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Links with finite n–quandles

JIM HOSTE

PATRICK D SHANAHAN

Associated to every oriented link L in the 3–sphere is its fundamental quandle and,
for each n > 1 , there is a certain quotient of the fundamental quandle called the
n–quandle of the link. We prove a conjecture of Przytycki which asserts that the n–
quandle of an oriented link L in the 3–sphere is finite if and only if the fundamental
group of the n–fold cyclic branched cover of the 3–sphere, branched over L , is
finite. We do this by extending into the setting of n–quandles, Joyce’s result that
the fundamental quandle of a knot is isomorphic to a quandle whose elements are
the cosets of the peripheral subgroup of the knot group. In addition to proving the
conjecture, this relationship allows us to use the well-known Todd–Coxeter process to
both enumerate the elements and find a multiplication table of a finite n–quandle of a
link. We conclude the paper by using Dunbar’s classification of spherical 3–orbifolds
to determine all links in the 3–sphere with a finite n–quandle for some n .

57M25; 57M27

1 Introduction

While the algebraic study of racks and quandles dates back to the early 1900s, Fenn and
Rourke in [5] credit Conway and Wraith with introducing the concepts in 1959 as an
algebraic approach to study knots and links in 3–manifolds. In the late 1900s, several
mathematicians began studying similar concepts under names such as kei, distributive
groupoids, crystals, and automorphic sets. In 1982, Joyce [10] published a ground-
breaking work which included introducing the term quandle, giving both topological
and algebraic descriptions of the fundamental quandle of a link, and proving that the
fundamental quandle of a knot is a complete invariant up to reversed mirror image.
Much of Joyce’s work was independently discovered by Matveev [11]. In this article,
we consider a quotient of the fundamental quandle of a link called the fundamental
n–quandle, defined for any natural number n. Whereas the quandle of a link is usually
infinite and somewhat intractable, there are many examples of knots and links for
which the n–quandle is finite for some n. In his PhD thesis, Winker [13] developed a
method to produce the analog of the Cayley diagram for a quandle. In addition, Winker
established a relationship between the n–quandle of the link L and the fundamental
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group of �Mn.L/, the n–fold cyclic branched cover of the 3–sphere, branched over L.
When combined with previous work of Joyce, this implied that if the n–quandle of
a link L is finite, then so is �1. �Mn.L//. Przytycki (private communication, 2013)
then conjectured that this condition is both necessary and sufficient, which we prove to
be true in this paper. Our proof involves first generalizing a key result of Joyce: the
cosets of the peripheral subgroup of a knot group can be given a quandle structure
making it isomorphic to the fundamental quandle of the knot. We extend this result to
the n–quandle of a knot, showing that it can also be viewed as the set of cosets of the
peripheral subgroup in a certain quotient of the knot group. This result allows Winker’s
diagramming method to be replaced by the well known Todd–Coxeter method of coset
enumeration.

We assume the reader is familiar with the theory of racks and quandles, but include
basic definitions for completeness. The reader is referred to Fenn and Rourke [5], Joyce
[10; 9], Matveev [11], and Winker [13] for more information. A quandle is a set Q

together with two binary operations B and B�1 which satisfies the following three
axioms:

(Q1) x B x D x for all x 2Q.

(Q2) .x B y/B�1 y D x D .x B�1 y/B y for all x;y 2Q.

(Q3) .x B y/B z D .x B z/B .y B z/ for all x;y; z 2Q.

A rack is more general, requiring only (Q2) and (Q3). It is important to note that, in
general, the quandle operations are not associative. In fact, using axioms (Q2) and (Q3)
it is easy to show that

(1) x B .y B z/D ..x B�1 z/B y/B z:

This property allows one to write any expression involving B and B�1 in a unique
left-associated form (see Winker [13]). Henceforth, expressions without parenthesis
are assumed to be left-associated.

Given a quandle Q, each element q 2Q defines a map SqW Q!Q by Sq.p/Dp B q .
It follows from axiom (Q2) that Sq is a bijection and S�1

q .p/ D p B�1 q . From
axiom (Q3), it follows that Sq is a quandle homomorphism. The automorphism Sq is
called the point symmetry at q and the set of all point symmetries generate the inner
automorphism group Inn.Q/. A quandle Q is algebraically connected if Inn.Q/ acts
transitively on Q. An algebraic component of Q is a maximal algebraically connected
subset of Q.

In [9], Joyce defines two functors from the category of groups to the category of quandles.
These functors and their adjoints will be of importance in this paper. The first, denoted
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Conj, takes a group G to a quandle QDConj.G/ defined as the set G with operations
given by conjugation. Specifically, x B y D y�1xy and x B�1 y D yxy�1 . Its
adjoint, denoted Adconj takes the quandle Q to the group Adconj.Q/ generated by
the elements of Q and defined by the group presentation

Adconj.Q/D hxq for all q in Q j p B q D xq�1
xp xq for all p and q in Qi:

A quandle Q is called an n–quandle if each point symmetry Sq has order dividing n.
It is convenient to write x Bk y for Sk

y .x/, the k th power of Sy evaluated at x . Thus
Q is an n–quandle if for all x and y in Q, we have x Bn y D x . A second functor
from groups to n–quandles is defined for each natural number n and is denoted Qn .
Given a group G , the n–quandle Qn.G/ is the set

Qn.G/D fx 2G j xn
D 1g

again with the operations given by conjugation. The adjoint of this functor is AdQn . If
Q is any n–quandle, the group AdQn.Q/ is defined by the presentation

AdQn.Q/D hxq for all q in Q j xq n
D 1;p B q D xq�1

xp xq for all p and q in Qi:

Quandles may be presented in terms of generators and relators in much the same way
as groups. See [5] for a rigorous development of this topic. If the quandle Q is given
by the finite presentation

QD hq1; q2; : : : ; qi j r1; r2; : : : ; rj i;

then Winker proves in [13] that Adconj.Q/ and AdQn.Q/ can be finitely presented
as

(2) Adconj.Q/D hxq1; xq2; : : : ; xqi j xr1; xr2; : : : ; xrj i

and

(3) AdQn.Q/D hxq1; xq2; : : : ; xqi j xq
n
1 D 1; xq n

2 D 1; : : : ; xq n
i D 1; xr1; xr2; : : : ; xrj i:

Here, each quandle relation ri is an equation between two quandle elements each
expressed using the generators, the operations B and B�1 , and parenthesis to indicate
the order of operations. The associated group relation xri must now be formed in
a corresponding way using conjugation. For example, if r is the quandle relation
x D y B .z B�1 w/, then xr is the relation xx D xw xz�1 xw�1 xy xw xz xw�1 .

Associated to every oriented knot or link L in the 3–sphere S3 is its fundamental quan-
dle Q.L/ which is defined by means of a presentation derived from a regular diagram
D of L with a arcs and c crossings. First assign quandle generators x1;x2; : : : ;xa

to each arc of D . Next, introduce a relation r` at each crossing of D as shown in
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Figure 1. It is easy to check that the three axioms, (Q1), (Q2), and (Q3), are exactly
what is needed to prove that Q.L/ is preserved by Reidemeister moves and hence is
an invariant of the link. Passing from this presentation

Q.L/D hx1; : : : ;xa j r1; : : : ; rci

to a presentation for Adconj.Q.L// by using Winker’s formula (2), we obtain the
well-known Wirtinger presentation of �1.S

3�L/. Thus for any link L, �1.S
3�L/Š

Adconj.Q.L//.
xi

xj xk

Figure 1: The relation xi D xk B xj is associated to a crossing with arcs
labeled as shown.

Joyce proves in [10] that Q.L/ is a complete invariant of knots up to reverse mirror
image. A less sensitive, but presumably more tractable, invariant is the fundamental
n–quandle Qn.L/ which can be defined for each natural number n. If

Q.L/D hx1; : : : ;xa j r1; : : : ; rci

is the presentation of the fundamental quandle of L given by a diagram D and n

is a fixed natural number, then the fundamental n–quandle of L is defined to be the
quandle with presentation

Qn.L/D hx1; : : : ;xa j r1; : : : ; rc ; s1; : : : ; ski

where the relations s` are of the form xi Bn xj D xi for all distinct pairs of generators
xi and xj . As before, it is easy to check that Qn.L/ is an invariant of L and moreover
that it is an n–quandle. Passing from this presentation of Qn.L/ to a presentation for
AdQn.Qn.L// by using Winker’s formula (3), we see that AdQn.Qn.L// is a quotient
of Adconj.Q.L//. In particular, we may present AdQn.Qn.L// by starting with the
Wirtinger presentation of �1.S

3�L/ and then adjoining the relations xnD 1 for each
Wirtinger generator x . While the fundamental quandle of a nontrivial knot is always
infinite, the associated n–quandle is sometimes finite. Determining when this occurs is
the focus of this paper.

If L is a link of more than one component, then both Q.L/ and Qn.L/ are alge-
braically disconnected with one algebraic component Qi.L/ and Qi

n.L/, respectively,
corresponding to each component Ki of L.
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If K is a knot, let P be the peripheral subgroup of G D �1.S
3�K/ generated by the

meridian � and longitude � of K . In [10], Joyce defines a quandle structure on the
set of right cosets PnG by declaring Pg B˙1PhD Pgh�1�˙1h. He denotes this
quandle as .PnGI�/ and then proves that it is isomorphic to Q.K/. This is the key
step in Joyce’s proof that the quandle is a complete knot invariant up to reverse mirror
image. It also implies that the order of Q.K/ is the index of P in G and hence that
Q.K/ is infinite when K is nontrivial. The key result of this paper is the following
theorem which extends Joyce’s result to the case of Qn.L/.

Theorem 1.1 If L D fK1;K2; : : : ;Ksg is a link in S3 and Pi is the subgroup of
AdQn.Qn.L// generated by the meridian �i and longitude �i of Ki , then the quandle
.PinAdQn.Qn.L//I�i/ is isomorphic to the algebraic component Qi

n.L/ of Qn.L/.

Section 2 is devoted to proving Theorem 1.1. In Section 3 we use this result, as well
as a theorem of Joyce, to prove the conjecture of Przytycki stated in the Abstract.
Theorem 1.1 implies that the Todd–Coxeter process for coset enumeration can be
used to describe Qi

n.L/ provided it is finite. In Section 4 we describe this in greater
detail and give examples. In the last section, we enumerate all links that have finite
n–quandles for some n. In a separate set of papers, we plan to describe the n–quandles
of these links, thereby providing a tabulation of all finite quandles that appear as the
n–quandle of a link. The first of these papers is [7], where we describe the 2–quandle
of every Montesinos link of the form M.p1=2;p2=2;p=qI e/. The authors extend
their thanks to Daryl Cooper and Francis Bonahon for their assistance with Section 5.
The authors also thank the referee for helpful comments.

2 Relating Qn.L/ to cosets in AdQn.Qn.L//

To prove Theorem 1.1 we make use of topological descriptions of both the fundamental
quandle Q.L/ and the n–quandle Qn.L/. We begin by recalling Fenn and Rourke’s
formulation of Q.L/ given in [5] and then extend it to Qn.L/. (Their formulation is
actually for the rack associated to a framed link.) Let X D S3� VN .L/ be the exterior
of L and choose a basepoint b in X . Define T .L/ to be the set of all homotopy
classes of paths ˛W Œ0; 1�! X such that ˛.0/ D b and ˛.1/ 2 @X . Moreover, we
require that any homotopy be through a sequence of paths each of which starts at b

and ends at @X . Define the two binary operations, B and B�1 , on T .L/ by

(4) ˛ B˙1 ˇ D ˇm�1ˇ�1˛

where m is a meridian of L. Namely, m is a loop in @N.L/ that begins and ends at
ˇ.1/, is essential in @N.L/, is nullhomotopic in N.L/, and has linking number C1
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with L. Thus the arc ˛ B ˇ is formed by starting at the basepoint b , going along ˇ
to @N.L/, traveling around m�1 , following ˇ�1 back to the base point, and finally
following ˛ to its endpoint in @N.L/. See Figure 2. Note that the algebraic component
T i.L/ corresponding to the i th component Ki of L consists of those paths ending at
@N.Ki/. The equivalence of Q.L/ and T .L/ is proven in [5]. A similar description
using “nooses” is given in [10]. In order to give a topological description of Qn.L/

we introduce the following definition.

β

α

β

m L

L
X∂

b
α

L

L
X∂

β

Figure 2: The topological definition of ˛ B ˇ

Definition 2.1 Suppose ˛ is a path in X with ˛.0/Db and ˛.1/2fbg[@X . Suppose
further that there exists t0 with 0� t0� 1 such that ˛.t0/2 @N.L/. Let �1.t/D˛.t t0/

and �2.t/D ˛..1� t/t0C t/. We say that the path �1m˙n�2 is obtained from ˛ by a
˙n–meridian move. Two paths are called n–meridionally equivalent if they are related
by a sequence of ˙n–meridian moves and homotopies.

We now define the n–quandle Tn.L/ as the set of n–meridional equivalence classes
of paths with the quandle operations defined by (4). Again, paths that end at @N.Ki/

give the algebraic component T i
n.L/ of Tn.L/.

Theorem 2.2 The n–quandles Qn.L/ and Tn.L/ are quandle-isomorphic.

Proof In [5], the topological and algebraic-presentation definitions of the rack of a
framed link are proven to be quandle isomorphic by constructing homomorphisms
f W T !Q and gW Q!T and then showing that both f ıg and gıf are the identity.
The same maps can be used to show that Tn.L/ and Qn.L/ are isomorphic. Rather
than repeating and extending Fenn and Rourke’s proof here, we simply enumerate the
differences from which the interested reader can easily fill in the details of the proof.
� In [5] homotopies in T allow the endpoint of a path to move around on the

chosen longitude of L given by the framing, while we allow homotopies in Tn

to move the endpoint around in @N.L/. For our maps to be well-defined, this
requires the idempotency axiom (Q1) which is not present in a rack.
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� In Tn we allow n–meridional moves that are not present in T . In order for our
maps to be well-defined this requires the addition of the corresponding relations
qi Bn qj D qi to Qn .

We are now prepared to prove Theorem 1.1.

Theorem 1.1 If L D fK1;K2; : : : ;Ksg is a link in S3 and Pi is the subgroup of
AdQn.Qn.L// generated by the meridian �i and longitude �i of Ki , then the quandle
.PinAdQn.Qn.L//I�i/ is isomorphic to the algebraic component Qi

n.L/ of Qn.L/.

Proof Suppose that L D fK1;K2; : : : ;Ksg. Without loss of generality, we shall
prove the theorem for the first component K1 . We begin by fixing some element
� 2Qn.L/ which we think of as a path from the basepoint b in X to @N.K1/. We
now define a map � W AdQn.Qn.L//!Qn.L/ by �.˛/D ˛�1� .

Claim 1 The map � is onto Q1
n.L/.

Proof Let � be a path representing any element of Q1
n.L/. Move � by a homotopy

until �.1/D �.1/ and let ˛ be the loop ˛D ���1 . Now �.˛/D ˛�1� D ���1� D � .

Let P� be the subgroup of AdQn.Qn.L// generated by the meridian �1 D �m��1

and longitude �1 D �`�
�1 of K1 .

Claim 2 ��1.�/D P� .

Proof Notice first that ��1.�/ is a subgroup of AdQn.Qn.L//. For suppose that
˛; ˇ 2 ��1.�/. Now �.˛ˇ�1/D ˇ˛�1� D ˇ� D � because ˛�1� D � and ˇ�1� D �

implies �Dˇ� . Thus to show that P� � �
�1.�/ we need only show that �; �2 ��1.�/.

But �.�/D��1�D .�`��1/�1�D �`�1��1�D �`�1D � because `� @X . Similarly,
� 2 ��1.�/.

Now suppose that ˛ 2 ��1.�/. This means that ˛�1� can be taken to � by a sequence
of n–meridian moves separated by homotopies. We illustrate the situation in Figure 3.
The first homotopy begins at ˛�1� and ends at the path �1�1 where �1.1/D �1.0/

is a point in @X . We then do an n–meridian move, replacing �1�1 with the path
�1m˙n�1 . This path is then homotopic to the path �2�2 and so on until finally the last
homotopy ends at � . For simplicity, the Figure illustrates the case of three homotopies
separated by two n–meridian moves. Notice that the “right edge” of the i th homotopy
defines a path in @N.K1/ which we call ˇi . These homotopies can be reparametrized
so that the polygonal paths indicated in each homotopy depict the new level sets.
The first homotopy can now be thought of as one between the loop ˛ and the loop
�ˇ1�

�1
1
��1

1
. We then perform an n–meridian move to this loop and continue through
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b β1

α νb

σ1 ρ1

b β2

σ1 ρ1

σ2 ρ2

mn

b β3

σ2 ρ1

ν

mn

Figure 3: Homotopies separated by n–meridian moves

the second homotopy, ending at the loop �ˇ1ˇ2�
�1
2
��1

2
. Eventually we arrive at the

loop �ˇ1ˇ2 : : : ˇk�
�1 , an element of P� . Thus ˛ represents an element of P� and

hence ��1.�/� P� .

Claim 3 Let �1 be the automorphism of AdQn.Qn.L// given by conjugation by �1 .
Then �1 fixes every element of P� .

Proof Suppose that �ˇ��1 2 P� . Now

�1.�ˇ�
�1/D ��1

1 �ˇ��1�1

D .�m��1/�1�ˇ��1.�m��1/

D �m�1ˇm��1

D �m�1mˇ��1

D �ˇ��1

because loops in @N.K1/ commute.

We can now turn the set of right cosets P�nAdQn.Qn.L// into a quandle, which we
denote as .P�nAdQn.Qn.L//I�1/ by defining

P�˛ B˙1P�ˇ D P��
˙1
1 .˛ˇ�1/ˇ(5)

D P��
�1
1
˛ˇ�1�˙1

1 ˇ

D P�˛ˇ
�1�˙1

1 ˇ

because �1 2 P� .

Claim 4 The quandle operations defined in (5) are well-defined.
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Proof Suppose that P�˛ D P�a and P�ˇ D P�b . Then

˛ˇ�1�˙1
1 ˇ.ab�1�˙1

1 b/�1
D ˛ˇ�1�˙1

1 ˇb�1�
�1
1

ba�1

D ˛ˇ�1ˇb�1ba�1

D ˛a�1
2 P�

because conjugation by �˙1
1

fixes ˇb�1 , an element of P� . Hence P�˛ B˙1P�ˇ D

P�a B˙1P�b .

Claim 5 The map � determines a quandle isomorphism from .P�nAdQn.Qn.L//I�1/

to Q1
n.L/.

Proof Define � W .P�nAdQn.Qn.L//I�/ ! Q1
n.L/ as �.P�˛/ D �.˛/. Because

��1.�/D P� , it follows easily that � is both well-defined and injective. Because � is
onto Q1.L/, we also have that � is onto Q1

n.L/. Thus � is a bijection. However, � is
also a quandle homomorphism because

�.P�˛ B P�ˇ/D �.P�˛ˇ
�1��1

1 ˇ/

D �.˛ˇ�1��1
1 ˇ/

D ˇ�1��1
1 ˇ˛�1�

D .ˇ�1�/m�1.ˇ�1�/�1.˛�1�/

D �.˛/B �.ˇ/

D �.P�˛/B �.P�ˇ/:

This completes the proof of Theorem 1.1.

3 Przytycki’s conjecture

In this section we prove the conjecture of Przytycki stated in the abstract.

Theorem 3.1 Let L be an oriented link in S3 and let �Mn.L/ be the n–fold cyclic
branched cover of S3 , branched over L. Then Qn.L/ is finite, if and only if
�1. �Mn.L// is finite.

Before giving the proof of Theorem 3.1, we point out the relationship between
�1. �Mn.L// and a certain subgroup of AdQn.Qn.L//. The reader is referred to [13]
for more details. If Mn.L/ is the n–fold cyclic cover of S3�L, then �1.Mn.L// is
isomorphic to the subgroup E0 of �1.S

3�L/Š Adconj.Q.L// consisting of those
loops in S3 �L that lift to loops in the cover. Equivalently, E0 consists of loops
having total linking number zero with L, that is, those loops ˛ such that the sum
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of the linking numbers of ˛ with each component of L is zero. The subgroup E0

can also be described as those elements of �1.S
3�L/ which, when written as words

in the Wirtinger generators, have total exponent sum equal to zero. This concept is
well-defined, and defines a subgroup, because each of the relators in the Wirtinger
presentation has total exponent sum equal to zero. This last description extends to the
quotient group AdQn.Qn.L//. Let E0

n be the subgroup of AdQn.Qn.L// consisting
of all elements with total exponent sum equal to zero modulo n. In order to obtain
the fundamental group of the cyclic branched cover we must algebraically kill the nth

power of each Wirtinger generator in E0 , hence,

(6) �1. �Mn.L//ŠE0
n :

Notice further, that the index of E0
n in AdQn.Qn.L// is n.

One direction of Theorem 3.1 follows from work that appears in the PhD thesis of
Joyce [9]. For completeness, and because this result does not appear in Joyce’s paper
[10], we reproduce his proof here (with some modification).

Theorem 3.2 (Joyce) If Qn is any finite n–quandle, then jAdQn.Qn/j � njQnj and
hence AdQn.Qn/ is finite.

Proof Suppose that Qn is a finite n–quandle with elements fq1; q2; : : : ; qkg. Now
AdQn.Qn/ is generated by the ordered set of elements xq1; xq2; : : : ; xqk so that every
element in AdQn.Qn/ is a word in these generators and their inverses.

Claim 1 If w D xq �1

i1
xq
�2

i2
� � � xq

�m

im
, where each exponent is ˙1, then we may rewrite w

as w D xq �1

j1
xq
�2

j2
� � � xq

�m

jm
, where each exponent is ˙1, j1 D min.j1; j2; : : : ; jm/ and

j1 �min.i1; i2; : : : ; im/.

Proof Suppose xq �k

ik
is the first occurrence of the generator with smallest index and

that k > 1. Now qik�1
B�k qik

D qt for some t and so xq �k�1

ik�1
xq
�k

ik
D xq

�k

ik
xq
�k�1

t . If
we replace xq �k�1

ik�1
xq
�k

ik
with xq �k

ik
xq
�k�1

t in w , then either the first occurrence of the
generator with smallest index has moved one place closer to the beginning of w , or a
new generator of smaller index was introduced if t < ik . Hence, after a finite number
of steps of this kind, the first generator of w will have the smallest index and it will be
no greater than any of the indices in the original word.

Claim 2 If w D xq �1

i1
xq
�2

i2
� � � xq

�m

im
, where each exponent is ˙1, then we may rewrite w

as w D xq �1

j1
xq
�2

j2
� � � xq

�m

jm
, where each exponent is ˙1 and j1 � j2 � � � � � jm .

Proof We proceed by induction on m. The case with mD 2 is a direct consequence
of Claim 1. Assume now that the result is true for words of length m and suppose that
w D xq

�1

i1
xq
�2

i2
� � � xq

�mC1

imC1
. Applying the inductive hypothesis to the last m generators
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of w , we may assume that i2 � i3 � � � � � imC1 . If i1 � i2 , we are done. If not,
apply Claim 1 to w , which will strictly decrease the index of the first generator in w ,
and then again apply the inductive hypothesis to the last m generators. This cannot
continue forever because the index of the first generator in w cannot decrease below 1.

We may now write any word in AdQn.Qn/ as xq r1

1
xq

r2

2
� � � xq

rk

k
and, using the fact that

xq n
i D 1, we may assume that 0 � ri < n for each i . There are at most nk D njQnj

words of this kind.

Proof of Theorem 3.1 Suppose L is an oriented link and Qn.L/ is finite. By
Theorem 3.2, it follows that AdQn.Qn.L// is finite. Hence the subgroup E0

n of
AdQn.Qn.L// is finite and so �1. �Mn.L// is finite by (6).

Now suppose that �1. �Mn.L// is finite. Because E0
n has finite index in AdQn.Qn.L//,

it follows that AdQn.Qn.L// is finite. Hence, for each component Ki of L, the set
of cosets PinAdQn.Qn.L// is finite and therefore, by Theorem 1.1, each algebraic
component Qi

n.L/ of Qn.L/ is finite.

4 Examples

From the proof of Theorem 3.1, all information about the knot invariant Qn.L/ is
encoded by the cosets of the subgroups Pi in the group AdQn.Qn.L//. For example,
if Qn.L/ is finite, then

jQn.L/j D

sX
iD1

ŒAdQn.Qn.L// W Pi �:

Algorithmically computing the index of Pi in the group AdQn.Qn.L// from a pre-
sentation of the group is a well-known problem in computational group theory. The
first process to accomplish this task was introduced by Todd and Coxeter in 1936
[3] and is now a fundamental method in computational group theory. In addition to
determining the index (if it is finite), the Todd–Coxeter process also provides a Cayley
diagram that represents the action of right-multiplication on the cosets. In this section
we will apply the Todd–Coxeter process to several examples and determine the quandle
multiplication table from the Cayley diagram of the cosets. More detailed treatments
of the Todd–Coxeter process can be found in [6] and [8].

Consider the right-hand trefoil knot K and fix nD 3. From the Wirtinger presentation
we obtain the presentation

AdQ3.Q3.K//D hx;y j x
3
D 1;y3

D 1;x�1y�1xyxy�1
D 1i:
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A meridian for K is � D x and a (nonpreferred) longitude is � D yxxy . The
Todd–Coxeter process produces a coset table whose rows are numbered by indices
˛ 2 f1; 2; : : : ; �g that represent cosets of P . The columns are labeled by the generators
and their inverses and encode the action of AdQ3.Q3.K// on the cosets by right-
multiplication. An additional column will be added to give a representative �.˛/ 2
AdQ3.Q3.K// of coset ˛ .

We initialize the coset table by letting 1 represent the trivial coset P , thus �.1/D e is
a representative of this coset (we use e here for the identity element of AdQ3.Q3.K//

to avoid confusion). Since �D x 2 P , we have Px D P , this information is encoded
in a helper table where P is represented by index 1 and is encoded in the coset table
as a relation 1x D 1. Of course, it follows from this that 1x�1 D 1 as well, so there
are two defined entries in row 1 of the coset table:

x y x�1 y�1 �

1 1 1 e

x

1 1

Since �D yxxy 2P we also produce a helper table to encode 1yxxyD 1. Additional
entries in the table are required to represent the cosets 1y , 1yx , and 1yxx . These
entries are defined by adding indices 2, 3, and 4, respectively, and adding additional
information to the coset table for these indices coming from the helper table. For
example, 2 is defined to be the coset 1y and, thus, 1y D 2 and 2y�1 D 1 are encoded
in the coset table. At this point a deduction also occurs. Since 1yxxy D 1, we see in
the helper table that 4y D 1:

x y x�1 y�1 �

1 1 2 1 4 e

2 3 1 y

3 4 2 yx

4 1 3 yx2

y x x y

1 2 3 4 1

This completes the initial set up of the coset table and is referred to as scanning
the generators of P . The Todd–Coxeter process next proceeds to scan the relations
of AdQ3.Q3.K// for all indices. This encodes the fact that if ˛ is any coset and
w D e 2 AdQ3.Q3.K//, then ˛w D ˛ in the coset table since P�.˛/w D P�.˛/ in
AdQ3.Q3.K//. We scan the three relations x3D e , y3D e , and x�1y�1xyxy�1D e ,
in this order, for each index, defining new indices and obtaining new deductions along
the way.

Scanning x3 for ˛D1 gives no new information. Scanning y3 gives no new definitions
but does produce the deduction 2y D 4 and scanning x�1y�1xyxy�1 defines the
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indices 5 and 6 as shown in the coset tables below:

x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 1 y

3 4 2 yx

4 1 3 2 yx2

y y y

1 2 4 1

x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 6 1 y

3 4 2 yx

4 5 1 3 2 yx2

5 6 4 yx3

6 2 5 yx3y

x�1 y�1 x y x y�1

1 1 4 5 6 2 1

At this point we see that the representative for coset 5 is �.5/D yx3 . Since x3 D e

in the group �.5/D yx3 D y D �.2/ and so the cosets 5 and 2 are the same. This
information is determined by a coincidence which occurs when scanning x3 for ˛D 2.
Filling in the entries of the helper table from left to right, 2x D 3, 3x D 4, 4x D 5.
However we require 2xxx D 2 thus we see that 5D 2. In the coset table we process
this coincidence by replacing all values of 5 with 2, merging the data from row 5

into row 2, and then deleting row 5. In merging the data from 5 to 2 we see a new
coincidence, namely 6 D 4 and so we repeat the coincidence procedure for 6 D 4

before moving on to the next scan:

x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 664 1 y

3 4 2 yx

4 652 1 3 2 yx2

65 66 64 yx3

66 62 65 62 yx3y

x x x

2 3 4 5D 2

Scanning x�1y�1xyxy�1 for ˛D 2 completes the table. The process terminates after
the table is complete and all relations have been scanned for all indices. In our example,
no additional coincidences occur and the completed table is shown in Table 1.

It is important to note that the operation encoded by the coset table is that of right-
multiplication. It is not the operations of B˙1 in the quandle PnAdQ3.Q3.K//. The
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x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 4 1 y

3 4 3 2 3 yx

4 2 1 3 2 yx2

Table 1: Completed coset table for PnAdQ3.Q3.K// , where K is the trefoil knot

B P Py Pyx Pyx2

P P Pyx2 Py Pyx

Py Pyx Py Pyx2 P

Pyx Pyx2 P Pyx Py

Pyx2 Py Pyx P Pyx2

Table 2: The multiplication table for Q3.K/ , where K is the trefoil knot

n jP j jQn.K/j jAdQn.Qn.K//j j�1. �Mn.K//j

2 2 3 6 3
3 6 4 24 8
4 16 6 96 24
5 50 12 600 120

Table 3: The order of AdQn.Qn.K// and index of P for the right-handed trefoil

multiplication table for the quandle can be easily worked out, however, from the coset
table and the definition of the operations Pg B˙1PhD Pgh�1x˙1h since �D x .
From the completed coset table, the quandle Q3.K/ has four elements P , Py , Pyx ,
and Pyx2 . So, for example, Py BPyxDPyx�1y�1xyx . This coset is represented
by 1yx�1y�1xyx D 4 in the coset table. Therefore, Py BPyx D Pyx2 . The full
multiplication table for Q3.K/ is given in Table 2.

Applying the Todd–Coxeter method in the case of the trefoil for nD 2; 3; 4; 5, enu-
merating the cosets of both the trivial subgroup as well as P D h�; �i, we obtain the
data in Table 3. These calculations agree with the well known fact that �1. �Mn.K//

for the trefoil with nD 2; 3; 4, or 5 is, respectively, the cyclic group of order 3, the
quaternion group of order 8, the binary tetrahedral group of order 24, and the binary
icosahedral group of order 120. See [12].

As another example, consider the .2; 2; 3/–pretzel link L and fix nD 2. Starting with
the standard pretzel diagram with Wirtinger generators x;y; z , we obtain the following
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presentation of AdQ2.Q2.L//:˝
x;y; z j x�1z�1xzxy�1x�1y D 1; y�1x�1yxyzyz�1y�1z�1

D 1;

y�1x�1yxyzyz�1y�1x�1y�1xyx�1z�1z D 1; x2
D 1; y2

D 1; z2
D 1

˛
:

The link L has two components and subgroups generated by a meridian and longitude
of each component are P1Dhx;x

�1zxy�1i and P2Dhy;y
�1x�1yzyz�1xzyzy�1i.

Applying the Todd–Coxeter process for each of these subgroups gives

jQ2.L/j D ŒAdQ2.Q2.L// W P1�C ŒAdQ2.Q2.L// W P2�D 8C 24D 32:

These calculations agree with Theorem 1.1 of [7] where it is shown using Winker’s dia-
gramming method [13] that if L is the Montesinos link of the form .1=2; 1=2;p=qI e/,
then jQ2.L/jD 2.qC1/j.e�1/q�pj. For the .2; 2; 3/–pretzel link L we have pD 1,
q D 3, and e D 0.

5 Links with finite n–quandles

The set of links which have a finite n–quandle for some n can be derived from
Thurston’s geometrization theorem. To see this, let L be a link and n> 1 an integer
such that Qn.L/ is finite. By Theorem 3.1, we have that �1. �Mn.L// is finite. Define
O.L; n/ to be the 3–orbifold with underlying space S3 and singular locus L where
each component of L is labeled n. (Both [1] and [2] are excellent references for
orbifolds.) We now have a manifold covering of the orbifold, pW �Mn.L/!O.L; n/,
and the covering map p induces a homomorphism p�W �1. �Mn.L//! �orb

1
.O.L; n//

for which the index of p�.�1. �Mn.L/// in �orb
1
.O.L; n// is the branch index n. Since

�1. �Mn.L// is finite, it follows that �orb
1
.O.L; n// is finite. In addition, the universal

orbifold cover of O.L; n/ is a simply connected manifold (equal to the universal cover
of �Mn.L/) and, since �orb

1
.O.L; n// is finite, the universal cover is also compact. Now

Thurston’s geometrization theorem asserts that the only compact, simply connected 3–
manifold is S3 . Therefore, O.L; n/ is a spherical 3–orbifold. In [4], Dunbar classifies
all geometric, nonhyperbolic 3–orbifolds. The following, obtained from Dunbar, is
the complete list of all spherical 3–orbifolds with underlying space S3 and singular
locus L with each component labeled n. Therefore, it also represents the list of all
links in S3 with finite Qn.L/ for some n.

In Table 4, we list the links as they appear in [4]. A box labeled k denotes k left-handed
half twists between the two strands and a box labeled m=n denotes the m=n rational
tangle with �n=2�m� n=2 and m¤ 0. See [4] for a detailed explanation.
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k

n>1 k¤0; nD2 nD3;4;5

nD3 nD2 nD2

k

nD3 nD2 k¤0; nD2

p
1
/q p

2
/q

k k

p/q

k

p
1
/2 p

2
/2 p

3 3
/q

kCp1=qCp2=q¤0; nD2 nD2 kCp1=2Cp2=2Cp3=q3¤0; nD2

k

p
1
/2 p

2
/3 p

3
/3

k

p
1
/2 p

2
/3 p

3
/4

k

p
1
/2 p

2
/3 p

3
/5

kCp1=2Cp2=3Cp3=3¤0; nD2 kCp1=2Cp2=3Cp3=4¤0; nD2 kCp1=2Cp2=3Cp3=5¤0; nD2

Table 4: Links L� S3 with finite Qn.L/
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