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An index obstruction to positive scalar curvature
on fiber bundles over aspherical manifolds

RUDOLF ZEIDLER

We exhibit geometric situations where higher indices of the spinor Dirac operator
on a spin manifold N are obstructions to positive scalar curvature on an ambient
manifold M that contains N as a submanifold. In the main result of this note, we
show that the Rosenberg index of N is an obstruction to positive scalar curvature
on M if N ,!M � B is a fiber bundle of spin manifolds with B aspherical and
�1.B/ of finite asymptotic dimension. The proof is based on a new variant of the
multipartitioned manifold index theorem which might be of independent interest.
Moreover, we present an analogous statement for codimension-one submanifolds. We
also discuss some elementary obstructions using the OA-genus of certain submanifolds.

58J22; 46L80, 53C23

1 Introduction

We consider the following setup:

Geometric Setup 1.1 Let M be a closed connected spin m–manifold and N �M a
closed connected submanifold of codimension q with trivial normal bundle. Moreover,
we denote the fundamental groups of M and N by � and ƒ, respectively, and let
j W ƒ! � be the map induced by the inclusion �W N ,!M .

Hanke, Pape and Schick [6] have found that if the codimension q is 2 and some
assumptions on homotopy groups hold, then the Rosenberg index of N is an obstruction
to positive scalar curvature on M . Motivated by this result, it is an interesting endeavor
to find further situations where the Rosenberg index of N is an obstruction to positive
scalar curvature on the ambient manifold M . In this note, we exhibit certain cases
where it is possible to relax the restrictions on the codimension.

Recall the Rosenberg index ˛�.M / 2 K�.C���/ of a closed spin manifold M , where
� D �1.M / and C��� denotes the maximal (� D max) or reduced (� D red) group
C�-algebra. Abstractly, it is obtained by applying the Baum–Connes assembly map

�W K�.B�/! K�.C���/;
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to the image of the K-homological fundamental class of M under the map uW M!B�
that classifies the universal covering. The (maximal, if � D max) strong Novikov
conjecture predicts that �˝Q is injective.

All statements in the introduction are made under implicit assumption of Geometric
Setup 1.1. We start by recalling the precise statement of Hanke, Pape and Schick’s
codimension-two obstruction.

Theorem 1.2 [6, Theorem 1.1] Let � 2 fred;maxg. Let N have codimension q D 2

and suppose that j W ƒ ! � is injective and that �2.M / D 0. If ˛ƒ.N / ¤ 0 2

Km�2.C��ƒ/, then M does not admit a metric of positive scalar curvature.

Remark 1.3 The theorem was proved by applying methods from Roe’s coarse index
theory to a manifold that arises out of a modification of a certain covering of M . As
discussed in [6, Section 3], this proof only shows that M does not admit positive scalar
curvature and does not give ˛�.M /¤ 0. However, the theorem actually implies that
M stably does not admit positive scalar curvature and hence nonvanishing of ˛�.M /

would be a consequence of the stable Gromov–Lawson–Rosenberg conjecture (at least if
we worked with real K-theory throughout). It is an open question whether it is possible
to prove nonvanishing of ˛�.M / directly under the hypotheses of Theorem 1.2.

1.1 Obstructions on fiber bundles and codimension one

Hanke, Pape and Schick state the following application of Theorem 1.2 to fiber bundles:

Corollary 1.4 [6, Corollary 4.5] Let � 2 fred;maxg. Suppose that N ,!M �†

is a fiber bundle, where �2.N /D 0 and † is a closed surface different from S2 , RP2 .
If ˛ƒ.N / ¤ 0 2 Km�2.C��ƒ/, then M does not admit a metric of positive scalar
curvature.

In this special case it turns out that we can settle the question from Remark 1.3
by a more direct argument. Indeed, in the following main result of this note, we
generalize Corollary 1.4 to base manifolds of arbitrary dimension and obtain the
stronger conclusion that ˛�.M / is nonvanishing:

Theorem 1.5 Let �2fred;maxg. Suppose that N
�
,!M

��B is a fiber bundle, where
B is aspherical and �1.B/D �=ƒ has finite asymptotic dimension. If ˛ƒ.N /¤ 0 2

Km�q.C��ƒ/, then ˛�.M /¤ 0 2 Km.C���/. In particular, M does not admit positive
scalar curvature in this case.
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In the proof we also employ coarse index theory. More specifically, we apply the
multipartitioned manifold index theorem. Although variants of it have been established
previously by Siegel [13] and Schick and Zadeh [11], neither of these references
provides the theorem in sufficient generality for our purposes. Thus, in Section 2, we
have included a concise proof of the required result, which might be of independent
interest (see Theorem 2.7).

Unlike Theorem 1.2, in the proof of Theorem 1.5 we apply the q–multipartitioned
manifold index theorem directly to a covering of M (without modifying it further)
and thereby obtain the stronger conclusion that ˛�.M / ¤ 0. If B is a surface or,
more generally, admits nonpositive sectional curvature, then the fact that a suitable
covering of M is q–partitioned follows from the Cartan–Hadamard theorem applied
to B . To obtain the level of generality as stated, we apply a result of Dranishnikov
[1, Theorem 3.5] which says that an aspherical manifold with a fundamental group of
finite asymptotic dimension has a stably hypereuclidean universal covering.

Remark 1.6 Unlike Corollary 1.4, the condition �2.N / D 0 is not required by
Theorem 1.5. This, however, is not just a feature of our method: in fact, a careful
reading of the proof from [6] reveals that in Theorem 1.2 the hypothesis �2.M /D 0

can be weakened to surjectivity of the map �2.N /! �2.M /.

Moreover, the idea for Theorem 1.5 works even in full generality in codimension one
(without assumptions on higher homotopy groups or on being a fiber bundle):

Theorem 1.7 Let � 2 fred;maxg. Let N have codimension q D 1 and suppose that
j W ƒ! � is injective. If ˛ƒ.N /¤ 0 2 Km�1.C��ƒ/, then ˛�.M /¤ 0 2 Km.C���/.
In particular, M does not admit positive scalar curvature in this case.

Remark 1.8 In the proofs of Theorems 1.5 and 1.7, a homomorphism ‰W K�.C���/!
K��q.C��ƒ/ with ‰.˛�.M //D˛ƒ.N / is constructed, which might be of independent
interest.

1.2 Higher yA obstructions via submanifolds

In addition to our result on fiber bundles, we have some obstructions via the yA-genus of
submanifolds of arbitrary codimension under some restriction on the homotopy groups.
In contrast to the results above, the proofs of the results below do not employ coarse
index theory and essentially only rely on elementary techniques from (co)homology
theory.

First we state a result that applies to intersections of codimension-two submanifolds.
We continue to work in Geometric Setup 1.1.
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Theorem 1.9 Let N DN1\ � � � \Nk , where N1; : : : ;Nk �M are closed submani-
folds that intersect mutually transversely and have trivial normal bundles. Suppose that
the codimension of Ni is at most two for all i 2 f1; : : : ; kg and that �2.N /! �2.M /

is surjective.

If yA.N / ¤ 0, then ˛�.M / ¤ 0 2 K�.C�max�/. In particular, M does not admit a
metric of positive scalar curvature in this case.

In particular, specializing to a single codimension-two submanifold, this settles the
question of Remark 1.3 in the case when yA.N /¤ 0 (which implies ˛ƒ.N /¤ 0).

The proof of this theorem (see Section 3) proceeds as follows: First we show that
the surjectivity of �2.N /! �2.M / allows us to rewrite yA.N / as a higher yA-genus
of M . Afterwards we appeal to a result of Hanke and Schick [7, Theorem 1.2] about
the maximal strong Novikov conjecture in low cohomological degrees and conclude
that ˛�.M /¤ 0 2K�.C�max�/. If we allow higher codimensions for the submanifolds
Ni , our method still works but we are no longer in a position to apply [7, Theorem 1.2]
and hence need to assume the strong Novikov conjecture:

Theorem 1.10 Let � 2 fred;maxg. Let N DN1\� � �\Nk , where N1; : : : ;Nk �M

are closed submanifolds that intersect mutually transversely and have trivial normal
bundles. Let d be the maximum of the codimensions of Ni over all i 2 f1; : : : ; kg and
suppose that �j .M /D 0 for 26 j 6 d .

If yA.N / ¤ 0 and � satisfies the (maximal, if � D max) strong Novikov conjecture,
then ˛�.M /¤ 0 2 K�.C���/.

Note that the conditions on the homotopy groups are also slightly different than in
Theorem 1.9. In fact, in Proposition 3.2, we prove our results under a more general
homological condition which includes the restrictions on the homotopy groups from
Theorems 1.9 and 1.10 as a special case (see Lemma 3.3).

If we restrict Theorem 1.10 to a single submanifold, we obtain:

Corollary 1.11 Let � 2 fred;maxg. Suppose N has codimension q and �j .M /D 0

for 26 j 6 q . If yA.N /¤ 0 and � satisfies the (maximal, if �Dmax) strong Novikov
conjecture, then ˛�.M /¤ 0 2 K�.C���/.

In the special case that � is virtually nilpotent (which implies the strong Novikov
conjecture), the consequence of Corollary 1.11 that M cannot admit positive scalar
curvature was proved by Engel [2, Theorem 4.10] using a different method.

Moreover, under the assumptions of Corollary 1.11, even higher yA-genera of N are
obstructions to positive scalar curvature on M . This was also discovered by Engel
using yet a different method; see [3, Application A].
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2 The multipartitioned manifold index theorem

2.1 Coarse index theory

Here we briefly review the relevant aspects of coarse index theory; see [10; 8]. Let
� 2 fred;maxg be fixed in this section. Let X be a proper metric space endowed with an
isometric, free and proper action of a discrete group � . We denote the �–equivariant
Roe algebra of X by C�.X /� . It is defined to be the (spacial if �D red or maximal if
� Dmax) completion of the �-algebra of all �–equivariant locally compact operators
of finite propagation defined over a fixed suitable Hilbert space representation of C0.X /.
Recall the index map (or assembly map) from locally finite K-homology of the quotient
�nX to the K-theory of the equivariant Roe algebra:

(1) Ind� W Klf
�.�nX /! K�.C�.X /�/:

For an explicit definition of the assembly in the nonequivariant case (also pertaining
to � Dmax), see for instance [4, Subsection 4.6]. A straightforward generalization of
the same formulas to the equivariant case then yields the equivariant assembly map
Klf;�
� .X /! K�.C�.X /�/. To obtain the map as displayed in (1), we precompose

with the induction isomorphism Klf
�.�nX /ŠKlf;�

� .X / in analytic K-homology as it is
exhibited via the Paschke duality picture in [8, Lemma 12.5.4; 12, Theorem 4.3.25].

If X is a complete spin m–manifold, we may apply the index map to the class Œ =D�nX �2

Klf
m.�nX / of the spinor Dirac operator on �nX . We will use the notation Ind�. =DX / WD

Ind�.Œ =D�nX �/. If X D zM is the universal covering of a closed spin manifold M and
� D �1.M /, then there is a canonical isomorphism K�.C�. zM /�/Š K�.C���/ and
Ind�. =D zM

/ recovers the Rosenberg index ˛�.M /.

In the following we introduce some notation which will feature in our formulation of
the multipartitioned manifold index theorem. Let � be a countable discrete group and
fix a model for the classifying space B� as a locally finite simplicial complex. As
usual, we denote its universal covering by E� .

Definition 2.1 Let Y be a proper metric space and define

�Klf
i .Y / WD colim

Z
Klf

i .Z/;

�Ci.Y / WD colim
Z

Ki.C�. zZ/�/;

where the colimits range over admissible subsets Z � B� � Y and Z is called
admissible if it is closed and pr2 jZ W Z! Y is proper. Moreover, zZ denotes the lift
of Z to E� �Y .
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Roughly speaking, �Klf
i .Y / behaves like locally finite K-homology in Y and like

ordinary K-homology in the B�–slot.

Recall that a map f W .Y; d/ ! .Y 0; d 0/ between metric spaces is called coarse if
f �1.B0/ is bounded for each bounded set B0 � Y 0 and there exists a function
�W R>0 ! R>0 such that d 0.f .x/; f .y// 6 �.d.x;y// for all x;y 2 Y . Since
the K-theory of the (equivariant) Roe algebra is functorial with respect to (equivariant)
coarse maps [8, Definition 6.3.15], the group �Ci.Y / is functorial in Y with respect
to coarse maps.

The index map (1) induces an index map in the limit Ind� W �Klf
�.Y /! �C�.Y / which

is natural in Y with respect to continuous coarse maps.

Example 2.2 Taking Y D pt to be a point, we have �K�.pt/ D K�.B�/ as de-
fined via the K-theory spectrum and �C�.pt/ Š K�.C���/. Moreover, the index
map Ind� W �Klf

�.pt/! �C�.pt/ recovers the assembly map �W K�.B�/! K�.C���/
featuring in the strong Novikov conjecture.

The external product in K-homology also induces an external product,

�Klf
n.X /˝Klf

d .Y /
�
�!�Klf

nCd .X �Y /:

Proposition 2.3 (suspension isomorphism) Let Y be a proper metric space. There
are isomorphisms s and � which make the diagram

�Klf
�C1

.Y �R/ �C�C1.Y �R/

�Klf
�.Y / �C�.Y /

Šs

Ind�

�Š

Ind�

commute, and such that s.x � Œ =DR�/D x for all x 2 �Klf
�.Y /.

Proof To construct s and � we use the Mayer–Vietoris boundary maps associated to
the cover Y �RD Y �R>0[Y �R60 for K-homology and for the K-theory of the
Roe algebra, respectively. Indeed, take an admissible subset Z � B� �Y �R such
that the cover

(�) Z D
�
Z \ .B� �Y �R>0/

�
[
�
Z \ .B� �Y �R60/

�
is coarsely excisive, so that we have a Mayer–Vietoris sequence both in K-homology
and for the K-theory of the Roe algebra; see for example [9]. Let

sZ W Klf
�C1.Z/

@MV
��! Klf

�.Z \ .B� �Y � f0g//! �Klf
�.Y /;

�Z W K�C1.C�.eZ/�/ @MV
��! K�.C�.eZ \ .E� �Y � f0g//�/! �C�.Y /:
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The family of those admissible subsets where the cover (�) is coarsely excisive is
cofinal in the directed set of all admissible subsets, hence the maps sZ and �Z induce
the required maps s and � in the limit. Moreover, one can verify that the family of
admissible Z where sZ and �Z are both defined and an isomorphism is also cofinal
in the family of all admissible sets. The isomorphism statement relies on showing
that we have a cofinal collection of admissible Z such that Z \ .B� �Y �R>0/ and
Z \ .B� � Y �R60/ are flasque. A more detailed version of this argument can be
found in [14, Proposition 4.2.3].

Thus s and � are isomorphisms. Finally, the claim s.x�Œ =DR�/Dx for all x 2�Klf
�.Y /

is a standard fact in K-homology which follows from @MV.Œ =DR�/D 1 for the Mayer–
Vietoris boundary map associated to RDR>0[R60 .

Corollary 2.4 For every " > 0, we have

�Klf
�.R

q/Š colim
K�B�

Klf
�.K �Rq/

�!

Š colim
K�B�

Klf
�.K �B".0//;

where the colimit ranges over compact subsets K � B� and the second isomorphism
is induced by the inclusion of the open ball �W B".0/ ,!Rq .

Proof Since for a compact subset K � B� the set K�Rq is admissible, we obtain a
canonical map J W colimK�B� Klf

�.K �Rq/! �Klf
�.R

q/. The q–fold iteration of the
suspension isomorphism from Proposition 2.3 yields an isomorphism sqW �Klf

�.R
q/Š

K��q.B�/. An analogous argument as in the proof of Proposition 2.3 produces an
isomorphism tqW colimK�B�.K�Rq/ŠK��q.B�/ such that tqD sqıJ . In particular,
this shows that J must be an isomorphism.

For each K � B� , the restriction �!W Klf
�.K �Rq/! Klf

�.K �B".0// is induced by
the map on K �Rq that is the identity on K �B".0/ and takes K � .Rq nB".0//

to infinity in the one-point compactification of K �B".0/. Since this map induces
a homotopy equivalence between the one-point compactifications, this implies that
�!W Klf

�.K �Rq/! Klf
�.K �B".0// is an isomorphism.

Corollary 2.4 implies that classes in �Klf
�.R

q/ (and thus their images in �C�.Rq/)
depend only on the restrictions to arbitrarily small open subsets. A very similar
localization property was exhibited by Schick and Zadeh [11] and is at the heart of their
approach to the multipartitioned manifold index theorem. Analogously, our approach
to the theorem in the next subsection crucially relies on the localization property from
Corollary 2.4.

Algebraic & Geometric Topology, Volume 17 (2017)



3088 Rudolf Zeidler

2.2 Multipartitioned manifolds

Let f W X !Y be a proper map, uW X !B� classifying a covering pW zX !X . Then
the map u� f W X ! B� �Y induces a map .u� f /�W Klf

�.X /! �Klf
�.Y /. If f is

also coarse, then the �–equivariant map zu� .f ı p/W zX ! E� � Y induces a map
.zu� .f ıp//�W K�.C�. zX /�/! �C�.Y /.

Definition 2.5 A complete Riemannian manifold X is called q–multipartitioned by a
closed submanifold M �X via a continuous coarse map f W X !Rq if f is smooth
near f �1.0/ and 0 2Rq is a regular value with f �1.0/DM .

Definition 2.6 Let X be a complete spin m–manifold that is q–multipartitioned by
M � X via f W X ! Rq . Fix a �–covering pW zX ! X which is classified by a
map uW X ! B� . Consider the lifted map zuW zX ! E� . Then we define the higher
partitioned manifold index of X to be

˛
f;u
PM .X / WD .zu� .f ıp//�.Ind�. =D zX

// 2 �Cm.R
q/:

Furthermore, if M is a closed spin manifold and vW M ! B� a continuous map,
then we set ˛v.M / WD�.v�Œ =DM �/ 2K�.C���/, where �W K�.B�/!K�.C��/ is the
assembly map. If v classifies the universal covering of M this yields the Rosenberg
index ˛�.M /.

Theorem 2.7 (multipartitioned manifold index theorem) In the setup of Definition 2.6
we have

�q.˛
f;u
PM .X //D ˛

ujM .M / 2 Km�q.C���/;

where �qW �C�.Rq/! K��q.C���/ is the q–fold iteration of the suspension isomor-
phism from Proposition 2.3.

Proof We have �q.˛
f;u
PM .X //D Ind�.sq.u�f /�.Œ =DX �// by Proposition 2.3. We first

deal with the product situation X DM �Rq and uD v ı pr1 . In this special case we
have Œ =DX �D Œ =DM �� Œ =DRq � and the statement follows from an iterated application of
the product formula from Proposition 2.3:

�q.˛
f;u
PM .X //D Ind�

�
sq
�
v�.Œ =DM �/� Œ =DRq �

��
D Ind�.v�Œ =DM �/D ˛v.M /:

In the general case we may assume without loss of generality that there exists " > 0

such that f �1.B".0// Š M � B".0/ isometrically. Furthermore, we consider the
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following commutative diagram, where we set v WD ujM and make extensive use of
Proposition 2.3 and Corollary 2.4:

Klf
�.X / �Klf

�.R
q/

Klf
�.f
�1.B".0/// colimK�B� Klf

n.K �B".0//

Klf
�.M �B".0// K��q.B�/

Klf
�.M �Rq/ �Klf

�.R
q/

.u�f /�

�! �!Š sq

Š
.u�f /�

Š
.v�id/�

�! Š

.v�id/�

Š �!

Š

sq

Since f �1.B".0//ŠM �B".0/, the class Œ =DX � 2 Klf
m.X / goes to Œ =DM �� Œ =DRq � 2

Klf
m.M �Rq/ following the left vertical maps in the diagram from top to bottom. Thus

the diagram implies .u�f /�.Œ =DX �/D v�.Œ =DM �/� Œ =DRq � 2 �Klf
m.R

q/. This reduces
the general case to the product situation, which has already been established.

Corollary 2.8 If ˛ujM .M /¤ 0 in the setup of Definition 2.6, then Ind�. =D zX
/¤ 0. In

this case the Riemannian metric on X does not have uniform positive scalar curvature.

2.3 Fiber bundles and codimension one

We are now almost ready to prove Theorems 1.5 and 1.7. Before doing that, we state
the result of Dranishnikov which is needed for Theorem 1.5.

Theorem 2.9 [1, Theorem 3.5] Let zB be the universal covering of a closed aspherical
q–manifold B with asdim.�1.B// < 1. Then there exists k 2 N and a proper
Lipschitz map gW zB �Rk !RqCk of degree 1.

Proof of Theorem 1.5 By Theorem 2.9, we may assume that there exists a proper
Lipschitz map gW zB!Rq of degree 1 (if necessary, replace the entire bundle by its
product with the k–torus S1�� � ��S1 ). Since Lipschitz functions can be approximated
by smooth Lipschitz functions (see for example [5]), we may suppose without loss of
generality that g is smooth. In addition, we may assume that 0 2Rq is a regular value
by Sard’s theorem. Now consider the covering xM �M with �1. xM /DƒD �1.N /.
The bundle projection � W M !B lifts to a �=ƒ–equivariant smooth map x� W xM ! zB .
Let N 0 WD .g ı x�/�1.0/. Then xM is q–multipartitioned by N 0 via f WD g ı x� .
Let uW xM ! Bƒ be the map that classifies the ƒ–covering pW zM ! xM , where

Algebraic & Geometric Topology, Volume 17 (2017)
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zM is the universal covering of M . Since g has degree 1 and each fiber of x� is a
copy of N inside xM over each of which p restricts to the universal covering, we
have that ˛ujN 0 .N 0/ D ˛ƒ.N / 2 Km�q.C�ƒ/. Now consider the homomorphism
‰W K�.C���/! K��q.C��ƒ/ given by the composition

‰W K�.C���/ŠK�.C�. zM /�/!K�.C�. zM /ƒ/
zu�.f ıp/
������!ƒC�.Rq/

�q

��!K��q.C��ƒ/;

where the second map is induced by the inclusion C�. zM /� �C�. zM /ƒ that just forgets
part of the equivariance. We have

‰.˛�.M //D �q.˛
f;u
PM .
xM //D ˛ujN 0 .N 0/D ˛ƒ.N /;

where the first equality is by definition of ˛f;uPM .
xM / and the second equality is due

to Theorem 2.7 applied to f D g ı x� W xM ! Rq and uW xM ! Bƒ. Since ‰ is a
homomorphism this concludes the proof.

Proof of Theorem 1.7 The following is very similar to the previous proof. We again
consider the covering xM!M such that �1

xM Dƒ. With the right choice of basepoints
it is possible to lift the inclusion N ,!M to an embedding N ,! xM . Since N ,! xM

has codimension one with trivial normal bundle and is an isomorphism on �1 , it follows
that xM nN has precisely two connected components. Hence xM is partitioned (or
1–multipartitioned in our terminology above) by N via a map f W xM !R which is
essentially the distance function from N . Let zM be the universal covering of M and
uW xM ! Bƒ the map that classifies the ƒ–covering pW zM ! xM . Again we obtain a
map

‰W K�.C���/Š K�.C�. zM /�/! K�.C�. zM /ƒ/
zu�.f ıp/
������!ƒC�.R/

�
�! K��1.C��ƒ/

such that ‰.˛�.M //D ˛ƒ.N /.

3 Higher yA obstructions via submanifolds

Geometric Setup 3.1 In addition to Geometric Setup 1.1, let N D N1 \ � � � \Nk ,
where N1; : : : ;Nk � M are closed submanifolds with trivial normal bundle that
intersect mutually transversely.1 Let d be the maximum of the codimensions of the
submanifolds Ni for i 2 f1; : : : ; kg. Denote by uW M ! B� a classifying map of
the universal covering and let v WD u ı �W N ! B� . Moreover, let wW N ! Bƒ be a
classifying map of the universal covering of N .

1To be precise, this means that the inclusion N1 � � � � �Nk ,! M k is transverse to the diagonal
embedding 4W M ,!M k in the usual sense.
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We follow the notation of [7] and let ƒ�.B�/ denote the subring of H�.B�IQ/
generated by cohomology classes of degree at most 2.

Proposition 3.2 Let � 2 fred;maxg. In Geometric Setup 3.1 suppose that the induced
map in relative homology satisfies

(2) .u; idN /�W Hk.M;N /! Hk.v/ is injective for 26 k 6 d :

Assume furthermore that one of the following conditions holds:

(a) We have � D max, d 6 2 and there exists x 2 ƒ�.B�/ such that the higher
yA-genus hyA.TN /[ v�.x/; ŒN �i does not vanish.

(b) The group � satisfies the (maximal, if � Dmax) strong Novikov conjecture and
there exists x 2H�.B�IQ/ such that the higher yA-genus hyA.TN /[v�.x/; ŒN �i

does not vanish.

Then ˛�.M / 2 K�.C���/ does not vanish. In particular, M does not admit a metric of
positive scalar curvature.

Proof Let �i 2H�.M IQ/ denote the Poincaré dual of Ni �M . Since Ni has trivial
normal bundle the restriction of �i to Ni vanishes. In particular, ���i D 02H�.N IQ/,
so there exists z�i 2 H�.M;N IQ/ that restricts to �i 2 H�.M IQ/. By the upper
bound on the codimensions, the degree of �i is at most d for each i 2 f1; : : : ; kg.
Note that uW M ! B� is 2–connected and thus .u; idN /�W H1.M;N /! H1.v/ is an
isomorphism by the Hurewicz theorem and the long exact sequence associated to the
triple N ,!M

u
�!B� . Together with (2) this implies that there exists z�i 2 H�.vIQ/

such that .u; idN /
�z�i D z�i for all i 2 f1; : : : ; kg. Restricting these to B� , we get

�i 2 H�.B�IQ/ such that u��i D �i . We have that �D �1[ � � � [ �k D u�.�/ is the
Poincaré dual of N DN1\� � �\Nk , where � WD �1[� � �[�k . For each x 2H�.B�IQ/,
we then compute

hyA.TN /[ v�.x/; ŒN �i D hyA.TN /[ yA.�.N ,!M //[ v�.x/; ŒN �i

D h��yA.TM /[ v�.x/; ŒN �i

D hyA.TM /[u�.x/[ �; ŒM �i

D hyA.TM /[u�.x[ �/; ŒM �i

D hu�.x[ �/; ch.Œ =DM �/i;

where triviality of the normal bundle �.N ,!M / is used in the first equality. In other
words, the particular higher yA-genus of N we started with can be rewritten as a higher
yA-genus of M .
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In case (a), this implies that hz; ch.u�Œ =DM �/i¤ 0, where z WD x[� 2ƒ�.B�/. Hence
by [7, Theorem 1.2], this shows that ˛�.M /D �.u�.Œ =DM �//¤ 0 2 K�.C�max�/. In
case (b), the computation simply shows that 0¤ u�.Œ =DM �/ 2 K�.B�/˝Q. Hence
by the postulated rational injectivity of the (maximal, if � Dmax) assembly map, the
higher index does not vanish.

It remains to put forward some further (sufficient) conditions for the homological
condition (2). For instance, we find it conceptually appealing to consider the square

N M

Bƒ B�

�

w u

j

and ask the induced map in relative homology H�.M;N /! H�.B�;Bƒ/ to be an
equivalence up to a certain degree. Indeed, as it turns out in the lemma below, this is
an easy sufficient condition for (2). Moreover, H�.M;N /! H�.B�;Bƒ/ being an
isomorphism up to degree 2 and surjective in degree 3 is equivalent to surjectivity of
�2.N /!�2.M /. The latter is precisely the condition that we have already encountered
in Remark 1.6.

Lemma 3.3 Suppose that in Geometric Setup 3.1 one of the following conditions
holds:

(a) The map �2.N /! �2.M / is surjective and d D 2.

(a0) The map Hk.M;N /! Hk.B�;Bƒ/ is an isomorphism for 2 6 k 6 d and
surjective for k D d C 1.

(b) The homotopy groups �k.M / vanish for 26 k 6 d .

Then the condition (2) from the statement of Proposition 3.2 is satisfied.

Moreover, for d D 2 the conditions (a) and (a0) are equivalent.

Proof We first show that for d D 2, (a) and (a0) are equivalent. Indeed, consider the
following diagram of homotopy cofiber sequences:

N M C�

Bƒ B� Cj

Cw Cu C

�

w u

j

Algebraic & Geometric Topology, Volume 17 (2017)



An index obstruction to positive curvature on fiber bundles over aspherical manifolds 3093

Since w and u are 2–connected by construction, it follows by the Hurewicz theorem that
Hk.Cw/DHk.Cu/D 0 for k D 1; 2 and that H3.Cw/Š �3.w/ and H3.Cu/Š �3.u/.
In particular, looking at the lower horizontal sequence in the diagram, we see that we
always have Hk.C /D 0 for k D 1; 2. Moreover, since B� and Bƒ are aspherical, we
have �3.u/Š �2.M / and �3.w/Š �2.N /. Thus surjectivity of �2.N /! �2.M /

is equivalent to surjectivity of �3.w/Š H3.Cw/! H3.Cu/Š �3.u/, which, in turn,
is equivalent to H3.C /D 0 since we always have H2.Cw/D 0. Finally, turning to the
right vertical sequence of the diagram, the vanishing of H3.C / is equivalent to (a0) for
d D 2 (since we have always Hk.C /D 0 for k D 1; 2).

To see that (a0) implies (2), we just note that the map Hk.M;N / ! Hk.B�;Bƒ/
factors as Hk.M;N /! Hk.v/! Hk.B�;Bƒ/.

To see that (b) implies (2), consider the long exact sequence of the triple N ,!M
u
!B� :

� � � ! HkC1.u/! Hk.M;N /! Hk.v/! Hk.u/! � � � :

If �k.M / D 0 for 2 6 k 6 d , then uW M ! B� is .dC1/–connected and hence
Hk.u/D 0 for k 6 d C 1. In particular, Hk.M;N /! Hk.v/ is even an isomorphism
for k 6 d .

Finally, Theorems 1.9 and 1.10 follow immediately now by combining cases (a) and (b)
from Proposition 3.2 (applied to x D 1 2 H0.B�/) with cases (a) and (b) from
Lemma 3.3, respectively.
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