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Betti numbers and stability for configuration spaces
via factorization homology

BEN KNUDSEN

Using factorization homology, we realize the rational homology of the unordered
configuration spaces of an arbitrary manifold M , possibly with boundary, as the
homology of a Lie algebra constructed from the compactly supported cohomology
of M . By locating the homology of each configuration space within the Chevalley–
Eilenberg complex of this Lie algebra, we extend theorems of Bödigheimer, Cohen
and Taylor and of Félix and Thomas, and give a new, combinatorial proof of the
homological stability results of Church and Randal-Williams. Our method lends itself
to explicit calculations, examples of which we include.

57R19; 17B56, 55R80

1 Introduction

We study the configuration space Bk.M / of k unordered points in a manifold M ,
defined as

Bk.M /D Confk.M /†k
WD f.x1; : : : ;xk/ 2M k

j xi ¤ xj for i ¤ j g=†k ;

where the permutation group †k acts by permuting the xi . Our main theorem concerns
the homology of these spaces.

Theorem 1.1 Let M be an n–manifold. There is an isomorphism of bigraded vector
spaces M

k�0

H�.Bk.M /IQ/ŠHL
�
H��c .M IL.Qw Œn� 1�//

�
:

Here H��c denotes compactly supported cohomology, Qw is the orientation sheaf
of M , HL denotes Lie algebra homology and L is the free graded Lie algebra functor.
The auxiliary grading on the left is by cardinality of the configuration and on the right
by powers of the Lie generator.

Our methods apply equally to the calculation of the twisted homology of configuration
spaces and of the homology of certain relative configuration spaces defined for manifolds
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with boundary; precise statements may be found in Theorem 4.5 and Theorem 4.9,
respectively. All results and arguments herein are valid over an arbitrary field of
characteristic zero.

The study of configuration spaces is classical. To name some highlights, the space
Bk.R

2/ is a classifying space for the braid group on k strands (see Artin [2]); the
space Confk.R

n/ has the homotopy type of the space of k –ary operations of the
little n–cubes operad and so plays a central role in the theory of n–fold loop spaces
(see eg Cohen, Lada and May [17], May [43] and Segal [51]); certain spaces of
labeled configurations provide models for more general types of mapping spaces (see
Bödigheimer [8], McDuff [44], Salvatore [48], Segal [51]); and, according to a striking
theorem of Longoni and Salvatore [39], the homotopy type of Bk.M / is not an invariant
of the homotopy type of M .

As this last fact indicates, configuration spaces depend in subtle ways on the structure
of the background manifold. On the other hand, the homology of these spaces has
often been shown to be surprisingly simple, provided one is willing to work over a field
of characteristic zero. Indeed, Bödigheimer, Cohen and Taylor [10] show that the Betti
numbers of Bk.M / are determined by those of M when M is of odd dimension, and
Félix and Thomas [24] show that, in the even-dimensional case, the Betti numbers
of Bk.M / are determined by the rational cohomology ring of M , as long as M is
closed, orientable and nilpotent. We recover extensions of these results as immediate
consequences of Theorem 1.1.

Corollary 1.2 The groups H�.Bk.M /IQ/ depend only on n and

� the graded abelian group H�.M IQ/ if n is odd, or

� the cup product H��c .M IQw/˝2!H��c .M IQ/ if n is even.

The computational power of Theorem 1.1 lies in the bigrading, which permits one to
isolate the homology of a single configuration space within the Chevalley–Eilenberg
complex computing the appropriate Lie homology. Employing this strategy, we show
that the chain complexes computing H�.Bk.M /IQ/ exhibited in [10] and [24] are
isomorphic to subcomplexes of the Chevalley–Eilenberg complex; precise statements
appear in Section 4.3. Better yet, in dealing with the entire Chevalley–Eilenberg
complex at once, one is able to perform computations for all k simultaneously; see
Section 6.

Another important aspect of the study of configuration spaces is the phenomenon
of homological stability. As k tends to infinity, the Betti numbers of Bk.M / are
eventually constant, despite the absence of a map of spaces Bk.M /! BkC1.M / in
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general; see Church [14], Church, Eilenburg and Farb [15], Randall-Williams [46] and
Cantero and Palmer [13]. Here too, characteristic zero is special.

Regarding stability, we prove the following.

Theorem 1.3 Let M be a connected n–manifold with n> 1. The cap product with
the unit in H 0.M IQ/ induces a map

H�.BkC1.M /IQ/!H�.Bk.M /IQ/

that is

� an isomorphism for �< k and a surjection for � D k when M is an orientable
surface, and

� an isomorphism for � � k and a surjection for � D kC 1 in all other cases.

The sense in which the homology of configuration spaces forms a coalgebra, so that the
cap product is defined, will be explained in Section 5. We lack a conceptual explanation
for the exceptional behavior in dimension 2, as it emerges from our argument solely as
a numerical/combinatorial coincidence.

This result improves on the stable range of Church [14] and very slightly on that of
Randal-Williams [46]. As in the former work, our stable range can be further improved
if the low-degree Betti numbers of M vanish. As the example of the Klein bottle
shows, the bound � � k is sharp in the sense that no better stable range holds for all
manifolds that are not orientable surfaces. When M is open, the surjectivity statement
is proven in [46]; to the author’s knowledge, the result is new for compact manifolds.

Conceptually, we think of Theorem 1.1 as providing an explanation and organizing
principle for the behavior of configuration spaces in characteristic zero. The germ of
our approach, and the source of the connection to Lie algebras, is the calculation, due
to Arnol’d and Cohen, of the homology of the ordered configuration spaces of Rn ,
which is the fundamental result of the subject; see Arnol’d [1] and Cohen, Lada and
May [17]. Specifically, for n� 2, the homology groups of the spaces Confk.R

n/ form
a shifted version of the operad governing Poisson algebras, with the shifted Lie bracket
given by the fundamental class of Conf2.R

n/' Sn�1 ; see Sinha [52] for a beautiful
geometric discussion of this identification. Locally, then, configuration spaces enjoy a
rich algebraic structure; factorization homology, our primary tool in this work, provides
a means of assembling this structure across coordinate patches of a general manifold,
globalizing the calculation of Arnol’d and Cohen. Theorem 1.1 is the natural output of
this procedure.

At a more formal level, we rely on the fact that the factorization homology of M , with
coefficients taken in a certain free algebra, can be computed in two different ways.
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On the one hand, according to Proposition 3.1, it has an expression in terms of the
configuration spaces of M . On the other hand, the free algebra may be thought of as a
kind of enveloping algebra, and a calculation of the author’s in [35] identifies the same
invariant as Lie algebra homology. On the face of it, these calculations only coincide
for framed manifolds; we show that they agree in general in characteristic zero.

In keeping with our metamathematical goal of making the case for factorization ho-
mology as a computational tool, we do not focus on the technical underpinnings of
the theory. The interested reader may find these in Ayala and Francis [5; 4; 3], Ayala,
Francis and Tanaka [7; 6], Francis [25] and Lurie [42].

The paper is split into seven sections. In Sections 2–3, we review the basics of
factorization homology and discuss calculations thereof in several cases of interest.
Theorem 1.1 and its variants are proved in Section 4 assuming several deferred results,
and the classical results alluded to above follow. In Section 5, we discuss coalgebraic
phenomena arising from configuration spaces, which lead us to the proof of Theorem 1.3
and one of the missing ingredients in the main theorem. Finally, Section 6 is concerned
with explicit computations, and Section 7 supplies the remaining missing ingredients.

Conventions (1) In accordance with the bulk of the literature on factorization homol-
ogy, we work in an 1–categorical context, where for us an 1–category will always
mean a quasicategory. The standard references here are Lurie [40; 42], but we will
need to ask only very little of the vast theory developed therein, and the reader may
obtain a sense of the arguments and results by substituting “homotopy colimit” for
“colimit” everywhere, for example.

(2) Every manifold is smooth and may be embedded as the interior of a compact
manifold with boundary (such an embedding is not part of the data). We view manifolds
as objects of the 1–category Mfldn , the topological nerve of the topological category
of n–manifolds and smooth embeddings, which is symmetric monoidal under disjoint
union.

(3) Our homology theories are valued in ChQ , the underlying 1–category of the
category of Q–chain complexes equipped with the standard model structure. With the
single exception of Theorem 2.1, ChQ is understood to be symmetric monoidal under
tensor product.

(4) The homology of a chain complex V is written H.V /, while the homology of a
space X is written H�.X /. Hence H�.X /DH.C�.X //. If g is a differential graded
Lie algebra, then H.g/ is a graded Lie algebra.

(5) Chain complexes are homologically graded. If V is a chain complex, V Œk� is
the chain complex with .V Œk�/n D Vn�k , and, for x 2 V , the corresponding element
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in V Œk� is denoted �kx . Cohomology is concentrated in negative degrees; to reinforce
this point, we write H��.X / for the graded vector space whose degree-�k part is
the k th cohomology group of X ; for example,

H��.Sn
IQ/Š

�
Q if � 2 f�n; 0g;

0 otherwise.

(6) If X is a space and V is a chain complex, the tensor of X with V is the chain
complex

X ˝V WD C�.X /˝V:

(7) If .X;A/ is a pair of spaces, the quotient of X by A is the pointed space X=A

defined as the pushout in the following diagram:

A

��

// X

��

pt // X=A

In particular, we have X=¿DXC .

(8) If X is an object of the 1–category C with an action of the group G , then XG

and X G denote the G–coinvariants and G–invariants of X , respectively, which are
objects of C. When C is topological spaces or chain complexes, this object coincides
in the homotopy category with homotopy coinvariants.
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2 Factorization homology

2.1 Homology theories

In this section, we review the basic notions of factorization homology, also known
as topological chiral homology. The primary reference is [5]. As there, our point of
view is that factorization homology is a natural theory of homology for manifolds.
To illustrate in what sense this is so, we first recall the classical characterization of
ordinary homology, phrased in a way that invites generalization.

Theorem 2.1 (Eilenberg–Steenrod axioms) Let V be a chain complex. There is
a symmetric monoidal functor C�.�IV / from spaces with disjoint union to chain
complexes with direct sum, called singular homology with coefficients in V , which
is characterized up to natural equivalence by the following properties:

(1) C�.ptIV /' V ;

(2) the natural map

C�.X1IV /
L

C�.X0IV /

C�.X2IV /! C�.X IV /

is an equivalence, where X is the pushout of the diagram of cofibrations

X1 -X0 ,!X2:

Property (2), a local-to-global principle equivalent to the usual excision axiom, is the
reason that homology is computable and hence useful.

Of course, ordinary homology is a homotopy invariant. In the study of manifolds,
the equivalence relation of interest is often finer than homotopy equivalence, and one
could hope for a theory better suited to such geometric investigations. To discover
what form this theory might take, let us contemplate a generic symmetric monoidal
functor .Mfldn;t/ ! .ChQ;˝/. By analogy with Theorem 2.1, we ask that this
functor be determined by its value on Rn , the basic building block in the construction
of n–manifolds. Unlike a point, however, Euclidean space has interesting internal
structure.

Definition 2.2 An n–disk algebra in ChQ is a symmetric monoidal functor

AW .Diskn;t/! .ChQ;˝/;

where Diskn �Mfldn is the full subcategory spanned by manifolds diffeomorphic toF
k Rn for some k 2 Z�0 .
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In other words, Diskn is the (nerve of the) category of operations associated to the
endomorphism operad of the manifold Rn , and an n–disk algebra is an algebra over
this operad. In contrast, the endomorphism operad of a point in topological spaces
is the commutative operad, and every chain complex is canonically and essentially
uniquely a commutative algebra in .ChQ;˚/.

Taking the extra structure of Rn into account, [5, Theorem 3.24] provides an analogous
classification theorem.

Theorem 2.3 (Ayala and Francis) Let A be an n–disk algebra. There is a symmetric
monoidal functor

R
.�/A from n–manifolds with disjoint union to chain complexes

with tensor product, called factorization homology with coefficients in A , which is
characterized up to natural equivalence by the following properties:

(1)
R

Rn A'A as n–disk algebras;

(2) the natural map Z
M1

A
NR

M0�RA

Z
M2

A!

Z
M

A

is an equivalence, where M is obtained as the collar-gluing of the diagram of
embeddings M1 -M0 �R ,!M2 .

Just as the functor of singular chains is but one model for ordinary homology, factor-
ization homology may be constructed in several equivalent ways. The construction that
we will favor is as follows.

Let AW Diskn ! ChQ be an n–disk algebra. Then factorization homology with
coefficients in A is the left Kan extension in the following diagram of 1–categories:

Diskn
A
//

��

ChQ

Mfldn

R
.�/

A

;;

Explicitly, it may be calculated as the colimitZ
M

A' colim.Diskn=M !Diskn
A
�! ChQ/:

Remark 2.4 Since ChQ admits sifted colimits and ˝ distributes over them, Theorem
3.2.3 of [4] guarantees that the left Kan extension and the symmetric monoidal left
Kan extension exist and coincide.
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2.2 Variant: framed manifolds

The category Diskn is closely related to the classical operad En of little n–cubes. To
make this connection, we recall that a framing of an n–manifold M is a nullhomotopy
of its tangent classifier

M
TM'�
�����! BO.n/:

With the corresponding notion of framed embedding between framed manifolds in hand,
one obtains an 1–category Mfldfr

n of framed n–manifolds; see [5, Definition 2.7].

Definition 2.5 A framed n–disk algebra in ChQ is a symmetric monoidal functor
AW .Diskfr

n ;t/! .ChQ;˝/, where Diskfr
n �Mfldfr

n is the full subcategory spanned by
framed manifolds diffeomorphic to

F
k Rn for some k 2 Z�0 .

As before, the factorization homology of a framed n–manifold with coefficients in a
framed n–disk algebra is defined as the left Kan extension from Diskfr

n . Indeed, the
whole theory carries over into the context of topological manifolds equipped with a
microtangential B –structure arising from a map B!BTop.n/. In this paper, we will
only make use of the cases B D BO.n/, corresponding to smooth manifolds (see [5,
Example 2.11 and Remark 3.29]), and B D �, corresponding to framed manifolds.

Now, the topological operad En has an associated 1–operad (see [42, Section 2.1]),
and [6, Example 2.11] asserts an equivalence

AlgDiskfr
n
.C/

�
�! AlgEn

.C/

for any symmetric monoidal 1–category C. Moreover, this equivalence induces a
further equivalence

AlgDiskn
.C/

�
�! AlgEn

.C/O.n/:

Informally, an n–disk algebra is an En –algebra with an action of O.n/ compatible
with the action on En given by rotating disks. In the language of [49], n–disk algebras
are algebras for the semidirect product En Ì O.n/.

Remark 2.6 The reader is cautioned not to confuse the framed n–disk algebras
employed here with the “framed En –algebras” that occur elsewhere in the literature.
These algebras carry an action of SO.n/ and yield homology theories for oriented
manifolds.

2.3 Free algebras

We introduce several functors that will be important for us in what follows. The
reference here is [3].
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Within the 1–category Diskn there is a Kan complex with a single vertex, the ob-
ject Rn , whose endomorphisms are Emb.Rn;Rn/' O.n/, so that we may identify
this Kan complex with BO.n/. Restricting to this subcategory defines a forgetful
functor

AlgDiskn
.ChQ/! Fun.BO.n/;ChQ/

�
�!ModO.n/.ChQ/:

The latter symbol denotes the 1–category of chain complexes equipped with an action
of C�.O.n/IQ/, which we refer to simply as O.n/–modules. This functor admits a
left adjoint Fn , the free n–disk algebra generated by an O.n/–module.

Evaluation on Rn defines a still more forgetful functor, which we think of as associating
to an algebra its underlying chain complex. The situation is summarized in the following
commuting diagram of adjunctions, in which the straight arrows are right and the bent
arrows left adjoints:

AlgDiskn
.ChQ/ //

''

ModO.n/.ChQ/

Fn
ss

��

ChQ

O.n/˝ .�/

XX``

In particular, for a chain complex V , the free n–disk algebra on V is naturally
equivalent to Fn.O.n/˝V /. More generally, there is the following description.

Proposition 2.7 There is a natural equivalence

Fn.K/
�
�!

M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k K˝k

�
;

where K is an O.n/–module.

Proof The map is supplied by the universal property of the free algebra. In the case
K DO.n/˝V , it is an equivalence, since Fn.K/ is now the free n–disk algebra on
the chain complex V , so that

Fn.K/'
M
k�0

�
Emb

�F
k Rn;�

�
˝†k

V ˝k
�

Š

M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k

�
O.n/k ˝V ˝k

��
Š

M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k K˝k

�
:
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Since a general O.n/–module may be expressed as a split geometric realization of
free O.n/–modules, and since Fn , as a left adjoint, preserves geometric realizations, it
suffices to show that the right-hand side shares this property. But both ModO.n/.ChQ/

and AlgDiskn
.ChQ/ are monadic over ChQ , so on both sides the geometric realization is

computed in ChQ , and the right-hand side clearly preserves colimits in chain complexes.

In the framed case, Embfr.Rn;Rn/ is contractible, so there is only the one forgetful
functor

Alg
Diskfr

n
.ChQ/! ChQ;

whose left adjoint, the free framed n–disk algebra functor, is denoted F fr
n .

By restriction along the natural inclusion Diskfr
n !Diskn , any n–disk algebra is in

particular a framed n–disk algebra, and there is an equivalence of Diskfr
n –algebras

Fn.V /' F fr
n .V /;

where V is a chain complex considered as a trivial O.n/–module.

3 Calculations

3.1 Frame bundles

The object of this section is twofold. First, we compute the factorization homology of
the free n–disk algebra generated by an O.n/–module K . Second, for suitable K , we
interpret this calculation in terms of the homology of configuration spaces.

For a manifold M , let FrM !M denote the corresponding principal O.n/–bundle.
Since Confk.M / is an open submanifold of M k , its structure group is canonically
reducible to O.n/k , and we denote the corresponding principal O.n/k –bundle by
Conf fr

k .M /.

Proposition 3.1 There is a natural equivalenceZ
M

Fn.K/
�
�!

M
k�0

�
Conf fr

k .M /˝†kËO.n/k K˝k
�
;

where K is an O.n/–module.

Proof The natural map

colim
Diskn=M

�
Emb

�F
k Rn;�

�� �
�! Emb

�F
k Rn;M

�
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is an equivalence by [42, page 726], so we haveZ
M

Fn.K/' colim
Diskn=M

�M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k K˝k

��
'

M
k�0

�
colim

Diskn=M

�
Emb

�F
k Rn;�

��
˝†kËO.n/k K˝k

�
'

M
k�0

�
Emb

�F
k Rn;M

�
˝†kËO.n/k K˝k

�
:

To conclude, we note that evaluation at the origin defines a projection

Emb
�F

k Rn;M
�
! Confk.M /;

and the natural derivative map Emb
�F

k Rn;M
�
! Conf fr

k .M / covering the identity
is an equivalence of O.n/k –spaces over Confk.M /.

Remark 3.2 This proposition is a special case of a calculation carried out in the more
general context of zero-pointed manifolds in [3, Theorem 2.4.1]. We have included this
simplified argument for the reader’s convenience.

It will be important in what follows to be able to identify the summand of this object
corresponding to a particular choice of k .

Definition 3.3 The cardinality grading of the functor
R

M Fn.K/ is the grading corre-
sponding to the direct sum decomposition of Proposition 3.1.

Note that this grading corresponds to the grading induced on the colimit by the cardi-
nality grading of the functor Fn.K/.

We will be most interested in this calculation for particularly simple choices of O.n/–
module K .

Corollary 3.4 There is a natural equivalenceZ
M

Fn.Q/
�
�!

M
k�0

C�.Bk.M /IQ/:

Proposition 3.1 can also be used to study the twisted homology of Bk.M /. To pursue
this direction, we must first identify the orientation cover BBk.M / of Bk.M /. For this
we note that the orientation cover

DConfk.M /! Confk.M /! Bk.M /
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has structure group †k � C2 when considered as a bundle over Bk.M /; that the
automorphism corresponding to �1 2 C2 reverses orientation; and that the automor-
phism corresponding to � 2†k reverses orientation if sgn.�/D�1 and n is odd and
preserves orientation otherwise. Therefore, the action of the subgroup

H WD f.�; sgn.�/n/ j � 2†kg<†k �C2

is orientation-preserving, and we deduce the following proposition.

Proposition 3.5 BBk.M / Š DConfk.M /H as covers of Bk.M /.

For a chain complex V , let V sgn denote the sign representation of C2 on V , and
V det the O.n/–module obtained from the latter by restriction along the determinant
O.n/! C2 . Recall that, for an n–manifold N , the homology of N twisted by the
orientation character may be computed as the homology of the complex

C�.N IQ
w/ WD zN ˝C2

Qsgn
Š FrN ˝O.n/Qdet:

Proposition 3.6 Let M be an n–manifold.

(1) If n is even, there is a natural equivalenceZ
M

Fn.Q
det/

�
�!

M
k�0

C�.Bk.M /IQw/:

(2) If n is odd, there is a natural equivalenceZ
M

Fn.Q
detŒ1�/

�
�!

M
k�0

C�.Bk.M /IQw/Œk�:

Proof (1) We have that

Conffrk.M /˝†kËO.n/k .Q
det/˝k

Š Conffrk.M /˝†kËO.nk/Qdet

Š DConfk.M /˝†k�C2
Qsgn

Š DConfk.M /†k
˝C2

Qsgn

Š BBk.M /˝C2
Qsgn;

where we used the commutativity of the diagram

O.n/k //

detk
��

O.nk/

det
��

C k
2

multiply
// C2
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and the fact that H D †k � f1g when n is even. The claim follows after summing
over k and applying Proposition 3.1.

(2) Similarly, we have that

Conffrk.M /˝†kËO.n/k .Q
detŒ1�/˝k

Š Conffrk.M /˝†kËO.nk/ .Q
det
˝QŒ1�˝k/

Š DConfk.M /˝†k�C2
.Qsgn

˝QŒ1�˝k/

Š DConfk.M /H ˝C2
QsgnŒk�

Š BBk.M /˝C2
QsgnŒk�;

where we used that Qsgn˝QŒ1�˝k is a trivial H –module and Œ†k �C2 WH �D 2.

3.2 Commutative algebras

We now consider a calculation of factorization homology in a certain degenerate case,
which is a slight generalization of that considered in [5, Proposition 5.1]. We will make
use of this calculation in the next section.

Restriction of embeddings defines a map Emb
�F

k Rn;Rn
�
!
Q

k Emb.Rn;Rn/'Q
k O.n/, which assemble to form a symmetric monoidal functor

� W Diskn! BO.n/t;

where BO.n/t is the 1–category obtained as the nerve of the topological category
with objects the natural numbers and morphism spaces given by

MapBO.n/t.r; s/D
G

f W hri!hsi

sY
iD1

O.n/f
�1.i/;

which is symmetric monoidal under addition. For more on this and related 1–
categories, the reader may consult [42, Section 2.4.3]. For us, the relevance of this
object is the following consequence of [42, Theorem 2.4.3.18].

Theorem 3.7 (Lurie) There is an equivalence

Fun˝.BO.n/t;ChQ/
�
�!ModO.n/.AlgCom.ChQ//:

This result motivates our next definition.

Definition 3.8 A commutative refinement of an n–disk algebra A is a factorization
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Diskn

�
��

A
// ChQ

BO.n/t

::

through a symmetric monoidal functor BO.n/t! ChQ .

By the previous theorem, a commutative refinement endows the underlying object of A

with the structure of a commutative algebra for which the n–disk algebra structure
maps are homomorphisms. More formally, we obtain a factorization

Diskn

ACom
��

A
// ChQ

AlgCom.ChQ/

88

of A through the forgetful functor.

Example 3.9 By the Künneth theorem, the functor H W ChQ ! ChQ is symmetric
monoidal, whence the homology of an n–disk algebra is canonically an n–disk algebra.
Since H factors through the discrete 1–category of graded vector spaces, we have a
symmetric monoidal factorization

Diskn

�0

  

�
��

H.A/
// ChQ

BO.n/t

��

BCt
2

DD

through the homotopy category of Diskn , so that H.A/ is canonically commutative.

Definition 3.10 Let X be a topological space and B a commutative algebra. The
tensor of X and B is the colimit

X ˝B D colim
�
X ! pt

B
�! AlgCom.ChQ/

�
of the constant functor from X , viewed as an 1–groupoid, with value B .

Remark 3.11 When XDS1, this construction has the homotopy type of the Hochschild
chains of A. In general, one recovers Pirashvili’s higher Hochschild homology.
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Let Disk1
n=M denote the full subcategory of Diskn=M spanned by those arrowsF

k Rn!M with k D 1.

Proposition 3.12 Suppose that A admits a commutative refinement. There is a natural
equivalence

FrM ˝O.n/A' colim
�
Disk1

n=M !Diskn
ACom
�! AlgCom.ChQ/

�
:

Proof Since the colimit is the left Kan extension to a point, and since Kan extensions
compose, we may write

colim
Disk1

n=M

ACom ' colim
BO.n/

�! ACom ' .�! ACom/O.n/;

so that it suffices to identify �! ACom .

Since the projection Diskn=M!Diskn is a left fibration, so is � W Disk1
n=M!BO.n/;

in particular, this functor is a co-Cartesian fibration, which implies that the inclusion
��1.pt/! �=pt of the fiber over the basepoint into the overcategory is a right adjoint
and hence final. Therefore, we have

�! ACom D colim
�=pt

ACom ' colim
��1.pt/

ACom D �
�1.pt/˝A

According to [5, Corollary 2.13], the 1–category Disk1
n=M is equivalent to the Kan

complex M , and the map � W Disk1
n=M ! BO.n/ coincides under this identification

with the classifying map for the tangent bundle of M . In particular, the fiber of this
map is O.n/–equivalent to FrM , which completes the proof.

Proposition 3.13 Suppose that A admits a commutative refinement. There is a natural
equivalence Z

M

A' FrM ˝O.n/A:

Proof By the previous proposition, it suffices to show that the inclusion Disk1
n=M !

Diskn=M and the forgetful functor AlgCom.ChQ/! ChQ induce equivalences

colim
Disk1

n=M

ACom
�
�! colim

Diskn=M

ACom
�
�! colim

Diskn=M

A

when A is commutative.

Since ChQ is ˝–presentable (see [5, Definition 3.4]), the second equivalence fol-
lows from [5, Corollary 3.22], which asserts that Diskn=M is sifted, and [42, Corol-
lary 3.2.3.2], which implies that the forgetful functor from commutative algebras
preserves sifted colimits.

Algebraic & Geometric Topology, Volume 17 (2017)



3152 Ben Knudsen

The first equivalence holds whenever M is framed by [5, Proposition 5.1], since in
this case the diagram

Diskfr
n=M

��

�
// Diskn=M

��

Diskfr
n

��

// Diskn

��

FinD fegt // BO.n/t

commutes. In particular, the equivalence holds for M D
F

k Rn , and we conclude that

A' Fr.�/˝O.n/A

as n–disk algebras. Therefore, the claim will be established once we are assured that
the expression on the right satisfies condition (2) of Theorem 2.3. For this, we note
that the functor Fr.�/ takes a collar-gluing of manifolds to a pushout of O.n/–spaces,
and that the functor �˝O.n/A preserves colimits of O.n/–spaces.

3.3 A spectral sequence

We employ a certain “commutative-to-noncommutative” spectral sequence in the proof
of Theorem 1.1. For technical reasons, it will be convenient to restrict our attention to
n–disk algebras valued in Ch�0

Q , the full subcategory of chain complexes concentrated
in nonnegative homological degree. This restriction is not essential.

Proposition 3.14 Let M be an n–manifold and A an n–disk algebra in Ch�0
Q . There

is a natural first-quadrant spectral sequence

E2
p;q ŠHp;q

�
FrM ˝O.n/H.A/

�
H) HpCq

�Z
M

A

�
;

with differential dr of bidegree .�r; r � 1/.

The nature of the bigrading will become clear in the proof.

To construct this spectral sequence, we employ a rigidified version of the overcategory
Diskn=M , denoted Disj.M / following [42, Chapter 5], which is the poset of those
open subsets of M diffeomorphic to

F
k Rn for some k . We refer the reader to [42,

Proposition 5.5.2.13] for the proof of the following result.
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Proposition 3.15 There is a final functor N.Disj.M //!Diskn=M .

Thus, by [40, Proposition 4.1.1.8], the factorization homology of M may be computed
as a colimit over the nerve of the ordinary category Disj.M /. Having achieved
this simplification, we proceed as follows. Using the fact that Ch�0

Q arises from
a combinatorial simplicial model category, [40, Proposition 4.2.4.4] implies that any
functor N.Disj.M //! Ch�0

Q of 1–categories is equivalent in the 1–category of
functors to one coming from a functor of ordinary categories. Having chosen such a
“straightening” of A, which we abusively denote by A, [40, Theorem 4.2.4.1] now
guarantees that the homotopy colimit of A coincides with the 1–categorical colimit.

Proof of Proposition 3.14 From the discussion of the previous paragraph and [47,
Corollary 5.1.3], we have equivalencesZ

M

A' hocolim
Disj.M /

A' B.pt;Disj.M /;A/;

where B.pt;Disj.M /;A/ denotes the realization of the simplicial chain complex given
in simplicial degree p by

Bp.pt;Disj.M /;A/D
M

Up!���!U0!M

A.Up/

(here we use for a second time the fact that the model structure on nonnegatively graded
chain complexes is simplicial). Filtering by skeleta in the usual way, we obtain a
spectral sequence

E1
p;q D

M
Up!���!U0!M

Hq.A.Up// H) HpCq

�Z
M

A

�
;

with the differential d1 given by the alternating sum of the face maps (see [50, Propo-
sition 5.1], for example, which treats the case of a simplicial space). In other words,
the E1 page is the (graded) chain complex associated to the (graded) simplicial chain
complex B�.pt;Disj.M /;H.A// via the Dold–Kan correspondence, so that, invoking
Proposition 3.13, we have natural isomorphisms

E2
p;qŠHp;q.B.pt;Disj.M /;H.A///ŠHp;q

�Z
M

H.A/

�
ŠHp;q.FrM Ő.n/H.A//:

Remark 3.16 Horel discusses a version of this spectral sequence in [33, Section 5].

3.4 Enveloping algebras

In this section, we outline the place of Lie algebras in the theory of factorization
homology, the general reference for which is [35].
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It has long been known that configuration spaces are intimately related to Lie algebras;
see [17; 18; 16], for example. To see the connection, suppose that A is a Diskfr

n –
algebra in chain complexes, with n � 2. Part of the structure of such an object is a
multiplication map

mW Embfr�F
2 Rn;Rn

�
˝A˝2

!A;

and since the homology of Embfr�F
2 Rn;Rn

�
' Conf2.R

n/' Sn�1 is concentrated
in degrees 0 and n� 1, this multiplication encodes two maps

m0W A
˝2
!A and mn�1W A

˝2
!AŒ1� n�

defining a commutative multiplication on A and a Lie bracket on AŒn�1�, again up to
homotopy. The Jacobi identity for mn�1 follows from the three-term or Yang–Baxter
relations in H�.Conf3.R

n// (see [20]), and O.n/, acting on Sn�1 by degree ˙1

maps, interchanges it with the opposite bracket.

The fact that this discussion illustrates is the existence of a forgetful functor from
Diskfr

n –algebras to Lie algebras at the level of1–categories. Indeed, according to [35],
there is the following commuting diagram of adjunctions:

Alg
Diskfr

n
.ChQ/

��

// AlgL.ChQ/

��

Un

uu

ChQ

F fr
n

FF

Œn� 1�
// ChQ

L

ZZ

Œ1� n�

hh

Here L denotes the free Lie algebra functor.

The Diskfr
n –algebra Un.g/ is known as the n–enveloping algebra of g; see [31, Section

4.6] for a discussion of the identification between U1 and the usual universal enveloping
algebra. The factorization homology of these algebras is computed in [35].

Theorem 3.17 (Knudsen) There is a natural equivalenceZ
M

Un.g/
�
�! CL.gMC/:

We pause briefly to explain the terms of the theorem.

(1) The 1–category of differential graded Lie algebras has limits and is therefore
cotensored over pointed spaces; we denote by gX the cotensor of the pointed space X

with the Lie algebra g. A model for this object is provided by [32, Lemma 4.8.3].
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Proposition 3.18 Let X be a pointed finite CW complex. There is a natural equiva-
lence

gX
'APL.X /˝ g:

Here APL denotes the functor of reduced piecewise-linear de Rham forms (see [22,
Section 10(c)], for example), and the right-hand side carries the canonical Lie bracket
on the tensor product of a nonunital commutative algebra and a Lie algebra, which is
defined by the formula

Œa˝ v; b˝w�D .�1/jvjjbjab˝ Œv; w�:

(2) The symbol CL denotes the functor of Lie algebra chains. This coaugmented
cocommutative coalgebra is defined abstractly via the monadic bar construction against
the free Lie algebra monad, but it has a concrete incarnation as the Chevalley–Eilenberg
complex

CE.g/D .Sym.g Œ1�/; dgCD/;

where D is defined as a coderivation by specifying that

D.�x ^ �y/D .�1/jxj�Œx;y�:

See [27, Section 6] for a discussion of the comparison between the monadic bar construc-
tion and the Chevalley–Eilenberg complex. We remark that CE.g/ is a coaugmented
cocommutative differential graded coalgebra, and the resulting coproduct on HL.g/

coincides with the one inherited from the monadic bar construction; indeed, both are
induced by the diagonal g! g˚ g, which is a map of Lie algebras.

The equivalence of Theorem 3.17 specializes to a natural equivalence

Un.g/' CL.g.R
n/C/

of Diskfr
n –algebras. In this way, Theorem 3.17 can be thought of as identifying an n–

disk algebra refinement of the Diskfr
n –algebra Un.g/, so that the expression

R
M Un.g/

is sensible for manifolds M that are not necessarily framed.

Returning to the discussion that began this section, if A is now an n–disk algebra
rather than merely a Diskfr

n –algebra, then A determines a shifted Lie algebra in O.n/–
modules, but now with O.n/ acting on the suspension coordinates. A full discussion
of this phenomenon and the corresponding enveloping algebra is beyond the scope of
this paper. Since the analogue of Theorem 3.17 is true in that context, we will content
ourselves with making it our definition.

As a matter of notation, if X is a pointed O.n/–space and g a Lie algebra in O.n/–
modules, we denote the O.n/–invariants of gX by MapO.n/.X; g/.
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Definition 3.19 Let g be a Lie algebra in O.n/–modules. The n–enveloping algebra
of g is the n–disk algebra

Un.g/D CL.MapO.n/.Fr.Rn/C ; g//:

Here we take the frame bundle of the one-point compactification to be the cofiber

FrMC D cofib
�
FrM j@M ! FrM

�
of O.n/–spaces, where M is a compact n–manifold with boundary whose interior
is M ; see [4, Definition 4.5.1] for a more invariant interpretation of this object.

A choice of framing of Rn trivializes Fr.Rn/C , inducing an equivalence

MapO.n/.Fr.Rn/C ; g/' g.R
n/C ;

which is even equivariant for the diagonal action of O.n/ on the target, so this definition
specializes via Theorem 3.17 to our earlier one when g is an ordinary Lie algebra.

The corresponding factorization homology calculation is the following.

Proposition 3.20 There is a natural equivalenceZ
M

Un.g/
�
�! CL.MapO.n/.FrMC ; g//

for M an n–manifold and g a Lie algebra in O.n/–modules.

Proof Since CL , as a left adjoint, preserves colimits, it suffices to exhibit an equiva-
lence of Lie algebras Z

M

g.R
n/C �
�!MapO.n/.FrMC ; g/;

which is supplied by the argument of [5, Proposition 5.13], since sifted colimits of Lie
algebras are computed in ChQ by [41, Proposition 2.1.16].

We close this section with a definition of a grading that will play an important role in
what follows. Let g be a differential graded Lie algebra with a weight decomposition
as a direct sum of complexes g D

L
k g.k/ with the property that Œv; w� 2 g.r C s/

when v 2 g.r/ and w 2 g.s/.

Example 3.21 A free Lie algebra has a canonical weight decomposition

L.V /D
M
k�0

L.k/˝†k
V ˝k :
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Example 3.22 If g has a weight decomposition, then APL.X /˝g carries a canonical
weight decomposition for any space X .

Such a decomposition induces a weight grading on the underlying graded vector space
of Sym.gŒ1�/ of the Chevalley–Eilenberg complex. In fact, since we have assumed that
the bracket and differential of g each respect the weight decomposition, the Chevalley–
Eilenberg differential applied to a monomial of pure weight k again has pure weight k ,
so that CE.g/ is a bicomplex. In this way, a weight decomposition of g induces a
weight grading on H.Un.g//.

4 Configuration spaces

4.1 The main result

In this section, we prove Theorem 1.1 assuming the validity of several results, discus-
sion of which is postponed for the sake of continuity, as the proofs involve different
techniques from those used thus far.

As a preliminary step, we have the following basic pair of observations.

Proposition 4.1 (1) Let K be an O.n/–module and K its underlying chain com-
plex. There is a natural equivalence of framed n–disk algebras

F fr
n .K/' Fn.K/:

(2) Let g be a Lie algebra in O.n/–modules and g its underlying Lie algebra. There
is a natural equivalence of framed n–disk algebras

Un.g/' Un.g/:

Proof A choice of framing for Rn induces an O.n/–equivariant homotopy equivalence

Embfr�F
k Rn;Rn

�
�O.n/k

�
�! Emb

�F
k Rn;Rn

�
;

whence from Proposition 2.7 we have

Fn.K/Š
M
k�0

�
Embfr�F

k Rn;Rn
�
�O.n/k

�
˝†kËO.n/k K˝k

Š

M
k�0

��
Embfr�F

k Rn;Rn
�
�O.n/k

�
˝O.n/k K˝k

�
†k

Š

M
k�0

Embfr�F
k Rn;Rn

�
˝†k

K˝k

Š F fr
n .K/:
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This proves (1), and (2) is immediate from Definition 3.19.

Remark 4.2 Thinking topologically, the generic example of an n–disk algebra in
spaces is an n–fold loop space on an O.n/–space X ; see [49] or [54]. In this context,
the statement is that, as an n–fold loop space, the homotopy type of �nX does not
depend on the action of O.n/ on X .

Connecting (1) and (2) is the following formal observation, which amounts to the
statement that left adjoints compose.

Proposition 4.3 Let V be a chain complex. There is a natural equivalence

F fr
n .V /

�
�! Un.L.V Œn� 1�//

of framed n–disk algebras, where L is the free Lie algebra functor.

This observation is a generalization of the familiar fact that the universal enveloping
algebra of the free Lie algebra on a set of generators S is free on S as an associative
algebra; however, equipped with the involution given by its Hopf algebra antipode,
the universal enveloping algebra of the free Lie algebra on S is not the free algebra-
with-involution on S . This classical fact illustrates the n D 1 case of the general
phenomenon that the free n–disk algebra on the trivial O.n/–module V is not the
n–enveloping algebra of the free Lie algebra on V . As the following proposition shows,
the O.n/–action must be twisted to restore the equivalence.

Proposition 4.4 Let K be an O.n/–module. There is a natural equivalence

Fn.K/
�
�! Un

�
L..Rn/C˝KŒ�1�/

�
of n–disk algebras, where .Rn/C˝K carries the diagonal O.n/–action.

Proof First, we note that the unit

K! ..Rn/C˝K/.R
n/C

of the tensor/cotensor adjunction is an equivalence of O.n/–modules. Indeed, it suffices
to verify this in the case K D Q, in which case the map induces the isomorphism
QŠ .Qdet/˝2 in homology.

Now, composing this unit map with the natural inclusions

..Rn/C˝K/.R
n/C
!L..Rn/C˝KŒ�1�/.R

n/C Œ1�! CL
�
L..Rn/C˝KŒ�1�/.R

n/C
�
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of O.n/–modules, we obtain a map of n–disk algebras

Fn.K/! Un

�
L..Rn/C˝KŒ�1�/

�
from the universal property of the free algebra. It will suffice to show that this map is
an equivalence upon passing to underlying Diskfr

n –algebras, which follows from the
previous two propositions and the (nonequivariant) equivalence QŒn�' zC�..Rn/CIQ/.

Proof of Theorem 1.1 An equivalence of n–disk algebras induces an equivalence on
passing to factorization homology. Using the indicated results, we obtain equivalencesM

k�0

C�.Bk.M /IQ/'

Z
M

Fn.Q/ (3.4)

'

Z
M

Un

�
L
�
zC�..R

n/C/Œ�1�
��

(4.4)

' CL
�
MapO.n/

�
FrMC ;L

�
zC�..R

n/C/Œ�1�
���

(3.20)

' CL
�
MapO.n/.FrMC ;L.Q

detŒn� 1�//
�

(7.1)

' CL
�
MapC2. zMC;L.QsgnŒn� 1�//

�
' CL

�
H��c .M;L.Qw Œn� 1�//

�
: (7.5)

Applying Proposition 3.14 to this equivalence of algebras, we obtain an isomorphism
of spectral sequences. The weight and cardinality gradings of the two algebras pass to
factorization homology, so that these spectral sequences are each trigraded. According
to Proposition 5.4, the isomorphism preserves the extra grading on E2 and hence
on E1 .

4.2 Variations

In this section, we discuss the corresponding results for twisted homology and manifolds
with boundary.

Theorem 4.5 Let M be an n–manifold.

(1) If n is even, there is an isomorphism of bigraded vector spacesM
k�0

H�.Bk.M /IQw/ŠHL
�
H��c .M IL.QŒn� 1�//

�
:

(2) If n is odd, there is an isomorphism of bigraded vector spacesM
k�0

H�.Bk.M /IQw/Œk�ŠHL
�
H��c .M IL.QŒn�//

�
:
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Proof We imitate the proof of Theorem 1.1. In the even case, we haveM
k�0

C�.Bk.M /IQw/'

Z
M

Fn.Q
det/ (3.6)

'

Z
M

Un

�
L
�
zC�..R

n/C/˝QdetŒ�1�
��

(4.4)

' CL
�
MapO.n/

�
FrMC ;L

�
zC�..R

n/C/˝QdetŒ�1�
���

(3.20)

' CL
�
MapO.n/

�
FrMC ;L..Q

det/˝2Œn� 1�/
��

(7.1)

' CL
�
MapO.n/.FrMC ;L.QŒn� 1�//

�
' CL.L.QŒn� 1�/M

C

/

' CL
�
H��c .M;L.QŒn� 1�//

�
; (7.5)

and the odd case is essentially identical. The same argument as in the proof of
Theorem 1.1 shows that the resulting isomorphism is bigraded.

Now, if M is a manifold with boundary, then Bk.M /' Bk. VM /, since configuration
spaces are isotopy functors. A more interesting configuration space in this context is
the relative configuration space

Bk.M; @M / WD
Bk.M /

f.x1; : : : ;xk/ j xi 2 @M for some ig
:

From the point of view of factorization homology, the natural setting in which to study
these spaces is that of the zero-pointed manifolds of [4], a class of pointed spaces that
are manifolds away from the basepoint. Indeed, if M is a manifold with boundary,
then M=@M is naturally a zero-pointed manifold.

The algebraic counterpart of a basepoint is an augmentation.

Definition 4.6 An augmented n–disk algebra is an n–disk algebra A together with a
map of n–disk algebras �W A!Q.

Example 4.7 The free n–disk algebra Fn.K/ is naturally augmented via the unique
map of O.n/–modules K! 0.

Example 4.8 The n–enveloping algebra Un.g/ is naturally augmented via the unique
map of Lie algebras g! 0.

The theory of factorization homology for zero-pointed n–manifolds with coefficients
in augmented n–disk algebras is expounded at length in [4] and [3]. For us, what is
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important is that, if M is a manifold with boundary, then the factorization homology of
M=@M is defined for any choice of augmented n–disk algebra; moreover, if @M D¿,
then M=@M DMC , and the factorization homology of the zero-pointed manifold MC
with coefficients in �W A!Q is equivalent to the factorization homology of M with
coefficients in A defined previously.

Our arguments go through in this more general context.

Theorem 4.9 Let M be an n–manifold with boundary. There is an isomorphism of
bigraded vector spacesM

k�0

zH�.Bk.M; @M /IQ/ŠHL
�
H��c .M IL.Qw Œn� 1�//

�
:

Proof We explain the adjustments necessary in the proof of Theorem 1.1. First, [3,
Theorem 2.4.1] guarantees the equivalenceM

k�0

zC�.Bk.M; @M /IQ/'

Z
M=@M

Fn.Q/:

Second, it is immediate from its definition that the map of Proposition 4.4 is a map of
augmented n–disk algebras, so thatZ

M=@M

Fn.Q/'

Z
M=@M

Un

�
L
�
zC�..R

n/C/Œ�1�
��
:

The proof of Proposition 3.20 translates verbatim into the zero-pointed context, so that
we have the further equivalenceZ

M=@M

Un

�
L
�
zC�..R

n/C/Œ�1�
��
' CL

�
MapO.n/

�
FrMC ;L

�
zC�..R

n/C/Œ�1�
���
:

The remainder of the proof goes through unchanged.

Remark 4.10 When M has boundary, there are two obvious candidates for the
orientation sheaf of M , namely the ordinary and the exceptional pushforwards of the
orientation sheaf of the interior of M . We intend the former here.

4.3 Formulas

In this section, we use Theorem 1.1 and the Chevalley–Eilenberg complex to reproduce
and extend the classical results on the rational homology of configuration spaces alluded
to in the introduction.

Algebraic & Geometric Topology, Volume 17 (2017)



3162 Ben Knudsen

We remind the reader that the free Lie algebra on Qw Œr � is given as a graded vector
space by

L.Qw Œr �/Š

�
Qw Œr �˚QŒ2r � for r odd,
Qw Œr � for r even.

When r is odd, the only nonvanishing bracket is the isomorphism .Qw Œr �/˝2ŠQŒ2r �.

Corollary 4.11 If n is odd, there is an isomorphism

H�.Bk.M /IQ/Š Symk.H�.M IQ//:

Proof Since n is odd, the Lie algebra in question is abelian, so that the Chevalley–
Eilenberg complex has no differential, and the weight grading coincides with the usual
grading of the symmetric algebra. The claim follows after replacing shifted, twisted,
compactly supported cohomology with homology using Poincaré duality.

This result is [10, Theorem C] as formulated in dual form in [23, Theorem 4], in which
the isomorphism on cohomology is shown to be an isomorphism of algebras.

Corollary 4.12 If n is even, H�.Bk.M /IQ/ is isomorphic to the homology of the
complex� bk=2cM

iD0

Symk�2i.H��c .M IQw/Œn�/˝Symi.H��c .M IQ/Œ2n� 1�/;D

�
;

where the differential D is defined as a coderivation by the equation

D.�n˛^ �nˇ/D .�1/.n�1/jˇj�2n�1.˛ ^ ˇ/:

Proof It suffices by Theorem 1.1 to identify the complex in question with the weight-k
part of the Chevalley–Eilenberg complex for gDH��c .M IL.Qw Œn� 1�//, which as
a graded vector space is given by

Sym.gŒ1�/Š Sym.H��c .M IQw/Œn�/˝Sym.H��c .M IQ/Œ2n� 1�/;

with differential determined as a coderivation by the bracket of g, which is none other
than the shifted cup product shown above, with the sign determined by the usual Koszul
rule of signs. Since the cogenerators of the first tensor factor have weight 1 and those
of the second tensor factor weight 2, the subcomplex of total weight k is exactly the
sum shown above.

Algebraic & Geometric Topology, Volume 17 (2017)



Betti numbers and stability for configuration spaces via factorization homology 3163

When M is closed, orientable and nilpotent, we recover the linear and Poincaré dual
of [24, Theorem A], as formulated in [23, Theorem 1]. When M is a once-punctured
surface, we recover [9, Theorem C].

Remark 4.13 The proofs of Theorem 1 and the even-dimensional half of Theorem 3
of [23] rely crucially on the results of [24] and thereby on the hypotheses of compactness,
orientability and nilpotence. At the time of writing, these hypotheses do not appear in
the statements of the theorems.

It follows from our results, however, that these theorems are true at the stated level
of generality. Indeed, by [23, Theorem 6], the †k –invariants of the E1 page of the
Cohen–Taylor–Totaro spectral sequence (see [18] and [53]) coincide with the linear
dual of the complex exhibited in Corollary 4.12.

An analogous spectral sequence in the nonorientable case, possibly with twisted coeffi-
cients, is available due to [28] and [29]; see also [45].

We leave it to the reader to formulate the analogous results on twisted homology
and those concerning the homology of the relative configuration spaces Bk.M; @M /,
which follow in the same way from Theorems 4.5 and 4.9, respectively. To the author’s
knowledge, the computation in the twisted case is new in all cases except when M

is orientable and n is even, so that Bk.M / is orientable, and the computation in the
relative case is new in all cases except when @M D¿.

5 Coalgebraic structure

5.1 Primitives and weight

Our present goal is to supply the first of the missing ingredients in the proof of the
main theorem, namely the identification of the cardinality and weight gradings at the
level of homology (see Definition 3.3 and the end of Section 3.4 for definitions of these
gradings). We make this identification locally on M in this section and globalize in
the following section using a spectral sequence argument.

Let K be an O.n/–module. We define the following maps:

(1) �W K!Fn.K/ is the map of O.n/–modules given by the unit of the free/forgetful
adjunction;

(2) �W Q! Fn.K/ is the unit of Fn.K/ as an n–disk algebra;
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(3) ıW Fn.K/! Fn.K/˝ Fn.K/ is the map of n–disk algebras induced by the
composite

K
�
�!K˚K

�˝�C�˝�
������! Fn.Q/˝Fn.Q/;

where � is the diagonal and we have tacitly employed the canonical identifica-
tions K˝QŠK ŠQ˝K ;

(4) ıM and �M are the maps on factorization homology induced by ı and �,
respectively.

Note that we have suppressed the choice of K from the notation.

Although we will only use the case M DRn here, we record the following result for
its inherent interest.

Proposition 5.1 The maps H.ıM / and H.�M / endow H
�R

M Fn.K/
�

with the struc-
ture of a coaugmented cocommutative coalgebra.

Proof The functor
R

M is symmetric monoidal in the algebra variable by [42, Theorem
5.5.3.2], so it suffices to verify the claim in the case M DRn . The required axioms
all follow from the universal property of the free algebra; we spell out the argument for
coassociativity, leaving the remainder to the reader.

Consider the following cubical diagram:

K
�

//

�

��

�

vv

// K˚K

�˚1

��

�˝�C�˝�
tt

Fn.K/
ı

//

ı

��

Fn.K/˝Fn.K/

ı˝1

��

K˚K�˝�C�˝�

vv

1˚�
// K˚K˚K

�˝�˝�C�˝�˝�C�˝�˝�tt

Fn.K/˝Fn.K/
1˝ı

// Fn.K/˝Fn.K/˝Fn.K/

It will suffice to show that the square diagram given by the front face of the cube
commutes in the 1–category of n–disk algebras, since this square witnesses coasso-
ciativity after applying factorization homology and passing to the homotopy category
of chain complexes. Applying the universal property of the free algebra, the required
commutativity is equivalent to commutativity as a diagram of O.n/–modules after
precomposing with �. By a standard diagram chase, it suffices to verify that the
remaining five faces each commute:
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� The left and top face commute by the definition of ı .
� The back face commutes by the universal property of the direct sum, considered

as the 1–categorical product.
� The right and bottom face commute by the definition of ı and the universal

property of the direct sum, considered as the 1–categorical coproduct.

Although we have defined this coalgebra structure in abstract terms, it has an appealing
geometric interpretation, which we discuss in Section 5.2 below.

When M D Rn , the same homology is also an algebra, and even commutative for
n � 2. Since ı is a map of n–disk algebras, H.Fn.Q// inherits the structure of a
bialgebra, and in fact a Hopf algebra, although we will not make use of the antipode.

For the duration of this section, we make the abbreviation

g.K/ WD L..Rn/C˝KŒ�1�/.R
n/C :

Proposition 5.2 The isomorphism on homology induced by the equivalence of Proposi-
tion 4.4 is an isomorphism of bialgebras.

Proof Denote by ' the equivalence

Fn.K/
�
�! CL.g.K//

of Proposition 4.4. Since ' is a map of n–disk algebras, the induced map on homology
is a map of algebras; therefore, it will suffice to show that this map is also a map of
coalgebras.

Consider the cubical diagram

K //

�

��

�

ww

// g.K/Œ1�

�

��

tt

Fn.K/
'

//

ı

��

CL.g.K//



��

K˚K

�˝�C�˝�
ww

// g.K/Œ1�˚g.K/Œ1�

tt

Fn.K/˝Fn.K/
'˝'

// CL.g.K//˝CL.g.K//

where  denotes the comultiplication on Lie algebra chains. As before, we wish to
show that the front face commutes in the 1–category of n–disk algebras, and, as
before, this reduces to checking the commutativity of the remaining five faces in the
1–category of O.n/–modules:
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� The left face commutes by the definition of ı .

� The back face commutes by functoriality of the diagonal.

� The top face commutes by the definition of ' .

� The bottom face commutes by the definition of ' and the universal property of
the direct sum, considered as the categorical coproduct.

� The right face commutes because the functor CL is Cartesian monoidal.

This bialgebra is a familiar one, and the various components of its structure interact
predictably with the bigradings.

Proposition 5.3 (1) There are isomorphisms

HL.g.K//Š Sym
�
H.g.K//Œ1�

�
ŠH.Fn.K//

of graded bialgebras, where Sym is equipped with the standard product and
coproduct.

(2) The product in H.Fn.K// preserves the cardinality grading.

(3) The coproduct in H.Fn.K// preserves the cardinality grading.

(4) The product in HL.g.K// preserves the weight grading.

(5) The coproduct in HL.g.K// preserves the weight grading.

Proof (1) We note that g.K/ is a formal Lie algebra, since the pointed space .Rn/C

is formal; moreover, since H.g.K// is abelian, there is no differential in the Chevalley–
Eilenberg complex, so we have isomorphisms of coaugmented coalgebras

HL.g.K//ŠHL
�
H.g.K//

�
Š Sym

�
H.g.K//Œ1�

�
:

From the discussion of Section 3.4, the product of HL.g.K// is the map induced on
Lie algebra homology by the n–disk algebra structure map of g.K/ corresponding to
any embedding Rn tRn!Rn , and any such structure map induces the fold map

H.g.K//˚H.g.K//
C
�!H.g.K//

at the level of homology. Likewise, the coproduct is induced by the diagonal, and
we recognize the standard bialgebra structure on Sym. The second isomorphism now
follows by Proposition 5.2.

(2) The cardinality grading is natural, and the product is the map induced on homology
by the n–disk algebra structure map corresponding to any embedding Rn tRn!Rn .
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(3) Since the coproduct preserves the cardinality grading on generators by definition,
the claim follows from (2) and the fact that H.Fn.K// is a bialgebra.

(4) The claim is immediate from the definition of the weight grading.

(5) Since the coproduct preserves the cardinality grading on generators by definition,
the claim follows from (4) and the fact that HL.g.K// is a bialgebra.

The desired identification of bigradings now follows easily.

Proposition 5.4 In the case M DRn , the isomorphisms of Theorems 1.1, 4.5 and 4.9
are isomorphisms of bigraded vector spaces.

Proof We present the argument for Theorem 1.1, the others being essentially identical.

We follow the convention that a subscript indicates homological degree, a generator
decorated with a tilde has weight 2 and an unadorned generator has weight 1. There is
an isomorphism of bialgebras H.Fn.Q//Š Sym.Vn/, where

Vn D

�
Qhx0i for n odd,
Qhx0; Qyn�1i for n even.

Identifying both sides of the isomorphism of Theorem 1.1 with Sym.Vn/, Proposi-
tion 5.2 permits us to view this isomorphism as an automorphism f of this graded
bialgebra. Now, as a morphism of graded coalgebras, f takes primitives to primitives,
so that there is an induced map f jVn

W Vn! Vn of graded vector spaces, which we
claim is a bigraded isomorphism. In the case of odd n, the claim is implied by the
injectivity of f jVn

, while in the even case we note that, for degree reasons, f .x/ is a
scalar multiple of x and f . Qy/ is a scalar multiple of Qy . By injectivity, this scalar is
nonzero, and we conclude that f jVn

is a bigraded isomorphism.

Now, since f is also a map of algebras, we have f .x1 � � �xr /Df .x1/ � � � f .xr /, which,
together with the previous paragraph, shows that f preserves weight on monomials.
Since monomials form a bihomogeneous basis and f is linear, the proof is complete.

5.2 Interlude: splitting configurations

Configuration spaces of different cardinalities are interrelated by splitting and forgetting
maps inherited from the Cartesian product via the embedding Confk.M /!M k . This
rich structure invites an inductive way of thinking that appears in one form or another
in essentially every classical approach to these spaces; see [1] and [21] for the origins
of this approach and [14] for a modern implementation.
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In the setting of factorization homology, the importance of these splitting maps is that
they assemble to form a coproduct, a shadow of which we have seen in the previous
section, endowing Fn.K/ with the structure of an n–disk algebra in cocommutative
coalgebras. We will not need the full force of this statement, nor will we need
the geometric interpretation of this coalgebra structure; nevertheless, we devote the
remainder of this section to elucidating this interpretation, both for its general interest
and for the motivation it provides for our proof of homological stability.

Remark 5.5 The constructions of this section are valid in more general stable settings
than chain complexes, including the symmetric monoidal 1–category of spectra with
smash product. We intend to return to this setting in future work.

The basic ingredient is the collection of natural transformations

si;j W Conf fr
k ! Conf fr

i �Conf fr
j ;

defined whenever i C j D k , which make the diagram

Conf fr
k .M /

��

.si;j /M
// Conf fr

i .M /�Conf fr
j .M /

��Q
k FrM

Š
//
Q

i FrM �
Q

j FrM

commute; in other words,

.si;j /M .x1; : : : ;xk/D ..x1; : : : ;xi/; .xiC1; : : : ;xk//:

Given an O.n/–module K , we have maps

sK
i;j W Conf fr

k˝K˝k
ıi;j˝1
����! .Conf fr

i �Conf fr
j /˝K˝k '

�!Conf fr
i ˝K˝i

˝Conf fr
j ˝K˝j ;

which are .†i �†j /Ë O.n/k –equivariant. Taking O.n/k –coinvariants and using that
induction is right adjoint to restriction for the inclusion †i �†j !†k , we obtain by
adjunction a †k –equivariant map

QsK
i;j W Conf fr

k ˝O.n/k K˝k
! Ind†k

†i�†j
.Conf fr

i ˝O.n/i K˝i
˝Conf fr

j ˝O.n/j K˝j /:

Finally, taking †k –coinvariants and summing over k , i and j , we obtain a map

sK
W

M
k�0

�
Conf fr

k ˝†kËO.n/k K˝k
�

!

M
k

M
iCjDk

�
Conf fr

i ˝†i ËO.n/i K˝i
˝Conf fr

j ˝†j ËO.n/j K˝j
�
:
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Collecting terms and restricting to Diskn , we recognize this as a monoidal natural
transformation

sK
W Fn.K/! Fn.K/˝Fn.K/:

The proof of homological stability given in the next section is completely internal to
the Chevalley–Eilenberg complex, but the motivation behind it comes from thinking
of the symmetric coproduct, given by splitting monomials in all possible ways, as
corresponding to this geometric coproduct, given by splitting configurations in all
possible ways. To see the connection, we recall that, in the approach of [14], stability
is induced by the transfer maps

H�.ConfkC1.M /IQ/

P
i.pi/�

//

��

H�.Confk.M /IQ/

��

H�.BkC1.M /IQ/
tr

// H�.Bk.M /IQ/

where pi denotes the projection that forgets xi . In terms of our splitting maps, we
have a factorization

ConfkC1.M /

�i

��

pi
// Confk.M /

ConfkC1.M /
s1;k
// M �Confk.M /

OO

where �i denotes the permutation that moves xi to the first position while maintaining
the relative order of the remaining points, and the unmarked arrow is the projection. The
composite s1;k�i is a component of the coproduct defined above, and the projection
away from the M factor corresponds at the level of homology to evaluating against
the unit in H 0.M IQ/. Together, these observations suggest that homological stability
should be induced taking a cap product. We realize this idea in the next section.

5.3 Stability

This section assembles the proof of Theorem 1.3. Throughout, unless otherwise noted,
M will be connected, without boundary and of dimension n > 1. For the sake of
brevity, we make the abbreviation

gM DH��c .M IL.Qw Œn� 1�//:

Let � 2H 0.M / denote the multiplicative unit. We view this cohomology class as a
functional on H0.M /ŠH 0

c .M IQ
w/Œn� and hence, extending by zero, on CE.gM /,

since the former is canonically a summand of the underlying bigraded vector space of the
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latter. Thus we may contemplate the cap product with this element, denoted �_ .�/,
which is defined as the composite

CE.gM /ŠQ˝CE.gM /
�˝
���! CE.gM /_˝CE.gM /˝CE.gM /

h�;�i˝id
������! CE.gM /:

Denote by p 2 H n
c .M IQ

w/ � CE.gM / the Poincaré dual of a point in M , which
is well-defined since M is connected. Extend the set f1;pg once and for all to a
bihomogeneous basis B for gM Œ1�. Then the set of nonzero monomials in elements
of B form a bihomogeneous basis for CE.gM /, and, under the resulting identification
of this vector space with its dual, � is identified with the dual functional to p . Since
p is closed of degree 0 and weight 1, we conclude the following:

Proposition 5.6 �_ .�/ is a chain map of degree 0 and weight �1.

There is a simple formula describing this map. Here and throughout, when we speak of
divisibility, multiplication and differentiation in the Chevalley–Eilenberg complex, we
refer only to the formal manipulation of bigraded polynomials; in particular, CE.gM /

is not in general a differential graded algebra.

Proposition 5.7 The formula

�_ x D
dx

dp

holds for all x 2 CE.gM /.

Proof Both sides are linear, so the claim is equivalent to the equality

�_ pr y D rpr�1y

whenever r � 0 and y is a monomial in elements of Bnfpg. There are now two cases.

The first case is when y is a scalar, in which case we may assume by linearity that yD1,
so that x D pr , and

 .x/D  .p/r

D .p˝ 1C 1˝p/r

D

rX
iD0

�r

i

�
pi
˝pr�i ;

so that

�_ x D

rX
iD0

� r

i

�
h�;pi

ipr�i
D rpr�1:
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The second is when y is a monomial in B nf1;pg, in which case we may write

 .y/D y˝ 1C 1˝yC
X

j

yj ˝y0j

with yj and y0j monomials in B nf1;pg. Then we have

 .pr y/D  .p/r .y/

D .p˝ 1C 1˝p/r
�
y˝ 1C 1˝yC

X
j

yj ˝y0j

�
D

rX
iD0

�r

i

��
piy˝pr�i

Cpi
˝pr�iyC

X
j

piyj ˝pr�iy0j

�
;

whence

�_pr yD

rX
iD0

� r

i

��
h�;piyipr�i

Ch�;pi
ipr�iyC

X
j

h�;piyj ip
r�iy0j

�
Drpr�1y;

since piy is not a scalar multiple of p for any i , nor is piyj a scalar multiple of p

for any .i; j /.

Corollary 5.8 The chain map �_ .�/ is surjective.

Proof It suffices to show that a general monomial in elements of B lies in the image.
Such a monomial may be written as pr y with r � 0 and y a monomial in elements
of B nfpg. We than have

d

dp

�
1

rC1
prC1y

�
D pr y:

The central observation behind our approach to stability is the following.

Proposition 5.9 Let x be a nonzero monomial in CE.gM /. Then x is divisible by p

provided either

� wt.x/ > jxjC 1 and M is an orientable surface, or

� wt.x/ > jxj and M is not an orientable surface.

Proof Suppose wt.x/> jxj, and write xDx1 � � �xr with xi 2B. Then wt.xj /> jxj j

for some j . Since xj 2 gM Œ1�, the weight of this element is either 1 or 2.

In the first case, xj 2H��c .M IQw/Œn�, and we have

jxj j< wt.xj /D 1 implies jxj j D 0;
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since H��c .M IQw/Œn� is concentrated in degrees 0 � � � n. But H n
c .M IQ

w/ is
one-dimensional on the class p , so xj is a scalar multiple of p .

In the second case, xj 2 H��c .M IQ/Œ2n � 1�, and we have jxj j < 2. Because
H��c .M IQ/Œ2n� 1� is concentrated in degrees n� 1� � � 2n� 1, we conclude that
xj D 0 provided n ¤ 2 (recall that we have already assumed n > 1). Thus x D 0,
which is a contradiction. This proves the claim when M is not a surface.

If M is a nonorientable surface, then H 2
c .M IQ/ŠH0.M IQ

w/D 0, and therefore
H��c .M IQ/Œ2n� 1� is concentrated in degrees 2 and 3. Thus, in this case as well, we
have a contradiction.

Assume now that M is an orientable surface and wt.x/> jxjC1. As before, write xD

x1 � � �xr and choose xj with wt.xj /> jxj j, and assume that xj is not a scalar multiple
of p . Then by the argument above, wt.xj /D 2, so jxj j D 1, since H��c .M IQ/Œ3� is
concentrated in degrees 1� � � 3.

Now, the monomial x0 D x1 � � � Oxj � � �xr has the property that

wt.x0/D wt.x/� 2> jxj � 1D jx0j;

so there is some xi with i ¤ j and wt.xi/ > jxi j. If xi is a scalar multiple of p , we
are finished; otherwise, repeating the same argument shows that xi has degree 1. But
H 2

c .M IQ/ Š H0.M IQ/ is one-dimensional, so that xi is a scalar multiple of xj ,
and x is divisible by x2

j . Since xj is of odd degree, this implies that x D 0, which is
a contradiction.

We are now equipped to prove Theorem 1.3. Denote by C.k/ the subcomplex of the
Chevalley–Eilenberg complex spanned by the weight-k monomials. Taking the cap
product with 1 restricts to a map ˆk W C.kC1/! C.k/, and we aim to show that this
map induces an isomorphism in homology in the specified range.

Recall that the r th brutal truncation of a chain complex V is the chain complex ��r V

whose underlying graded vector space is

.��r V /i D

�
Vi if i � r;

0 otherwise.

and whose differential is the restriction of the differential of V . Truncation is a functor
on chain complexes in the obvious way.

We make use of the following elementary fact.

Proposition 5.10 Let f W V !W be a surjective chain map such that ��rf is a chain
isomorphism. Then f is a homology isomorphism through degree r and a homology
surjection in degree r C 1.
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Proof From the definition of the brutal truncation, it is immediate that f is a homology
isomorphism through degree r � 1. Moreover, f induces a bijection on r –cycles and
an injection on r –boundaries.

To show that f is a homology isomorphism in degree r , it suffices to show that
f �1.w/ is a boundary if w 2Wr is a boundary. Write w D du; then, by surjectivity,
there is some Qu 2 Vr such that f . Qu/D u, and

f .d Qu/D df . Qu/D duD w implies f �1.w/D d Qu;

as desired.

To show that f is a homology surjection in degree rC1, let v 2WrC1 be a cycle. By
surjectivity, v D f . Qv/, and it will suffice to show that Qv is a cycle, for which we have

f .d Qv/D df . Qv/D dv D 0 implies d Qv D f �1.0/D 0:

Proof of Theorem 1.3 Assume first that M is not an orientable surface. By the
previous proposition and Corollary 5.8, we are reduced to showing that ��kˆk is a
chain isomorphism. To see this, let x 2 ��kC.kC1/ be a monomial. Then wt.x/> jxj,
so that x D pr y with r > 0 and y a monomial in B nfpg by Proposition 5.9. By
Proposition 5.7, ˆk.x/D rpr�1y , so ��kˆk maps distinct elements of our preferred
basis for C.kC 1/ to nonzero scalar multiples of distinct elements of our preferred
basis for C.k/, which implies that ��kˆk is injective. But ˆ and hence ˆk are
surjective by Corollary 5.8, so ��kˆk is as well.

Assume now that M is an orientable surface. For the same reason, we are reduced
to showing that �k�1ˆk is a chain isomorphism, which is accomplished by the same
argument, using the other half of Proposition 5.9.

Remark 5.11 Let K denote the Klein bottle. As shown in Section 6,

dim H�.Bk.K/IQ/D

8<:
1 i 2 f0; 1; 2; kC 1g;

2 3� i � k;

0 else.

In particular, HkC1.BkC1.K/IQ/©HkC1.Bk.K/IQ/, so our bound is sharp in the
sense that no better stable range holds for all manifolds that are not orientable surfaces.

Remark 5.12 If M is orientable and H�.M IQ/ D 0 for 1 � � � r � 1, then
H��c .M IQ/ D 0 for n� r C 1 � �� � n� 1, and the argument of Proposition 5.9
shows that a monomial x is divisible by p provided its weight is greater than jxj

r
C 1.

This improved estimate leads to an improved stable range, as in [14, Proposition 4.1].
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Remark 5.13 In [37], factorization homology is used to obtain homological stability
results for various constructions on open manifolds. The approach there is through
certain “partial algebras” and appears unrelated to ours.

6 Examples

We now present a selection of computations illustrating the following general procedure
for determining the rational homology of the configuration space of k points in an
n–manifold M :

(1) compute the compactly supported cohomology of M , twisted if necessary;

(2) compute the Lie algebra homology of H��c .M IL.Qw Œn� 1�//;

(3) count basis elements of weight k .

It is worth noting that the Chevalley–Eilenberg complex allows one to obtain answers
simultaneously for all k , reducing an infinite sequence of computations to one.

The computations of this section are all relatively elementary, and one can do better with
more effort. In [19], this approach is used to determine the Betti numbers of Bk.†/

for every surface †.

Convention In the following examples, a variable decorated with a tilde has weight 2,
while an unadorned variable has weight 1.

6.1 Punctured euclidean space

As a warm-up and base case, we recover the classical computation of H�.Bk.R
n/IQ/.

Since there are no cup products in the compactly supported cohomology of Rn ,
there are no differentials in the corresponding Chevalley–Eilenberg complex. Thus
H�.Bk.R

n/IQ/ is identified with the subspace of QŒx� spanned by xk when n is
odd, while for n even, the identification is with the subspace of

QŒx�˝ƒŒ Qx�; jxj D 0; j Qxj D n� 1;

spanned by elements of weight k , a basis for which is given by fxk ;xk�2 Qxg. We
conclude, for all k > 1, that

H�.Bk.R
n/IQ/Š

�
Q for n odd,
Q˚QŒn� 1� for n even.

Now, choose Np D fp1; : : : ;pmg 2Rn . There is a homotopy equivalence .Rn n Np/C '

Sn_.S1/_m , so that H��c .Rnn NpIQ/ŠQmŒ�1�˚QŒ�n�. There are no cup products,
so there can be no differentials.
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If n is odd, Theorem 1.1 identifies H�.Rn n NpIQ/ with the weight-k part of

QŒx;y1; : : : ;ym�; jxj D 0; jyi j D n� 1;

and an easy induction now shows that

dim H�.Bk.R
n
n Np/IQ/D

��mCi�1
i

�
for � D i.n� 1/; 0� i � k;

0 otherwise.

(It is helpful to recall that
�
mCi�1

i

�
is the number of ways to choose i not-necessarily-

distinct elements from a set of m elements.)

If n is even, then the corresponding vector space is the weight-k part of

QŒx; Qy1; : : : ; Qym�˝ƒŒ Qx;y1; : : : ;ym�; jxj D 0; jyi j D j Qxj D n� 1; j Qyi j D 2n� 2:

Counting inductively in terms of less punctured Euclidean spaces, one finds that

H�.Bk.R
n
n Np/IQ/Š

kM
lD0

M
j1C���CjmDl

H��l.n�1/.Bk�l.R
n/IQ/;

from which it follows easily that

dim H�.Bk.R
n
n Np/IQ/D

8̂<̂
:
�
mCi�1

m�1

�
C
�
mCi�2

m�1

�
for � D i.n� 1/; 0� i < k;�

mCk�1
m�1

�
for � D k.n� 1/;

0 otherwise.

(It is helpful to recall that
�
mCi�1

m�1

�
is the number of ways to write i as the sum of m

nonnegative integers.)

It should be clear from this example that Theorem 1.1 reduces calculations to counting
problems whenever n is odd or the relevant compactly supported cohomology has no
cup products.

6.2 Punctured torus

Since H��c .T 2 n ptIQ/Š zH��.T 2IQ/, the relevant Lie algebra is isomorphic to

h˚Qh Qa; Qb; ci;

where hDQha; b; Qci as a vector space,

jaj D jbj D j Qcj D 0; j Qaj D j Qbj D 1; jcj D �1;

and the bracket is defined by the equation

Œa; b�D Qc:
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The Lie homology of h is calculated by the complex

.ƒŒx;y; Qz�; d.xy/D Qz/;

(where for ease of notation we have set x D �a and so on), a basis for the ho-
mology of which is easily seen to be given by the image in homology of the set
f1;x;y;x Qz;y Qz;xy Qzg. Thus we have an identification of H�.Bk.T

2 n pt/IQ/ with
the weight-k part of

Qh1;x;y;x Qz;y Qz;xy Qzi˝QŒ Qx; Qy; z�; jzj D 0; jxj D jyj D jQzj D 1; j Qxj D j Qyj D 2:

Counting, we find that

dim H�.Bk.T
2
n pt/IQ/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

3i�1
2
C 1 for � D 2i C 1< k;

3i
2
C 1 for � D 2i < k;

kC 1 for � D k odd,
k
2
C 1 for � D k even,

0 otherwise.

An amusing comparison can be seen by taking k D 2 in the above formula, which
yields

H�.B2.T
2
n pt/IQ/ŠQ˚Q2Œ1�˚Q2Œ2�:

On the other hand, from the preceding example, one calculates that

H�.B2.R
2
nfp1;p2g/IQ/ŠQ˚Q3Œ1�˚Q3Œ2�:

Thus, despite the fact that the punctured torus and the twice-punctured plane are homo-
topy equivalent, having S1 _S1 as a common deformation retract, their configuration
spaces are not homotopy equivalent.

6.3 Real projective space

Let n be even, so that RPn is nonorientable. Then, as a ring, H��c .RPnIQ/ Š Q,
and the Lie homology of interest is HL.L.QŒn�1�//ŠQ˚QŒn�, whence, for k > 1,

H�.Bk.RPn/IQw/D 0:

As for the untwisted homology, we note that H��c .RPnIQw/ŠQŒ�n� by Poincaré
duality, so that the cup product map H��c .RPnIQw/˝2!H��c .RPnIQ/ is trivial
for degree reasons. Thus

H��c .RPn
IL.Qw Œn� 1�//ŠQŒ�1�˚QŒ2n� 2�
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is abelian, so that H�.Bk.RPn/IQ/ is isomorphic to the weight-k part of

QŒx�˝ƒŒ Qy�; jxj D 0; j Qyj D 2n� 1:

Hence for all k > 1,

H�.Bk.RPn/IQ/ŠQ˚QŒ2n� 1�:

See [55] for an alternate method of computation in the case nD 2.

6.4 Klein bottle, twisted

Let K denote the Klein bottle. Then H��c .KIQ/ŠQ˚QŒ�1�, with the generator in
degree zero acting as a unit for the multiplication. As a vector space, the Lie algebra
in question is g WDQha; Qa; b; Qbi, where jbj D 0, jaj D j Qbj D 1 and j Qaj D 2, and the
bracket is defined by the equations

Œa; a�D Qa; Œa; b�D�Qb:

The subspace spanned by fb; Qbg is an ideal realizing g as an extension

0!Qhb; Qbi ! g! L.Qhai/! 0;

so that we may avail ourselves of the Lyndon–Hochschild–Serre spectral sequence

E2
p;q ŠHL

p

�
L.Qhai/IHL

q .Qhb; Qbi/
�
H) HL

pCq.g/:

There are no differentials for degree reasons, and the E2 page is computed as the
homology of the complex

0!QhaiŒ1�˝Sym.Qhb; QbiŒ1�/! Sym.Qhb; QbiŒ1�/! 0;

where the differential is the action of a. It follows that a basis for HL.g/ is given by
f�a˝ .� Qb/i ; �b˝ .� Qb/j j i; j � 0g. Counting monomials of weight k , we find that

H�.Bk.K/IQ
w/Š

�
QŒk�˚QŒkC 1� for k odd,
0 for k even.

6.5 Nonorientable surfaces

Let Nh D .RP2/#h . Using the method of the previous example, one could proceed to
obtain a general formula for the twisted homology of Bk.Nh/. Here we will determine
the corresponding untwisted homology. We have

H��c .NhIQ/ŠQ˚QŒ�1�h�1; H��c .NhIQ
w/ŠQŒ�1�h�1

˚QŒ�2�;
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so that there can be no cup products. Thus H�.Bk.Nh/IQ/ is the weight-k part of

QŒx; Qy1; : : : ; Qyh�1�˝ƒŒQz; w1; : : : ; wh�1�; jxj D 0; jwi j D 1; j Qyi j D 2; jQzj D 3:

Counting inductively as in the example of punctured Euclidean space, we find that

H�.Bk.Nh/IQ/Š
kM

lD0

M
j1C���Cjh�1Dl

H��l.Bk�l.RP2/IQ/;

from which it follows that

dim H�.Bk.Nh/IQ/D

8̂<̂
:
�
hC��2

h�2

�
C
�
hC��5

h�2

�
for � � k;�

hC��5
h�2

�
for � D kC 1;

0 otherwise.

6.6 Open and closed Möbius band

Let M denote the closed Möbius band. Then since M has the same compactly
supported cohomology ring as the Klein bottle, our earlier calculation shows that

zH�.Bk.M; @M/IQw/Š

�
QŒk�˚QŒkC 1� for k odd,
0 for k even.

On the other hand, by Poincaré duality, we have H��c .MIQw/ D 0, and hence
H��c .MIL.Qw Œ1�// Š H��.MIQ/Œ2� is abelian, and zH�.Bk.M; @M/IQ/ is the
weight-k part of

QŒ Qx�˝ƒŒ Qy�; j Qxj D 2; j Qyj D 3;

so
zH�.Bk.M; @M/IQ/Š

�
0 for k odd,
QŒk�˚QŒkC 1� for k even.

The situation with the corresponding open manifold is quite different. We have
H��c . VMIQ/D 0 since . VM/C ŠRP2 , so

H�.Bk. VM/IQw/D 0

for all k > 1. On the other hand, H��c . VMIQw/ŠQŒ�1�˚QŒ�2� by Poincaré duality,
so that H�.Bk. VM/IQ/ is the weight-k part of

QŒx�˝ƒŒy�; jxj D 0; jyj D 1;

whence
H�.Bk. VM/IQ/ŠQŒ0�˚QŒ1�

for all k � 1.

Algebraic & Geometric Topology, Volume 17 (2017)



Betti numbers and stability for configuration spaces via factorization homology 3179

7 Two formality results

In this final section, we supply the remaining two ingredients in the proof of Theorem 1.1.
Although unrelated to each other, these formality statements may be of independent
interest.

7.1 The O.n/–equivariant sphere

Since the reduced homology of Sn is one-dimensional, any choice of representative of
a homology generator defines a quasi-isomorphism

C�.S
n/' Z˚ZŒn�:

The goal of this section is to prove that, rationally, this equivalence can be made
O.n/–equivariant.

Theorem 7.1 There is an equivalence of O.n/–modules

C�.S
n
IQ/'Q˚QdetŒn�:

The proof has three main ingredients, the first of which is rational homotopy theory.
We consider the Borel construction

O�W ESO.n/�SO.n/ Sn
! BSO.n/

where SO.n/ acts on SnŠ .Rn/C by extension of its canonical action on Rn . In other
words, O� is the fiberwise one-point compactification of the universal oriented n–plane
bundle � . We denote by E. O�/ the total space of this sphere bundle.

Sphere bundles over simply connected spaces admit particularly simple rational de-
scriptions. According to [22, Sections 15(a)–(b)], we have the following commutative
diagram, whose terms we will explain presently:

.Sym.Wn/; d1/
�

// APL.S
n/

�
// C��.SnIQ/

.S ˝Sym.Wn/; d1C d2/

OO

�
//

OO

APL.E. O�//
�

//

OO

C��.E. O�/IQ/

OO

S
�

//

OO

APL.BSO.n//

OO

�
// C��.BSO.n/IQ/

OO

In this diagram,
(1) S WDH��.BSO.n/IQ/ is a polynomial algebra,
(2) APL denotes the functor of PL de Rham forms,
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(3) the horizontal arrows in the right-hand column are components of the natural
quasi-isomorphism

H
W APL! C�� given by integrating forms over simplices,

(4) each term appearing in the leftmost column is a Sullivan model for the corre-
sponding space, and

(5) Wn denotes the graded vector space

Wn D

�
Qhx�ni for n odd,
Qhx�n;y�2nC1i for n even,

the differential d1 is defined by the equation d1.y/D x2 and the differential d2

is specified by its value on y , which is an element of P determined by the
bundle O� .

We direct the reader to [11] for more on (1), and to [22, Sections 10(c), 10(e), 12, 15(b)],
respectively, for more on (2)–(5). The reader is advised that, although we have main-
tained our convention of homological grading, the prevailing convention in rational
homotopy theory is cohomological.

The second ingredient is the theory of A1–algebras and their modules, for which we
refer the reader to [34]. The relevance here is that, according to [12, Section 3.1], the
integration map

H
extends to a map of A1–algebras (referred to in [12] as “strongly

homotopic differential algebras”), so that C��.E. O�/IQ/ becomes an A1 -S –module
via the bottom composite in the above diagram.

Proposition 7.2 There is a quasi-isomorphism of A1 -S –modules

S ˚S Œ�n�
�
�! C��.E. O�/IQ/:

Proof The fiberwise basepoint furnishes O� with a section, and the Gysin sequence
now implies that the top map in the commuting diagram

S ˚S Œ�n� // .S ˝Sym.Wn/; d1C d2/

S

OO

S

OO

is a quasi-isomorphism. Combining this diagram with the previous yields the result.

The third ingredient is the Koszul duality between modules for the symmetric algebra S

and modules for the exterior algebra ƒ on the same generators with degrees shifted
by 1. According to [11], there is a Hopf algebra isomorphism ƒ Š H�.SO.n/IQ/,
where the latter carries the Pontryagin product induced by the group structure of SO.n/.
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Koszul duality is the algebraic avatar of the correspondence between SO.n/–spaces
and spaces fibered over BSO.n/ witnessed by the Borel construction. There are many
variations on this theme; the relevant facts for our purposes are the following, which
are extracted from [26, Theorem 1.2 and Proposition 3.1]; see also [30]. Our notation
differs slightly from that in [26], and we maintain the terminology of A1–modules
rather than “weak modules”.

Theorem 7.3 (Franz; Goresky, Kottwitz and MacPherson) There is a functor h from
A1 -S –modules to A1 -ƒ–modules with the following properties:

(1) Let � W X ! BSO.n/ be a space over BSO.n/. Then the A1-ƒ–modules
h.C��.X // and C��.hofiber.�// are connected by a zig-zag of natural quasi-
isomorphisms.

(2) Let V be a graded vector space. Then h.S ˝V /Š V , where V is regarded as
a trivial A1 -ƒ–module.

Proposition 7.4 There is an equivalence of SO.n/–modules

C�.S
n
IQ/'Q˚QŒn�;

where the latter is regarded as a trivial SO.n/–module.

Proof Both of the SO.n/–modules in question are dualizable objects of ChQ , so it
suffices to exhibit an SO.n/–equivalence C��.SO.n/IQ/'Q˚QŒ�n� between the
duals. By [42, Theorem 4.3.3.17], the homotopy category of the1–category of SO.n/–
modules coincides with the homotopy category obtained from the model category of
C�.SO.n/IQ/–modules equipped with the usual model structure on modules over
a differential graded algebra. By [34, Section 4.3], this homotopy category in turn
coincides with the full subcategory of the homotopy category of A1 -C�.SO.n/IQ/–
modules spanned by the “homologically unital modules”, so that, since the modules in
question are homologically unital, it will suffice to produce to an isomorphism in the
homotopy category of A1–modules. By [34, Section 6.2], it suffices to produce an
isomorphism in the homotopy category of A1 -ƒ–modules after restricting along the
A1–quasi-isomorphism ƒ! C�.SO.n/IQ/ of [26]. For this, we apply the Koszul
duality of Theorem 7.3 to the A1–quasi-isomorphism of Proposition 7.2, yielding the
zig-zag of A1–quasi-isomorphisms

Q˚QŒ�n�' h.S ˚S Œ�n�/! h
�
C��.E. O�/IQ/

�
' C��.Sn

IQ/:

Proof of Theorem 7.1 We explain the following diagram of O.n/–modules:

Q˚QdetŒn�!QŒC2�˚QŒC2�Œn�'QŒC2�˝C�.S
n
IQ/! C�.S

n
IQ/:
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(1) Let e and � denote the basis elements of QŒC2� corresponding to the identity and
generator, respectively. The left-hand map sends 1 2Q to eC�

2
and 1 2Qdet to e��

2
.

This is a map of C2 –modules and therefore of O.n/–modules, since O.n/ acts on
both domain and codomain by restriction along the determinant.

(2) Fixing a choice of isomorphism O.n/Š C2 Ë SO.n/, we obtain an isomorphism
C�.O.n/IQ/ŠQŒC2�˝C�.SO.n/IQ/ of O.n/–modules. The middle equivalence
is now obtained by applying the functor of induction from SO.n/ to O.n/ to the
equivalence of Proposition 7.4.

(3) The right-hand arrow is the counit of the induction-restriction adjunction.

Applying homology yields an isomorphism, completing the proof.

7.2 Two-step nilpotent Lie algebras

In this section, we prove that the Lie algebras of interest to us are formal.

Proposition 7.5 Let K be either Q or Qsgn . For any r 2Z and any manifold M , the
Lie algebra MapC2. zMC;L.KŒr �// is formal.

The proof will rely on the following technical result.

Proposition 7.6 Let
0! h! e! g! 0

be an exact sequence of Lie algebras in ChQ with g and h abelian. Assume that g acts
trivially on h and that the underlying sequence of chain complexes splits. Then e is
formal.

Proof The hypotheses imply that the bracket on eŠ g˚ h is given by

Œ.g1; h1/; .g2; h2/�D f .g1;g2/

for some (not uniquely defined) map f W Sym2.gŒ1�/Œ�2� ! h, and the bracket on
H.e/ŠH.g/˚H.h/ is determined in the same way by f� .

Choose quasi-isomorphisms 'W g!H.g/ and  W h!H.h/. Without loss of gen-
erality, we may assume that both maps induce the identity on homology. Let  be a
quasi-inverse to  . Then . ıf� ı'^2/� D f� , so

 ıf� ı'
^2
�f D dhGCGdSym

for some homotopy operator GW Sym2.gŒ1�/Œ�2�! hŒ�1�.
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Now, since g is abelian and acts trivially, this equation may be written as

D.G/D  ıf� ı'
^2
�f;

where D denotes the differential in the Chevalley–Eilenberg cochain complex com-
puting H�L .g; h/. Since extensions of g by the module h are classified by H 2

L.g; h/,
it follows that f and  ıf� ı'^2 determine isomorphic extensions, so that we may
take f D ıf� ı'^2 after choosing a different splitting. But then  ıf D f� ı'^2 ,
so that the composite

e
Š
�! g˚ h

.'; /
����!H.g/˚ .h/

Š
�!H.e/

is a map of Lie algebras. Since it is also a quasi-isomorphism of chain complexes, the
proof is complete.

Proof of Proposition 7.5 The exact sequence

0! h! L.KŒr �/!KŒr �! 0

satisfies the hypotheses of Proposition 7.6, where

hD

�
K˝2Œ2r � for r odd,
0 for r even.

By Proposition 3.18, we have

MapC2. zMC;L.KŒr �/' .APL. zM
C/˝L.KŒr �//C2 :

Since the operations of tensoring with the commutative algebra APL. zM
C/ and taking

C2 fixed points preserve the hypotheses of Proposition 7.6, the claim follows.

Remark 7.7 Proposition 7.5 asserts that APL.M /˝L.QŒr �/ is formal whenever M

is compact and orientable. When r is odd, this fact may be surprising at first glance,
since M is not assumed to be formal.

A conceptual understanding of this phenomenon is afforded by the homotopy transfer
theorem; see [38, Section 10.3], for example. Indeed, let A be any nonunital differential
graded commutative algebra and g any two-step nilpotent graded Lie algebra. Fixing
an additive homotopy equivalence between A and H.A/, we obtain a transferred
L1–algebra structure on H.A/˝ g. The higher brackets of the transferred structure
combine information about the Massey products of A and the Lie bracket of g.

In our case, using the fact that g has no nontrivial iterated brackets, the explicit formulas
of the homotopy transfer theorem show that these higher brackets all vanish, which
implies that A˝ g is formal. In other words, although the Massey products in H.A/

may be nontrivial, they are damped out by the nilpotence of g.
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