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Infinite order corks via handle diagrams

ROBERT E GOMPF

The author recently proved the existence of an infinite order cork: a compact, con-
tractible submanifold C of a 4–manifold and an infinite order diffeomorphism f of
@C such that cutting out C and regluing it by distinct powers of f yields pairwise
nondiffeomorphic manifolds. The present paper exhibits the first handle diagrams of
this phenomenon, by translating the earlier proof into this language (for each of the
infinitely many corks arising in the first paper). The cork twists in these papers are
twists on incompressible tori. We give conditions guaranteeing that such twists do
not change the diffeomorphism type of a 4–manifold, partially answering a question
from the original paper. We also show that the “ı–moves” recently introduced by
Akbulut are essentially equivalent to torus twists.

57N13, 57R55

1 Introduction

The failure of high-dimensional topology to apply to smooth 4–manifolds led to
the notion of a cork twist. As originally formulated, this consists of changing the
diffeomorphism type of a closed 4–manifold X by removing a compact, contractible,
smooth submanifold C from X and regluing it by an involution f of @C . The
first example of a cork twist was published by Akbulut [1] in 1991. A few years
later, Curtis, Freedman, Hsiang and Stong [8] and Matveyev [16] showed that any
two homeomorphic, simply connected (smooth) 4–manifolds are related by a cork
twist. (See Gompf and Stipsicz [14] and Gompf [13] for more history.) The question
was immediately raised of whether higher order corks may exist—and in particular,
whether there was such a pair C �X and an infinite order diffeomorphism f of @C
such that the Z–indexed family of homeomorphic manifolds obtained by regluing
using all powers of f were pairwise nondiffeomorphic. In weaker form, can there
even be a contractible 4–manifold C with a boundary diffeomorphism for which no
nonzero power extends to a self-diffeomorphism of C ? No progress was made on
these questions until recently. Corks of all finite orders were constructed in 2016 by
Tange [19] and Auckly, Kim, Melvin and Ruberman [7]. A withdrawn 2014 posting of
Akbulut [3] attempted to construct infinite order corks of the weaker sort, using handle
calculus. In 2016 [13], the author of the present paper constructed an infinite family
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of examples C.r; sIm/�X (for r; s > 0>m), each one affirmatively answering the
stronger question, using an entirely different plan of attack and no handle diagrams.
This raised the question of how the paper translates into the language of these diagrams.
Section 3 of the present paper gives the result, in a form independent of, but clearly
derived from, [13]. This section shows boundary diffeomorphisms of contractible 4–
manifolds, and how they can provide infinitely many diffeomorphism types of ambient
4–manifolds, as presented in the currently preferred language of the subject. We also
find conditions under which such diffeomorphisms necessarily do extend over a given
4–manifold, partially answering a question from [13]. A recent paper of Akbulut [4]
seeks to generalize the twists of Section 3; our final section shows that his viewpoint is
equivalent to ours.

After a quick exposition of the relevant 3–manifold diffeomorphisms in Section 2, this
paper proceeds with three independent sections, beginning with our translation of the
proofs in [13] into handle calculus (Section 3). We sketch the correspondence between
the proofs as we go along. We exhibit a cork C by a diagram (Figure 4) constructed
from the existence proof of [13], and show it is diffeomorphic to C.r; sIm/ as exhibited
by Figure 3. Then we embed C in a family of larger manifolds Zk.r; sIm/, related
(as k varies in Z, with the other variables fixed) by powers of a twist parallel to an
incompressible torus in @C (Figure 11). Finally, we show that these manifolds embed in
a family of closed manifolds Xk related by the same cork twists, and distinguish these
using the same method as [13]: we show that they are obtained by the Fintushel–Stern
knot construction on elliptic surfaces.

Section 4 gives our criterion guaranteeing that cutting and regluing does not change
the diffeomorphism type of a 4–manifold. We partially answer a question from [13]:
The nontrivial cork twists of that paper were diffeomorphisms of @C.r; sIm/ twisting
along an incompressible torus parallel to its longitude. It was asked whether twisting
parallel to the meridian was also nontrivial. We show that the answer is no for a family
of manifolds including each C.r; sI �1/. Thus, while the potential torus twists are
indexed by H1.T

2/Š Z˚Z, only one Z–summand is useful for producing exotic
4–manifolds. The question remains open for m < �1, but we also see that for the
specific embedding C.r; sIm/�X used in [13], only one Z–summand (the longitude)
affects the resulting diffeomorphism type. Thus, a nontriviality proof for meridian
twisting would at least require a different setup. Coupling our meridian twist criterion
with a recent observation of Ray and Ruberman, we see that there are contractible
manifolds C for which every boundary diffeomorphism extends over C even though
@C contains an incompressible torus.

Our final section concerns the recent paper [4]. Starting from the preliminary version
of Section 3 of the present paper, Akbulut sketched the proof of the simplest case
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C.1; 1I �1/. The apparent motivation was to introduce the notion of ı–moves as an
alternative to torus twists. Such moves depend on a choice of auxiliary band (and
other data not specified in that paper), so appear to provide additional generality. We
show, however, that ı–moves are essentially equivalent to torus twists under broad
hypotheses, for example, on irreducible homology spheres (Corollary 5.5). Since
incompressible tori are tightly constrained in 3–manifolds, ı–moves are harder to find
than they initially seem to be, and might be most easily located using the well-developed
theory of incompressible tori (as Akbulut implicitly did in obtaining the proof he posted
from our Section 3). To obtain our equivalence, we must first address foundational
issues such as well-definedness of ı–moves. We also observe technical difficulties that
need to be addressed whenever ı–moves (or torus twists) are used for diagrammatically
cutting and pasting 4–manifolds.

Remarks (a) It is known that a cork twist cannot change the homeomorphism
type of a 4–manifold, since every boundary diffeomorphism f of a contractible 4–
manifold C extends over it homeomorphically. For a short proof, use f to glue two
copies of C along their boundary, obtaining a homotopy 4–sphere that automatically
bounds a contractible 5–manifold W (via a smooth h-cobordism to S4 , or by working
topologically and observing that @W is homeomorphic to S4 by Freedman [11]). We
can view W as a topological h-cobordism of C with a fixed product structure over
@C realizing f . Freedman’s h-cobordism theorem [11] extends the product structure,
and projecting to C extends f .

(b) Some authors require corks to be Stein domains by definition. This seems to be
an entirely separate issue from that of changing diffeomorphism types by twisting,
although Akbulut and Matveyev [6] showed that corks, in the original sense where f
is an involution, can always be modified to admit Stein structures. The author has made
no attempt to address the Stein condition in this paper or its predecessor. It remains an
interesting question whether any of these corks are (or can be modified to be) Stein
domains.

We work in the smooth category throughout the paper. For simplicity, we assume
(unless otherwise indicated) that all 3–manifolds are orientable and closed, and all
4–manifolds are orientable and compact (allowing boundary).

2 Torus twists

We begin with a quick exposition of the 3–manifold diffeomorphisms that will be
central to this paper. Let T �M be a torus embedded in a 3–manifold. Identify a
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tubular neighborhood of T with S1 �S1 � I , and let ˛ and ˇ denote S1 � f�g � f0g

and f�g �S1 � f0g, respectively, for some � 2 S1 .

Definition 2.1 The torus twist on T parallel to ˛ is the diffeomorphism f W M !M

obtained from f .�; �; t/ D .� C 2� t; �; t/ by extending as the identity on the rest
of M and smoothing.

Informally, we cross a Dehn twist on the annulus ˛� I with the identity on ˇ . This is
a well-known, classical diffeomorphism of M , sometimes called a Dehn twist on T .
Since T can be identified with S1�S1 so that ˛ represents any preassigned primitive
homology class of T , every element of H1.T / determines some power of a torus twist.
More formally, T is contained, by Lie group multiplication, in the group DiffC.T / of
orientation-preserving self-diffeomorphisms of T , inducing an isomorphism �1.T /!

�1.DiffC.T //. This descends by torus twisting to a homomorphism Z˚ZŠ�1.T /!

�0.DiffC.M //. For example, when M is a torus bundle, all self-diffeomorphisms
fixing one fiber pointwise arise by twisting on another fiber. For most irreducible
3–manifolds M , torus twists on all incompressible tori together generate the group
�0.DiffC.M // up to a finite extension. (See the last corollary of Waldhausen [22].)
When T is compressible and M is irreducible, T either lies in a ball (bounded by the
compressed torus) or bounds a solid torus over which the action of T extends, so all
twists on T are isotopic to the identity. Note that irreducibility is necessary: For a
connected sum, we expect nontrivial slide diffeomorphisms constructed by dragging
the site of the sum around a loop  in one summand. Such a diffeomorphism can be
described as a twist about the compressible torus bounding a tubular neighborhood
of  .

We can similarly define twists on Klein bottles. We will see in Section 5 that these are
less useful than torus twists, but we introduce them for completing the discussion there
of ı–moves. If K �M is an embedded Klein bottle, we identify K as a bundle over a
circle ˇ with fiber ˛ . The previous description can still be applied over intervals in ˇ ,
since the monodromy around ˇ reverses orientations of both ˛ and I (by orientability
of M ), hence, commutes with the Dehn twist.

Both kinds of twists have a convenient surgery description. First, draw a framed link
diagram of M so that ˛ is an unknot in the ambient S3 with the torus or Klein bottle T

inducing the 0–framing. Such a diagram can be obtained from an arbitrary diagram, in
which ˛ appears as a framed knot, by blowing up to change some crossings and adjust
its framing. (One can also simultaneously control ˇ so that the two curves bound disks
in the ambient S3 with disjoint interiors.) To realize the twist, blow up a ˙1–framed
curve  at ˛ , slide it around T as in Figure 1 until it returns to its original position,
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Figure 1: Torus twisting
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Figure 2: The double twist knot �.r;�s/

and blow it back down. Any curve intersecting T must slide over  as it passes,
creating the required twist. To verify that this gives a well-defined diffeomorphism, it
is not necessary to see that T is embedded, only that  returns to its original position
after sliding around M (to allow conjugation by the diffeomorphism from M to its
blowup.)

3 Diagrams of corks

The first examples of infinite order corks were constructed in [13]. Let E.r; s/ denote
the complement of the double twist knot �.r;�s/ shown in Figure 2 (where the boxes
count full twists). The manifold C.r; sIm/ obtained from I �E.r; s/ by adding a
2–handle along an m–framed meridian in f1g �E.r; s/ is contractible. Its boundary
has an obvious incompressible torus T , namely f0g�@E.r; s/. (In fact there is a pair of
incompressible tori, exhibited by moving the 2–handle to the middle level 1

2
and taking

the tori at levels 0, 1. These are interchanged by an orientation-reversing symmetry
of the construction, and they are only parallel when jmj D 1.) Let f W @C.r; sIm/!
@C.r; sIm/ be the torus twist on T parallel to the longitude � of T (the curve bounding
a Seifert surface in f0g �E.r; s/). In [13] it was shown that for fixed r; s; n> 0>m,
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Figure 3: The cork C.r; sIm/

there is a canonical embedding C.r; sIm/,!X 0
0
DE.n/ # .r C s�m� 3/CP2 into a

blown up elliptic surface. It was also shown that the manifold X 0
k

obtained from X 0
0

by cutting out C.r; sIm/ and regluing it using f k is the corresponding blowup of
the manifold Xk obtained from E.n/ by the Fintushel–Stern construction on the knot
�.k;�1/. (The blowups can usually be avoided.) Since these latter manifolds for k 2Z
are known to be pairwise nondiffeomorphic [9], [10], each choice of r; s > 0 > m

yields an infinite order cork. In particular, the self-diffeomorphisms f k are not related
to each other by any self-diffeomorphism of the cork, or to the identity unless k D 0.
(This last sentence applies to a larger range of r; s;m, due to the obvious symmetries
C.�r;�sIm/ D C.r; sIm/ D C.s; r Im/ and the reflection reversing the sign of m.
However, it is crucial that rs > 0, ie the twists in Figure 2 have opposite handedness.
Otherwise, C.1;�1I �1/ is a counterexample; see Corollary 4.4 and its preceding
discussion.) The existence proof of an infinite order cork producing the family fXkg

did not use any handle diagrams, and recognizing the corks required only some simple
3–dimensional surgery. Since it seems useful to understand the proofs using diagrams,
we now provide their translations. The resulting proofs are independent of [13] and
almost entirely handle-theoretic, but seem unlikely to have been conceived without
benefit of the abstract version.

To draw diagrams of the manifolds in [13], we need diagrams of products of various 3–
manifolds with I and S1 . We use a method that was pioneered by Akbulut and Kirby;
see eg [5; 2]. A detailed exposition is given in [14, Section 6.2], particularly the solved
Exercise 6.2.5(b) (and Example 4.6.8 for products with S1 ). We illustrate with the
diagrams of C.r; sIm/ in Figure 3. Ignoring the m–framed meridian in each diagram,
we obtain I �E.r; s/. To understand the resulting diagram on the left, consider the
horizontal plane of reflection. Adding its point at infinity and then thickening, we
obtain an embedding of I �S2 in S3 that represents the lateral boundary of I �B3 .
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Figure 4: The cork C � C.r; sIm/

The upper and lower complementary 3–balls in the diagram represent f1g �B3 and
f0g �B3 , respectively. The dotted knot �.r;�s/ #��.r;�s/ in the diagram is the
boundary of the ribbon disk I � �.r;�s/� I �B3 (where we interpret the knot as a
tangle in B3 ). This disk, which can also be interpreted as the half-spin of the tangle
in B4 , should be deleted from B4 to obtain I �E.r; s/ (as the dot indicates). The
dashed arc represents the ribbon move transforming the dotted knot into a 2–component
unlink, exhibiting the ribbon disk with a pair of local minima and a saddle point. If
we use this decomposition to build a handle diagram of the complement, we obtain
the diagram on the right, with the dotted unlink representing the pair of local minima
and the 0–framed 2–handle arising when the saddle is submerged into the 4–ball. The
m–framed meridian in each diagram is the 2–handle specified in the definition of
C.r; sIm/. To see the torus T in the left diagram, note that the bisecting 2–sphere
in S3 intersects the knot in two points. Remove these intersections by ambient surgery,
using a tube comprising the boundary of a tubular neighborhood of the lower knot
��.r;�s/D �.�r; s/. The resulting torus in @C.r; sIm/ is T D f0g � @E.r; s/ (seen
in the boundary orientation inherited from C.r; sIm/). This torus is also visible in
the right picture, running twice over the 0–framed 2–handle (corresponding to the two
intersections of T with the dashed arc in the left picture).

To exhibit infinite order corks, we need a very different description of C.r; sIm/ and
its boundary diffeomorphism. The 4–manifold C shown in Figure 4 arises from the
proof of the main theorem of [13]. We discuss how this figure arises and then show
that C is diffeomorphic to C.r; sIm/. (This entire discussion could be excised to
leave a complete but mysterious proof that C is an infinite order cork. Note that it is
obviously contractible, being simply connected with Euler characteristic 1.) In [13],
the cork C was constructed from Y D I �†�S1 , where † is a punctured torus, by
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adding three 2–handles and then drilling out the cores of two of them (connected by
annuli to the far boundary of the product with I ). If we modify Figure 4 by removing
all four circles passing through twist boxes, as well as the m–framed meridian, what
remains is this Y . We can see this by unwinding the two large dotted circles from
each other, but it is more instructive to view the picture as a product with S1 : Starting
from a trivial proper embedding † � B3 with � D @† on the equator of @B3 , we
obtain its tubular neighborhood I �† as the complement of a clasped pair of arcs,
with the boundary of each in a single hemisphere. By the method used in the previous
paragraph, this picture becomes the clasp of the two large dotted circles in the top
center of the figure, and its mirror image at the bottom. Thus, we have I �† � I

exhibited as a 0–handle and two 1–handles. The algorithm for changing a product with
I to a product with S1 introduces a .kC 1/–handle for each k –handle of the original
diagram. In this case, we obtain a new 1–handle (the central dotted circle) and the two
0–framed 2–handles. We can think of the 1–handle as connecting the top and bottom
boundaries I �†� f0; 1g to each other, and each 2–handle connects a meridian of a
dotted circle (essentially the core of the 1–handle) with its mirror image on the other
boundary component.

We complete the analysis of Figure 4 by restoring the remaining curves to get C . At
each twist box, we have a rationally canceling handle pair that represents a 2–handle
added along a generator of †, with its core drilled out (the dotted circle). The m–framed
circle represents the undrilled handle attached to a product circle. Note that the diagram
can be simplified by canceling the m–framed meridian, and when r D s D 1, there is
further cancellation at the twist boxes. (When mD�1 also, Figure 1 of Akbulut’s recent
preprint [4] shows the result.) According to the construction in [13], the cork twist on
C is a twist on the torus T Df0g�@†�S1 parallel to �Df0g�@†�f�g. Interpreting
� as the equator of @B3 as before, we draw it as in Figure 5. (It encircles the clasp
in I �†� I , but is drawn at one side to make room for the additional handles of Y .)
Since the dual curve �� T is a product circle in Y , the pair appears as in that same
figure. Thickening these to annuli using the 0–framing, we obtain a punctured torus T0

whose union with an embedded disk is T . We will verify directly from the diagrams
that ı D @T0 bounds an embedded disk in @C with interior disjoint from T0 , and that
the �–twist on the resulting torus has the required properties, but first we identify C :

Proposition 3.1 The 4–manifold C in Figure 4 is diffeomorphic to C.r; sIm/ in
Figure 3.

Note that this gives an independent check that C is made from a double twist knot
whose twists have opposite handedness. In [13], this handedness was determined by a
delicate inspection of 3–manifold orientations.
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Figure 5: The punctured torus T0 in @C is obtained by 0–framed thickening
of �[� . Its boundary is ı D @T0 .

Proof Starting from Figure 4, unwind the clasps of the two large dotted circles by
moving the leftmost strand in the diagram through the large right circle and back to its
place. After shortening the two 0–framed curves by an isotopy, we obtain Figure 6. Next,
we perform two double 1–handle slides as indicated. That is, each arrow represents
two strands of a dotted circle being slid across another one. Throughout this proof,
the link consisting of all dotted circles will be an unlink, so we are sliding 1–handles
in the classical sense (ie, no nontrivial dotted ribbon links appear). We encounter a
notational technicality: We slide using 0–framed parallel copies of the small dotted
circles. These pass through negative twist boxes, so to restore the 0–framings we must
add compensating positive twist boxes. The result, after the two obvious handle pair
cancellations, is Figure 7. Next, simplify the two large dotted curves by pulling the
clasps through all twist boxes as indicated by the arrows, dragging along the dotted
circle with the m–framed meridian. Raise the lowermost strand of the latter dotted
circle so that it is positioned between the �s–framed 2–handle and the ˙r twist boxes,
then eliminate its self-crossing by flipping over the clasp running through the ˙r twist
boxes. The rightmost dotted circle can then be shrunk into the middle of the figure,
which should then be recognizable as Figure 8. We next wish to cancel the �s–framed
2–handle. Since we cannot slide a dotted circle over a 2–handle, we first introduce
a canceling 1–2 pair as in Figure 9, then double slide the new 2–handle as indicated
and cancel the �s–framed handle, obtaining Figure 10. (Note that after the double
slide, the new 2–handle initially runs twice through the �s–twist box, consistent with
sliding over a �s–framed curve. However, we can immediately pull it down through
the twist box to its position in Figure 10.) Finally, slide the �r –twist box across the
circle with the rightmost dot. This is a standard 3–manifold move (see Figure 18 in
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Figure 6: Double 1–handle slides on a diagram of C obtained from Figure 4
by isotopy
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Figure 7: Further simplifying C

Section 5), obtained by repeatedly blowing up a C1–framed curve encircling the twist
box, sliding it across the dotted circle, and blowing it back down. One way to interpret
this move 4–dimensionally is to think of the dotted circles as representing #3 S1 �S2 ,
containing a framed link. Perform the move on this 3–manifold, then uniquely fill in
the 4–manifold \3 S1 �D3 . This move changes the framing on one 2–handle from
�r to 0, and that handle immediately cancels a dotted circle. The result is isotopic to
the right-hand diagram in Figure 3.

Proposition 3.2 The circle ıD @T0� @C in Figures 5 and 11 bounds a disk D in @C
with interior disjoint from T0 . The resulting torus twist parallel to � changes k by 1

in Figure 11 while otherwise preserving all curves in the figure (and their orientations).

There are various approaches to the proof. A simple way to exhibit D disjoint from
the fine curves is by handle sliding ı to get an unknot, as in Figure 12. (Although this
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Figure 8: An isotopic simplification of Figure 7
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Figure 9: A new 1–2 pair and a double slide
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Figure 10: Transferring �r twists yields C.r; sIm/

is unnecessary for proving our main theorem, an interested reader can verify that ı
is isotopic to ı1 . Two double handle slides change this to ı2 , and two more yield an
unknot. The boundary orientation of ı induced by the counterclockwise orientation
of T0 in Figure 11 is shown as an aid.) We can make D disjoint from int T0 by
3–manifold theory (see proof of Theorem 5.4), but this could create intersections with
the fine curves, resulting in their unexpected movement during the torus twist (see last
paragraph of Section 5.) This issue can presumably be dealt with, but we instead prove
the theorem definitively with a direct approach.
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Figure 11: The 4–manifold Zk.r; sIm/ is obtained from C.r; sIm/ by
adding 0–framed 2–handles along �1 , �2 and � , then a 3–handle (and ig-
noring the other fine curves). Note that some curves intersect the punctured
torus T0 , which is drawn explicitly as a thickening of the wedge �[� . Its
boundary ı is unlabeled.

Proof Set k D 0, and drag T0 and all auxiliary curves in Figure 11 simultaneously
through the computation of the previous proof. This is routine but tedious; details are
left to the intrepid reader. (One can treat T0 as a framed wedge of circles, as long as
its intersections with the auxiliary curves are handled carefully. These intersections
will eventually be dragged through the �s–twist box, in the downward direction. Note
that the curves �i will remain closely encircling the negative twist boxes, so need not
be carefully tracked; the curves �i will be similarly rooted to the positive twist boxes
as soon as these boxes appear.) The result is Figure 13, where the curves �i and �i
encircling the twist boxes are suppressed, and T0 is the obvious 0–framed thickening of
�[�. (We have drawn the thickening near where T0 intersects the other curves.) We
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Figure 12: A proof that ı bounds a disk disjoint from the fine curves of Figure 11

see that T0 is as originally described in C.r; sIm/, with � the longitude of �.�r; s/

and � a meridian, and the disk D easily visualized. The remaining curves can be
explicitly seen to avoid T except for the original intersections of T with � and � .
The torus twist f wraps these curves parallel to � at the intersections, and fixes all
curves elsewhere. When we transport this description back to Figure 11 with k D 0,
we can undo the wrapping caused by f k by an isotopy that restores the twist boxes to
their original values ˙k .

Figure 11 was drawn so that the case r D sD�mD 1 exhibits Akbulut’s “ı–curve” [4,
Figure 4] as the boundary of T0 . We will show in Section 5 that under broad hypotheses,
every ı–curve arises from a torus in this manner. The author’s first diagrammatic proof
used a different approach: Blow up a .�1/–framed unknot parallel to � in the lower
half of Figure 11 (encircling the �k –twist box), slide it around T to get a curve
encircling the Ck –twist box using a diagram similar to Figure 12, then blow it back
down. While this is the same torus twist (cf also Figure 1 and its discussion in the last
paragraph of Section 2), it is less clear from this method that the implicitly described
torus is embedded. However, the diffeomorphism is still well-defined by this procedure
and has the required properties. This easier method is strong enough for all of our
subsequent discussion, since we do not need to exhibit the diffeomorphism as a twist
on an embedded torus.

Now consider the 4–manifold obtained from C by attaching 0–framed 2–handles along
the fine curves �1 , �2 and � shown in Figure 11. We will show that its boundary
contains a nonseparating 2–sphere. Add a 3–handle along this sphere and call the result
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Figure 13: A complete picture of the torus T � @C , with the fine curves of
Figure 11. The generating circles of T are � and � , the latter of which has
been partially thickened in T to show the intersections of T with the fine
curves. The rest of T is given by the horizontal plane of symmetry (and point
at infinity), surgered by a tube following the lower half of the dotted circle so
that T contains � and � .

Zk.r; sIm/. This is independent of the choice of 2–sphere (by Trace [20], for example),
and canonically contains a copy of C . Another picture of Zk.r; sIm/ is given by
Figure 14, where we have switched to dotted ribbon knot notation and canceled the new
2–handles �1 , �2 and � against 1–handles. (Ignore the curve � in Figure 14 but include
the other fine curves, which come from 2–handles in Figure 11, and the 3–handle.)
Canceling � has joined the two large dotted circles, forming the knot Kk #�Kk , where
Kk is the twist knot �.k;�1/. This dotted ribbon knot represents I �E.k; 1/; cf
Figure 3. (The comparison with I �E.r; s/� C.r; sIm/ is superficial.) Without the
fine curves, Figure 14 represents the manifold Wk D S1 �E.k; 1/. (Each handle of
I �E.k; 1/ generates an additional handle of index higher by one in Wk (cf Figure 4),
with the canceled 2–handle � generating the 3–handle.) The fine curves in Figure 14,
two of which are isotopic, represent the product S1 (m–framed), meridians of Kk

(�r –framed and �s–framed), and its longitude � in f0g�E.k; 1/. Unlike previously,
this recognition of Wk is crucial to our proof, so we provide a check:

Proposition 3.3 The manifolds Zk.r; sIm/ and Wk given by the diagrams are well-
defined (ie the relevant 3–manifolds have a nonseparating sphere for the 3–handle). The
3–manifolds @Wk are all diffeomorphic, preserving the fine curves of Figure 14 and
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�k

�

C1

[ 3–handle

Figure 14: Another picture of Zk.r; sIm/ , with extra curve �

their orientations. The 4–manifold W0 is diffeomorphic to T 2 �D2 , with � bounding
the essential disk, and the �r– and m–framed curves arising as factors of a product
decomposition T 2 D S1 �S1 .

Proof Interpreting Figure 14 as a 3–manifold (ignoring the 3–handle), we can eliminate
the clasps from the dotted ribbon knot by blowing up a C1–framed unknot as in
Figure 15, sliding this unknot over the tall unknots as shown, and blowing back down.
We can now cancel the ˙k twist boxes by twisting one tall unknot k times about
its long axis. This identifies each @Wk with @W0 (and similarly for Zk.r; sIm/) and
reduces well-definedness to the kD 0 case. Now consider Figure 14 to be a 4–manifold.
When k D 0 the ˙k –twist boxes can be erased, so we can pull the outer strand of
� through the C1–twist box and unwind the outer strands of the large dotted circle
as in Figure 16. To get this figure, we also swing both tall curves to the inner rear
of the large dotted circle. They are then parallel, so one can be slid over the other to
become a 0–framed unknot unlinked from the rest of the diagram. This exhibits the
nonseparating sphere in @Wk . Canceling this unknot with the 3–handle, we obtain
Figure 16, which is the Borromean rings with fine meridians of each component. This
has the required interpretation.

We can now identify the manifolds Zk.1; 1I �1/ for all k 2 Z. First, Z0.r; sIm/ is
obtained from W0 D T 2 �D2 by adding three 2–handles along embedded circles in
copies of T 2 � fpg, as shown in Figure 17. (The 1–handles and 0–framed 2–handle
exhibit T 2 �D2 so that the trivial torus bundle structure on its boundary is easily
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Figure 15: Simplifying @Wk

�s �r

0

m
�

Figure 16: Identifying W0 as T 2 �D2

visible.) When r D sD 1 and mD�1, this diagram is a well-known description of an
elliptic fibration over a disk, a cusp neighborhood with an extra vanishing cycle; see
eg [14, Section 8.2]. Thus, Z0.1; 1I �1/ naturally embeds in the elliptic surface E.n/

for any fixed n > 0, and is easily seen in link diagrams of the latter. The curve � is
a section of the induced torus bundle structure on @Z0.1; 1I �1/ (as is again visible
in Figure 17; see [14]). For general k , Zk.r; sIm/ is obtained from Z0.r; sIm/ by
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�s
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m

�

0

Figure 17: Z0.r; sIm/ showing elliptic fibration of Z0.1; 1I �1/ with sec-
tion �

replacing W0 D T 2 �D2 by Wk , preserving the longitude � . This is precisely the
Fintushel–Stern knot construction, using the knot Kk , and (when r D s D 1 and
mD�1) using a regular fiber of the elliptic fibration on Z0.1; 1I �1/.

To prove our main theorem, we need one last routine lemma:

Lemma 3.4 A self-diffeomorphism ' of the pair .@Z0.1; 1I �1/; �/ that preserves
the orientation of � must be isotopic to the identity (through self-maps of the pair).

The control of � is necessary, in order to rule out twists on fiber tori. The proof rules
out horizontal tori.

Proof We can identify each fiber of the torus bundle with R2=Z2 so that � is zero in
each fiber. Then the monodromy is an element A 2 SL.2;Z/. If we use the obvious
basis for R2 in Figure 17, then A is given by �=2 rotation. (This is both well-known
and routine to verify in the figure. See also [14].) Choose a fiber F and assume its
image '.F / is transverse to it. Since F is incompressible, each circle of intersection
is trivial in F if and only if it is trivial in '.F /. Each innermost circle in '.F / also
bounds a disk in F . The two disks together bound a ball B . If one disk intersects �
(necessarily in a unique point), then so does the other, and � \B is an unknotted arc
in B . (Otherwise, the complement of a lift of � to the universal cover of @Z0.1; 1I �1/

would have nonabelian fundamental group.) Either way, we can eliminate trivial circles
by isotoping ' pairwise until all circles (if any remain) are essential. These must be
parallel to each other in both of the tori F and '.F /, cutting each into annuli. Since
˙1 is not an eigenvalue of A, no such annulus of '.F / can surject onto the base circle.
Thus, if the intersection is nonempty, '.F / has more than one annulus, and we can
choose one that does not contain the intersection point with � . This fits together with
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an annular region in F that we choose disjoint from � , to form a nullhomologous torus.
This torus is compressible (as seen, for example, in the Z–cover of @Z0.1; 1I �1/), so
it bounds a solid torus, with the annuli bounded by longitudes of it. We can now reduce
the number of intersection circles until '.F / is disjoint from F . Cutting along F ,
we see '.F / as an incompressible torus in F � I . Applying standard theory to the
complement of � (eg Waldhausen [21, Proposition 3.1]) we can arrange '.F / to be
a fiber, and then isotope ' so that it covers the identity map on the base circle. It is
easily checked that the only elements of SL.2;Z/ that commute with A are powers
of A. Thus, on each fiber, ' restricts to Aj for a fixed j . We can then change ' to
the identity by a fiber-preserving isotopy covering a 2�j –rotation on the base.

We can now prove our main theorem. For k 2 Z and fixed r; s; n > 0 > m, let Xk

be the 4–manifold obtained from E.n/ by the Fintushel–Stern construction on a fiber,
using the twist knot Kk (so X0 DE.n/). We have embeddings

C.r; sIm/�Z0.r; sIm/�X0 # N CP2;

where N D rCs�m�3� 0, and the last embedding is obtained from the simplest case
r D s D�mD 1 by blowing up meridians of the three negatively framed 2–handles
of Figure 17 to suitably lower their framings. Let X �

k
be the manifold obtained from

X0 # N CP2 by cutting out C.r; sIm/ and regluing it via the torus twist f k .

Theorem 3.5 [13] For each k , the manifold X �
k

is diffeomorphic to Xk # N CP2.
In particular, the manifolds X �

k
for k 2 Z are pairwise nondiffeomorphic, so (for each

fixed choice of r; s;m as above) .C.r; sIm/; f / is an infinite order cork.

Proof First consider the simplest case r D sD�mD 1. Starting from the embedding
Z0.1; 1I �1/ � X0 , we can cut out a regular neighborhood W0 of a fiber inside
Z0.1; 1I �1/ and replace it by Wk , obtaining Zk.1; 1I �1/�Xk with the embedding
preserving � (Proposition 3.3 and below). Alternatively, we can cut out the cork
C.1; 1I �1/ and reglue it by f k , obtaining Zk.1; 1I �1/ � X �

k
, again preserving �

(Proposition 3.2). Clearly, the complements of Zk.1; 1I �1/ in these two closed
manifolds are identified (preserving � ). But the two embeddings of Zk.1; 1I �1/ are
related by a diffeomorphism preserving � and its orientation, so by Lemma 3.4 we
can assume they agree on the identified boundaries of the complements. Thus, the
diffeomorphisms fit together as required.

For the general case, we blow up to obtain embeddings

Z0.r; sIm/�Z0.1; 1I �1/ # N CP2�X0 # N CP2:
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The first embedding is obtained from Figure 11 by adding �1–framed meridians to the
curves with framings �r , �s and m so that blowing down changes all three framings
to �1. After the two 2–handles �i of Z0.r; sIm/ cancel their 1–handles, two sets of
these �1–framed meridians can be drawn as parallel copies of the curves �i . Since
the torus twist does not disturb �1 , �2 or the m–framed meridian, it gives embeddings
Zk.r; sIm/�Zk.1; 1I �1/#N CP2�X �

k
. The theorem now follows from Lemma 3.4

as in the previous case.

In principle, there should be a direct proof of the theorem, by drawing X �
k

and
Xk # N CP2, and exhibiting an explicit diffeomorphism. A link diagram of Xk was
drawn by Akbulut, then independently produced as [14, Figure 10.2] (discussion on
pages 407–408), using the technique of [2]. This diagram is obtained from Figure 11
of Zk.1; 1I �1/ by adding some 2–handles and a 4–handle. One 2–handle is attached
along � with framing �n. The others are �1–framed and attached along parallel
copies of the circles with framing m and �r (or �s ), but the two types of new curves
are interleaved. A diagram of X �

k
can be similarly constructed by torus twisting

Z0.1; 1I �1/. To show the diagrams are diffeomorphic, it suffices to connect the �r –
and m–framed curves by a framed arc whose union with the two attached circles and �
is preserved (after handle slides) by the torus twist, since all the new 2–handles will be
attached in a neighborhood of these. This project has not been attempted with sufficient
intensity for success.

4 Twists that preserve 4–manifolds

Having explicitly exhibited infinite order cork twists, we now address the opposite
issue, finding conditions under which twisting a contractible submanifold does not
change the diffeomorphism type of a 4–manifold. Let T �M be an embedded torus
or Klein bottle in a 3–manifold, and let f be the twist on T parallel to a circle ˛ � T ,
as described in Section 2. Let W be the elementary cobordism built from I �M

by adding a 2–handle h to f1g �M along a parallel copy  of ˛ , with framing ˙1

relative to T . Thus, the top boundary @CW is obtained from M by surgery on  .

Theorem 4.1 The twist f on @�W D f0g �M extends over W so that it is the
identity on @CW .

Proof Let gt be an isotopy of the identity on M , supported in a tubular neighborhood
of T , that preserves T setwise but rotates it once parallel to a circle ˇ dual to ˛ .
Interpret the isotopy gt ıf as a self-diffeomorphism of I �M . We can assume that 
lies outside the support of this map in f1g �M , then extend over the handle h by the
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identity. In @CW , Figure 1 (reversed) shows an isotopy rotating T back to its original
position while undoing the twist produced by f .

In the case where T is a torus, the above diffeomorphism of W is a manifestation of
a fishtail twist. The latter has been used in various forms for some decades; see [12]
for a recent discussion. If N denotes a tubular neighborhood of T in M , then
I �N � T 2 �D2 , and I �N [ h is a fishtail neighborhood. It is well known that
the twist on f0g �T parallel to ˛ extends over this neighborhood as the identity on
the rest of its boundary. The main point is that the boundary is a torus bundle with
monodromy given by a Dehn twist parallel to ˛ , so the torus twist can be absorbed by
a fiber-preserving isotopy covering a full rotation of the base.

As an application, we partially answer [13, Question 1.6]. Let D � B4 be a slice
disk for a composite slice knot K D @D . For example, D can be the obvious ribbon
disk for any nontrivial knot of the form � # �� , the case considered in [13]. Let
C D C.D;m/ be the contractible 4–manifold obtained from the slice complement
by adding a 2–handle along a meridian with framing m¤ 0, so that C is C.r; sIm/

in the case � D �.r;�s/. The boundary of C is the homology sphere obtained by
.�1=m/–surgery on K . It is irreducible and has incompressible tori as in the previous
section: Start with a sphere S in S3 intersecting K in two points and splitting it
nontrivially as a sum K0 # K1 . Remove the intersections by surgering S to a torus in
S3�K , using a tube following K1 . Such a torus has an obvious product decomposition,
with one factor a meridian of K and the other a 0–framed longitude of K1 . The cork
twists of C.r; sIm/ in the previous section have this form for a longitudinal twist, on
the unique incompressible torus if m D �1. It was asked in [13] whether twisting
a fixed embedding of C by the full action of such a torus could give a family of
distinct diffeomorphism types indexed by Z˚Z. Previously, a preliminary version of
Akbulut’s 2014 posting [3] unsuccessfully attempted to show that the meridian twist
was an infinite order cork twist in the case of the obvious ribbon disk for the square knot
with m D �1, that is, the manifold C.1;�1I �1/ in our present notation. However,
both constructions are impossible when mD˙1:

Corollary 4.2 Every torus twist parallel to the meridian of K extends over C.D;˙1/.
In particular, for each r; s 2 Z, the meridian twist on @C.r; sI˙1/ extends over
C.r; sI˙1/.

Proof We find a cobordism W � C as in the theorem with @�W D @C . Since
the diffeomorphism extends over W as the identity on @CW , we can extend as the
identity over the rest of C . To construct W , begin with a collar of @C . The additional
2–handle h is obtained by thickening the cocore of the meridian 2–handle h� of C .
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The attaching circle of h is a 0–framed meridian to that of h� . Interpreting the diagram
as a 3–manifold and blowing down h� , we realize h by a �1–framed meridian of K

as required.

It follows that for a fixed embedding and torus, cutting C.DI˙1/ out of a 4–manifold
and regluing it by torus twists generates a family of 4–manifolds whose diffeomorphism
types are indexed at most by Z. The problem remains open when jmj> 1. However,
distinguishing meridian twists of C.r; sIm/ would require a somewhat different ap-
proach, since the proof in [13] depends on an embedding in a 4–manifold X satisfying
the hypothesis of the following for the meridian ˛ :

Corollary 4.3 Let Y � X be a 4–manifold pair, and let f be a twist on a torus or
Klein bottle T � @Y , parallel to some curve ˛ . Suppose that X� int Y contains an
embedded disk with boundary ˛ , inducing framing ˙1 relative to T . Then cutting
out Y and regluing it after twisting by a power of f yields a manifold diffeomorphic
to X .

Proof Observe the cobordism W in X� int Y . Extend f k outward from there by
the identity.

The same question of [13] asks about longitudinal twists for slice disks not covered
by the main theorem of that paper. Ray and Ruberman [18] have recently observed
that when K1 is a torus knot, every twist on the torus determined by K1 extends over
C.D;˙1/. This is seen by combining Corollary 4.2 with the Seifert circle action on
the complement of K1 , which shows that twisting on some (nonzero) longitude is
isotopic to the identity. A closer look yields the first examples of contractible manifolds,
including C.1;�1I �1/, that cannot be nontrivial corks even though their boundaries
have incompressible tori:

Corollary 4.4 Let C D C.D;˙1/ be obtained as above with @D D � #�� , where �
is a torus knot. Then every diffeomorphism of @C extends over C .

Proof The boundary of C is �1–surgery on � # �� , which is made by gluing
together the complements of � and �� along their boundary tori T . (The surgery can
be interpreted as a twist in the gluing map.) Since T is the unique incompressible
torus in @C , it is preserved by any self-diffeomorphism (up to isotopy). We have seen
that twists on T extend. The nonzero signature of � rules out orientation-preserving
diffeomorphisms of @C switching the two knot complements, and orientation-reversing
switches are ruled out by the handedness of the gluing map. The complement of � is
Seifert fibered with two exceptional fibers, and any self-diffeomorphism preserves this
structure, so we are left with only the involution of � that reverses its string orientation.
The induced involution of @C obviously extends.
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5 Torus twists and ı–moves

In this section, we give a careful definition of Akbulut’s ı–moves, and almost entirely
reduce them to twists on tori, Klein bottles and spheres. Torus and Klein bottle twists
were introduced in Section 2. Twists on spheres are defined similarly but have order
at most 2 in �0.DiffC.M // (since �1.SO.3// D Z=2). Klein bottle twists are of
limited use: They only arise when M contains the I –bundle over the Klein bottle
with orientable total space, a somewhat rare phenomenon. In particular, this does not
occur for homology spheres, so there can be no Klein bottle cork twists. A tubular
neighborhood of a Klein bottle K is bounded by a torus T double covering K . This is
incompressible if and only if K is, since any compressing disk for K must be bounded
by an orientation-preserving loop in K . It is easy to see that the square of a twist on K

is a twist on T parallel to the same circle ˛ .

We define ı–moves following Akbulut [4], with additional attention to detail in antici-
pation of the upcoming proofs. First, consider the standard 3–manifold diffeomorphism
given by Figure 18, which can be obtained by blowing up a ˙1–framed unknot around
one twist box, sliding this unknot over the 0–framed circle so that it surrounds the
other twist box, then blowing back down. For a ı–move, start with a framed circle C

in a 3–manifold M . Draw M as surgery on a link L in S3 so that C appears as a
0–framed unknot in S3�L, spanned by a disk �� S3 . Let C˙ be a pair of circles
parallel to C in the diagram and disjoint from �. Connect these circles by a (possibly
complicated) band b in the diagram, disjoint from � and from the interior of the
annulus A bounded by C˙ . (See Figure 19, ignoring the horizontal dashed curve.)
The surface T0 D A[ b is an embedded punctured torus or Klein bottle in S3 �L,
depending on the twisting of b . Let ı D @T0 . Under the additional hypothesis that ı
is unknotted in the 3–manifold M , we can add a suitably framed 2–handle to I �M

along ı and cancel it with a 3–handle to recover I �M . If T0 is orientable, this 2–
handle will be 0–framed in S3 (since the normal to ı along T0 will give the 0–framing
in both S3 and M ). Otherwise, we hypothesize that its framing is 0 in S3 . Since C

is unknotted in S3 and b avoids A and �, we can then apply Figure 18 to change k

to kC 1 in Figure 19. Canceling the new twists by an isotopy in S3 , we return to the
original diagram (ignoring the dashed curve). Assuming the 3–handle can be suitably
controlled (an issue we discuss below), the net effect is a self-diffeomorphism of M .
To see that this diffeomorphism may be nontrivial, note that it wraps the dashed curve
twice around A parallel to C .

Definition 5.1 The above diffeomorphism (when defined) is called a ı–move [4]. The
corresponding link diagram of M , with ı unknotted in M (inducing the 0–framing
in S3 ) and drawn as in Figure 19 for an explicit choice of b , will be called a ı–move
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C1 �1

0 0

Figure 18: Twisting along a 0–framed unknot

k

�k

CC

C

C�

 A� T0

b � T0

�

Figure 19: A ı–move, where ıD @T0 is the band-sum of CC and C� along
the band b

diagram. A ı–move diagram will be called orientable or nonorientable according
to whether T0 is orientable. It will be called compressible if there is a disk d �M

such that d \T0 D @d is neither trivial nor boundary-parallel in T0 . It will be called
incompressible otherwise.

The relation between surface twists and ı–moves begins with the following:

Proposition 5.2 Every torus (resp. Klein bottle) twist on a 3–manifold M is isotopic
to a ı–move with an orientable (resp. nonorientable) diagram.

Proof Let T � M be a torus or Klein bottle, containing circles ˛ and ˇ as in
Definition 2.1 (where ˇ is a section of the circle bundle in the Klein bottle case).
Choose a surgery diagram of M in which ˛ is given by an unknot in S3�L whose
0–framing is given by the normal vectors to ˛ in T , and whose spanning disk is disjoint
from ˇ . Then the subset ˛[ˇ has a neighborhood in T that can be identified with
T0 in the definition of a ı–move, with ˛ identified with C . The boundary ı of this T0

explicitly bounds a disk D � T �M , so is unknotted in M as required, and correctly
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framed. (Even a nonorientable T0 induces the 0–framing on ı in S3 , as seen by using
� to surger it to a disk.) To reinterpret the twist on T parallel to ˛ as a ı–move, we
attach a 2–handle to ı with framing 0, then cancel it with a 3–handle, whose attaching
sphere can be chosen to be D capped with the core of the 2–handle. The ı–move is
realized by blowing up a ˙1–framed circle  at CC , sliding it over the 2–handle at
ı to C� , blowing it back down, and canceling the twists as in Figure 19. If we cancel
the 2–3 handle pair, the slide over the 2–handle becomes an isotopy across the disk
D � T �M . Thus, the slide appears in M as an isotopy dragging  from CC to
C� around T in the direction that avoids the intervening annulus A. (In S3 , we see
a handle slide each time  follows D over a handle.) To show that this ı–move is the
twist on T , it suffices to work in a tubular neighborhood of T containing the support of
the diffeomorphisms and check that the ı–move diverts any curve in M that crosses T ,
parallel to ˛ . This is true for curves intersecting A, as Figure 19 shows. Other curves
through T will be suitably modified as in Figure 1 when  collides with them.

To make progress on a converse to this proposition, we must understand the extent to
which a ı–move is well-defined in general. Attaching the 2–handle along ı caps off
the surface T0 to an embedded torus or Klein bottle T . However, this lives not in M ,
but rather in the manifold M# DM # S1 �S2 obtained from M by 0–surgery on the
unknot ı . If the disk D in M along which the 3–handle is attached is disjoint from
int T0 , we can eliminate the difficulty by canceling the 2–3 pair, obtaining a torus or
Klein bottle twist on M as in the previous proof. However, a proposed advantage of
ı–moves is their apparent additional generality, so we should consider what happens
when int D is allowed to intersect T0 or other surfaces in the construction. (For a
specific example, start with a twist on a separating sphere, surger the sphere at its
poles to an immersed Klein bottle, and interpret this as a ı–move with a nonorientable
diagram.) In this generality, we have a torus or Klein bottle twist f# in M# that we
wish to interpret as a diffeomorphism of M . We recover M from M# by surgering out
the attaching sphere S �M# of the 3–handle, which is obtained by capping D with the
core of the new 2–handle. The first difficulty we encounter if int D intersects T0 is that
f# may move S . Thus, to have a well-defined diffeomorphism of M , we must isotope
f#.S/ back to S in M# before surgering back to M . This is not always possible. For
example, starting from a torus twist exhibited as in the previous proof, we can obtain D

from the obvious disk by tubing it together with an essential sphere along an arc that
intersects A. Then f# can change the arc by a nontrivial element of �1.M / so that f#

changes the class of S in �2.M /. If we know that f# is isotopic to a diffeomorphism
preserving S , then it does extend over the 3–handle, so restricts to a diffeomorphism
on M . However, this diffeomorphism need not be unique: Starting again from a torus
twist, with the torus bounding a solid torus in M , construct a new M 0 by connected
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sum with another 3–manifold. If the sum occurs outside the solid torus, the twist of M 0

is still trivial. If it occurs inside, we can obtain a slide diffeomorphism with infinite
order in �0.DiffC.M 0// (detected by its effect on �2.M

0/). Thus, a ı–move depends
in general on the particular choice of auxiliary disk D capping ı in M . This can be
difficult to specify explicitly in a diagram. To make matters worse, it is a nontrivial
problem to understand the extent to which the choice of isotopy from f#.S/ back to S

affects the resulting diffeomorphism of M . Fortunately, the issue can be resolved
through work of Hatcher and McCullough [15].

Theorem 5.3 Every ı–move diagram for an irreducible 3–manifold M determines a
unique ı–move diffeomorphism up to isotopy. On a reducible manifold M , a ı–move
diagram, together with a choice of auxiliary disk D �M spanning ı (up to isotopy
rel boundary) determines at most one diffeomorphism up to isotopy and elements of
order 2 in �0.DiffC.M //. The latter are composites of twists on a fixed collection of
disjoint spheres.

Proof Given a ı–move diagram and a fixed choice of spanning disk D�M for ı , let
S �M# be the associated surgery sphere. Given two isotopies of f#.S/ to S in M# ,
we wish to relate the corresponding diffeomorphisms of M . Before the surgery is
reversed, these are related by composition with a diffeomorphism of the pair .M#;S/

that is isotopic (not preserving S ) to the identity. By [15, Lemma 3.4] (with nD 0

and S0D S ), such a diffeomorphism, up to isotopy, comes from a composite of sphere
twists on the manifold M1 made by cutting M# along S . We reverse the surgery
by capping off the boundary components of M1 with balls. If M is irreducible, the
spheres in question all bound balls in M , so their twists are isotopic to the identity.
Otherwise, McCullough [17, Section 3] shows that the sphere twists of M generate
a normal subgroup R.M / of �0.DiffC.M // isomorphic to ˚r Z2 for some finite r .
We can surger M on 2–spheres to get a connected sum of irreducible manifolds, and
for any such presentation, the sum spheres and surgery spheres together can be assumed
disjoint and comprise a generating set for R.M /. (Thus, r is at most the number of
prime summands of M , with equality only when M D #rS1 �S2 .) The reducible
case of the theorem follows immediately, since any isotopy of D rel boundary results
in an isotopy of the corresponding diffeomorphisms of M . For the remaining case,
suppose M is irreducible. Existence follows since S lies in the unique isotopy class of
nonseparating spheres in M# , and uniqueness follows since the disk spanning ı in M

is unique up to isotopy rel boundary.

Because of the difficulty of tracking isotopy classes of spanning disks in diagrams, it is
natural either to assume that M is irreducible or to allow the spanning disk to vary. A
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ı–move diagram may represent more than one diffeomorphism in the reducible case
(although the curve ı itself is held fixed by the diagram). We show that under broad
hypotheses, every diagram represents a diffeomorphism, which can be taken to be a
torus or Klein bottle twist.

Theorem 5.4 Every ı–move diagram represents a ı–move that is isotopic to a torus
or Klein bottle twist parallel to C , provided that the 3–manifold M has no RP3

summand, or that the diagram is orientable or incompressible. (The case of a Klein
bottle only arises if the diagram is nonorientable.) If the diagram is compressible, the
resulting twist is isotopic to the identity, provided that the diagram is orientable or M

is irreducible (and not RP3 ).

Corollary 5.5 Every ı–move diagram for a homology sphere M represents a ı–move
that is isotopic to a torus twist. If M is also irreducible, then ı–moves and torus twists
comprise the same subset of �0.DiffC.M //.

Proof of Theorem 5.4. We begin with a ı–move diagram, whose curve ı bounds
an embedded disk D �M by definition. We wish to modify D so that its interior
becomes disjoint from T0 . Then T0[D is an embedded torus or Klein bottle, and the
proof of Proposition 5.2 shows that the resulting twist is realized up to isotopy by the
diagram. Recall that the surfaces T0 and D induce the same framing on their common
boundary ı , so we can assume their interiors intersect in a finite collection of circles.
We can eliminate all circles bounding disks in T0 by successively replacing disks in D

by innermost disks in T0 . If any innermost circle of D is then boundary-parallel in T0 ,
the required new version of D is obtained by joining the corresponding innermost
disk to an annulus parallel to a boundary collar of T0 . Otherwise, either there are no
remaining circles and we are done, or an innermost disk d of D exhibits the diagram
as compressible. In the latter case, if T0 is orientable, the required disk is obtained
by surgering a parallel copy of T0 along d . The resulting torus T is exhibited as the
boundary of a solid torus. Thus, the diagram represents a twist on the boundary of a
solid torus, which is in turn isotopic to the identity. If T0 is nonorientable, @d cannot
bound a Möbius band in T0 , or else we could construct an embedded projective plane,
whose tubular neighborhood would be an RP3 summand violating our hypotheses.
Thus, @d is the unique nonseparating circle in T0 with orientable complement, namely
the circle C generating the ı–move. Now we change tactics, modifying T0 : An
isotopy of M rotating d by a full turn untwists the ı–move near C at the expense of
adding twists on a pair of parallel copies of d . This isotopes the Klein bottle twist f#

in M# to a twist on the sphere S� � M# made from T0 by surgering on d . The
disk D , and hence the surgery sphere S , can easily be made disjoint from S� , so
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that they are not moved by the sphere twist in M# . Thus, f# only changes S by an
isotopy. It follows immediately that the original diagram, together with this S (or D )
and isotopy, determines a ı–move, and it is isotopic to the twist on the sphere in M

descending from S� by surgery on S . We can further surger this sphere in M along a
tube connecting its poles, obtaining a torus twist. Alternatively, if M is irreducible,
the sphere bounds a ball over which the twist extends, so the twist is isotopic to the
identity.

The proof also gives a more general result about the compressible case:

Corollary 5.6 If M has no RP3 summand, then every compressible ı–move diagram
represents an element of order at most 2 in �0.DiffC.M // (that is the identity in the
orientable case).

Proof The orientable case is given by the theorem. Its proof shows that the nonori-
entable case can be reduced to a twist on a sphere.

Corollary 5.7 Suppose M is atoroidal with no RP3 summand. Then every ı–move
diagram represents an element of order at most 2 in �0.DiffC.M //. If the diagram is
orientable or M is irreducible, it represents the identity.

Proof By definition, M has no incompressible tori, and hence no incompressible Klein
bottles. The proof of Theorem 5.4 generates such a surface from any incompressible
ı–move diagram, so the previous corollary applies. The last sentence follows from the
statement of the theorem.

Akbulut’s motivation for introducing ı–moves was to study cork twisting by diagrams
as in Section 3, starting from a pair Y � X and regluing Y . This raises a subtle
technical issue. From the viewpoint of the definition of ı–moves, the issue centers
on the isotopy from f#.S/ to S for surgery reversal. We start with a link diagram
of M D @Y , and then add additional handles along a framed link L0 �M to get X .
Given a ı–move diagram for M , we must understand the effects of a resulting move
on L0 . To introduce the canceling 2–3 handle pair without moving L0 , this link must be
disjoint from the disk D where the 3–handle attaches, a condition that can be routinely
checked. The effects of the resulting torus twist f# on L0 in M# are easy to see: We
can assume that L0 intersects the torus only in the annulus A in the diagram, and
then L0 is only changed at these intersections, by twisting parallel to C . However, we
must then compose f# with a diffeomorphism g (isotopic to idM# ) returning S to its
original position for surgery. Note that g can be complicated; for example, any sheets
of S intersecting T0 in parallel copies of ˇ will be dragged by f# over the 2–handle
attached to ı . The effect of g on f#.L

0/ is an unspecified isotopy in M# that could
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cause band-summing with parallel copies of ı . Reversing this isotopy could cause
intersections of the link with S that would prevent it from surviving the surgery. Thus,
it is not clear how the ı–move affects the auxiliary link L0 without a more careful
analysis.

An analogous problem arises from the viewpoint of expressing ı–moves as torus twists.
If we start from a ı–move diagram, we can see where T0 intersects L0 . Given a
procedure for seeing that ı is unknotted in M , it is routine to verify if the resulting
disk D is disjoint from L0 . If D is not directly visible in the diagram, however, we must
assume it intersects int T0 and apply the method of Theorem 5.4. This replaces D by a
new disk D0 disjoint from int T0 , and it is not generally clear whether D0 intersects L0 .
Since D0 is constructed in a neighborhood of T0[D , it avoids every link component
disjoint from T0 . However, the diffeomorphism is only interesting when L0 has
nontrivial intersection with T0 , in which case further analysis is needed to determine
whether f causes unexpected movement of L0 . This is why we exhibited L0 and the
entire torus T simultaneously in the same diagram for Proposition 3.2. As mentioned
there, there are other approaches, notably drawing T as an isotopy of a circle and
applying Figure 1.
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