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Localization of cofibration categories
and groupoid C �–algebras

MARKUS LAND

THOMAS NIKOLAUS

KAROL SZUMIŁO

We prove that relative functors out of a cofibration category are essentially the same
as relative functors which are only defined on the subcategory of cofibrations. As an
application we give a new construction of the functor that assigns to a groupoid its
groupoid C �–algebra and thereby its topological K –theory spectrum.

55U35; 46L80

Let .C; wC; cC/ be a cofibration category, ie a structure dual to a category of fibrant
objects in the sense of Brown [1]. Here, wC and cC are the subcategories of weak
equivalences and cofibrations, ie they have the same objects as C but morphisms are
the weak equivalences or the cofibrations, respectively. Similarly, wcC will denote the
subcategory of acyclic cofibrations. In addition to Brown’s axioms, we will assume that
C has good cylinders, which is a mild technical condition explained in Definition 9.

In this paper we will prove the following theorem. It will be formulated using the
language of 1–categories, following the notation of Lurie [11; 12]. In particular, an
ordinary category C can be considered as an 1–category by taking its nerve NC.

Theorem 1 If a cofibration category C has good cylinders, then the map induced by
the inclusion

NcCŒwc�1� '�!NCŒw�1�

is an equivalence of 1–categories.

By NCŒw�1� we denote the universal 1–category obtained from NC by inverting
the weak equivalences; see [12, Definition 1.3.4.1 and Remark 1.3.4.2]. By passing to
opposite categories, the dual statement of Theorem 1 for fibration categories also holds.

The proof of Theorem 1 will be given at the end of the paper, but let us first establish a
consequence and the application to C �–algebras associated to groupoids.

Let C be a cofibration category with good cylinders and M a model category which is
Quillen equivalent to a combinatorial model category and has functorial fibrant and
cofibrant replacements, eg any of the model categories of spectra.
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Proposition 2 For any functor F W cC!M that sends acyclic cofibrations in cC to
weak equivalences in M there exists a functor yF W C!M with the following properties:

(1) yF sends weak equivalences in C to weak equivalences in M.

(2) yF extends F in the sense that there exists a zigzag of natural weak equivalences
between F and yF jcC .

Moreover, yF is unique in the following sense: for any other functor yF 0W C!M that
satisfies (1) and (2) there exists a zigzag of natural weak equivalences between yF
and yF 0 .

Proof We denote the 1–category NMŒw�1� associated to the model category M

by M1 . We claim that for any ordinary category A the canonical map

N Fun.A;M/Œ`�1�! Fun.NA;M1/

is an equivalence of 1–categories, where ` is the class of levelwise weak equivalences.
Here Fun.�;�/ is used both for the ordinary category of functors between ordinary
categories and the 1–category of functors between 1–categories; we hope that it is
clear from the context which of the two is meant. If M is a simplicial, combinatorial
model category, this is a special case of [11, Proposition 4.2.4.4], using that for a
simplicial model category M, the 1–category M1 is equivalent to the homotopy
coherent nerve of the simplicial subcategory of M on the fibrant and cofibrant objects;
see [12, Theorem 1.3.4.20]. From the existence of functorial (co)fibrant replacements
and Hovey [8, Proposition 1.3.13] it follows that a Quillen equivalence M ' M0

induces a Quillen equivalence Fun.A;M/' Fun.A;M0/. Thus the domain of the map
in question is invariant under Quillen equivalences in M. The same is true for the
codomain, thus the statement that this map is an equivalence is invariant under Quillen
equivalences in M. Hence it is also true for all model categories M with functorial
(co)fibrant replacements that are Quillen equivalent to a combinatorial, simplicial model
category. Since every combinatorial model category is equivalent to a combinatorial,
simplicial model category by a result of Dugger [6, Corollary 1.2], the claim holds in
our generality. If A is a relative category, it also follows that the induced functor

N Funw.A;M/Œ`�1�! Funw.NA;M1/

is an equivalence, where the superscript w refers to functors that send weak equiva-
lences in A to weak equivalences or equivalences in the target. This follows imme-
diately from the nonrelative case, noting that both sides are just full subcategories of
N Fun.A;M/Œ`�1� and Fun.NA;M1/. Thus in the canonical commuting square
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N Funw.C;M/Œ`�1� N Funw.cC;M/Œ`�1�

Funw.NC;M1/ Funw.NcC;M1/

the vertical maps are equivalences of 1–categories. By Theorem 1 the lower map is
also an equivalence, therefore also the upper one is. Passing to homotopy categories we
obtain the desired result, using that isomorphisms in homotopy categories of functor
categories are represented by zigzags of natural weak equivalences.

Applications

Groupoids

We denote by Gpd the 1–category of small groupoids and by Gpd2 the 1–category
associated to the .2; 1/–category of groupoids in which the 2–morphisms are natural
isomorphisms. The category Gpd admits a simplicial model structure in which the
equivalences are equivalences of categories and the cofibrations are functors that are
injective on the set of objects. In this model structure all objects are cofibrant and
fibrant, compare Casacuberta, Golasiński and Tonks [2]. Furthermore, if we denote by
Gpd! the full subcategory on groupoids with at most countable many morphisms then
Gpd! inherits the structure of a cofibration category.

The following lemma is a well-known fact, but we had difficulties finding a clear
reference for this so we state it as an extra lemma.

Lemma 3 The canonical map N GpdŒw�1�! Gpd2 is an equivalence of 1–cate-
gories.

Proof This follows from the description of the 1–category associated to a simplicial
model category — see [12, Theorem 1.3.4.20] — as being the homotopy coherent nerve
of the simplicial category of cofibrant and fibrant objects.

Corollary 4 Let C be an 1–category. Then the canonical map NcGpd ! Grp2

induces an equivalence

Fun.Gpd2;C/ '�! Funw.NcGpd;C/;

where the superscript w refers to functors that send equivalences of groupoids to
equivalences in C.

Proof Since the canonical map N GpdŒw�1�! Gpd2 is an equivalence by Lemma 3,
this is a direct application of Theorem 1.
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The following corollary of Proposition 2 implies that in the approach to assembly maps
discussed by Davis and Lück [4, Section 2], one can directly restrict to functors from
groupoids to spectra that are only defined for maps of groupoids that are injective on
objects. This resolves the issues illustrated in [4, Remark 2.3].

Corollary 5 Let Sp be any of the standard model categories of spectra. Then every
functor F W cGpd! Sp which sends equivalences of groupoids to weak equivalences in
Sp extends uniquely (in the sense of Proposition 2) to a functor yF W Gpd! Sp which
also sends weak equivalences of groupoids to weak equivalences of spectra.

Remark The statements of Corollaries 4 and 5 remain true if we replace Gpd by Gpd! .
Furthermore, Corollary 5 does not depend on the exact choice of model category of
spectra as long as it is Quillen equivalent to a combinatorial model category. Notice
that this is automatically fulfilled if the model category is stable, due to the rigidity
result of Schwede; see [17].

Next we want to demonstrate how to apply these results by functorially constructing C �–
algebras and topological K –theory spectra associated to groupoids. This discussion
is similar to the one given by Joachim [9, Section 3] but we use our main theorem to
obtain full functoriality instead of an explicit construction.

Definition 6 Let G be a groupoid. We let CG be the C–linearization of the set
of morphisms of G . This is a C–algebra by linearization of the multiplication on
morphisms given by

f �g D

�
f ıg if f and g are composable,
0 otherwise.

We remark that CG is unital if and only if the set of objects of G is finite. Then
we complete CG in a universal way, like for the full group C �–algebra, to obtain
a C �–algebra C �G . More precisely, the norm is given by the supremum over all
norms of representations of CG on a separable Hilbert space. This is isomorphic to
the C �–algebra associated to the maximal groupoid C �–category of Dell’Ambrogio
[5, Definition 3.16] using the construction C 7! AC of Joachim [9, Section 3].

The association G 7!C �G is functorial for cofibrations of groupoids but not for general
morphisms, since it can happen that morphisms are not composable in a groupoid, but
become composable after applying a functor; compare the remark in Davis and Lück
[4, page 214]. We observe that the C �–algebra C �G is separable provided G 2 Gpd! .

Algebraic & Geometric Topology, Volume 17 (2017)



Localization of cofibration categories and groupoid C �–algebras 3011

Lemma 7 Let F W G1! G2 be an acyclic cofibration of groupoids. Then the induced
morphism

C �F W C �G1! C �G2

is a KK–equivalence.

Proof The C �–algebra associated to a groupoid with finitely many connected compo-
nents is the product of the C �–algebras associated to each connected component. For
an infinite number of components, the associated C �–algebra is the filtered colimit
of the C �–algebras associated to finitely many connected components. Since finite
products of KK–equivalences are again KK–equivalences, and the filtered colimit
of these KK–equivalences is again a KK–equivalence, we may assume that G1 (and
thus G2 ) is connected. Let x 2G be an object. We let G1DEnd.x/ and G2DEnd.F x/

be the endomorphism groups and notice the fact that F is an equivalence implies that
F induces an isomorphism G1 ŠG2 . Then we consider the diagram

C �G1 C �G2

C �G1 C �G2

C�F

Š

in which the lower horizontal arrow is an isomorphism. Thus to show the lemma
it suffices to prove the lemma in the special case where F is the inclusion of the
endomorphisms of an object x of a connected groupoid G .

This can be done in the abstract setting of corner algebras. For this suppose A is a
C �–algebra and p 2 A is a projection. It is called full if ApA is dense in A. The
algebra pAp is called the corner algebra of p in A. It is called a full corner if p is a full
projection. We write ip for the inclusion pAp � A. Given a projection p the module
pA is an imprimitivity pAp�ApA bimodule; see eg [15, Example 3.6]. Thus if p is
full, then pA gives rise to an invertible element ŒpA; ip; 0�D F.p/ 2 KK.pAp; A/.
In this KK–group we have an equality

F.p/D Œ pA; ip; 0�C Œ.1�p/A; 0; 0�D Œ pA˚ .1�p/A; ip; 0�D ŒA; ip; 0�D Œip�I

in other words, the inclusion pAp!A of a corner algebra associated to a full projection
is a KK–equivalence.

To come back to our situation let us suppose G is a groupoid, x 2 G is an object and
let us denote its endomorphism group by G D End.x/. We can consider the element
p D idx 2 C �G , which is clearly a projection. Its corner algebra is given by

p �C �G �p Š C �G:
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If G is connected, it follows that every morphism in G may be factored through idx

and thus p is full. Hence it follows that the inclusion C �G!C �G is an embedding of
a full corner algebra. Thus, by the general theory, this inclusion is a KK–equivalence,
which proves the lemma.

Let us denote by KK1 the 1–category given by the localization of the category
C �Alg of separable C �–algebras at the KK–equivalences; see eg [10, Definition 3.2].
In formulas we have KK1 WD NC �AlgŒw�1�, where w denotes the class of KK–
equivalences. The homotopy category of KK1 is Kasparov’s KK–category of C �–
algebras.

Corollary 8 There exists a functor

Gpd!
2 ! KK1

which on objects sends a groupoid G to the full groupoid C �–algebra C �G .

Remark The .2; 1/–category Orb! consisting of (countable) groups, group homomor-
phisms and conjugations is the full subcategory of the .2; 1/–category of (countable)
groupoids on connected groupoids and hence along this inclusion we also obtain a
functor

Orb!
! KK1

which on objects sends a group to its full group C �–algebra. This will be used by the
first two authors in [10] to compare the L–theoretic Farrell–Jones conjecture and the
Baum–Connes conjecture.

Proof of Corollary 8 By Corollary 4 and the remark after Corollary 5, we have an
equivalence

Funw.NcGpd! ; KK1/' Fun.Gpd!
2 ; KK1/;

and thus it suffices to construct a functor

cGpd!
! C �Alg

which has the property that it sends equivalences of groupoids to KK–equivalences. We
have established in Lemma 7 that the functor of Definition 6 satisfies this property.

Remark In [10, Proposition 3.7] it is shown that the topological K –theory functor

KW NC �Alg! Sp

factors over KK1 , in fact becomes corepresentable there. It thus follows from
Corollary 8 that there is a functor sending a groupoid to the topological K –theory
spectrum of its C �–algebra.
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The proof of Theorem 1

In this section we will prove Theorem 1. Recall that we consider a cofibration category
.C; wC; cC/ and aim to compare the 1–categories associated to the relative categories
.C; wC/ and .cC; wcC/. As our model of the homotopy theory of .1; 1/–categories
we will use the complete Segal spaces of Rezk; see [16]. This homotopy theory is
modelled by the Rezk model structure on the category of bisimplicial sets in which
fibrant objects are the complete Segal spaces. The model structure is constructed
as a Bousfield localization of the Reedy model structure and hence every levelwise
weak equivalence of bisimplicial sets is a Rezk equivalence, ie an equivalence of
1–categories.

The 1–category associated to a relative category .D; wD/ is modelled by the classifi-
cation diagram N RD of Rezk, which is given by

.N RD/k 7!Nw.DŒk�/;

where the weak equivalences in DŒk� are levelwise weak equivalences; compare [16,
Section 3.3; 13, Theorem 3.8]. See also Cisinski’s response in [3]. Here, again, the
notation N refers to the nerve of a category, which is a simplicial set, and here it should
be thought of as a homotopy type as opposed to an 1–category. The classification
diagram is not fibrant in the Rezk model structure, but it is levelwise equivalent to a
fibrant object if D is a cofibration category.

Let X be an object of a cofibration category C. Recall that a cylinder on X is a
factorization of the canonical morphism X tX !X via a cofibration X tX ! IX

and a weak equivalence IX ! X . A cylinder functor on C is a functor I W C! C

equipped with natural transformations that provide such factorizations for all objects
of C. In the introduction we stated Theorem 1 under the following assumption on C.

Definition 9 A cofibration category C has good cylinders if it has a cylinder functor I

such that for every cofibration X � Y the induced morphism IXtXtX .Y tY /! IY

is a cofibration.

For example, any cofibration category arising from a monoidal model category (or a
model category enriched over a monoidal model category) has good cylinders, since
they are given by tensoring with a chosen interval object. In particular the cofibration
category underlying the model category of groupoids we discussed has good cylinders.

Theorem 10 If C has good cylinders, then the inclusion cC! C induces a levelwise
weak equivalence of the classification diagrams N RcC!N RC.
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For the proof we will need a series of auxiliary definitions and lemmas. Let us first fix
some notation. If J is a category, then yJ denotes J considered as a relative category
with all morphisms as weak equivalences. If J is any relative category, then CJ

stands for the cofibration category of all relative diagrams J ! C with levelwise weak
equivalences and cofibrations. If J is any relative direct category, then CJ

R stands for
the cofibration category of all relative Reedy cofibrant diagrams J ! C with levelwise
weak equivalences and Reedy cofibrations. See [14, Theorem 9.3.8] for the construction
of these cofibration categories and [14, Sections 9.1 and 9.2] for definitions of (relative)
direct categories and Reedy cofibrations. (Note that Radulescu-Banu [14] uses the word
“restricted” instead of “relative”.) For our purposes we only need the direct category
J D Œk�, so we will recall the definitions just in this case. A diagram over Œk� is
Reedy cofibrant if all its structure maps are cofibrations. A morphism X ! Y of such
diagrams is a Reedy cofibration if all the induced morphisms XiC1tXi

Yi ! YiC1 are
cofibrations. In [14] cofibration categories are assumed to have certain infinite colimits
that are necessary for these results to hold for arbitrary J . However, as mentioned
above, we will only use finite categories J D Œk�, in which case the cited theorem is
valid with Brown’s original definition, which asserts only existence of an initial object
and pushouts along cofibrations.

Definition 11 A subcategory gC of a cofibration category C is said to be good if

� all cofibrations are in gC;
� the morphisms of gC are stable under pushouts along cofibrations;
� C has functorial factorizations that preserve gC, in the sense that if

A0 B0

A1 B1

is a square in C such that both vertical morphisms are in gC and

A0
zB0 B0

A1
zB1 B1

�

�

is the resulting factorization, then the induced morphism A1 tA0
zB0! zB1 is

also in gC. In particular, so is zB0! zB1 by the second condition and most of
the time only this conclusion will be used. However, the stronger property that
A1 tA0

zB0! zB1 is in gC is necessary for the inductive argument in the proof
of Lemma 15(3).
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Now suppose that C is a cofibration category with a good subcategory gC. We let W C

be the bisimplicial set whose .m; n/–bisimplices are all diagrams in C of the form

X0;0 X0;1 : : : X0;n

X1;0 X1;1 : : : X1;n

:::
:::

:::

Xm;0 Xm;1 : : : Xm;n

� � �

� � �

� � �

�

g

�

g

�

g

�

g

�

g

�

g

�

g

�

g

�

g

ie relative diagrams �Œm�� �Œn�! C where all horizontal morphisms are cofibrations and
all vertical morphisms are in gC. In other words, W C is the nerve of a double category
with the same objects as C, whose horizontal morphisms are acyclic cofibrations,
vertical morphisms are weak equivalences in gC, and double morphisms are just
commutative squares.

Lemma 12 The bisimplicial set W C is vertically homotopically constant, ie every
simplicial operator Œn�! Œn0� induces a weak homotopy equivalence .W C/�;n0 !

.W C/�;n .

Proof Note that .W C/�;nDN zCn , where zCn is a category whose objects are diagrams�Œn�! cC and whose morphisms are weak equivalences with all components in gC. It is
enough to consider the case n0D 0, ie to show that the constant functor constW zC0!

zCn

is a homotopy equivalence. The evaluation at n functor evnW
zCn !

zC0 satisfies
evn const D idzC0

. Moreover, the structure maps of every diagram X 2 zCn form a
natural weak equivalence X ! const evn X since every cofibration is in gC.

Lemma 13 The bisimplicial set W C is horizontally homotopically constant, ie every
simplicial operator Œm�! Œm0� induces a weak homotopy equivalence .W C/m0;�!

.W C/m;� .

Proof Note that .W C/m;� D NCm , where Cm is a category whose objects are di-
agrams �Œm�! gC and whose morphisms are acyclic levelwise cofibrations. Again,
it is enough to consider the case m0 D 0 and to show that the constant functor
constW C0 ! Cm and the evaluation at m functor evmW Cn ! C0 form a homotopy
equivalence.
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We have evm constD idC0
. Moreover, given any object X 2Cm and i 2 Œm� we consider

the composite weak equivalence Xi
�
�!Xm . We combine it with the identity Xm!Xm

and factor functorially the resulting morphism Xi t Xm ! Xm as Xi t Xm �
zXi
�
�!Xm . In the square

Xm tXi Xm

Xm tXiC1 Xm

both vertical morphisms are in gC (since gC is closed under pushouts). Thus the
induced morphism zXi ! zXiC1 is in gC. Moreover, we obtain acyclic cofibrations
Xi
�� zXi and Xm

�� zXi that constitute a zigzag of natural weak equivalences connecting
const evm and idCm

.

Lemma 14 The inclusion NwcC!NwgC is a weak homotopy equivalence.

Proof Observe that the 0th row and the 0th column of W C are NwgC and NwcC,
respectively. Since W C is homotopically constant in both directions, it follows from
[7, Proposition IV.1.7] that we have weak equivalences

NwgC �
�! diag W C �

 �NwcC:

Moreover, the restrictions along the diagonal inclusions Œm�! Œm� � Œm� induce a
simplicial map diag W C! NwgC whose composites with the two maps above are
the identity on NwgC and the inclusion NwcC!NwgC. Hence the latter is a weak
equivalence by 2-out-of-3.

Next we establish that under specific circumstances certain subcategories of C are
good.

Lemma 15 Let C be a cofibration category.

(1) If C has functorial factorizations, then C itself is a good subcategory.

(2) If C has good cylinders, then cC is a good subcategory of C.

(3) If cC is a good subcategory of C, then the subcategory of levelwise cofibrations
is a good subcategory of C

Œk�
R for all k .

Proof (1) This is vacuously true.

(2) We will show that the standard mapping cylinder factorization makes cC into a
good subcategory. Let
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A0 B0

A1 B1

be a square where both vertical morphisms are cofibrations. The mapping cylinder of
Ai !Bi is constructed as IAi tAitAi

.Ai tBi /. We need to show that the morphism
induced by the square

A0 IA0 tA0tA0
.A0 tB0/

A1 IA1 tA1tA1
.A1 tB1/

is a cofibration. This morphism coincides with

IA0 tA0tA0
.A1 tB0/! IA1 tA1tA1

.A1 tB1/;

which factors as

IA0 tA0tA0
.A1 tB0/! IA0 tA0tA0

.A1 tB1/! IA1 tA1tA1
.A1 tB1/:

The first morphism is a pushout of A1 tB0! A1 tB1 , which is a cofibration since
B0! B1 is. Comparing the pushouts of rows and columns in the diagram

IA0 IA0 IA1

A0 tA0 A0 tA0 A1 tA1

A1 tB1 A1 tA1 A1 tA1

shows that the second morphism above is a pushout of IA0tA0tA0
.A1tA1/! IA1 ,

which is a cofibration since A0! A1 is and C has good cylinders.

(3) Clearly, every Reedy cofibration is a levelwise cofibration and levelwise cofibra-
tions are stable under pushouts. Consider a diagram

A0
zB0 B0

A1
zB1 B1

�

�
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in CJ
R , where zB0 and zB1 are obtained by the standard Reedy factorization (see [14,

Proof of Theorem 9.2.4(v)]) induced by the given functorial factorization in C. As-
suming that A0! A1 and B0! B1 are levelwise cofibrations, we need to check that
A1;i tA0;i

zB0;i ! zB1;i is a cofibration for every i 2 Œm�.

For i D 0, this follows directly from the assumption that cC is a good subcategory
of C. The Reedy factorization is constructed by induction over Œm�, so assume that the
conclusion is already known for i < m. The factorization at level i C 1 arises as

A0;iC1 tA0;i
zB0;i

zB0;iC1 B0;iC1

A1;iC1 tA1;i
zB1;i

zB1;iC1 B1;iC1

�

�

where the left square comes from the diagram

A0;i
zB0;i

A0;iC1 � zB0;iC1

A1;i
zB1;i

A1;iC1 � zB1;iC1

where the bullets stand for the pushouts above. The conclusion we need to obtain
amounts to the composite of the two squares in the front being a Reedy cofibration
when seen as a morphism from left to right. The right square is a Reedy cofibration
since cC is a good subcategory of C and so is the left one since it is a pushout of the
back square, which is a Reedy cofibration by the inductive hypothesis.

Lemma 16 The inclusion Nw.C
Œk�
R /!Nw.CŒk�/ is a weak homotopy equivalence.

Proof Functorial factorization induces a functor in the opposite direction as well as
natural weak equivalences connecting both composites with identities.

Proof of Theorem 10 Recall that we want to show that Nw..cC/Œk�/! Nw.CŒk�/

is a weak equivalence for all k . In the diagram
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Nwc.C
Œk�
R / Nw.C

Œk�
R /

Nw..cC/Œk�/ Nwc.CŒk�/ Nw.CŒk�/

(1)

(2)

(3)
(4)

the labelled maps are weak equivalences. The map (1) is a weak equivalence by
Lemma 14 applied to C

Œk�
R with itself as a good subcategory and so is the map (2) by

the same argument applied to CŒk� . The map (3) is a weak equivalence by Lemma 14
applied to C

Œk�
R with the good subcategory of levelwise cofibrations, which is indeed

good by Lemma 15. Finally, the map (4) is a weak equivalence by Lemma 16. Hence
by 2-out-of-3, the bottom composite is also a weak equivalence as required.
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