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HOMFLY-PT homology for general link diagrams
and braidlike isotopy

MICHAEL ABEL

Khovanov and Rozansky’s categorification of the HOMFLY-PT polynomial is invariant
under braidlike isotopies for any general link diagram and Markov moves for braid
closures. To define HOMFLY-PT homology, they required a link to be presented
as a braid closure, because they did not prove invariance under the other oriented
Reidemeister moves. In this text we prove that the Reidemeister IIb move fails in
HOMFLY-PT homology by using virtual crossing filtrations of the author and Rozansky.
The decategorification of HOMFLY-PT homology for general link diagrams gives a
deformed version of the HOMFLY-PT polynomial, P b.D/ , which can be used to
detect nonbraidlike isotopies. Finally, we will use P b.D/ to prove that HOMFLY-PT

homology is not an invariant of virtual links, even when virtual links are presented as
virtual braid closures.

57M25, 57M27

1 Introduction

Khovanov and Rozansky in [12] introduced a triply graded link homology theory
categorifying the HOMFLY-PT polynomial. The construction given in [12] of Khovanov–
Rozansky HOMFLY-PT homology, or briefly HOMFLY-PT homology, is an invariant
of link diagrams up to braidlike isotopy (isotopies which locally resemble isotopies
of a braid) and Markov moves for closed braid diagrams. However, Khovanov and
Rozansky were not able to prove invariance under all oriented Reidemeister moves. In
particular, they could not prove the Reidemeister IIb move, and in fact expected that it
would fail in general. Because of this, they required that a link be presented as a braid
closure so that HOMFLY-PT homology would be an invariant of links. In this text we
will directly address this issue by proving the failure of the Reidemeister IIb move in
HOMFLY-PT homology, and explore the consequences of this failure.

The framework of HOMFLY-PT homology can be extended to include the use of “virtual
crossings”, degree-4 vertices which are not actually positive or negative crossings.
Virtual links (links with virtual crossings) were first introduced by Kauffman in [9]. The
author and Rozansky in [1] proved that a filtration can be placed on the chain complex
whose homology is HOMFLY-PT homology. The associated graded complex of this
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filtration is described using diagrams containing only virtual crossings. The filtration
allows us to rewrite the chain complexes in an illuminating manner, allowing us to see
new isomorphisms which would be difficult to see otherwise. Using the framework of
virtual crossing filtrations we prove the following theorem.

Theorem 1.1 (see Theorem 4.11) Let H.D/ denote the HOMFLY-PT homology
of the virtual link diagram D. Suppose D1, D2, and D3 are oriented virtual link
diagrams which are identical except in the neighborhood of a single point. Suppose
in the neighborhood of that point, D1 is , D2 is , and D3 is . Then
H.D1/'H.D3/ up to a grading shift, while H.D1/ 6'H.D2/ in general.

In Section 4 we prove the above theorem and give an explicit example of a diagram of
the unknot that does not have the HOMFLY-PT homology of the unknot (Example 4.12).
Recall H.D/ is a triply graded vector space. Suppose dijk D dim.H.D/i;j ;k/. Then
we can define the Poincaré series of H.D/ as

(1-1) P.D/D
X

i;j ;k2Z

dijkqiaj tk :

Let P .D/ denote the HOMFLY-PT polynomial of the link diagram D. In [13], Mu-
rakami, Ohtsuki and Yamada introduced a state-sum formulation of the HOMFLY-PT

polynomial commonly called the MOY construction. Their approach resolves a link
diagram into a Z.q; a/–linear combination of oriented planar 4–regular graphs. They
give relations which evaluate each such planar graph as an element of Z.q; a/. The
resulting rational function from this process for any link diagram D is its HOMFLY-PT

polynomial P .D/.

We now define a deformed HOMFLY-PT polynomial Pb.D/D P.D/jtD�1. In the case
that D is presented as a braid closure then Pb.D/D P .D/. However, this is not true
for general link diagrams. We collect known relations and properties of Pb.D/ into
the following theorem.

Theorem 1.2 (see Theorem 5.1) Let D be a link diagram. Pb.D/ is an invariant of
link diagrams up to braidlike isotopy satisfying the skein relation

qPb. /� q�1Pb. /D .q� q�1/Pb. /:

Furthermore, Pb.D/ satisfies the relations in Figure 1 in addition to the virtual
MOY/Reidemeister moves and Z-moves (see Figures 14 and 15).

In Section 5 we use Pb.D/ to show that H.D/ is not an invariant of virtual links, even
when presented as a virtual braid closure, by showing it violates the virtual exchange
move (see Kamada [8]).
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D � q�2 D �

D
1C aq2

1� q2

(MOY 0)

D
1C aq4

1� q2

(MOY I)

D .1C q2/

(MOY IIa)

D C
q2C aq6

1� q2

(MOY IIb*)

C q2 D q2 C

(MOY III)

Figure 1: Relations for P b.D/ (the notation P b. � / omitted for readability)

We note that the relations in Figure 1 may not always be enough to determine Pb.D/,
though in many examples the relations do suffice. We expect that in fact these relations
will not compute Pb.D/ in general. The “nonbraidlike” MOY III diagram in Figure 2
does not split in a tractable manner and applying the MOYIIb relation introduces
virtual crossings. Kauffman and Manturov in [10] construct an sl3 specialization of the
HOMFLY-PT polynomial for virtual links as formal ZŒq; q�1�–linear combinations of
directed graphs which are irreducible under MOY I, MOY IIa, MOY III, virtual MOY
moves and Z-moves. Since our Pb.D/ for virtual braid closures specializes to their
invariant, we expect that certain virtual MOY graphs will be irreducible with respect to
the relations in Figure 1.

Figure 2: A “nonbraidlike” MOY III configuration
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Recent research involving annular link homology by Auroux, Grigsby and Wehrli in
the sl2 case [4] and Queffelec and Rose in the sln case [15] give some insight into
why to expect this issue. We consider links in the thickened annulus as closed braids in
a 3–ball D3 with the braid axis ` removed from D3. Annular link homology theories,
that is homology theories of closed braids in the thickened annulus D3�`, are normally
constructed via the use of Hochschild homology on chain complexes of bimodules
associated to braids. Hochschild homology HH.C / acts as a (horizontal) trace on
the homotopy category of bimodules, but in general does not act like a Markov trace.
In particular, if ˇ1 and ˇ2 are two braids which are Markov equivalent and C.ˇ1/

and C.ˇ2/ are their associated chain complexes of bimodules, then HH.C.ˇ1// is not
necessarily homotopy equivalent to HH.C.ˇ2//. This corresponds to the fact that even
though the braid closures of ˇ1 and ˇ2 are isotopic as links in S3, they may not be
isotopic in D3� `.

From this viewpoint, H.D/ is an annular link invariant that happens to satisfy the
Markov moves (that is, H.D/ is a categorified Markov trace). This is why H.D/
gives invariants of links in S3 when D is presented as the closure of a braid. The
Reidemeister IIb configuration can only appear in a braid closure when the braid
axis is between the two strands. In the case of annular invariants the braid axis is an
obstruction to isotopy, and disallows the isotopy � . In an annular invariant
the exchange move � is disallowed; however, this move preserves the
isomorphism type of H.D/.

Outline of the paper In Section 2 we review the definition of the HOMFLY-PT poly-
nomial and the MOY construction of the HOMFLY-PT polynomial. We use nonstandard
conventions in this text to illuminate the connections with HOMFLY-PT homology. In
Section 3 we review the construction of HOMFLY-PT homology of links using closed
braid diagrams. We also review some homological algebra, in particular properties of
Koszul complexes. In Section 4 we explore the properties of HOMFLY-PT homology for
general link diagrams. We introduce the role of virtual crossings in this framework and
use virtual crossings as a tool to prove that HOMFLY-PT homology is not invariant under
the Reidemeister IIb move. Finally, in Section 5 we explore the decategorification
(Euler characteristic) of HOMFLY-PT homology and use it to prove that HOMFLY-PT

homology cannot be extended to an invariant of virtual links.
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and Lenny Ng for many helpful conversations and their feedback. The author would like
to also thank Matt Hogancamp for encouraging him to further explore an observation
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2 MOY construction of the HOMFLY-PT polynomial

We begin by recalling two constructions of the HOMFLY-PT polynomial for oriented
links. Most of this material is well-known, but we introduce it with the purpose of
setting our conventions for the sequel. The first construction is given by a skein relation
and first appeared in [6]. The second construction, first introduced by Murakami,
Ohtsuki and Yamada in [13], constructs the HOMFLY-PT polynomial in terms of a state-
sum formula. It is this second construction which is categorified in the construction of
Khovanov and Rozansky’s HOMFLY-PT homology.

2.1 The HOMFLY-PT polynomial of an oriented link diagram

Let L denote a link in R3. In this text we will assume all links are oriented. Let D

denote a link diagram of L, that is a regular projection of L onto a copy of R2. The
HOMFLY-PT polynomial is an invariant of links which takes (oriented) link diagrams to
elements of Z.q; a/.

Definition 2.1 Let D be a link diagram and let O be a simple closed curve in the
plane of the link diagram. We define the HOMFLY-PT polynomial, P .D/ 2Z.q; a/, via
the following relations:

(1) P .∅/D 1 and P .O/D .1C aq2/=.1� q2/.

(2) P .D tO/D P .D/P .O/.

(3) qP .DC/� q�1P .D�/ D .q � q�1/P .D0/, where DC, D�, and D0 are link
diagrams which are the same except in the neighborhood of a single point where
DC D , D� D , and D0 D .

(4) If D and D0 differ by a sequence of Reidemeister II and III moves (with any
orientation), then P .D/D P .D0/.

We will call a crossing which locally looks like a positive crossing, and a crossing
that locally looks like a negative crossing. Let f;g 2 Z.q; a/ be nonzero. We
will write f PDg if f D .�1/iaj qkg for some i; j ; k 2 Z. In other words, we write
f PDg if f=g is a unit in ZŒq˙1; a˙1�.

Theorem 2.2 (HOMFLY [6]; PT [14]) Let D and D0 be two link diagrams of a
link L. Then P .D/ PDP .D0/. Furthermore, P .D2/ D �q�2P .D1/ and P .D3/ D

aq2P .D1/, where D1, D2, D3 are link diagrams which are the same except in the
neighborhood of a single point where they are as in Figure 3.

We will often denote the HOMFLY-PT polynomial of a link by P .L/, suppressing the
choice of link diagram. In this case P .L/ is well defined up to a unit in ZŒq˙1; a˙1�.
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D1 D2 D3

Figure 3: The diagrams D1, D2, and D3 from Theorem 2.2

Remark 2.3 We are using nonstandard conventions for the HOMFLY-PT polynomial
in this text. The HOMFLY-PT polynomial as defined here is not a polynomial, but rather
is a rational function. One may choose a different normalization where both P .D/ 2

ZŒa˙1; q˙1� is honestly a (Laurent) polynomial and P .D1/DP .D2/DP .D3/ where
D1, D2, and D3 are as in Figure 3. The choice of normalization here coincides with
our conventions for HOMFLY-PT homology in the sequel.

2.2 The MOY construction of the HOMFLY-PT polynomial

Murakami, Ohtsuki and Yamada in [13] give a construction of the sln polynomial,
Pn.L/ 2 ZŒq; q�1�, of a link L using evaluations of oriented colored trivalent plane
graphs. These trivalent plane graphs correspond to the intertwiners between tensor
powers of fundamental representations of Uq.sln/. The sln polynomial is actually a
specialization of the HOMFLY-PT polynomial, that is Pn.L/.q/DP .L/.q; aD q2�2n/

in our conventions. We may adjust the MOY construction of the sln polynomial to
compute the HOMFLY-PT polynomial. We will replace the “wide edge” graph of [13]
with a single degree-4 vertex (see Figure 4) which we will call a MOY vertex.

Recall an oriented graph is 4–regular if every vertex has degree 4, that is if each vertex
has a total of 4 outgoing/incoming edges. The MOY state model of the HOMFLY-PT

polynomial writes a link diagram as a formal Z.q; a/–linear combination of planar,
oriented, 4–regular graphs. The orientation locally at each vertex is the same as the
orientation of the MOY vertex in Figure 4. We call such planar, oriented, 4–regular
graphs MOY graphs.

We now define the MOY construction of the HOMFLY-PT polynomial. Let D be a link
diagram. We can resolve any crossing c into either an oriented smoothing or a
MOY vertex (with consistent orientation). To each resolution of c we associate a
weight. If we smooth the crossing then the resolution has weight 0. If we replace the
crossing with a MOY vertex, then the weight is �2 if the crossing was positive and 0

$

Figure 4: The MOY wide edge graph and our MOY vertex
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0

0

0

�2

Figure 5: Resolution chart

if the crossing was negative. A resolution chart is given in Figure 5 for reference. We
define a state � of D as a choice of resolution for every crossing c in D. If D has n

crossings, then it has 2n possible states. We define the weight of a state �.�/ to be the
sum of the weights of the chosen resolutions of � . Finally we will set �.�/ to be the
number of MOY vertices in � .

Theorem 2.4 (Murakami, Ohtsuki and Yamada [13]) The relations given in Figure 6
are sufficient to compute P .D� / as an element of Z.q; a/ for any link diagram D and
any state � .

D
1C aq2

1� q2

(MOY 0)

D
1C aq4

1� q2

(MOY I)

D .1C q2/

(MOY IIa)

D C
1C aq6

1� q2

(MOY IIb)

C q2 D q2 C

(MOY III)

Figure 6: MOY relations (the notation P . � / omitted for readability)

Definition 2.5 The MOY polynomial, P .D/, is given by

(2-1) P .D/D
X
�

.�1/�.�/q�.�/P .D� /:
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Theorem 2.6 (Murakami, Ohtsuki and Yamada [13]) Let D be an oriented link
diagram. Then P .D/D P .D/.

Example 2.7 Using the relations in Figure 6, we compute P .D/ for the diagram of the
left-handed trefoil knot given in Figure 7. We leave it as an exercise to the reader to show

(2-2) P .D/D

�
1C aq2

1� q2

�
.q2
C aq2

C aq6/:

D

Figure 7: Diagram of the left-handed trefoil knot

3 HOMFLY-PT homology for closed braid diagrams

In this section we introduce the construction of Khovanov and Rozansky’s HOMFLY-PT

homology. The approach of this construction is to associate a chain complex of modules
to every MOY graph and a bicomplex of modules to every link diagram. Our approach
in this section is most similar to the approach of Rasmussen in [16] where we ignore
his “sln ” differential, as it is not needed in the construction of HOMFLY-PT homology.

3.1 Koszul complexes

Before introducing HOMFLY-PT homology, we recall some terminology and notation
involving Koszul complexes. Let R D

L
i2Z Ri be a Z–graded commutative Q–

algebra and M D
L

i2Z Mi be a Z–graded R–module. It will be instructive to keep
the example of R D QŒx;y � in mind, where x and y are finite lists of variables
(not necessarily of the same length). We define the grading shift functor �.k/ by
M.k/j DMj�k for all j 2 Z. We will commonly use a nonstandard notation for
grading shifts. In particular, we will set qkM WD M.k/ and say degq.x/ D qj

if x 2Mj .
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Definition 3.1 Let p 2 R be an element of degree k. The Koszul complex of p is
defined as the chain complex

Œp�R D qkR1
p
�!R0;

where p is used to denote the algebra endomorphism of R given by multiplication
by p. Here R0 DR1 DR and the subscript is simply used to denote the homological
degree of the module. We will often write Œp�D Œp�R when there can be no confusion.
Now let p D p1; : : : ;pk be a sequence of elements in R. Then we define the Koszul
complex of p as the complex264p1

:::

pk

375D Œp1�˝R � � � ˝R Œpk �;

where ˝R denotes the ordinary tensor product of chain complexes.

As a convention, we will call the homological grading in Koszul complexes the
Hochschild grading and denote it by dega. We write dega.x/D ak to say that x is in
Hochschild degree k and similarly write akM to denote that M is being shifted k in
Hochschild degree.

We say a sequence of elements pDp1; : : : ;pk in R is a regular sequence if pm is not
a zero divisor in R=.p1; : : : ;pm�1/ for all mD 1; : : : ; k. The following proposition
is a standard fact in homological algebra and is proven in many introductory texts such
as [18].

Proposition 3.2 Let p D p1; : : : ;pn be a regular sequence in R. Then the Koszul
complex of p is a graded free R–module resolution of R=.p1; : : : ;pn/.

The notation we use for Koszul complexes is reminiscent of the notation for a column
vector in R˚n. Note that we will always use square brackets for Koszul complexes
and round brackets for row vectors in R˚n to eliminate any confusion. Along these
lines, we can look at “row operations” on Koszul complexes.

Proposition 3.3 Let p D p1; : : : ;pk be a sequence of elements in R, and let � 2Q.
Then 26666664

:::

pi
:::

pj
:::

37777775'
26666664

:::

pi C�pj
:::

pj
:::

37777775 :

A homotopy equivalence of this form will be called a change of basis.
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Proof We will omit grading shifts in the proof for clarity. We consider the map
ˆW Œpi �˝R Œpj �! Œpi C�pj �˝R Œpj � given by:

Œpi �˝R Œpj �

ˆ

��

R

�
pi

pj

�
//

1

��

R˚R�
1 �

0 1

�
��

.�pj pi/
// R

1

��

Œpi C�pj �˝R Œpj � R �
pi C�pj

pj

� // R˚R
.�pj pi C�pj /

// R

This map is clearly invertible.

3.2 Marked MOY graphs

A marked MOY graph is a MOY graph � (possibly with boundary) with markings
such that the marks partition the graph into some combination of elementary MOY
graphs as shown in Figure 8. We label the marks and the endpoints of the graph (if
any) with variables. Typically, though not necessarily, we will label outgoing edges by
variables yi , incoming edges by variables xi , and internal marks by variables ti . An
example of this process is given in Figure 8.

x1 x2 x3

y1 y2 y3

t1 t2 t3

t4 t5 t6

Figure 8: An example of a marked MOY graph and the elementary MOY graphs

To a marked MOY graph � , we will associate a collection of rings. Let x;y ; t denote
the lists of incoming, outgoing, and internal variables respectively. We first define the
total ring Et .�/ of � as the polynomial ring QŒx;y ; t� containing all variables. We
make this ring into a graded ring by setting degq.xi/D degq.yi/D degq.ti/D q2. We
call this grading the internal or quantum grading. We also suppose that all elements
in Et .�/ have Hochschild degree a0. The other rings we will define will be subrings
of Et .�/. The edge ring, E.�/, is the polynomial ring of incoming and outgoing
(“edge”) variables QŒx;y �. The total ring Et .�/ has a natural free E.�/–module
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structure. We also define the incoming ring (resp. outgoing ring) by Ei.�/DQŒx�
(resp. Eo.�/DQŒy �). Since E.�/ŠEi.�/˝Q Eo.�/ as Q–algebras, any E.�/–
module can be considered as an Ei.�/–Eo.�/–bimodule. Note that if � does not
have any boundary (eg if it is a resolution of a link diagram), then E.�/ŠEi.�/Š

Eo.�/ŠQ.

We will now define chain complexes C.�/ of free E.�/–modules associated to a
marked MOY graph � . The chain modules of C.�/ will be direct sums of shifted
copies of Et .�/. We do this by first defining Koszul complexes associated to the
elementary MOY graphs and then give rules for how gluing the graphs together affects
the complexes associated to them. We will use the symbols and to denote the
elementary arc and vertex MOY graphs. To the arc, we associate the Koszul complex
of modules over Et . /DE. /DQŒx;y�,

(3-1) C. /D Œy �x�
E. /

D q2aE. /
y�x
���!E. /;

and to the vertex graph, we associate the Koszul complex of modules over Et . /D

E. /DQŒx1;x2;y1;y2�,

(3-2)
C. /D

�
y1Cy2�x1�x2

.y1�x1/.y1�x2/

�
E. /

D q6a2E. / A
�! q4aE. /˚ q2aE. / B

�!E. /;

where

AD

�
y1Cy2�x1�x2

.y1�x1/.y1�x2/

�
; B D

�
�.y1�x1/.y1�x2/ y1Cy2�x1�x2

�
:

Now suppose � is a marked MOY graph with edge ring E and total ring Et . Also
let � 0 be another marked MOY graph with edge ring E0 and total ring E0t . The
disjoint union of these graphs � t � 0 has edge ring E00 Š E ˝Q E0 and total ring
E00t ŠEt˝Q E0t . To the marked MOY graph �t� 0 we will associate the complex of
E00–modules C.� t� 0/ WD C.�/˝Q C.� 0/. A picture of the corresponding diagram
is shown in Figure 9.

� � 0

� t� 0

� � 0

z1

z2

� [z �
0

Figure 9: Examples of disjoint union and gluing of marked MOY graphs
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Finally, we define a complex for when we glue two marked MOY graphs together.
Let � and � 0 be two marked MOY graphs. We can glue outgoing edges of � to
incoming edges of � 0 (or vice versa) to get a new marked MOY graph. First suppose
only one pair of endpoints, one from each graph, are being glued together. Suppose
that in both � and � 0 the endpoint being glued is labeled by the variable z (that is,
z 2Ei.�/\Eo.� 0/ or z 2Ei.� 0/\Eo.�/). Then we define the new graph � [z �

0

by identifying the endpoints labeled by z and associate to � [z �
0 the complex

(3-3) C.� [z �
0/ WD C.�/˝QŒz� C.�

0/:

The edge ring of � [z �
0 is E.� [z �

0/ D .E.�/˝QŒz� E.� 0//=.z/ and the total
ring is Et .� [z �

0/ D Et .�/˝QŒz� E
t .� 0/. Note that after gluing, z is no longer

in the edge ring as it is an internal variable. We may glue multiple edges at once in
a similar manner. If z D z1; : : : ; zn are the variables at the marked endpoints being
identified, then we define C.� [z �

0/ WD C.�/˝QŒz� C.� 0/. Similar to the case
where we only identified one pair of edges, the edge ring of � [z �

0 is given by
E.� [z �

0/D .E.�/˝QŒz�E.�
0//=.z1; : : : ; zn/ and the total ring is Et .� [z �

0/D

Et .�/˝QŒz�E
t .� 0/.

We can also describe disjoint union and gluing of marked MOY graphs in terms of
Koszul complexes. Suppose C.�/ and C.� 0/ are given by the Koszul complexes

C.�/D

264p1
:::

pm

375
Et .�/

and C.� 0/D

264p0
1
:::

p0n

375
Et .� 0/

:

We can present C.� t� 0/ and C.� [z �
0/ as the Koszul complexes

(3-4) C.� t� 0/D

2666666664

p1
:::

pm

p10

:::

p0n

3777777775
Et .�t� 0/

and C.� [z �
0/D

2666666664

p1
:::

pm

p10

:::

p0n

3777777775
Et .�[z� 0/

:

Here the distinction comes from the difference in total and edge rings. C.� t � 0/

is a chain complex of free E.� t � 0/–modules with the chain modules as direct
sums of shifted copies of Et .� t � 0/. However C.� [z �

0/ is a chain complex of
free E.� [z �

0/–modules with the chain modules as direct sums of shifted copies
of Et .� [z �

0/. We now give another useful technique for simplifying the complexes
associated to marked MOY graphs, called mark removal.
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Lemma 3.4 Suppose that z is an internal variable of a marked MOY graph � and
C.�/ is the Koszul complex of the sequence p D p1; : : : ; z � pi ; : : : ;pk , where
p1; : : : ;pk 2E.�/. Let  W Et .�/!Et .�/=.z�pi/ be the quotient map identifying z

with pi . Then we have

C.�/'  

0BBBBBB@

26666664
p1
:::

1z�pi

:::

pk

37777775

1CCCCCCA'
26666664

p1
:::

1z�pi

:::

pk

37777775
Et .�/=.z�pi /

as complexes of E.�/–modules, omitting the term z�pi from the sequence.

Various forms of this lemma are proven in other texts on HOMFLY-PT homology, such
as the original work of Khovanov and Rozansky [12] or work of Rasmussen [16]. We
refer the reader to Lemma 3.8 in [16] for this exact form, omitting the “backward”
differentials of the matrix factorizations. Lemma 3.4 allows us to freely add or remove
marks without changing the homotopy type of the complex (as a complex of E.�/–
modules). This implies the following very useful statement.

Corollary 3.5 Let � and � 0 be two marked MOY graphs whose underlying (un-
marked) MOY graphs are the same (isomorphic as oriented graphs). Then C.�/ '

C.� 0/ as complexes of modules over E.�/DE.� 0/.

Example 3.6 Consider the marked MOY graph from Figure 10. The marks partition
the MOY graphs into six elementary MOY graphs (three MOY vertices and three arcs)
which are drawn in Figure 10.

x1 x2 x3

y1 y2 y3

t1 t2 t3

t4 t5 t6

�

x1 x2 t2 t3 t4 t5 x3 t1 t6

t1 t2 t5 t6 y1 y2 t3 t4 y3

�1 �2 �3 �4 �5 �6

Figure 10: The marked MOY graph in Example 3.6 and its elementary MOY graphs

We can write � as .�1 t�4/[t1;t2;t3
.�2 t�5/[t4;t5;t6

.�3 t�6/, and therefore

C.�/D C.�1 t�4/˝QŒt1;t2;t3� C.�2 t�5/˝QŒt4;t5;t6� C.�3 t�6/:
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We can write C.�/, after some applications of mark removal to remove t3, t4, and t6, as:

C.�/'

266666664

y1Cy2� t1� t5
y1y2� t1t5

t5Cy3� t2�x3

t5y3� t2x3

t1C t2�x1�x2

t1t2�x1x2

377777775
QŒx1;x2;x3;y1;y2;y3;t1;t2;t5�

We invite the reader to finish the process of removing the internal variables t1, t2,
and t5 to get a finite-rank complex of QŒx1;x2;x3;y1;y2;y3�–modules.

3.3 MOY braid graphs

A MOY braid graph is a graph formed by taking a braid and replacing every crossing
with a MOY vertex, whose incoming and outgoing edges are consistent with the
orientation of the braid. The complexes associated to MOY braid graphs and their
“braid closures” satisfy the following local relations (as proven in [12; 16]):

Proposition 3.7 Let �0, �1a, �1b , �2a, �2b , �3a, �3b , �3c , and �3d be MOY
graphs as in Figure 11. Then

C.�0/'

1M
iD0

q2i.Q˚ aq2Q/;(3-5)

C.�1a/'

1M
iD0

q2i.C.�1b/˚ aq4C.�1b//;(3-6)

C.�2a/' C.�2b/˚ q2C.�2b/;(3-7)

C.�3a/˚ q2C.�3b/' q2C.�3c/˚C.�3d /;(3-8)

where ' denotes homotopy equivalence over the corresponding edge rings.

To compare the isomorphisms in Proposition 3.7 to the relations in Figure 6 we introduce
the notation of a “Laurent series shift functor”. Suppose F.q; a/2NŒŒq˙1; a˙1��, that is

F.q; a/D
X

i;j2Z

cij qiaj ; cij 2N [f0g:

Suppose M is a Z�Z–graded R–module with grading shifts denoted by qiaj . Then

(3-9) F.q; a/M WD
M

i;j2Z

qiaj M˚cij :

We can write similar expressions for chain complexes C of Z�Z–graded R–modules.
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�0 �1a �1b �2a �2b

�3a �3b �3c �3d

Figure 11: MOY graphs for Proposition 3.7

Let
F.q; a; t/D

X
i;j ;k2Z

cijkqiaj tk
2NŒŒq˙1; a˙1; t˙1��;

and let the homological grading shift on C be denoted by tk . Then

(3-10) F.q; a; t/C WD
M

i;j ;k2Z

qiaj tkC˚cijk :

The coefficients in MOY 0 and MOY I are not actually Laurent series, but rather rational
functions. However, considering the rational function with Laurent polynomial numera-
tor F.q; a/ as a geometric series, we can write the rational functions as a Laurent series

F.q; a/

1� q2
D F.q; a/

1X
iD0

q2i :

With this notation in mind, we can rewrite the isomorphism (3-5) as

(3-11) C.�0/'

1M
iD0

q2i.Q˚ aq2Q/D
1M

iD0

q2i.1C aq2/Q

D .1C aq2/

1X
iD0

q2iQD
1C aq2

1� q2
Q

and the isomorphism (3-6) as

(3-12) C.�1a/'

1M
iD0

q2i.C.�1b/˚ aq4C.�1b//

D .1C aq4/

1X
iD0

q2iC.�1b/D
1C aq4

1� q2
C.�1b/:
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We invite the reader to compare the rewritten relation (3-11) to (MOY 0) from Figure 6
and (3-12) to (MOY I). This comparison can be made for (3-7) to (MOY 2a) and (3-8)
to (MOY 3) as well.

3.4 Khovanov–Rozansky HOMFLY-PT homology

We now have recalled the necessary tools to define Khovanov–Rozansky HOMFLY-PT

homology, or briefly HOMFLY-PT homology. We first define two q–degree 0 maps
�i W ! q�2 and �oW ! . Set E D QŒx1;x2;y1;y2� to be the edge
ring of both and . Then we define �i by

(3-13) �i

��

a2q4E

�
y1�x1

y2�x2

�
//

1

��

aq2E˚ aq2E
.x2�y2 y1�x1/

//�
y1�x2 0

1 1

�
��

E

y1�x2

��

q�2 a2q4E �
P2

P1

� // aE˚ aq2E
.�P1 P2/

// q�2E

and �o by

(3-14) �o

��

a2q6E

�
P2

P1

�
//

y1�x2

��

aq2E˚ aq4E
.�P1 P2/

//�
1 0

�1 y1�x2

�
��

E

1

��

a a2q4E �
y1�x1

y2�x2

� // aq2E˚ aq2E
.x2�y2 y1�x1/

// E

Above, we set P1 D y1C y2 � x1 � x2 and P2 D .y1 � x1/.y1 � x2/ for the sake
of legibility. We now define two bicomplexes of free E–modules for the positive
crossing and the negative crossing :

C. / WD C. /
�i
�! tq�2C. /;(3-15)

C. / WD t�1C. /
�o
�!C. /:(3-16)

Note that we use the notation tkC.�/ to mean that the complex for � sits in homological
degree k. This is a different homological degree than our Hochschild degree we
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introduced earlier. We will simply denote this degree by degt and call it the homological
degree. We will say that x has (total) degree deg.x/Dqiaj tk if it has quantum degree i ,
Hochschild degree k, and homological degree j . We will denote the differential in the
complexes for the MOY graphs as dg and the differentials in the complexes (built from
�i and �o ) associated to crossings as dc . Both C. / and C. / are bicomplexes
with commuting differentials dg and dc .

A marked tangle diagram is a tangle diagram with markings such that the marks
partition the tangle diagram into arcs, positive crossings, and negative crossings. We
label the marks and the endpoints (if any) by variables in a similar fashion to marked
MOY graphs. We define rings associated to each marked tangle diagram � in a similar
manner to our constructions for marked MOY graphs.

Before defining a bicomplex for a tangle diagram, we recall a definition from homolog-
ical algebra.

Definition 3.8 Let C D .C��; dh; dv/ and C 0 D .C 0
��
; d 0

h
; d 0v/ be two bicomplexes.

We define the tensor product bicomplex C ˝C 0 D ..C ˝C 0/��; d
˝

h
; d˝v / as follows:

.C ˝C 0/mn D

M
iCkDm;jC`Dn

.Cij ˝C 0k`/;

d˝
h
.x˝y/D dh.x/˝yC .�1/ix˝ d 0h.y/ for x 2 Cij and y 2 C 0k`;

d˝v .x˝y/D dv.x/˝yC .�1/kx˝ d 0v.y/ for x 2 Cij and y 2 C 0k`:

We can now build a bicomplex for any tangle diagram (and link diagram) in a similar
manner to what we did in Section 3.3 for MOY graphs. To a disjoint union of (marked)
tangles � D �1 t �2 we associate the bicomplex of E.�/–modules

C.�/ WD C.�1/˝Q C.�2/:

Similarly if we are gluing two tangles �1 and �2 at the marked points zD z1; : : : ; zk

in such a way that the orientations are consistent, then we define a bicomplex of
E.�1[z �2/–modules

C.�1[z �2/D C.�1/˝QŒz� C.�2/:

We omit the rest of the details in this case, and leave it to the reader to compare with
the analogous conventions for marked MOY graphs. Now let ˇ 2 Brn be a braid with
n strands. We can mark ˇ in such a way that we partition it into arcs and crossings of
the form or and we label the endpoints and markings in a similar manner to
our conventions for marked MOY graphs. Therefore we can use the rules of disjoint
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unions and gluing of tangles to write a bicomplex C.ˇ/ of E.ˇ/–modules. In this
case, E.ˇ/DQŒx;y � where jxj D jy j D n.

We now describe the construction of the HOMFLY-PT homology of a link L. Suppose
that ˇ 2 Brn is a braid representative of L, that is L is the circular closure of ˇ
in R3. We will often use the notation Lˇ for the link diagram of the closure of ˇ.
Then we can describe the bicomplex C.Lˇ/DC.ˇ/˝QŒx;y�C.1n/, where 1n denotes
the identity braid (oriented downwards) with the top endpoints labeled by y and the
bottom endpoints labeled by x. We refer the reader to Figure 12 for an example of this
decomposition of a braid closure.

Lˇ

x1 x2

y1 y2

x1 x2

y1 y2

ˇ

x1 x2

y1 y2

12

Figure 12: A link presented as a braid closure and the constituent tangles

Definition 3.9 Suppose L is a link with braid representative ˇ2Brn. The HOMFLY-PT

homology of Lˇ is H.Lˇ/DHdc�
.Hdg

.C.Lˇ///.

Remark 3.10 H.Lˇ/, as defined above, arises as the E2–page of a spectral sequence.
Let L be an n–component link. It is easily shown that the E1–page of that spectral
sequence is the homology of the n–component unlink (up to a grading shift). In
particular, Hdc

.C.L// is isomorphic to the E1–page.

Theorem 3.11 (Khovanov and Rozansky [12]) Suppose ˇ 2 Brn and ˇ0 2 Brn0 are
two braid representatives of a link L. Then H.Lˇ/ Š H.Lˇ0/ up to a grading shift.
Furthermore, suppose the Poincaré series (see (1-1)) of H.Lˇ/ is given by

P.Lˇ/D
X

i;j ;k2Z

di;j ;kqiaj tk ; where di;j ;k D dimQ.H.Lˇ//i;j ;k :

Then
P.Lˇ/jtD�1 D

X
i;j ;k2Z

di;j ;kqiaj .�1/k D P .Lˇ/:
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4 HOMFLY-PT homology for general link diagrams

In this section we study what happens when we consider general link diagrams in the
construction of HOMFLY-PT homology. We will see that not all Reidemeister moves
are respected, and that in general HOMFLY-PT homology is only an invariant up to
braidlike isotopy.

4.1 Virtual crossings and marked MOY graphs

We start by introducing virtual crossings into the framework of (marked) MOY graphs.
We will not fully discuss virtual knot theory here, but rather refer the reader to Kauff-
man [9]. Virtual crossings were first considered as a tool in HOMFLY-PT and sln
homologies by Khovanov and Rozansky in [11], and studied further by the author and
Rozansky in [1].

A virtual MOY graph is a MOY graph where we allow the underlying graph to be
nonplanar. Such a graph can always be drawn where the intersections forced by the
projection onto the plane are transverse double points. An example of this is given in
Figure 13. To the marked virtual crossing graph we associate the following complex of
free E. /DQŒx1;x2;y1;y2�–modules:

(4-1) C. /D

�
y1�x2

y2�x1

�
E. /

Dq4E. / A
�!q2E. /˚q2E. / B

�!E. /;

where

AD

�
y1�x2

y2�x1

�
; B D

�
x1�y2 y1�x2

�
:

Note that C. / resembles C. / except for a transposition of x1 and x2 in the
definition of the complexes. In this sense, we can think of a virtual crossing as being a
permutation of strands with no additional crossing data or vertex at the intersection.

x1 x2

y1 y2

Figure 13: A (marked) virtual crossing and an example of a virtual MOY graph

Proposition 4.1 The moves in Figure 14 preserve the homotopy equivalence type
of C.�/.
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$ $

(VMOY2a)

$

(VMOY2b)

$ $

(VMOY3a) (VMOY3b)

Figure 14: Virtual MOY moves (marks included for reference for Proposition 4.1)

Proof We begin with (VMOY2a). Let t1 and t2 be the variables associated to the
marks (from left to right) in the diagram on the left for (VMOY2a). The left-hand side
of (VMOY2a) is presented as the Koszul complex of the sequence

.y2� t1;y1� t2; t1C t2�x1�x2; .t1�x1/.t1�x2//:

Let w D y1Cy2�x1�x2. Then2664
y2� t1
y1� t2

t1C t2�x1�x2

.t1�x1/.t1�x2/

3775
QŒx;y;t�

'

2664
y2� t1
y1� t2
w

.t1�x1/.t1�x2/

3775
QŒx;y;t�

'

24 y1� t2
w

.y1�x1/.y1�x2/

35
QŒx;y;t2�

'

�
w

.y1�x1/.y1�x2/

�
QŒx;y�

:

The first isomorphism is a change of basis and the other two isomorphisms are mark
removals. The last term is the Koszul complex for C. /. The second isomorphism
in (VMOY2a) is proven by a similar argument. Next we prove (VMOY2b). For
consistency, we label the bottom endpoints x1 and x2, the top endpoints y1 and y2

and the marks by t1 and t2 (reading from left to right). The left-hand side of (VMOY2b)
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can be written as2664
y2� t1
t2�y1

t1Cx1� t2�y2

.t1�x2/.t1� t2/

3775
QŒx;y;t�

'

�
y2Cx1�y1�y2

.y2�x2/.y2� t2/

�
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1 and t2. Likewise,
the right-hand side of (VMOY2b) can be written as2664

y2C t2�y1� t1
.y2�y1/.y2� t1/

t1�x2

x1� t2

3775
QŒx;y;t�

'

�
y2Cx1�y1�y2

.y2�x2/.y2� t2/

�
QŒx;y�

;

where again the isomorphism is given by removing the internal variables t1 and t2.
This proves (VMOY2b).

Now we approach (VMOY3a). For both diagrams in (VMOY3a), label the top variables
as y1, y2, y3 and bottom variables as x1, x2, x3 from left to right. Also label the
marks as t1, t2, t3 from bottom to top. The associated Koszul complex to the left-hand
side is 266666664

y1� t3
y2� t2
t2�x2

t1�x1

y3C t3� t1�x3

.t3� t1/.t3�x3/

377777775
QŒx;y;t�

'

24 y2�x2

y1Cy3�x1�x3

.y1�x1/.y3�x3/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. Likewise,
the associated Koszul complex to the right hand-side is given by266666664

y3� t3
y2� t2
t1�x3

t2�x2

21C t3� t1�x1

.y1�x1/.y1� t1/

377777775
QŒx;y;t�

'

24 y2�x2

y1Cy3�x1�x3

.y1�x1/.y3�x3/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. This
proves (VMOY3a).

The approach to proving (VMOY3b) is almost identical, but we include it for com-
pleteness. For both diagrams in (VMOY3b), label the top variables as y1, y2, y3 and
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bottom variables as x1, x2, x3 from left to right. Also label the marks as t1, t2, t3
from bottom to top. The associated Koszul complex to the left-hand side is266666664

y1� t3
y2� t2
y3� t1
t3�x3

t2C t1�x1�x2

.t2�x1/.t2�x2/

377777775
QŒx;y;t�

'

24 y1�x3

y2Cy3�x1�x2

.y2�x1/.y2�x2/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. Likewise,
the associated Koszul complex to the right hand-side is given by266666664

y1� t1
y2Cy3� t3� t2
.y2� t3/.y2� t2/

t3�x1

t2�x2

t1�x3

377777775
QŒx;y;t�

'

24 y1�x3

y2Cy3�x1�x2

.y2�x1/.y2�x2/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. Therefore,
(VMOY3b) is proven.

For any virtual link diagram D, that is a link diagram with virtual crossings, we can
repeat the procedure from Section 3.4 to build a bicomplex of E.D/–modules. We
now record the additional “virtual” Reidemeister moves.

Proposition 4.2 The moves in Figure 15 preserve the homotopy equivalence type
of C.D/. The isomorphisms (VR1), (VR2a), (VR2b), (VR3), and (SVR) are called
virtual Reidemeister moves, and the isomorphisms (Z1˙) and (Z2˙) are called Z-
moves.

The proofs of (VR1), (VR2a), (VR2b), and (VR3) follow the same outline (write
Koszul complexes for both sides, and compare after mark removal) as the proof of
Proposition 4.1. (SVR) and the Z-moves follow from resolving the single crossing and
applying the moves (VR2a), (VR2b), (VMOY2a), (VMOY2b), and (VMOY3a). Note
that our Koszul complexes for many of our diagrams are free resolutions of certain
bimodules. On the level of these bimodules these moves are proven in other sources.
(VR1) is proven in Lemma 6.5 of [1], (VR2a), (VR3), (SVR), (Z1C), and (Z1�) are
proven in [17, Lemma 3.1, Lemma 3.2 and Theorem 3.4] and [1, Theorem 2.2]. Strictly
speaking, a different move from the Z-moves, called “virtualization moves” are proven
in these texts. However, the Z-moves follow via tensoring with a virtual crossing
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$

(VR1)

$

(VR2a)

$

(VR2b)

$

(VR3)

$

(SVR)

$ $ $ $

(Z1C) (Z1�) (Z2C) (Z2�)

Figure 15: Virtual Reidemeister moves and Z-moves

and applying (VR2a). A little more needs to be said about the moves (Z2˙). After
resolving the crossing we apply (VMOY2b) and note, up to a relabeling of variables,
the differential does not change.

4.2 Virtual filtrations of signed MOY graphs and a key lemma

Virtual crossing filtrations were first introduced by the author and Rozansky in [1]. We
now introduce these filtrations in our current setting as an eventual tool in proving the
failure of certain Reidemeister moves. In this text, we use virtual filtrations to prove a
key lemma in the process of finding an explicit example of failure of Reidemeister IIb.

Definition 4.3 Let R be a commutative ring and let C and D be chain complexes of
objects in an additive category. Let � Œi � denote the homological shift functor given by
Cj Œi �DCj�i . Define Homk.C;D/ to be the Z–module of chain maps f W C!DŒ�k�

quotiented by the submodule of chain maps homotopic to the zero map.

In [11], Khovanov and Rozansky make the following observation.

Proposition 4.4 There exists a unique map F 2 Hom1.C. /; q2C. //, up to
rescaling, such that Cone.F / is homotopy equivalent to C. /. Likewise there exists
a unique map, up to rescaling, G 2 Hom1.C. /; q2C. // such that Cone.G/ is
homotopy equivalent to C. /.
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We will call the maps F and G virtual saddle maps. In our presentation of C. /

and C. / we can write the virtual saddle maps explicitly. We give the following
explicit presentation of the virtual saddle map G and leave it to the reader to do the
same for the analogous map F :

C. /

G

��

a2q4E

�
x1�y2

x2�y1

�
//�

1
�1

�
&&

aq2E˚ aq2E
.x2�y1 y2�x1/

//

.1 1/

((

E

q2C. / a2q6E �
x1�y1

x2�y2

� // aq4E˚ aq4E
.x2�y2 y1�x1/

// q2E

The mapping cone presentations give rise to filtrations. In particular, Cone.F / has
q2C. / as a submodule and C. / as the quotient Cone.F /=q2C. /. We call
this filtration the negative filtration and denote it as C�. /. Likewise Cone.G/ has
q2C. / as a subcomplex and C. / as the quotient complex Cone.F /=q2C. /.
We call this filtration the positive filtration and denote it as CC. /.

We will often identify C�. / with Cone.F / (and CC. / with Cone.G/) and con-
sider the filtered complexes as mapping cones. This process simplifies the differential dc

so that it can be presented in the following manner (as proven in [1]).

Proposition 4.5 The bicomplex C. / is homotopy equivalent to the bicomplex
C. /

�i
�! tq�2CC. /, where �i denotes the canonical inclusion of C. / into

Cone.G/. Suppose C. / has the trivial filtration. Then �i is a filtered map with
respect to the filtration on CC. / and thus C. / is a filtered bicomplex.

In addition, C. / is homotopy equivalent to the bicomplex t�1C. /
�o
�!C. /,

where �0 is the canonical projection of C. / from Cone.F /. The projection �o is
a filtered map with respect to the filtration on C�. / and thus C. / is a filtered
bicomplex.

We can extend this filtration to any tangle or link diagram via the tensor product
filtration. We will also refer to the given filtration on the bicomplex associated to a
tangle as a virtual filtration. The following theorem was the main focus of [1].

Theorem 4.6 Let ˇ be a braid on n strands, and Lˇ denote its circular closure. Then
the virtual filtration on C.ˇ/ is invariant under Reidemeister IIa and is violated by at
most two levels by Reidemeister III. Furthermore, the virtual filtration on H.Lˇ/ is
invariant under the Markov moves (up to a possible shift in filtration).
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We now focus on describing the filtrations on MOY graphs, which will be useful in
proving Lemma 4.10. A signed MOY graph is a MOY graph where each vertex is
marked by a sign C or �. Suppose � is a signed MOY graph marked so that it is
partitioned into graphs of the form and . Then we can define a filtration on C.�/.
To each MOY vertex marked with a C we associate CC. /, and to each MOY vertex
marked with a � we associate C�. /. We give the trivial filtration to C. /. Then
the filtration on C.�/ is given by the tensor product filtration.

If we choose different sign assignments, then we receive homotopy equivalent com-
plexes for C.�/, but not necessarily filtered homotopy equivalent complexes (eg
C�. / and CC. / are not filtered homotopy equivalent). For this reason, if " is a
assignment of signs to each MOY vertex of � , then we will write C".�/ for the filtered
complex we get from the above construction.

With this construction in mind, we may present every MOY graph as an iterated
mapping cone of graphs with only virtual crossings and no MOY vertices. We will
commonly use the alternate notation for mapping cones shown in Figure 16.

A B
f

WD Cone.f W A! B/

Figure 16: Alternate notation for mapping cones

Example 4.7 We now consider the signed MOY graph � D whose left vertex
is labeled by C and right vertex is labeled by �. We can present CC�.�/ as one of
the two equal iterated mapping cones:

C. / q2C. /

q2C. / q4C. /

1˝F

G˝ 1

1˝F

�G˝ 1

C. / q2C. /

q2C. / q4C. /

1˝F

G˝ 1

1˝F

�G˝ 1

Equality of the above iterated mapping cones follows from the associativity of the
mapping cone operation. Note that the dotted arrow is the zero map, but is drawn in
the diagram above as a reminder that such a map may be needed after simplifying the
above complex.
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� � �

� � �

�

Figure 17: Partial braid closure of a virtual braidlike MOY graph

Next we state a few simplifications and tools which will be necessary in proving our
key lemma. The following lemma is proven in [1].

Lemma 4.8 Let y and y denote the partial braid closure of and respec-
tively (see Figure 17). We write yGW C. y /! q2C. y / for the map induced by G

under partial braid closure, and similarly for yF . Then

(1) Cone. yG/' Cone.0/' C. /˚ q2C. /,

(2) Cone. yF /' Cone
�

aq2C. /˚
1C aq4

1� q2
C. /

.1 0/
���! q2C. /

�
,

(3) Cone. yF /' Cone. yG/'
1C aq4

1� q2
C. /.

Furthermore, the homotopy equivalences in (1) and (2) are filtered.

A proof of the following result can be found in other texts on link homology such as [5].

Proposition 4.9 Consider the complex

A

�
�
˛

�
// B˚C

�
'
�
�
�

�
// D˚E

�
�
"

�
// F;

where 'W B!D is an isomorphism and all other maps are arbitrary up to the condition
that d2 D 0. Then there exists a homotopy equivalence:

A

�
�
˛

�
//

.1/

��

B˚C

.0 1/

��

�
'
�
�
�

�
// D˚E

.��'�1 1/

��

.� "/
// F

.1/

��

A

.1/

OO

.˛/
// C

�
�'�1�

1

�OO

.���'�1�/
// E

�
0
1

�OO
."/

// F

.1/

OO

We call this homotopy equivalence Gaussian elimination.

We now look at the analogue of (MOYIIb) from Figure 6. This will be our key lemma
in simplifying the Reidemeister IIb complex.
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Lemma 4.10 Let

zC . /D
q2C aq6

1� q2
C. /:

Then

C. /' zC . /˚C. /:

Proof Consider C. / with the filtration described in Example 4.7. We then
consider C. / as the iterated mapping cone:

(4-2)

C. / q2C. /

q2C. / q4C. /

1˝F

G˝ 1

1˝F

�G˝ 1

The maps

G˝ 1W C. /! q2C. / and 1˝F W q2.C. //! q4C. /

can be viewed as maps between partial braid closures yG˝1# and 1"˝ yF respectively.
We now apply isomorphisms (1) and (2) of Lemma 4.8 and associativity of the mapping
cone operation to simplify the complex (4-2) to:

(4-3)

C. / q2C. /

aq4C. /˚ zC . / q4C. /

1˝F

0 �
1
0

� �G˝ 1

Note the dotted arrow may no longer be the zero map, but knowledge of the exact map
will ultimately not be necessary. Now we apply Gaussian elimination to the bottom
mapping cone in (4-3) to get:
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(4-4)

C. / q2C. /

zC . / 0

1˝F

0

0

0

The top mapping cone is isomorphic to C. / by Proposition 4.5. Therefore
C. /' zC . /˚C. / as desired.

4.3 Failure of Reidemeister IIb for H.D/

Now with the introduction of virtual crossings, we can study the exact outcome of
allowing general link diagrams in the computation of H.D/.

We now state the main result of this section.

Theorem 4.11 The isomorphism C. /' tq�2C. / holds.

Proof We first write C. / using (3-15) and (3-16):

C. /D t�1C. / A
�!C. /˚ q�2C. / B

�! tq�2C. /;

where the tensor product above is over the appropriate ring of internal variables and

AD

�
1˝�0

�i ˝ 1

�
and B D

�
�i ˝ 1 �1˝�o

�
:

We use the isomorphisms from Proposition 3.7 and Lemma 4.10 to rewrite the complex
as

q�2 zC . / D
!q�2 zC . /˚C. /˚q�2C. / F

!C. /˚q�2C. /;

where the underlined term is in homological degree 0 (omitting homological shifts for
compactness of notation) and

D D

0@1

�

�

1A and F D

�
� 1 0

� � �1˝�o

�
:

Note the maps � are irrelevant to our discussion. Note above, we use the map �1˝�o

to denote the map �1˝�o W q
�2C. /!C. /'C. / (the isomorphism
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following from (VR1)). After performing Gaussian elimination on the complex above,
we are left with

C. /' q�2C. /
1˝�o
���! tq�2C. /

' tq�2C. /˝ .t�1C. /
�o
�!C. //

' tq�2C. /:

Example 4.12 We now give an example where the local failure of Reidemeister IIb
gives a failure of isotopy invariance for a certain link diagram. Let D be the diagram
for the unknot given in Figure 18, and let O denote the standard diagram of the unknot
as a circle bounding a disc in R2. Then we have the following chain of isomorphisms

H.D/' t2q�4H.D0/' t2q�4H.D00/' t2q�4H.D000/:

The first isomorphism is given by applying Theorem 4.11 twice. The second isomor-
phism following from applying (Z2�) from Proposition 4.1. The last isomorphism
follows from applying (VR2b) from Proposition 4.1. D000 is the diagram of the left-
handed trefoil knot, and we computed P .D000/ in Example 2.7. This is enough to show
that H.D/ 6'H.O/; however, it is an easy exercise to show that

H.D000/D .aq2
C t2q2

C t2aq4/
1C aq2

1� q2
Q 6'

1C aq2

1� q2
Q'H.O/:

D D0

D00 D000

Figure 18: The failure of Reidemeister IIb for an unknot diagram. The above
diagrams all have the same HOMFLY-PT homology up to a grading shift.
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4.4 Braidlike isotopy and H.L/

As we saw in Example 4.12, HOMFLY-PT homology for general link diagrams is not
an isotopy invariant. However, it was proven in [12] that it was a braidlike isotopy
invariant. We now carefully recall the definition of braidlike isotopy.

Definition 4.13 Two oriented link diagrams D and D0 are said to represent braidlike
isotopic links if they differ by a sequence of planar isotopies and the following moves
in Figure 19. Such a sequence of moves will be called a braidlike isotopy.

� � �

Figure 19: Braidlike Reidemeister moves

Theorem 4.14 (Khovanov and Rozansky [12]) Let D and D0 be two braidlike
isotopic link diagrams. Then H.D/'H.D0/.

Braidlike isotopy is an important notion in studying links in the solid torus. It is a
well-known fact that two braid closures in the solid torus give isotopic links if and
only if the braids are equivalent, or rather if they are braidlike isotopic. Audoux and
Fiedler in [3] give a deformation of Khovanov homology which detects braidlike
isotopy of links in R3. Their invariant decategorifies to a deformation of the Jones
polynomial which can be computed using a Kauffman bracket-like relation. In the case
of closed braid diagrams, their invariant corresponds with the homology theory studied
in [2] by Asaeda, Przytycki and Sikora and the decategorification corresponds with the
polynomial invariant studied by Hoste and Przytycki in [7].

We can now interpret Example 4.12 in the following manner: The unknot diagram D

shown in Figure 18 is isotopic, but not braidlike isotopic to the standard unknot
diagram O . In particular, there is no sequence of Reidemeister moves transforming
D to O which does not contain the Reidemeister IIb move. In this sense, we see that
H.D/ can detect nonbraidlike isotopy. Note that H.D/ is isomorphic to the homology
of the left-handed trefoil knot (after two negative Reidemeister I moves), though clearly
D is not a diagram for the left-handed trefoil knot. Therefore, this viewpoint of H.D/
may not be useful in determining isotopy type of general diagrams, but can be very
useful when we know the two diagrams are of the same isotopy type and we wish to
determine if they are of the same braidlike isotopy type.
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We can also see easily that the Poincaré series of H.D/ and H.O/ differ. Direct
calculation shows that P.D/D .aq2C t2q2C t2aq4/P.O/. This implies that we may
be able to detect nonbraidlike isotopies on the level of the MOY calculus. As we will
see in the next section, after a deformation of the MOY theory, this is indeed the case.

5 Decategorification of H.D/ for general link diagrams

In this section we study the decategorification of H.D/, which we will denote by Pb.D/.
As we saw in Example 4.12, Pb.D/¤P .D/ in general. In particular, when this occurs,
this implies that D is not braidlike isotopic to a closed braid presentation of a link. We
will end this section with a note on virtual links and give an explicit example of where
Pb.D/ is not invariant under the virtual exchange move, which implies that H.D/
cannot be extended to a virtual link invariant.

5.1 A deformation of the HOMFLY-PT polynomial

Let D be a link diagram and recall P.D/ is defined as the Poincaré series of H.D/.
We define our deformed HOMFLY-PT polynomial as

(5-1) Pb.D/D P.D/jtD�1 2 Z.q; a/:

Theorem 5.1 Let D and D0 be two link diagrams which are braidlike isotopic. Then
Pb.D/D Pb.D0/. Furthermore, Pb satisfies the following skein relation:

(5-2) qPb. /� q�1Pb. /D .q� q�1/Pb. /:

Proof The first statement is an immediate corollary of Theorem 4.14. For the
second part of the statement, note that we have a map of homological degree 1
 W tq�1C. /! qC. / given by:

tq�1C. /

 
��

q�1C. /
�o
//

1

&&

tq�1C. /

qC. / qC. /
�i
// tq�1C. /

The mapping cone of  , after Gaussian elimination, is homotopy equivalent to

qC. /
��o�i
���! tq�1C. /;

and therefore

(5-3) Cone
�
tq�1C. /

 
�!C. /

�
'
�
qC. /

��o�i
���! tq�1C. /

�
:

Properties of the Euler characteristic of a chain complex and (5-3) gives us the relation
(5-2) as desired.
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D � q�2 D �

D
1C aq2

1� q2

(MOY 0)

D
1C aq4

1� q2

(MOY I)

D .1C q2/

(MOY IIa)

D C
q2C aq6

1� q2

(MOY IIb*)

C q2 D q2 C

(MOY III)

Figure 20: MOY relations for P b.D/ and the deformed MOY IIb relation
(the notation P b. � / omitted for readability)

Corollary 5.2 If D is a link diagram presented as a braid closure, then Pb.D/ D

P .D/. Equivalently if D is a link diagram for some link L and Pb.D/¤ P .D/, then
D is not braidlike isotopic to a braid presentation of L.

Corollary 5.3 The relation Pb. / = �q�2Pb. / holds. We call this rela-
tion the deformed Reidemeister II relation and denote it by (RIIb*).

We can also give a MOY-style construction for Pb.D/. In particular, we address the
relation (MOY IIb) from Figure 6. As we saw in Lemma 4.10, the categorified MOY IIb
relation does not hold as we would expect. However, we can decategorify the results in
Proposition 3.7, Proposition 4.1, Theorem 4.11 and Lemma 4.10 in a natural way.

Proposition 5.4 Let D be a link diagram. The braidlike Reidemeister moves, virtual
MOY moves, virtual Reidemeister moves, and the relations in Figure 20 hold for
Pb.D/.

Example 5.5 Let D be the diagram of the .2; 2kC 1/–torus knot given in Figure 21.
First note that we can transform D to D0 using (RIIb*) so that Pb.D/D q�4Pb.D0/.
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More precisely, we use the fact that

Pb. /D�q�2Pb. /D�q�2Pb. /

D q�4Pb. /D q�4Pb. /:

The equalities above follow (from left to right) by (R2b*), (Z2C), (MOYIIb*), and
(R2b*). D0 is isotopic to the .2; 2k�1/–torus knot via a planar isotopy and a (braidlike)
Reidemeister IIa move. Therefore via a straightforward calculation similar to that in
Example 2.7,

Pb.D/D
1C aq2

1� q2

�
.aC 1/

k�1X
iD1

q�i
C q�4k

�
:

However, if zD is a braid presentation of the .2; 2kC 1/–torus knot, then

Pb. zD/D
1C aq2

1� q2

�
.aC 1/

kX
iD1

q�i�2
C q�4k�2

�
:

Therefore D is not braidlike isotopic to a braid presentation of the .2; 2kC 1/–torus
knot for all k � 1.

:::
2k

D

:::
2k

D0

Figure 21: A nonbraidlike diagram D for the .2; 2kC 1/–torus knot and a
braidlike link diagram D0 for the .2; 2k � 1/–torus knot such that P b.D/D

q�4P b.D0/.

5.2 An obstruction to extending HOMFLY-PT homology to virtual links

Finally we wish to present an argument showing that the current definition of H.D/
cannot be extended to virtual links, even when they are presented as closures of virtual
braids. We will ultimately use Pb.D/ to justify this statement.

A virtual braid is a braid in which we allow virtual crossings alongside positive and
negative crossings. Two virtual braids are said to be equivalent if they differ by the
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moves from Figure 19 and the moves (VR2a), (VR3), and (SVR) from Figure 15.
Kauffman in [9] proves that every virtual link can be presented as the closure of a
virtual braid. There is also an analogue of the Markov theorem for virtual links.

Theorem 5.6 (Kamada [8]) Let ˇ and ˇ0 be two virtual braids. Their braid closures
are equivalent virtual links if and only if they differ by a sequence of virtual braid
equivalence moves (the braidlike Reidemeister moves, (VR2a), (VR3), and (SVR)),
the Markov moves, and the virtual exchange move. The Markov moves and virtual
exchange more are pictured in Figure 22.

� � �

� � �

� � �

ˇ

˛

� � �

� � �

� � �

˛

ˇ

$

Markov move I

� � �

� � �

� � �

ˇ

� � �

� � �

� � �

ˇ

� � �

� � �

ˇ

$ $

Markov move II

$

� � �

� � �

� � �

ˇ

˛

ˇ
$

˛

ˇ

Virtual exchange move

� � �

� � �

� � �

� � �

Figure 22: Markov moves for virtual links and the virtual exchange move. ˛
and ˇ are virtual braids.

Now we show by example that Pb.D/ is not invariant under the virtual exchange
move. Therefore H.D/ is not an invariant of virtual links, even when the links are
presented as virtual braid closures.

Example 5.7 Let L be a connected sum of two virtual Hopf links as shown in
Figure 23. ˇ1 and ˇ2 are two virtual braids whose closures are equivalent as virtual
links to L. In particular, ˇ1 and ˇ2 are related by Markov move I and the virtual
exchange move shown in Figure 22. Let D1 be the braid closure of ˇ1 and D2 be the
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L ˇ1 ˇ2

Figure 23: A connected sum of two virtual Hopf links, L, and two braid
presentations of L

braid closure of ˇ2. Using the relations from Figure 20 we can directly compute that

Pb.D1/D
1C aq2

1� q2

�
1� q�2

�
1C aq4

1� q2

��2

;

Pb.D2/D
1C aq2

1� q2

�
aq2
C 2

�
1C aq4

1� q2

�
� q�2

�
1C aq4

1� q2

�2�
:

It is easy to see that Pb.D2/¤ Pb.D1/. In particular,

Pb.D2/�Pb.D1/D q2.1C a/
1C aq2

1� q2
:

Therefore, Pb.D/ is not an invariant of virtual links and thus neither is H.D/.
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