D˝D D˝D

D

e˝id
//

�
//

˚
uu

˚
��Š
))

D )ˇ

� The following equality of pasting diagrams holds, where we have abbreviated
the tensor product to concatenation when labeling 1– or 2–cells:

D˝3

D˝3 D˝3

D˝2

D˝2

D˝2 D

D˝3

D˝3 D˝3

D˝2

D˝2 D

D˝2

� id :: � id ::

id�
//

id�
//

˚id
$$

˚id
$$

˚

��

˚

��

˚id

��

˚id

��

˚

//

˚

//

id˚
++

� 33

˚
��

˚id

��

id˚
��

id˚

��

˚

��

D

D

D

D

D

)ˇ

)ˇid

)idˇ

Remark 2.14 A symmetric monoidal 2–category is a symmetric monoidal bicategory
(see [29] for a sketch or [49] for full details) in which the underlying bicategory is a
2–category. Every symmetric monoidal bicategory is equivalent as such to a symmetric
monoidal 2–category by strictifying the underlying bicategory and transporting the
structure as in [26]. A deeper result is that every symmetric monoidal bicategory is
equivalent as such to a permutative Gray monoid; this is explained fully in [29], making
use of [52].

Notation 2.15 For convenience and readability, we use the following notational con-
ventions for cells in a Gray monoid D:

� For objects, we may use concatenation instead of explicitly indicating the
monoidal product.
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� For an object b and a 1–cell f W a! a0 , we denote by f b the 1–cell in D

which is the image under ˚ of f ˝1W a˝b! a0˝b in D˝D. We use similar
notation for multiplication on the other side, and for 2–cells.

� We let †f;g also denote the image in D of the Gray structure 2–cells under ˚,

†f;gW .f b0/ ı .ag/Š .a0g/ ı .f b/:

Notation 2.16 Let PermGrayMon denote the category of permutative Gray monoids
and strict symmetric monoidal 2–functors between them.

We are actually interested in permutative Gray monoids which model stable homotopy
2–types, and we therefore restrict to those in which all the cells are invertible. We
begin by defining invertibility in a Gray monoid, then the notion of a Picard 2–category,
and finish with that of a strict skeletal Picard 2–category.

Definition 2.17 Let .D;˚; e/ be a Gray monoid.

(1) A 2–cell of D is invertible if it has an inverse in the usual sense.
(2) A 1–cell f W x! y is invertible if there exists a 1–cell gW y! x together with

invertible 2–cells g ıf Š idx and f ıg Š idy . In other words, f is invertible
if it is an internal equivalence (denoted with the ' symbol) in D.

(3) An object x of D is invertible if there exists another object y together with
invertible 1–cells x˚y ' e and y˚x ' e .

Remark 2.18 The above definition actually used none of the special structure of a
Gray monoid that is not also present in a more general monoidal bicategory.

Definition 2.19 A Picard 2–category is a symmetric monoidal 2–category (see
Remark 2.14) in which all of the objects, 1–cells, and 2–cells are invertible. A
strict Picard 2–category is a permutative Gray monoid which is a Picard 2–category.

Remark 2.20 The definition of a strict Picard 2–category does not require that cells be
invertible in the strict sense, ie having inverses on the nose rather than up to mediating
higher cells. It only requires that the underlying symmetric monoidal structure is strict
in the sense of being a permutative Gray monoid.

Definition 2.21 A 2–category A is skeletal if the following condition holds: whenever
there exists an invertible 1–cell f W x ' y , then x D y .

Remark 2.22 This definition might more accurately be named skeletal on objects, as
one could impose a further condition of being skeletal on 1–cells as well. We have
no need of this further condition, and so we work with this less restrictive notion of
a skeletal 2–category. It is also important to remember that, in the definition above,
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the invertible 1–cell f need not be the identity 1–cell. The slogan is that “every
equivalence is an autoequivalence”: an object is allowed to have many nonidentity
autoequivalences, and there can be 1–cells between different objects as long as they
are not equivalences.

Definition 2.23 A strict skeletal Picard 2–category is a strict Picard 2–category whose
underlying 2–category is skeletal.

2.3 Two adjunctions

Our goal in this subsection is to present two different adjunctions between strict Picard
categories and strict Picard 2–categories. While we focus on the categorical algebra
here, later we will give each adjunction a homotopical interpretation. The unit of
the first adjunction will categorically model Postnikov 1–truncation (Proposition 3.6),
universally making �2 zero, while the counit of the second will categorically model
the 0–connected cover (Proposition 3.10).

Recall that for any category C , we have its set of path components, denoted by �0C ;
these are given by the path components of the nerve of C , or equivalently by quotienting
the set of objects by the equivalence relation generated by x � y if there exists an
arrow x ! y . This is the object part of a functor �0W Cat ! Set , and it is easy to
verify that this functor preserves finite products. It is also left adjoint to the functor
d W Set! Cat which sends a set S to the discrete category with the same set of objects.
Being a right adjoint, d preserves all products. The counit �0 ı d) id is the identity,
and the unit id) d ı �0 is the quotient functor C ! d�0C sending every object
to its path component and every morphism to the identity. Since d and �0 preserve
products, by applying them to hom-objects they induce change of enrichment functors
d� and .�0/� , respectively. We obtain the following result.

Lemma 2.24 The adjunction �0 a d lifts to a 2–adjunction

2Cat2 Cat2:

.�0/�
++

d�

kk ?

Notation 2.25 We will write the functor .�0/� as D 7!D1 or .�/1 to lighten the nota-
tion. This anticipates the homotopical interpretation in Proposition 3.6. Furthermore,
we will write d� as d ; it will be clear from context which functor we are using.

Lemma 2.26 The functor .�/1 is strong symmetric monoidal .2Cat ;˝/! .Cat ;�/.
The functor d is lax symmetric monoidal .Cat ;�/! .2Cat ;˝/.
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Proof The second statement follows from the first by doctrinal adjunction [37]. For
the first, one begins by checking that

D1 �E1 Š .D˝E/1I

this is a simple calculation using the definition of ˝ that we leave to the reader. If we
let I denote the terminal 2–category, the unit for ˝, then I1 is the terminal category,
so .�/1 preserves units up to (unique) isomorphism. It is then easy to check that these
isomorphisms interact with the associativity, unit, and symmetry isomorphisms to give
a strong symmetric monoidal functor.

Remark 2.27 It is useful to point out that if A and B are categories, then the com-
parison 2–functor

�A;BW dA˝ dB! d.A�B/

is the 2–functor which quotients all the 2–cells †f;g to be the identity. In view of the
adjunction in Lemma 2.24, the 2–functor �A;B can be identified with the component
of the unit at dA˝ dB .

Our first adjunction between Picard 1– and 2–categories is contained in the following
result.

Proposition 2.28 The functors D 7!D1 and d induce adjunctions between

� the categories PermGrayMon and PermCat , and

� the category of strict Picard 2–categories and the category of strict Picard cate-
gories.

The counits of these adjunctions are both identities.

Proof It is immediate from Lemma 2.26 and the definitions that applying D 7!D1

to a permutative Gray monoid gives a permutative category, and that the resulting
permutative category is a strict Picard category if D is a strict Picard 2–category;
this constructs both left adjoints. To construct the right adjoints, let .C;˚; e/ be a
permutative category. We must equip dC with a permutative Gray monoid structure.
The tensor product is given by

dC ˝ dC
�C;C
��! d.C �C /

d˚
�! dC

using Lemma 2.26 or the explicit description in Remark 2.27. The 2–natural isomor-
phism ˇdC is d.ˇC / ��C;C , using the fact that d.��/ ı�D � ı �˝ by the second
part of Lemma 2.26. The permutative Gray monoid axioms for dC then reduce to the
permutative category axioms for C and the lax symmetric monoidal functor axioms
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for d . Once again, dC is a strict Picard 2–category if C is a strict Picard category.
The statement about counits follows from the corresponding statement about the counit
for the adjunction �0 a d , and the unit is a strict symmetric monoidal 2–functor by
inspection. The triangle identities then follow from those for �0 a d , concluding the
construction of both adjunctions.

Remark 2.29 The proof above is simple, but not entirely formal: while symmetric
monoidal categories are the symmetric pseudomonoids in the symmetric monoidal
2–category Cat , permutative Gray monoids do not admit such a description due to the
poor interaction between the Gray tensor product and 2–natural transformations.

We now move on to our second adjunction between permutative categories and per-
mutative Gray monoids which restricts to one between strict Picard categories and
strict Picard 2–categories. This adjunction models loop and suspension functors, and
appears informally in work of Baez and Dolan [1] on stabilization phenomena in higher
categories.

Lemma 2.30 Let .C;˚; e/ be a permutative category with symmetry � . Then the
2–category †C with one object �, hom-category †C.�;�/ D C , and horizontal
composition given by ˚ admits the structure of a permutative Gray monoid .†C; z̊ /.
The assignment .C;˚/ 7! .†C; z̊ / is the function on objects of a functor

†W PermCat ! PermGrayMon :

Proof Since C is a strict monoidal category, †C is a strict 2–category when hori-
zontal composition is given by ˚. We can define a 2–functor z̊ W †C ˝†C !†C

as the unique function on 0–cells, by sending any cell of the form a˝ 1 to a, any
cell of the form 1˝ b to b , and †a;b to the symmetry �a;bW a˚ b Š b˚ a. With the
unique object as the unit, it is simple to check that this 2–functor makes †C into a
Gray monoid. All that remains is to define ˇ and check the three axioms. Since there
is only one object and it is the unit, the second axiom shows that the unique component
of ˇ must be the identity 1–cell. Then naturality on 1–cells is immediate, and the
only two-dimensional naturality that is not obvious is for the cells †a;b . This axiom
becomes the equation

ˇ˚†a;b D†
�1
b;a˚ˇ;

which is merely the claim that �a;b is a symmetry rather than a braid. It is then obvious
that this assignment defines a functor as stated.

Example 2.31 The permutative Gray monoid constructed in [52, Example 2.30] is a
suspension †C for the following permutative category C :
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� The objects of C are the elements of Z=2 with the monoidal structure given by
addition.

� Each endomorphism monoid of C is Z=2 and there are no morphisms between
distinct objects.

� The symmetry of the nonunit object with itself is the nontrivial morphism.

Remark 2.32 It is natural to expect that the permutative Gray monoid †C in the
previous example models the 0–connected cover of the 2–type of the sphere spectrum,
and indeed this will follow from Theorem 3.11. One might also hope that a skeletal
model for the sphere spectrum can be constructed as a “many-object” version of †C

together with an appropriate symmetry. However, Theorem 3.14 will prove that this is
not possible.

Lemma 2.33 Let .D;˚; e/ be a permutative Gray monoid. Then the category D.e; e/

is a permutative category, with tensor product given by composition. The assignment
D 7!D.e; e/ is the function on objects of a functor

�W PermGrayMon! PermCat :

Proof For a Gray monoid D, the hom-category D.e; e/ is a braided, strict monoidal
category [21; 14] in which the tensor product is given by composition and the braid
f ı g Š g ı f is the morphism †f;g in D.e; e/; we note that fe D f and eg D g

since all the 1–cells involved are endomorphisms of the unit object, and the unit object
in a Gray monoid is a strict two-sided unit. The component ˇe;e is necessarily the
identity, and the calculations in the proof of Lemma 2.30 show that †f;g D†�1

g;f
, so

we have a permutative structure on D.e; e/.

Proposition 2.34 The functor †W PermCat!PermGrayMon is left adjoint to the functor
�W PermGrayMon! PermCat .

Proof It is easy to check that the composite �† is the identity functor on PermCat ,
and we take this equality to be the unit of the adjunction. The counit would be a functor
†.D.e; e//!D which we must define to send the single object of †.D.e; e// to the
unit object e of D and then to be the obvious inclusion on the single hom-category.
This is clearly a 2–functor, and the arguments in the proofs of the previous two lemmas
show that this is a strict map of permutative Gray monoids.

The counit is then obviously the identity on the only hom-category when D has a single
object, and this statement is in fact the commutativity of one of the triangle identities
for the adjunction. It is simple to check that � applied to the counit is the identity as
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well since the counit is the identity functor when restricted to the hom-category of the
unit objects, and this is the other triangle identity, completing the verification of the
adjunction.

Since the unit 1)�† is the identity, and the counit is an isomorphism on permutative
Gray monoids with one object, we have the following corollary.

Corollary 2.35 The adjunction † a� in Proposition 2.34 restricts to the categories
of strict Picard categories and strict Picard 2–categories. Moreover, this adjunction
gives equivalences between

� the category of permutative categories and the category of one-object permutative
Gray monoids, and

� the category of strict Picard categories and the category of one-object strict Picard
2–categories.

Proof The first statement follows from the definitions, since both † and � send
strict Picard objects in one category to strict Picard objects in the other. The other two
statements are obvious from the proof above.

3 Stable homotopy theory of Picard 2–categories

In this section we describe how to use the algebra of Picard 2–categories to express
homotopical features of their corresponding connective spectra categorically. We begin
with a brief review of stable Postnikov towers, mainly for the purpose of fixing notation.
Subsequently, we identify algebraic models for this homotopical data in terms of the
categorical structure present in a Picard 2–category.

For an abelian group � , the Eilenberg–Mac Lane spectrum of � is denoted by H� .
Its nth suspension is denoted by †nH� , and has zeroth space given by the Eilenberg–
Mac Lane space K.�; n/. With this notation, the stable Postnikov tower of a connective
spectrum X is given as follows:

X0 †2H.�1X /

†1H.�1X / X1 †3H.�2X /

†2H.�2X / X2 †4H.�3X /

:::

k0
//

k1
//

k2
//

i1
//

i2
//
��

��

��
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Since X is connective, it follows that X0DH.�0X / and k0 is therefore a stable map
from H.�0X / to †2H.�1X /. When X is the K–theory spectrum of a strict Picard
2–category, we will model k0 and k1i1 algebraically via stable quadratic maps. A
stable quadratic map is a homomorphism from an abelian group A to the 2–torsion
of an abelian group B . The abelian group of stable homotopy classes ŒHA; †2HB�

is naturally isomorphic to the abelian group of stable quadratic maps A! B by [17,
Equation (27.1)]. Moreover [18, Theorem 20.1] implies that, under this identification,
k0W H.�0X /! †2H.�1X / corresponds to the stable quadratic map �0X ! �1X

given by precomposition with the Hopf map �W †S! S , where S denotes the sphere
spectrum.

The stable Postnikov tower can be constructed naturally in X , so that if

X 0!X

is a map of spectra, we have the following commuting naturality diagram of stable
Postnikov layers:

(3-1)

†nH.�nX / Xn †nC2H.�nC1X /

†nH.�nX 0/ X 0n †nC2H.�nC1X 0/

in
//

kn
//

i0n
//

k0n
//

�� �� ��

Picard 2–categories model stable 2–types via K–theory. The K–theory functors for
symmetric monoidal n–categories, constructed in [53; 57; 45] for nD 1 and [29] for
nD 2, give faithful embeddings of Picard n–categories into stable homotopy. For the
purposes of this section we can take K–theory largely as a black box; in Section 5 we
give the necessary definitions and properties.

3.1 Modeling stable Postnikov data

For a Picard category .C;˚; e/, the two possibly nontrivial stable homotopy groups of
its K–theory spectrum K.C / are given by

�0K.C /Š ob C=fx � y if there exists a 1–cell f W x! yg;

�1K.C /Š C.e; e/:

The stable homotopy groups of the K–theory spectrum of a strict Picard 2–category can
be calculated similarly. We denote the classifying space of a 2–category D by BD [12].

Lemma 3.2 Let D be a strict Picard 2–category. The classifying space BD is
equivalent to �1K.D/. The stable homotopy groups �iK.D/ are zero except when
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0� i � 2, in which case they are given by the formulas below:

�0K.D/Š obD=fx � y if there exists a 1–cell f W x! yg;

�1K.D/Š obD.e; e/=ff � g if there exists a 2–cell ˛W f ) gg;

�2K.D/ŠD.e; e/.ide; ide/:

Proof First, note that D has underlying 2–category a bigroupoid, and the above are
the unstable homotopy groups of the pointed space .BD; e/ by [12, Remark 4.4]. Since
the objects of D are invertible, the space BD is group-complete, and hence it is the
zeroth space of the �–spectrum K.D/. Thus the stable homotopy groups of K.D/

agree with the unstable ones for BD.

Proposition 3.3 A map of strict Picard 2–categories induces a stable equivalence of
K–theory spectra if and only if it is an equivalence of Picard 2–categories.

Proof Note that the existence of inverses in a Picard 2–category implies that for
any object x we have an equivalence of categories D.e; e/ ' D.x;x/ induced by
translation by x . Similarly, for any 1–morphism f W e! e there is an isomorphism of
sets D.e; e/.ide; ide/ŠD.e; e/.f; f / induced by translation by f .

A map F W D!D0 of strict Picard 2–categories is a categorical equivalence if and only
if it is an equivalence of underlying 2–categories, that is, if it is biessentially surjective
and a local equivalence (see [26, Section 5] and [52, Theorem 2.25]). By Lemma 3.2
and the observation above, this happens exactly when f induces an isomorphism on
the stable homotopy groups of the corresponding K–theory spectra.

We will use the adjunctions from Section 2.3 to reduce the calculation of the stable qua-
dratic maps corresponding to k0 and k1i1 of K.D/ to two instances of the calculation
of k0 in the 1–dimensional case.

Lemma 3.4 [33] Let C be a strict Picard category with unit e and symmetry ˇ . Then
the bottom stable Postnikov invariant k0W H�0K.C /!†2H�1K.C / is modeled by
the stable quadratic map k0W �0K.C /! �1K.C /,

Œx� 7! .e Š�!xxx�x�
ˇx;xx�x�
�����!xxx�x� Š�! e/;

where x is an object in C and x� denotes an inverse of x .

Remark 3.5 The middle term of the composite k0.x/ was studied in [54; 34] and is
called the signature of x .
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Proof of Lemma 3.4 Note that k0W �0K.C /! �1K.C / is a well-defined function
(does not depend on the choices of x , x� and xx� Š e ). Indeed, given isomorphisms
x Š y , xx� Š e and yy� Š e , there is a unique isomorphism j W x� Š y� such that

yx� //

yj

��

xx�

��

yy� // e

commutes.

Moreover, it is clear that k0 is compatible with equivalences of Picard categories. By
[33, Theorem 2.2], we can thus replace C by a strict skeletal Picard category. In [33,
Section 3], a natural action S �C ! C is defined, where S is a strict skeletal model
for the 1–truncation of the sphere spectrum. It follows from the definition of the action
that

�1.BS/��1.BC;x/! �1.BC; e/

sends .�; idx/ to ˇx;xx�x� , where � denotes the generator of �1.BS/ŠZ=2. Finally,
it follows from [33, Proposition 3.4] that the action S �C ! C models the truncation
of the action of the sphere spectrum on KC , thus the image under the action of .�; idx/

agrees with the image of Œx� under the stable quadratic map associated to the bottom
stable Postnikov invariant.

Proposition 3.6 Let D be a strict Picard 2–category and let D! d.D1/ be the unit
of the adjunction in Proposition 2.28. Then

K.D/!K.d.D1//

is the 1–truncation of K.D/.

Proof Using the formulas in Lemma 3.2, it is clear that D ! d.D1/ induces an
isomorphism on �0 and �1 , and that �2K.d.D1//D 0. Moreover, both K–theory
spectra have �i D 0 for i > 2, so D1 models the 1–truncation of D.

Lemma 3.7 For any permutative category C , the K–theory spectrum of C is sta-
bly equivalent to the K–theory spectrum of the corresponding permutative Gray
monoid, dC .

Proof This follows directly from the formulas in [29], and in particular Remark 6.32.

For any connective spectrum X , the bottom stable Postnikov invariant of X and its
1–truncation X1 agree. Thus combining Lemma 3.4, Proposition 3.6 and Lemma 3.7
yields the following result.
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Corollary 3.8 Let D be a strict Picard 2–category with unit e and symmetry ˇ . Then
the bottom stable Postnikov invariant k0W H�0K.D/!†2H�1K.D/ is modeled by
the stable quadratic map k0W �0K.D/! �1K.D/,

Œx� 7! Œe '�!xxx�x�
ˇx;xx�x�
�����!xxx�x� '�! e�;

where x is an object in D and x� denotes an inverse of x .

Remark 3.9 It can be checked directly that the function k0W ob.D/!�1.KD/ is well-
defined using the essential uniqueness of the inverse: given another object xx together
with an equivalence e ' xxx , there is an equivalence x� ' xx and an isomorphism
2–cell in the obvious triangle, which is unique up to unique isomorphism. This follows
from the techniques in [26], and many of the details are explained there in Section 6.

In order to identify the composite k1i1 categorically, we analyze the relationship
between Postnikov layers and categorical suspension.

Proposition 3.10 Let D be a strict Picard 2–category and let †�D! D be the
counit of the adjunction in Proposition 2.34. Then

K.†�D/!K.D/

is a 0–connected cover of K.D/.

Proof It is clear from the formulas in Lemma 3.2 that †�D ! D induces an
isomorphism on �1 and �2 , and moreover, the corresponding K–theory spectra have
�i D 0 for i > 2. Since †�D has only one object, we have �0K.†�D/ D 0, so
†�D models the 0–connected cover of D.

In addition to the elementary algebra and homotopy theory of Picard 2–categories
discussed above, we require the following result.

Theorem 3.11 Let C be a permutative category. Then †K.C / and K.†C / are
stably equivalent.

The proof of Theorem 3.11 requires a nontrivial application of 2–monad theory. We
develop the relevant 2–monadic techniques in Section 4 and give the proof in Section 5.
These two sections are independent of the preceding sections.

Lemma 3.12 Let .D;˚; e/ be a strict Picard 2–category. Then the composite

k1i1W †H�1K.D/!†3H�2K.D/

is modeled by the stable quadratic map �1K.D/! �2K.D/,

Œf � 7! .ide
Š
�! f ıf ıf � ıf �

†f;f f
�ıf �

������!f ıf ıf � ıf � Š�! ide/;

where f W e! e is a 1–cell in D and f � denotes an inverse of f .

Algebraic & Geometric Topology, Volume 17 (2017)



Stable Postnikov data of Picard 2–categories 2783

Proof We use superscripts to distinguish Postnikov data of different spectra. The
composite kD

1
iD
1

in the first Postnikov layer of the spectrum K.D/ identifies with
the composite k†�D

1
i†�D
1

since K.†�D/ is the 0–connected cover of K.D/ by
Proposition 3.10 and the Postnikov tower can be constructed naturally; see (3-1).

Since K.†�D/'†K.�D/ by Theorem 3.11 and K.�D/ is connective, it follows
that

k†�D
1 i†�D

1 D†.k�D
0 i�D

0 /D†.k�D
0 /

in the stable homotopy category.

Finally, we deduce from Lemma 3.4 that the map †.k�D
0
/ is represented by the desired

group homomorphism.

3.2 Application to strict skeletal Picard 2–categories

Now we make an observation about the structure 2–cells †f;g in a strict Picard 2–
category. This algebra will be a key input for our main application, Theorem 3.14.

Lemma 3.13 Let .D;˚; e/ be a strict Picard 2–category. Let gW e! e be any 1–
cell and let s D ˇx;xx�x� be a representative of the signature of some object x with
inverse x� . Then †s;g and †g;s are identity 2–cells in D.

Proof By naturality of the symmetry and interchange, †ˇy;z ;h and †h;ˇy;z
are identity

2–cells for any 1–cell h [29, Proposition 3.41]. The result for †g;s follows by noting
that †g;fw D †g;f w for any 1–cells f and g and object w by the associativity
axiom for a Gray monoid. Hence †g;s D†g;ˇx;xx�x� D†g;ˇx;x

x�x� , which is the
identity 2–cell.

For the other equality, we note the final axiom of [27, Proposition 3.3] reduces to the
following equality of pasting diagrams for objects y , z and w with endomorphisms
ty , tz and tw , respectively:

yzw

yzw

yzw

yzw

yzw

yzwyzw

tyzw

AA

ytzw
//

yztw

��

yztw

��

ytzw
//

tyzw

AA

ytzw
//

tyzw

AA

yztw

��

†ty ;tzw
QY

y†tz ;tw
CK

†.tyz/;tw

KS
D yzw

yzw

yzw

yzw

yzw

yzwyzw

tyzw

AA

ytzw
//

yztw

��

yztw

��

ytzw
//

tyzw

AA

yztw

��

tyzw

AA

ytzw
//†ty ;.ztw/

KS

†ty ;tzw
QY

y†tz ;tw
CK
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Thus the result for †s;g follows by taking .y; z; w/ D .xx;x�x�; e/, ty D ˇx;x ,
tz D id and tw D g .

We are now ready to give our main application regarding stable Postnikov data of strict
skeletal Picard 2–categories.

Theorem 3.14 Let D be a strict skeletal Picard 2–category and assume that

k0W �0K.D/! �1K.D/

is surjective. Then k1i1 is trivial.

Proof We prove that the stable quadratic map �1K.D/!�2K.D/ from Lemma 3.12
that models the composite k1i1 is trivial. Since k0 is surjective by assumption, it
suffices to consider k1i1.f / for f of the form

(3-15) e
w
�!xxx�x�

ˇx;xx�x�
�����!xxx�x�

w�
�! e

for some object x with inverse x� . Here w denotes the composite

e
u
�!xx�

xux�
��!xxx�x�

for a chosen equivalence uW e ' xx� and w� denotes the corresponding reverse
composite for a chosen u�W xx� ' e inverse to u. Note that the isomorphism class
of f is independent of the choices of the inverse object x� and the equivalences u

and u� (see Remark 3.9). Since D is skeletal, it must be that xx� D e . Therefore
we can choose the equivalence uW e ' xx� to be ide and then choose u� to be ide

as well. With these choices, the composite f is actually equal to ˇx;xx�x� . By
Lemma 3.13, the Gray structure 2–cell †f;f is the identity 2–cell idf ıf . This implies
that k1i1.f /D idide

.

Remark 3.16 The result of Theorem 3.14 may be viewed as the computation of a
differential in the spectral sequence arising from mapping into the stable Postnikov
tower of KD. This spectral sequence appears, for example, in [35] and is a cocellular
construction of the Atiyah–Hirzebruch spectral sequence (see [22, Appendix B]).

Our most important application concerns the sphere spectrum.

Corollary 3.17 Let D be a strict skeletal Picard 2–category. Then D cannot be a
model for the 2–truncation of the sphere spectrum.

Proof The nontrivial element in �1 of the sphere spectrum is given by k0.1/, so
k0 is surjective and therefore Theorem 3.14 applies. But k1i1 is Sq2 , which is the
nontrivial element of H 2.Z=2IZ=2/ [50, pages 117–118].
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Remark 3.18 To understand the meaning of this result, recall that one can specify a
unique Picard category by choosing two abelian groups for �0 and �1 together with a
stable quadratic map k0 for the symmetry. This is the content of Theorem 1.1. However,
one does not specify a Picard 2–category by simply choosing three abelian groups
and two group homomorphisms. This is tantamount to specifying a stable 2–type by
choosing the bottom Postnikov invariant k0 and the composite k1i1 . Theorem 3.14
shows that such data do not always assemble to form a strict Picard 2–category. For
example, the construction of [4, 5.2] does not satisfy the axioms of a permutative Gray
monoid.

4 Strictification via 2–monads

In this section we develop the 2–monadic tools used in the proof of Theorem 3.11. In
Section 4.1 we recall some basic definitions as well as abstract coherence theory from
the perspective of 2–monads. Our focus is on various strictification results for algebras
and pseudoalgebras over 2–monads, and how strictification can often be expressed
as a 2–adjunction with good properties. In Section 4.2 we apply this to construct a
strictification of pseudodiagrams as a left 2–adjoint. The material in this section is
largely standard 2–category theory, but we did not know a single reference which
collected it all in one place.

The formalism of this section aids the proof of Theorem 3.11 in two ways. First, it
allows us to produce strict diagrams of 2–categories by working with diagrams which
are weaker (eg whose arrows take values in pseudofunctors) but more straightforward to
define. This occurs in Section 5.1. Second, it allows us to construct strict equivalences
of strict diagrams by working instead with pseudonatural equivalences between them.
This occurs in Section 5.2.

4.1 Review of 2–monad theory

We recall relevant aspects of 2–monad theory and fix notation. These include maps
of monads and abstract coherence theory [38; 51; 7; 39]. Let A be a 2–category and
.T W A!A; �; �/ be a 2–monad on A. We then have the following 2–categories of
algebras and morphisms with varying levels of strictness:

(1) T -Algs is the 2–category of strict T –algebras, strict morphisms, and algebra
2–cells. Its underlying category is just the usual category of algebras for the
underlying monad of T on the underlying category of A.

(2) T -Alg is the 2–category of strict T –algebras, pseudo-T –morphisms, and alge-
bra 2–cells.
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(3) Ps-T -Alg is the 2–category of pseudo-T –algebras, pseudo-T –morphisms, and
algebra 2–cells.

We have inclusions and forgetful functors as below:

T -Algs T -Alg Ps-T -Alg

A

i
// //

U ''

U
�� Uww

A map of 2–monads is precisely the data necessary to provide a 2–functor between
2–categories of strict algebras.

Definition 4.1 Let S be a 2–monad on A and T a 2–monad on B. A strict map of
2–monads S ! T consists of a 2–functor F W A!B and a 2–natural transformation
�W TF ) FS satisfying two compatibility axioms [5]:

� ı�F D F� ı�S ıT �;

� ı �F D F�:

Proposition 4.2 If F W S ! T is a strict map of 2–monads, then F lifts to the
indicated 2–functors in the following diagram:

A

S -Alg

S -Alg s

B

T -Alg

T -Alg s

F
//

F
//

F
//

i
��

U
��

i
��

U
��

Abstract coherence theory provides left 2–adjoints to T -Algs ,! T -Alg and the
composite T -Algs ,!Ps-T -Alg. Lack discusses possible hypotheses in [39, Section 3],
so we give the following theorem in outline form.

Theorem 4.3 [39, Section 3] Under some assumptions on A and T , the inclusions

i W T -Algs ,! T -Alg; j W T -Algs ,! Ps-T -Alg

have left 2–adjoints generically denoted by Q. Under even further assumptions, the
units 1) iQ and 1)jQ and the counits Qi)1 and Qj)1 of these 2–adjunctions
have components which are internal equivalences in T -Alg for Q a i and Ps-T -Alg
for Q a j , respectively.
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Remark 4.4 The proofs in [39] only concern the units, but the statement about counits
follows immediately from the 2-out-of-3 property for equivalences and one of the
triangle identities. We note that the components of the counits are actually always
1–cells in T -Algs , so saying they are equivalences in T -Alg or Ps-T -Alg requires
implicitly applying i or j , respectively.

Notation 4.5 We will always denote inclusions of the form T -Algs ,! T -Alg by i ,
and inclusions of the form T -Algs ,! Ps-T -Alg by j . If we need to distinguish
between the left adjoints for i and j , we will denote them by Qi and Qj , respectively.

4.2 Two applications of 2–monads

We are interested in two applications of Theorem 4.3: one which gives 2–categories
as the strict algebras (Proposition 4.12), and one which gives 2–functors with fixed
domain and codomain as the strict algebras (Proposition 4.16). Combining these in
Theorem 4.19, we obtain the main strictification result used in our analysis of K–theory
and suspension in Section 5.

We begin with the 2–monad for 2–categories and refer the interested reader to [41; 42]
for further details.

Definition 4.6 (1) A category-enriched graph or Cat –graph .S;S.x;y// consists
of a set of objects S and a category S.x;y/ for each pair of objects x;y 2 S .

(2) A map of Cat –graphs .F;Fx;y/W .S;S.x;y// ! .T;T .w; z// consists of a
function F W S ! T and a functor Fx;y W S.x;y/! T .Fx;Fy/ for each pair
of objects x;y 2 S .

(3) A Cat –graph 2–cell ˛W .F;Fx;y/) .G;Gx;y/ only exists when FDG as func-
tions S! T , and then consists of a natural transformation ˛x;y W Fx;y)Gx;y

for each pair of objects x;y 2 S .

Notation 4.7 Cat –graphs, their maps, and 2–cells form a 2–category, Cat -Grph , with
the obvious composition and unit structures.

Definition 4.8 Let A and B be 2–categories, and F;GW A ! B be a pair of 2–
functors between them. An icon ˛W F)G exists only when FaDGa for all objects
a 2A, and then consists of natural transformations

˛a;bW Fa;b)Ga;bW A.a; b/!B.Fa;Fb/

for all pairs of objects a and b such that the following diagrams commute:
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idFa F ida
D

// F ida

Gida

˛id

��

idFa

Gida

D
%%

Ff ıFg F.f ıg/
D

// F.f ıg/

G.f ıg/

˛f ıg

��

Ff ıFg

Gf ıGg

˛f �˛g

��

Gf ıGg G.f ıg/
D

//

(Note that we suppress the 0–cell source and target subscripts for components of the
transformations ˛a;b and instead only list the 1–cell for which a given 2–cell is the
component.)

Remark 4.9 We can define icons between pseudofunctors or lax functors with only
minor modifications, replacing some equalities above with the appropriate coherence
cell; see [42; 41].

Notation 4.10 2–categories, 2–functors, and icons form a 2–category, which we
denote by 2Cat2;i . 2–categories, pseudofunctors, and icons form a 2–category, which
we denote by 2Cat p,i . Bicategories, pseudofunctors, and icons also form a 2–category,
which we denote by Bicat p,i .

Recall that a 2–functor U W A!K is 2–monadic if it has a left 2–adjoint F and A is
2–equivalent to the 2–category of algebras .UF /-Algs via the canonical comparison
map.

Proposition 4.11 [42; 41] The 2–functor 2Cat2;i! Cat -Grph is 2–monadic, and the
left 2–adjoint is given by the Cat –enriched version of the free category functor.

The following is our first application of Theorem 4.3.

Proposition 4.12 The two inclusions

i W 2Cat2;i ,! 2Cat p,i; j W 2Cat2;i ,! Bicat p,i

have left 2–adjoints, and the components of the units and counits of both adjunctions
are internal equivalences in 2Cat p,i for Qi a i and Bicat p,i for Qj a j , respectively.

Proof The induced monad T on Cat -Grph satisfies a version of the hypotheses for
Theorem 4.3 (for example, it is a finitary monad) so we get left 2–adjoints to both
inclusions

i W T -Algs! T -Alg; j W T -Algs! Ps-T -Alg:

Now T -Alg can be identified with 2Cat p,i , and one can check that Ps-T -Alg can be
identified with Bicat p,i , and using these the two left 2–adjoints above are both given
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by the standard functorial strictification functor, often denoted by st (see [34] for the
version with only a single object, ie monoidal categories). The objects of st.X / are
the same as X , while the 1–cells are formal strings of composable 1–cells (including
the empty string at each object). Internal equivalences in either T -Alg or Ps-T -Alg
for the 2–monad T are bijective-on-objects biequivalences, and it is easy to check that
the unit is such; see [42; 28] for further details.

Remark 4.13 We should note that 2Cat2;i is complete and cocomplete as a 2–category,
since it is the 2–category of algebras for a finitary 2–monad on a complete and
cocomplete 2–category. This will be necessary for later constructions. On the other
hand, 2Cat p,i is not cocomplete as a 2–category, but is as a bicategory: coequalizers
of pseudofunctors rarely exist in the strict, 2–categorical sense, but all bicategorical
colimits do exist.

Our second application of Theorem 4.3 deals with functor 2–categories. Here we fix a
small 2–category A and a complete and cocomplete 2–category K.

Notation 4.14 Let ŒA;K� denote the 2–category of 2–functors, 2–natural transfor-
mations, and modifications from A to K. Let Bicat.A;K/ denote the 2–category of
pseudofunctors, pseudonatural transformations, and modifications from A to K. Let
Gray.A;K/ denote the 2–category of 2–functors, pseudonatural transformations, and
modifications from A to K. This is the internal hom-object corresponding to the Gray
tensor product on 2Cat [21].

Remark 4.15 Bicat.A;K/ inherits its compositional and unit structures from the
target 2–category K and is therefore a 2–category rather than a bicategory even though
all of its cells are of the weaker, bicategorical variety.

Let obA denote the discrete 2–category with the same set of objects as A. We have
an inclusion obA ,!A, which induces a 2–functor U W ŒA;K�! ŒobA;K�.

Proposition 4.16 The forgetful 2–functor U W ŒA;K�! ŒobA;K� is 2–monadic, and
the left 2–adjoint is given by enriched left Kan extension. The induced 2–monad
preserves all colimits, and so the inclusions

i W ŒA;K� ,! Gray.A;K/; j W ŒA;K� ,! Bicat.A;K/

have left 2–adjoints. The units and counits of these adjunctions have components
which are internal equivalences in Gray.A;K/ for Qi a i and Bicat.A;K/ for Qj a j ,
respectively.
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Proof That U is 2–monadic follows because it has a left 2–adjoint given by enriched
left Kan extension and is furthermore conservative. Thus ŒA;K� is 2–equivalent to the
2–category of strict algebras for U ıLan. The 2–functor U also has a right adjoint
given by right Kan extension since K is complete, so U ıLan preserves all colimits
as it is a composite of two left 2–adjoints. The 2–category ŒobA;K� is cocomplete
since K is, hence T D U ıLan satisfies the strongest version of the hypotheses for
Theorem 4.3. One can check that T -Alg is 2–equivalent to Gray.A;K/ and Ps-T -Alg
is 2–equivalent to Bicat.A;K/ [40]. This proves that the inclusions i and j in the
statement have left 2–adjoints. The version of Theorem 4.3 which applies in this
case proves, moreover, that the components of the units are internal equivalences in
Gray.A;K/ and Bicat.A;K/, respectively, and hence the claim about counits follows
(see Remark 4.4).

We require one further lemma before stating the main result of this section.

Lemma 4.17 For a fixed 2–category A, Bicat.A;�/ is an endo-2–functor of the
2–category of 2–categories, 2–functors, and 2–natural transformations.

Proof For any 2–category B, we know that Bicat.A;B/ is a 2–category. Furthermore,
if F W B! C is a 2–functor, it is straightforward to check that F�W Bicat.A;B/!
Bicat.A;C/ is also a 2–functor. The only interesting detail to check is on the level of 2–
cells, where we must show that if � W F)G is 2–natural, then so is �� . The component
of �� at H W A ! B is the pseudonatural transformation �H W FH ) GH with
.�H /aD�Ha and similarly for pseudonaturality isomorphisms. We must verify that ��
is 2–natural in H . Thus, for any ˛W H)K , we must check that G˛ı�H D �KıF˛

as pseudonatural transformations and then similarly for modifications. At an object a,
we have components

.G˛ ı �H /a DG.˛a/ ı �Ha D �Ka ıF.˛a/D .�K ıF˛/a

by the 2–naturality of � in Ha. A short and simple pasting diagram argument that we
leave to the reader also shows that the pseudonaturality isomorphisms for G˛ ı �H

and �K ıF˛ are the same, once again relying on the 2–naturality of � in its argument.
This completes the 1–dimensional part of 2–naturality, and the 2–dimensional part is
a direct consequence of the 2–naturality of � when written out on components.

Remark 4.18 While the argument above is simple, it is not entirely formal. The
“dual” version for Bicat.�;A/ does not hold due to an asymmetry in the definition
of the pseudonaturality isomorphisms for a horizontal composite of pseudonatural
transformations.
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We are now ready to prove the main result of this section, namely that we can replace
pseudofunctors A! 2Cat p,i with equivalent 2–functors A! 2Cat2;i .

Theorem 4.19 The inclusion

J W ŒA; 2Cat2;i� ,! Bicat.A; 2Cat p,i/

has a left 2–adjoint Q. The unit and counit of this adjunction have components which
are internal equivalences in Bicat.A; 2Cat p,i/.

Proof We will combine Propositions 4.12 and 4.16. The inclusion J factors into the
two inclusions

ŒA; 2Cat2;i�
j
,!Bicat.A; 2Cat2;i/

i�,�!Bicat.A; 2Cat p,i/:

Since 2Cat2;i is cocomplete, j has a left 2–adjoint Qj by Proposition 4.16. The
inclusion i has a left 2–adjoint Qi by Proposition 4.12, so i� has a left 2–adjoint
.Qi/� by Lemma 4.17. Both of these 2–adjunctions have units whose components
are equivalences, so the composite QDQj .Qi/� does as well, from which the claim
about counits follows.

5 Categorical suspension models stable suspension

The purpose of this section is to prove Theorem 3.11, which states that K–theory
commutes with suspension, in the appropriate sense. More precisely, we show that for
any permutative category C , the K–theory spectrum of the one-object permutative Gray
monoid †C is stably equivalent to the suspension of the K–theory spectrum of C .

This entails a comparison between constructions of K–theory for categories and 2–
categories. Both constructions use the theory of �–spaces developed by Segal [53].
We recall this theory in Section 5.1. Our interest in �–spaces arises from the fact that
they model the homotopy theory of connective spectra, as developed by Bousfield and
Friedlander [10] in the simplicial setting. Thus, in what follows, we will work with
�–simplicial sets to prove Theorem 3.11.

We model the spectra K.†C / and †KC with �–simplicial sets which are constructed
from certain �–objects in simplicial categories. These �–objects in simplicial categories
are two different strictifications of the same pseudofunctor F ! Bicat.�op; Cat2/,
where F is the category of finite pointed sets and pointed maps. The first of these
strictifications is provided in Definition 5.8 by applying the suspension of �–simplicial
sets (Definition 5.5) to a strictification of the pseudofunctor n 7!C n (Construction 5.7),
giving a model for †KC . The second is provided in Definition 5.16 and gives a model
for K.†C /.
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In Section 5.2 we use the formalism of Section 4 to compare the two strictifications
via a zigzag of levelwise equivalences. The key step in this comparison is constructed
in Theorem 5.21 by strictification of a pseudonatural equivalence.

5.1 Constructions of K –theory spectra and suspension

Let F denote the following skeletal model for the category of finite pointed sets and
pointed maps. An object of F is determined by an integer m� 0, which represents the
pointed set mCD f0; 1; : : : ;mg, where 0 is the basepoint. This category is isomorphic
to the opposite of the category � defined by Segal [53].

Definition 5.1 Let C be a category with a terminal object �. A �–object in C is a
functor X W F ! C such that X.0C/D �.

We give the above definition in full generality, but are only interested in the cases when
C is one of Cat , 2Cat , the category of simplicial sets sSet or of topological spaces Top .
In each of these cases, we have finite products and a notion of weak equivalence. In
Top and sSet this is the classical notion of weak homotopy equivalence, and in both
Cat and 2Cat we define a functor or 2–functor to be a weak equivalence if it induces a
weak homotopy equivalence in sSet after applying the nerve [25; 12].

Definition 5.2 Let X be a �–object in C. We say X is special if the Segal maps

X.nC/!X.1C/
n

are weak equivalences.

The main result of [53] is that, given a �–space X , one can produce a connective
spectrum zX . Moreover, if X is special then zX is an almost �–spectrum such that
�1 zX is a group completion of X.1C/. We recall how to express suspension of spectra
in terms of �–simplicial sets using the standard “inclusion” �op!F , as specified in
[48, Lemma 3.5] and the following smash product. Let ^W F �F !F be the functor
that sends .nC;pC/ to .np/C D nC_ � � � _nC . Our reverse lexicographic convention
differs from the smash product in [48, Construction 3.4], which considers .np/C as
pC _ � � � _pC .

Notation 5.3 Let

ˆW Bicat.A�B;C/! Bicat.A;Bicat.B;C//

denote the biequivalence of functor bicategories given in [55], sending a pseudofunctor
F W A�B! C to the pseudofunctor

ˆ.F /.a/.b/D F.a; b/:
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We also let ˆ denote the isomorphism of functor 2–categories

ŒA�B;C� Š�! ŒA; ŒB;C��:

In order to justify using the same notation ˆ for both of these, we note that both
versions (reading vertical arrows upwards or downwards) of the square

(5-4)

ŒA�B;C� Bicat.A�B;C/

ŒA; ŒB;C�� Bicat.A;Bicat.B;C//

OO

Š

��

//

//

OO

'

��

commute, with the downward direction being given by ˆ on the vertical arrows.

Definition 5.5 Let X W F ! sSet be a special �–simplicial set and let X ı^ denote
the composite

F ��op ^
�!F

X
�! sSet :

Let d W Œ�op; sSet �! sSet denote the diagonal functor. We define the suspension, †X ,
as the special �–simplicial set d ıˆ.X ı^/.

Proposition 5.6 [53; 10] Let X be a special �–simplicial set and zX its associated
spectrum. Then the spectrum associated to †X is stably equivalent to † zX .

Given a permutative category C , there are several equivalent ways of constructing a
special �–category. The following was first constructed by Thomason [56, Definition
4.1.2].

Construction 5.7 Let .C;˚; e/ be a permutative category. We can construct a pseudo-
functor

C .�/
W F ! Cat2

which sends mC to C m . Given a morphism �W mC! nC , the corresponding functor
��W C

m!C n is defined uniquely by the requirement that the square below commutes
for each projection �j W C

n! C :

C m

C n

C ��1.j/

C

//

��
��

˚
��

�j

//

The top horizontal map is the projection onto the coordinates which appear in ��1.j /.
The ˚ appearing on the right vertical map is the iterated application of the tensor
product ˚, with the convention that if ��1.j / is empty, then the map is the constant
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functor on the unit e . This assignment is not strictly functorial, but the permutative
structure provides natural isomorphisms

 � ı�� Š . ı�/�;

which are uniquely determined by the symmetry. These isomorphisms assemble to
make C .�/ a pseudofunctor.

Definition 5.8 The K–theory of C is the functor

KC DN ıQj .C
.�//W F ! sSet ;

where N is the usual nerve functor Cat ! sSet and Qj is the left 2–adjoint from
Proposition 4.16 when KD Cat2 .

Remark 5.9 Although the pseudofunctor C .�/ satisfies the property that it maps 0C
to �, its strictification Qj .C

.�// does not. Thus Qj .C
.�// is a functor F ! Cat , but

it is not a �–category as in Definition 5.1. Since Qj .C
.�// is levelwise equivalent

to C .�/ , and in particular Qj .C
.�//.0C/ is contractible, we can replace N ıQj .C

.�//

by a levelwise equivalent �–simplicial set. This replacement is made implicitly here,
and throughout the remainder of the paper.

Lemma 5.10 Consider the composite

ŒF ��op; Cat � ˆ�! ŒF ; Œ�op; Cat �� N�ı�
����! ŒF ; Œ�op; sSet �� dı�

��! ŒF ; sSet �:

If F is a levelwise weak equivalence of diagrams F ��op! Cat , then dN�ˆ.F / is a
levelwise weak equivalence of diagrams F ! sSet .

Proof This follows from [10, Theorem B.2], which states that if f W X ! Y is a map
of bisimplicial sets such that Xn;�! Yn;� is a weak equivalence of simplicial sets for
all n� 0, then d.f /W d.X /! d.Y / is a weak equivalence.

To relate the �–simplicial set †KC to the K–theory of the permutative Gray monoid
†C , we provide a new construction of a special �–2–category K.†C / and show it is
levelwise weakly equivalent to the K–theory defined in [29].

Notation 5.11 Let 2Cat p,p,m denote the tricategory whose objects are 2–categories
and whose higher cells are pseudofunctors, pseudonatural transformations, and modifi-
cations [27].

Lemma 5.12 Let .D;˚; e/ be a permutative Gray monoid. Then there is a pseudo-
functor of tricategories D.�/W F! 2Cat p,p,m with value at mC given by Dm . If D has
a single object, then this becomes a pseudofunctor of 2–categories D.�/W F ! 2Cat p,i .

Algebraic & Geometric Topology, Volume 17 (2017)



Stable Postnikov data of Picard 2–categories 2795

Proof The first claim is a special case of [31, Theorem 2.5]. For the second claim,
by Corollary 2.35, it suffices to work with †D for a permutative category D . Recall
from Construction 5.7 that we have the pseudofunctor

D.�/
W F ! Cat2:

The permutative structure on D in fact makes each Dm a strict monoidal category with
pointwise tensor product and unit, and each functor ��W Dm!Dn for �W mC! nC
a strong monoidal functor. One can verify that the isomorphisms  � ı�� Š . ı�/�
are themselves monoidal, so we get a pseudofunctor

D.�/
W F ! StMonCatp

from F to the 2–category StMonCatp of strict monoidal categories, strong monoidal
functors, and monoidal natural transformations. Note that .†D/m Š†.Dm/, so we
define

.†D/.�/ D† ıD.�/;

where † is now the 2–functor StMonCatp! 2Cat p,i which views each strict monoidal
category as the hom-category of a 2–category with a single object. This composite is
the desired pseudofunctor.

Definition 5.13 [42] Let A be a 2–category. The nerve of A is the simplicial
category NAW �op! Cat defined by

NAn D 2Cat2;i.Œn�;A/;

where Œn� is the standard category 0! 1! � � � ! n treated as a discrete 2–category.
This is the function on objects of a 2–functor from 2Cat2;i to Œ�op; Cat2�.

Remark 5.14 This is called the 2–nerve by Lack and Paoli. It is related but not equal
to the general bicategorical nerve of [25; 12]. Detailed comparisons are given in [12].

Unpacking this definition, NA0 D obA as a discrete category. When n� 1,

NAn D

a
a0;:::;an2obA

A.an�1; an/� � � � �A.a0; a1/:

Using this same formula, we define the nerve on Cat -Grph , which fits in the following
commuting diagram:

Cat -Grph

2Cat2;i

Œob�op; Cat2�

Œ�op; Cat2�

N
//

N
//

�� ��
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Let S be the 2–monad on Cat -Grph whose algebra 2–category is 2Cat2;i (Proposition
4.11). Let T be the 2–monad on Œob�op; Cat2� whose algebra 2–category is Œ�op; Cat2�

(Proposition 4.16). We now apply Proposition 4.2 to show that the nerve extends
to 2Cat p,i .

Lemma 5.15 The nerve N is a strict map of 2–monads S!T and therefore provides
the middle map in the commutative diagram below:

Cat -Grph

2Cat p,i

2Cat2;i

Œob�op; Cat2�

Gray.�op; Cat2/

Œ�op; Cat2�

N
//

N
//

N
//

i
��

U
��

i
��

U
��

We now define the �–objects we will use to understand K–theory of a suspension.

Definition 5.16 Let C be a permutative category with †C its suspension permu-
tative Gray monoid. Let Q D Qj .Qi/� denote the left 2–adjoint of the inclusion
J W ŒF ; 2Cat2;i� ,! Bicat.F ; 2Cat p,i/ constructed in Theorem 4.19.

(1) Define K.†C / to be Q..†C /.�//. This is a functor F ! 2Cat .

(2) The composite N ıK.†C / is a functor F ! Œ�op; Cat �. Define Kadj.†C / to
be ˆ�1.N ıK.†C //.

The composite
2Cat N
�! Œ�op; Cat � N�

�! Œ�op; sSet � d
�! sSet

is one of the versions of the nerve for 2–categories in [12]. Postcomposing K.†C /

with this functor (and, as noted in Remark 5.9, implicitly replacing with a reduced
diagram) yields a �–simplicial set which is a model of the K–theory of †C . We make
this rigorous in the following lemma, which relates the definition of K–theory here
with that introduced in [29], here denoted by zK .

For a permutative Gray monoid D, zK.D/ is a special �–2–category such that an
object at level n is an object in D, together with an explicit way of decomposing it
as a sum of n objects. This allows for strict functoriality with respect to F . This
construction generalizes the construction of [47; 45] for permutative categories.

Lemma 5.17 Let .C;˚; e/ be a permutative category. There is a levelwise weak
equivalence between the �–2–categories K.†C / and zK.†C /, hence a stable equiva-
lence between the spectra these represent.
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Proof We shall prove that there is a levelwise weak equivalence K.†C /! zK.†C /

of �–2–categories. Since both of these are special, it suffices to construct such a map
and check that it is a weak equivalence when evaluated at 1C . The functor Q is a left
adjoint, so strict maps ZW K.†C / D Q..†C /.�//! zK.†C / are in bijection with
pseudonatural transformations

LZW .†C /.�/! zK.†C /

in Bicat.F ; 2Cat p,i/. This bijection is induced by composition with a universal pseudo-
natural transformation �W .†C /.�/ ! Q..†C /.�//, so we have the commutative
triangle shown below:

.†C /.�/ Q..†C /.�//

zK.†C /

�
//

Z
��LZ

%%

We know that � is a levelwise weak equivalence by Theorem 4.19, so the component
of Z at 1C is a weak equivalence if and only if the same holds for LZ .

We will construct the pseudonatural transformation LZ . In order to do so, we briefly
review the data which define the cells of zK.†C /.nC/; we omit the axioms these data
must satisfy and refer the reader to [29]. Because †C has a single object, an object
of zK.†C /.nC/ consists of objects cs;t of the permutative category C for s and t

disjoint subsets of nD f1; : : : ; ng. We denote such an object by fcs;tg or, when more
detail is useful, a function

fs; t 7! cs;tg:

A 1–cell fcs;tg ! fds;tg consists of objects xs of C for s � n together with isomor-
phisms

s;t W xt ˚xs˚ cs;t Š ds;t ˚xs[t :

We denote this by fxs; s;tg or, in functional notation,

fs 7! xsI s; t 7! s;tg:

A 2–cell fxs; s;tg) fys; ıs;tg consists of morphisms ˛sW xs! ys in C . We denote
this by f˛sg or with a corresponding functional notation.

Now .†C /nC is .†C /n Š†.C n/ by definition. We define LZ on cells as follows.

� The unique 0–cell of †.C n/ maps to the object of zK.†C /.nC/ with cs;t D e

for all s and t .
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� A 1–cell .x1; : : : ;xn/ maps to the 1–cell�
s 7!

M
i2s

xi I s; t 7! �s;t

�
;

where �s;t denotes the unique interleaving symmetry isomorphism�M
i2s

xi

�
˚

�M
j2t

xj

�
Š

M
k2s[t

xk :

� A 2–cell .f1; : : : ; fn/ maps to the 2–cell�
s 7!

M
i2s

fi

�
:

Using the permutative structure of C , it is straightforward to verify that the formulas
above satisfy the axioms of [29, Section 6.1] and therefore define valid cells. Clearly,
LZ sends the identity 1–cell of †.C n/, namely .e; : : : ; e/, to the identity 1–cell

in zK.†C /.nC/. Now composition of 1–cells in †.C n/ is given by the monoidal
structure, so

.x1; : : : ;xn/ ı .y1; : : : ;yn/D .x1˚y1; : : : ;xn˚yn/:

We have a similar formula for composition in zK.†C /.nC/, with the object part of
fxs; s;tg ı fys; ıs;tg being given on s by xs˚ys . From these formulas, we see that
LZ does not strictly preserve 1–cell composition since

LZ.x1; : : : ;xn/ ı LZ.y1; : : : ;yn/D

�
s 7!

�M
i2s

xi

�
˚

�M
i2s

yi

�
I s; t 7! �s;t

�
;

where � denotes the unique interleaving symmetry isomorphism. On the other hand,

LZ.x1˚y1; : : : ;xn˚yn/D

�
s 7!

M
i2s

.xi ˚yi/I s; t 7! �s;t

�
:

These are isomorphic by a unique symmetry, and that data equips

LZ.nC/W .†C /n! zK.†C /.nC/

with the structure of a normal (ie strictly unit-preserving) pseudofunctor.

Now let �W mC! nC in F . We must construct an invertible icon in the square below:

.†C /m zK.†C /.mC/

.†C /n zK.†C /.nC/

��
��

LZ
//

LZ

//

��
��
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We begin by noting that this diagram obviously commutes on the unique object, so
there can exist an icon (see Definition 4.8) between the two composite pseudofunctors.
The top and right composite sends a 1–cell .x1; : : : ;xn/ to the 1–cell�

u 7!
M

i2��1.u/

xi I u; v 7! ���1.u/;��1.v/

�
:

The left and bottom composite then sends .x1; : : : ;xn/ to the 1–cell with�
u 7!

M
i2u

� M
j2��1.i/

xj

�
I u; v 7! �u;v

�
;

where �u;v interleaves the blocks
�L

j2��1.i/ xj

�
.

There is an invertible 2–cell between these 1–cells, which is given by the symmetry
isomorphism M

i2��1.u/

xi Š

M
i2u

� M
j2��1.i/

xj

�
:

Coherence for symmetric monoidal categories, together with the naturality of sym-
metries, implies that the icon axioms hold. Further, the same coherence shows that
these invertible icons are themselves the naturality isomorphisms which constitute a
pseudonatural transformation between pseudofunctors F ! 2Cat p,i .

Our final task is to verify that LZ.1C/ is a weak equivalence. It is a simple calculation to
check that in fact LZ.1C/ induces an isomorphism of 2–categories zK.†C /.1C/Š†C .

Remark 5.18 One can check that the equivalence constructed in Lemma 5.17 is
pseudonatural in the variable C .

5.2 Proof of Theorem 3.11

Given a permutative category C , we can construct two pseudofunctors from F to
Bicat.�op; Cat2/. One is the composite

F
.†C /.�/

����! 2Cat p,i
N
�!Gray.�op; Cat2/ ,! Bicat.�op; Cat2/;

where N denotes the nerve functor of Lemma 5.15. The other is given by ˆ.C .�/ı^/,
where

ˆW Bicat.F ��op; Cat2/! Bicat.F ;Bicat.�op; Cat2//
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is the 2–functor from Notation 5.3 and C .�/ ı^ is the composite

F ��op ^
�!F

C .�/

��! Cat2:

Proposition 5.19 With notation as above, ˆ.C .�/ ı^/DN ı .†C /.�/ .

Proof This result follows from a direct comparison of ˆ.C .�/ı^/ with N ı.†C /.�/ .
Both pseudofunctors send the object mC in F to the 2–functor �op! Cat2 given by

Œp� 7! C m�p
D .C m/p; .Œp�

˛
�! Œq�/ 7! .C m�p .m^˛/�

����!C m�q/:

For ˆ.C .�/ ı^/ this is immediate. For N ı .†C /.�/ this follows because †C has
only one object and the horizontal composition of cells is given by the monoidal product
in C .

Both pseudofunctors send a morphism �W mC ! nC in F to the pseudonatural
transformation whose component at Œp� 2�op is given by

C m�p .�^p/�
����!C n�p:

For ˆ.C .�/ ı^/, it is immediate that the pseudonaturality constraint has components
given by

(5-20) .nC ^˛/� ı .� ^ Œp�/� Š .� ^˛/� Š .� ^ Œq�/� ı .mC ^˛/�

at ˛W Œp�! Œq�. These isomorphisms are the pseudofunctoriality constraints of C .�/

and are instances of the symmetry in C (see Construction 5.7). A straightforward
check shows that the pseudofunctoriality constraint of N ı .†C /.�/ is given by the
same instances of the symmetry of C .

For a composable pair �W mC! nC and  W nC! kC , the symmetry of C provides

. ^ Œp�/� ı .� ^ Œp�/� Š .. ı�/^ Œp�/�

and these are the components of the pseudofunctoriality of ˆ.C .�/ ı^/. The same
computation holds for N ı .†C /.�/ .

We are now ready for the main theorem of this section, from which the proof of
Theorem 3.11 follows. Let Qj be as in Definition 5.8, the left 2–adjoint to the
inclusion functor

j W ŒF ��op; Cat2� ,! Bicat.F ��op; Cat2/:

Theorem 5.21 For any permutative category C , there is a zigzag of levelwise equiva-
lences between Qj .C

.�// ı^ and Kadj.†C /.
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Proof The components of the unit and counit of the 2–adjunction Qj a j are internal
equivalences in Bicat.F ��op; Cat2/ by Proposition 4.16. Assume that

˛W j .Qj .C
.�// ı^/ '�! j .Kadj.†C //

is a pseudonatural equivalence in Bicat.F ��op; Cat2/. Since a pseudonatural equiva-
lence is an internal equivalence in Bicat.F ��op; Cat2/, we can apply Qj and get an
internal equivalence in ŒF ��op; Cat2�. This gives a zigzag

Qj .C
.�// ı^

"
 �Qj j .Qj .C

.�// ı^/
Qj .˛/
����!Qj j .Kadj.†C //

"
�!Kadj.†C /

in ŒF ��op; Cat2� in which the first and third arrows are levelwise equivalences as they
are internal equivalences in Bicat.F ��op; Cat2/, and the second arrow is a levelwise
equivalence as it is an internal equivalence (ie 2–equivalence) in ŒF ��op; Cat2�. It
only remains to construct an equivalence ˛ as above.

In order to construct the pseudonatural equivalence ˛ , first recall from Definition 5.16(2)
that

Kadj.†C /Dˆ�1
�
N ıQ..†C /.�//

�
;

where ˆ denotes the adjunction of Notation 5.3 and Q denotes the left adjoint con-
structed in Theorem 4.19. We define ˛ as the composite

j .Qj .C
.�// ı^/

D
�! jQj .C

.�// ı^

'
�!C .�/

ı^

'
�!ˆ�1.N ı .†C /.�//

'
�!ˆ�1

�
N ıJQ..†C /.�//

�
D
�! jˆ�1

�
N ıQ..†C /.�//

�
D
�! jKadj.†C /;

which we now explain. The equality giving the first arrow is a simple calculation.
The equivalence giving the second arrow is a pseudoinverse of the unit for Qj a j ,
whiskered by ^ and hence still an equivalence. The equivalence giving the third arrow
is the adjoint of the equality in Proposition 5.19. The equivalence giving the fourth
arrow is derived from the unit of Q a J which is itself an equivalence, so whiskering
with N and applying ˆ�1 still yields an equivalence. The equality giving the fifth
arrow follows from the commutativity of (5-4), and the equality giving the final arrow
is Definition 5.16(2).

Remark 5.22 The zigzag in Theorem 3.11 is natural up to homotopy. More precisely,
this zigzag consists of three maps, two of which are counits for the 2–adjunction Qj aj .
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It is easy to see that C 7! C .�/ sends symmetric, strong monoidal functors between
permutative categories to pseudonatural transformations between their corresponding
pseudofunctors F ! Cat2 , so a symmetric, strong monoidal functor F W C !D will
yield a 2–natural transformation

Qj .C
.�// ı^!Qj .D

.�// ı^:

The counit " is strictly natural with respect to such, so the first map in our zigzag
is strictly natural in symmetric, strong monoidal functors. A similar argument holds
for Kadj , so the third map in our zigzag is also strictly natural in symmetric, strong
monoidal functors. The second map is what is called Qj .˛/ in the proof above. It
is more involved, but a careful check reveals that each of the maps of which it is a
composite is pseudonatural in symmetric, strong monoidal functors, and so the same
will be true after applying Qj . Thus our zigzag is actually pseudonatural in the
variable C , which in particular implies that it is natural up to homotopy when viewed
as a zigzag of spectra.

Proof of Theorem 3.11 On one hand, the suspension of �–simplicial sets given in
Definition 5.5 models the stable suspension by Proposition 5.6. Recalling [56; 48],
the �–simplicial set KC DN ıQj .C

.�// from Definition 5.8 models the K–theory
spectrum of C . Its suspension as a �–simplicial set, †K.C /, is given by composing
the diagonal d with ˆ.K.C / ı^/. By naturality of ˆ in its target 2–category, this
is given by dN�ˆ.Qj .C

.�// ı ^/. By Lemma 5.10, a levelwise weak equivalence
of functors X;Y W F ��op ! Cat2 induces a levelwise weak equivalence between
dN�ˆ.X / and dN�ˆ.Y /. Therefore it suffices to examine Qj .C

.�// ı ^. On the
other hand, in Definition 5.16 we have the �–2–category K.†C / D Q..†C /.�//

and the related adjoint Kadj.†C / D ˆ�1.N ıK.†C //. Lemma 5.17 shows that
dN�ˆ.Kadj.†C // models the K–theory spectrum of †C . Finally, the result follows
by Theorem 5.21, which shows that there is a zigzag of levelwise equivalences between
Qj .C

.�// ı^ and Kadj.†C /.
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