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An algebraic model for rational SO.3/–spectra

MAGDALENA KĘDZIOREK

Greenlees established an equivalence of categories between the homotopy category
of rational SO.3/–spectra and the derived category dA.SO.3// of a certain abelian
category. In this paper we lift this equivalence of homotopy categories to the level of
Quillen equivalences of model categories. Methods used in this paper provide the first
step towards obtaining an algebraic model for the toral part of rational G –spectra,
for any compact Lie group G .

55N91, 55P42, 55P60

1 Introduction

Modelling the category of rational G –spectra This paper is a contribution to the
study of G–equivariant cohomology theories and gives a complete analysis for one
class of theories, namely rational SO.3/–equivariant cohomology theories. To start
with, let G be a compact Lie group. Recall that G–equivariant cohomology theories
are represented by G–spectra, so the category of G–equivariant cohomology theories is
equivalent to the homotopy category of G–spectra. The category of G–spectra is quite
complicated, with rich structures coming from two sources: topology and the group
actions, and one cannot expect a complete analysis of either cohomology theories or
spectra integrally.

For a compact Lie group G , the category of rational G–spectra is the category of
G–spectra, but with the model structure that is a left Bousfield localisation of the stable
model structure at the rational sphere spectrum; see for example Barnes [1, Section 2.2].
Thus the weak equivalences are maps which become isomorphisms after applying the
rational homotopy group functors, ie �H

� .�/˝Q for all closed subgroups H in G .

Rationalising the category of G–spectra reduces topological complexity, simplifying
it greatly. At the same time interesting equivariant behaviour remains. In order to
understand this behaviour, we try to find a purely algebraic description of the category,
that is an algebraic model category which is Quillen equivalent to the category of
rational G–spectra. As a result, the homotopy category of the algebraic model is
equivalent to the rational stable G–homotopy category via triangulated equivalences.
Moreover all the homotopy information, such as homotopy limits, in both is the same.
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The conjecture by Greenlees states that for any compact Lie group G there is a nice
graded abelian category A.G/ such that the category dA.G/ of differential objects in
A.G/ with a certain model structure is Quillen equivalent to the category of rational
G–spectra:

G�SpQ 'Q dA.G/:

If we find such dA.G/ we say that dA.G/ is an algebraic model for rational G–spectra.

Existing work There are several examples of specific Lie groups G for which an
algebraic model has been given. Firstly, when G is trivial, it was shown in Shipley
[22, Theorem 1.1] that rational spectra are monoidally Quillen equivalent to chain
complexes of Q–modules. An algebraic model for rational G–spectra for finite G is
described in Schwede and Shipley [21, Example 5.1.2] and simplified in Barnes [2]
and Kędziorek [16]. An algebraic model for rational torus-equivariant spectra was
presented in Greenlees and Shipley [11], whereas a slightly different approach in
Barnes, Greenlees, Kędziorek and Shipley [6] gives a symmetric monoidal algebraic
model for SO.2/. This was recently used by Barnes [4] to provide an algebraic model
for rational O.2/–spectra.

However, there is no algebraic model known for the whole category of rational G–
spectra for an arbitrary compact Lie group G . A first step in this direction, a model for
rational G–spectra over an exceptional subgroup (see Definition 5.1) for any compact
Lie group G , was provided in [16]. This result is used in Section 5.

The group SO.3/ The group SO.3/ is the group of rotations of R3 . This is the natural
next candidate to analyse on the way to understanding the behaviour of dA.G/ for an
arbitrary compact Lie group G . Notice that SO.3/ is significantly more complicated
than all groups considered so far, since it is the first group where the maximal torus
is not normal in the whole group. Dealing with this complication shows a method to
provide an algebraic model for a part of rational G–spectra called toral for any compact
Lie group G . The toral part models those G–spectra whose geometric isotropy is a set
of subgroups of the maximal torus and corresponds to cohomology theories with toral
support. We discuss this further in Remark 3.29.

Main result Let G be SO.3/. In this paper we work with orthogonal G–spectra; see
Mandell and May [18, Definition 2.6]. By Barnes [3, Theorem 4.4], the category of
rational SO.3/–orthogonal spectra splits into three parts: toral, dihedral and exceptional.
This uses idempotents of the rational Burnside ring A.SO.3//Q (see Section 2.3), and
reflects a similar splitting at the level of homotopy categories.

The toral part models rational SO.3/–spectra with geometric isotropy in the family
of subconjugates of the maximal torus SO.2/ in SO.3/. The dihedral part models
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rational SO.3/–spectra with geometric isotropy in the collection of subgroups D, which
consists of all dihedral subgroups of order greater than 4 and O.2/. The last part,
which we call the exceptional part, models rational SO.3/–spectra with geometric
isotropy in the collection of subgroups E, which consists of all remaining subgroups
(see Section 2.1). Thus we are able to work with each of these three parts separately to
obtain an algebraic model for rational SO.3/–spectra.

The main result of this paper is as follows.

Main Theorem There is a zig-zag of Quillen equivalences between rational SO.3/–
orthogonal spectra and the algebraic category dA.SO.3//.

The category dA.SO.3//, which we call the algebraic model for rational SO.3/–
spectra, is a product of three parts, which reflects the splitting of the category of
rational SO.3/–spectra

dA.SO.3//Š dA.SO.3/;T/�Ch.A.SO.3/;D//�
Y

.H /;H2E

Ch.QŒWSO.3/H �/:

Here dA.SO.3/;T/ is the algebraic model for the toral part described in Section 3.2,
Ch.A.SO.3/;D// is the algebraic model for the dihedral part described in Section 4.1
and Ch.QŒWSO.3/H �/ is the algebraic model for the rational SO.3/–spectra over an
exceptional subgroup H discussed in Section 5.1. Since A.SO.3/;T/ is a graded
abelian category we use the notation dA.SO.3/;T/ for differential objects in there. We
use the notation Ch.A.SO.3/;D// for differential graded objects (ie chain complexes)
in A.SO.3/;D/, since A.SO.3/;D/ doesn’t have a grading.

The Main Theorem follows from Proposition 2.6 and Theorems 3.36, 4.11 and 5.4.

Contribution of this paper The new idea in this paper concerns the toral part in
Section 3. Since the maximal torus is not normal in SO.3/ the algebraic model for the
toral part gets more complicated than that for the torus (see Greenlees [9] and Barnes,
Greenlees, Kędziorek and Shipley [6]) or O.2/ (see Barnes [4]). To control these
complications we use the following method. We consider the restriction–coinduction
adjunction between the toral part of rational SO.3/–spectra and the toral part of rational
O.2/–spectra. Here O.2/ is the normaliser of the maximal torus in SO.3/. This
adjunction is a Quillen adjunction, but not a Quillen equivalence.

However, the cellularisation principle of Greenlees and Shipley [12] (see Section 2.2.2
for the definition of cellularisation) gives a Quillen equivalence between the toral part
of rational SO.3/–spectra and a certain cellularisation of the toral part of rational
O.2/–spectra; see Theorem 3.28. Now it is enough to cellularise the algebraic model
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for the toral part of rational O.2/–spectra and simplify this category (see Section 3.4)
to obtain the model for the toral part of rational SO.3/–spectra.

The idea of using the restriction–coinduction adjunction between the toral part of rational
G–spectra and the toral part of rational NGT–spectra (where T is the maximal torus
in G ) together with the cellularisation principle allows one to provide an algebraic
model for the toral part of rational G–spectra, for any compact Lie group G ; see
Barnes, Greenlees and Kędziorek [5].

The method to obtain the algebraic model for the dihedral part of rational SO.3/–spectra
is a slight alteration of the method for the dihedral part for rational O.2/–spectra
from [4] and is presented in Section 4.2. Some changes in the proof from [4] are
needed to take into account the fact that our dihedral part excludes subgroups conjugate
to D2 and D4 (for reasons explained in Section 2.1), whereas the dihedral part of
O.2/–spectra contains them. However, the idea of the proof remains the same.

Finally, an algebraic model of the exceptional part is an application of the methods
from Kędziorek [16]. We point out that this is the only part of the paper that considers
monoidal structures and gives a monoidal algebraic model.

Outline of the paper This paper is structured as follows. In Section 2 we present
some general results about subgroups of SO.3/, its rational Burnside ring A.SO.3//Q
and the idempotents used to split the category of rational SO.3/–spectra into three
parts: toral, dihedral and exceptional (Proposition 2.6). Section 3 is the heart of this
paper. It contains the description of the algebraic model for the toral part of rational
SO.3/–spectra. It also presents Quillen equivalences used in obtaining this algebraic
model from the algebraic model for toral rational O.2/–spectra. Section 4 contains the
algebraic model for the dihedral part. Finally, in Section 5 we recall the results from
[16] to give an algebraic model for the exceptional part of rational SO.3/–spectra.

Notation We will stick to the convention of drawing the left adjoint above (or to the
left of) the right one in any adjoint pair. We use the notation G�Sp for the category of
G–equivariant orthogonal spectra.

Acknowledgements This work is based on a part of my PhD thesis (under the super-
vision of John Greenlees) and I would like to thank John Greenlees and David Barnes
for many useful discussions and comments.

2 General results for SO.3/

We start this part by considering the closed subgroups of SO.3/ in Section 2.1. We
discuss the space F.G/=G , which is the orbit space of all closed subgroups with
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finite index in their normaliser, where the topology is induced from the Hausdorff
metric; see [17, Section V.2]. In Section 2.2 we recall two ways of changing a given
stable model structure: left Bousfield localisation at an object and cellularisation. We
will use these techniques repeatedly throughout the paper. In Section 2.3 we discuss
the idempotents of the rational Burnside ring A.SO.3//Q and the induced splitting of
rational SO.3/–orthogonal spectra. The main part of Section 2.3 consists of the analysis
of two adjunctions: the induction–restriction and restriction–coinduction adjunctions
in relation to localisations of categories of equivariant spectra at idempotents.

2.1 Closed subgroups of SO.3/

Recall that SO.3/ is the group of rotations of R3 . We choose a maximal torus T in
SO.3/ with rotation axis the z–axis. We divide the closed subgroups of G into three
types: toral T , dihedral D and exceptional E. This division is motivated by the choice
of idempotents in the rational Burnside ring for SO.3/ that we will use to split the
category of rational SO.3/–spectra.

The toral part consists of all tori in SO.3/ and all cyclic subgroups of these tori. Note
that for any natural number n there is one conjugacy class of subgroups from the toral
part of order n in SO.3/.

The dihedral part consists of all dihedral subgroups D2n (dihedral subgroups of or-
der 2n) of SO.3/ where n is greater than 2, together with all subgroups O.2/. Note
that O.2/ is the normaliser for itself in SO.3/. Moreover, there is only one conjugacy
class of a dihedral subgroup D2n for each n greater than 2, and the normaliser of D2n

in SO.3/ is D4n for n > 2. Notice that we excluded subgroups in the conjugacy
classes of D2 and D4 from this part. Conjugates of D2 are excluded from the dihedral
part, since D2 is conjugate to C2 in SO.3/ and that subgroup is already taken into
account in the toral part. Conjugates of D4 are excluded from the dihedral part since
their normalisers in SO.3/ are †4 (symmetries of a cube), thus their Weyl groups
†4=D4 are of order 6, whereas all other finite dihedral subgroups D2n , n> 2 have
Weyl groups of order 2. For simplicity we decided to treat D4 separately and put it
into the exceptional part.

There are five conjugacy classes of subgroups which we call exceptional, namely SO.3/
itself, the rotation group †4 of a cube, the rotation group A4 of a tetrahedron, the
rotation group A5 of a dodecahedron and the dihedral group D4 of order 4. Normalisers
of these exceptional subgroups are as follows: †4 is equal to its normaliser, A5 is
equal to its normaliser and the normaliser of A4 is †4 , as is the normaliser of D4 .

Consider the space F.SO.3//=SO.3/ of conjugacy classes of subgroups of SO.3/ with
finite index in their normalisers. The topology on this space is induced by the Hausdorff
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metric. We will use this space for choosing idempotents of the rational Burnside ring
in Section 2.3. The topology on E is discrete, T consists of one point T and D forms
a sequence of points converging to O.2/, as shown in the following diagram:

space F.SO.3//=SO.3/part .subspace/

E SO.3/ †4 A4 A5 D4

T T

D D6 D8 D10 : : :
O.2/

Before we go any further we recall the space F.O.2//=O.2/. It consists of two parts:
toral and dihedral. To distinguish between these parts and their analogues for SO.3/
we choose the notation zT for the toral part of O.2/ and zD for the dihedral part of O.2/

(note that in [4] the notation without tilde was used for the toral and dihedral parts
of O.2/). We will stick to this new notation convention throughout the paper. The
toral part is just one point T corresponding to the maximal torus and all its subgroups.
The dihedral part corresponds to all dihedral subgroups together with O.2/ and we
present it below:

space F.O.2//=O.2/part .subspace/
zT T

zD D2 D4 D6 D8 D10 : : :
O.2/

The only difference in the dihedral parts for O.2/ and SO.3/ is captured by the fact
that the dihedral part for O.2/ is a disjoint union of D and two points (corresponding
to D2 and D4 , respectively). At a first glance the toral part for SO.3/ looks the same
as the toral part for O.2/. However, for SO.3/ it contains information about D2 (since
D2 is conjugate to C2 in SO.3/), whereas for O.2/ it does not. These differences will
become significant in Section 2.3.

2.2 Left Bousfield localisation and cellularisation

In this section we briefly recall two ways of changing a given stable model structure:
left Bousfield localisation at an object and cellularisation. We will repeatedly use them
in the rest of the paper.
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2.2.1 Left Bousfield localisation at an object For details on left Bousfield locali-
sation at an object we refer the reader to [18, Section IV.6]. We recall the following
result:

Theorem 2.1 [18, Chapter IV, Theorem 6.3] Suppose E is a cofibrant object in
G�Sp or a cofibrant based G–space. Then there exists a new model structure on the
category G�Sp, where a map f W X ! Y is

� a weak equivalence if it is an E–equivalence, ie IdE ^f W E ^X !E ^Y is a
weak equivalence;

� a cofibration if it is a cofibration with respect to the stable model structure;

� a fibration if it has the right lifting property with respect to all trivial cofibrations.

The E–fibrant objects Z are the E–local objects, ie those such that Œf;Z�G W ŒY;Z�G!
ŒX;Z�G is an isomorphism for all E–equivalences f . E–fibrant approximation gives
Bousfield localisation �W X !LEX of X at E .

We use the notation LE.G�Sp/ for the model category described above and will refer
to it as a left Bousfield localisation of the category of G–spectra at E . If E and F are
cofibrant objects in G�Sp then the localisation first at E and then at F is the same
model category as the localisation at E ^F (and F ^E ).

Recall that an E–equivalence between E–local objects is a weak equivalence (see [13,
Theorems 3.2.13 and 3.2.14]).

In this paper we use the above definition with X 2 G�Sp of the form eSQ (for
various e ) where e is an idempotent of a rational Burnside ring A.G/Q and SQ is a
rational sphere spectrum (see [2, Section 5] for construction of the rational sphere spec-
trum SQ ). Since we use idempotents of a rational Burnside ring, all our localisations
are smashing (see [19] for definition of a smashing localisation). Thus they preserve
homotopically compact generators (see Definition 2.5) since the fibrant replacement
preserves infinite coproducts.

2.2.2 Cellularisation A cellularisation of a model category is a right Bousfield
localisation at a set of objects. Such a localisation exists by [13, Theorem 5.1.1]
whenever the model category is right proper and cellular. When we are in a stable
context the results of [7] can be used.

In this section we recall the notion of cellularisation when C is a stable model category
and some basic definitions and results.
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Definition 2.2 Let C be a stable model category and K a stable set of objects of C,
ie a set such that the class of K–cellular objects of C is closed under desuspension
(note that the class is always closed under suspension). We call K a set of cells. We
say that a map f W A! B of C is a K–cellular equivalence if the induced map

Œk; f �C�W Œk;A�
C
�! Œk;B�C�

is an isomorphism of graded abelian groups for each k 2K . An object Z 2 C is said
to be K–cellular if

ŒZ; f �C�W ŒZ;A�
C
�! ŒZ;B�C�

is an isomorphism of graded abelian groups for any K–cellular equivalence f .

Definition 2.3 A right Bousfield localisation or cellularisation of C with respect to a
set of objects K is a model structure K�cell�C on C such that

� the weak equivalences are K–cellular equivalences,

� the fibrations of K�cell�C are the fibrations of C,

� the cofibrations of K�cell�C are defined via left lifting property.

By [13, Theorem 5.1.1], if C is a right proper, cellular model category and K a set
of objects in C, then the cellularisation of C with respect to K , K�cell�C, exists
and is a right proper model category. The cofibrant objects of K�cell�C are called
K–cofibrant and are precisely the K–cellular and cofibrant objects of C.

The cellularisation of a proper, cellular, stable model category at a stable set of cofibrant
objects K is very well behaved (see [7, Theorem 5.9]), in particular it is proper, cellular
and stable. Left properness follows from [7, Proposition 5.8].

There is another important property we will often want the cells to satisfy, which makes
right localisation behave in an even more tractable manner; see [7, Section 9]. This
property is variously called smallness, compactness or finiteness. We choose to call it
homotopical compactness, since there are several different meanings of compactness in
the literature.

Definition 2.4 [21, Definition 2.1.2] An object X in a stable model category C is
homotopically compact if for any family of objects fAigi2I the canonical mapM

i2I

ŒX;Ai �
C
!

h
X;
a
i2I

Ai

iC
is an isomorphism in the homotopy category of C.
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Recall that a homotopy category of a stable model category is triangulated; see
Definition 7.1.1 of [14]. In this setting we can make the following definition after
Definition 2.1.2 of [21].

Definition 2.5 Let C be a triangulated category with infinite coproducts. A full
triangulated subcategory of C (with shift and triangles induced from C) is called
localising if it is closed under coproducts in C. A set P of objects of C is called a
set of generators if the only localising subcategory of C containing objects of P is
the whole of C. An object of a stable model category is called a generator if it is a
generator when considered as an object of the homotopy category.

Using [21, Lemma 2.2.1] it is routine to check that if K consists of homotopically
compact objects of C then K is a set of generators for K�cell�C. Hence we know a
set of generators for each of our cellularisations.

Notice that derived functors of both left and right Quillen equivalences preserve homo-
topically compact objects.

2.3 Idempotents, splitting and reductions

By the results of tom Dieck [8, Propositions 5.6.4 and 5.9.13] there is an isomorphism
of rings

A.SO.3//Q D C.F.SO.3//=SO.3/;Q/:

Here A.SO.3//Q is the rational Burnside ring for SO.3/ and C.F.SO.3//=SO.3/;Q/
denotes the ring of continuous functions on the orbit space F.SO.3//=SO.3/ with
values in the discrete space Q.

Thus it is clear that idempotents of the rational Burnside ring of SO.3/ correspond to
the characteristic functions on subspaces of the orbit space F.SO.3//=SO.3/ discussed
in Section 2.1 which are both open and closed.

In this paper we use the following idempotents in the rational Burnside ring of SO.3/:
eT corresponding to the characteristic function of the toral part T , ie the conjugacy
class of the torus T ; eD corresponding to the characteristic function of the dihedral
part D; and eE corresponding to the characteristic function of the exceptional part E.
Since E is a disjoint union of five points, it is in fact a sum of five idempotents, one for
every (conjugacy class of a) subgroup in the exceptional part: eSO.3/ , e†4

, eA4
, eA5

and eD4
. We use a simplified notation eH to mean e.H /SO.3/

here.

Analogously, we will use the notation ezT for the idempotent in the rational Burnside
ring of O.2/ corresponding to the toral part zT and ezD for the idempotent corresponding
to the dihedral part zD of O.2/.
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For an idempotent e2A.SO.3//Q and a rational sphere spectrum SQ (see [2, Section 5]
for the construction) we define eSQ to be the homotopy colimit (a mapping telescope)
of the diagram

SQ
e
�!SQ

e
�!SQ

e
�!� � � :

We ask for this spectrum to be cofibrant either by choosing a good construction of
homotopy colimit, or by cofibrantly replacing the result in the stable model structure
for SO.3/–spectra. Now, by [18, Chapter IV, Theorem 6.3] (see also Theorem 2.1) the
following left Bousfield localisations exist:

LeTSQ.SO.3/�Sp/; LeDSQ.SO.3/�Sp/; LeESQ.SO.3/�Sp/:

Also, LeH SQ.SO.3/�Sp/ exists for any exceptional subgroup H 2 E.

The first step on the way towards an algebraic model for rational SO.3/–spectra is to
split this category using the above idempotents of the Burnside ring A.SO.3//Q . By
[3, Theorem 4.4] we get the following decomposition.

Proposition 2.6 The adjunction

SO.3/�SpQ

4

��

LeTSQ.SO.3/�Sp/�LeDSQ.SO.3/�Sp/�LeESQ.SO.3/�Sp/

…

OO

is a strong monoidal Quillen equivalence, where SO.3/�SpQ denotes the category of
rational SO.3/ orthogonal spectra, the left adjoint is the diagonal functor and the right
adjoint is the product.

The main idea is to relate each of these localised categories to corresponding ones
for simpler groups. Thus we recall that an inclusion i W H ! G of a subgroup H

into a group G induces two adjoint pairs at the level of orthogonal spectra, induction–
restriction and restriction–coinduction (see [18, Section V.2]):

G�Sp i� // N�Sp

FH .GC;�/

jj

GC^H�

tt

These are both Quillen pairs with respect to the usual stable model structures on both
sides. On the way to obtaining an algebraic model for rational SO.3/–spectra we will
relate both the toral and dihedral parts of this category to the corresponding parts for
rational O.2/–spectra. The natural choice of adjunction between SO.3/–spectra and
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O.2/–spectra would be the induction and restriction functors. However, this turns out
not to be a Quillen adjunction between the toral parts, as we discuss below.

Proposition 2.7 Suppose eT is the idempotent in A.SO.3//Q corresponding to the
characteristic function of the toral part T (ie all subconjugates of the maximal torus
of SO.3/) and ezT is the idempotent in A.O.2//Q corresponding to the characteristic
function of the toral part zT (ie all subconjugates of the maximal torus of O.2/). Then

i�W LeTSQ.SO.3/�Sp/ // LezTSQ.O.2/�Sp/ WSO.3/C ^O.2/�
oo

is not a Quillen adjunction.

Proof It is enough to show that SO.3/C^O.2/� does not preserve acyclic cofibrations.
This argument is the same as the one in [16, Proposition 4.5], since D2 is conjugate
to C2 in SO.3/ and thus i�.eT/¤ ezT .

Although the adjunction above does not behave well with respect to these model
structures, the one with restriction and coinduction does, as is shown in Proposition 2.12
below.

Proposition 2.8 Suppose eD is the idempotent of A.SO.3//Q corresponding to all
dihedral subgroups of order greater than 4 and all subgroups isomorphic to O.2/. Then

i�W LeDSQ.SO.3/�Sp/ // Li�.eD/SQ
.O.2/�Sp/ WSO.3/C ^O.2/�

oo

is a Quillen adjunction.

Proof The proof follows the same pattern as the proof of [16, Proposition 4.4]. It
was a Quillen adjunction before localisation by [18, Chapter V, Proposition 2.3] so the
left adjoint preserves cofibrations. It preserves acyclic cofibrations as SO.3/C^O.2/�

preserved acyclic cofibrations before localisation and we have a natural (in O.2/–
spectra X ) isomorphism

.SO.3/C ^O.2/X /^ eDSQ Š SO.3/C ^O.2/ .X ^ i�.eDSQ//:

It turns out that the other adjunction — restriction and coinduction adjunction — gives
a Quillen pair under general conditions on localisations.

Lemma 2.9 [16, Lemma 4.6] Suppose G is any compact Lie group, i W H ! G is
an inclusion of a subgroup and V is an open and closed set in F.G/=G . Then the
adjunction

i�W LeV SQ.G�Sp/ //
Li�.eV /SQ

.H�Sp/ WFH .GC;�/oo
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is a Quillen pair. We use the notation eV here for the idempotent corresponding to the
characteristic function on V .

In the next sections we will repeatedly use this lemma, mainly in situations where after
a further localisation of the right-hand side we get a Quillen equivalence. To prepare
for that, we distinguish the following two cases.

Corollary 2.10 Let D denote the dihedral part of SO.3/ and eD the corresponding
idempotent. Let i W O.2/! SO.3/ be an inclusion. Then

i�W LeDSQ.SO.3/�Sp/ //
Li�.eD/SQ

.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a Quillen adjunction.

Remark 2.11 Note that the idempotent on the right-hand side i�.eD/ corresponds
to the dihedral part of O.2/ excluding all subgroups D2 and D4 . Thus i�.eD/ D

i�.eD/ezD .

Proposition 2.12 Let i W O.2/! SO.3/ be an inclusion. Then

i�W LeTSQ.SO.3/�Sp/ //
LezTSQ.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a strong monoidal Quillen adjunction, where the idempotent on the right-hand side
corresponds to the family of all subgroups of O.2/ subconjugate to a maximal torus
SO.2/ in O.2/.

Proof This follows from Lemma 2.9 and the composition of Quillen adjunctions

LeTSQ.SO.3/�Sp/
i�
//
Li�.eT/SQ

.O.2/�Sp/
FO.2/.SO.3/C;�/
oo

Id
//
LezTSQ.O.2/�Sp/

Id
oo :

Note that i�.eTSQ/ has nontrivial geometric fixed points not only for all cyclic sub-
groups of O.2/ and SO.2/, but also for D2 , as D2 is conjugate to C2 in SO.3/. To
ignore that and take into account only the toral part we use the fact that ezTi�.eT/D ezT ,
which implies that the identity adjunction above is a Quillen pair.

3 The toral part

In this section we use results from [6] and [4] to obtain an algebraic model for the
toral part of rational SO.3/–spectra. The first paper establishes a zig-zag of symmetric
monoidal Quillen equivalences between rational SO.2/–spectra, while the second one
lifts this comparison to one compatible with the W DO.2/=SO.2/–action to obtain
an algebraic model for the toral part of rational O.2/–spectra.
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We begin by describing the category dA.O.2/; zT/ in Section 3.1 and dA.SO.3/;T/
in Section 3.2. Then we proceed to establish the comparison between the toral part of
rational SO.3/–orthogonal spectra and its algebraic model, dA.SO.3/;T/.

3.1 Categories A.O.2/; zT/ and dA.O.2/; zT/

Before we are ready to describe the category A.SO.3/;T/ we have to introduce the
category A.O.2/; zT/. We give a short description of A.O.2/; zT/ as a category on the
objects of A.SO.2// with W –action. Recall that W DO.2/=SO.2/ is the group of
order 2.

Material in this section is based on [9] and [4, Section 3].

Definition 3.1 Let F denote the family of all finite cyclic subgroups in O.2/. Then
we define a ring in the category of graded QŒW �–modules

OF WD

Y
H2F

QŒcH �

where each cH has degree �2 and w (the nontrivial element of W ) acts on each cH

by �1. For simplicity we set c WD c1 .

We use the notation E�1OF for the colimit

colimk OFŒc
�1; c�1

C2
; : : : ; c�1

Ck
�

of localisations, where the maps in the colimit are the inclusions. E�1OF is an OF–
module using the inclusion

OF! E�1OF:

Notice that we can perform a similar construction on the ring �OF WD .1� e1/OF and
call it BE�1OF , where e1 is the projection on the first factor in the ring OF . Then
another way to define E�1OF is as QŒc; c�1��BE�1OF . This last description of E�1OF

will be useful when we compare this model to the one for the toral part of rational
SO.3/–spectra.

Definition 3.2 An object of A.O.2/; zT/ consists of a triple .M;V; ˇ/ where M is an
OF–module in QŒW �–modules, V is a graded rational vector space with a W –action
and ˇ is a map of OF–modules (in QŒW �–modules)

ˇW M ! E�1OF˝V

such that

.?/ E�1OF˝OF
ˇ is an isomorphism of E�1OF–modules in QŒW �–modules.
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A morphism between two such objects .˛; �/W .M;V; ˇ/! .M 0;V 0; ˇ0/ consists of a
map of OF–modules ˛W M !M 0 and a map of graded QŒW �–modules such that the
relevant square commutes.

Instead of modules over OF in QŒW �–modules we can consider modules over OFŒW �

in Q–modules, where OFŒW � is a group ring with a twisted W –action (namely
wcH D�cHw ). We will use this description in the next section. Similarly, E�1OFŒW �

denotes a group ring with a twisted W –action.

Definition 3.3 An object of dA.O.2/; zT/ is an object of A.O.2/; zT/ equipped with
a differential, or in other words it consists of a triple .M;V; ˇ/ where M is an OF–
module in Ch.QŒW �/, V is an object of Ch.QŒW �/ and ˇ is a map of OF–modules
(in Ch.QŒW �/)

ˇW M ! E�1OF˝V

such that

.?/ E�1OF˝OF
ˇ is an isomorphism of E�1OF–modules in Ch.QŒW �/.

A morphism in this category is a morphism in A.O.2/; zT/ which commutes with the
differentials.

We proceed to discuss the properties of the category dA.O.2/; zT/. Firstly, all limits
and colimits exist in dA.O.2/; zT/, by an argument analogous to [6, Definition 2.2.1].

The existence of a model structure on dA.O.2/; zT/ follows from [9, Appendix B].

Theorem 3.4 There is a stable, proper model structure on the category dA.O.2/; zT/

where the weak equivalences are the homology isomorphisms. The cofibrations are the
injections and the fibrations are defined via the right lifting property. We call this model
structure the injective model structure.

The existence of another, monoidal, model category structure on d.A.O.2/; zT// was
established in [4]. However, since we are not considering monoidality of the algebraic
model in this paper, the injective model structure on dA.O.2/; zT/ is enough for our
purposes.

3.2 Categories A.SO.3/;T/ and dA.SO.3/;T/

Looking at the toral parts of the spaces of subgroups of SO.3/ and O.2/ we see that
the stabiliser of the trivial subgroup is connected in SO.3/, while it is not in O.2/.
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This is a consequence of the fact that the maximal torus is not normal in SO.3/ and it
is the main ingredient capturing the difference between the algebraic models for the
toral part of rational SO.3/–spectra and the toral part of rational O.2/–spectra.

Let us denote by FSO.3/ the family of all finite cyclic subgroups in SO.3/. Then we
use the simplified notation OF WD OFSO.3/

, by which we mean a graded ring

QŒd ��
Y

.H /2FSO.3/;H¤1

QŒc.H /�

where d is in degree �4 and all c.H / are in degree �2. The nontrivial element w 2W

acts on it by fixing d and sending c.H / to �c.H / for all subgroups H 2 FSO.3/ ,
H ¤ 1.

We define the ring OFŒW � as a product of QŒd � (with trivial W –action) and a group ring
.1� e1/OFŒW � with the twisted W –action, that is wc.H / D�c.H /w for H 2 FSO.3/ ,
H ¤ 1.

Recall that c was the element of the first factor of the ring OF (see Definition 3.1).
There is an adjunction

Q–mod
Triv

// QŒW �–mod
.�/W

oo

where .QŒc�/W DQŒd � (recall that QŒc� is the QŒW �–module with W –action given
by wc D�c ). Thus using for example [20, Section 3.3] we have the adjunction

QŒd �–mod in Q–mod
QŒc�˝QŒd ��

// QŒc�–mod in QŒW �–mod:
.�/W

oo

This extends to give the following result.

Proposition 3.5 There is an adjunction

OF˝OF
�W OFŒW ��mod //

OFŒW ��mod W.�/W � Id:oo

Proof The unit of this adjunction is the identity and the counit is the natural inclusion.

We can compose this adjunction with the usual restriction–induction adjunction

OFŒW �–mod
E�1OF˝OF

�
//
E�1OFŒW �–mod

res
oo

to get the adjunction

(3-1) OFŒW �–mod
E�1OF˝O

F
�
//
E�1OFŒW �–mod

U
oo

in Q–modules.
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We define the category A.SO.3/;T/ as follows.

Definition 3.6 An object in A.SO.3/;T/ consists of a triple .M;V; ˇ/ where M is
an OFŒW �–module in Q–modules, V is a graded rational vector space with a W –action
and ˇ is a map of OFŒW �–modules

ˇW M ! U.E�1OF˝V /

such that the adjoint (using (3-1)) satisfies

.?/ E�1OF˝OF
M ! E�1OF˝V is an isomorphism of E�1OFŒW �–modules.

A morphism between two such objects .˛; �/W .M;V; ˇ/! .M 0;V 0; ˇ0/ consists of a
map of OFŒW �–modules ˛W M !M 0 and a map of graded QŒW �–modules such that
the relevant square commutes.

Notice that the condition on the map ˇ implies that the image of e1M must lie in
.QŒc; c�1�˝V /W , ie in W –fixed points. From now on we will abuse the notation
slightly and leave out the functor U (3-1) in the codomain of ˇ in A.SO.3/;T/.

Remark 3.7 There are no idempotents in the category A.SO.3/;T/; however, the
category of OF–modules can be split, for example as QŒd �–mod� .1� e1/OF–mod.
We will use that property in the proof of Proposition 3.9.

Definition 3.8 An object of dA.SO.3/;T/ consists of an OFŒW �–module M equipped
with a differential and a chain complex of QŒW �–modules V together with a map
of OFŒW �–modules 
 W M ! E�1OF˝V which commutes with differentials. A
differential on a OFŒW �–module M consists of maps dnW Mn ! Mn�1 such that
dn�1 ıdn D 0 and xcdn D dn�2xc , where xc consists of elements c.H / on the H–factor,
for all .H / 2 F , H ¤ 1, and 0 on the first factor, and where xddn D dn�4

xd ; here xd is
d on the first factor and 0 everywhere else in the product.

A morphism in this category is a morphism in A.SO.3/;T/ which commutes with the
differentials.

We proceed to study the adjunction relating A.SO.3/;T/ and A.O.2/; zT/.

Proposition 3.9 We have the following adjunction, where the adjoints are defined in
the proof:

F W A.SO.3/;T/ //
A.O.2/; zT/ WR:oo

Proof Take X D .
 W M ! E�1OF˝V / in dA.SO.3/;T/. Then define

F.X / WD .x
 W OF˝OF
M ! E�1OF˝V /;
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where x
 is the adjoint of 
 (since OF˝OF
� is a left adjoint from OFŒW �–modules to

OFŒW �–modules; see Proposition 3.5). It is easy to see that this construction gives an
object in A.O.2/; zT/, ie that it satisfies the condition .?/ from Definition 3.2. Since
E�1OF˝OF

x
 agrees with E�1OF˝OF

 in E�1OFŒW �–modules, it is an isomorphism

by condition .?/ from Definition 3.6.

Now take Y D .ıW N ! E�1OF˝U / in dA.O.2/; zT/. Then define

R.Y / WD
�
ı ı i W .e1N /W � .1� e1/N !N ! E�1OF˝U

�
;

where i is the inclusion.

To see that R.Y /2A.SO.3/;T/, we show the adjoint condition .?/ from Definition 3.6
holds for ı ı i .

Thus we want to show that

ı ı i W E�1OF˝OF
..e1N /W � .1� e1/N /! E�1OF˝U

is an isomorphism of E�1OFŒW � modules.

Notice that we have a natural map

E�1OF˝OF
."N /W E

�1OF˝OF
..e1N /W � .1� e1/N /! E�1OF˝OF

.N /

where " is the counit of the adjunction from Proposition 3.5.

After applying e1 , the map e1"N is an isomorphism for finitely generated modules N .
Since every module is a colimit of finitely generated ones and ˝ commutes with
colimits, e1"N is an isomorphism for any N . Since "N is an isomorphism away
from e1 it is an isomorphism. To complete the argument notice that the diagram

E�1OF˝OF
..e1N /W � .1� e1/N /

E�1OF˝OF
."N /
//

ııi
**

E�1OF˝OF
.N /

xı

��

E�1OF˝U

commutes, where xı is the adjoint of ı (see Proposition 3.5).

It is easy to see that this is an adjoint pair, since the unit is the identity and the counit
is the pair of maps ."; Id/ and the identity on graded QŒW �–modules. Here " is the
counit of the adjunction in Proposition 3.5.

Proposition 3.10 All small limits and colimits exist in A.SO.3/;T/.
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Proof Suppose we have a diagram of objects Mi ! E�1OF ˝ Vi in A.SO.3/;T/
indexed by a category I . The colimit of this diagram is

colimi Mi! E�1OF˝ .colimi Vi/:

If the diagram is finite, than the limit is formed in A.SO.3/;T/ in a similar way:

lim
i

Mi! E�1OF˝ .lim
i

Vi/:

To construct infinite limits in a category A.SO.3/;T/ we use the same method as in
[6, Definition 2.2.1]. However, since we don’t use the construction of infinite limits
anywhere in this paper, we skip the technicalities.

Verifying that these constructions define limits and colimits in A.SO.3/;T/ is routine.

Let gQŒW ��mod denote the category of graded QŒW �–modules. Recall that an
OFŒW �–module M is F–finite if it is a direct sum of its submodules e.H /M :

M D
M
.H /2F

e.H /M;

and let tors�OFŒW �f�mod denote the category of F–finite torsion OFŒW �–modules.
We define two functors relating A.SO.3/;T/ to some simpler categories, which will
allow us to create two classes of injective objects in A.SO.3/;T/.

Definition 3.11 Define the functor eW gQŒW ��mod!A.SO.3/;T/ by

e.V / WD .P ! E�1OF˝V /;

where

e1P DQŒd; d�1�˝V C˚†2QŒd; d�1�˝V � and .1�e1/P D .1�e1/E
�1OF˝V:

Here V C is the W –fixed part of V , V � is the �1 eigenspace and † is the suspension.
The structure map is essentially just an inclusion.

Define a functor f W tors�OFŒW �f�mod!A.SO.3/;T/ by

f .N / WD .N ! 0/:

The domain for this functor was chosen so that f .N /2A.SO.3/;T/, that is, it satisfies
condition .?/ from Definition 3.6.
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Proposition 3.12 For any object X D .
 W M ! E�1OF˝U / in ADA.SO.3/;T/,
any V in QŒW ��mod and any N in tors�OFŒW �f�mod, we have natural isomor-
phisms

HomA.X; e.V //D HomQŒW �.U;V /;

HomA.X; f .N //D HomOFŒW �.M;N /:

Remark 3.13 This proposition implies that an object e.V / is injective for any V and
that if N is an injective F–finite torsion OFŒW �–module then f .N / is also injective.

Lemma 3.14 The category A.SO.3/;T/ is a (graded) abelian category of injective
dimension 1. Moreover it is split, ie every object X of A.SO.3/;T/ has a splitting
X D XC ˚ X� such that Hom.Xı;Y�/ D 0 and Ext.Xı;Y�/ D 0 if ı ¤ � and
.†X /C D†.X�/ and .†X /� D†.XC/.

Proof The category A.SO.3/;T/ is enriched in abelian groups and by construction
of all limits and colimits we can conclude that it is an abelian category.

For an object X D .
 W M ! E�1OF ˝ V / we construct the injective resolution of
length 1 as follows. Let TM WD ker 
 , which is torsion. Thus, since QŒd � and all
QŒc.H /�ŒW � are of injective dimension 1, there is an injective resolution of F–finite
torsion OFŒW �–modules

0! TM ! I 0! J 0! 0;

where I 0;J 0 are injective F–finite torsion OFŒW �–modules.

Let us use simplified notation below. Let P denote the OFŒW �–module from the
definition of e.V / (see Definition 3.11).

If Q is the image of 
 then J 00 D P=Q is divisible and an F–finite torsion OFŒW �–
module and hence injective. We form a diagram of OFŒW �–modules

0

��

0

��

0

��

0 // TM //

��

M //

��

Q //

��

0

0 // I 0 //

��

I 0˚P //

��

P //

��

0

0 // J 0 //

��

J 0˚J 00 //

��

J 00 //

��

0

0 0 0
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where the middle vertical column is obtained using the horseshoe lemma (see for exam-
ple [23, Lemma 2.2.8]), since left and right vertical columns are injective resolutions
of TM and Q, respectively. Thus we get a diagram

0 // M //



��

I 0˚P //

��

J 0˚J 00 //

��

0

0 // E�1OF˝V // E�1OF˝V // 0 // 0

which is the required resolution of 
 W M ! E�1OF˝V in A.SO.3/;T/.

Finally, the splitting is given by taking the even- and odd-graded parts. This satisfies the
required conditions since the resolution above of an object Xı is entirely in parity ı .

3.3 Model category dA.SO.3/;T/

In this section we will concentrate on the model category dA.SO.3/;T/ and we will
investigate its properties. First notice that all constructions from the previous section
(limits and colimits, adjoints F and R) pass naturally to the category dA.SO.3/;T/.

By the results of the previous section and [9, Proposition 4.1.3] we can construct the
derived category of A.SO.3/;T/ by taking objects with differential in A.SO.3/;T/
and inverting the homology isomorphisms.

Theorem 3.15 There is an injective model structure on the category dA.SO.3/;T/
where weak equivalences are homology isomorphisms and cofibrations are monomor-
phisms.

Proof Since the category A.SO.3/;T/ is abelian of injective dimension 1 we can use
the construction from [9, Appendix A].

We call dA.SO.3/;T/ with the injective model structure the algebraic model for toral
rational SO.3/–spectra.

To show that the injective model structure is right proper in Proposition 3.19 we need to
introduce a class of objects in A.SO.3/;T/ called wide spheres. This class generalises
the images of representation spheres from rational SO.3/–spectra in A.SO.3/;T/,
hence the name.

Definition 3.16 Define c2n to be an element of the form .c2n; c2n; c2n; : : : / in
E�1OF . Notice that we can view c2n as an element of the form .dn; c2n; c2n; : : : /

in OF if n> 0.

For n>0 define c2nC1 to be an element of the form .c2nC1; c2nC1; c2nC1; c2nC1; : : : /

in E�1OF .
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Definition 3.17 A wide sphere in A.SO.3/;T/ is an object P D .S ! E�1OF˝T /

where T is a graded QŒW �–module which is finitely generated as a Q–module on
elements t1; : : : ; td , where every ti is either W –fixed or W acts on ti by �1 and
deg.ti/Dki . The module S is an OF–submodule of E�1OF˝T generated by elements
cai ˝ t1; : : : ; c

ad ˝ td where ai is either even if ti is W –fixed or odd if W acts on ti
by �1, and an element

Pd
iD1 �i ˝ ti of E�1OF ˝ T . It is also required that the

structure map be the inclusion. We denote by P the set of isomorphism classes of
wide spheres.

We want to show that there are enough wide spheres in A.SO.3/;T/, ie for any
X 2A.SO.3/;T/ there exists an epimorphism from some coproduct of wide spheres
to X .

Proposition 3.18 There are enough wide spheres in A.SO.3/;T/.

Proof We need to show that for any object X D .ˇW N!E�1OF˝U / in A.SO.3/;T/
and any n 2N there exists a wide sphere P and a map P !X such that n is in the
image and for any u 2 U there exists a wide sphere xP and a map xP !X such that
u is in the image. Since the adjoint of ˇ is an isomorphism it is enough to show the
above condition for any n 2N .

Take X D .ˇW N ! E�1OF ˝ U / in A.SO.3/;T/ and n 2 N . Then ˇ.n/ DPd
iD1 �i ˝ ti . We may assume that for every i , either ti is W –fixed or W acts

on ti by �1. Then notice that since e1ˇ.n/ is W –fixed, e1�i will be of the form c2k

if ti was W –fixed or c2kC1 if W acts on ti by �1 (k is some integer here).

For each i , there exist pi 2 N such that ˇ.pi/ D c2bi ˝ ti if ti was W –fixed or
ˇ.pi/D c2biC1˝ ti if W acts on ti by �1. Set f D .c/2b1C���C2bd . We may assume
that the bi were large enough that �ic

2b1C���C2bd =c2bi is in OF if ti was W –fixed
and �ic

�1c2b1C���C2bd =c2bi is in OF if W acts on ti by �1.

Now we have

ˇ
�XC

�ic
2b1C���C2bd =c2bi pi C

X�

�ic
�1c2b1C���C2bd =c2bi pi

�
D

dX
iD1

�if ˝ ti

D ˇ.f n/;

where
PC denotes the sum over all ti which are W –fixed and

P� denotes the sum
over all the others.

Since the adjoint of ˇ is an isomorphism there exists an element c2b such that

c2b
�XC

�ic
2b1C���C2bd =c2bi pi C

X�

�ic
�1c2b1C���C2bd =c2bi pi

�
D c2bf n:
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We take c2b to be the smallest such element.

We take a wide sphere P D .S ! E�1
OF
˝T / where T is a Q–vector space generated

by ti for i D 1; : : : ; d , deg.ti/D ki and S is an OF submodule of E�1
OF
˝T generated

by
Pd

iD1 �i ˝ ti and c2bf ˝ ti if ti is W –fixed and c2b�1f ˝ ti if W acts on ti
by �1. The structure map is the inclusion.

To finish the proof we get a map from P to X by sending
Pd

iD1 �i ˝ ti to n

and c2bf ˝ ti to c2bc2b1C���C2bd =c2bi pi if ti is W –fixed and c2b�1f ˝ ti to
c2b�1c2b1C���C2bd =c2bi pi if W acts on ti by �1.

The elements c2b and f are needed to ensure that the relation between n and the pi’s
after applying ˇ is replicated in the wide sphere.

Proposition 3.19 The injective model structure on dA.SO.3/;T/ is proper.

Proof Since cofibrations are the monomorphism it is left proper. To show that it is
right proper, notice that among trivial cofibrations there are maps 0!Dn˝P , for any
P 2 P, where Dn˝P denotes an object built from P and †P with the differential
being the identity map from the suspension of P to P . Recall that P denotes the set
of isomorphism classes of wide spheres. Since there are enough wide spheres, the
fibrations are in particular surjections. Right properness follows from the fact that in
QŒW ��mod and OFŒW ��mod pullbacks along surjections of homology isomorphisms
are homology isomorphisms.

Corollary 3.20 The category dA.SO.3/;T/ is a Grothendieck category.

Proof Directed colimits are exact in dA.SO.3/;T/, since they are in R–modules,
for any ring R. Thus it remains to show that there is a (categorical) generator. We
take J WD

L
P2P P , where P is the set of all wide spheres. By Proposition 3.18,

Hom.J;�/ is faithful and thus J is a categorical generator.

Next we define a set of objects which will be generators for the homotopy category
of dA.SO.3/;T/ with the injective model structure. Before we were considering
categorical generators, but from now on the meaning of the word generator is as in
Definition 2.5. Recall that if ˇW M ! E�1OF˝V is an object in dA.SO.3/;T/, then
M is in particular a module over OFŒW � (which is an infinite product over conjugacy
classes of cyclic subgroups in SO.3/; see beginning of Section 3.2).

Definition 3.21 We define a set K in dA.SO.3/;T/ to consist of all suspensions and
desuspensions of the following objects:
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� For the trivial subgroup, we take

�1 WD .Q1! 0/;

where Q is at the place indexed by the trivial subgroup and all other factors
are 0.

� For every H 2 F , H ¤ 1, we take

�H WD .QŒW �.H /! 0/;

where QŒW � is at the place indexed by the conjugacy class of a subgroup H

and all other factors are 0.

� For the torus, we take

�T WD .M ! E�1OF˝QŒW �/;

where e1M DQŒd �˚†2QŒd �, .1� e1/M D .1� e1/OF . Here the map is the
inclusion.

It remains to show that the set of cells K is a set of generators for the injective model
structure on dA.SO.3/;T/.

Theorem 3.22 The set K is a set of homotopically compact generators for the category
dA.SO.3/;T/ with the injective model structure.

Proof First note that

�T D .OF! E�1OF˝Q/˚ .N ! E�1OF˝
zQ/;

where e1N D †2QŒd � and .1� e1/N D .1� e1/OF ˝
zQ (here zQ denotes Q with

the action of w by �1), and both structure maps are inclusions. We call the first
summand S0 and the second ��

T
. Therefore it is enough to show that all suspensions

and desuspensions of �1 , �H , ��
T

, S0 for all H 2 F , H ¤ 1 form a set of generators.
We will call this set L.

All cells are homotopically compact since they are compact and fibrant replacement
commutes with direct sums.

We will show that if Œ�;X �A� D 0 for all � 2L then H�.X /D 0 and thus X is weakly
equivalent to 0. By Lemma 3.14, [9, Lemma 4.2.4] and [4, Theorem 3.8] we can use
the following Adams short exact sequence to calculate the maps in the derived category
of ADA.SO.3/;T/ from X to Y in dA:

0! ExtA.†H�.X /;H�.Y //! ŒX;Y �A� ! HomA.H�.X /;H�.Y //! 0:
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Observe that for every X 2 dA.SO.3/;T/, where

X D .
 W P ! E�1OF˝V /;

we have the fibre sequence
yX !X ! e.V /;

where e.V / is the functor described before Proposition 3.12 and yX is the fibre of the
map X ! e.V /.

By definition, the structure map of e.V / is an inclusion, and thus it is a torsion–free
object. To simplify the notation, let

EFC D .†
�2QŒd; d�1�=QŒd �! 0/˚

M
.H /2F
H¤1

..†�2QŒc.H /; c
�1
.H /�=QŒc.H /�/! 0/:

We call the H–summand in the above formula ˛H . Then

yX 'EFC˝X:

Now observe that every summand ˛H in EFC is built as a sequential colimit from
suspensions of ˛n

H
D .QŒc.H /�=c.H /

n! 0/ and inclusions, or if it is the first summand
˛1 it is built as a sequential colimit of ˛n

1
D .QŒd �=dn! 0/ and inclusions, and thus

Œ�K ; yX �
A
� D Œ�K ;EFC˝X �A� Š

h
�K ;

M
.H /

.˛H ˝X /
iA
�
Š

M
i

Œ�K ; ˛H ˝X �A� ;

where the last isomorphism follows since �K is a homotopically compact object. For
all H , ˛n

H
is a strongly dualisable object (by [9, Corollary 2.3.7 and Lemma 2.4.3]),

and thus we can proceed:

(3-2) Œ�K ; ˛H ˝X �A� Š Œ�K ; colimn ˛
n
H ˝X �A�

Š colimi Œ�K ;Hom.D.˛n
H /;X /�

A
�

Š colimi ŒD.˛
n
H /˝ �K ;X �;

since D.˛n
H
/˝ �K D 0 if K ¤H and every D.˛n

H
/˝ �H is finitely built from �H

and by assumption Œ�;X �D 0 for all � 2 L, we have that ŒD.˛n
H
/˝ �H ;X �D 0 and

thus Œ�H ; yX �
A
� D 0 for all H 2 F .

Now take X to be an object in dA.SO.3/;T/ and assume that Œ�;X �A� D 0 for all
� 2 L. By the calculation above it follows that Œ�H ; yX �

A
� D 0 for all H 2 F .

From the Adams short exact sequence we get that

HomA.H�.�H /;H�. yX //D HomA.�H ;H�. yX //D e.H /H�. yX /D 0:
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Since H�. yX / D
L
.H /2F eH H�. yX / we conclude that yX is weakly equivalent to 0

and thus ŒS0; yX �A� D 0 and Œ��
T
; yX �A� D 0.

Now, by the fibre sequence and the fact that every fibre sequence induces a long exact
sequence on ŒE;�� we deduce that Œ�; e.V /�A� D 0 for every � 2 L. From the Adams
short exact sequence it follows that

HomA.H�.S
0/;H�.e.V ///D HomA.S

0;H�.e.V ///DHC� .e.V //D 0;

HomA.H�.�
�
T /;H�.e.V ///D HomA.�

�
T ;H�.e.V //DH�� .e.V //D 0;

where HC� .e.V // is the W –fixed part of H�.e.V // and H�� .e.V // denotes the �1

eigenspace. Since H�.e.V //DHC� .e.V //˚H�� .e.V // we get that e.V / is weakly
equivalent to 0. Since the fibre sequence induces a long exact sequence in homology
we conclude that H�.X /D 0 and thus X is weakly equivalent to 0, which finishes
the proof.

We finish this section by relating dA.SO.3/;T/ and dA.O.2/; zT/.

Lemma 3.23 The adjunction

dA.SO.3/;T/
F
//

dA.O.2/; zT/
R
oo

is a Quillen pair when we equip both categories with the injective model structures,
where F and R are defined as in the proof of Proposition 3.9.

Proof The left adjoint is exact, so it preserves cofibrations (monomorphisms) and
homology isomorphisms.

Theorem 3.24 The adjunction

dA.SO.3/;T/
F
//
F.K/�cell�dA.O.2/; zT/

R
oo

is a Quillen equivalence, where K is given in Definition 3.21.

Proof We cellularise the left-hand side of the adjunction in Lemma 3.23 at the
set K and the right one at F.K/. The left-hand side is then just dA.SO.3/;T/ by
Theorem 3.22. Thus to use the cellularisation principle [12, Theorem 2.1] we need to
prove that the derived unit is an isomorphism for every element of K. Since the right
adjoint preserves all weak equivalences it is enough to show that the categorical unit
is a weak equivalence. However, we already know that the unit of this adjunction is
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the identity (it was shown in the proof of Proposition 3.9). It remains to show that the
elements of the set F.K/ are homotopically compact in dA.O.2/; zT/ with the injective
model structure. This follows from the fact that R preserves coproducts (notice that
one component of R is taking W –fixed points and over Q this is isomorphic to taking
W –orbits; the other components of R are identities). This finishes the proof.

In the next section we will compare the cells coming from the topological generators
(see Proposition 3.27) with the ones used for cellularising dA.O.2/; zT/. For these two
sets of cells to agree we now change the set of cells used for cellularising dA.O.2/; zT/.
We introduce the following Quillen self-equivalence (which is also an equivalence of
categories) of dA.O.2/; zT/ with the injective model structure. Use the notation zQ for
the QŒW �–module Q with nontrivial W –action. We denote by �˝ zQ a self-adjoint
functor on dA.O.2/; zT/ defined as

�˝ zQ.ˇW M ! E�1OF˝V / WD .ˇ˝ zQW M ˝ zQ! E�1OF˝ .V ˝ zQ/:

Thus, below, we use the notation zF to denote �˝ zQıF and zR to denote Rı�˝ zQ.

The final result of this section follows from Theorem 3.24.

Corollary 3.25 The following is a Quillen equivalence, where K is as in Definition 3.21
and dA.SO.3/;T/ is considered with the injective model structure:

dA.SO.3/;T/
zF
// zF .K/�cell�dA.O.2/; zT/:

zR

oo

Remark 3.26 Let us calculate the cells from zF .K/ (ignoring suspensions as they
work in the same way in both categories):

zF .�1/D zF .Q1! 0/D zQ˚†�2Q! 0;

where c sends zQ to Q (both copies of Q are in the place corresponding to the trivial
subgroup) and

zF .�.H //D zF .QŒW �.H /! 0/DQŒW �H ;! 0

where the left QŒW � is in the place corresponding to .H / and the resulting QŒW � is
in the place corresponding to H . This holds for all .H / 2 F except for H D 1. For
the torus we have

zF .�.T //D zF .M ! E�1OF˝QŒW �/D†2 zQCOF˝QŒW �! E�1OF˝QŒW �;

where c acts on zQ in degree 2 ( zQ is in the place corresponding to the trivial subgroup)
by sending it to Q�QŒW � in degree 0 and the map is the inclusion.
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3.4 Restriction to the toral part of rational O.2/–spectra

The idea for the comparison is to restrict the toral part of rational SO.3/–spectra to
the toral part of rational O.2/–spectra using the functor i� as a left adjoint. Recall
that the adjunction (SO.3/C^O.2/�; i

� ) is not a Quillen pair for the model categories
localised at the idempotents corresponding to the toral parts; see Proposition 2.7.

We use the proof from [4] giving an algebraic model for the toral part of rational
O.2/–spectra, cellularising every step of the zig-zag of Quillen equivalences presented
there. This way we obtain an algebraic model for the toral part of rational O.2/–spectra
cellularised at the derived images of generators for LeTSQ.SO.3/�Sp/. This gives an
algebraic model; however, it is not very explicit. We finish this section by simplifying
this category in Theorem 3.35 and showing that it is Quillen equivalent to dA.SO.3/;T/
with the injective model structure.

We start by establishing generators for the toral part of rational SO.3/–spectra. We
used the notation K in Definition 3.21 for the generators on the algebraic side. We
will use the notation K for the generators on the topological side. We will end this
section by showing that the derived images of the topological generators im.K/ are
precisely the algebraic generators K in dA.SO.3/;T/.

Proposition 3.27 A set K consisting of all suspensions and desuspensions of one
SO.3/–spectrum

�n D SO.3/C ^Cn
eCn

S0

for every natural n > 0 and an SO.3/–spectrum SO.3/=SO.2/C is a set of cofibrant
homotopically compact generators for the category LeTSQ.SO.3/�Sp/.

Proof First consider a set L consisting of all suspensions and desuspensions of
one SO.3/–spectrum SO.3/=CnC for every natural n > 0 and an SO.3/–spectrum
SO.3/=SO.2/C . All objects in L are homotopically compact in LeTSQ.SO.3/�Sp/
since they are in SO.3/�Sp and fibrant replacement in LeTSQ.SO.3/�Sp/ commutes
with coproducts. This is a set of generators for LeTSQ.SO.3/�Sp/ by [18, Chapter IV,
Proposition 6.7]. Since

SO.3/=CnC D

_
Cm�Cn

�m;

which is a consequence of [9, Lemma 2.1.5], the set K is a set of homotopically
compact generators for LeTSQ.SO.3/�Sp/.

Next we restrict to the toral part of rational O.2/–spectra.
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Theorem 3.28 The adjunction

i�W LeTSQ.SO.3/�Sp/ //
i�.K/�cell�LezTSQ.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a Quillen equivalence, where the idempotent on the right-hand side corresponds to
the family of all cyclic subgroups of O.2/.

Proof The fact that this is a Quillen adjunction follows from Proposition 2.12 and the
cellularisation principle [12, Theorem 2.1] for K and i�.K/. Since K was a set of
generators for the category LeTSQ.SO.3/�Sp/, the cellularisation with respect to K

will not change this model structure.

All cells from K are homotopically compact and cofibrant by Proposition 3.27. We
need to check that their images with respect to i� are homotopically compact in
LezTSQ.O.2/�Sp/, ie suspension spectra of SO.3/=CnC for all n and SO.3/=SO.2/C
as toral O.2/–spectra. It is enough to show that they are homotopically compact as
O.2/–spectra, which follows from the fact that a smooth, compact G–manifold admits
a structure of a finite G–CW complex [15, Theorem I] and a suspension spectrum of a
finite G–CW complex is homotopically compact. It thus follows that the images of the
summands �n are also homotopically compact and cofibrant in LezTSQ.O.2/�Sp/.

It remains to show that the components of the derived unit maps at generators are
weak equivalences. For this, it is enough to check the induced map on the level of
homotopy categories. This is equivalent to showing that the derived functor Li� is
an isomorphism on hom-sets. This holds by [10, Theorem 6.1], which states that if
X Š eTX then Li� is an isomorphism

ŒX;Y �SO.3/
! ezT Œi

�X; i�Y �O.2/;

which implies that

Li�W ŒX;Y �LeT
SO.3/

Š ŒeTX; eTY �SO.3/

! ezT Œi
�.eTX /; i�.eTY /�O.2/ Š Œi�X; i�Y �

LezT
O.2/

is an isomorphism, where the superscript LeT SO.3/ was used to mean the homotopy
category of LeTSQ.SO.3/�Sp/. Similarly, the superscript LezT

O.2/ was used to
mean the homotopy category of LezTSQ.O.2/�Sp/. Thus the adjunction is a Quillen
equivalence.

Remark 3.29 The result above generalises to any compact Lie group G . The
restriction–coinduction adjunction is a Quillen equivalence between the toral part
of rational G–spectra and a certain cellularisation of the toral part of rational N –
spectra, where N is the normaliser of the maximal torus in G . This is used in [5] to
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provide an algebraic model for the toral part of rational G–spectra for any compact
Lie group G .

Since the Quillen equivalence above provides a link between the toral part of rational
SO.3/–spectra and the toral part of rational O.2/–spectra we use the result of [4].

Theorem 3.30 [4, Corollary 4.22] There is a zig-zag of Quillen equivalences be-
tween LezTSQ.O.2/�Sp/ and dA.O.2/; zT/, where dA.O.2/; zT/ is considered with
the dualisable model structure.

To provide an algebraic model for rational SO.3/–spectra we need to cellularise every
step of the zig-zag from [4, Section 4] with respect to derived images of i�.K/ from
Theorem 3.28. Cellularisation preserves Quillen equivalences and gives the following
result.

Theorem 3.31 There is a zig-zag of Quillen equivalences between LeTSQ.SO.3/�Sp/
and im.K/�cell�dA.O.2/; zT/, where dA.O.2/; zT/ is considered with the dualis-
able model structure. Here im.K/ denotes the derived image under the zig-zag of
Quillen equivalences described in [4, Section 4] of the set of cells K described in
Proposition 3.27.

Theorem 3.31 already gives an algebraic model for the toral part of rational SO.3/–
spectra. However, it is not easy to work with a cellularisation of a model category. Thus
we show that the model above is Quillen equivalent to the simpler, algebraic category
dA.SO.3/;T/ described in Section 3.2. To do this, we first switch to the cellularisation
of the injective model structure.

Lemma 3.32 The identity adjunction between

im.K/�cell�dA.O.2/; zT/ and im.K/�cell�dA.O.2/; zT/;

where one dA.O.2/; zT/ is equipped with the dualisable model structure and the other
is equipped with the injective model structure, is a Quillen equivalence.

Proof The result follows from the fact that the identity adjunction was a Quillen equiv-
alence between dA.O.2/; zT/ with the dualisable model structure and dA.O.2/; zT/

with the injective model structure.

Lemma 3.33 The set of homology of elements of im.K/ consists of the same objects
as zF .K/, where K is the set described in Definition 3.21 and im.K/ denotes the
derived image under the zig-zag of Quillen equivalences described in [4, Section 4] of
the set of cells K described in Proposition 3.27.
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Proof First we show that, for every n>1, �n is weakly equivalent in LezTSQ.O.2/�Sp/
to O.2/^Cn

eCn
S0 . The map is induced by the inclusion of O.2/ into SO.3/ and

we will show that it induces an isomorphism on all �H
� for H 2 zT . We will use the

notation N DO.2/ and G D SO.3/ below. We have

�H
� .N ^Cn

eCn
S0/D ŒN=HC;FCn

.NC;S
LN .Cn/ ^ eCn

S0/�N

D ŒN=HC;S
LN .Cn/ ^ eCn

S0�Cn :

Here LN .Cn/ is the tangent Cn–representation at the identity coset of N=Cn and thus
is the 1–dimensional trivial representation. Since the codomain has only geometric
fixed points for H D Cn we get a nonzero result only for H D Cn :

ŒˆCn.N=CnC/; ˆ
Cn.SLN .Cn//�D ŒS1

_S1;S1�D†.QŒW �/:

Similarly we have

�H
� .G ^Cn

eCn
S0/D ŒG=HC;FCn

.GC;S
LG.Cn/ ^ eCn

S0/�G

D ŒG=HC;S
LG.Cn/ ^ eCn

S0�Cn ;

and since the codomain has only geometric fixed points for H D Cn we get a nonzero
result only for H D Cn :

ŒˆCn.G=CnC/; ˆ
Cn.SLG.Cn//�D ŒS1

_S1;S1�D†.QŒW �/:

Notice that LG.Cn/ is 3–dimensional, but it has a 1–dimensional Cn–fixed subspace.

The images of the cells in A.O.2/; zT/ are therefore

im.G ^Cn
eCn

S0/D im.N ^Cn
eCn

S0/D .†QŒW �Cn
! 0/

by [9, Example 5.8.1], where †QŒW � is in the place Cn .

Now we will use the functors �A
� described in [9, Theorem 5.6.1 and Lemma 5.6.2].

Since SO.3/C is free we get

�A
� .SO.3/C/D .�T

� .SO.3/C/! 0/

D .��.†SO.3/=TC/! 0/

D .��.†S.R3/C/! 0/

D .†3 zQ˚†Q! 0/;

where †3 zQ˚†Q is in the place corresponding to the trivial subgroup 1 and c sends zQ
in degree 3 to Q in degree 1.

Algebraic & Geometric Topology, Volume 17 (2017)



An algebraic model for rational SO.3/–spectra 3125

Finally, SO.3/=TC D S.R3/C is built as an O.2/–space from the cells

N=TC _N=D2C[NC ^ e1:

Thus the cofibre sequence

NC!N=TC _N=D2C!G=TC

gives the long exact sequence

� � �! .†QŒW �! 0/! .OFŒW �!E�1OF˝QŒW �/˚.†Q! 0/! im.G=TC/!� � �

and hence
im.G=TC/D†

2 zQCOF˝QŒW �! E�1OF˝QŒW �;

where c acts on zQ in degree 2 ( zQ is in the place corresponding to the trivial subgroup)
by sending it to Q�QŒW � in degree 0 and the map is the inclusion.

These images are exactly the cells (up to suspension) in zF .K/ (see Remark 3.26),
which finishes the proof.

Remark 3.34 It remains to show that the derived images in dA.O.2/; zT/ of generators
described in Definition 3.21 are formal, that is, they are weakly equivalent to their
homology in dA.O.2/; zT/. We claim it’s clear for .†QŒW �Cn

! 0/, where †QŒW �

is in the place Cn . It is also clear for .†3 zQ˚†Q! 0/, where †3 zQ˚†Q is in
the place corresponding to the trivial subgroup 1 and c sends zQ in degree 3 to Q in
degree 1.

To show that AD .†2 zQCOF˝QŒW �! E�1OF˝QŒW �/ is formal (where c acts
on zQ in degree 2 ( zQ is in the place corresponding to the trivial subgroup) by sending
it to Q � QŒW � in degree 0 and the structure map is the inclusion) we proceed as
follows. Suppose X D .N ! E�1OF ˝ V / 2 dA.O.2/; zT/ such that H�.X / Š A.
We want to construct a map A! X in dA.O.2/; zT/ which is a weak equivalence.
We proceed in two parts, using the fact that QŒW �ŠQ˚ zQ and a QŒW �–map from
QŒW � is determined by the image of 1 2Q and the image of 1 2 zQ.

First, we choose an anti-fixed cycle x in e1N representing 1 in †2 zQ. This determines
c.x/ 2 Q which represents 1 in homology of e1N (it also determines all higher
powers of c applied to x ). Now we choose a fixed cycle xx 2 .1� e1/N in degree 0

representing x1 in homology (where x1 is 1 on all places of the infinite product except
the first one, where it’s 0); xx is fixed by W . It follows that .c.x/; xx/ is a cycle
in N representing constant (and fixed by W ) 1 in H0.N /. The element .c.x/; xx/
maps to an element 1˝ b 2 E�1OF ˝ V , which represents 1˝ 1 in degree 0 of
H�.E

�1OF˝V /Š E�1OF˝H�.V /Š E�1OF˝QŒW �.
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Second, we choose an anti-fixed cycle y in N in degree 0 representing a constant
element 1 in H0.N / which is W –anti-fixed. Element y maps into an element 1˝k 2

E�1OF ˝ V representing the anti-fixed 1˝ 1 in degree 0 of H�.E
�1OF ˝ V / Š

E�1OF˝H�.V /Š E�1OF˝QŒW �. The choices of x; xx and y determine a map in
dA.O.2/; zT/ which is clearly a homology isomorphism.

Theorem 3.35 The adjunction

zF W dA.SO.3/;T/ // im.K/�cell�dA.O.2/; zT/ W zRoo

defined after Theorem 3.24 is a Quillen equivalence, where both categories (before
cellularisation on the right) are equipped with the injective model structure. Here
im.K/ denotes the derived image under the zig-zag of Quillen equivalences described
in [4, Section 4] of the set of cells K described in Proposition 3.27.

Proof It is enough to show that im.K/ consists of the same objects (up to a weak
equivalence) as zF .K/, where K is the set described in Definition 3.21, which we estab-
lished in Lemma 3.33 and Remark 3.34. The result follows then from Corollary 3.25.

We summarise the results of this section.

Theorem 3.36 There is a zig-zag of Quillen equivalences between LeTSQ.SO.3/�Sp/
and dA.SO.3/;T/.

4 The dihedral part

The algebraic model for the dihedral part of rational SO.3/–spectra is almost identical
to the algebraic model of the dihedral part of rational O.2/–spectra presented in [4,
Section 5]. The difference comes from two things. First, in SO.3/ every dihedral
subgroup of order 2, namely D2 , is conjugate to cyclic subgroups C2 and thus is
already taken into account in the toral part. Second, the normaliser of D4 in SO.3/
is a subgroup †4 . For those reasons we exclude subgroups conjugate to D2 and
subgroups conjugate to D4 from the dihedral part D. Excluding D2 and D4 from
the dihedral part D allows us to deduce that the information captured by subgroups
of SO.3/ that are in D is the same as that captured by subgroups of O.2/ that are in
zD n fD2;D4g; see Proposition 4.8. This leads to the reduction of the dihedral part of
rational SO.3/–spectra to the (part of the) dihedral part of rational O.2/–spectra in
Theorem 4.9.

We know from [10] that the model for the homotopy category of the dihedral part of
rational SO.3/–spectra is of the form of certain sheaves over an orbit space for D,
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denoted further by A.SO.3/;D/. Section 4.1 discusses this category as well as the
category of chain complexes in A.SO.3/;D/; Ch.A.SO.3/;D//. In Section 4.2 we
present the comparison between the dihedral part of rational SO.3/–spectra and its
algebraic model Ch.A.SO.3/;D//.

4.1 Categories A.SO.3/;D/ and Ch.A.SO.3/;D//

First we recall the construction of A.SO.3/;D/ (see also [10]), then we present
the model structure on Ch.A.SO.3/;D// and recall a set of homotopically compact
generators for this model category.

Material in this section is based on [4, Section 5.1]. There is a slight difference between
the definition of A.O.2/; zD/ presented there (A.O.2/;D/ is the notation used in [4]
for this category) and A.SO.3/;D/ below, namely we start indexing modules from
k D 3, which corresponds to D6 DD2k . Indexing in [4] starts from 1.

Let W be the group of order two.

Definition 4.1 Define a category A.SO.3/;D/ as follows.

An object M consists of a Q–module M1 , a collection Mk 2QŒW �–mod for k > 2

and a map (called the germ map) of QŒW �–modules �M W M1! colimn>2

Q
k>n Mk ,

where the W –action on M1 is trivial.

A map f W M!N in A.SO.3/;D/ consists of a map f1W M1!N1 of Q–modules
and a collection of maps of QŒW �–modules fk W Mk!Nk which commute with germ
maps �M and �N :

M1

f1

��

�M
// colimn>2

Q
k>n Mk

colimn>2

Q
k>n fk

��

N1
�N
// colimn>2

Q
k>n Nk

Definition 4.2 Define Ch.A.SO.3/;D// to be the category of chain complexes in
A.SO.3/;D/ and gA.SO.3/;D/ to be the category of graded objects in A.SO.3/;D/.

An object M of Ch.A.SO.3/;D// consists of a rational chain complex M1 , a col-
lection of chain complexes of QŒW �–modules Mk for k > 2 and a germ map of chain
complexes of QŒW �–modules �M W M1! colimn>2

Q
k>n Mk , where the W –action

on M1 is trivial.

Note that we used a chain complex notation here, unlike for the toral part, where
we used dA.SO.3/;T/ to mean differential objects in A.SO.3/;T/. The difference
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between these two is that A.SO.3/;D/ is not a graded category, and we introduce a
grading taking chain complexes in A.SO.3/;D/. On the other hand, A.SO.3/;T/ is
already graded, and we are interested in differential objects in A.SO.3/;T/.

Remark 4.3 Since the only difference between our definition of A.SO.3/;D/ and the
one for A.O.2/; zD/ lies in index k , all constructions for A.SO.3/;D/ are analogous
to the ones for A.O.2/; zD/ presented in [4].

It is helpful to consider several adjoint pairs involving the category Ch.A.SO.3/;D//.
They are used to get a model structure on Ch.A.SO.3/;D//.

Definition 4.4 [4, Definition 5.9] Let A 2 Ch.Q/, X 2 Ch.QŒW �/ and M 2

Ch.A.SO.3/;D//. For a natural number k > 2 we define the following functors:

� ik W Ch.QŒW �/!Ch.A.SO.3/;D//, given by .ik.X //1D 0 and .ik.X //nD 0

for n¤ k and .ik.X //k DX .
� pk W Ch.A.SO.3/;D//! Ch.QŒW �/, given by pk.M /DMk .
� cW Ch.Q/! Ch.A.SO.3/;D//, given by .cA/k DA, .cA/1 DA, and where
�cA is the diagonal map into the product.

Then .ik ;pk/, .pk ; ik/ and .c;CW / are adjoint pairs, where the functor CW is given
in [4, Definition 5.6].

The category Ch.A.SO.3/;D// is bicomplete by [4, Lemma 5.7] so we can proceed
to define a model structure on it.

Proposition 4.5 [4, Proposition 5.10] There exists a model structure on the category
Ch.A.SO.3/;D// where f is a weak equivalence or fibration if f1 and each of the fk

are weak equivalences or fibrations, respectively. This model structure is cofibrantly
generated and proper.

We call this model structure the projective model structure on Ch.A.SO.3/;D//. By
[4, Proposition 5.10] the generating cofibrations are of the form cIQ and ikIQŒW � for
k > 3 and generating acyclic cofibrations are of the form cJQ and ikJQŒW � for k > 3.
Here IQ and JQ denote generating cofibrations and generating trivial cofibrations,
respectively, for the projective model structure on Ch.Q/, and IQŒW �;JQŒW � denote
generating cofibrations and generating trivial cofibrations, respectively, for the projective
model structure on Ch.QŒW �/ (for details see [14, Definition 2.3.3]).

We finish this section by giving a set of homotopically compact generators (recall
Definitions 2.5 and 2.4) for A.SO.3/;D/.
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Lemma 4.6 [4, Lemma 5.11] The set of objects Ga consisting of ikQŒW � for k > 3

and cQ is a set of homotopically compact, cofibrant and fibrant generators for the
category Ch.A.SO.3/;D// with the projective model structure.

4.2 Comparison

First we give homotopically compact, cofibrant generators for LeDSQ.SO.3/�Sp/.
We stick to the convention of writing eH for e.H /SO.3/

.

Lemma 4.7 The set

yG WD fSO.3/=O.2/Cg[ feD2n
SO.3/=D2nC j n> 2g

is a set of homotopically compact, cofibrant generators for LeDSQ.SO.3/�Sp/.

Proof The proof is the same as the proof of [4, Lemma 5.14].

To finish the discussion about generators, we show that the restriction functor

i�W LeDSQ.SO.3/�Sp/!Li�.eD/SQ
.O.2/�Sp/

preserves generators up to weak equivalence.

Proposition 4.8 Recall that i�.eD/ is the idempotent in A.O.2//Q corresponding to
the characteristic function on subgroups D2n for n> 2 and O.2/.

(1) The map f W O.2/=O.2/C! i�.SO.3/=O.2/C/ induced by inclusion O.2/!

SO.3/ is a weak equivalence in Li�.eD/SQ
.O.2/�Sp/.

(2) The map f2nW eD2n
O.2/=D2nC! i�.eD2n

SO.3/=D2nC/ for n > 2 induced
by the inclusion O.2/! SO.3/ is a weak equivalence in Li�.eD/SQ

.O.2/�Sp/.

Proof To show that the map f W O.2/=O.2/C! i�.SO.3/=O.2/C/ is a weak equiv-
alence in the given model structure, we need to show that i�.eD/f is an equivariant
rational ��–isomorphism. Thus we need to check that for all subgroups H � O.2/

the H–geometric fixed points map

ˆH .i�.eD/f /W ˆ
H .i�.eD/O.2/=O.2/C/!ˆH .i�.eD/i

�.SO.3/=O.2/C//

is a nonequivariant rational ��–isomorphism.

Since taking geometric fixed points commutes with smash product and suspensions, for
every subgroup H 62 . zD n fD2;D4g/, ˆH .i�.eD/f / is a trivial map between trivial
objects. For H DO.2/ the map is an identity on S0 since O.2/ is its own normaliser
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in SO.3/. For other H 2 . zD n fD2;D4g/ it is an identity on S0 since, for each n,
there is just one conjugacy class of D2n subgroups in O.2/ (and if g 2 SO.3/ and
g 62O.2/ then g�1D2ng 6�O.2/).

Part (2) follows the same pattern, however the domain and codomain of the map f2n are
already local in Li�.eD/SQ

.O.2/�Sp/, so f Š i�.eD/f . Since the idempotent used
is eD2n

the only nontrivial geometric fixed points will be for the subgroup H DD2n .
The result follows from the fact that NO.2/D2n DNSO.3/D2n , which implies that the
map on geometric fixed points for D2n is the identity on D4n=D2nC , and that finishes
the proof.

To give an algebraic model for the dihedral part of rational SO.3/–spectra we firstly
use the restriction–coinduction adjunction in the next theorem to move to a certain part
of rational O.2/–spectra. Then we show that this part of rational O.2/–spectra is a
localisation of the dihedral part of rational O.2/–spectra from [4]. As a result, the
method presented in [4] of obtaining an algebraic model for this part applies in our
case almost verbatim.

Theorem 4.9 Let i W O.2/! SO.3/ be an inclusion. Then the adjunction

i�W LeDSQ.SO.3/�Sp/ //
Li�.eD/SQ

.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a Quillen equivalence. (Note that the idempotent on the right-hand side corresponds
to the set of all dihedral subgroups of order greater than 4 together with O.2/.)

Proof This is a Quillen adjunction by Corollary 2.10 and moreover i� is a right
Quillen functor by Proposition 2.8.

We will use [14, Corollary 1.3.16(c)]. To show that this adjunction is a Quillen equiva-
lence first notice that FO.2/.SO.3/C;�/ preserves and reflects weak equivalences be-
tween fibrant objects. For any fibrant X 2Li�.eD/SQ

.O.2/�Sp/ and H 2 zDnfD2;D4g

we have natural isomorphisms

ŒSO.3/=HC;FO.2/.SO.3/C;X /�Š Œi� SO.3/=HC;X �Š ŒO.2/=HC;X �;

where the second one follows from Proposition 4.8. Since weak equivalences between
fibrant objects are detected by H–homotopy groups, FO.2/.SO.3/C;�/ preserves and
reflects weak equivalences between fibrant objects.

We need to show that the derived unit

Y ! FO.2/.SO.3/C; yf i�.Y //
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is a weak equivalence on cofibrant objects in LeDSQ.SO.3/�Sp/. It is enough to
check that the induced map

ŒX;Y �
LeDSQ

.SO.3/�Sp/
Š ŒX; eDY �SO.3/

! ŒX;FO.2/.SO.3/C; yf i�.eDY //�SO.3/

is an isomorphism for every generator X of LeDSQ.SO.3/�Sp/ (see Lemma 4.7 for
the set of generators). This map fits into the commuting diagram below:

ŒX; eDY �SO.3/

i�

++��

ŒX;FO.2/.SO.3/C; yf i�.eDY //�SO.3/ Š
// Œi�X; yf i�.eDY /�O.2/

Since the horizontal map is an isomorphism it is enough to show that i� is an iso-
morphism on hom sets, where the domain is a generator for LeDSQ.SO.3/�Sp/. We
do this by using the second Quillen adjunction between these two categories, namely
.SO.3/C ^O.2/�; i

�/.

Let � denote the categorical unit of the adjunction .SO.3/C ^O.2/�; i
�/. The map �

on cofibrant generators is of the form

�eH O.2/=HC W eH O.2/=HC! eH i�.SO.3/=HC/;

induced by an inclusion O.2/! SO.3/. By Proposition 4.8 this is a weak equivalence
in Li�.eD/SQ

.O.2/�Sp/ for all H in D and thus �ı � induces an isomorphism in
the homotopy category. We have the commuting diagram

ŒeH SO.3/=HC; eDY �SO.3/

i�

,,

Š

��

ŒeH O.2/=HC; i
�.eDY /�O.2/ Œi�.eH SO.3/=HC/; i�.eDY /�O.2/

�ı�
oo

where H above denotes a finite dihedral subgroup or O.2/ (when H is O.2/ we
understand eH as eD ).

It follows that i� is an isomorphism on hom sets and thus the derived unit of the
adjunction where i� is the left adjoint is a weak equivalence in LeDSQ.SO.3/�Sp/,
which finishes the proof.

To obtain the algebraic model for rational SO.3/–spectra it is enough to get one for
Li�.eD/SQ

.O.2/�Sp/. We use the comparison method presented in [4] for the dihedral
part of rational O.2/–spectra in this case.
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Theorem 4.10 There is a zig-zag of Quillen equivalences from Li�.eD/SQ
.O.2/�Sp/

to Ch.A.SO.3/;D//.

Proof Notice that Li�.eD/SQ
.O.2/�Sp/ is a localisation of the dihedral part of

rational O.2/–spectra LezDSQ.O.2/�Sp/ at an idempotent i�.eD/, since i�.eD/ezDD

i�.eD/. The set

zG WD fO.2/=O.2/Cg[ feD2n
O.2/=D2nC j n> 2g

is a set of homotopically compact, cofibrant generators for Li�.eD/SQ
.O.2/�Sp/ by

the same argument as in [4, Lemma 5.14].

Thus it is enough to use the proof of [4, Theorem 5.18] based on the tilting theorem
of Schwede and Shipley [21, Theorem 5.1.1] restricted to the set of generators zG for
Li�.eD/SQ

.O.2/�Sp/ on one hand and the set of generators Ga (see Lemma 4.6) on
the algebraic side. This shows that Li�.eD/SQ

.O.2/�Sp/ is Quillen equivalent to the
category Ch.A.SO.3/;D//.

Theorem 4.9 and Theorem 4.10 give the algebraic model for the dihedral part of rational
SO.3/–spectra.

Theorem 4.11 There is a zig-zag of Quillen equivalences between LeDSQ.SO.3/�Sp/
and A.SO.3/;D/.

5 The exceptional part

The last part of rational SO.3/–spectra, LeESQ.SO.3/�Sp/, captures the behaviour of
conjugacy classes of five subgroups: SO.3/, †4 , A4 , A5 and D4 ; see Section 2.1.

Definition 5.1 [16, Definition 2.1] Recall that a subgroup H of G is exceptional if
three conditions are satisfied:

� there is an idempotent e.H / 2 A.G/Q corresponding to the conjugacy class
of H ,

� the Weyl group NGH=H of H is finite, and

� H does not contain any subgroup K such that H=K is a (nontrivial) torus.

All subgroups in this part satisfy the definition above, hence the name exceptional part.

Recall that the stable model structure on G–spectra is a monoidal model structure
satisfying the monoid axiom. Thus any left Bousfield localisation at a cofibrant object E
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of a category of G–spectra is again a monoidal model category (by a straightforward
check of the pushout-product axiom and the definition of E–weak equivalence). It also
satisfies the monoid axiom, since E ^� commutes with transfinite compositions and
pushouts. By [3, Theorem 4.4] we have the following result.

Proposition 5.2 There is a strong symmetric monoidal Quillen equivalence

4W LeESQ SO.3/�SpQ
// Q

.H /;H2E Le.H /SO.3/
SQ.SO.3/�Sp/ W…:oo

First we recall some details on what will be the building block of the algebraic model for
the exceptional part, ie the category Ch.QŒWGH �/ of chain complexes of QŒWGH �–
modules, and then we summarise the monoidal comparison from [16].

5.1 The category Ch.QŒW �/

Suppose W is a finite group. The category of chain complexes of left QŒW �–modules
can be equipped with the projective model structure, where weak equivalences are
homology isomorphisms and fibrations are levelwise surjections. This model structure
is cofibrantly generated by [14, Section 2.3].

Note that QŒW � is not generally a commutative ring, however it is a Hopf algebra
with cocommutative coproduct given by �W QŒW �! QŒW �˝QŒW �, g 7! g˝ g .
This allows us to define an associative and commutative tensor product on Ch.QŒW �/,
namely tensor over Q, where the W –action on the X ˝Q Y is diagonal. The unit is
a chain complex with Q at the level 0 with trivial W –action and zeros everywhere
else and it is cofibrant in the projective model structure. The monoidal product defined
this way is closed, where the internal hom is given by a formula for an internal hom in
Q–modules with W –action given by conjugation.

By [2, Proposition 4.3] the category Ch.QŒW �/ is a monoidal model category satisfying
the monoid axiom.

5.2 Monoidal comparison

The following result is the main theorem of [16].

Theorem 5.3 Suppose G is any compact Lie group. Then there is a zig-zag of
symmetric monoidal Quillen equivalences from Le.H /G

SQ.G�Sp/ of rational G–
spectra over an exceptional subgroup H to Ch.QŒWGH �/ equipped with the projective
model structure.
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We apply the result above for GD SO.3/ to get the algebraic model for the exceptional
part of rational SO.3/–spectra.

Theorem 5.4 There is a zig-zag of symmetric monoidal Quillen equivalences from
LeESQ.SO.3/�Sp/ to

Q
.H /;H2E Ch.QŒWSO.3/H �/

Proof This follows from Proposition 5.2 and Theorem 5.3.

Below we present a short sketch of steps in the monoidal comparison for rational
G–spectra over an exceptional subgroup to outline general ideas. We refer the reader
to [16] for all the details.

Fix an exceptional subgroup H in G . First, using the restriction–coinduction adjunction,
we move from the category Le.H /G

SQ.G�Sp/ to the category Le.H /N
SQ.N�Sp/,

where N denotes the normaliser NGH . The second step is to use the fixed point–
inflation adjunction between Le.H /N

SQ.N�Sp/ and Le1SQ.W �Sp/, where W de-
notes the Weyl group N=H . Recall that W is finite, as H is an exceptional subgroup
of G . Next we use the restriction of universe to pass from Le1SQ.W �Sp/ to the
category SpŒW � of rational orthogonal spectra with W –action. We then pass to
symmetric spectra with W –action using the forgetful functor from orthogonal spectra
and then to HQ–modules with W –action in symmetric spectra. From here we use
[22, Theorem 1.1] to get to Ch.Q/ŒW �, the category of rational chain complexes
with W –action, which is equivalent as a monoidal model category to Ch.QŒW �/, the
category of chain complexes of QŒW �–modules. That gives an algebraic model which
is compatible with the monoidal product, ie this zig-zag of Quillen equivalences induces
a strong monoidal equivalence on the level of homotopy categories.
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