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Categorical models for equivariant classifying spaces

BERTRAND J GUILLOU

J PETER MAY

MONA MERLING

Starting categorically, we give simple and precise models for classifying spaces of
equivariant principal bundles. We need these models for work in progress in equi-
variant infinite loop space theory and equivariant algebraic K–theory, but the models
are of independent interest in equivariant bundle theory and especially equivariant
covering space theory.

55R91, 55R35; 55P92, 55R91

Introduction

Let … and G be topological groups and let G act on …, so that we have a semidirect
product � D…Ì G and a split extension

(0-1) 1!…
�
�!�

q
�!G! 1

The underlying space of � is …�G , and the product is given by

.�;g/.�; h/D .�.g � �/;gh/:

There is a general theory of .G;…G/–bundles — see Lashof [6], Lashof and May [7],
May [13] and tom Dieck [3] — corresponding to such extensions. Here …G denotes …
together with its given action of G . We shall only be interested in principal .G;…G/–
bundles pW E! B .

Definition 0.2 Let pW E!B be a principal …–bundle, where B is a G –space. Then
p is a principal .G;…G/–bundle if the (free) action of … on E extends to an action
of � and p is a �–map, where � acts on B through the quotient map �!G .

The more general theory of .…I�/–bundles applicable to nonsplit extensions � is
included in Lashof and May [7] and May [12; 13]. The theory is especially familiar when
G acts trivially on …, so that � DG�…. With …DO.n/ or U.n/, the trivial action
case gives classical equivariant bundle theory and equivariant topological K–theory.
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2566 Bertrand J Guillou, J Peter May and Mona Merling

Definition 0.3 A principal .G;…G/–bundle pW E ! B is universal if for all G–
spaces X of the homotopy types of G –CW complexes, pullback of p along G –maps
f W X ! B induces a natural bijection from the set of homotopy classes of G–maps
X ! B to the set of equivalence classes of .G;…G/–bundles over X .

For applications in equivariant infinite loop space theory and equivariant algebraic K–
theory, we need to understand classifying G –spaces for .G;…G/–bundles as classifying
spaces of categories. Nonequivariantly, it was already emphasized in Segal’s classical
paper [19, Section 3] that the universal principal …–bundle of a topological group …
can be constructed on the level of topological categories, and the intuition is that we
are giving the equivariant generalization of his classical construction.

One motivation is to give new constructions of E1 operads of G –categories and G –
spaces. This much only requires trivial actions of G on …. By definition, the j th space
of an E1 operad of G –spaces is a universal principal .G; †j /–bundle. Having various
category level models for such classifying spaces allows us to construct examples of
E1 G –spaces from E1 categories, and these feed into equivariant infinite loop space
machines to construct interesting G –spectra. This is discussed in Guillou and May [4]
and in work in progress by Guillou, May, Merling and Osorno.

The examples relevant to the equivariant algebraic K–theory of G –rings, namely rings
with G –action by automorphisms, require more general split extensions. If R is a G –
ring, then G acts entrywise on GL.n;R/. The classifying spaces of .G;GL.n;R/G/–
bundles are central to the definition of the genuine equivariant algebraic K–theory
spectrum KG.R/ of R; see Guillou and May [4] and Merling [14]. Our treatment
of the fixed point spaces of the classifying spaces of equivariant bundles is crucial to
determining the fixed point spectra of the KG.R/. The paradigmatic example is a finite
Galois extension E=F with Galois group G . As explained in [4], it is an immediate
application of examples in this paper, which demonstrate the relevance of Hilbert’s
Theorem 90, that the fixed point spectrum KG.E/

H is the classical nonequivariant
K–theory spectrum of the fixed field EH . The use of genuine G –spectra in algebraic
K–theory is new and is explored in [14].

The results we need are close to those of [6; 7; 12] and those stated by Murayama
and Shimakawa [16],1 but we require a more precise and rigorous categorical and
topological understanding than the literature affords. This is intended as a service paper
that displays the relevant constructions in their fullblown simplicity.

We start with the topologized equivariant version of the elementary theory of chaotic
categories in Section 1. We analyze a general construction that specializes to give

1But see Scholium 3.12.

Algebraic & Geometric Topology, Volume 17 (2017)



Categorical models for equivariant classifying spaces 2567

our classifying G–spaces in Section 2. We show how it gives universal equivariant
bundles in Section 3. Our explicit description of the classifying spaces of .G;…G/–
bundles as classifying spaces of categories allows us to compute their fixed point spaces
categorically in Section 4. This gives precise information already on the category level,
before passage to classifying spaces, and that is essential to our applications.

The main results of the paper are summarized in the following two theorems; the
first gives a categorical model for equivariant universal bundles and their classifying
spaces, and the second gives a description of the fixed points of the classifying spaces
of equivariant bundles. Details of the first are in Theorems 3.10 and 3.11 and details of
the second are in Theorems 4.18, 4.23, and 4.24. We need some preliminary definitions
and notations to state these results.

Let G be discrete and let EG denote the unique contractible groupoid with object set G .
It is a (right) G –category, meaning that G acts on both objects and morphisms, and it
has a unique morphism between any two objects. We agree to identify the topological
group … with the topological groupoid with a single object and morphism space ….
Then the action of G on … makes it a G –groupoid.

For small topological categories A and B , let Cat.A ;B/ denote the category of all
continuous functors A ! B and all natural transformations. When A and B are
G –categories, Cat.A ;B/ inherits an action of G , given by conjugation. We shall give
more details in Section 1.1.

We assume that the reader is familiar with the classifying space functor B from
categories to spaces, or more generally from topological categories to spaces. It works
equally well to construct G –spaces from topological G –categories. It is the composite
of the nerve functor N from topological categories to simplicial spaces (eg May [11,
Section 7]) and geometric realization j � j from simplicial spaces to spaces (eg May
[10, Section 11]), both of which are product-preserving functors.

Theorem 0.4 If G is discrete and … is either discrete or a compact Lie group, then
the canonical map

BCat.EG; E…/! BCat.EG;…/

is a universal principal .G;…G/–bundle.

Thus the classifying space of the G –category Cat.EG;…/ is a G –space that classifies
.G;…G/–bundles.

Crossed homomorphisms, their automorphism groups, and the nonabelian cohomology
group H 1.GI…G/ are defined in Definitions 4.1, 4.11, and 4.17.

Algebraic & Geometric Topology, Volume 17 (2017)



2568 Bertrand J Guillou, J Peter May and Mona Merling

Theorem 0.5 The fixed point category Cat.EG;…/G is the disjoint union of the
groups Aut˛ , where ˛ runs over crossed homomorphisms representing the elements of
H 1.GI…G/. Equivalently, Cat.EG;…/G is the disjoint union of the groups …\N�ƒ,
where ƒ runs over the …–conjugacy classes of subgroups ƒ of � such that ƒ\…D e .
Therefore BCat.EG;…/G is the disjoint union of the classifying spaces B.…\N�ƒ/.

With more work, our hypotheses on G and … could surely be weakened. We should
admit that we are especially interested in discrete groups in many of our current
applications. Since … is the relevant structural group, we are then studying equivariant
covering spaces. However, it is important for some applications to allow … to have
a topology. For example, in Merling [14], equivariant algebraic K–theory is related
to equivariant topological K–theory and to Atiyah’s real K–theory. There it is crucial
that … be allowed to be compact Lie in Theorem 0.4.

There is an earlier topological analogue of our categorical construction in terms of
mapping spaces rather than mapping categories; see May [12]. It applies in considerably
greater topological generality, but it does not generally start categorically. We compare
the categorical and topological constructions in Section 5.

The choices of … relevant to equivariant infinite loop space theory and equivariant
algebraic K–theory, namely symmetric groups and the general linear groups of G –rings,
have alternative categorical models, which play a key role. These alternative categorical
models are given in Section 6, which is entirely algebraic, with all groups discrete.
We call special attention to Section 6.2, where we relate crossed homomorphisms to
skew group rings and their skew modules. The algebraic ideas here may not be as well
known as they should be and deserve further study.

The letter B for the classifying space functor from categories to spaces would sometimes
be awkward in our context, since the classifying space functor will also be used to
construct universal bundles rather than classifying spaces for bundles, hence we agree
to write out jN�j rather than B whenever B seems likely to confuse.

This notation also displays a key technical problem that is sometimes overlooked in
the literature. The functor j�j is a left adjoint and therefore preserves all colimits,
such as passage to orbits in the equivariant setting. The functor N is a right adjoint
and it generally does not preserve colimits or passage to orbits, as we illustrate with
elementary examples. This problem is the subject of Babson and Kozlov [1]. For
topological categories, there is no discussion in the literature. Exceptionally, N does
commute with passage to orbits in the key examples that appear in equivariant bundle
theory. Clear understanding of passage to orbits is essential to our calculations of fixed
point spaces.

Algebraic & Geometric Topology, Volume 17 (2017)
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Remark 0.6 The functor Cat.EG;�/ from G–categories to G–categories plays a
central role in our work. Its G –fixed category was introduced by Thomason [22, (2.1)],
who called it the lax limit of the action of G on C and denoted it by CatG.EG;C /.
The relevance to equivariant bundle theory of the equivariant precursor Cat.EG;B/

was first noticed by Murayama and Shimakawa [16] and Shimakawa [21].

Acknowledgements Merling thanks Matthew Morrow and Liang Xiao for answers
to her questions that pointed out the striking relevance to our work of H 1.GI…/ and
Serre’s general version of Hilbert’s Theorem 90. We are grateful to an anonymous
referee for a careful reading and suggestions for improving the notations and exposition.
Guillou was partially supported by Simons Collaboration Grant No. 282316 and by NSF
grant DMS-1710379 and Merling was partially supported by NSF grant DMS-1709461.

1 Preliminaries on chaotic and translation categories

The definitions we start with are familiar and elementary. However, to keep track of
categorical data and group actions later, we shall be pedantically precise.

1.1 Preliminaries on topological G –categories

Let Cat be the category of categories and functors. We may also view it as the 2–
category of categories, with 0–cells, 1–cells, and 2–cells the categories, functors,
and natural transformations. From that point of view, Cat.A ;B/ is the internal hom
category whose objects are the functors A !B and whose morphisms are the natural
transformations between them; they enrich Cat over itself.

For a group G , a G–category A is a category with an action of G specified by a
homomorphism from G to the automorphism group of A . Regarding G as a groupoid
with one object, the action is specified by a functor G! Cat . We have the 2–category
GCat of G –categories, G –functors, and G –natural transformations, where the latter
notions are defined in the evident way: everything must be equivariant.

We may view GCat as the underlying 2–category of a category enriched over GCat .
The 0–cells are still G–categories, but now we have the G–category Cat.A ;B/ as
the internal hom between them. Its underlying category is Cat.A ;B/, and G acts by
conjugation on functors and natural transformations. Thus, for F W A !B , g 2G , and
A either an object or a morphism of A , we have .gF /.A/D gF.g�1A/. Similarly,
for a natural transformation �W E! F and an object A of A ,

.g�/A D g�g�1AW gE.g�1A/! gF.g�1A/:

Algebraic & Geometric Topology, Volume 17 (2017)



2570 Bertrand J Guillou, J Peter May and Mona Merling

The category GCat.A ;B/ is the same as the G –fixed category Cat.A ;B/G , and we
sometimes vary the choice of notation.

We can topologize the definitions so far, starting with the 2–category of categories
internal to the category U of (compactly generated) spaces, together with continuous
functors and continuous natural transformations. Recall that a category A internal to a
cartesian monoidal category V has object and morphism objects in V and structure
maps source, target, identity and composition in V . These maps are denoted by S , T ,
I and C , and the usual category axioms must hold. When V DU , we refer to internal
categories as topological categories; we refer to them as topological G–categories
when V DGU . These are more general than (small) topologically enriched categories,
which have discrete sets of objects. We can now allow G to be a topological group
in the equivariant picture. We continue to use the notations already given in the more
general topological situation.

1.2 Chaotic topological G –categories

Definition 1.1 A small category C is chaotic if there is exactly one morphism from b

to a for each pair of objects a and b . The unique morphism from a to b must then be
inverse to the unique morphism from b to a. Thus C is a groupoid, and its classifying
space is contractible since every object is initial and terminal; in fact, it is the unique
contractible groupoid with the given object set. A topological category C is chaotic
if its underlying category is chaotic. Its classifying space is again contractible (see
Remark 2.11), but there are other topological groupoids with the given object space and
contractible classifying spaces. Similarly, a topological G–category is chaotic if its
underlying category is chaotic. It is then contractible but not usually G –contractible.

The senior author remembers hearing the name “chaotic” long ago, but we do not know
its source. The idea is that everything is the same as everything else, which does seem
rather chaotic.2

Lemma 1.2 If A is any category and B is a chaotic category, then the category
Cat.A ;B/ is again chaotic.

Proof The unique natural map �W E! F between functors E;F W A !B is given
on an object A of A by the unique map �AW E.A/! F.A/ in B .

2Some category theorists suggest the name “indiscrete category”, by formal analogy with indiscrete
spaces in topology. The key difference is that indiscrete spaces are of no interest, whereas we hope to
convince the reader that chaotic categories are of considerable interest.

Algebraic & Geometric Topology, Volume 17 (2017)



Categorical models for equivariant classifying spaces 2571

Lemma 1.3 If A is any topological G–category and B is a chaotic topological
G–category, then the topological G–category Cat.A ;B/ and its G–fixed category
GCat.A ;B/ are again chaotic.

Proof Since Cat.A ;B/ is just the category Cat.A ;B/ with its conjugation action
by G , Lemma 1.2 implies the conclusion for Cat.A ;B/. The conclusion is inherited
by GCat.A ;B/D Cat.A ;B/G since the unique natural transformation between G –
functors E and F is necessarily a G –natural transformation.

Definition 1.4 The chaotic topological category EX generated by a space X is the
topological category with object space X and morphism space X �X . The source,
target, identity, and composition maps are defined by

S D �2W X �X !X; T D �1W X �X !X; I D�W X !X �X;

C D id� "� idW .X �X /�X .X �X /ŠX �X �X !X �X;

where "W X !� is the trivial map. On elements, S.y;x/D x , T .y;x/D y , I.x/D

.x;x/ and C.z;y;x/ D .z;x/. Forgetting the topology, the element .y;x/ is the
unique morphism x! y . Reversing the order of source and target in the notation this
way, so that .z;y/ ı .y;x/D .z;x/, will turn out to be helpful later.

A map f W X ! Y induces the functor Qf W EX ! zY given by f on objects and
f � f on morphisms. When X is a (left or right) G–space, we give EX the action
specified by the given action on the object space X and the diagonal action on the
morphism space X �X ; EX is then a chaotic topological G –category. Sending X to
EX specifies a functor from the category GU of G –spaces to the category GGpd of
topological G –groupoids (a full subcategory of GCat).

1.3 The adjunction between G –spaces and topological G –groupoids

Sending a category to its set of objects restricts to an object functor ObW GGpd!GU .

Lemma 1.5 The chaotic category functor is right adjoint to the object functor, so that

GCat.C ; EX /ŠGMap.ObC ;X /

for a topological G –category C with object space ObC and a topological G –space X .
If C is chaotic with object G–space X , then the unit of the adjunction is an isomor-
phism of topological G –groupoids �W C ! EX .

Algebraic & Geometric Topology, Volume 17 (2017)



2572 Bertrand J Guillou, J Peter May and Mona Merling

Proof Let MorC be the morphism G –space of C . The functor C ! EX determined
by a continuous G –map f W ObC !X is f on object G –spaces and the composite

MorC
.T;S/

//ObC �ObC
f�f

//X �X

on morphism G –spaces. The last statement rephrases the meaning of chaotic.

1.4 Translation categories and chaotic categories

We use another simple definition to relate chaotic categories to other familiar categories.
Let G be a topological group and Y be a left G–space. Generalizing how we think
of G as a one object category, we can think of Y together with its action by G as
the functor Y W G! U that sends the single object � to Y and is given on morphism
spaces by the map G!Map.Y;Y / adjoint to the action map G �Y ! Y .

Definition 1.6 Let Y be a left G–space. Define the translation category T .G;Y /

as follows. The object space is Y and the morphism space is G � Y . We think of
.g;y/ as a morphism gW y! gy . The map I W Y ! G � Y sends y to .e;y/. The
maps S and T send .g;y/ to y and gy , respectively. The domain of composition,
.G � Y / �Y .G � Y /, can be identified with .G �G/ � Y , and composition sends
.h;g;y/ to .hg;y/. The construction is functorial in Y , for fixed G , and in the pair
.G;Y / in general. If Y has a right action by G that commutes with the left action,
then T .Y;G/ is a right G–category via the given right action on the object space Y

and on the second coordinate of the morphism space G �Y .

Remark 1.7 The definition makes sense when G is only a monoid, not necessarily
a group. When Y is a point, T .Y;G/ is G regarded as a one object category. When
G is a group, T .Y;G/ is the standard groupoid associated to a G –space, but it is not
generally chaotic.

Proposition 1.8 For left G–spaces Y , there is a natural comparison functor
�W T .G;Y /! zY . If Y has a right action that commutes with its left action, then
� is a map of right G –categories. The functor �W T .G;G/! EG is an isomorphism
of right G –categories.

Proof Define � to be the identity map on object spaces and the map that sends .g;y/
to .gy;y/ on morphism spaces. Since zY is chaotic, this is the unique functor that
is the identity on objects, and it is easy to check equivariance when Y has a right
G –action. When Y DG with left action and right action given by its product, � is an
isomorphism with ��1.h;g/D .hg�1;g/ on morphism spaces.

Algebraic & Geometric Topology, Volume 17 (2017)
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In view of the differing group actions on the morphism spaces G�G , namely action on
the right coordinate in T .G;G/ and diagonal action in EG , the isomorphism between
T .G;G/ and EG must not be viewed as a tautology.

Remark 1.9 When we return to the split extension (0-1), the group … there will play
a role close to that of the group denoted G in Definition 1.6 and Proposition 1.8. When
G D e , we would then specialize to Y D… with its natural left … action and see the
usual universal principal …–bundle. When G ¤ e , the relevant specialization is a little
less obvious; see Lemma 3.4, which is a follow up of Proposition 1.8.

2 The category Cat.EX; …/

We let X be a space and … be a topological group in this section. We regard …
as a category with one object without change of notation; it should be clear from
the context when we mean the group … and when we mean the category …. From
now on, functors and natural transformations are to be continuous (in the topological
sense), even when we neglect to say so. We are especially interested in the functor
categories Cat.EX; E…/, which are chaotic by Lemma 1.2, and in the functor categories
Cat.EX;…/, which are not. The right action of … on E… induces a right action of …
on Cat.EX; E…/.

This section and the next give a pedantically explicit description of Cat.EX;…/ and
of the induced map

Cat.EX; E…/! Cat.EX;…/;

showing in particular that it is obtained by passage to orbits over …. When X DG ,
this elementary analysis will be at the heart of all our proofs. We defer adding in the
second group G that appears in the bundle theory until after we have this description
in place since a group defined solely in terms of the diagonal on X and the product
on … plays a central role in the description.

2.1 An explicit description of Cat.EX; …/

By the adjunction given in Lemma 1.5 (with GD e ), the object space of the chaotic cat-
egory Cat.EX; E…/ can be identified with the space Map.X;…/ of maps X!… with
its standard (compactly generated) function space topology. Therefore Cat.EX; E…/
can be identified with the chaotic category EMap.X;…/.

Definition 2.1 Define the pointwise product � on Map.X;…/ by

.˛ �ˇ/.x/D ˛.x/ˇ.x/

Algebraic & Geometric Topology, Volume 17 (2017)



2574 Bertrand J Guillou, J Peter May and Mona Merling

for ˛; ˇW X !…. The unit element " is given by ".x/ D e and inverses are given
by ˛�1.x/ D ˛.x/�1 . The topological group Map.X;…/ contains … as a (closed)
subgroup, where we regard an element � 2… as the constant map � W X!… at � . The
inclusion of … in Map.X;…/ and composition give Map.X;…/ its right …–action.

Definition 2.2 Choose a basepoint x0 2 X . There is a unique representative map
˛ such that ˛.x0/ D e in each orbit of Map.X;…/ under the right action by ….
Let O.X;…/ � Map.X;…/ denote the subspace of such representative maps. It is
a subgroup of Map.X;…/. The …–action and the product � on Map.X;…/ are
related by ˛� D ˛ � � for � 2…, and � restricts to a homeomorphism of …–spaces
O.X;…/�…!Map.X;…/. Write elements of Map.X;…/ in the form ˛� , where
˛.x0/D e . Passage to orbits restricts to a homeomorphism O.X;…/ŠMap.X;…/=….
Observe that the product � on Map.X;…/ induces a left action of Map.X;…/ on
O.X;…/ by sending .ˇ; ˛/ to the orbit representative of ˇ �˛ .

The proofs of the follow three lemmas are simple exercises from the fact that there is a
unique morphism .y;x/ from x to y in EX ; compare Lemma 1.2.

Lemma 2.3 A functor EW EX ! … is given by the trivial map X ! � of object
spaces and a map EW X �X ! … of morphism spaces such that E.x;x/ D e and
E.z;y/E.y;x/ D E.z;x/. Define ˛ 2 O.X;…/ by ˛.x/ D E.x;x0/. Then ˛

determines E by the formula

E.y;x/DE.y;x0/E.x0;x/D ˛.y/˛.x/
�1:

Writing E D E˛ , sending E˛ to ˛ specifies a homeomorphism from the space of
functors EX !… to O.X;…/.

Lemma 2.4 For E˛;EˇW EX !…, a natural transformation �W E˛!Eˇ is given
by a map �W X !… such that �.y/E˛.y;x/DEˇ.y;x/�.x/ for x;y 2X . If � 2…
is defined by � D �.x0/, then the pair .ˇ�; ˛/ determines � by the formula

�.x/DEˇ.x;x0/�.x0/E˛.x;x0/
�1
D .ˇ� �˛�1/.x/:

Writing �D �� , sending �� to .ˇ�; ˛/ specifies a homeomorphism from the space of
morphisms of Cat.EX;…/ to the space Map.X;…/�O.X;…/.

Lemma 2.5 Identify the object and morphism spaces of Cat.EX;…/ with

O.X;…/ and M .X;…/�Map.X;…/�O.X;…/
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via the homeomorphisms of the previous two lemmas. Then the identity map I sends
˛ to .˛e; ˛/ and the source and target maps S and T send .ˇ�; ˛/ to ˛ and to ˇ .
The S D T pullback

M .X;…/�O.X ;…/M .X;…/

can be identified with Map.X;…/�Map.X;…/�O.X;…/ via

.. �; ˇ/; .ˇ�; ˛//$ . �; ˇ�; ˛/

and the composition map C sends . �; ˇ�; ˛/ to . ��; ˛/.

Proof If we compose �� W Eˇ!E with �� W E˛!Eˇ , we obtain

�� � �� D 
�1� �ˇ �ˇ�1� �˛ D �1�� �˛;

which corresponds to the given description.

2.2 Two identifications of Cat.EX; …/

We show here that Proposition 1.8 leads to one identification of Cat.EX;…/, and
the lemmas of the previous section lead to a closely related one. These elementary
identifications commute passage to orbits with the functor Cat.EX;�/, and that will
be crucial to understanding BCat.EG;…/ as an equivariant classifying space.

Notation 2.6 The category … is isomorphic to the orbit category E…=…. The
quotient functor pW E… ! … is the trivial map … ! � on object spaces and is
given on morphism spaces by the map pW …�…! .…�…/=…Š… specified by
p.�; �/D ���1 . Let q denote the functor

Cat.id;p/W Cat.EX; E…/! Cat.EX;…/:

We also let q denote the functor between translation categories

T .Map.X;…/;Map.X;…//! T .Map.X;…/;O.X;…//

that is induced by the quotient map pW Map.X;…/!Map.X;…/=…Š O.X;…/.

Theorem 2.7 There is a commutative diagram of topological categories in which �, � ,
and � are isomorphisms:

T .Map.X;…/;Map.X;…//
�

//

q

��

Cat.EX; E…/
p

vv

q

��

T .Map.X;…/;O.X;…//
�
// Cat.EX; E…/=…

�

// Cat.EX;…/
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Proof The map p is the quotient map given by passage to orbits over …. Since q

on the right is a …–map with … acting trivially on Cat.EX;…/, q factors through a
map � that makes the triangle commute. Since Cat.EX; E…/ is the chaotic category
whose object space is the topological group Map.X;…/, Proposition 1.8 gives the
isomorphism �. Since q on the left is obtained by passage to orbits from the relevant
action of …, it is clear that � induces an isomorphism � making the left trapezoid
commute.

All that remains is to prove that � is an isomorphism, and that follows from the
results of Section 2.1. For a functor E˛W EX ! …, the maps ˛W X ! … and
˛�˛W X�X!…�… define the object and morphism maps of a functor F W EX!E….
The functoriality properties of E˛ show that p ı F D E˛ , so that q is surjec-
tive on objects. If we also have p ı F 0 D E˛ , then a quick check shows that
F.x/�1F 0.x/ D F.y/�1F 0.y/ for all x;y 2 X . If the common value is denoted
by � , then F 0.x/ D F.x/� for all x . In view of the specification of p and q in
Notation 2.6, this implies that � is a homeomorphism on object spaces.

Let E˛;EˇW EX!… be any two functors. For any chosen functors F;F 0W EX! E…
such that qıF DE˛ and qıF 0DEˇ , define �W X!…�… by �.x/D .F.x/;F 0.x//.
Then � is a map from the object space of EX to the morphism space of E…. A quick
check shows that � is a natural transformation F ! F 0 such that �D q ı � is a natural
transformation E˛ ! Eˇ with �x0

D F 0.x0/F.x0/
�1 . Via our enumeration of the

possible choices, this implies that q restricted to the inverse image of the space of natural
transformations E˛!Eˇ can be identified with the quotient map pW …�…!… of
Notation 2.6. It follows that � is a homeomorphism on morphism spaces.

2.3 The nerve functor and classifying spaces

We recall the definition of the nerve functor N in more detail than might be thought
warranted at this late date since, in the presence of the left-right action dichotomy
of multiple group actions, the original definitions in category theory can cause real
problems arising from categorical dyslexia. There are two standard conventions in the
literature, and we must choose. Let C be a topological category with object space O

and morphism space M . Then N0C D O and, for q > 0,

NqC DM �O � � � �O M ;

with q factors M . The pullbacks are over pairs of maps .S;T /. To avoid dyslexia,
we remember that g ıf means first f and then g , and choose to forget the picture

�
f1
�! �

f2
�! �! � � � ! �

fq�1
��! �

fq
�! �
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of q composable arrows and instead remember that the picture

(2-8) x0
f1
 �x1

f2
 �x2 � � �  xq�2

fq�1
 ��xq�1

fq
 �xq

corresponds to an element Œf1; : : : ; fq � of NqC , so that S.fi/D T .fiC1/. For x 2O ,
we write idD I.x/ generically. Then

d0Œf �D T .f /; d1Œf �D S.f /; and s0.x/D Œidx �:

For q � 2,

di Œf1; : : : ; fq �D

8<:
Œf2; : : : ; fq � if i D 0;

Œf1; : : : ; fi�1; fi ıfiC1; fiC2; : : : ; fq � if 0< i < q;

Œf1; : : : ; fq�1� if i D q;

and, for q � 1,

si Œf1; : : : ; fq �D Œf1; : : : ; fi ; id; fiC1; : : : ; fq �:

Of course, these can and should be expressed in terms of the maps S , T , I , and C ,
so as to remember the topology and check continuity.

Recall that a (right) action of a group G on a simplicial space Y� is specified by
levelwise group actions such that the di and si are G –maps; formally, Y� is a simplicial
object in the category of (right) G–spaces. Orbit and fixed point simplicial spaces
are constructed levelwise, .Y�=G/q D Yq=G and .Y�/Gq D Y G

q . For a G –category C ,
N.C G/Š .N C /G since N is a right adjoint, but it is rarely the case that N.C =G/Š

.N C /=G , as the following counterexample should make clear.

Example 2.9 Let G be a group and let G act on itself by conjugation. Let A be the
abelianization of G . Regarding G and A as categories with a single object, G=GŠA,
and NA is generally much smaller than NG=G . Here Œg1; : : : ;gq � and Œh1; : : : ; hq �

are in the same orbit under the conjugation action if and only if there is a single g such
that ggig

�1 D ghig
�1 for all i . For example if G is a finite simple group of order n,

then A is trivial but NqG=G has at least nq�1 elements.

In this example, NG is the simplicial space, often denoted by B�G , whose geometric
realization is the classifying space BG . Parametrizing with a left G–space Y gives
a familiar simplicial space B�.�;G;Y / (eg [11, Section 7]). Write qW E�G! B�G

for the map
B�.�;G;G/! B�.�;G;�/Š B�.�;G;G/=G

induced by G!�. The isomorphism on the right is obvious, but it is in fact an example
of an isomorphism of the form N.C =G/Š .N C /=G , as the following observations
make clear. Recall the translation category from Definition 1.6.
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Lemma 2.10 The simplicial space N T .G;Y / is isomorphic to B�.�;G;Y /.

Proof A typical q–tuple (2-8) in NqT .G;Y / has i th term

fi D .gi ;giC1 � � �gqy/W giC1 � � �gqy! gigiC1 � � �gqy

for elements gi 2G and y 2 Y . It corresponds to Œg1; : : : ;gq �y in Bq.�;G;Y /.

Remark 2.11 For any space X , N EX is the simplicial space denoted by D�X in [10,
page 97]. Our choice of S and T on EX is consistent with (2-8) and the usual notation
.x0; : : : ;xq/ for q–simplices. The claim in Definition 1.1 that jN EX j is contractible
is immediate from [10, 10.4], which says that D�X is simplicially contractible. The
isomorphism N�W N T .G;G/!N EG implied by Proposition 1.8 coincides with the
isomorphism ˛�W E�G!D�G of [10, 10.4].

Applying geometric realization, write B.�;G;Y /D jB�.�;G;Y /j, and similarly for
EG and BG . Then B.�;G;Y /Š B.�;G;G/�G Y DEG �G Y . By Lemma 2.10,

BT .Y;G/DEG �G Y:

A relevant example is Y DG=H for a (closed) subgroup H of G . The space

BT .G;G=H /DEG �G .G=H /Š .EG/=H

is a classifying space BH since EG is a free contractible H –space.

In particular, take G D Map.X;…/ and H D … for a space X and group …, re-
membering that Cat.EX; E…/ is the chaotic category with object space the group
Map.X;…/. Applying the classifying space functor to the diagram of Theorem 2.7
and using Lemma 2.10, we obtain the following commutative diagram, in which the
horizontal maps are homeomorphisms and, up to canonical homeomorphisms, the
vertical maps are obtained by passage to orbits over …:

E.Map.X;…// Š
//

��

BCat.EX; E…/

��

D
// BCat.EX; E…/

��

.E Map.X;…//=…
Š
// B.Cat.EX; E…/=…/

Š
// BCat.EX;…/

Ignoring minor topological niceness conditions,3 for any space X the diagram gives
isomorphic categorical models for the universal principal …–bundle E…! B….

3The identity element of the group Map.X;…/ should be a nondegenerate basepoint and the space
Map.X;…/ should be paracompact; see [11, 9.10].
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3 Categorical universal equivariant principal bundles

3.1 Preliminaries on actions by the semidirect product �

Now return to the split extension (0-1) of the introduction. For a �–category or �–space,
passage to orbits with respect to … gives a G –category or a G –space. It is standard in
equivariant bundle theory to let G act from the left and … act from the right. Thus
suppose that X is a left G and right … object in any category. Using elementwise
notation, turn the right action of … into a left action by setting �x D x��1 .

By an action of � on X , we mean a left action that coincides with the given actions when
restricted to the subgroups GD e�G and …D…�e of � . Since .�;g/D .�; e/.e;g/,
the action must be defined by

(3-1) .�;g/x D .�; e/.e;g/x D .�; e/gx D �gx D .gx/��1:

For now, we will denote the action of G on … by � , but we just use juxtaposition for
the prescribed actions of G and … on X . Since the action by g on … is a group
homomorphism, g � .��/D .g � �/.g � �/ and g � ��1 D .g � �/�1 . The interaction of
… and G in � is given by the twisted commutation relation

.e;g/.�; e/D .g � �;g/D .g � �; e/.e;g/;

or the same relation with � replaced by ��1 . Therefore (3-1) gives an action of � if
and only if the given actions of … and G satisfy the twisted commutation relation

(3-2) g.x�/D .gx/.g � �/:

The placement of parentheses is crucial: we are taking group actions in different orders.
When the action of G on … is trivial, g � � D � , this is the familiar statement that
commuting left and right actions define an action by the product G �….

Lemma 3.3 For a G–category A , the left G and right …–actions on Cat.A ; E…/
extend naturally to a �–action.

Proof We must verify that g.F�/ D .gF /.g � �/ for g 2 G , � 2… and a functor
F W A !…. The unique natural transformation E! F between a pair of functors E

and F will then necessarily be given by �–maps. The verification is formal from the
fact that G acts by conjugation, so that the action of G on … is part of the prescription
of the action of G on F . Recall that the left action of G on Cat.A ; E…/ is given by
conjugation, .gF /.a/ D g �F.g�1a/ for g 2 G and an object or morphism a 2 A .
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The right action of … is given by .F�/.a/D F.a/� . Then

.g.F�//.a/D g � .F�/.g�1a/

D g � .F.g�1a/�/

D .g �F.g�1a//.g � �/

D ..gF /.a//.g � �/

D ..gF /.g � �//.a/:

In particular, let A D EX for a left G–space X . Then the given action of G on the
object space X and the diagonal action of G on the morphism space X �X give a left
G –action on the category EX . Lemma 3.3 shows that the left G and right …–action
on Cat.EX; E…/ give it an action by � . Explicitly, the conjugation left action by G

and the evident right action by … on the object space Map.X;…/ induce diagonal
actions on the morphism space Map.X;…/�Map.X;…/, and these specify left G

and right …–actions on Cat.EX;…/ that satisfy the commutation relation required for
a �–action.

Specializing further to X D G , we have the following equivariant elaboration of
Proposition 1.8. We change the group G there to the group Map.G;…/ here and
remember that the product on Map.G;…/ is just the pointwise product induced by the
product on …, with no dependence on the product of G . Ignoring the group action, we
may identify the chaotic right Map.G;…/–category with object space Map.G;…/ with
the category Cat.EG; E…/. The following lemma identifies group actions. Remember
that … is a subgroup of Map.G;…/.

Lemma 3.4 The isomorphism of right Map.G;…/–categories

�W T .Map.G;…/;Map.G;…//! Cat.EG; E…/

is an isomorphism of �–categories, where the G–action on both source and target
categories is given by the conjugation action on the object space Map.G;…/ and the
resulting diagonal action on the morphism space Map.G;…/�Map.G;…/.

Proof Since � is an isomorphism and a …–map, we can and must give the source
category the unique G–action such that � is a G–map. Since � is the identity map
on object spaces, the action must be the conjugation action on the object space. On an
element .ˇ; ˛/ of the morphism space, we must define

g.ˇ; ˛/D��1.g�.ˇ; ˛//D��1.g.ˇ˛/;g˛/D��1..gˇ/.g˛/;g˛/D .gˇ;g˛/:
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Lemma 3.5 With X DG , the diagram of Theorem 2.7 is a commutative diagram of �–
categories and maps of �–categories, where � acts through the quotient homomorphism
�!G on the three categories on the bottom row.

Proof Since the trapezoid is obtained by passing to orbits under the action of …, it is
a diagram of �–categories by Lemma 3.4. The functor pW E…!… of Notation 2.6 is
a G –map since

g� .�; �/D g � .���1/D .g � �/.g � �/�1
D p.g � �;g � �/:

It follows that the right vertical arrow qDCat.EG;p/ is a map of �–categories. Letting
ŒF � denote the orbit of a functor F W EG! E… under the right action of …, the functor
� is specified by �ŒF �D p ıF , and it follows that � is �–equivariant.

3.2 Universal principal .G; …G /–bundles

Observe that for any G–category A , the corepresented functor Cat.A ;�/ from G–
categories to G–categories is a right adjoint and therefore preserves all limits. We
take A to be the G–category EG from now on, and we use the functor Cat.EG;�/

to obtain a convenient categorical description of universal principal .G;…G/–bundles.
Variants of the construction are given in [12; 16].

Definition 3.6 Let G and … be topological groups and let G act on …. De-
fine E.G;…G/ to be the �–space BCat.EG; E…/ D jN Cat.EG; E…/j and define
B.G;…G/ to be the orbit G–space E.G;…G/=…. Let pW E.G;…G/! B.G;…G/

be the quotient map.

We need a lemma in order to prove that p is a universal .G;…G/–bundle in favorable
cases. We defer the proof to the next section. We believe that the result is true more
generally, but there are point-set topological issues obstructing a proof. We shall
not obscure the simplicity of our work by seeking maximum generality. As usual in
equivariant bundle theory, we assume that all given subgroups are closed.

Lemma 3.7 Let ƒ be a subgroup of � . If ƒ\…¤ e , then the fixed point category
Cat.EG; E…/ƒ is empty. At least if G is discrete, if ƒ\…D e , then Cat.EG; E…/ƒ

is nonempty and chaotic.

The following result is [7, Theorem 9], but the details of the proof are in [6, Section 2].
A principal .G;…G/–bundle is numerable if it is trivial over the subspaces of B in a
numerable open cover.
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Theorem 3.8 A numerable principal .G;…G/–bundle pW E! B is universal if and
only if Eƒ is contractible for all (closed) subgroups ƒ of � such that ƒ\…D feg.

We comment on the hypotheses. Recall from point-set topology that a space X is
completely regular if for every closed subspace C and every point x not in C , there
is a continuous function f W X ! Œ0; 1� such that f .x/D 0 and f .C /D 1. This is a
weak condition that is satisfied by reasonable spaces, such as CW complexes.

Remark 3.9 Specializing [7, Propositions 4 and 5], a principal .G;…G/–bundle
with completely regular total space is locally trivial, and a locally trivial principal
.G;…G/–bundle over a paracompact base space (such as a CW complex) is numerable.
Therefore, modulo weak point-set topological conditions, the fixed point condition in
Theorem 3.8 is the essential criterion for a universal bundle.

Therefore Lemma 3.7 has the following consequence. Its condition on … serves only
to ensure that p is a numerable principal .G;…G/–bundle.

Theorem 3.10 If G is discrete and … is either discrete or a compact Lie group, the
map

pW E.G;…G/! B.G;…G/

obtained by passage to orbits over … is a universal principal .G;…G/–bundle.

The classifying space B.G;…G/D jN Cat.EG; E…/j=… is obtained by first applying
the classifying space functor and then passing to orbits. On the other hand, the space
BCat.EG;…/DjN Cat.EG;…/j is obtained by first passing to orbits on the categorical
level and then applying the classifying space functor. The category Cat.EG;…/ is
thoroughly understood, as explained in Section 2. The key virtue of our model for
B.G;…G/ is that these two G –spaces can be identified, by Theorem 2.7.

Theorem 3.11 The canonical map

B.G;…G/D jN Cat.EG; E…/j=…! jN Cat.EG;…/j D BCat.EG;…/

is a homeomorphism of G –spaces. Therefore, if G is discrete and … is either discrete
or a compact Lie group, the map

BqW BCat.EG; E…/! BCat.EG;…/

is a universal principal .G;…G/–bundle.
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Scholium 3.12 For finite groups G , this result is claimed in [16, page 1294]. For more
general groups G , [16, 3.1] states an analogous result, but with E…!… replaced by a
functor defined in terms of the nonequivariant universal bundle E…! B…, resulting
in a much larger construction. The replacement is needed for the proof of their analogue
[16, 3.3] of our Lemma 3.7. A commutation relation of the form N.C =…/D .N C /=…

for their larger construction is stated (five lines above [16, 3.1]), but there is no hint of a
proof or of the need for one. It is not altogether clear to us that the commutation relation
stated there is true, and we view the commutation relation Theorem 2.7 as the main
point of the proof of Theorem 3.11. Nevertheless, Murayama and Shimakawa [16] had
the insightful right idea that led to our work.

4 Determination of fixed points

4.1 The fixed point spaces of E.G; …G /

We must prove Lemma 3.7, but we place no restrictions on G and … until they are
needed. Since … acts freely on Cat.EG; E…/, it is clear that Cat.EG; E…/ƒ is empty
if ƒ\…¤ e . Thus assume that ƒ\…D e . By Lemma 1.3, the fixed point category
Cat.EG; E…/ƒ is chaotic. It remains to prove that it is nonempty, and Lemma 1.5
implies that this is so if and only if the space Map.G;…/ƒ is nonempty. Thus it
suffices to show that Map.G;…/ has a ƒ–fixed point, which means that there is a
ƒ–map f W G!…. We prove this using the following standard generalization of a
homomorphism and a variant needed later.

Definition 4.1 A function ˛W G!… is a crossed homomorphism if

(4-2) ˛.gh/D ˛.g/.g �˛.h//

for all g; h 2G . In particular,

(4-3) ˛.e/D e; ˛.g/�1
D g �˛.g�1/ and ˛.g�1/�1

D g�1
�˛.g/:

A map ˛W G!… is a crossed antihomomorphism if

(4-4) ˛.gh/D .g �˛.h//˛.g/:

Note that we should require the function ˛ to be continuous in our general topological
context. However, the continuity is sometimes automatic, as indicated in the following
lemma. Remember that we understand subgroups to be closed.
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Lemma 4.5 All subgroups ƒ of � such that ƒ\…D e are of the form

ƒ˛ D f.˛.h/; h/ j h 2H g;

where H is a subgroup of G and ˛W H !… is a crossed homomorphism. At least if
G is discrete or � is compact, ˛ is continuous.

Proof Clearly ƒ˛ is a subgroup of � such that ƒ˛\…De . Conversely, let ƒ\…De .
Define H to be the image of the composite of the inclusion �W ƒ�� and the projection
� W � ! G . Since ƒ\… D e , the composite � ı � is injective and so restricts to a
continuous isomorphism �W ƒ! H . For h 2 H , define ˛.h/ D � , where � is the
unique element of … such that .�; h/2ƒ. Thus ˛ is the composite of �ı��1W H!�

and the projection �W � !…. If G is discrete or if � and therefore ƒ is compact,
then � is a homeomorphism and ˛ is continuous. For h; k 2H ,

.˛.h/; h/.˛.k/; k/D .˛.h/.h �˛.k//; hk/ 2ƒ;

so ˛.hk/D ˛.h/.h �˛.k//. Thus ˛ is a crossed homomorphism and ƒDƒ˛ .

Proof of Lemma 3.7 We must obtain a ƒ–map f W G!…, where ƒ D ƒ˛ for a
crossed homomorphism ˛ . By the definition of the action by ƒ, this means that

f .g/D .h �f .h�1g//˛.h/�1

or equivalently
h �f .h�1g/D f .g/˛.h/

for all h 2H and g 2G . We choose right coset representatives fgig to write G as a
disjoint union of cosets Hgi . We then define f W G!… by

f .kgi/D ˛.k/
�1

for k 2 H . By using (4-2), writing out the inverse of a product as the product of
inverses, using that h�1� and h� are group homomorphisms and that � is a group action,
and finally using (4-3) and, again, that � is a group action, we see that

h �f .h�1kgi/D h �˛.h�1k/�1

D h �
�
˛.h�1/.h�1

�˛.k//
��1

D h �
�
.h�1

�˛.k//�1.˛.h�1//�1
�

D
�
h � .h�1

�˛.k/�1/
��

h � .˛.h�1/�1/
�

D ˛.k/�1
�
h � .h�1

�˛.h//
�

D f .kgi/˛.h/
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for all h 2H . Thus f is a ƒ–map. We have assumed that G is discrete in order to
ensure that f is continuous.

Remark 4.6 If we relax the condition that G is discrete, we do not see how to prove
that f is continuous, as would be needed for a more general result.

4.2 The fixed point categories of Cat.EG; …/

For H � G , the structure of the fixed point space B.G;…G/
H is known (up to

homotopy), for example by specialization of more general results in [7]. We show
here how to see that structure on the category level. In fact, we identify the fixed point
categories Cat.EG;…/H , with no restrictions on … and G . However, the reader may
prefer to assume that G is discrete for the rest of Section 4.

Since the functor B commutes with fixed points, this gives a categorically precise
interpretation of the fixed point space B.G;…G/

H .

We return to Section 2, taking X D G there. The H –fixed functors and H –natural
transformations in Cat.EG;…/ are the H –equivariant functors and natural transfor-
mations, in accord with our notational convention Cat.EG;…/H D HCat.EG;…/.
Since EG and zH are both H –free contractible categories, they are equivalent as
H –categories. Therefore,

(4-7) Cat.EG;…/H ' Cat. zH ;…/H DHCat. zH ;…/:

This implies that we may restrict to the case G D H and deduce conclusions in
general. The objects and morphisms of GCat.EG;…/ are the G –equivariant functors
EW EG ! … and the G–equivariant natural transformations �. In Lemma 2.3, we
described a functor E in terms of the map ˛W G!… defined by ˛.h/DE.h; e/.

Lemma 4.8 The G–action on functors EW EG!… induces the G –action on maps
˛W G!… specified by

.g˛/.h/D
�
g � .˛.g�1h//.g �˛.g�1/�1/

�
:

Proof .gE/.h; e/D g �E.g�1h;g�1/D g � .E.g�1h; e/E.e;g�1//:

Lemma 4.9 The space of objects of GCat.EG;…/ can be identified with the subspace
of Map.G;…/ consisting of the crossed antihomomorphisms ˛W G!….
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Proof Setting g˛ D ˛ and applying g�1 � .�/ to the formula for the action of G

on ˛ , we obtain
g�1
�˛.h/D ˛.g�1h/˛.g�1/�1:

Replacing g�1 by g and multiplying on the right by ˛.g/, this gives

˛.gh/D .g �˛.h//˛.g/

for all g; h 2G , which says that ˛ is a crossed antihomomorphism.

Similarly, as in Lemma 2.4, a natural transformation �W E˛!Eˇ is determined by
� D �.e/. Explicitly,

�.g/DEˇ.g; e/�.e/E˛.g; e/
�1
D ˇ.g/�˛.g/�1

for g 2 G . Now a G–fixed natural transformation � satisfies �.gh/ D g � �.h/ for
g; h 2G and thus �.g/D �.ge/D g ��.e/D g �� . Therefore the naturality square for
G –fixed natural transformations translates into

g � � D ˇ.g/�˛.g/�1

or, equivalently,

(4-10) ˇ.g/� D .g � �/˛.g/:

We use the following definitions and lemma to put things together.

Definition 4.11 Let G act on …. Define the crossed functor category Cat�.G;…/ to
be the category whose objects are the crossed homomorphisms G!… and whose
morphisms � W ˛! ˇ are the elements � 2… such that ˇ.g/.g � �/D �˛.g/; they
are called isomorphisms of crossed homomorphisms. The composite � ı � , where
� W ˇ!  , is given by �� . Define the centralizer …˛ of a crossed homomorphism
˛W G!… to be the subgroup

…˛ D f� 2… j ˛.g/.g � �/D �˛.g/ for all g 2Gg

of …. It is the automorphism group Aut.˛/ of the object ˛ in Cat�.G;…/.

Definition 4.12 Define the anticrossed functor category Cat��.G;…/ to have objects
the crossed antihomomorphisms ˛W G!… and morphisms � W ˛! ˇ the elements
� 2 … such that ˇ.g/� D .g � �/˛.g/, with � ı � D �� . The centralizer …˛ of a
crossed antihomomorphism ˛W G!… is

…˛ D f� 2… j ˛.g/� D .g � �/˛.g/ for all g 2Gg:

Again, …˛ D Aut.˛/ in Cat��.G;…/.
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If the action of G on … is trivial, then the crossed functor category is just the func-
tor category Cat.G;…/ since homomorphisms ˛W G ! … correspond to functors
˛W G!… and elements � 2… such that ˇ.g/� D �˛.g/ for g 2 G correspond to
natural transformations ˛! ˇ . In that case,

…˛ D f� 2… j ��1˛.g/� D ˛.g/ for all g 2Gg

is the usual centralizer of ˛ in …, and then the following identification is obvious.

Lemma 4.13 The categories Cat�.G;…/ and Cat��.G;…/ of crossed homomor-
phisms and crossed antihomomorphisms are canonically isomorphic.

Proof For a crossed homomorphism ˛W G!…, define x̨W G!… by

x̨.g/D g �˛.g�1/:

Then

x̨.gh/D .gh/ �˛.h�1g�1/D g � h � .˛.h�1/.h�1
�˛.g�1//D .g � x̨.h//.x̨.g//;

so that x̨ is a crossed antihomomorphism. If � is a morphism ˛! ˇ in Cat�.G;…/,
then ˇ.g/.g � �/D �˛.g/. It follows that

x̌.g/� D .g �ˇ.g�1//� D g � .ˇ.g�1/.g�1
� �//D g � .�˛.g�1//D .g � �/x̨.g/;

so that � is also a morphism x̨ ! x̌ in Cat��.G;…/. The construction of the inverse
isomorphism is similar.

Returning to the G –fixed category of interest, we summarize our discussion in terms
of these definitions and results.

Theorem 4.14 The fixed point category GCat.EG;…/DCat.EG;…/G is isomorphic
to the anticrossed functor category Cat��.G;…/. Therefore it is also isomorphic to the
crossed functor category Cat�.G;…/.

Corollary 4.15 For H �G , the fixed point category Cat.EG;…/H is equivalent to
the anticrossed functor category Cat��.H;…/. Therefore it is also equivalent to the
crossed functor category Cat�.H;…/.

Remark 4.16 The appearance of antihomomorphisms in this context is not new; see
eg [23]. As we have seen, it is also innocuous. We have chosen not to introduce
opposite groups, but the anti-isomorphism .�/�1W …!…op is relevant.
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4.3 Fixed point categories, H 1.G I …G /, and Hilbert’s Theorem 90

Since GCat.EG;…/ is a groupoid, it is equivalent to the coproduct of its subcategories
Aut.˛/, where we choose one ˛ from each isomorphism class of objects. The following
definition is standard when … and G are discrete but makes sense in general.

Definition 4.17 The first nonabelian cohomology group H 1.GI…G/ is the pointed
set of isomorphism classes of (continuous) crossed homomorphisms G!…. We write
Œ˛� for the isomorphism class of ˛ . The basepoint of H 1.GI…G/ is Œ"�, where " is
the trivial crossed homomorphism given by ".g/D e for g 2G .

With this language, (4-7) and Corollary 4.15 can be restated as follows.

Theorem 4.18 For H � G , Cat.EG;…/H is equivalent to the coproduct of the
categories Aut.˛/, where the coproduct runs over Œ˛� 2H 1.H I…H /.

Here Aut.˛/ implicitly refers to the ambient group … Ì H , not � D … Ì G . By
(4-7) or, more concretely, Lemma 4.22 below, we obtain the same group Aut.˛/ for ˛
considered as an object of Cat. zK;…/H for any H �K �G .

For any G –category A , we have a natural map of G –categories

�W A ! Cat.EG;A /:

It is induced by the unique G–functor EG ! �, where � is the trivial G–category
with one object and its identity morphism. The G–fixed point functor �G played a
central role in Thomason [22]. When A D… for a G–group …, � sends the unique
object of … to the basepoint Œ"� 2H 1.GI…/.

We shall describe the groups Aut.˛/ in familiar group-theoretic terms in the next
section. As a special case, Aut."/D…G and �G restricts to the identity functor from
…G to Aut."/. This implies the following result.

Proposition 4.19 The functor �G W …G ! Cat.EG;…/G is an equivalence of cate-
gories if and only if H 1.GI…G/D Œ"�.

Example 4.20 Let E be a Galois extension of a field F with Galois group G .
Then G acts on E and EG D F . Let G act entrywise on GL.n;E/. Then Serre’s
general version of Hilbert’s Theorem 90 [20, Chapter 10, Proposition 3] gives that
H 1.GIGL.n;E/G/D Œ"�. Since GL.n;E/G D GL.n;F /, we conclude that �G is an
equivalence of categories

GL.n;F /! Cat.EG;GL.n;E//G :
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More generally �H for H �G is an equivalence of categories

GL.n;EH /! Cat.EG;GL.n;E/H :

As explained in [4] this gives precisely the information that ensures that the algebraic
K–theory fixed point spectrum KG.E/

H is equivalent to K.EH /. We shall return to
consideration of G –rings such as E in Section 6.

We recall the easy calculation of H 1.GI…/ in group-theoretic terms. Here we must
restrict G since the proof depends on Lemma 3.7.

Lemma 4.21 At least if G is discrete, the set H 1.GI…/ is in bijective correspondence
with the set of …–conjugacy classes of subgroups ƒ of � such that ƒ\…D e and
q.ƒ/DG .

Proof By Lemma 3.7, the subgroups ƒ of � such that ƒ\…D e are of the form

ƒ˛ D f.˛.h/; h/ j h 2H g

for a crossed homomorphism ˛W H ! …. If � 2 …, then �ƒ˛��1 \… D e and
therefore �ƒ˛��1 Dƒˇ for some crossed homomorphism ˇ . The equality forces ˇ
and ˛ to be defined on the same subgroup H and to satisfy ˇ.g/.g ��/D �˛.g/. We
are concerned only with the case H DG , and then this says that � is a morphism and
thus an isomorphism ˛! ˇ in Cat�.G;…/.

4.4 The fixed point spaces of B.G; …G /

We here identify the automorphism groups Aut.˛/ group-theoretically and so complete
the identification of Cat.EG;…/G .

Lemma 4.22 Let ˛W H ! … be a crossed homomorphism and … be a G–group,
where H � G . Then the crossed centralizer …˛ is the intersection … \ N�ƒ˛ .
Therefore this intersection is the same for all �K D…Ì K , H �K �G .

Proof Let .�;g/ 2…Ì G and h 2H . Calculating in � D…Ì G , we have

.�;g/�1.˛.h/; h/.�;g/D .g�1
� ��1;g�1/.˛.h/; h/.�;g/

D ..g�1
� ��1/.g�1

�˛.h//;g�1h/.�;g/

D
�
.g�1

� ��1/.g�1
�˛.h//..g�1h/ � �/;g�1hg

�
:

Therefore, .�;g/ is in N�ƒ˛ if and only if g is in NGH and

˛.g�1hg/D .g�1
� ��1/.g�1

�˛.h//..g�1h/ � �/
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for all h 2 H . When g D e , so that � D .�; e/ is a typical element of …\N�ƒ˛ ,
this simplifies to

˛.h/D ��1˛.h/.h � �/:

Passing to classifying spaces from Theorem 4.18 gives the following result.

Theorem 4.23 For H �G ,

B.G;…G/
H
D BCat.EG;…/H '

a
B Aut.˛/;

where the coproduct runs over Œ˛� 2H 1.H I…H /.

By Lemmas 4.21 and 4.22, at least when G is discrete we can restate Theorem 4.23 as
follows.

Theorem 4.24 Let � D…Ì G , where G is discrete. For a subgroup H of G ,

B.G;…G/
H
'

a
B.…\N�ƒ/;

where the coproduct runs over the …–conjugacy classes of subgroups ƒ of � such
that ƒ\…D e and q.ƒ/DH .

Of course, we are only entitled to consider B.G;…G/ as a classifying space for
principal �–bundles when Theorem 3.11 applies. The fixed point spaces B.…I�/H of
classifying spaces are studied more generally in [7] when � is given by a not necessarily
split extension of compact Lie groups

(4-25) 1!…! �
q
�!G! 1:

For such groups � , Theorem 10 of [7] gives an entirely different bundle-theoretic proof
that the conclusion of Theorem 4.24 still holds as stated, but without the restriction
on G . However, when [7] was written, no particularly nice model for the homotopy
type B.…I�/ was known.

5 The comparison between BCat.EG; …/ and
Map.EG; B…/

A convenient model pW E.…I�/! B.…I�/ for a universal principal .…I�/–bundle
was later given in terms of mapping spaces [12]. Here we assume given an extension
(4-25), with no restrictions on our topological groups.4 Start with the classical models

4We do assume their identity elements are nondegenerate basepoints.
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in Section 2.3 for universal principal …, G , and �–bundles and let EqW E�!EG

be the map induced by the quotient homomorphism qW � ! G . Let Sec.EG;E�/

denote the �–space of sections f W EG!E� , so that Eq ı f D id. The following
result is part of [12, Theorem 5].

Theorem 5.1 The quotient map pW Sec.EG;E�/!Sec.EG;E�/=… is a universal
principal .…I�/–bundle.

Now let the extension be split, so that � D…Ì G . The given action of G induces
a left action of G on E… that, together with the free right action by …, makes it a
�–space. Taking EG to be a left G–space and letting � act through q on EG , we
have the product �–space E…�EG . It is free as a �–space because E… is free as a
…–space and EG is free as a G –space. Since it is contractible, we may as well take
E� D E…�EG . Since the second coordinate of a section f W EG ! E…�EG

must be the identity, we then have

Sec.EG;E�/DMap.EG;E…/:

Its �–action is defined just as was the �–action on Cat.EG;…/ in Lemma 3.3. This
gives the following specialization of Theorem 5.1, which is the space level forerunner
of the categorical Theorem 3.10.

Theorem 5.2 The quotient map pW Map.EG;E…/!Map.EG;E…/=… is a uni-
versal principal .G;…G/–bundle.

We also have the mapping space Map.EG;B…/. The canonical map E…! B…

induces a map qW Map.EG;E…/!Map.EG;B…/. Then there is an induced map
� that makes the following diagram commute:

Map.EG;E…/

p

uu

q

��

Map.EG;E…/=…
�

// Map.EG;B…/

The analogy with the triangle in Theorem 2.7 should be evident. As observed in
[12, Theorem 5], elementary covering space theory gives the following space level
forerunner of the categorical Theorem 3.11.

Theorem 5.3 If … is discrete, then �W Map.EG;E…/=…! Map.EG;B…/ is a
homeomorphism and therefore qW Map.EG;E…/! Map.EG;B…/ is a universal
principal .G;…G/–bundle.
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Note that G but not … is required to be discrete in Theorem 3.11, whereas … but not
G is required to be discrete in Theorem 5.3.5 There is an obvious comparison map
relating the categorical and space level constructions. For any G –categories A and B ,
we have the evaluation G –functor

"W Cat.A ;B/�A !B:

Applying the classifying space functor and taking adjoints, this gives a G –map

(5-4) �W BCat.A ;B/!Map.BA ;BB/:

When A and B are both discrete (in the topological sense), there is a simple analysis
of this map in terms of the simplicial mapping space Map�.N A ;N B/. The following
two lemmas are well-known nonequivariantly.

Lemma 5.5 For discrete categories A and B , there is a natural isomorphism

�W N Cat.A ;B/ŠMap�.N A ;N B/;

and this is an isomorphism of simplicial G –sets if A and B are G –categories.

Proof Let �n be the poset f0; 1; : : : ; ng, viewed as a category. The n–simplices of
Cat.A ;B/ are the functors �n! Cat.A ;B/. By adjunction, they are the functors
A ��n!B . Since N is full and faithful, these functors are the maps of simplicial
sets

N A �N�n ŠN.A ��n/!N B:

By definition, these maps are the n–simplices of Map�.N A ;N B/. These identifi-
cations give the claimed isomorphism of simplicial sets. The compatibility with the
actions of G when A and B are G –categories is clear.

Lemma 5.6 For simplicial sets K and L, there is a natural map

�W jMap�.K;L/j !Map.jKj; jLj/:

If K and L are simplicial G –sets, � is a map of G –spaces, and it is a weak equivalence
of G –spaces when L is a Kan complex.

5When G is a compact Lie group acting trivially on a compact abelian Lie group … , results of [8]
imply that the map � is a weak G –equivalence; in [18], Charles Rezk proves that this remains true when
… is a finite extension of a torus (a compact Lie homotopy 1–type).
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Proof The evaluation map Map�.K;L/�K!L induces a map

jMap�.K;L/j � jKj Š jMap�.K;L/�Kj ! jLj

whose adjoint is � . When L is a Kan complex, so is Map�.K;L/ (eg [9, 6.9]),
and the natural maps L! S jLj and Map�.K;L/! S jMap�.K;L/j are homotopy
equivalences, where S is the total singular complex functor. A diagram chase shows
that � induces a bijection on homotopy classes of maps

��W ŒjJ j; jMap�.K;L/j�!
�
jJ j;Map.jKj; jLj/

�
for any simplicial set J . Letting G act trivially on J , all functors in sight commute
with passage to H –fixed points, and the equivariant conclusions follow.

Now the following result is immediate from the definitions and lemmas above.

Proposition 5.7 For discrete G–categories A and B , the map � of (5-4) is the
composite � ı�, and it is a weak G –equivalence if B is a groupoid.

Returning to the topological setting, take A D EG and write EG D jN EGj, as we
may. Recalling that E…! B… is obtained by applying B to the functor E…!…,
we obtain the following commutative diagram:

BCat.EG; E…/

��

// Map.EG;E…/

��

BCat.EG; E…/=…

��

// Map.EG;E…/=…

��

BCat.EG;…/ // Map.EG;B…/

Theorems 3.10 and 5.2 say that the top two vertical arrows are often universal principal
.…I�/–bundles, in which case the top two horizontal arrows are equivalences. Theo-
rems 3.11 and 5.3 say that the lower two vertical arrows and therefore also the bottom
horizontal arrow are also often equivalences. When both … and G are discrete, the
equivalences are immediate from Proposition 5.7. More elaborate arguments might
prove all of these results in greater topological generality.

6 Other categorical models for classifying spaces B.G; …G /

For particular G–groups …, there are alternative categorical models for universal
principal .G;…G/–bundles that are important in our applications in [4; 14]. They lead
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to equivalent, but more intuitive, constructions of categorical models for a number of
interesting G –spectra, in particular suspension G –spectra and the equivariant K–theory
spectra of rings with actions by G .

Perhaps surprisingly, the symmetric groups †n with trivial G –action are of particular
importance in equivariant infinite loop space theory. For a ring R with an action of
a group G via ring maps, the general linear groups GL.n;R/ with G–action on all
matrix entries are of particular importance. We give alternative models for universal
principal bundles applicable to these cases. We focus on the total spaces here and
explain additional structure on the resulting classifying spaces in [4]. We assume that G

is finite, although some of the definitions make sense and are interesting more generally.

6.1 A model zEG .n/ for E.G; †n/

Definition 6.1 Let U be a countable ambient G–set that contains countably many
copies of each orbit G=H . The action of G on U fixes bijections gW A! gA for all
finite subsets A of U , denoted by a 7! g � a.

Let nD f1; : : : ; ng and view elements � 2†n as functions n! n, so that �.i/D � � i
gives a left action of †n on n.

Definition 6.2 For n � 0, let zEG.n/ denote the chaotic .†n �G )-category whose
set Ob of objects is the set of pairs .A; ˛/, where A is an n–element subset of U

and ˛W n!A is a bijection. Let G act on Ob on the left by postcomposition and let
†n act on the right by precomposition. Thus g.A; ˛/D .gA;g ı ˛/ for g 2 G , and
.A; ˛/� D .A; ˛ ı �/ for � 2†; of course,

.g ı˛/ ı � D g ı˛ ı � D g ı .˛ ı �/:

The action of †n �G is given by .�;g/.A; ˛/D .gA;g ı ˛ ı ��1/. Since zEG.n/ is
chaotic, this fixes the actions on the morphism set, which the map .S;T / identifies
with O b �Ob with †n �G acting diagonally.

Proposition 6.3 For each n, the classifying space jN zEG.n/j is a universal principal
.G; †n/–bundle.

Proof For each A, choose a base bijection �AW n! A. The function sending � to
.A; �Aı�/ is an isomorphism of right †n –sets from †n to the set of objects .A; ˛/; its
inverse sends .A; ˛/ to ��1

A
ı˛ . Thus †n acts freely on zEG.n/. Since zEG.n/ is chaotic,

it suffices to show that the set of objects of zEG.n/
ƒ is nonempty if ƒ\†n D feg. As
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usual, ƒD f.�.h/; h/ j h 2H g, where H is a subgroup of G and �W H ! †n is a
homomorphism.

Let H act through � on n, so that h � i D �.h/.i/. Since U contains a copy of every
finite G–set, there is a bijection of G–sets ˇW G �H n ! B � U . Its restriction
to n gives a bijection of H –sets ˛W n ! A � B . We claim that this .A; ˛/ is
a ƒ–fixed object. Obviously hA D A for h 2 H . By Definition 6.2, we have
.�.h/; h/.A; ˛/D .A; h ı˛ ı �.h/�1/, where

.h ı˛ ı �.h/�1/.i/D h �˛.�.h/�1.i//D h � h�1
�˛.i/D ˛.i/:

Definition 6.4 Define EG.n/ to be the orbit G –category zEG.n/=†n .

By Proposition 6.3 and Section 2.3, BEG.n/ is a classifying space B.G; †n/. Up to
isomorphism, the G –category EG.n/ admits the following more explicit description.

Lemma 6.5 The objects of EG.n/ are the n–pointed subsets A of U . The morphisms
are the bijections ˛W A! B , with the evident composition and identities. The group
G acts by translation on objects and by conjugation on morphisms. That is, g sends A

to gA and ˛ to g˛ , where g˛ D g ı˛ ıg�1 , so that .g˛/.g � a/D g �˛.a/.

Proof The objects .A; ˛/ are all in the same orbit, denoted by A, and the bijections
�A chosen in the proof of Proposition 6.3 give orbit representatives for the objects
of EG.n/. In zEG.n/, we have a unique morphism �ˇW .A; �A/ ! .B; ˇ/ for each
bijection ˇW n! B , and these morphisms give orbit representatives for the set of
morphisms A ! B in EG.n/. Letting the orbit of �ˇ correspond to the bijection
˛D ˇ ı��1

A
W A!B and noting that ˛D �B ı� ı�

�1
A

for a unique � 2†n , we obtain
the claimed description of EG.n/. Since �A specifies an ordering on A, �gA is fixed
as g ı �A . Then, if ˛ D ˇ ı ��1

A
,

g ı˛ ıg�1
D g ı .ˇ ı ��1

A / ı .�A ı �
�1
gA/D g ıˇ ı ��1

gAW gA! gB:

6.2 G –rings, G –ring modules, and crossed homomorphisms

By a G–ring we understand a ring R with a left action of G on R through ring
automorphisms. We do not assume that R is commutative, although that is the
case of greatest interest to us. Following the literature, we write g.r/ D rg for
the automorphism gW R!R determined by g 2G . Then rgh D g.h.r//D .rh/g .

When R is a subquotient of Q, the only automorphism of R is the identity and the
action of G must be trivial, but nontrivial examples abound. One important example is
the action of the Galois group on a Galois extension E of a field F .
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In the next section we will give an analogue of zEG.n/ but with …D†n replaced by
…DGL.n;R/ with the entrywise action of G . We will need a tiny bit of what appears
to us to be a relatively undeveloped part of representation theory.

For a G –ring R, there are standard notions of a “crossed product” ring, a “group-graded
ring”, and, as a special case of both, a “skew group ring”, variously denoted R Ì G

or R�G . We shall use the notation RG ŒG� for the last of these notions. If the action
of G on R is given by the homomorphism � W G! Aut.R/, a more precise notation
would be R� ŒG�. Observe that R is a k –algebra, where k denotes the intersection of
the center of R with RG .

Definition 6.6 As an R–module, RG ŒG� is the same as the group ring RŒG�, which
is the case when G acts trivially on R. We define the product on RG ŒG� by k –linear
(not R–linear) extension of the relation

.rg/ .sh/D rsg gh

for r; s 2R and g; h 2G . Thus R and kŒG� are subrings of RG ŒG� and

g r D rg g:

Definition 6.7 We call (left) RG ŒG�–modules “G –ring modules” or “skew G –mod-
ules”. Such an M is a left R–module and a left kŒG�–module such that g.rm/ D

rg.gm/ for m 2M . If M is R–free, we call M a skew representation of G over R.

Although special cases have appeared and there is a substantial literature on crossed
products, group-graded rings, and skew group rings (for example [2; 15; 17]), we have
not found a systematic study of these representations in the literature. Kawakubo [5]
gives a convenient starting point. The following relationship with crossed homomor-
phisms is [5, 5.1].

Theorem 6.8 Let R be a G–ring. Then the set of isomorphism classes of RG ŒG�–
module structures on the R–module Rn is in canonical bijective correspondence with
H 1.GIGL.n;R//. In detail, let feig be the standard basis for Rn . Then the formula

gei D �.g/.ei/

establishes a bijection between RG ŒG�–module structures on Rn and crossed homo-
morphisms �W G! GL.n;R/. Moreover, two RG ŒG�–modules with underlying R–
module Rn are isomorphic if and only if their corresponding crossed homomorphisms
are isomorphic.
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Proof Given an RG ŒG�–module structure on Rn , define the matrix �.g/ in GL.n;R/
by letting its i th column be .si;j /, where

gei D

X
j

si;j ej :

Conversely, given � , write �.g/D .si;j / and define gei by the same formula. From
either starting point, we have gei D �.g/.ei/. For a second element h 2 G , write
�.h/D .ti;j /, where �.h/ is either determined by an RG ŒG�–module structure or is
given by a crossed homomorphism � . Since g r D rg g in RG ŒG� and g .ri;j /D .r

g
i;j /

in GL.n;R/, the relation .gh/ei D g.hei/ required of an RG ŒG�–module is the same
as the relation �.g/�.h/.ei/D �.g/.g�.h//.ei/ required of a crossed homomorphism.
Indeed, .gh/ei D �.gh/.ei/ and

g.hei/D g�.h/.ei/D
X

j

g.ti;j ej /D
X

j

t
g
i;j gej D

X
j

X
k

t
g
i;j sj ;kek

D �.g/

�X
j

t
g
i;j ej

�
D �.g/.g�.h/.ei/:

The remaining compatibilities, in particular for the transitivity relation required of a
module, are equally straightforward verifications, as is the verification of the statement
about isomorphisms.

The following easy observation specifies the permutation skew representations. For a
set A, let RŒA� denote the free R–module on the basis A.

Proposition 6.9 Let A be a G –set and define

g

�X
a

raa

�
D

X
a

rg
a ga

for g 2G , ra 2R and a 2A. Then RŒA� is an RG ŒG�–module.

In view of Theorem 6.8, this has the following immediate consequence.

Corollary 6.10 For a G –ring R, any n–pointed G –set A canonically gives rise to a
crossed homomorphism �AW G! GL.n;R/.

We shall need to embed skew representations in permutation skew representations to
apply these notions in equivariant bundle (or covering space) theory. Of course, in
classical representation theory over C , every representation embeds in a permutation
representation. We need an analogue for skew representations.
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Definition 6.11 A G–ring R is amenable if there is a monomorphism of RG ŒG�–
modules that embeds any finite-dimensional skew representation of G over R into a
finite-dimensional permutation skew representation.

Example 6.12 Let G act trivially on nD f1; : : : ; ng. The trivial permutation skew
representation RŒn� is the RG ŒG�–module corresponding to the trivial crossed homo-
morphism "W G ! GL.n;R/. Thus, when H 1.GIGL.n;R// D Œ"� for all n, every
skew representation of G over R is isomorphic to a permutation skew representation
and R is amenable. This holds, for example, when G is the Galois group of a Galois
extension RDK over a field k .

More generally, we have the following analogue of the situation in classical represen-
tation theory, which shows that amenability is not an unduly restrictive condition. It
is proven in Passman [17, 4.1 in Chapter 1]. Even in this generality, he ascribes it to
Maschke.

Lemma 6.13 Let N �M be RG ŒG�–modules with no jGj–torsion. If M DN˚V as
an R–module, then there is an RG ŒG�–submodule P �M such that jGjM �N ˚P .

An irreducible skew representation is one that has no nontrivial proper skew subrepre-
sentations.

Theorem 6.14 Suppose that R is semisimple and jGj�1 2 R. Then every RG ŒG�–
module is completely reducible and R is amenable.

Proof By the lemma, if N �M , then M DN ˚P . That is, the complete reducibility
of R–modules implies the complete reducibility of RG ŒG�–modules. If N is an
irreducible RG ŒG�–module, then any choice of an element n¤ 0 determines a map of
RG ŒG�–modules f W RG ŒG�!N such that f .1/D n. The image of f is a submodule
of N , and it is all of N since N is irreducible. By complete reducibility, Ker.f / has
a complement in RG ŒG�, and that complement must be isomorphic to N . Thus N

is a direct summand of the permutation skew representation RG ŒG�. Therefore, by
complete reducibility, all skew representations are direct summands of permutation
skew representations.

6.3 A model eGL G .n; R/ for E.G; GL.n; R/G /

Again let R be a G–ring, and assume that R is amenable. We have the entrywise
left action of G on GL.n;R/, and we have the right action of GL.n;R/ on GL.n;R/
given by matrix multiplication.
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Lemma 6.15 The left action of G and the right action of GL.n;R/ on GL.n;R/
specify an action of GL.n;R/Ì G on GL.n;R/ via .�;g/.x/D .gx/��1 for g 2G ,
x 2 GL.n;R/, and � 2 GL.n;R/.

Proof The required relation g � .x�/D .g �x/.g � �/ is immediate from the fact that
gW R!R is an automorphism of rings.

Recall the G–set U from Definition 6.1. By Proposition 6.9, RŒU � is an RG ŒG�–
module with

(6-16) g � .ru/D rggu for g 2G; r 2R and u 2 U:

Similarly, we have the entrywise (equivalently, diagonal) left action of g on Rn ,
g � .rei/ D rgei , where we think of G as acting trivially on the set feig. Regard
elements � 2 GL.n;R/ as homomorphisms � W Rn!Rn . That fixes the left action of
GL.n;R/ on Rn given by matrix multiplication, where elements of Rn are thought of
as row matrices.

Definition 6.17 We define the chaotic general linear category eGL G.n;R/. The
objects of eGL G.n;R/ are the monomorphisms of left R–modules ˛W Rn! RŒU �.
Let G act from the left on objects by g˛ D g ı˛ ıg�1 . By (6-16), we have

.g ı˛ ıg�1/
�X

riei

�
D

X
i

.g ı˛/.r
g�1

i ei//D
X

i

g.r
g�1

i /˛.ei/

D

X
i

r
g�1g
i .g �˛.ei//D

X
i

ri.g �˛.ei//:

In particular, .g˛/.ei/ D g � ˛.ei/. Let GL.n;R/ act from the right on objects by
˛� D ˛ ı � W Rn!RŒU �; this uses the left, not the right, action of GL.n;R/ on Rn .
Since eGL G.n;R/ is chaotic, this fixes the actions on the morphism set, which the
map .S;T / identifies with the product of two copies of the object set.

Proposition 6.18 The actions of G and GL.n;R/ on eGL G.n;R/ determine a left
action of GL.n;R/Ì G via

.�;g/˛ D .g˛/��1:

The classifying space jN eGL G.n;R/j is a universal principal .G;GL.n;R/G/–bundle.

Proof For the first claim, we must show that g.˛�/D .g˛/.g � �/W Rn!RŒU � for
˛W Rn!RŒU �, g 2G , and � D .ti;j / 2 GL.n;R/. On elements ei ,
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g.˛�/.ei/D g � .˛�/.ei/D g �

�
˛

�X
j

ti;j ej

��
D g �

X
j

.ti;j˛.ej //D
X

j

t
g
i;j .g �˛.ej //

D .g˛/

�X
j

t
g
i;j ej

�
D .g˛/.g � �/.ei/:

For each free R–module M �RŒU �, choose an R–linear isomorphism �M W R
n!M .

Sending ˛W Rn !M to ��1
M
ı ˛ specifies an isomorphism of right GL.n;R/–sets

from the set of objects ˛ with image M to GL.n;R/; the inverse sends � 2GL.n;R/
to �M ı � . Therefore GL.n;R/ acts freely on eGL G.n;R/. Since eGL G.n;R/ is
chaotic, it only remains to show that the set of objects of eGL G.n;R/

ƒ is nonempty if
ƒ\GL.n;R/Dfeg. By Lemma 4.5, ƒDf.�.h/; h/ j h2H g, where H is a subgroup
of G and �W H ! GL.n;R/ is a crossed homomorphism.

By Theorem 6.8, we may use � to endow Rn with a structure of left RH ŒH �–module.
By the assumed amenability of R, there is a monomorphism of left RH ŒH �–modules
Rn ! RŒA� for some finite H –set A. We can embed A in the finite G–set B D

G �H A and then B is isomorphic to a sub-G –set of U . This fixes a monomorphism
˛W Rn!RŒU � of left RH ŒH �–modules. Writing �.h/D .si;j / and �.h/�1 D .ti;j /,
we have

h˛.ej /D ˛.�.h/.ej //D ˛

�X
k

sj ;kek

�
D

X
k

sj ;k˛.ek/

and therefore, using the display in Definition 6.17,

..h˛/�.h/�1/.ei/D .h˛/

�X
j

ti;j ej

�
D

X
j

ti;j h �˛.ej /

D

X
j

X
k

ti;j sj ;k˛.ek/D ˛.ei/:

Definition 6.19 Let GLG.n;R/ be the orbit G –category eGL G.n;R/=GL.n;R/.

The classifying space jN GLG.n;R/j is a model for B.G;GL.n;R/G/. Up to isomor-
phism, the G –category GLG.n;R/ admits the following explicit description.

Lemma 6.20 The objects of GLG.n;R/ are the n–dimensional free R–submodules
M of RŒU �. The morphisms ˛W M ! N are the isomorphisms of R–modules.
The group G acts by translation on objects, so that gM D fgm j m 2M g, and by
conjugation on morphisms, so that .g˛/.gm/D ˛.m/ for m 2M and g 2G .
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Proof The objects ˛ of eGL G.n;R/ with a fixed image M are all in the same orbit.
Choose �M W R

n ! M to fix an orbit representative. In eGL G.n;R/, we have a
unique morphism �W �! ˇ for each object ˇW Rn! N . We define ˛W M ! N to
be the composite ˇ ı ��1

M
. The ˛ are isomorphisms of R–modules that give orbit

representatives specifying the morphisms of GLG.n;R/. As in the proof of Lemma 6.5,
the description of the action of G follows.
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Bounds on alternating surgery slopes

DUNCAN MCCOY

We show that if p=q–surgery on a nontrivial knot K yields the branched double
cover of an alternating knot, then jp=qj � 4g.K/C 3 . This generalises a bound
for lens space surgeries first established by Rasmussen. We also show that all
surgery coefficients yielding the double branched covers of alternating knots must
be contained in an interval of width two and this full range can be realised only if
the knot is a cable knot. The work of Greene and Gibbons shows that if S3

p=q
.K/

bounds a sharp 4–manifold X , then the intersection form of X takes the form of a
changemaker lattice. We extend this to show that the intersection form is determined
uniquely by the knot K , the slope p=q and the Betti number b2.X/ .

57M12, 57M25; 57M27

1 Introduction

For a knot K � S3 and p=q 2 Q we say that S3
p=q

.K/ is an alternating surgery if
it is the double branched cover of an alternating knot or link. In this paper, we will
prove some bounds on the slopes of alternating surgeries. The first of these generalises
a bound for lens space surgeries originally due to Rasmussen [27].

Theorem 1.1 If K is a nontrivial knot with an alternating surgery S3
p=q

.K/, then the
slope p=q satisfies the inequality jp=qj � 4g.K/C 3.

The bound in Theorem 1.1 is sharp with equality being attained by the T2;n torus knots.
It turns out that whenever this bound is realised, the resulting alternating surgery yields
a lens space. Hence, work of Baker [1, Theorem 1.2] shows that the T2;n torus knots
are the only knots achieving equality in Theorem 1.1.

We can also obtain a bound on the range of slopes yielding alternating surgeries.

Theorem 1.2 If K is a nontrivial knot admitting an alternating surgery, then there is
an integer N such that for any alternating surgery S3

p=q
.K/, the coefficient p=q lies in

the interval
N � 1�

p

q
�N C 1:
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The definition of N is given Section 4.3. Theorem 1.2 shows that the range of slopes
which yield alternating surgeries is contained in an interval with integer endpoints of
width two. When every slope in this interval yields an alternating surgery, then we will
show that the knot must be a cable knot. For the purposes of this paper, we consider
torus knots to be cable knots.

Theorem 1.3 Suppose that K is a nontrivial knot admitting alternating surgeries
S3r .K/ for each of the slopes r 2 fr1; r2; N g, where N is the integer appearing in
Theorem 1.2. If r1 and r2 satisfy

N � 1� r1 <N < r2 <N C 1;

then S3N .K/ is a reducible surgery and K is a cable knot.

Remark 1.4 It can be shown that Theorem 1.3 still holds under the slightly weaker
condition that r2�NC1. However, this relatively minor extension requires a substantial
amount of work so we will not prove it here.

The starting point for the proof of these results is the work of Gibbons [6], which
generalizes the work of Greene [9; 10; 11]. It provides strong restrictions on the
intersection form of a negative-definite sharp 4–manifold X bounding S3

p=q
.K/ for

p=q > 0, which must take the form of a changemaker lattice. In order to prove
Theorems 1.2 and 1.3, we are required to determine the extent to which this intersection
form depends on the knot K and the surgery slope p=q . This leads us to define the
stable coefficients of a changemaker lattice. The definition of a changemaker lattice
and its stable coefficients are given in Section 2.1. Let p=q have continued fraction
expansion p=q D Œa0; : : : ; al �

� , where ai � 2 for 1 � i � l and a0 � 1. Here
Œa0; : : : ; al �

� denotes the Hirzebruch–Jung continued fraction

Œa0; : : : ; al �
�
D a0�

1

a1�
1

: : : �
1

al

:

A p=q–changemaker lattice takes the form of an orthogonal complement

LD hw0; : : : ; wli
?
� ZtCsC1 D hf1; : : : ; ft ; e0; : : : ; esi;

where the fi and ej form an orthonormal basis for ZrCsC1 , and the wi have the
properties that

wi �wj D

8<:
ai if i D j;
�1 if ji � j j D 1;
0 if ji � j j � 2;
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and
w0 � e0 D 1;

w0 � ei D 0 for 1� i � s;

w0 �fi � 0 for 1� i � t;

wj �fi D 0 for 1� i � t and 1� j � l:

The stable coefficients of L are defined to be the values of w0 �fi satisfying w0 �fi >1.

Theorem 1.5 Let K � S3 be a knot and suppose that S3
p=q

.K/ bounds a negative-
definite sharp 4–manifold X with intersection form QX for some p=q > 0. Then the
positive-definite lattice �QX embeds into Zb2.X/ClC1 as a p=q–changemaker lattice,
where the stable coefficients are determined by K .

The stable coefficients in Theorem 1.5 form an invariant of the knot K that can be
calculated from the knot Floer homology of K . Section 2.3 provides an algorithm for
this calculation. When K is an L–space knot, the stable coefficients can be computed
directly from its Alexander polynomial. The integer N appearing in Theorems 1.2
and 1.3 is defined in terms of stable coefficients and hence is an invariant of K and
can be calculated from the Alexander polynomial.

Remark 1.6 In addition to being a lower bound for alternating surgeries, the integer
N � 1 appearing in Theorem 1.2 also has the property that if S3

p=q
.K/ bounds a

negative-definite sharp 4–manifold then p=q � N � 1. We explain this observation
after the proof of Theorem 1.2.

Given one negative-definite sharp 4–manifold, bounding a 3–manifold Y we can
obtain another by taking a connected sum with CP2 . It follows from Theorem 1.5 that
if Y D S3

p=q
.K/, then at the level of intersection forms this is the only possibility.

Corollary 1.7 Let K � S3 be a knot such that for some p=q > 0, the 3–manifold
S3
p=q

.K/ bounds negative-definite sharp 4–manifolds X and X 0 , with b2.X
0/ D

b2.X/C k for k � 0. Then

QX 0 ŠQX ˚ .�Zk/ŠQX#kCP2 :

Acknowledgements The author would like to thank his supervisor, Brendan Owens,
for his guidance and careful reading of this paper. He is grateful to Liam Watson for
helpful conversations about quasi-alternating links and many other things. He also
wishes to thank the anonymous referee for their feedback.

Algebraic & Geometric Topology, Volume 17 (2017)



2606 Duncan McCoy

2 Changemaker lattices and sharp 4–manifolds

The aim of this section is to prove Theorem 1.5. We begin by defining changemaker
lattices and recalling the necessary definitions and properties from Heegaard Floer
homology. We finish the section by stating the properties of L–space surgeries that we
will require to prove the results on alternating surgeries.

2.1 Changemaker lattices

We will define p=q–changemaker lattices for any p=q > 0. Changemaker lattices
corresponding to the case q D 1 were defined by Greene in his solution to the lens
space realisation problem [9] and work on the cabling conjecture [11]. The case q D 2
arose in his work on unknotting numbers [10]. The more general definition we state
here is the one which arises in Gibbons’ work [6].

Definition 2.1 We say .�1; : : : ; �t / satisfies the changemaker condition if the follow-
ing conditions hold:

0� �1 � 1 and �i�1 � �i � �1C � � �C �i�1C 1 for 1 < i � t:

The changemaker condition is equivalent to the following combinatorial result.

Proposition 2.2 (Brown [2]) Let � D .�1; : : : ; �t /, with �1 � � � � � �t . There is
A� f1; : : : ; tg such that k D

P
i2A �i for every integer k with 0� k � �1C � � �C �t

if and only if � satisfies the changemaker condition.

Now we are ready to define changemaker lattices. It is convenient to define integer and
noninteger changemaker lattices separately, although the two are clearly similar.

Definition 2.3 (integral changemaker lattice) First suppose that q D 1, so that
p=q > 0 is an integer. Let f0; : : : ; ft be an orthonormal basis for Zt . Let w0 D
�1f1 C � � � C �tft be a vector such that kw0k2 D p and .�1; � � � ; �t / satisfies the
changemaker condition. Then

LD hw0i
?
� ZtC1

is a p=q–changemaker lattice. Let m be minimal such that �m > 1. We define the
stable coefficients of L to be the tuple .�m; : : : ; �t /. If no such m exists, then we take
the stable coefficients to be the empty tuple.
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Definition 2.4 (nonintegral changemaker lattice) Now suppose that q � 2, so that
p=q > 0 is not an integer. This has continued fraction expansion of the form p=q D

Œa0; a1; : : : ; al �
� , where ak � 2 for 1� k � l and a0 D dp=qe � 1. Now define

m0 D 0 and mk D

kX
iD1

ai � k for 1� k � l:

Set sDml and let f1; : : : ; ft ; e0; : : : ; es be an orthonormal basis for the lattice ZtCsC1 .
Let w0 D e0 C �1f1 C � � � C �tft be a vector such that .�1; : : : ; �t / satisfies the
changemaker condition and kw0k2 D a0 . For 1� k � l , define

wk D�emk�1
C emk�1C1C � � �C emk

:

We say that
LD hw0; : : : ; wli

?
� ZtCsC1

is a p=q–changemaker lattice. Let m be minimal such that �m > 1. We define the
stable coefficients of L to be the tuple .�m; : : : ; �t /. If no such m exists, then we take
the stable coefficients to be the empty tuple.

Remark 2.5 Since mk � mk�1 D ak � 1, the vectors w0; : : : ; wl constructed in
Definition 2.4 satisfy

wi :wj D

8<:
aj if i D j;
�1 if ji � j j D 1;
0 otherwise.

Remark 2.6 Let L be a p=q–changemaker lattice

LD hw0 D e0C �1f1C � � �C �tft ; w1; : : : ; wli
?
� ZtCsC1:

By definition, the stable coefficients determine the values of the �i satisfying �i > 1.
Since kw0k2 D dp=qe, the stable coefficients fix the number of �i equal to 1 and this
accounts for all nonzero �i . It follows that the number of �i equal to zero can be
deduced from the rank of L. Thus we see that the value p=q , the stable coefficients
and the rank determine L uniquely. Since we have fi 2 L if and only if �i D 0,
any two p=q–changemaker lattices L and L0 with the same stable coefficients and
rk.L0/D rk.L/C k satisfy L0 Š L˚Zk

2.2 Sharp 4–manifolds

Now we will give a summary of the necessary background on Heegaard Floer homology
and its d –invariants. Let Y be a rational homology 3–sphere. Its Heegaard Floer
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homology, �HF.Y /, when defined with coefficients in Z=2Z, takes the form of a finite-
dimensional vector space over Z=2Z. The group �HF.Y / splits as a direct sum over
spinc –structures: �HF.Y /Š

M
s2Spinc.Y /

�HF.Y; s/;

where �HF.Y; s/¤ 0 for all s 2 Spinc.Y /. We say that Y is an L–space if �HF.Y / is
as small as possible:

dimF2
�HF.Y /D jH 2.Y IZ/j D jSpinc.Y /j:

Associated to each summand there is a numerical invariant d.Y; s/ 2 Q, called the
d –invariant [22]. If Y is the boundary of a smooth negative-definite 4–manifold X ,
then for any t 2 Spinc.X/ which restricts to s 2 Spinc.Y / there is a bound on the
corresponding d –invariant,

(2-1) c1.t/
2
C b2.X/� 4d.Y; s/:

We say that X is sharp if for every s 2 Spinc.Y / there is some t 2 Spinc.X/ which
restricts to s and attains equality in (2-1).

We will be interested in the case where Y arises as surgery on a knot in S3 . Let
K � S3 be a knot. For fixed p=q 2Q n f0g, there are canonical identifications [26]

Spinc.S3p=q.K//$ Z=pZ$ Spinc.S3p=q.U //:

Using these identifications we are able to define

Dp=q.i/ WD d.S
3
p=q.K/; i/� d.S

3
p=q.U /; i/

for each i 2 Z=pZ.

The work of Ni and Wu shows that for 0� i � p� 1 these values may be calculated
by the formula [20, Proposition 1.6]

(2-2) Dp=q.i/D�2maxfVbi=qc;Hb.i�p/=qcg;

where Vj and Hj are sequences of positive integers, depending only on K , which are
nonincreasing and nondecreasing, respectively. These further satisfy H�j D Vj D 0
for j � g.K/, where g.K/ is the genus of K . In fact, it can be shown that Vj DH�j
for all j [21, Proof of Theorem 3]. Using these properties of the Vj and Hj , (2-2)
can be rewritten as

(2-3) Dp=q.i/D�2Vminfbi=qc;d.p�i/=qeg:

Let p=qD Œa0; : : : ; al �� be the continued fraction of p=q with a0 � 1 and ai � 2 for
i � 1. The changemaker theorem we will use is the following.

Algebraic & Geometric Topology, Volume 17 (2017)



Bounds on alternating surgery slopes 2609

Theorem 2.7 (Gibbons [6]) Let K � S3 be a knot and suppose that S3
p=q

.K/

bounds a smooth, negative-definite 4–manifold X with intersection form QX for
some p=q > 0. If the manifold X is sharp, then �QX embeds into Zb2.X/ClC1 as a
p=q–changemaker lattice,

�QX Š LD hw0; : : : ; wli
?
� ZtCsC1;

where w0 satisfies the formula

(2-4) 8Vji j D min
c�w0�a0C2i mod 2a0

c2Char.ZtC1/

kck2� t � 1

for ji j � 1
2
a0 .

Here Char.ZtC1/ denotes the set of all characteristic vectors in ZtC1 , where a charac-
teristic vector x 2 ZtC1 is one with odd coefficients with respect to any orthonormal
basis for ZtC1 .

The equation (2-4) is not explicitly stated by Gibbons. However, Greene shows that it
holds in the case of integer surgeries [11] and it follows from Gibbons’ proof that it
must also hold for noninteger surgeries. Further discussion of this can be found in [15].

2.3 Calculating stable coefficients

We will deduce Theorem 1.5 from Theorem 2.7 by showing that (2-4) determines the
stable coefficients uniquely. The argument is entirely combinatorial and uses only the
properties of the Vi stated in Section 2.2.

Let .Vi /i�0 be the nonincreasing, nonnegative sequence

V0 � V1 � � � � � Vzg�1 > Vzg D VzgC1 D � � � D 0;

for which Vi D 0 if and only if i � zg and Vi � ViC1C 1 for all i . Suppose that there
is �D .�0; : : : ; �t / 2 ZtC1 , with k�k2 D n� 2zg , such that

(2-5) 8Vjkj D min
c���nC2k mod 2n
c2Char.ZtC1/

kck2� t � 1

for jkj � 1
2
n. Possibly after an automorphism of ZtC1 , we may assume that �i � 0

for all i and that the �i form a decreasing sequence

�0 � �1 � � � � � �t � 0:

Observe that (2-5) has three pieces of input data: the sequence .Vi /i�0 and the integers
n and t . Given some choice of .Vi /i�0 , n and t , there is no guarantee that there is
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� � � � � �

:::

Vi

i

� � �

� � �

0 � � � � � �1 zg� 1 zg

V0

2

1

T1D�0‚ …„ ƒ
T2‚ …„ ƒ

T3‚ …„ ƒ
TV0�1‚ …„ ƒ

TV0
Dzg‚ …„ ƒ

„ ƒ‚ …
T2�T1D�1

Figure 1: A graph to show the relationship between the Vi and the Ti . We
have also shown how �0 and �1 occur as the number of Vi equal to one and
two, respectively.

� satisfying (2-5). However, we will show that when there is such a � , it is unique.
Moreover we will see that the coefficients of � satisfying �i > 1 are determined by the
sequence .Vi /i�0 .

Remark 2.8 If �t D 0, then any minimiser in the right-hand side of (2-5) must have
ct D˙1. So we see that �0 D .�0; : : : ; �t�1/ satisfies

8Vjkj D min
c��0�nC2k mod 2n

c2Char.Zt /

kck2� t

for all 0� jkj � 1
2
n. This allows us to assume that �i � 1 for all i .

If we restrict our attention to 0� k � 1
2
n, we find that (2-5) simplifies as follows.

Lemma 2.9 For 0� k � 1
2
n,

8Vk D min
c��D2k�n

c2Char.ZtC1/

kck2� t � 1:

Proof Suppose c 2 Char.ZtC1/ satisfies c � � D 2mn � nC 2k for some m 2 Z.
Consider the vector c0 D c � 2m� . This satisfies

c0 � �D 2k�n� c � � mod 2n
and

kc0k2 D kck2� 4mc � �C 4m2nD kck2� 4m.nm�nC 2k/:

Since we are assuming �n� 2k�n� 0, we have m.nmC2k�n/� 0 for all m 2Z.
Therefore, we have kc0k2 � kck2 . This shows that if c is a minimiser in (2-5) we can
assume it satisfies c � �D 2k�n.
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For m� 1, it will be convenient to consider the quantities

Tm D
ˇ̌
f0� i < zg j 0 < Vi �mg

ˇ̌
:

These are illustrated in Figure 1. We will show how to calculate these in terms of � .
First we need to define the following collection of tuples for each m� 0:

Sm D
˚
˛ 2 ZrC1 W ˛i � 0; 2mD

P
˛i .˛i C 1/

	
:

Lemma 2.10 For 0�m< V0 , we can calculate Tm by

Tm D max
˛2Sm

� �˛

and TV0
satisfies

TV0
D zg D

1

2

tX
iD0

�2i � �i and TV0
� max
˛2SV0

� �˛:

Proof Since the Vk form a decreasing sequence with Vk D 0 if and only if k � zg ,
we necessarily have TV0

D zg . Using Lemma 2.9, we that Vk D 0 if and only if
there is c 2 f˙1gtC1 with c � � D 2k � n. The smallest of value k for which this
is true is k D 1

2

�
n �

Pt
iD0 �i

�
, which is obtained by taking c D f�1gtC1 . Thus

2zg D
Pt
iD0 �

2
i � �i , as required (see [11, Proposition 3.1]).

Now observe that for 0�m< V0 , we have

Tm D zg�minfk W Vk Dmg:

By Lemma 2.9, Vk Dm and 0 � k < 1
2
n implies there is c 2 Char.ZtC1/ such that

kck2 � t � 1D 8m and c � � D 2k � n. If we write the coefficients of c in the form
ci D�.2˛i C 1/, then

Pt
iD0 ˛i .˛i C 1/D 2m and

(2-6) 2k D n�

tX
iD0

�j � 2˛ � �D 2zg� 2˛ � �:

We see that for any ˛ minimising (2-6), we must have ˛ 2 Sm , since it must satisfy
˛i � 0 for all i . Thus we see that

Tm D max
˛2Sm

� �˛

for 0 � m < V0 . The equation (2-6) also shows that there must exist ˛ satisfyingPt
iD0 ˛i .˛i C 1/D 2V0 and ˛ � �D zg . This implies the inequality

TV0
� max
˛2SV0

� �˛;

which completes the proof.
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Remark 2.11 It follows from this lemma that T1D�0 and T2D�0C�1 . In particular
this implies that �1 D T2�T1 . This is illustrated in Figure 1.

We now begin the process of showing how the remaining �i can be recovered from the
sequence .Vi /i�0 . We begin with the simplest case, which is when V0 � 1.

Lemma 2.12 If V0 � 1, then zg � 3 and � takes the form

�D

8̂̂̂<̂
ˆ̂:
.1; 1; : : : ; 1/ if zg D 0;
.2; 1; : : : ; 1/ if zg D 1;
.2; 2; 1; : : : ; 1/ if zg D 2;
.3; 1; : : : ; 1/ if zg D 3:

Proof If V0 D 0, then zg D 0 and Lemma 2.10 implies that
Pt
iD0 �

2
i � �i D 0. This

shows that we have �i D 1 for all 0� i � t .

Suppose now that V0 D 1. By Lemma 2.10, we have

0 < T1 D zg D
1

2

tX
iD0

�2i � �i � max
˛2S1

� �˛:

Since S1 consists of vectors with a single nonzero coordinate, which equals one, we
have max˛2S1

� � ˛ D �0 . Thus we must have �20 � �0 � 2�0 , and hence �0 � 3. If
�0 D 3, then we have

zg D 3C
1

2

tX
iD1

�i .�i � 1/� �0 D 3;

which implies that �i D 1 for 1� i � t and zgD 3. If �0 D 2, then zg � 2 implies that
�1 2 f1; 2g, giving the other two possibilities in the statement of the lemma.

From now on we will suppose that V0 > 1. This allows us to define the quantity

�D min
1�i<V0

fTi �Ti�1g:

Since T1 D �0 and T0 D 0, we must have �� �0 .

Lemma 2.13 If �0 � 5 or
P
�i even �i � 6, then �� 2.

Proof For m< V0 , Lemma 2.10 shows that there is ˛ 2 Sm such that � �˛ D Tm . If
˛l > 0, then consider ˛0 defined by

˛0i D

�
˛i if i ¤ l;
˛i � 1 if i D l:
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By construction, we have ˛02Sm�˛l
and ˛0 ��D˛ ����l DTm��l . As ˛0 ���Tm�˛l

,
we get

(2-7) �l � Tm�Tm�˛l
� ˛l�:

If we have a maximiser ˛ 2 Sm such that � �˛ D Tm and ˛ does not satisfy

(2-8) ˛i �

8̂<̂
:
1
2
.�i � 2/ if �i is even,
1
2
.�i � 3/ if �i > 3 is odd,
1
2
.�i � 1/ if �i 2 f1; 3g;

for all i , then there is l such that �l=˛l < 3. So, by (2-7), we see that �� 2. We will
show that if � satisfies the hypotheses of the lemma, then such a maximiser must exist.

Let c 2 Char.ZtC1/ be such that c � �D n. By (2-5), we have

8V0 � kck
2
� t � 1:

On the other hand, the Cauchy–Schwarz inequality implies that

jc � �j2 D n2 � k�k2kck2 D nkck2;

showing that kck2 � n with equality if and only if c D � . Altogether, this yields

V0 �
1

8
.k�k2� t � 1/D

1

8

tX
iD0

.�2i � 1/;

with equality if and only if � 2 Char.ZtC1/. We will let N denote the quantity

N D

�
1

8

tX
iD0

.�2i � 1/

�
� V0:

Now take ˛ 2 Sm , which satisfies the conditions given by (2-8). It follows that

(2-9) mD
1

2

tX
iD0

˛i .˛i C 1/

�

X
�i>3 odd

.�i � 3/.�i � 1/

8
C

X
�i even

�i .�i � 2/

8
C

X
�i2f1;3g

�2i � 1

8

D

tX
iD0

�2i � 1

8
C

X
�i>3 odd

1� �i

2
C

X
�i even

1� 2�i

8
:
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If �0 is odd and �0 � 5, then (2-9) shows that

m�

tX
iD0

�2i � 1

8
� 2 < N � 1

In particular, there is no ˇ 2 SN�1 satisfying (2-8). Since N � 1 < V0 , there is
ˇ 2 SN�1 with ˇ ��D TN�1 and so (2-7) implies that �� 2. If

P
�i even �i � 6, then

we must have
P
�i even.2�i � 1/�

3
2

P
�i even �i � 9. Therefore, (2-9) shows that

m<

tX
iD0

�2i � 1

8
� 1 < N:

In particular, there is no ˇ 2 SN satisfying (2-7). Since we are assuming there is an
even �i , we have N < V0 and so there exists ˇ 2 SN such that ˇ � � D TN and so
(2-7) implies that �� 2.

If � > 2, then � must fall into one of a small number of cases.

Lemma 2.14 If �>2 then either T1D 3 or T1D 4. If T1D 3, then � takes the form

�D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.3; : : : ; 3„ ƒ‚ …
d

; 1; : : : ; 1/ if zg D 3d;

.3; : : : ; 3„ ƒ‚ …
d

; 2; 1; : : : ; 1/ if zg D 3d C 1;

.3; : : : ; 3„ ƒ‚ …
d

; 2; 2; 1; : : : ; 1/ if zg D 3d C 2:

If T1 D 4, then � must take the form

�D .4; 3; : : : ; 3„ ƒ‚ …
d

; 1; : : : ; 1/; where zg D 3d C 6:

Proof If � > 2, then Lemma 2.13 and the observation that � � T1 D �0 , we must
have �0 2 f3; 4g. If �0 D 3, then Lemma 2.13 implies that we have �i D 2 for at
most two values i . If �0 D 4, then Lemma 2.13 implies that �i is odd for all i � 1.
It is then easy to deduce that � must take the required form by using the formula
zg D 1

2

Pt
iD0 �

2
i � �i .

Remark 2.15 Although it suffices for our purposes, Lemma 2.14 does not quite tell
the full story. If � D .4; 3; : : : ; 3; 1; : : : ; 1/, then one can show that we have � D 1.
This shows that the only cases with �> 2 are those given in Lemma 2.14 with �0D 3.
For these examples we do have �D 3.
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Now we show that the sequence .Vi /i�0 determines � when �� 2.

Lemma 2.16 If �� 2, then the vector � satisfying (2-5) is unique.

Proof We will show that can calculate the coefficients of � iteratively from the values
T0<T1< � � �<TV0

Dzg . Using the Ti , we will construct a sequence s.0/, s.1/; : : : ; s.N/ ,
which we will show to satisfy

s.k/ D .�0; : : : ; �k; 0; : : : ; 0/

for each k �N . The integer N will be large enough that S .N/ satisfies

max
˛2St

s.N/ �˛ D Tt

for all t < V0 . We will show we can deduce �i for any i >N by considering TV0
D zg .

Start by setting
s.0/ D .T1; 0; : : : ; 0/D .�0; 0; : : : ; 0/:

Now suppose that for l � 0 we have s.l/i D �i for all i � l . Suppose there is t < V0�1
minimal such that M Dmax˛2St

s.l/ �˛ < Tt .

Claim 1 We have �lC1 D Tt �Tt�1 .

Proof of Claim 1 Let ˛ 2 St�1 be such that s.l/ � ˛ D Tt�1 . Such an ˛ must also
satisfy � �˛ D Tt�1 . In particular, ˛i D 0 for i > l .

Now we consider ˛0 2 St defined by

˛0i D

�
˛i if i ¤ l C 1;
1 if i D l C 1:

We have ˛0 � �D Tt�1C �lC1 � Tt . This implies that

(2-10) �lC1 � Tt �Tt�1:

Let ˇ 2 St be such that � �ˇ D Tt . Since M < Tt , we may assume ˇlC1 > 0. Thus
we can define ˇ0 by

ˇ0i D

�
ˇi if i ¤ l;
ˇi � 1 if i D l C 1:

We have ˇ0 2 St�ˇl
. Therefore we obtain

(2-11) Tt�1 � Tt�ˇl
� � �ˇ0 D Tt � �lC1:

Combining (2-10) and (2-11) gives �lC1 D Tt �Tt�1 , as claimed.
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Thus if we define s.lC1/ by

s
.lC1/
i D

�
s
.l/
i if i ¤ l C 1;
Tt �Tt�1 if i D l C 1;

we see that s.lC1/ satisfies

s.lC1/ D .�0; : : : ; �lC1; 0; : : : ; 0/

and
s.lC1/ �˛0 D max

˛2St

˛ � s.lC1/ D Tt ;

where ˛0 2 St is as defined in the proof of Claim 1

Proceeding in this way, we eventually obtain s.N/ such that Tt Dmax˛2St
˛ � s.N/ for

all 0� t < V0 and
s.N/ D .�0; : : : ; �N ; 0; : : : ; 0/:

Claim 2 We have �l � �� 2 for all l > N .

Proof of Claim 2 Let � < V0�1 be such that T�C1�T� D �. There is ˛ 2 S� such
that ˛ � �D ˛ � s.N/ D T� . Such an ˛ must satisfy ˛l D 0 for l > N . Let ˛0 2 S�C1
be defined by

˛0i D

�
˛i if i ¤ l;
1 if i D l:

We have
�l D ˛

0
� ��T� � T�C1�T� D �� 2;

as required.

It remains to determine how many values of i > N satisfy �i D 2. Since we have the
formula TV0

D
1
2

Pt
iD0 �i .�i � 1/, we see that there are

TV0
�
1

2

tX
iD0

s
.N/
i .s

.N/
i � 1/

values of i > N with �i D 2. Since �i D 1 for all remaining values of i , this shows
that � is determined by the Ti .

The proof of Lemma 2.16 combined with Lemmas 2.12 and 2.14 provides an algorithm
for calculating � . This shows that � is the unique vector with �0 � �1 � � � � � �t > 0
and k�k2Dn satisfying (2-5). Moreover, if we take m to be maximal such that �m>1,
then this algorithm calculates the tuple .�0; : : : ; �m/ using only the sequence .Vi /i�0 .

This allows us to deduce Theorem 1.5 and Corollary 1.7 from Theorem 2.7.
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Proof of Theorem 1.5 Theorem 2.7 shows that the intersection form QX takes the
form of a p=q–changemaker lattice,

�QX Š LD hw0; : : : ; wli
?
� ZtCsC1;

where the sequence .Vi /i�0 , which is an invariant of K , can be calculated from
w0 D �tft C� � �C �1f1C e0 by the formula (2-4). Thus, w0 satisfies (2-5) and using
the algorithm provided by Lemma 2.12, Lemma 2.14 and the proof of Lemma 2.16, we
see that the tuple .�m; : : : ; �t /, where m is minimal such that �m > 1, is independent
of t and kw0k2 D dp=qe. By definition, .�m; : : : ; �t / are the stable coefficients of L
and it follows that they are independent of b2.X/ and p=q .

Proof of Corollary 1.7 This follows combining Theorem 1.5 with Remark 2.6.
Theorem 1.5 shows that �QX and �QX 0 are both p=q–changemaker lattices with
the same stable coefficients. Remark 2.6 then shows that QX 0 ŠQX ˚ .�Zk/. The
isomorphism of intersection forms QX ˚ .�Zk/ŠQX#kCP2 is clear.

2.4 L–space knots

Now we specialise to the case of L–space surgeries. A knot K is said to be an L–space
knot if S3

p=q
.K/ is an L–space for some p=q 2Q. The knot Floer homology of an

L–space knot is known to be determined by its Alexander polynomial, which can be
written in the form

�K.t/D a0

gX
iD1

ai .t
i
C t�i /;

where g D g.K/, ag D 1 and the nonzero values of ai alternate in sign and assume
values in f˙1g [23; 24]. Given an Alexander polynomial in this form, we can compute
its torsion coefficients by the formula

ti .K/D
X
j�1

jaji jCj :

When K is an L–space knot, the Vi appearing in (2-3) satisfy Vi D ti .K/ for i �0 [26].
Thus if S3

p=q
.K/ is an L–space bounding a negative-definite sharp 4–manifold X , then

Theorem 1.5 shows that the intersection form is isomorphic to a p=q–changemaker
lattice L, where the stable coefficients, .�r ; : : : ; �m/, are determined by the torsion
coefficients. Since ti .K/ D 0 if and only if i � g.K/, Lemma 2.10 shows that the
genus can be computed by the formula

(2-12) g.K/D
1

2

rX
iDm

�i .�i � 1/;

which was first proven by Greene [11, Proposition 3.1].
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Remark 2.17 Lemma 2.10 shows that �r and �r�1 have particularly simple interpre-
tations in terms of torsion coefficients:

�r D #f0� i < g j ti .K/D 1g and �r�1 D #f0� i < g j ti .K/D 2g:

As in the proof of Lemma 2.16, the remaining stable coefficients can be also be
computed from the torsion coefficients. However, the relationship is more complicated.

3 Graph lattices and obtuse superbases

In this section, we gather together some lattice-theoretic concepts and properties that
we will need.

3.1 Graph lattices

We recall the definition of a graph lattice and state the results that we will require for
this paper. All statements in this section can be found with proof in [17].

Let G D .V;E/ be a finite, connected, undirected graph with no self-loops. For a
pair of disjoint subsets R; S � V , let E.R; S/ be the set of edges between R and S .
Define e.R; S/D jE.R; S/j. We will use the notation d.R/D e.R; V nR/.

Let xƒ.G/ be the free abelian group generated by v 2 V . Define a symmetric bilinear
form on xƒ.G/ by

v �w D

�
d.v/ if v D w;
�e.v; w/ if v ¤ w:

In this section we will use the notation ŒR�D
P
v2R v , for R�V . The above definition

gives

(3-1) v � ŒR�D

�
�e.v;R/ if v …R;
e.v; V nR/ if v 2R:

From this it follows that ŒV � � x D 0 for all x 2 xƒ.G/. We define the graph lattice of
G to be

ƒ.G/ WD
xƒ.G/

ZŒV �
:

The bilinear form on xƒ.G/ descends to ƒ.G/. Since we have assumed that G is
connected, the pairing on ƒ.G/ is positive-definite. This makes ƒ.G/ into an integral
lattice. Henceforth, we will abuse notation by using v to denote its image in ƒ.G/.

Recall that a vector z in a lattice is irreducible if it cannot be written in the form
z D xCy for nonzero x and y with x �y � 0. The irreducible vectors in ƒ.G/ can
be characterised in terms of the graph G .
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Lemma 3.1 The vector x 2ƒ.G/ n f0g is irreducible if and only if x D ŒR� for some
R � V such that R and V nR induce connected subgraphs of G .

A connected graph is said to be 2–connected if it cannot be disconnected by deleting
a vertex. This property is equivalent to ƒ.G/ being indecomposable, that is, ƒ.G/
cannot be written as the orthogonal direct sum ƒ.G/ D L1˚L2 with L1 and L2
nonzero sublattices.

Lemma 3.2 The following are equivalent:

(i) The graph G is 2–connected.

(ii) Every vertex v 2 V is irreducible.

(iii) The lattice ƒ.G/ is indecomposable.

Given a graph lattice of some graph G , the following lemma will be useful for identi-
fying other graphs with isomorphic graph lattices.

Lemma 3.3 Suppose that G is 2–connected. Let v be a vertex such that we can
find x; y 2 ƒ.G/, with v D x C y and x � y D �1. Then there is a cut edge e in
G nfvg and, if R and S are the vertices of the two components of .G nfvg/nfeg, then
fx; ygD fŒR�Cv; ŒS�Cvg. Let u1 and u2 be the endpoints of e . These are the unique
vertices u1; u2 ¤ v , with x �u1 D y �u2 D 1. Furthermore, any vertex w … fv; u1; u2g
satisfies w � x;w �y � 0.

3.2 Obtuse superbases

Given a positive definite integral lattice L of rank r , we say that L admits an obtuse
superbase if it contains a set B Dfv0; : : : ; vrg such that v1; : : : ; vr form a basis for L,
v0 C � � � C vr D 0 and vi � vj � 0 for all 0 � i ¤ j � r . We will call the set B a
an obtuse superbase for L. This terminology is taken from the work of Conway and
Sloane [3].

Given an obtuse superbase B D fv0; : : : ; vrg for L, we can construct a graph GB by
taking vertex set B with jvi �vj j edges between vertices vi and vj for i ¤ j . With this
construction in mind, we will frequently refer to elements of a given obtuse superbase
as vertices of L.

Proposition 3.4 The graph GB is connected and L is isomorphic to ƒ.GB/.
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v

u1 u2

G1 G2

u1Cu2

G1 G2

xy

Figure 2: The graphs GB and GB0 corresponding to the obtuse superbases
appearing in Lemma 3.5

Proof First we show that GB is connected. Let R �B be the vertices of a nonempty
connected component of GB . We see that the vector ŒR�D

P
x2R x satisfies ŒR��vi D0

for all 0� i � r (see (3-1)). Since L is positive-definite, this implies that ŒR�D 0. By
definition, v1; : : : ; vr must be linearly independent. It follows that RD B and hence
GB is connected, as required.

To show that ƒ.GB/ is isomorphic to L, take the linear map which takes vertices to
the corresponding vectors in L. Since v0C � � �C vr D 0, we have

d.vk/D�
X
i¤k

vk � vi D kvkk
2;

and by construction we have e.vi ; vj /D�vi � vj for i ¤ j . This shows that this map
is the required isomorphism.

For any given lattice there may be many choices of obtuse superbase. The following
lemma shows one way to convert one obtuse superbase into another.

Lemma 3.5 Let L be an indecomposable lattice with an obtuse superbase B . Suppose
that we have v 2B which can be written as vD xCy , where x; y 2L and x �yD�1.
There are unique u1; u2 2 B with u1 � x > 0 and u2 � y > 0 and the set B 0 D
.B n fv; u1; u2g/[fx; y; u1Cu2g is also an obtuse superbase for L.

Proof Since L is indecomposable, Lemma 3.2 shows that the graph GB is 2–
connected. Thus we may apply Lemma 3.3, which shows that there are disjoint
connected subgraphs G1 and G2 of GB and vertices u1 and u2 such that x D
v C u1 C

P
z2G1

z and y D v C u2 C
P
z2G2

, with a unique edge between u1
and u2 which is a cut-edge in GB n fvg. It is straightforward to verify that B 0 D
.B n fv; u1; u2g/[ fx; y; u1C u2g is an obtuse superbase for L. An illustration of
how the graph GB 0 is obtained from GB is given in Figure 2.
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4 Alternating surgeries

In this section, we will prove our main results.

4.1 The Goeritz form

A diagram D of a link L divides the plane into connected regions. We may colour
these regions black and white in a chessboard fashion. This colouring can be done
in two different ways. Each of the possible colourings gives an incidence number,
�.c/ 2 f˙1g, at each crossing c of D , as shown in Figure 3. We construct a planar
graph, �D , by drawing a vertex in each white region and an edge e for every crossing
c between the two white regions it joins. We define an incidence number on each edge
by �.e/D�.c/. We call this the white graph corresponding to D . This gives rise to a
Goeritz matrix, GD D .Gij /, defined by labelling the vertices of �D by v1; : : : ; vrC1
and, for 1� i; j � r , setting

gij D
X

e2E.vi ;vj /

�.e/

for i ¤ j and
gi i D�

X
e2E.vi ;�Dnvi /

�.e/

otherwise [13, Chapter 9].

Now suppose that L is an alternating, nonsplit link. If D is any alternating diagram,
then we may fix the colouring so that �.c/D�1 for all crossings. In this case, GD
defines a positive-definite bilinear form. This in turn gives a lattice, ƒD , which we will
refer to as the white lattice of D . Observe that if D is reduced (ie contains no nugatory
crossings), then �D contains no self-loops or cut-edges and ƒD is isomorphic to the
graph lattice ƒ.�D/.

Ozsváth and Szabó have shown that the Heegaard Floer homology d –invariants of the
branched double cover †.L/ are determined by ƒD [25].

�DC1 �D�1

Figure 3: The incidence number of a crossing
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Theorem 4.1 [25] Let L be a nonsplit alternating link with a reduced alternating
diagram D . The double branched cover †.L/ is an L–space which bounds a sim-
ply connected negative-definite sharp 4–manifold with intersection form isomorphic
to �ƒD .

4.2 Changemaker lattices admitting obtuse superbases

We will establish some restrictions on changemaker lattice which admits an obtuse
superbase. The following proposition, which combines results from [17; 16], will allow
us to restrict our attention to integer changemaker lattices.

Proposition 4.2 Suppose that for some p=q D n� r=q with q > r � 1, the change-
maker lattice

Lp=q D hw0; : : : ; wli
?
� ZtCsC1;

where w0D e0C�1f1C� � �C�tft , admits an obtuse superbase. Then the changemaker
lattices

Ln D hw0i
?
� ZtC1 D he0; f1; : : : ; ft i;

Ln�1 D hw0� e0i
?
� Zt D hf1; : : : ; ft i;

both admit obtuse superbases. Furthermore, if �t > 1, then we can assume the obtuse
superbase for Ln�1 contains a vector x with x �f1 D�2.

Proof Since Lp=q admits an obtuse superbase, it follows from [16, Proposition 7.7]
that the lattice

Ln�1=2 D hw0; e1� e0i
?
� ZtC2 D he1; e0; f1; : : : ; ft i

also admits an obtuse superbase, which we will call B . The results of [17] show that
there are precisely two vertices v and w in B with v � e0; w � e0 ¤ 0 and they satisfy
v �w � �1. Moreover, the results of the same paper show that we can assume that
v D�f1C e0C e1 and w � e0 Dw � e1 D�1, and if there is k such that �k > 1, then
we can assume that w �f1 D�1.

Consider the set B 0DB nfv;wg[fvCwg. Since .vCw/ �e0D .vCw/ �e1D 0, we
have B 0 � Ln�1 . Since B spans Ln�1=2 , we see that B 0 must span Ln�1 . Since B
is an obtuse superbase for Ln�1=2 , it follows that B 0 is an obtuse superbase for Ln�1 ,
where the graph GB 0 is obtained from GB by contracting the edge between v and w .
Furthermore, if there is �k >1, then xD vCw is the required vector with x �f1D�2.

Now consider the set B 00 D B n fv;wg [ fv � e1; w C e1g. Since every element
x 2 B n fv;wg has x � e1 D 0, we see that every x 2 B 00 satisfies x � e1 D 0, so we
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have B 00 � he0; f1; : : : ; ft i and hence B 00 � LnC1 . Since B is an obtuse superbase
for Ln�1=2 and v �w��1, it follows that B 00 is an obtuse superbase for LnC1 , where
the graph GB 00 is obtained from GB by deleting an edge between v and w .

The next lemma gives bounds on when a changemaker lattice can be decomposable.

Lemma 4.3 [9, Lemma 5.1] Suppose that LD hw0i? �Zt is a changemaker lattice,
where w0D �1f1C� � �C�tft with �i � 1 for all i and �t >1 . Let m� t be minimal
such that �m > 1. If L is decomposable, then �m Dm� 1.

We get a similar bound on a changemaker lattice admitting an obtuse superbase in terms
of its stable coefficients. This will allow us to prove the upper bound in Theorem 1.2.

Lemma 4.4 Suppose that L D hw0i? � Zt is a changemaker lattice, where w0 D
�1f1C � � � C �tft with �i � 1 for all i . If the stable coefficients .�m; : : : ; �t / are a
nonempty tuple and L admits an obtuse superbase, then �m �m� 2 and

kw0k
2
� 1C �mC

tX
iDm

�2i :

Proof If L is decomposable, then Lemma 4.3 shows that the bound is automatically
satisfied. We will assume from now on that L is indecomposable.

For 2� i �m� 1, let vi be the vector vi D ei � ei�1 . Since �i D �i�1 D 1 for i in
this range, we have vi 2 L. We will use Lemma 3.5 to show that L admits an obtuse
superbase containing the vectors v2; : : : ; vm�1 .

Let B be an obtuse superbase and let k �m� 1, be minimal such that vk is not in B .
Suppose first that k D 2. Since v2 is irreducible, Lemma 3.1 implies that it can be
written as a sum of elements of B . Hence, there is a vector u 2 B with u � v2 > 0.
By Lemma 3.2, the indecomposability of L implies that u is irreducible. In turn, this
implies that .u� v2/ � v2 D u � v2 � 2D �1. Therefore by applying Lemma 3.5, we
see that there is an obtuse superbase containing v2 .

Now we suppose that k > 2. Since vk is irreducible, Lemma 3.1 shows that it can be
written as a sum of elements of B . Since vk�1 is a vertex of B and vk � vk�1 D�1,
there is u 2 B with u � vk D�u � vk�1 D 1. This must satisfy .u� vk/ � vk D�1. By
Lemma 3.5, this implies we can find an obtuse superbase containing vk . Moreover,
since .u�vk/�vj �0 and vk �vj �0 for all 2�j <k , we can assume that v2; : : : ; vk�1
are also in this obtuse superbase. Thus, proceeding inductively, we see that we can
assume that v2; : : : ; vm�1 are all contained in the obtuse superbase B .
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Suppose that �m D m � b for some m � 2 � b � 2. Consider the vector vm D
�emC em�1C � � �C eb 2 L. Since this is irreducible, Lemma 3.1 shows that we may
write it as a sum of vertices vmD

P
x2R x for some subset R�B . Since vm �vbD�1,

we have vb …R and there must exist u 2R with u �vb D�1 and u �vmD 1. However,
as kvbk2 D 2, there are at most two vectors in B which pair nontrivially with vb . If
b � 3 then we have vb�1 � vb D vbC1 � vb D�1 and vb�1 � vm D vbC1 � vm D 0. This
implies that the required u 2 B cannot exist if b � 3. Thus we must have b D 2. This
shows that �m �m� 2, as required. Since �i D 1 for i < m, we have

kw0k
2
Dm� 1C

tX
iDm

�2i � 1C �mC

tX
iDm

�2i ;

which is the required bound. This completes the proof.

This allows us to prove the inequality which will give Theorem 1.1.

Lemma 4.5 Suppose that LD h�1f1C � � �C �tft i? � Zt is a changemaker lattice
which admits an obtuse superbase and �t > 1. Then

tX
iD1

�2i � 2

tX
iD1

�i .�i � 1/C 3:

Proof Let m be minimal such that �m > 1. Since L admits an obtuse superbase,
Lemma 4.4 shows that we have

tX
iD1

�2i �

tX
iDm

�2i C �mC 1:

Observe that if �i � 2, then �2i � 2�i .�i �1/. Since �m � 2, we also have �2mC�m �
2�m.�m� 1/C 2. Combining these inequalities, we obtain

tX
iD1

�2i �

tX
iDm

�2i C �mC 1� 2

tX
iDm

�i .�i � 1/C 3D 2

tX
iD1

�i .�i � 1/C 3;

which is the required inequality.

4.3 The main results

Suppose that K is an nontrivial knot such that S3
p=q

.K/ is an alternating surgery, that
is, S3

p=q
.K/ D †.L/ for an alternating knot or link L. Since a nontrivial L–space

knot cannot admit both positive and negative L–space surgeries and

�S3r .K/D S
3
�r.K/D†.L/;
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we may assume that p=q > 0 and that all other alternating surgeries on K arise from
positive slopes.

Let D be a reduced alternating diagram of L. By Theorems 1.5 and 4.1, the lattice
ƒD is isomorphic to a p=q–changemaker lattice,

ƒp=q D hw0; : : : ; wli
?
� ZrkƒDClC1;

whose stable coefficients are determined by the Alexander polynomial of K .

Since ƒD is the graph lattice associated to the white graph of D , the lattice ƒp=q
admits an obtuse superbase. We write w0 in the form

w0 D

�
e0C �1f1C � � �C �tft if q > 1;
�1f1C � � �C �tft if q D 1:

Since D is reduced, �D contains no cut-edges. This implies that ƒD contains no
vectors of norm 1 and so �i � 1 for all i . As we are assuming that g.K/ > 0, (2-12)
implies that �t > 1. So the stable coefficients form a nonempty tuple, .�m; : : : ; �t /.
This allows us to define

N D �mC

tX
iDm

�2i ;

which will be the integer appearing in the statement of Theorem 1.2.

Proof of Theorems 1.1 and 1.2 Proposition 4.2 implies that the dp=qe–changemaker
lattice

ƒ0 D hw0i
?
�

�
ZtC1 if q > 1;
Zt if q D 1;

also admits an obtuse superbase. As shown by (2-12), we have

2g.K/D

tX
iD1

�i .�i � 1/:

Therefore, Lemma 4.5 gives the boundl
p

q

m
D kw0k

2
� 4g.K/C 3:

This proves Theorem 1.1. From Lemma 4.4, we get the upper bound

p

q
� kw0k

2
� 1C �mC

tX
iDm

�2i DN C 1:
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Since .�1; : : : ; �t / satisfies the changemaker condition, we must have

�m � 1C

m�1X
iD1

�i D 1C

m�1X
iD1

�2i ;

where the second inequality holds since �i D 1 for 1� i < m. Thus we obtain

p

q
�

tX
iD1

�2i �

tX
iDm

�2i C �m� 1DN � 1:

This completes the proof of Theorem 1.2.

The lower bound N �1 appearing in this proof arises from the fact that there can be no
r –changemaker lattice for any r < N � 1 with stable coefficients .�m; : : : ; �t /. Thus
it follows from Theorem 1.5 that if S3r .K/ bounds a negative-definite sharp manifold
for r > 0, then r �N � 1. This justifies the claim made in Remark 1.6.

Now it remains to prove Theorem 1.3.

Proof of Theorem 1.3 Assume that S3r .K/ is an alternating surgery for r 2fr1; N; r2g
with N � 1 � r1 < N < r2 < N C 1. Let S3ri

.K/ D †.Li / for i D 1; 2 and
S3N .K/D†.L/ for L and Li alternating. For iD 1; 2, let Di be a reduced alternating
diagram for Li and let D be a reduced alternating diagram for L. Theorem 1.5 shows
that there is w0D�tftC� � �C�2f2 such that ƒD1

is isomorphic to the r1–changemaker
lattice

ƒr1
D hw0C e0; w1; : : : ; wl1i

?
� hf2; � � � ; ft ; e0; : : : ; es1i;

ƒD2
is isomorphic to the r2–changemaker lattice

ƒr2
D hw0Cf1C e0; w1; : : : ; wl2i

?
� hf1; f2; � � � ; ft ; e0; : : : ; es2i;

and ƒD is isomorphic the N –changemaker lattice

ƒN D hw0i
?
� hf1; : : : ; ft i:

Since ƒr2
admits an obtuse superbase, Proposition 4.2 implies that ƒN admits an

obtuse superbase containing a vertex v with v �f1 D�2. Since ƒr1
is a changemaker

lattice, .�2; : : : ; �t / must satisfy the changemaker condition. Therefore, if g > 1 is
minimal such that v �fg �0, then Proposition 2.2 implies that there is A�f2; : : : ; g�1g
with �g � 1D

P
i2A �i . If we set z D fg � f1�

P
i2A fi , we have z 2ƒN and we
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can compute

.v� z/ � z D v �fg � 1C�.v �f1C 1/�
X
i2A

.v �fi C 1/

� v �fg � v �f1� 2D v �fg � 0:

Since z ¤ v , this shows that v is reducible. Thus Lemma 3.2 implies that ƒN is
decomposable and that if ƒN is isomorphic to a graph lattice ƒ.G/ for any connected
graph G , then G contains a cut vertex. This shows that the white graph �D contains a
cut vertex. Since, we have assumed that D is reduced, this implies that LD L1 #L2
for nontrivial L1 and L2 . Therefore S3N .K/D †.L1/ #†.L2/ is reducible. Using
work of Hoffman [12], Matignon and Sayari [14] showed that if S3N .K/ is a reducible
surgery, then either N � 2g.K/� 1 or K is a cable knot. Since we have

N > 2g.K/D

tX
iD1

�i .�i � 1/;

it follows that K is cable knot. This completes the proof of Theorem 1.3.

5 Examples and questions

We give some examples relating to alternating surgeries and sharp 4–manifolds to
illustrate the results of this paper. We then conclude the paper by discussing some
questions that arise naturally from this work.

5.1 Alternating surgeries via the Montesinos trick

We will now describe a construction for building knots admitting alternating surgeries.
As far as the author is aware, this construction accounts for all known examples of
alternating surgeries.

An almost-alternating diagram D is one which can be obtained by a crossing change
from an alternating diagram. We call a crossing which can be changed to obtain an
alternating diagram a dealternating crossing. Now let D be an almost-alternating
diagram of the unknot with a dealternating crossing c and let B be a small ball
containing c . Since the double cover of S3 branched over the unknot is S3 , the ball B
lifts to a solid torus T � S3 when we take the double cover of S3 branched over D .
Let K �S3 be the knot given by the core of T . If D0 is obtained from D by replacing
c with some other rational tangle, then the Montesinos trick shows that †.D0/ is
obtained by surgery on K [18]. Since we may perform tangle replacements such that
the resulting diagram is alternating, we see that K admits alternating surgeries. If
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we take D0 to be the alternating diagram obtained by changing c , then the resulting
surgery is half-integral:

S3nC1=2.K/D†.D
0/

for some n 2 Z. By reflecting D , if necessary, we may assume that n is positive. It
can be shown (eg [16, Proposition 5.4]) there are tangle replacements showing that
S3r .K/ is an alternating surgery for all r in the range n� r � nC 1.

Remark 5.1 It follows from the work of Watson that for all r � n, the manifold
S3r .K/ is the double branched cover of a quasi-alternating link L [28]. However,
Theorem 1.2 shows that when K is nontrivial L can only be alternating for r � nC 2.
Thus we see that almost-alternating diagrams of the unknot gives rise to infinite families
of nonalternating quasi-alternating knots and links.

Remark 5.2 It follows from Theorem 1.3 that if K is not a cable knot or the unknot,
then K can admit at most one other alternating surgery with r D nC 2 or r D n� 1.
If one uses the generalisation of Theorem 1.3 asserted in Remark 1.4, then we see that
actually neither of these possibilities can arise and that S3r .K/ is an alternating surgery
if and only if n� r � nC 1.

As an example, we see what the results of this paper say about alternating surgeries on
the .�2; 3; 7/–pretzel knot and describe how they arise through the construction given
in this section.

Example 5.3 Let K denote the .�2; 3; 7/–pretzel knot. It is well known that K
admits two lens space surgeries [5]. This implies that K is an L–space knot and in
particular that it has alternating surgeries. The Alexander polynomial is

�K.t/D t
5
C t�5� .t4C t�4/C t2C t�2� .t1C t�1/C 1:

The corresponding nonzero torsion coefficients are t0 D t1 D 2 and t2 D t3 D t4 D 1.
From Lemma 2.13 we can deduce that the stable coefficients of the corresponding
changemaker vector are .2; 2; 3/. If we apply Theorem 1.2 to K , then integer N we
obtain is N D 32C 22C 22C 2D 19. Therefore, if S3r .K/ is an alternating surgery,
then 18� r � 20.

Since the changemaker lattice

LD h3f6C 2f5C 2f4Cf3Cf2Cf1i
?

does not admit an obtuse superbase, we see that S3r .K/ cannot be an alternating surgery
for 19 < r � 20.
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Figure 4: A diagram of 817 with its unknotting crossing circled. For each r
in the range 18� r � 19 , r –surgery on the .�2; 3; 7/–pretzel knot yields the
branched double cover of an alternating knot or link obtained by replacing the
unknotting crossing in 817 by some rational tangle. Note that both resolutions
of the unknotting crossing give a 2–bridge knot or link. The two resolutions
correspond to the cases r D 18 and 19 .

In fact, K arises through the construction given in Section 5.1, and for each r in
18 � r � 19, S3r .K/ branches over an alternating knot or link obtained by tangle
replacement on the knot 817 , as shown in Figure 4.

5.2 Some knots with no alternating surgeries

We use the results of this paper to exhibit two examples of L–space knots which do
not admit any alternating surgeries. Although both are cables of the trefoil, they do not
admit alternating surgeries for different reasons: in one case, the cabling slope is “too
large” and in the other it is “too small”.

Example 5.4 Let K be the .2; 15/–cable of T2;3 . Since

S330.K/D S
3
15=2.T3;2/ #L.2; 1/

is an L–space, K is an L–space knot. We will show that this does not admit any
alternating surgeries. The Alexander polynomial of K is given by

�K.t/D t
9
Ct�9�.t8Ct�8/Ct5Ct�5�.t4Ct�4/Ct3Ct�3�.t2Ct�2/CtCt�1�1:

By the observations of Remark 2.17 and (2-12), we see that the stable coefficients given
by K must be .2; 2; 2; 4/. Thus the quantity N in Theorem 1.2 is given by N D 30.
Combining this with Proposition 4.2, we see that to verify that K has no alternating
surgeries we need only check that none of the three changemaker lattices

L29 D h4e0C 2e1C 2e2C 2e3C e4i
?;

L30 D h4e0C 2e1C 2e2C 2e3C e4C e5i
?;

L31 D h4e0C 2e1C 2e2C 2e3C e4C e5C e6i
?;
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admit obtuse superbases. Since this can be verified relatively easily, for example by
using that in each case there are only a small number of irreducible vectors v with
v � e0 ¤ 0, we see that K does not admit any alternating surgeries.

Example 5.5 Let K be the .2; 3/–cable of T2;3 . We will show that this is an L–space
knot not admitting any alternating surgeries. The Alexander polynomial of K is

�K.t/D t
3
� t2C 1� t�2C t�3:

Observe that this is the same as the Alexander polynomial for the torus knot T3;4 . If
S3r .K/D†.L/ were an alternating surgery, then for any reduced alternating diagram
D of L, the white lattice ƒD would be isomorphic to an r –changemaker lattice with
stable coefficients the tuple .3/. It follows that we must have 11 � r � 13. Since
S3r .T4;3/ is an alternating surgery for any r in this range, we must have ƒD ŠƒD0 ,
where D0 and is any reduced alternating diagram for an alternating knot or link L0

such that †.L0/ D S3r .T4;3/. Since L and L0 are alternating, this isomorphism
of white lattices implies that L and L0 must be mutants of one another and that
†.L/ D †.L0/ D S3r .T4;3/ [8]. Surgery on a torus knot is always a small Seifert
fibred space [19], but S3r .K/ is a small Seifert fibred space only if r takes the form
r D 6˙ 1=q [7]. Thus K admits no alternating surgeries.

5.3 Surgeries bounding sharp 4–manifold

It seems natural to wonder what we can say about the set of positive surgery slopes for
which a given knot bounds a negative-definite sharp manifold. It can be shown that if
it is nonempty then this set is an unbounded interval.

Theorem 5.6 [15, Theorem 1.2] Let K be a knot in S3 . If S3p=q.K/ bounds a
sharp negative-definite 4–manifold for some p=q > 0, then S3

p0=q0
.K/ bounds a sharp

negative-definite 4–manifold for all p0=q0 � p=q .

This allows us to characterise the set of all such slopes for torus knots admitting positive
L–space surgeries.

Proposition 5.7 For r; s >1 and p=q >0, the manifold S3
p=q

.Tr;s/ bounds a negative-
definite sharp 4–manifold if and only if p=q � rs� 1.

Proof Since S3rs�1.Tr;s/ is a lens space [19], Theorem 5.6 shows that S3p=q.Tr;s/
bounds a negative-definite sharp 4–manifold for any p=q � rs � 1. To obtain the
converse, observe that S3rsC1.Tr;s/ is also a lens space and hence also an alternating
surgery. Thus, for K D Tr;s , we see that the integer N in Theorem 1.2 is N D rs .
Thus Remark 1.6 gives the desired lower bound.
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There are also examples of L–space knots for which no such slopes exist.

Example 5.8 Let K be the .2; 5/–cable of T2;3 . We will show that K is an L–space
knot such that S3r .K/ cannot bound a sharp negative-definite 4–manifold for any
r > 0. Since S310.K/D S

3
5=2
.T3;2/ #L.2; 1/ is an L–space, K is an L–space knot.

To show that S3r .K/ cannot bound a sharp 4–manifold, we show there is no vector
satisfying (2-4). The Alexander polynomial of K is

�K.t/D t
4
� t3C 1� t�3C t�4;

which has nonzero torsion coefficients t0.K/D t1.K/D t2.K/D t3.K/D 1. Thus,
by Remark 2.17, we can assume that the first coordinate of any vector satisfying
(2-4) is �0 D 4. However this contradicts (2-12), which implies that we must have
�0.�0� 1/� 2g.K/D 8.

5.4 Further questions

Given the results of this paper, it is natural to wonder how the set of knots admitting
alternating surgeries are contained within the set of all L–space knots. For the purposes
of this discussion we define several classes of L–space knots. We will restrict our
attention to those admitting positive L–space surgeries. We say that S3r .K/ is a quasi-
alternating surgery if it is the double branched cover of a quasi-alternating knot or
link.

LD fK W S3r .K/ is an L–space for some r > 0g;

AD fK W S3r .K/ is an alternating surgery for some r > 0g;

DD fK WK is the double branched cover of an unknotting arc in an
alternating diagramg;

QAD fK W S3r .K/ is a quasi-alternating surgery for some r > 0g:

Since the double branched cover of a quasi-alternating knot is an L–space and any
alternating link is quasi-alternating, these sets satisfy the inclusions

D �A�QA� L:

Watson has shown that any sufficiently large cable of a torus knot is in QA [28]. In
particular, the .2; 15/–cable of T .2; 3/ is in QA. As we have shown that it is not in A,
this shows that A ¨ QA.

Remark 5.9 It seems probable that there are L–space knots which do not admit
quasi-alternating surgeries. The .2; 3/–cable of T2;3 and the .2; 5/–cable of T2;3
seem to be potential candidates for knots in L nQA.
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As far as the author is aware, all known examples of knots in A are also in D , ie they
arise through the construction in Section 5.1. Moreover, it is known that for every
noninteger alternating surgeries, there is a knot in D with the same surgery.

Theorem 5.10 [16, Theorem 1.2] If S3p=q.K/ is an alternating surgery with q > 1,
then there is K 0 2 D with S3

p=q
.K/D S3

p=q
.K 0/.

This suggests the following conjecture.

Conjecture 1 Every alternating surgery arises as tangle replacement on an almost-
alternating diagram of the unknot, that is, we have AD D .

Since lens spaces arise as the double branched covers of alternating links, one can ask
how this conjecture agrees with results and conjectures on lens space surgeries. The
cyclic surgery theorem of Culler, Gordon, Luecke and Shalen shows that only torus
knots admit noninteger lens space surgeries [4]. Since torus knots are in D , this verifies
Conjecture 1 in certain cases.

Short of attacking Conjecture 1 in full, there are various related questions we can ask.

Question 2 Does Theorem 5.10 extend to the case of integer alternating surgeries?

It follows from their construction that every knot in D admits a strong inversion.

Question 3 Is every knot in A strongly invertible?

It seems likely that any progress on Conjecture 1 would require an alternative description
of the class D .

Question 4 Is there a characterisation of D which does not refer to almost-alternating
diagrams of the unknot?

Finally, as we demonstrated with the .2; 5/–cable of T2;3 , (2-4) can be used to show
that for some knots no manifold obtained by positive surgery can bound a negative-
definite sharp manifold. As we saw in Example 5.5, the .2; 3/–cable of T2;3 passes
this obstruction as it has the same Alexander polynomial as T3;4 . However, it seems
unlikely that any positive surgery on the .2; 3/–cable of T2;3 bounds a sharp manifold.

Question 5 Can one find alternative ways to show that surgery on a knot does not
bound a sharp 4–manifold? In particular, is it possible to show that no positive surgery
on the .2; 3/–cable of T2;3 bounds a sharp manifold?
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Link homology and equivariant gauge theory

PRAYAT POUDEL

NIKOLAI SAVELIEV

Singular instanton Floer homology was defined by Kronheimer and Mrowka in
connection with their proof that Khovanov homology is an unknot detector. We study
this theory for knots and two-component links using equivariant gauge theory on
their double branched covers. We show that the special generator in the singular
instanton Floer homology of a knot is graded by the knot signature mod 4 , thereby
providing a purely topological way of fixing the absolute grading in the theory. Our
approach also results in explicit computations of the generators and gradings of the
singular instanton Floer chain complex for several classes of knots with simple double
branched covers, such as two-bridge knots, some torus knots, and Montesinos knots,
as well as for several families of two-component links.

57M27; 57R58

1 Introduction

This paper studies the Floer homology I�.†;L/ of two-component links L � † in
homology 3–spheres defined by Kronheimer and Mrowka [24] using singular SO.3/
instantons. An important special case of this theory is the singular instanton knot
Floer homology I \.k/ for knots k � S3 obtained by applying I�.S

3;L/ to the link L
which is a connected sum of k with the Hopf link. The Floer homology I�.†;L/
has a relative Z=4 grading, which can be upgraded to an absolute Z=4 grading in the
special case of I \.k/. Kronheimer and Mrowka [24] used I \.k/ and its close cousin
I ].k/ to prove that the reduced Khovanov homology is an unknot-detector.

The definition of the groups I�.†;L/ uses singular gauge theory, which makes them
difficult to compute. We propose a new approach to these computations which uses
equivariant gauge theory in place of the singular one. Given a two-component link L
in an integral homology sphere †, we pass to the double branched cover M !† with
branch set L and observe that the singular connections on † used in the definition of
I�.†;L/ pull back to equivariant smooth connections on M . The generators of the
Floer chain complex IC�.†;L/, whose homology is I�.†;L/, are then derived from
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the equivariant representations �1M ! SO.3/, and their Floer gradings are computed
using equivariant rather than singular index theory.1

As our first application of this approach, we determine the grading of the special
generator in the Floer chain complex IC \.k/ of a knot k � S3 ; see Section 5. This
fixes the absolute Z=4 grading on I \.k/ and confirms the conjecture of Hedden, Herald
and Kirk [20, Section 12.6].

Theorem For any knot k � S3 , the grading of the special generator in the Floer chain
complex IC \.k/ equals sign k .mod 4/.

We also achieve significant simplifications in computing the Floer chain complexes
IC \.k/ and IC�.†;L/ for knots and links with simple double branched covers, such as
torus and Montesinos knots and links, whose double branched covers are Seifert fibered
manifolds. Explicit calculations for these knots and links are possible because the gauge
theory on Seifert fibered manifolds is sufficiently well developed; see Fintushel and
Stern [15] and, in the equivariant setting, Collin and Saveliev [11] and Saveliev [36].
Here are sample results of our calculations:

(1) The Floer chain complex IC \.k/ of a two-bridge knot k is calculated in Section 7.1.
For example, the Floer chain complex of the figure-eight knot consists of free abelian
groups of ranks .1; 1; 2; 1/. In fact, the Kronheimer–Mrowka spectral sequence [24] is
known to collapse for all two-bridge knots k , which implies that IC \.k/D I \.k/ for
all such knots.

(2) The Floer chain complex IC \.k/ of a Montesinos knot k D k.p; q; r/ whose
double branched cover is a Brieskorn homology sphere †.p; q; r/ consists of free
abelian groups of ranks .1Cb; b; b; b/, where b equals �2 times the Casson invariant
of †.p; q; r/; see Section 7.2. General Montesinos knots are discussed in Section 7.3.

(3) The Floer chain complex IC�.S
3;L/ of two-component Montesinos links LD

K..a1; b1/; : : : ; .an; bn// whose double branched cover is a homology S1 � S2 is
calculated in Section 8.3. For example, the chain complex of the pretzel link L D
P .2;�3;�6/ consists of free abelian groups of ranks .2; 0; 2; 0/ up to cyclic permuta-
tion; see Section 8.2. It has zero differential, hence IC�.S

3;L/D I�.S
3;L/.

(4) Our calculations for torus knots are less satisfactory because the equivariant index
theory in this setting is less well developed. For instance, we prove that the Floer chain
complex IC \.k/ of a torus knot k D Tp;q with odd coprime integers p and q has
rank 1C4a, where aD� sign.Tp;q/=4, and we conjecture that the Floer chain groups

1The theory I�.†;L/ is different from I \.†;L/ studied in [24]: the latter is a Floer homology of a
three-component link obtained by summing L with the Hopf link.
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have ranks .1Ca; a; a; a/; see Section 7.4.2 A complete calculation of the Floer chain
complex of the torus knot T3;4 can be found in Example 7.9.

Some of the above results concerning two-bridge and torus knots were obtained earlier
by Hedden, Herald, and Kirk [20] using pillowcase techniques, which are completely
different from our equivariant methods. We do not discuss the more difficult problem of
computing the boundary operators in the Floer chain complexes IC \.k/ and IC�.†;L/.
Such calculations are still out of reach except in a few special cases. However, it may
be worth investigating whether our equivariant techniques can shed some light on
this problem.

Here is an outline of the paper. It begins with a sketch of the definition of I�.†;L/
mainly following Kronheimer and Mrowka [24] but using the language of projective
representations developed in Ruberman and Saveliev [33]; see also Dostoglou and
Salamon [13]. We obtain a purely algebraic description of the generators in IC�.†;L/
as well as of a certain natural Z=2˚Z=2 action on them, which is crucial to the rest
of the paper.

Equivariant gauge theory is developed in Section 3. The section begins with a computa-
tion of Z=2 cohomology rings of double branched covers M !† of two-component
links, followed by a computation of the characteristic classes of SO.3/–bundles on M

pulled back from orbifold bundles on †. The results are used to establish a bijective
correspondence between equivariant SO.3/ representations of �1M and orbifold
SO.3/ representations of �1†. In the rest of the section, we discuss equivariant index
theory which is used later in the paper to compute Floer gradings of the generators
in IC�.†;L/. Our equivariant index theory approach is also used to recover the
Kronheimer–Mrowka singular index formulas [24, Lemma 2.11] along the lines of
Wang’s paper [42].

The next five sections are dedicated to the singular knot Floer homology I \.k/ for
knots k � S3 . Section 4 describes generators in the chain complex IC \.k/ in terms
of equivariant representations �1Y ! SO.3/ on the double branched cover Y ! S3

with branch set the knot k . These representations fall into three categories: trivial,
reducible nontrivial, and irreducible.

The trivial representation � W �1Y !SO.3/ gives rise to a special generator ˛ 2 IC \.k/

which is used in [24] to fix an absolute grading on I \.k/. This generator is dealt with
in Section 5. We pass to the double branched cover and use Taubes index theory [40] on
manifolds with periodic ends to show that the Floer grading of ˛ equals sign k .mod 4/.

2Extensive calculations for torus knots have recently been done by Anvari [2] using similar equivariant
techniques.
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Having computed the absolute grading of ˛ , we only need to compute the relative
gradings of the remaining generators. We derive formulas for these gradings in Section 6
using equivariant index calculations on double branched covers, and apply these for-
mulas to Montesinos and torus knots in Section 7.

Section 8 contains calculations of IC�.†;L/ for several two-component links L not
of the form k\ . For the pretzel link L D P .2;�3;�6/ in the 3–sphere we obtain a
complete calculation of the Floer homology groups of P .2;�3;�6/ and not just of
the Floer chain complex. The same answer is independently confirmed by computing
the Floer homology of Harper and Saveliev [19] for this two-component link: the latter
theory is isomorphic to I�.†;L/ but does not use singular connections in its definition.

Finally, Section 8.3 contains proofs of some topological results, which were postponed
earlier in the paper for the sake of exposition.

Acknowledgements We are thankful to Ken Baker, Paul Kirk, and Daniel Ruberman
for useful discussions. Both authors were partially supported by NSF Grant 1065905.

2 Link homology

In this section, we will sketch the definition of the singular instanton Floer homology
I�.†;L/ of a two-component link L�† in an integral homology 3–sphere. We will
follow Kronheimer and Mrowka [24] closely, deviating in just two respects: we will
use the language of projective representations to describe the generators in the Floer
chain complex, and will introduce a canonical Z=2˚Z=2 action on these generators.

2.1 The Chern–Simons functional

Given a two-component link L in an integral homology sphere †, the second homology
of its exterior X D†� int N.L/ is isomorphic to a copy of Z spanned by either one
of the boundary tori of X . Let P !X be the unique SO.3/–bundle with a nontrivial
second Stiefel–Whitney class w2.P / 2H 2.X IZ=2/D Z=2. The flat connections in
this bundle serve as the starting point for building I�.†;L/. Since w2.P / evaluates
nontrivially on the boundary tori, these connections are necessarily irreducible and
have order-2 holonomy along the meridians of the link components. Therefore, they
give rise to flat connections in an orbifold SO.3/–bundle on †, which we again call
P . The homology sphere † itself is viewed as an orbifold with the orbifold singularity
L, equipped with a Riemannian metric with cone angle � along the singular set.

Kronheimer and Mrowka [24] interpreted the gauge equivalence classes of the orbifold
flat connections in P as the critical points of an orbifold Chern–Simons functional

(1) csW B.†;L/!R=Z;
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and defined I�.†;L/ as its Morse homology. An important feature of this construction
is the use of the restricted orbifold gauge group GS in the definition of the configuration
space,

B.†;L/DA.†;L/=GS ;

where A.†;L/ is an affine space of orbifold connections and GS is the quotient of the
determinant-1 orbifold gauge group G. LP / of Kronheimer and Mrowka [24, Section 2.6]
by its center f˙1g. The group GS is a normal subgroup of the full orbifold gauge
group G with the quotient G=GS DH 1.X IZ=2/DZ=2˚Z=2. The full gauge group G
acts on A.†;L/ preserving the gradient of cs, thereby giving rise to the residual action
of H 1.X IZ=2/ on the configuration space B.†;L/ and on the critical point set of the
Chern–Simons functional.

We will next describe the critical points of the functional (1) algebraically using the
holonomy correspondence between flat connections and representations of the funda-
mental group. A variant of this classical correspondence which applies to the situation
at hand was described in [33, Section 3.2] using projective SU.2/ representations. We
will review these first; see [33, Section 3.1] for details.

2.2 Projective representations

Let G be a finitely presented group and view the center of SU.2/ as Z=2D f˙1g. A
map �W G! SU.2/ is called a projective representation if

c.g; h/D �.gh/�.h/�1�.g/�1
2 Z=2 for all g; h 2G:

The function cW G � G ! Z=2 is a 2–cocycle on G defining a cohomology class
Œc� 2 H 2.GIZ=2/. This class has the following interpretation. The composition of
�W G! SU.2/ with AdW SU.2/! SO.3/ is a representation Ad �W G! SO.3/. As
such, it induces a continuous map BG! B SO.3/ which is unique up to homotopy.
The pullback of the universal Stiefel–Whitney class w2 2H 2.B SO.3/IZ=2/ via this
map is our class Œc�D w2.Ad �/ 2H 2.GIZ=2/. It serves as an obstruction to lifting
Ad �W G! SO.3/ to an SU.2/ representation.

Let PRc.GISU.2// be the space of conjugacy classes of projective representations
�W G ! SU.2/ whose associated cocycle is c . The topology on PRc.GISU.2// is
supplied by the algebraic set structure. One can easily see that PRc.GISU.2// is
determined uniquely up to homeomorphism by the cohomology class of c . The group
H 1.GIZ=2/D Hom.G;Z=2/ acts on PRc.GISU.2// by sending � to � � � for any
� 2 Hom.G;Z=2/. The orbits of this action are in a bijective correspondence with the
conjugacy classes of representations G! SO.3/ whose second Stiefel–Whitney class
equals Œc�. The bijection is given by taking the adjoint representation.
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Projective representations �W G ! SU.2/ can also be described in terms of a pre-
sentation G D F=R. Consider a homomorphism  W R! Z=2 defined by its values
 .r/D˙1 on the relators r 2R and by the condition that it is constant on the orbits
of the adjoint action of F on R. Also, choose a set-theoretic section sW G! F in the
exact sequence

1!R
i
�!F

�
�!G! 1

and let r W G�G!R be the function defined by the formula s.gh/D r.g; h/s.g/s.h/.

Proposition 2.1 A choice of a section sW G ! F establishes a bijective correspon-
dence between the conjugacy classes of projective representations �W G ! SU.2/
with the cocycle c.g; h/D  .r.g; h// and the conjugacy classes of homomorphisms
� W F ! SU.2/ such that i�� D  . A different choice of s results in a cohomologous
cocycle.

Proof We begin by checking that c.g; h/D .r.g; h// is a cocycle. For any g; h; k2G,
we have

s.ghk/D r.gh; k/s.gh/s.k/D r.gh; k/r.g; h/s.g/s.h/s.k/;

s.ghk/D r.g; hk/s.g/s.hk/D r.g; hk/s.g/r.h; k/s.h/s.k/;

which results in r.gh; k/r.g; h/D r.g; hk/s.g/r.h; k/s.g/�1 . Since the homomor-
phism  is constant on the orbits of the adjoint action of F on R, its application to
the above equality gives the cocycle condition c.gh; k/c.g; h/D c.g; hk/c.h; k/ as
desired.

Now, given a homomorphism � W F!SU.2/ such that i�� D  , define �W G!SU.2/
by the formula �.g/D �.s.g//. Then

�.gh/D �.s.gh//D �.r.g; h/s.g/s.h//

D  .r.g; h//�.s.g//�.s.h//D c.g; h/�.g/�.h/;

hence � is a projective representation with cocycle c . It is clear that conjugate repre-
sentations � define conjugate projective representations � , and that a different choice
of s leads to a cohomologous cocycle c .

The inverse correspondence is defined as follows. Given a projective representation
�W G ! SU.2/, write elements of F in the form r � s.g/ with r 2 R and g 2 G ,
and define � W F ! SU.2/ by the formula �.r � s.g// D  .r/�.g/. That � is a
homomorphism can be checked by a straightforward calculation using the fact that
c.g; h/D  .r.g; h//.
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Example 2.2 Let G D �1M be the fundamental group of a manifold M obtained
by 0–surgery on a knot k in an integral homology sphere †. The group �1M is
obtained from �1K by imposing the relation �D 1, where � is a canonical longitude
of k . Therefore, �1M admits a presentation �1M D F=R with � being one of the
relators. Let  .�/D�1 and  .r/D 1 for the rest of the relators r 2R. It has been
known since Floer [16] that the action of H 1.M IZ=2/DZ=2 on the set of conjugacy
classes of projective representations � W F ! SU.2/ with i�� D  is free, providing
a two-to-one correspondence between this set and the set of the conjugacy classes of
representations �1M ! SO.3/ with nontrivial w2 2H 2.M IZ=2/D Z=2.

2.3 Holonomy correspondence

We will now apply the general theory of Section 2.2 to the group G D �1X , where
X is the exterior of a two-component link L in an integral homology sphere †. We
begin with the following simple observation.

Lemma 2.3 Unless the link L is split, H 2.X IZ=2/DH 2.�1X IZ=2/D Z=2. For
split links, I�.†;L/D 0.

Proof For a split link L, the splitting sphere generates the group H2.X IZ/ D Z.
Since there are no flat connections on this sphere with nontrivial w2.P /, the group
I�.†;L/ must vanish. For a nonsplit link, the claimed equality follows from the Hopf
exact sequence

�2.X /!H2.X /!H2.�1X /! 0

and the vanishing of the Hurewicz homomorphism �2.X /!H2.X /.

From now on, we will assume that the link L�† is not split. The holonomy correspon-
dence of [33, Section 3.1] identifies the critical point set of the functional (1) with the set
PRc.X;SU.2// of conjugacy classes of projective representations �W �1X ! SU.2/,
for any choice of cocycle c such that 0¤ Œc�D w2.P / 2H 2.X IZ=2/D Z=2. Note
that this identification commutes with the H 1.X IZ=2/ action, and that the orbits
of this action on PRc.X;SU.2// are in bijective correspondence with the conjugacy
classes of representations Ad �W �1X ! SO.3/ having w2.Ad �/¤ 0.

Lemma 2.4 Any representation Ad �W �1X ! SO.3/ with w2.Ad �/ ¤ 0 is irre-
ducible, that is, its image is not contained in a copy of SO.2/� SO.3/.

Proof The restriction of � to either boundary torus of X has nontrivial second Stiefel–
Whitney class, which implies that it does not lift to an SU.2/ representation. However,
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any reducible representation �1T 2! SO.3/ admits an SU.2/ lift, therefore, the image
of � cannot be contained in a copy of SO.2/� SO.3/. It is essential here that H1.T

2/

has no 2–torsion: a nontrivial SO.3/ representation of Z=2 is reducible but does not
admit an SU.2/ lift.

2.4 Floer gradings

Given flat orbifold connections � and � in the orbifold bundle P !†, consider an
arbitrary orbifold connection A in the pullback bundle on the product R�† matching
� and � near the negative and positive ends, respectively. Equip R �† with the
orbifold product metric and consider the ASD operator

(2) DA .�; �/D�d�A˚ dC
A
W �1.R�†; ad P /! .�0

˚�2
C/.R�†; ad P /

completed in the orbifold Sobolev L2 norms as in [24, Section 3.1]. Since � and �
are irreducible, this operator will be Fredholm if we further assume that � and � are
nondegenerate as the critical points of the Chern–Simons functional (1). Define the
relative Floer grading as

(3) gr.�; �/D indDA .�; �/ .mod 4/:

This grading is well defined because replacing either � or � by its gauge equivalent
within the restricted gauge group GS results in adding a multiple of four to the index
of DA , see [24, Section 2.5]. This is no longer true if we use the full gauge group.
The following lemma makes it precise; it will be proved in Section 3.7.

Lemma 2.5 Let �1 and �2 be the generators of H 1.X IZ=2/D Z=2˚Z=2 dual to
the meridians of the link LD `1[ `2 . Then

gr.�1 � �; �/D gr.�2 � �; �/D gr.�; �/C 2 � ı .mod 4/;

and similarly for the action on � , where

ı D

�
0 if `k.`1; `2/ is odd;
1 if `k.`1; `2/ is even:

2.5 Perturbations

The critical points of the Chern–Simons functional need not be nondegenerate, therefore
we may have to perturb it to define I�.†;L/. The perturbations used in [24, Section 3.4]
are the standard Wilson loop perturbations along loops in † disjoint from the link L.
There are sufficiently many such perturbations to guarantee the nondegeneracy of the
critical points of the perturbed Chern–Simons functional as well as the transversality
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properties for the moduli spaces of trajectories of its gradient flow. This allows us to
define the boundary operator and to complete the definition of I�.†;L/.

3 Equivariant gauge theory

In this section, we survey some equivariant gauge theory on the double branched cover
M !† of a homology sphere † with branch set a two-component link L. It will be
used in the forthcoming sections to make headway in computing the link homology
I�.†;L/.

3.1 Topological preliminaries

Let † be an integral homology 3–sphere and LD `1[ `2 a link of two components
in †. The link exterior X D †� int N.L/ is a manifold whose boundary consists
of two tori, with H1.X IZ/ D Z2 spanned by the meridians �1 and �2 of the link
components. The homomorphism �1X ! Z=2 sending �1 and �2 to the generator
of Z=2 gives rise to a regular double cover zX ! X , and also to a double branched
cover � W M ! † with branching set L and the covering translation � W M ! M .
Denote by �.t/ the one-variable Alexander polynomial of L.

Proposition 3.1 The first Betti number of M is 1 if �.�1/D 0 and 0 otherwise. In
the latter case, H1.M IZ/ is a finite group of order j�.�1/j. The induced involution
��W H1.M /!H1.M / is multiplication by �1.

Proof This is essentially proved in Kawauchi [21, Section 5.5]. The statement about ��
follows from an isomorphism of ZŒt; t�1� modules H1.M /DH1.E/=.1C t/H1.E/,
where E is the infinite cyclic cover of X , established in [21, Theorem 5.5.1]. A
completely different proof for the special case of double branched covers of S3 with
branch set a knot can be found in Ruberman [31, Lemma 5.5].

Proposition 3.2 Let M be the double branched cover of an integral homology sphere
with branch set a two-component link. Then Hi.M IZ=2/DH i.M IZ=2/ is isomor-
phic to Z=2 if i D 0; 1; 2; 3, and is zero otherwise. The cup product

H 1.M IZ=2/�H 1.M IZ=2/!H 2.M IZ=2/

is given by the linking number `k.`1; `2/ .mod 2/.

The proof of Proposition 3.2 will be postponed until Section 8.3 for the sake of
exposition.

An important example of L to consider is the two-component link k\ obtained as
the connected sum of a knot k � S3 with the Hopf link. The double branched

Algebraic & Geometric Topology, Volume 17 (2017)



2644 Prayat Poudel and Nikolai Saveliev

cover M ! S3 in this case is the connected sum M D Y # RP3 , where Y is the
double branched cover of k . Proposition 3.2 easily follows because H�.Y IZ=2/D
H�.S

3IZ=2/.

3.2 The orbifold exact sequence

We will view † DM=� as an orbifold with the singular set L. To be precise, the
regular double cover zX ! X is a 3–manifold whose boundary consists of two tori,
and

M D zX [h N.L/;

where the gluing homeomorphism hW @ zX ! @N.L/ identifies ��1.�i/ with the merid-
ian �i for i D 1; 2. The involution � W M !M acts by meridional rotation on N.L/,
thereby fixing the link L, and by covering translation on zX . Define the orbifold
fundamental group

�V
1 .†;L/D �1X=h�1

2
D �2

2
D 1i:

Then the homotopy exact sequence of the covering zX !X gives rise to a split short
exact sequence, called the orbifold exact sequence,

(4) 1! �1M
��
�!�V

1 .†;L/
j
�!Z=2! 1:

The homomorphism j maps the meridians �1; �2 to the generator of Z=2 and one
obtains a splitting by sending this generator to either �1 or �2 .

It follows from the definition of the orbifold fundamental group �V
1
.†;L/ that its

abelianization is given by

H1.X /=h�1
2
D �2

2
D 1i DH1.X IZ=2/D Z=2˚Z=2;

with the canonical generators �1 and �2 . The homomorphism �� of the orbifold
exact sequence (4) then induces a map ��W H1.M IZ=2/!H1.X IZ=2/, which can
be described as follows.

Lemma 3.3 The homomorphism ��W H1.M IZ=2/!H1.X IZ=2/ sends the gener-
ator of H1.M IZ=2/D Z=2 to the sum of the meridians �1C�2 2H1.X IZ=2/.

Proof That H1.M IZ=2/DZ=2 follows from Proposition 3.2. An explicit generator
of this group is described in the proof of Proposition A.2 as the circle ��1.w/, where
w is an embedded arc in † with endpoints on the two different components of L. The
commutative diagram
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�1M �V
1
.†;L/

�1
zX �1X

��

��

gives rise to the commutative diagram in homology

H1.M IZ=2/ H1.X IZ=2/

H1. zX IZ=2/ H1.X IZ=2/

��

��

The cycle ��1.w/ in M is homologous to a cycle in zX which consists of the two
arcs ��1.w/\ zX whose endpoints on each of the tori in @ zX are connected by an arc.
The map ��W H1. zX IZ=2/!H1.X IZ=2/ takes the homology class of this cycle to
�1C�2 , and the result follows.

3.3 Pulled-back bundles

Let P ! † be the orbifold SO.3/–bundle used in the definition of I�.†;L/ in
Section 2. It pulls back to an orbifold SO.3/–bundle Q!M because the projection
map � W M ! † is regular in the sense of Chen and Ruan [10]. The bundle Q is
in fact smooth because orbifold connections on P with order-2 holonomy along the
meridians of L lift to connections in Q with trivial holonomy along the meridians of
the two-component link zLD ��1.L/.

Proposition 3.4 The bundle Q!M is nontrivial.

The rest of this section is dedicated to the proof of this proposition. We will accomplish
it by showing that w2.Q/ 2H 2.M IZ=2/D Z=2 is nonvanishing. Our argument will
split into two cases, corresponding to the parity of the linking number between the
components of L.

Suppose that `k.`1; `2/ is even and consider the regular double cover � W M � zL!
†�L. It gives rise to the Gysin exact sequence

� � � H 1.†�LIZ=2/ H 2.†�LIZ=2/ H 2.M � zLIZ=2/
[w1 ��

H 2.†�LIZ=2/ H 3.†�LIZ=2/ � � �
[w1

where [w1 means taking the cup product with the first Stiefel–Whitney class of the
cover. The cup product on H�.†�LIZ=2/ can be determined from the following

Algebraic & Geometric Topology, Volume 17 (2017)



2646 Prayat Poudel and Nikolai Saveliev

commutative diagram:

H 1.†�LIZ=2/�H 1.†�LIZ=2/ H 2.†�LIZ=2/

H2.†;LIZ=2/�H2.†;LIZ=2/ H1.†;LIZ=2/

PD PD

[

�

where PD stands for the Poincaré duality isomorphism and the dot in the upper row
for the intersection product. Note that Seifert surfaces of knots `1 and `2 generate
H2.†;LIZ=2/DZ=2˚Z=2, and any arc in † with one endpoint on `1 and the other
on `2 generates H1.†;LIZ=2/D Z=2. An easy calculation shows that, with respect
to these generators, the intersection product is given by the matrix�

0 `k.`1; `2/

`k.`1; `2/ 0

�
:

Since `k.`1; `2/ is even, this gives a trivial cup product structure on the link com-
plement †�L. Therefore, the map [w1 in the Gysin sequence is zero and the map
��W H 2.†�LIZ=2/!H 2.M�zLIZ=2/ is injective. Since w2.P /2H 2.†�LIZ=2/
is nonzero we conclude that ��.w2.P //¤ 0. This implies that w2.Q/¤ 0 because
QD ��P over M � zL.

Now suppose that `k.`1; `2/ is odd. The above calculation implies that the second
Stiefel–Whitney class of ��P vanishes in H 2.M � zLIZ=2/. We will prove, however,
that w2.Q/ 2H 2.M IZ=2/ is nonzero, by showing that Q carries a flat connection
with nonzero w2 .

Note that the orbifold bundle P carries a flat SO.3/ connection whose holonomy is a
representation ˛W �V

1
.†;L/! SO.3/ of the orbifold fundamental group �V

1
.†;L/D

�1X=h�1
2 D �2

2 D 1i sending the two meridians to Ad i and Ad j . This flat
connection pulls back to a flat connection on Q with holonomy ��˛W �1M ! SO.3/.
We wish to compute the second Stiefel–Whitney class of ��˛ .

Lemma 3.5 The representation ��˛W �1M ! Z=2˚Z=2 is nontrivial.

Proof Our proof will rely on the orbifold exact sequence (4). Assume that ��˛ is
trivial. Then �1M � ker.��˛/, hence ˛ factors through �V

1
.†;L/=��.�1M /!

Z=2˚Z=2. Since �V
1
.†;L/=��.�1M /D Z=2, we obtain a contradiction with the

surjectivity of ˛ .

Since the group Z=2˚Z=2 is abelian, the representation ��˛W �1M ! Z=2˚Z=2
factors through a homomorphism H1.M /! Z=2˚ Z=2 which is uniquely deter-
mined by its two components � , � 2 Hom.H1.M /;Z=2/ D H 1.M IZ=2/ D Z=2;

Algebraic & Geometric Topology, Volume 17 (2017)



Link homology and equivariant gauge theory 2647

see Proposition 3.2. A calculation identical to that in [33, Proposition 4.3] shows that
w2.�

�˛/D �[ �C �[�C�[� (note that, unlike in [33], the classes �[ � and �[�
need not vanish). Since � and � cannot both be trivial by Lemma 3.5, we may assume
without loss of generality that � ¤ 0. If �D 0 then w2.�

�˛/D � [ � . If �¤ 0 then
� D � due to the fact that H 1.M IZ=2/DZ=2, and therefore again w2.�

�˛/D �[� .
Since `k.`1; `2/ is odd, it follows from Proposition 3.2 that w2.�

�˛/¤ 0.

3.4 Pulled-back representations

Assuming that L � † is nonsplit, we identified in Section 2.3 the critical point set
of the Chern–Simons functional (1) with the space PRc.X;SU.2// of the conjugacy
classes of projective representations �1X ! SU.2/ on the link exterior, for any
choice of cocycle c not cohomologous to zero. We further identified the quotient of
PRc.X;SU.2// by the natural H 1.X IZ=2/ action with the subspace Rw.X ISO.3//
of the SO.3/ character variety of �1X cut out by the condition w2 ¤ 0. The latter
condition implies that both meridians �1 and �2 are represented by SO.3/ matrices
of order 2, which leads to a natural identification of this subspace with

R!.†;LISO.3//D
˚
�W �V

1 .†;L/! SO.3/ j w2.�/¤ 0
	
=Ad SO.3/;

where the condition w2.�/ ¤ 0 applies to the representation � restricted to X. To
summarize, the group H 1.X IZ=2/ acts on PRc.X;SU.2// with the quotient map

PRc.X;SU.2//!R!.†;LISO.3//:

We now wish to study R!.†;LISO.3// using representations on the double branched
cover M !† equivariant with respect to the covering translation � W M !M .

Lemma 3.6 Let �W �V
1
.†;L/ ! SO.3/ be a representation with w2.�/ ¤ 0 and

���W �1M ! SO.3/ its pullback via the homomorphism �� of the orbifold exact
sequence (4). Then there exists an element u 2 SO.3/ of order 2 such that ��.���/D
u � .���/ �u�1 .

Proof Let zX!X be the regular double cover as in Section 3.2. Choose a basepoint b

in one of the boundary tori of zX and consider the commutative diagram

�1. zX ; b/ �1. zX ; �.b// �1. zX ; b/

�1.X; �.b// �1.X; �.b//

��

�� �� ��

'

 f
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whose maps  f and ' are defined as follows. Given a path f W Œ0; 1�! X from b

to �.b/, take its inverse xf .s/ D f .1 � s/ and define the map  f by the formula
 f .ˇ/D f �ˇ � xf . Since �.b/D �.�.b//, the path f projects to a loop in X based
at �.b/, and the map ' is the conjugation by that loop. In fact, one can choose the
path f to project onto the meridian �i of the boundary torus on which �.b/ lies so
that '.x/ D �i � x � �

�1
i . After filling in the solid tori, we obtain the commutative

diagram

�V
1
.†;L/ �V

1
.†;L/

�1M �1M

'

��

�� ��

which tells us that, for any �W �V
1
.†;L/! SO.3/, the pullback representation ���

has the property that ��.���/D u � .���/ �u�1 with uD �.�i/ of order 2.

Example 3.7 Let L� S3 be the Hopf link. Then M DRP3 and the orbifold exact
sequence (4) takes the form

1! Z=2
��
�!Z=2˚Z=2

j
�!Z=2! 1

with the two copies of Z=2 in the middle group generated by the meridians �1 and �2 .
Define �W Z=2˚Z=2!SO.3/ on the generators by �.�1/DAd i and �.�2/DAd j ;
up to conjugation, this is the only representation Z=2! SO.3/ with w2.�/¤ 0. The
pullback representation ���W Z=2! SO.3/ sends the generator to Ad i �Ad j DAd k .
Since ��.���/ D ��� , the identity ��.���/ D u � .���/ � u�1 holds for multiple
choices of u, including the second-order u of the form uD Ad q , where q is any unit
quaternion such that �qk D kq .

Given a double branched cover � W M ! † with branch set L and the covering
translation � W M !M , define

R!.M ISO.3//D
˚
ˇW �1M ! SO.3/ j w2.ˇ/¤ 0

	
=Ad SO.3/:

Since w2.�
�ˇ/Dw2.ˇ/2H 2.M IZ=2/DZ=2, the pullback of representations via �

gives rise to a well defined involution

(5) ��W R!.M ISO.3//!R!.M ISO.3//:

Its fixed point set Fix.��/ consists of those conjugacy classes of representations
ˇW �1M ! SO.3/ such that w2.ˇ/¤ 0 and there exists an element u 2 SO.3/ having
the property that ��ˇ D u �ˇ �u�1 . Consider the subvariety

(6) R�w.M ISO.3//� Fix.��/
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defined by the condition that the conjugating element u can be chosen to be of order 2.
This subvariety is well defined because all elements of order 2 in SO.3/ are conjugate
to each other. The following proposition is the main result of this section.

Proposition 3.8 The homomorphism ��W �1M ! �V
1
.†;L/ of the orbifold exact

sequence (4) induces via the pullback a homeomorphism

��W R!.†;LISO.3//!R�!.M ISO.3//:

Proof Orbifold representations �V
1
.†;L/! SO.3/ with nontrivial w2 pull back to

representations �1M ! SO.3/ with nontrivial w2 ; see Section 3.3. In addition, these
pullback representations are equivariant in the sense of Lemma 3.6. Therefore, the map

��W R!.†;LISO.3//!R�!.M ISO.3//

is well defined. To finish the proof, we will construct an inverse of �� . Given
ˇW �1M ! SO.3/ whose conjugacy class belongs to R�!.M ISO.3//, there exists an
element u2SO.3/ of order 2 such that ��ˇDu�ˇ �u�1 . The pair .ˇ;u/ then defines an
SO.3/ representation of �V

1
.†;L/D�1M ÌZ=2 by the formula �.x; t`/D ˇ.x/ �u` ,

where x 2 �1M and t is the generator of Z=2.

3.5 Equivariant index

All orbifolds we encounter in this paper are obtained by taking the quotient of a smooth
manifold by an orientation-preserving involution. The orbifold elliptic theory on such
global quotient orbifolds is equivalent to the equivariant elliptic theory on their branched
covers; see for instance [42]. In particular, the orbifold index of the ASD operator (2)
can be computed as an equivariant index as explained below.

Let X be a smooth oriented Riemannian 4–manifold without boundary, which may or
may not be compact. If X is not compact, we assume that its only noncompactness
comes from a product end .0;1/�Y equipped with a product metric. Let � W X !X

be a smooth orientation-preserving isometry of order 2 with nonempty fixed point set F

making X into a double branched cover over X 0 with branch set F 0 . Let P !X be
an SO.3/–bundle to which � lifts so that its action on the fibers over the fixed point
set of � has order 2. This lift will be denoted by z� W P ! P . The quotient of P by
the involution z� is naturally an orbifold SO.3/–bundle P 0!X 0 , and any equivariant
connection A in P gives rise to an orbifold connection A0 in P 0 . The ASD operator

DA .X /D�d�A˚ dC
A
W �1.X; ad P /! .�0

˚�2
C/.X; ad P /

associated with A is equivariant in that the diagram
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�1.X; ad P / .�0˚�2
C/.X; ad P /

�1.X; ad P / .�0˚�2
C/.X; ad P /

z�� z��

DA .X /

DA .X /

commutes, giving rise to the orbifold operator

DA0 .X
0/W �1.X 0; ad P 0/! .�0

˚�2
C/.X

0; ad P 0/:

From this we immediately conclude that

(7) indDA0 .X
0/D indD�A.X /;

where D�
A
.X / is the operator DA .X / restricted to the .C1/–eigenspaces of the invo-

lution z�� . If X is closed, the operators in (7) are automatically Fredholm. If X has
a product end, we ensure Fredholmness by completing with respect to the weighted
Sobolev norms

k'kL2
k;ı
.X / D kh �'kL2

k
.X /;

where hW X !R is a smooth function which is �–invariant and which, over the end,
takes the form h.t;y/ D eıt for a sufficiently small positive ı . We choose to work
with these particular norms to match the global boundary conditions of Atiyah, Patodi
and Singer [4].

In particular, if � and � are nondegenerate critical points of the orbifold Chern–Simons
functional on †, they pull back to the flat connections ��� and ��� on the double
branched cover M !†. The formula (3) for the relative Floer grading can then be
written as

gr.�; �/D indD�A.�
��; ���/ .mod 4/;

where A is an equivariant connection on R � Y whose limits at the negative and
positive ends are ��� and ��� , respectively. The index in the above formula can
be understood as the L2

ı
index for any sufficiently small ı � 0 because the operator

D�
A
.���; ���/ is Fredholm in the usual L2 Sobolev completion.

3.6 Index formulas

Let us continue with the setup of the previous subsection. One can easily see that

indD�A.X /D
1
2

indDA .X /C
1
2

ind.�;DA /.X /;

where
ind.�;DA /.X /D tr.z��j kerDA .X //� tr.z��j cokerDA .X //:
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We will use this observation together with the standard index theorems to obtain explicit
formulas for the index of the operators in question.

Proposition 3.9 Let X be a closed manifold. Then

indD�A.X /D�p1.P /�
3
4
.�.X /C�.X //C 1

4
.�.F /CF �F /:

Proof The index of DA .X / can be expressed topologically using the Atiyah–Singer
index theorem [6]. Since the operator DA has the same symbol as the positive chiral
Dirac operator twisted by SC˝ .ad P /C (see [3]), we obtain

indDA .X /D

Z
X

yA.X / ch.SC/ ch.ad P /C

D

Z
X

�2p1.A/�
1
2
p1.TX /� 3

2
e.TX /

D�2p1.P /�
3
2
.�.X /C�.X //;

using the Hirzebruch signature theorem in the last line. A similar expression for
ind.�;DA /.X / is obtained using the G–index theorem of Atiyah and Singer [6].
For the twisted Dirac operator in question, an explicit calculation in Shanahan [39,
Section 19] leads us to the formula

ind.�;DA /.X /D�
1

2

Z
F

.e.TF /C e.NF // chg.ad P /C D
1
2
.�.F /CF �F /:

Here TF and NF are the tangent and the normal bundle of the fixed point set F �X ,
and the zero-order term in chg.ad P /C equals �1 because this is the trace of the
second-order SO.3/ operator acting on the fiber. Adding these formulas together, we
obtain the desired formula.

Remark 3.10 Our formula matches the formulas for indDA0 .X
0/ of Kronheimer and

Mrowka [24, Lemma 2.11] and Wang [42, Theorem 18],

indDA0 .X
0/D�p1.P /�

3
2
.�.X 0/C�.X 0//C�.F 0/C 1

2
F 0 �F 0;

after taking into account that F 0�F 0D2.F �F /, �.F /D�.F 0/, 2�.X 0/D�.X /C�.F /,
and 2�.X 0/D �.X /CF �F ; see for instance Viro [41].

Next, let X be a manifold with a product end .0;1/ � Y , where Y need not be
connected, and work with the L2

ı
norms for sufficiently small ı > 0. In a temporal

gauge over the end, the operator DA .X / takes the form DA .X /D @=@t CKA.t/ .
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Proposition 3.11 Let X be a manifold with product end as above, and A an equivari-
ant connection whose limit over the end is a flat connection ˇ . Then

indD�A.X /D
1

2

Z
X

yA.X / ch.SC/ ch.ad P /C

C
1
4
.�.F /CF �F /� 1

4
.hˇ � �ˇ.0//�

1
4
.h�ˇ � �

�
ˇ.0//:

The notation here is as follows:

� hˇ is the dimension of H 0.Y I adˇ/˚H 1.Y I adˇ/;

� h�
ˇ

is the trace of the map induced by z�� on H 0.Y I adˇ/˚H 1.Y I adˇ/;

� �ˇ.0/ is the Atiyah–Patodi–Singer spectral asymmetry of Kˇ ; and

� ��
ˇ
.0/ its equivariant version, defined as follows. For any eigenvalue � of the

operator Kˇ , the �–eigenspace W
ˇ

�
is acted upon by z�� with trace tr.z��jW ˇ

�
/.

The infinite series

��ˇ.s/D
X
�¤0

sign� � tr.z��jW ˇ

�
/j�j�s

converges for Re.s/ large enough and has a meromorphic continuation to the
entire complex s–plane with no pole at s D 0; see Donnelly [12]. This makes
��
ˇ
.0/ a well-defined real number.

Proof of Proposition 3.11 The index indDA .X / can be computed using the index
theorem of Atiyah, Patodi and Singer [4] as

indDA .X /D

Z
X

yA.X / ch.SC/ ch.ad P /C �
1
2
.hˇ � �ˇ.0//.Y /;

and ind.�;DA /.X / using its equivariant counterpart, the G–index theorem of Don-
nelly [12], as

ind.�;DA /.X /D
1

2

Z
F

.e.TF /C e.NF //� 1
2
.h�ˇ � �

�
ˇ.0//.Y /:

The desired formula now follows because, according to the Gauss–Bonnet theorem,Z
F

e.TF /D �.F / and
Z

F

e.NF /D F �F:

Example 3.12 Let P ! Y be a trivial SO.3/–bundle with an involution z� acting as
a second-order operator on the fibers. Application of Proposition 3.11 to the product
connection A on the manifold X DR�Y results in the formula indD�

�
.X /D�1, which

corresponds to the fact that the .C1/–eigenspace of the involution z��W H 0.X I ad �/!
H 0.X I ad �/ is 1–dimensional.
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3.7 Proof of Lemma 2.5

Since both � and � are irreducible and nondegenerate, we have gr.�1 � �; �/ D

gr.�1 � �; �/C gr.�; �/. Therefore, we only need to compute gr.�1 � �; �/ .mod 4/.

Let g 2 G be a gauge transformation matching � and �1 � � . The mapping torus of g

is an orbifold bundle P0 over S1 �†, and

gr.�1 � �; �/D indDA .S
1
�†/ .mod 4/

for any choice of orbifold connection A in P0 . Let M be the double branched cover
of † with branch set L. Then the index in the above formula, treated as an equivariant
index on S1 �M , equals �p1.Q0/ by the formula of Proposition 3.9 applied to the
pullback bundle Q0 D �

�P0 . This reduces the above formula to

gr.�1 � �; �/D�p1.Q0/ .mod 4/:

To compute the Pontryagin number p1.Q0/ we observe that the bundle Q0 on S1�M

can be obtained from the bundle QD��P on M as the mapping torus of a gauge trans-
formation matching ��� with ��.�1 ��/D � ��

�� , where �D ���1 2H 1.M IZ=2/.
According to Braam and Donaldson [8, Part II, Propositions 1.9 and 1.13],

p1.Q0/D 2 � .�[w2.Q/C �[ �[ �/ŒM � .mod 4/:

We already know that w2.Q/ is a generator of H 2.M IZ=2/DZ=2; see Proposition 3.4.
It follows from Lemma 3.3 that the class � is a generator of H 1.M IZ=2/DZ=2. The
desired formula now follows from the calculation of the cohomology ring H�.M IZ=2/
in Proposition 3.2.

4 Knot homology: the generators

We will now use the equivariant theory of Section 3 to better understand the chain
complex IC \.k/ which computes the singular instanton knot homology I \.k/ D

I�.S
3; k\/ of Kronheimer and Mrowka [24]. In this section, we will describe the

conjugacy classes of projective SU.2/ representations on the exterior of k\ with
nontrivial Œc� and separate them into the orbits of the canonical Z=2˚Z=2 action.
The next two sections will be dedicated to computing Floer gradings.

4.1 Projective representations

Given a knot k � S3 , denote by K D S3 � int N.k/ its exterior and by K\ D

S3 � int N.k\/ the exterior of the two-component link k\ D k [ ` obtained as the
connected sum of k with the Hopf link. The Wirtinger presentation

�1K D ha1; a2; : : : ; an j r1; : : : ; rmi
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with meridians ai and relators rj gives rise to the Wirtinger presentation

�1K\
D ha1; a2; : : : ; an; b j r1; : : : ; rm; Œa1; b�D 1i;

where b stands for the meridian of the component `. Since the link k\ is not split, it
follows from Lemma 2.3 that H 2.�1K\IZ=2/DH 2.K\IZ=2/DZ=2. The generator
of the latter group evaluates nontrivially on both boundary components of K\ , which
makes it Poincaré dual to any arc connecting these two boundary components. It follows
from Proposition 2.1 that the projective representations with nontrivial Œc� which we
are interested in are precisely the homomorphisms �W F ! SU.2/ of the free group F

generated by the meridians a1; : : : ; an; b such that

�.r1/D � � � D �.rn/D 1 and �.Œa1; b�/D�1:

Representations � are uniquely determined by the SU.2/ matrices Ai D �.ai/ and
B D �.b/ subject to the above relations, and the space PRc.K

\;SU.2// consists of
all such tuples .A1; : : : ;AnIB/ up to conjugation.

The relation A1B D�BA1 implies that, up to conjugation, A1D i and B D j . Since
the Wirtinger relations r1 D 1; : : : ; rm D 1 are of the form aiaj a�1

i D ak , all the
matrices Ai must have zero trace. In particular, the matrices A1 D � � � D An D i

and B D j satisfy all of the relations, thereby giving rise to the special projective
representation ˛ D .i; i; : : : ; i I j /. On the other hand, if we assume that not all Ai

commute with each other, we have an entire circle of projective representations,

(8) .i; ei'A2e�i' ; : : : ; ei'Ane�i'
I j /:

It is parametrized by e2i' 2 S1 because the center of SU.2/ is the stabilizer of
the adjoint action of SU.2/ on itself. Note that two tuples like (8) are conjugate
if and only if they are equal to each other. One can easily see that the formula
 .A1; : : : ;AnIB/D .A1; : : : ;An/ defines a surjective map

(9)  W PRc.K
\;SU.2//!R0.K;SU.2//;

where R0.K;SU.2// is the space of the conjugacy classes of traceless representations
�0W �1K ! SU.2/. If �0 is irreducible, the fiber C.�0/ D  �1.Œ�0�/ is a circle
of the form (8). The special projective representation ˛ is a fiber of (9) in its own
right over the unique (up to conjugation) reducible traceless representation �1K!

H1.K/! SU.2/ sending all the meridians to the same traceless matrix i . Therefore,
assuming that R0.K;SU.2// is nondegenerate, the space PRc.K

\;SU.2// consists of
an isolated point and finitely many circles, one for each conjugacy class of irreducible
representations in R0.K;SU.2//. The same result holds in general after perturbation.
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4.2 The action of H 1.K \IZ=2/

The group H 1.K\IZ=2/ D Z=2˚ Z=2 generated by the duals �k and �` of the
meridians of the link k\ D k [ ` acts on the space of projective representations
PRc.K

\;SU.2// as explained in Section 2.2. In terms of the tuples (8), the generators
�k and �` send .i; ei'A2e�i' ; : : : ; ei'Ane�i' I j / to

.�i;�ei'A2e�i' ; : : : ;�ei'Ane�i'
I j / and .i; ei'A2e�i' ; : : : ; ei'Ane�i'

I �j /;

respectively. The isolated point ˛ D .i; i; : : : ; i I j / is a fixed point of this action since

.�i;�i; : : : ;�i I j /Dj �.i; i; : : : ; i I j /�j�1; .i; i; : : : ; i I �j /D i �.i; i; : : : ; i I j /�i�1:

To describe the action of �` on the circle C.�0/ for an irreducible �0 , conjugate
.i; ei'A2e�i' ; : : : ; ei'Ane�i' I �j / by i to obtain

.i; ei.'C�=2/A2e�i.'C�=2/; : : : ; ei.'C�=2/Ane�i.'C�=2/
I j /:

Since the circle C.�0/ is parametrized by e2i' , we conclude that the involution �`
acts on C.�0/ via the antipodal map.

The action of �k on the circle C.�0/ for an irreducible �0 will depend on whether
�0 is a binary dihedral representation or not. Recall that a representation �0W �1K!

SU.2/ is called binary dihedral if it factors through a copy of the binary dihedral
subgroup S1[j �S1�SU.2/, where S1 stands for the circle of unit complex numbers.
Equivalently, �0 is binary dihedral if its adjoint representation Ad.�0/W �1K! SO.3/
is dihedral in that it factors through a copy of O.2/ embedded into SO.3/ via the map
A! .A; det A/.

One can show that a representation �0 is binary dihedral if and only if ���0 is conjugate
to �0 , where �W �1K! Z=2 is the generator of H 1.KIZ=2/ D Z=2. Note that �
defines an involution on R0.K;SU.2// which makes the following diagram commute:

PRc.K
\;SU.2// R0.K;SU.2//

PRc.K
\;SU.2// R0.K;SU.2//

�k �

�

�

The action of �k can now be described as follows. If an irreducible �0W �1K! SU.2/
is not binary dihedral, the involution �k takes the circle C.�0/ to the circle C.� � �0/.
Since � � �0 is not conjugate to �0 , these two circles are disjoint from each other,
and �k permutes them. If an irreducible �0W �1K! SU.2/ is binary dihedral, there
exists u 2 SU.2/ such that uiu�1 D �i and uAiu

�1 D �Ai for i D 2; : : : ; n. The

Algebraic & Geometric Topology, Volume 17 (2017)



2656 Prayat Poudel and Nikolai Saveliev

irreducibility of �0 also implies that u2 D�1, so after conjugation we may assume
that uD k . Now conjugate

�k � .i; e
i'A2e�i' ; : : : ; ei'Ane�i'

I j /D .�i;�ei'A2e�i' ; : : : ;�ei'Ane�i'
I j /

by j to obtain

.i; j .�ei'A2e�i'/j�1; : : : ; j .�ei'Ane�i'/j�1
I j /

D .i;�e�i'jA2j�1ei' ; : : : ;�e�i'jAnj�1ei'
I j /

D .i;�.ie�i'/kA2k�1.i�1ei'/; : : : ;�.ie�i'/kAnk�1.i�1ei'/I j /

D .i; ei.�=2�'/A2e�i.�=2�'/; : : : ; ei.�=2�'/Ane�i.�=2�'/
I j /:

Therefore, �k acts on C.�0/ by sending e2i' to �e�2i' , which is an involution on
the complex unit circle with two fixed points, i and �i .

Finally, observe that the quotient of R0.K;SU.2// by the involution � is precisely the
space R0.K;SO.3// of the conjugacy classes of representations Ad �0W �1K!SO.3/.
Since H 2.KIZ=2/D 0, every SO.3/ representation lifts to an SU.2/ representation,
hence R0.K;SO.3// can also be described as the space of the conjugacy classes of
representations �1K! SO.3/ sending the meridians to SO.3/ matrices of trace �1.
Compose (9) with the projection R0.K;SU.2//!R0.K;SO.3// to obtain a surjec-
tive map  W PRc.K

\;SU.2//! R0.K;SO.3//. The above discussion can now be
summarized as follows.

Proposition 4.1 The group H 1.K\IZ=2/ D Z=2˚Z=2 acts on PRc.K
\;SU.2//

preserving the fibers of the map  W PRc.K
\;SU.2//!R0.K;SO.3//. Furthermore:

(a) For the unique reducible in R0.K;SO.3//, the fiber of  consists of just one
point, which is the conjugacy class of the special projective representation ˛ .
This point is fixed by both �k and �` .

(b) For any dihedral representation in R0.K;SO.3//, the fiber of  is a circle. The
involution �k is a reflection of this circle with two fixed points, while �` is the
antipodal map.

(c) Otherwise, the fiber of  consists of two circles. The involution �k permutes
these circles, while �` acts as the antipodal map on both.

It should be noted that perturbing the Chern–Simons functional (1) may easily break
the Z=2˚Z=2 symmetry. Finding a perturbation which preserves this symmetry runs
as usual into the equivariant transversality problem, which we do not try to address
here. It should be noted, however, that such a problem was successfully solved in [33]
in a similar setting.
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4.3 Double branched covers

Next, we would like to describe the space PRc.K
\;SU.2// using the equivariant

theory of Section 3. We could proceed as in that section, by passing to the double
branched cover M ! S3 with branch set the link k\ and working with the equivariant
representations �1M ! SO.3/. However, in the special case at hand, one can observe
that M is simply the connected sum Y # RP3 , where Y is the double branched cover
of S3 with branch set the knot k , hence the same information about PRc.K

\;SU.2//
can be extracted more easily by working directly with Y and using Proposition 4.1.
The only missing step in this program is a description of R0.K;SO.3// in terms of
equivariant representations �1Y ! SO.3/, which we will take up next.

Every representation �W �1K! SO.3/ gives rise to a representation of the orbifold
fundamental group �V

1
.S3; k/D �1K=h�2 D 1i, where we choose �D a1 to be our

meridian. The latter group can be included into the split orbifold exact sequence

1! �1Y
��
�!�V

1 .S
3; k/

j
�!Z=2! 1:

Proposition 4.2 Let Y be the double branched cover of S3 with branch set a knot k

and let � W Y ! Y be the covering translation. The pullback of representations via the
map �� in the orbifold exact sequence establishes a homeomorphism

��W R0.K;SO.3//!R� .Y;SO.3//;

where R� .Y / is the fixed point set of the involution ��W R.Y;SO.3//!R.Y;SO.3//.
The unique reducible representation in R0.K;SO.3// pulls back to the trivial represen-
tation of �1Y , and the dihedral representations in R0.K;SO.3// are precisely those
that pull back to reducible representations of �1Y .

Proof A slight modification of the argument of Proposition 3.8 (see also [11, Proposi-
tion 3.3]), establishes a homeomorphism between R0.K;SO.3// and the subspace of
R� .Y;SO.3// consisting of the conjugacy classes of representations ˇW �1Y ! SO.3/
such that ��ˇ D u � ˇ � u�1 for some u 2 SO.3/ of order 2. The proof of the first
statement of the proposition will be complete after we show that this subspace in fact
comprises the entire space R� .Y;SO.3//.

If ˇW �1Y ! SO.3/ is reducible, it factors through a representation H1.Y /! SO.2/.
According to Proposition 3.1, the involution �� acts on H1.Y / as multiplication by �1.
Therefore, ��ˇ D ˇ�1 , and the latter representation can obviously be conjugated to ˇ
by an element u 2 SO.3/ of order 2. If ˇW �1Y ! SO.3/ is irreducible, the condition
ˇ 2 Fix.��/ implies that there exists a unique u 2 SO.3/ such that ��ˇ D u �ˇ �u�1

and u2 D 1. If u D 1, then ��ˇ D ˇ , which implies that ˇ is the pullback of a
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representation of �V
1
.S3; k/ which sends the meridian � to the identity matrix and

hence factors through �1S3 D 1. This contradicts the irreducibility of ˇ .

To prove the second statement of the proposition, observe that the homomorphism j

in the above orbifold exact sequence sending � to the generator of Z=2 is in fact the
abelianization homomorphism. This implies that the unique reducible representation in
R0.K;SO.3// pulls back to the trivial representation of �1Y . Since �1Y is the com-
mutator subgroup of �V

1
.S3; k/, any dihedral representation �W �V

1
.S3; k/!O.2/

must map �1Y to the commutator subgroup of O.2/, which happens to be SO.2/.
This ensures that the pullback of � is reducible. Conversely, if the pullback of � is
reducible, its image is contained in a copy of SO.2/, and the image of � itself in its
2–prime extension. The latter group is of course just a copy of O.2/� SO.3/.

Remark 4.3 For future use note that, for any projective representation �W �1K\!

SU.2/ in C.�0/ described by a tuple (8), the adjoint representation Ad �W �1K\!

SO.3/ pulls back to an SO.3/ representation of �1.Y # RP3/ D �1Y �Z=2 of the
form ˇ �  W �1Y �Z=2! SO.3/, where ˇ D ��Ad �0 and  W Z=2! SO.3/ sends
the generator of Z=2 to Ad i �Ad j D Ad k . The representation ˇ �  is equivariant,
��.ˇ� /Du�.ˇ� /�u�1 , with the conjugating element u given by Ad �0.a1/DAd i .

5 Knot homology: grading of the special generator

Given a knot k � S3 , we will continue using the notation K for its exterior and K\

for the exterior of the two-component link k\ D k [ ` obtained as the connected sum
of k with the Hopf link h. The special projective representation ˛W �1K\! SU.2/,
which sends all the meridians of k to i and the meridian of ` to j , is a generator in
the chain complex IC \.k/. In this section, we compute its absolute Floer grading.

Theorem 5.1 For any knot k in S3 , we have gr.˛/D sign k .mod 4/.

Before we go on to prove this theorem, recall the definition of gr.˛/ .mod 4/. Let
.W 0;S/ be a cobordism of pairs .S3;u/ and .S3; k/, where u is an unknot in S3 .
The manifold W 0 is required to be oriented but the surface S is not. Construct a new
cobordism .W 0;S 0/ of the pairs .S3; h/ and .S3; k\/ by letting S 0 be the disjoint
union of S with the normal circle bundle along a path in S connecting the two
boundary components (the surface S 0 is called S \ in [24, Section 4.3]). According to
[24, Proposition 4.4], the generator ˛ has grading

(10) gr.˛/D� indDA0 .˛u; ˛/�
3
2
.�.W 0/C �.W 0//��.S 0/ .mod 4/;

where ˛u stands for the special generator in the Floer chain complex of u, and we use
the fact that �.S/D �.S 0/. The operator DA0 .˛u; ˛/ refers to the ASD operator on
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the noncompact manifold obtained from W 0 by attaching cylindrical ends to the two
boundary components; this manifold is again called W 0 . The connection A0 can be
any connection on W 0 which is singular along the surface S 0 and whose limits on the
two ends are flat connections with holonomies ˛u and ˛ . The index of DA0 .˛u; ˛/ is
understood as the L2

ı
index for a small positive ı .

5.1 Constructing the cobordism

Our calculation of the Floer index gr.˛/ will use a specific cobordism .W 0;S 0/ con-
structed as follows.

Let † be the double branched cover of S3 with branch set the knot k . Choose a Seifert
surface F 0 of k and push its interior slightly into the ball D4 so that the resulting
surface, which we still call F 0 , is transverse to @D4 D S3 . Let V be the double
branched cover of D4 with branch set the surface F 0 . Then V is a smooth simply
connected spin 4–manifold with boundary †, which admits a handle decomposition
with only 0– and 2–handles; see Akbulut and Kirby [1, page 113].

Next, choose a point in the interior of the surface F 0 � D4 . Excising a small open
4–ball containing that point from .D4;F 0/ results in a manifold W 0

1
diffeomorphic to

I �S3 together with the surface F 0
1
D F 0� int D2 properly embedded into it, thereby

providing a cobordism .W 0
1
;F 0

1
/ from an unknot to the knot k . The double branched

cover W1!W 0
1

with branch set F 0
1

is a cobordism from S3 to †. The manifold W1

is simply connected because it can be obtained from the simply connected manifold V

by excising an open 4–ball.

Similarly, consider the manifold W 0
2
D I�S3 and surface F 0

2
D I�h�W 0

2
providing a

product cobordism from the Hopf link h to itself. The double branched cover W2!W 0
2

with branch set F 0
2

is then a cobordism W2 D I �RP3 from RP3 to itself.

As the final step of the construction, consider a path  0
1

in the surface F 0
1

connecting
its two boundary components. Similarly, consider a path  0

2
of the form I �fpg in the

surface F 0
2
D I �H . Remove tubular neighborhoods of these two paths and glue the

resulting manifolds and surfaces together using an orientation-reversing diffeomorphism
1� hW I �S2! I �S2 . The resulting pair .W 0;S 0/ is the desired cobordism of the
pairs .S3; h/ and .S3; k\/. One can easily see that

(11) �.W 0/D �.W 0/D 0 and �.S 0/D �.F 0/� 1:

Note that the double branched cover W !W 0 with branch set S 0 is a cobordism from
RP3 to † # RP3 which can be obtained from the cobordisms W1 and W2 by taking a
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connected sum along the paths 1 �W1 and 2 �W2 lifting, respectively, the paths
 0

1
and  0

2
. To be precise,

(12) W DW ı1 [W ı2 ;

where W ı
1

and W ı
2

are obtained from W1 and W2 by removing tubular neighborhoods
of 1 and 2 . The identification in (12) is done along a copy of I �S2 . In particular,
we see that �1W D Z=2.

5.2 L2–index

We will rely on Ruberman [32] and Taubes [40] in our index calculations.

Let � W W ! W 0 be the double branched cover with branch set S 0 constructed in
the previous section, and � W W ! W the covering translation. Let us consider a
representation �W �V

1
.W 0;S 0/! SO.3/ sending the two sets of meridians of S 0 to

Ad i and Ad j . Then the representation ���W �1W ! SO.3/ sends the generator of
�1W to Ad k and it is equivariant in that ��.���/ D u � ��� � u�1 with u D Ad i ;
compare with Example 3.7. The representation � restricts to ˛u and ˛ over the two ends
of W 0 , therefore ��� makes W into a flat cobordism between  W �1.RP3/! SO.3/
and � �  W �1†��1.RP3/! SO.3/, where  is the representation of Example 3.7.

Let A and A0 be flat connections on W and W 0 whose holonomies are, respectively,
��� and � . We will use A0 as the twisting connection of the operator DA0 .˛u; ˛/.
Instead of computing the index of this operator, we will compute the equivariant index
indD�

A
.; � �  / of its pullback to W . The latter index equals minus the equivariant

index of the elliptic complex

(13) �0.W; ad P /
�dA
���!�1.W; ad P /

d
C

A
��!�2

C.W; ad P /:

The equivariance here is understood with respect to a lift of � W W !W to the bundle
ad P which has second order on the fibers over the fixed point set. The connection A

is equivariant with respect to this lift, hence it splits the coefficient bundle ad P into a
sum of three real line bundles corresponding to Ad k D diag.�1;�1; 1/. Accordingly,
the complex (13) splits into a sum of three elliptic complexes, one with the trivial real
coefficients and two with the twisted coefficients. Application of [32, Proposition 4.1]
to the former complex and of [32, Corollary 4.2] to the latter two reduces the index
problem to computing the singular cohomology

H k.W I ad���/DH k.W IR/˚H k.W IR�/˚H k.W IR�/ for k D 0; 1; 2;

where R� stands for the real line coefficients on which Z=2 acts as multiplication
by �1, and their equivariant versions.

Algebraic & Geometric Topology, Volume 17 (2017)



Link homology and equivariant gauge theory 2661

The zeroth equivariant cohomology of the complex (13) vanishes since H 0.W IR�/D0

and the lift of � acts as minus identity on the remaining group H 0.W IR/DR. This
vanishing result could also be derived directly from the irreducibility of the singular
connection A0 . The next two subsections are dedicated to computing the first and
second cohomology of (13).

5.3 Trivial coefficients

Our computation will be based on the Mayer–Vietoris exact sequence applied twice,
first to compute cohomology of W ı

1
and W ı

2
, and then to compute cohomology of

W DW ı
1
[W ı

2
.

The cohomology groups of W ı
1

and W1DW ı
1
[ .I �D3/ are related by the following

Mayer–Vietoris exact sequence:

0 H 1.W1IR/ H 1.W ı
1
IR/ 0

H 2.W1IR/ H 2.W ı
1
IR/ H 2.I �S2IR/

H 3.W1IR/ H 3.W ı
1
IR/ 0

ı

Since W1 and therefore W ı
1

are simply connected, both H 1.W1IR/ and H 1.W ı
1
IR/

vanish. Applying the Poincaré–Lefschetz duality to the manifold W1 and using the
long exact sequence of the pair .W1; @W1/, we obtain

H 3.W1IR/DH1.W1; @W1IR/D zH0.@W1IR/DR:

Similarly, viewing W ı
1

as a manifold whose boundary is a connected sum of the two
boundary components of W1 , we obtain

H 3.W ı1 IR/DH1.W
ı

1 ; @W
ı

1 IR/D
zH0.@W

ı
1 IR/D 0:

Therefore, the connecting homomorphism ı in the above exact sequence must be an
isomorphism, which leads to the isomorphisms

H 2.W ı1 IR/DH 2.W1IR/DH 2.V IR/:

A similar long exact sequence relates the cohomology of W ı
2

and W2DW ı
2
[.I�D3/,

implying that

H 2.W ı2 IR/DH 2.W2IR/DH 2.RP3
IR/D 0:
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Since �1W2D �1W ı
2
DZ=2, both H 1.W2IR/ and H 1.W ı

2
IR/ vanish. The Mayer–

Vietoris exact sequence of the splitting W DW ı
1
[W ı

2
,

0 H 1.W IR/ H 1.W ı
1
IR/˚H 1.W ı

2
IR/ 0

H 2.W IR/ H 2.W ı
1
IR/˚H 2.W ı

2
IR/ H 2.I �S2IR/

H 3.W IR/ H 3.W ı
1
IR/˚H 3.W ı

2
IR/ 0

together with the isomorphisms H 3.W IR/DH1.W; @W IR/D zH0.@W IR/DR and
�1W D Z=2, implies that

H 1.W IR/D 0 and H 2.W IR/DH 2.V IR/:

5.4 Twisted coefficients

We will now do a similar calculation using the Mayer–Vietoris sequence of W D

W ı
1
[W ı

2
with twisted coefficients. Since W ı

1
is simply connected, the twisted

coefficients R� pull back to the trivial R–coefficients over W ı
1

and the cohomology
calculations from the previous section are unchanged. A direct calculation using
homotopy equivalences W2 'RP3 and W ı

2
'RP2 shows that

H 1.W ı2 IR�/D 0 and H 2.W ı2 IR�/DR:

The latter isomorphism is induced by the inclusion I � S2 ! W ı
2

, which can be
easily seen from the Mayer–Vietoris exact sequence of W2 DW ı

2
[ .I �D3/. Now,

consider the Mayer–Vietoris exact sequence of the splitting W D W ı
1
[W ı

2
with

twisted R–coefficients:

0 H 1.W IR�/ H 1.W ı
1
IR/˚H 1.W ı

2
IR�/ 0

H 2.W IR�/ H 2.W ı
1
IR/˚H 2.W ı

2
IR�/ H 2.I �S2IR/

H 3.W IR�/ H 3.W ı
1
IR/˚H 3.W ı

2
IR�/ 0

Keeping in mind that the map H 2.W ı
1
IR/!H 2.I �S2IR/ in this sequence is zero

and the map H 2.W ı
2
IR�/!H 2.I �S2IR/ is an isomorphism R!R, we conclude

that
H 1.W IR�/D 0 and H 2.W IR�/DH 2.V IR/:

5.5 Equivariant cohomology

Combining results of the previous two sections, we obtain H 1.W I ad P / D 0 and
H 2.W I ad P /DH 2.V IR3/. The action of � is compatible with these isomorphisms,
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from which we immediately conclude that

H 1
� .W I ad P /D 0

and H 2
� .W I ad P / is the fixed point set of the map H 2.V IR3/!H 2.V IR3/ obtained

by twisting ��W H 2.V IR/!H 2.V IR/ by the action on the coefficients R3!R3 .
The involution �� is minus the identity, which follows from the usual transfer argument
applied to the covering V !D4 , while the action on the coefficients is given by an
SO.3/ operator of second order. Such an operator must have a single eigenvalue 1

and a double eigenvalue �1, which leads us to the conclusion that rk H 2
� .W I ad P /D

2 � b2.V /. Similarly,
rk H 2

�;C.W I ad P /D 2 � bC
2
.V /:

5.6 Proof of Theorem 5.1

It follows from the discussion in Section 5.2 and the calculation in Section 5.5 that

indDA0 .˛u; ˛/D rk H 1
� .W I ad P /� rk H 2

C;� .W I ad P /D�2 � bC
2
.V /:

Taking into account (10) and (11), we obtain the formula

gr.˛/D 2 � bC
2
.V /��.F 0/C 1 .mod 4/:

To simplify it, let us compute �.V / in two different ways: �.V /D 1CbC
2
.V /Cb�

2
.V /

by definition, and �.V / D 2�.D4/� �.F 0/ D 2� �.F 0/ using the fact that V is a
double branched cover of D4 with branch set F 0 . Combining these formulas with the
knot signature formula of Viro [41], we obtain the desired result (remember that sign k

is always even):

gr.˛/D� sign V D� sign k D sign k .mod 4/:

6 Knot homology: gradings of other generators

Proposition 4.1 identified the critical points of the Chern–Simons functional with the
fibers of the map  W PRc.K

\;SU.2//! R0.K;SO.3//. Assuming that the space
R0.K;SO.3// is nondegenerate, all of these fibers (with the exception of the special
generator ˛ ) are Morse–Bott circles. In this section, we will compute their Floer
gradings using the equivariant index theory of Section 3.5. The actual generators of
the chain complex IC \.k/ are then obtained by perturbing each Morse–Bott circle of
index � into two points of indices � and �C 1, as in [20]. Our index calculation
will depend on whether an irreducible trace-free representation �0W �1K ! SO.3/
giving rise to the Morse–Bott circle C.�0/ is dihedral or not. The two cases will be
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considered separately, starting with the case when �0 is dihedral. If R0.K;SO.3//
fails to be nondegenerate, similar results hold after additional perturbations.

6.1 Dihedral representations

Let �0W �1K! SO.3/ be an irreducible trace-free dihedral representation. The pull-
back via � W M ! † identifies the Morse–Bott circle C.�0/ with the circle of the
conjugacy classes of equivariant representations of the form ˇ� W �1Y �Z=2!SO.3/,
where ˇ is a nontrivial reducible representation of �1Y and  is the representation
of Z=2 sending the generator to Ad k . These representations are equivariant in that
��.ˇ �  /D u � .ˇ �  / �u�1 with uD Ad i ; see Remark 4.3.

We wish to compute the equivariant index indD�
A
.ˇ � ; � �  /, where A is any equi-

variant connection on the cylinder R� .Y # RP3/ whose limits are the flat connections
ˇ �  and � �  over the negative and positive ends, respectively. The Morse–Bott
index of the circle corresponding to ˇ �  will then equal

(14) �D indD�A.ˇ � ; � �  /C sign k .mod 4/:

Proposition 6.1 Let ˇW �1Y ! SO.3/ be a nontrivial equivariant reducible represen-
tation. Then for any equivariant connection B on the cylinder R�Y whose limits are
the flat connections ˇ and � over the negative and positive ends,

indD�A.ˇ � ; � �  /D indD�B.ˇ; �/ .mod 4/:

Proof To compute the index on the left-hand side of this formula, we will apply the
formula of Proposition 3.11 to the manifold X D R� .Y # RP3/ with two product
ends. Since the metric on X is a product metric, the terms p1.TX / and e.TX / in the
integrand

yA.X / ch.SC/ ch.ad P /C D�2p1.A/�
1
2
p1.TX /� 3

2
e.TX /

will vanish, as will the topological terms �.F / and F �F , leading to the formula

indD�A.ˇ � ; � �  /D�
Z

X

p1.A/�
1
4
.h�� � ��� /�

1
4
.hˇ� C �ˇ� /

�
1
4
.h��� � �

�
�� /�

1
4
.h�ˇ� C �

�
ˇ� /;

where �ˇ� D �ˇ� .0/� �� .0/ and ��
ˇ�
D ��

ˇ�
.0/� ��

�
.0/ are �–invariants of the

manifold Y # RP3 .

The connection A in this formula is any equivariant connection whose limits are the
flat connections ˇ �  and � �  at the two ends of X , hence we are free to choose A

Algebraic & Geometric Topology, Volume 17 (2017)



Link homology and equivariant gauge theory 2665

to equal  over R� .RP3�D3/ and to be trivial in the gluing region. This determines
the integral term in the above formula as follows:Z

X

p1.A/D

Z
R�Y

p1.A/:

To evaluate the �–invariants, build a cobordism W from the disjoint union Y [RP3

to the connected sum Y # RP3 by attaching a 1–handle to Œ0; 1�� .Y [RP3/. The flat
connection ˇ� extends to W making it into a flat cobordism from .Y; ˇ/[ .RP3;  /

to .Y # RP3; ˇ �  /. It then follows from [5, Theorem 2.4] that

�ˇ� � �ˇ � � D signˇ� W � 3 sign W;

where �ˇ and � are �–invariants of the manifolds Y and RP3 , respectively. One can
easily see from the description of W that both signature terms in the above formula
vanish, implying that �ˇ� D �ˇC� . Since the involution � extends to W , a similar
argument using the index theorem of Donnelly [12] instead of [5, Theorem 2.4] shows
that ��

ˇ�
D ��

ˇ
C �� . Similar formulas also hold with � �  in place of ˇ �  .

Plugging all of this back into the above index formula and keeping in mind that
�� D �

�
�
D 0, we obtain

indD�A.ˇ � ; � �  /D�
Z

R�Y

p1.A/

�
1
4
.hˇ� C �ˇ/�

1
4
h�� �

1
4
.h�ˇ� C �

�
ˇ/�

1
4
h��� :

On the other hand, one can apply the formula of Proposition 3.11 to the manifold
X DR�Y to obtain

indD�A.ˇ; �/D�
Z

R�Y

p1.A/�
1
4
.hˇC �ˇ/�

1
4
h� �

1
4
.h�ˇC �

�
ˇ/�

1
4
h�� :

Therefore,

indD�A.ˇ � ; � �  /� indD�A.ˇ; �/D�
1
4
.hˇ� � hˇ/�

1
4
.h�� � h� /

�
1
4
.h�ˇ� � h�ˇ/�

1
4
.h��� � h�� /;

and the proof of the proposition reduces to a calculation with twisted cohomology.

Since Y is a rational homology sphere, H 1.Y I ad �/D 0, which implies that

h� D dim H 0.Y I ad �/D 3 and h�� D tr.Ad u/D�1:

It follows from a calculation in Section 5 that H 1.Y # RP3I ad.� � //D 0. Therefore,
h�� D dim H 0.Y I ad.� � //D 1 because H 0.Y I ad.� � // is the .C1/–eigenspace
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of Ad.k/W so.3/ ! so.3/. The operator Ad i acts as minus identity on the .C1/–
eigenspace of Ad k , making h�

��
D�1.

The calculation with ˇ �  will rely on the Mayer–Vietoris exact sequence of the
splitting Y # RP3 D Y0[RP3

0
with twisted coefficients:

0!H 0.Y # RP3
I ad.ˇ �  //!H 0.Y I adˇ/˚H 0.RP3

I ad  /

!H 0.S2
I ad �/!H 1.Y # RP3

I ad.ˇ �  //

!H 1.Y I adˇ/˚H 1.RP3
I ad  /! 0:

Since ˇ is reducible but nontrivial, H 0.Y I adˇ/ D R. Therefore, keeping in mind
that H 0.S2I ad �/DR3, H 0.RP3I ad  /DR, and H 1.RP3I ad  /D 0, we obtain

hˇ� � hˇ D 2 � dim H 0.Y # RP3
I ad.ˇ �  //:

The involution � induces involutions z�� on each of the groups in the Mayer–Vietoris
exact sequence comprising a chain map. Keeping in mind that the traces of z�� are
equal to �1 on both H 0.S2I ad �/DR3 and H 0.RP3I ad  /DR, we obtain

h�ˇ� � h�ˇ D 2 tr
�
z��jH 0.Y # RP3

I ad.ˇ �  //
�
� 2 tr

�
z��jH 0.Y I adˇ/

�
:

Even though both ˇ and  are reducible, the representation ˇ �  may be either
reducible or irreducible. In the former case, H 0.Y # RP3I ad.ˇ �  // D R is the
.C1/–eigenspace of the operator Ad kW so.3/! so.3/ on which z�� acts as minus
identity, therefore

hˇ� � hˇ D 2 and h�ˇ� � h�ˇ D 0:

In the latter case, H 0.Y # RP3I ad.ˇ �  //D 0, therefore

hˇ� � hˇ D 0 and h�ˇ� � h�ˇ D 2:

In both cases, we conclude that

indD�A.ˇ � ; � �  /D indD�A.ˇ; �/:

The result now follows from the fact that indD�
A
.ˇ; �/ D indD�

B
.ˇ; �/ .mod 4/ for

any choice of connections A and B on the cylinder R�Y whose limits are ˇ and �
over the negative and positive ends.

Remark 6.2 The formula of Proposition 6.1 holds as well for equivariant irreducible
representations ˇ , the proof requiring just minor adjustments.

Combining Proposition 6.1 with formula (14), we obtain the following formula for the
Floer grading.
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Corollary 6.3 Let ˇW �1Y ! SO.3/ be a nontrivial equivariant reducible representa-
tion. Then the Floer grading of the Morse–Bott circle arising from ˇ �  is given by

�D indD�B.ˇ; �/C sign k .mod 4/;

where B is an arbitrary equivariant connection on the infinite cylinder R�Y whose
limits are ˇ and � over the negative and positive ends.

The index indD�
B
.ˇ; �/ in the above corollary can be computed using the formula

(15) indD�B.ˇ; �/D
1
2

indDB.ˇ; �/C
1
2

ind.�;DB/.ˇ; �/:

According to Donnelly [12],

ind.�;DB/.ˇ; �/D
1

2

Z
F

.e.TF /Ce.NF //� 1
2
.h�� ��

�
� .0//.Y /�

1
2
.h�ˇC�

�
ˇ.0//.Y /;

where the integral term vanishes and h�
ˇ
D h�

�
D�1 as in the proof of Proposition 6.1.

Therefore,

(16) ind.�;DB/.ˇ; �/D 1� 1
2
� ��ˇ.Y /:

The �–invariants in this formula are difficult to compute in general but they can be
shown to vanish in several special cases, for example for two-bridge knots, as discussed
in Section 7.1.

6.2 Nondihedral representations

Let �0W �1K! SO.3/ be an irreducible trace-free representation which is not dihedral,
and assume that it is nondegenerate. Proposition 4.1(c) then tells us that the fiber C.�0/

consists of two circles which are permuted by the involution �k .

Lemma 6.4 The involution �k permuting the two circles in C.�0/ has degree zero
mod 4.

Proof This follows as in Lemma 2.5 whose proof in Section 3.7 needs to be amended
to allow for the 1–dimensional critical point sets C.�0/. This is easily accomplished
by replacing gr.�1 � �; �/ with gr.�1 � �; �/C 1 in the first two displayed formulas.

Therefore, the two circles in C.�0/ have the same Morse–Bott index �. Perturbing
both of them, we obtain four generators, two of grading � and two of grading �C 1.
The calculation of the previous section leading up to the formula of Corollary 6.3 can
be easily amended to work in the current situation, producing the following result.
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Proposition 6.5 Let ˇW �1Y ! SO.3/ be an irreducible representation. Then the
Floer grading of the two Morse–Bott circles arising from ˇ �  is

�D indD�B.ˇ; �/C sign k .mod 4/;

where B is an arbitrary equivariant connection on the infinite cylinder R�Y whose
limits are ˇ and � over the negative and positive ends.

The index indD�
B
.ˇ; �/ in this proposition can be computed using the formula (15).

Since h�
ˇ

now vanishes, the formula (16) takes the form

(17) ind.�;DB/.ˇ; �/D
1
2
�

1
2
� ��ˇ.Y /:

Remark 6.6 Let �.t/ be the Alexander polynomial of a knot k � S3 normalized so
that �.t/D�.t�1/ and �.1/D1. The knots k with �.�1/D1 are precisely the knots
whose double branched covers Y are integral homology spheres, and which are known
to have no dihedral representations in R0.K;SO.3//; see [23, Theorem 10] or [11,
Proposition 3.4]. Therefore, all the generators in IC \.k/ are of the nondihedral type
studied in this section. In addition, sign kD0 .mod 8/ because 1D�.�1/Ddet.i �Q/,
where Q is the (even) quadratic form of the knot.

7 Knot homology: explicit calculations

The equivariant techniques work particularly well for Montesinos knots, including
two-bridge and pretzel knots, as we will demonstrate in this section. We begin with
two-bridge knots, then discuss the Montesinos knots whose double branched covers
are integral homology spheres, and then move on to the general Montesinos knots. We
finish with a short section on torus knots.

7.1 Two-bridge knots

Let p be an odd positive integer and k a two-bridge knot of type �p=q in the 3–sphere.
Its double branched cover Y is the lens space L.p; q/ oriented as the .�p=q/–surgery
on an unknot in S3 . One can use Proposition 3.1 to show that all representations
ˇW �1Y ! SO.3/ are equivariant. The invariant ��

ˇ
.Y / of formula (16) has been

shown to vanish in [36, Proposition 27]. Therefore, ind.�;DB/.ˇ; �/D 1 and formula
(15) reduces to

indD�B.ˇ; �/D
1
2
.indDB.ˇ; �/C 1/ .mod 4/:
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Let ˇW �1Y ! SO.3/ be a representation sending the canonical generator of �1Y to
the adjoint of exp.2� i`=p/. The quantity indDB.ˇ; �/C 1 .mod 8/ was shown by
Sasahira [34, Corollary 4.3] (see also Austin [7]) to equal

2N1.k1; k2/CN2.k1; k2/ .mod 8/;

where the integers 0<k1<p and 0<k2<p are uniquely determined by the equations

k1 D ` .mod p/; k2 D�r` .mod p/; qr D 1 .mod p/;

and

N1.k1; k2/D #
˚
.i; j / 2 Z2

j i C qj D 0 .mod p/; ji j< k1; jj j< k2

	
;

N2.k1; k2/D #
˚
.i; j / 2 Z2

j i C qj D 0 .mod p/ and
either ji j D k1; jj j< k2 or ji j< k1; jj j D k2

	
:

Example 7.1 The figure-eight knot k is the two-bridge knot of type �5
3

. Its double
branched cover is the lens space L.5; 3/, whose fundamental group has no irreducible
representations and has two nontrivial reducible representations, up to conjugacy. For
these two representations, ` equals 1 and 2 and, by Sasahira’s formula, indDB.ˇ; �/C1

equals 2 and 4 mod 8, respectively. Since sign k D 0, the corresponding Morse–Bott
circles have indices � D 1 and 2 mod 4 by Corollary 6.3. After perturbation, they
contribute the generators of Floer indices 1, 2 and 2, 3 mod 4, respectively. The ranks
of the chain groups IC \.k/ are then equal to .1; 0; 0; 0/C .0; 1; 1; 0/C .0; 0; 1; 1/D
.1; 1; 2; 1/. This equals the Khovanov homology of (the mirror image of) k , hence we
conclude from the Kronheimer–Mrowka spectral sequence that the ranks of I \.k/ also
equal .1; 1; 2; 1/.

7.2 Special Montesinos knots

Let p , q , and r be pairwise relatively prime positive integers, and view the Brieskorn
homology sphere †.p; q; r/ as the link of the singularity at zero of the complex
polynomial xpCyqC zr . The involution � induced by complex conjugation on the
link makes †.p; q; r/ into a double branched cover of S3 with branch set a Montesinos
knot which will be called k.p; q; r/; see for instance [36, Section 7].

Since †.p; q; r/ is an integral homology sphere, apart from the trivial one, all rep-
resentations ˇW �1.†.p; q; r// ! SO.3/ are irreducible. Fintushel and Stern [15]
showed that all irreducible representations ˇ are nondegenerate and, up to conjuga-
tion, there are �2�.†.p; q; r// of them, where �.†.p; q; r// is the Casson invariant
of †.p; q; r/. The representations ˇ are also equivariant (see [36, Proposition 8]),
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hence each conjugacy class of them contributes four generators to the chain complex
IC \.k.p; q; r//, two of grading �.ˇ/ and two of grading �.ˇ/C 1.

Theorem 7.2 The ranks of the chain groups IC \.k.p; q; r// are .1Cb; b; b; b/, where
b D�2�.†.p; q; r//.

Proof Our proof will use the flat cobordism of Fintushel and Stern [15], which is
constructed as follows. The mapping torus of the Seifert fibration †.p; q; r/! S2

is an orbifold with three singular points whose neighborhoods are open cones over
lens spaces. The compact manifold obtained from W by excising these cones is an
equivariant flat cobordism W0 between †.p; q; r/ and the lens spaces. One can easily
see that the intersection form on H 2.W0IR/DR is negative definite.

An equivariant version of [5, Theorem 2.4] together with the vanishing of the ��–
invariants of lens spaces [36, Proposition 27] imply that

��ˇ.†.p; q; r//D signˇ.�;W0/� sign� .�;W0/;

where
signˇ.�;W0/D tr.z��jH 2

C.W0I adˇ//� tr.z��jH 2
�.W0I adˇ//;

and similarly for sign� .�;W0/. It follows from [15, Proposition 2.5 and Lemma 2.6] that
H 2.W0I adˇ/D 0, hence ��

ˇ
.†.p; q; r//D tr.Ad u/D�1 and ind.�;DB/.ˇ; �/D 1

by formula (17). Proposition 6.5 and formula (15) now imply that

�.ˇ/D 1
2
.indDB.ˇ; �/C 1/:

The index indDB.ˇ; �/ in this formula can be computed explicitly using either [15]
or Corollary 7.7, however, this alone will not lead us to the closed-form formula of
Theorem 7.2.

Instead, we will use the 4–periodicity in the instanton Floer homology due to Frøyshov
[17, Theorem 2]. In the case at hand, the Floer homology of †.p; q; r/ equals its Floer
chain complex, whose generators are the conjugacy classes of irreducible represen-
tations ˇ , hence the 4–periodicity simply means that there is a (noncanonical) free
involution of degree 4 on these generators. For any pair of generators ˇ1 and ˇ2 ,

�.ˇ2/��.ˇ1/D
1
2
.indDB.ˇ2; �/� indDB.ˇ1; �// .mod 4/;

which is exactly half the relative grading of the generators ˇ1 and ˇ2 in the Floer
chain complex of †.p; q; r/. For any involutive pair .ˇ1; ˇ2/, we have

�.ˇ2/��.ˇ1/D 2 .mod 4/;

therefore, each such pair contributes .2; 2; 2; 2/ to the chain complex IC \.k.p; q; r//.
The special generator ˛ resides in degree zero so the result follows.
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Example 7.3 †.2; 3; 7/ is a double branched cover of S3 whose branch set k.2; 3; 7/

is the pretzel knot P .�2; 3; 7/. Since �.†.2; 3; 7//D�1, we conclude that the ranks
of the chain groups IC \.P .�2; 3; 7// are .3; 2; 2; 2/. This is consistent with the
calculation in [18, Section 5].

We expect that the formula of Theorem 7.2 can be proved for all Seifert fibered ho-
mology spheres †.a1; : : : ; an/ and the corresponding Montesinos knots k.a1; : : : ; an/

using �–equivariant perturbations of [38] modeled after the perturbations of Kirk
and Klassen [22]. Note that the action of H 1.KIZ=2/ on the conjugacy classes of
projective representations is free hence it causes no equivariant transversality issues.

7.3 General Montesinos knots

Let .a1; b1/; : : : ; .an; bn/ be pairs of integers such that, for each i , the integers ai

and bi are relatively prime and ai is positive. Burde and Zieschang [9, Chapter 7]
associated with these pairs a Montesinos link K..a1; b1/; : : : ; .an; bn// and showed
that its double branched cover is a Seifert fibered manifold Y with unnormalized Seifert
invariants .a1; b1/; : : : ; .an; bn/. In particular,

�1Y D hx1; : : :xn; h j h central; x
ai

i D h�bi ; x1 � � �xn D 1i;

with the covering translation � W Y ! Y acting on the fundamental group by the rule

��.h/D h�1; ��.xi/D x1 � � �xi�1x�1
i x�1

i�1 � � �x
�1
1 for i D 1; : : : ; nI

see Burde and Zieschang [9, Proposition 12.30]. The knots k.a1; : : : ; an/ of the
previous section are of the type K..a1; b1/; : : : ; .an; bn//; we omitted the parameters
.b1; : : : ; bn/ from the notation because they can be uniquely recovered from the pairwise
relatively prime a1; : : : ; an up to isotopy of the knot. All two-bridge and pretzel knots
and links are special cases of Montesinos knots and links. In this section, we will only
be interested in Montesinos knots; the case of Montesinos links of two components
will be addressed in Section 8.3.

Let k be a Montesinos knot K..a1; b1/; : : : ; .an; bn// and Y the double branched
cover of S3 with branch set k . The manifold Y need not be an integral homology
sphere; in fact, one can easily see that its first homology is a finite abelian group of
order

jH1.Y IZ/j D

� nX
iD1

bi=ai

�
� a1 � � � an:

Note that this integer is always odd because Y is a Z=2 homology sphere.
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All reducible representations ˇW �1Y ! SO.3/ are equivariant because the involution
��W H1.Y /! H1.Y / acts as multiplication by �1; see Proposition 3.1. There are
no irreducible representations for n � 2. If n D 3, all irreducible representations
are nondegenerate and equivariant, which can be shown using a minor modification
of the arguments of [15, Proposition 2.5] and [36, Proposition 30]. For n � 4, one
encounters positive-dimensional manifolds of representations; the action of �� on
these manifolds was described in [38], together with equivariant perturbations making
them nondegenerate. This discussion, together with Propositions 4.1 and 4.2, identifies
the generators of the chain complex IC \.k/ for all Montesinos knots in terms of
representations for Seifert fibered manifolds, which are well known. An independent
calculation of the generators of IC \.k/ for pretzel knots k with nD 3 can be found
in Zentner [43].

Let W0 be the mapping cylinder of the Seifert fibration Y ! S2 with excised open
cones around its singular points. Then W0 is a cobordism from a disjoint union of the
lens spaces L.ai ;�bi/ to Y .

Lemma 7.4 W0 is a flat cobordism provided a1 � � � anD lcm.a1; : : : ; an/�jH1.Y IZ/j.

Proof The fundamental group �1W0 is obtained from �1Y by setting the homotopy
class h 2 �1Y of the circle fiber equal to one. Since h is a central element in �1Y ,
every irreducible representation ˇW �1Y ! SO.3/ has the property that ˇ.h/D 1. This
property need not hold for reducible representations but it does if hD 1 in the first
homology group H1.Y /. The algebraic condition of the lemma ensures exactly that;
see Lee and Raymond [26, page 331].

To avoid dealing with perturbations, we will assume from now on that our knot k is a
Montesinos knot of type K..a1; b1/.a2; b2/; .a3; b3// and that W0 is a flat cobordism.
We wish to calculate Floer gradings of the generators in the chain complex IC \.k/.
Recall that every conjugacy class of nontrivial reducible representations ˇW �1Y !

SO.3/ gives rise to two generators of gradings �.ˇ/ and �.ˇ/C1, and every conjugacy
class of irreducible representations to four generators, two of grading �.ˇ/ and two of
grading �.ˇ/C 1. The trivial representation as usual gives rise to just one generator ˛
of grading sign k .

Lemma 7.5 For any nontrivial representation ˇW �1Y ! SO.3/, we have

�.ˇ/D sign kC 1
2
.indDB.ˇ; �/C 1/ .mod 4/:

Proof This formula holds for all irreducible representations ˇ by the same argument
as in the proof of Theorem 7.2. That argument can be easily amended for nontrivial
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reducible representations ˇW �1Y ! SO.3/ by using (16) in place of (17). The �–
invariant in formula (16) is given by the formula

��ˇ.Y /D signˇ.�;W0/� sign� .�;W0/;

with sign� .�;W0/D 1. To compute the cohomology of W0 with coefficients in adˇ ,
write ad P DR˚L, where L is a line bundle with a nontrivial flat connection. Then
H 2.W0IL/D 0 by the argument of [15, Lemma 2.6] and H 2.W0IR/DR. Since the
manifold W0 is negative definite, we easily conclude that signˇ.�;W0/D 1. Therefore,
��
ˇ
.Y /D 0, and the result follows.

To complete the calculation of Floer gradings, we only need to compute the index
indDB.ˇ; �/. This can be done by extending the formulas of Fintushel and Stern [15]
from integral homology spheres to the more general situation at hand. We will restrict
ourselves to the relatively easy case of odd ai and leave the case of even ai open
because it would require passing to a double branched cover as in the proof of [15,
Theorem 3.7].

Given a flat cobordism W0 , any representation ˇW �1.Y /! SO.3/ gives rise to a
representation �1.W0/! SO.3/ and to representations ˇi W �1.L.ai ;�bi//! SO.3/.
Let us assume that ai are odd and ˇi ¤ � for i D 1; : : : ;m, and that ˇi D � for
i DmC 1; : : : ; 3. Applying the excision principle for the ASD operator twice, first
to R�L.ai ;�bi/ with i D 1; : : : ;m, and then to W0 with the attached product ends,
we obtain

�3D indDB.�; �/D indDB.�; ˇi/C1C indDB.ˇi ; �/

�3D indDB.W0; �; �/D

mX
iD1

.indDB.�; ˇi/C1/C indDB.W0/C1C indDB.ˇ; �/;

where DB.W0/ stands for the ASD operator on W0 twisted by a flat connection B

whose holonomy is the representation �1.W0/! SO.3/. A similar argument with
even ai does not work because representations ˇi and � may end up living in different
SO.3/–bundles.

Lemma 7.6 Let ˇW �1.Y /! SO.3/ be a nontrivial representation. Then indDB.W0/

D�1 if ˇ is reducible, and indDB.W0/D 0 if ˇ is irreducible.

Proof The proof of [15, Proposition 3.3] implies the formula for irreducible ˇ imme-
diately, and for reducible ˇ after a minor modification. To be precise, let us assume
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that ˇ is reducible. The index at hand equals h1�h0�h2 , where h0 , h1 , and h2 are
the Betti numbers of the elliptic complex

0!�0.W0; ad P /
�dB
���!�1.W0; ad P /

d
C

B
��!�2

C.W0; ad P /:

Since B has 1–dimensional stabilizer we immediately conclude that h0 D 1. To
compute the remaining Betti numbers, write ad P DR˚L, where L is a line bundle
with a nontrivial flat connection. The argument of [15, Lemma 2.6] can be used to show
that the homomorphisms H 1.W0IL/ ! H 1.Y IL/ and H 2.W0IL/ ! H 2.Y IL/

induced by the inclusion Y ! W0 are injective. Both H 1.W0IR/ and H 1.Y IR/
vanish, and the long exact sequence of the pair .W0;Y / shows that the kernel of the
map H 2.W0IR/!H 2.Y IR/ is 1–dimensional. Keeping in mind that the manifold
W0 is negative definite, we conclude as in the proof of [15, Proposition 3.3] that
h1 D h2 D 0.

Corollary 7.7 Let ˇW �1.Y /! SO.3/ be a nontrivial representation such that ai is
odd and ˇi ¤ � for i D 1; : : : ;m, and ˇi D � for i DmC 1; : : : ; 3. Then

�.ˇ/D sign k � 1C
1

2

mX
iD1

.indDB.ˇi ; �/C 3/ .mod 4/;

where the index indDB.ˇi ; �/ on the infinite cylinder R�L.ai ;�bi/ can be computed
as in Section 7.1.

Example 7.8 Let us view the pretzel knot k D P .�2; 3; 3/ as the Montesinos knot
K..2;�1/; .3; 1/; .3; 1//. It obviously satisfies the condition of Lemma 7.4. Its dou-
ble branched cover is a Seifert fibered manifold Y whose fundamental group has
presentation

hx1;x2;x3;x4; h j h central; x2
1 D h; x3

2 D h�1; x3
3 D h�1; x1x2x3 D 1i:

This group admits one nontrivial reducible representation ˇ with ˇ.x1/D 1, ˇ.x2/D

Ad.exp.2� i=3// and ˇ.x3/D Ad.exp.�2� i=3// contributing generators of gradings
� and �C 1 to the chain complex IC \.k/. To compute �, we apply the formulas
of Section 7.1 to the lens space L.3;�1/DL.3; 2/ twice to obtain indDB.ˇ2; �/D

indDB.ˇ3; �/D 1 .mod 8/. Since sign k D 2 .mod 4/, it follows from Corollary 7.7
that �D 1 .mod 4/ hence the contribution of ˇ to the chain complex is .0; 1; 1; 0/.
The special generator ˛ contributes .0; 0; 1; 0/.

The group �1Y also admits one irreducible representation ˇ such that all of the
induced representations ˇ1W �1.L.2; 1//! SO.3/ and ˇ2; ˇ3W �1.L.3; 2//! SO.3/
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are nontrivial. Corollary 7.7 no longer applies, hence we can only conclude that the
contribution of this representation to IC \.k/ is .2; 2; 0; 0/ up to cyclic permutation.

This information can be combined with the fact that the Kronheimer–Mrowka spectral
sequence of the knot k D P .�2; 3; 3/ is trivial and that the Khovanov homology
groups of k have ranks .2; 1; 1; 1/; see Lobb and Zentner [28]. It then follows that
the ranks of the chain groups IC \.k/ must be .2; 1; 2; 2/, with the contribution of the
irreducible being .2; 0; 0; 2/, and that the boundary operator IC

\
2
.k/! IC

\
3
.k/ must

be nontrivial.

A similar calculation can be done for all Montesinos knots K..a1; b1/; : : : ; .an; bn//

satisfying the condition of Lemma 7.4 with the help of the equivariant perturbations
of [38].

7.4 Torus knots

Let p and q be positive integers which are odd and relatively prime. The double
branched cover of the right-handed .p; q/–torus knot Tp;q is the Brieskorn homol-
ogy sphere †.2;p; q/. According to Fintushel and Stern [15], all irreducible SO.3/
representations of the fundamental group of †.2;p; q/ are nondegenerate and, up
to conjugacy, there are � sign.Tp;q/=4 of them. All of these representations are
equivariant [11, Section 4.2], hence each of them contributes four generators to the
chain complex of I \.Tp;q/, two of index � and two of index �C 1. Calculating �
would require equivariant index theory on the double branched cover of Tp;q which is
currently not sufficiently well developed. We know that the special generator resides in
degree zero because sign Tp;q D 0 .mod 8/, and we conjecture that the ranks of the
chain groups IC \.Tp;q/ are

.1C a; a; a; a/; where aD� sign.Tp;q/=4:

This conjecture is consistent with the calculations for torus knots by Hedden, Herald
and Kirk [20].

Let us now assume that p and q are relatively prime positive integers such that
p is odd and q D 2r is even. The double branched cover Y , which is no longer
an integral homology sphere, is the link of the singularity at zero of the complex
polynomial x2C yp C z2r D 0, with the covering translation given by the formula
�.x;y; z/D .�x;y; z/. Neumann and Raymond [30] showed that Y admits a fixed-
point-free circle action making it into a Seifert fibration over S2 with the Seifert
invariants

f.a1; b1/; : : : ; .an; bn/g D f.1; b1/; .p; b2/; .p; b2/; .r; b3/g;
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where b1 � pr C 2b2 � r C b3 � p D 1. In principle, this allows for calculation of the
generators in the Floer chain complex IC \.Tp;q/.

Example 7.9 Let us consider the torus knot T3;4 . The Seifert invariants of the mani-
fold Y are f.1;�1/; .2; 1/; .3; 1/; .3; 1/g, while those of the manifold in Example 7.8
are f.2;�1/; .3; 1/; .3; 1/g. These match for the good reason that P .�2; 3; 3/ and T3;4

are the same knot. The calculation of Example 7.8 then tells us that the ranks
of the chain groups IC \.T3;4/ are .2; 1; 2; 2/, with a nontrivial boundary operator
IC

\
2
.T3;4/! IC

\
3
.T3;4/. This is consistent with [20].

8 Link homology of general two-component links

This section deals with general two-component links LD `1[`2 and not just the links
L D k\ used in the definition of the knot Floer homology I \.k/. After computing
the Euler characteristic of I�.†;L/, we explicitly compute the Floer chain groups for
some links L with particularly simple double branched covers.

8.1 Euler characteristic

Let L D `1 [ `2 be a two-component link in an integral homology sphere †. The
linking number `k.`1; `2/ is well defined up to a sign for nonoriented links L.

Theorem 8.1 The Euler characteristic of the Floer homology I�.†;L/ of a two-
component link LD `1[ `2 equals ˙`k.`1; `2/.

Proof The Floer excision principle can be used as in [24] to establish an isomorphism
between I�.†;L/ and the sutured Floer homology of L. The latter is the Floer homol-
ogy of the 3–manifold X' obtained by identifying the two boundary components of
S3� int N.L/ via an orientation-reversing homeomorphism 'W T 2! T 2 . According
to [19, Lemma 2.1], the homeomorphism ' can be chosen so that X' has integral
homology of S1 �S2 . The result then follows from [19, Theorem 2.3], which asserts
that the Euler characteristic of the sutured Floer homology of L equals ˙`k.`1; `2/.

Theorem 8.1 implies in particular that the Euler characteristic of I \.k/ equals ˙1,
which is the linking number of the two components of the link k\ . This also follows
from the fact that the critical point set of the orbifold Chern–Simons functional used to
define I \.k/ consists of an isolated point and finitely many isolated circles, possibly
after a perturbation. An absolute grading on I \.k/ was fixed in [24] so that the grading
of the isolated point is even; this is consistent with our Theorem 5.1 because sign k is
always even. The Euler characteristic of I \.k/ then equals C1. We do not know how
to fix an absolute grading on I�.†;L/ for a general two-component link L.
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8.2 Pretzel link P.2 ;�3;�6/

This is the two-component link L whose double branched cover is the Seifert fibered
manifold M with unnormalized Seifert invariants .2; 1/, .3;�1/, and .6;�1/; see for
instance [37, Section 4]. In particular,

�1M D hx;y; z; h j h central; x2
D h�1; y3

D h; z6
D h; xyz D 1i;

with the covering translation � W M !M acting on the fundamental group by the rule

��.h/D h�1; ��.x/D x�1; ��.y/D xy�1x�1; ��.z/D xyz�1y�1x�1
I

see Burde and Zieschang [9, Proposition 12.30]. The manifold M has integral homol-
ogy of S1 �S2 . In fact, it can be obtained by 0–surgery on the right-handed trefoil,
so that �1M D �1K=h�i, where K is the exterior of the trefoil and � is its longitude.
The relation �D 1 shows up as the relation z6 D h in the above presentation of �1M .

We will use this surgery presentation of M to describe representations �1M ! SO.3/
with nontrivial w2 2H 2.M IZ=2/D Z=2. According to Example 2.2, the conjugacy
classes of such representations are in one-to-two correspondence with the conjugacy
classes of representations �W �1K! SU.2/ such that �.�/D�1. In the terminology
of Section 2.2, these � are projective representations �W �1M ! SU.2/, and the
group H 1.M IZ=2/ D Z=2 acts on them freely, providing the claimed one-to-two
correspondence. Therefore, we wish to find all the SU.2/ matrices �.h/, �.x/, �.y/,
and �.z/ such that

�.x/2 D �.h/�1; �.y/3 D �.h/; �.z/6 D��.h/; �.x/�.y/�.z/D 1

and such that �.h/ commutes with �.x/, �.y/, and �.z/. Since � is irreducible, we
conclude as in Fintushel and Stern [15, Section 2] that �.h/D�1 and that �.x/ is con-
jugate to i , �.y/ is conjugate to e�i=3 , and �.z/ is conjugate to either e�i=3 or e2� i=3 .
These give rise to two conjugacy classes of projective representations �W �1M!SU.2/
corresponding to a single conjugacy class of representations Ad �W �1M ! SO.3/.

The arguments of [15, Proposition 2.5] and [36, Proposition 8] can be easily adapted to
conclude that the representation Ad � is nondegenerate and equivariant. It gives rise
to a single Z=2˚Z=2 orbit of generators in IC�.S

3;L/. Since the linking number
between the components of L is even, Lemma 2.5 tells us that the (relative) Floer
indices of these four generators are 0; 0; 2; 2 .mod 4/. The boundary operators then
must vanish, and we conclude that the Floer homology groups Ik.S

3;L/ are free
abelian groups of ranks .2; 0; 2; 0/, up to cyclic permutation.

Remark 8.2 The same result can be obtained independently using the isomorphism
between I�.S

3;L/ and the sutured Floer homology of L defined in [25]. The latter
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is the Floer homology of the manifold X' obtained by identifying the two boundary
components of X D S3 � int N.L/ via an orientation-reversing homeomorphism
'W T 2 ! T 2 . A surgery description of X' can be found in [19]; computing its
Floer homology is then an exercise in applying the Floer exact triangle to this surgery
description.

8.3 Montesinos links

Let .a1; b1/; : : : ; .an; bn/ be pairs of integers such that, for each i , the integers ai

and bi are relatively prime and ai is positive. Associated with these pairs is the
Montesinos link K..a1; b1/; : : : ; .an; bn//, whose definition can be found for instance
in [9, Chapter 7]. All two-bridge and pretzel links are Montesinos links; for example,
the link P .2;�3;�6/ considered in the previous section is the Montesinos link with the
parameters .2; 1/, .3;�1/ and .6;�1/. The double branched covers M of Montesinos
links were described in Section 7.3. In this section, we will only be interested in
Montesinos links whose double branched covers have integral homology of S1 �S2 ,
a condition that is easily checked by abelianizing �1M . This condition guarantees
that the unique SO.3/–bundle P !M with nontrivial w2.P / 2H 2.M IZ=2/DZ=2
does not carry any reducible connections.

The generators of Floer chain complex of the link K..a1; b1/; : : : ; .an; bn// and their
gradings can be computed explicitly using the equivariant theory developed in this
paper; here is a brief outline.

Since M is Seifert fibered, the representations �1M ! SO.3/ with nontrivial w2

can be described in terms of their rotation numbers using a slight modification of
the Fintushel–Stern algorithm [15]; complete details can be found in [35]. If nD 3,
there are finitely many conjugacy classes of such representations, all of which are
nondegenerate and equivariant with the conjugating element of order 2. If n � 4,
the same conclusion holds after using �–equivariant perturbations similar to those
described in [38]. Note that no equivariant transversality issues are caused by the action
of H 1.M IZ=2/ or H 1.X IZ=2/ because both actions are free. In what follows, we
will restrict ourselves to the case when nD 3; however, we expect that the same results
will hold for all n.

The relative indices of the operator DA on R�M were computed explicitly in [35]
and shown to be even. The relative Floer gradings of the generators in the Floer
chain complex of the link K..a1; b1/; .a2; b2/; .a3; b3// are equal to one half times
those indices, by the argument of [36, Section 5.2] modified to take into account the
nontriviality of the bundle P !M .
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The final outcome of this calculation can be stated in terms of the Floer homology
groups I�.M;P / of the unique admissible bundle P !M as follows. The groups
I�.M;P / are free abelian of ranks .n0; n1; n2; n3/, up to cyclic permutation, with
either n0 D n2 D 0 or n1 D n3 D 0. Assume for the sake of concreteness that
n0 D n2 D 0. Then the Floer chain groups of K..a1; b1/; : : : ; .an; bn//, up to cyclic
permutation, have the ranks

(18) .2n1; 2n3; 2n1; 2n3/:

Example 8.3 The double branched cover M of the Montesinos link

LDK..2; 1/; .5;�2/; .10;�1//

can be obtained by 0–surgery on the right-handed torus knot T2;5 . Applying the Floer
exact triangle to this surgery, we see that I�.M;P /˚I�C4.M;P /D I�.†.2; 15; 11//,
where we use the mod 8 grading in both groups. Fintushel and Stern [15] showed3 that
the groups Ik.†.2; 5; 11// are free abelian of the ranks .0; 1; 0; 2; 0; 1; 0; 2/. Therefore
n1 D 1, n3 D 2, and the Floer chain groups of the link L have the ranks .2; 4; 2; 4/.

In fact, the integers n1 and n3 in the formula (18) can be computed much more easily
in terms of classical knot invariants without any reference to the Floer homology. They
are known to satisfy the equations

�n1� n3 D �
0.M / and � n1C n3 D x�

0.M /;

where �0.M / is the Casson invariant of M and x�0.M / its Neumann invariant [29].
The former equation follows from the Casson surgery formula and the latter from [37].
The Casson and Neumann invariants can then be computed explicitly using the formulas

�0.M /D�1
2
��00M .1/ and x�0.M /D˙`k.`1; `2/;

where �M .t/ is the Alexander polynomial of M normalized so that �M .1/D 1 and
�.t/D�.t�1/, and `k.`1; `2/ is the linking number between the components of the
link L. Note that there is no need to fix the sign in the above formula because switching
that sign preserves the answer (18) up to cyclic permutation.

Appendix: Homology of double branched covers

This section contains a proof of Proposition 3.2 which was postponed until later in
Section 3.1.

3We adjusted the formulas of [15] to take into account that Fintushel and Stern work with SD rather
than ASD equations.

Algebraic & Geometric Topology, Volume 17 (2017)



2680 Prayat Poudel and Nikolai Saveliev

A.1 Computing H�.M IZ=2/

In this section, we will compute the groups H�.M IZ=2/ using the transfer homomor-
phism approach of [27].

The transfer homomorphisms can be defined in the following two equivalent ways;
see for instance [14, Section 3]. For each singular simplex � W � ! †, choose a
lift z� W � ! M and define the chain map �!W C�.†/ ! C�.M / by the formula
�!.�/ D z� C � ı z� . This map is obviously independent of the choice of z� , and
it induces homomorphisms �!W H�.†/ ! H�.M / and � !W H�.M / ! H�.†/ in
homology and cohomology with arbitrary coefficients, called transfer homomorphisms.
Another way to define �! is as the map that makes the diagram

H�.†/ H�.†/

H�.M / H�.M /

�! ��

PD

PD

commute, where PD stands for the Poincaré duality isomorphism, and similarly for � ! .

From now on, all chain complexes and (co)homology will be assumed to have Z=2
coefficients. It is then immediate from the definition of �!W C�.†/! C�.M / that
ker�! D C�.L/ and that we have a short exact sequence of chain complexes

0 C�.†;L/ C�.M / C�.†/ 0.
�! ��

This exact sequence induces long exact sequences in homology

0 H3.†;L/ H3.M / H3.†/
�!

H2.†;L/ H2.M / H2.†/
�!

H1.†;L/ H1.M / H1.†/ 0
�!

and in cohomology

0 H 1.†/ H 1.M / H 1.†;L/
� !

H 2.†/ H 2.M / H 2.†;L/
� !

H 3.†/ H 3.M / H 3.†;L/ 0.
� !

Combining these with the long exact sequence of the pair .†;L/, we obtain the
following result.
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Proposition A.1 Let � W M ! † be a double branched cover over an integral ho-
mology sphere † with branching set a two-component link L. Then Hi.M IZ=2/D
H i.M IZ=2/ is isomorphic to Z=2 if i D 0; 1; 2; 3, and is zero otherwise.

A.2 The cup product on H �.M IZ=2/

This section is devoted to the proof of the following result. We continue working with
Z=2 coefficients.

Proposition A.2 The cup product H 1.M /�H 1.M /!H 2.M / is the bilinear form
Z=2�Z=2! Z=2 with the matrix `k.`1; `2/ .mod 2/.

Proof We will reduce the cup product calculation to intersection theory using the
commutative diagram

H 1.M /�H 1.M / H 2.M /

H2.M /�H2.M / H1.M /

PD PD

[

�

where PD stands for the Poincaré duality isomorphisms and � for the intersection
product. The transfer homomorphism �!W H�.†;L/!H�.M / will give us explicit
generators of H1.M / and H2.M / that we need to proceed with this approach.

We begin with the group H1.M /. Note that H1.†;L/ D Z=2 is generated by the
homology class Œw� of any embedded arc w � † whose endpoints belong to two
different components of L. The transfer homomorphism �!W H1.†;L/! H1.M /

maps the homology class of w to that of the circle ��1.w/. Since �! is an isomorphism,
we conclude that the circle ��1.w/ represents a generator of H1.M /.

To describe a generator of H2.M /, observe that H2.†;L/DZ=2˚Z=2 is generated
by the homology classes of Seifert surfaces S1 and S2 of the knots `1 and `2 . We
will assume that S1 and S2 intersect transversely in a finite number of circles and
arcs, and note that S1\S2 is homologous to `k.`1; `2/ �w . We claim that the closed
orientable surfaces ��1.S1/ and ��1.S2/, representing the homology classes �!.ŒS1�/

and �!.ŒS2�/, are homologous to each other and generate H2.M /. To see this, we will
appeal to Theorem 2 of [27], which supplies us with the commutative diagram with an
exact row

0 H3.†/ H2.†;L/ H2.M / 0

H1.L/

d� �!

@�
f
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where f .Œ†�/D Œ`1�C Œ`2� and @� is the connecting homomorphism in the long exact
sequence of the pair .†;L/. One can easily see that @� is an isomorphism. Since
@�.ŒS1�C ŒS2�/D Œ`1�C Œ`2�D f .Œ†�/, we conclude that ŒS1�C ŒS2� 2 im d� D ker�!

and hence �!.ŒS1�/D �!.ŒS2�/ is a generator of H2.M /.

The calculation of the intersection form H2.M /�H2.M /!H1.M / is now completed
as follows:

Œ��1.S1/� � Œ�
�1.S2/�D Œ�

�1.S1/\�
�1.S2/�

D Œ��1.S1\S2/�D `k.`1; `2/ � Œ�
�1.w/�:

Remark A.3 Let ˇ 2H 1.M /D Z=2 be a generator and assume that `k.`1; `2/ is
odd. Proposition A.2 implies that ˇ[ˇ 2H 2.M / is nontrivial, and a straightforward
argument with Poincaré duality shows that ˇ[ˇ[ˇ generates H 3.M /. If `k.`1; `2/

is even then ˇ[ˇD 0, and the cup product of ˇ with a generator of H 2.M / generates
H 3.M /. This gives a complete description of the cohomology ring H�.M /.

Example A.4 The real projective space RP3 is a double branched cover over the Hopf
link in S3 with linking number ˙1. Choose Seifert surfaces S1 and S2 to be the
obvious disks intersecting in a single interval w . Then ��1.S1/ and ��1.S2/ are two
copies of RP2 , each represented as a double branched cover of a disk with branching set
a disjoint union of a circle and a point. These two copies of RP2 intersect in the circle
��1.w/, thereby recovering the familiar cup product structure on H�.RP3IZ=2/.
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Higher Toda brackets and the Adams spectral sequence
in triangulated categories

J DANIEL CHRISTENSEN

MARTIN FRANKLAND

The Adams spectral sequence is available in any triangulated category equipped
with a projective or injective class. Higher Toda brackets can also be defined in a
triangulated category, as observed by B Shipley based on J Cohen’s approach for
spectra. We provide a family of definitions of higher Toda brackets, show that they
are equivalent to Shipley’s and show that they are self-dual. Our main result is that
the Adams differential dr in any Adams spectral sequence can be expressed as an
.rC1/–fold Toda bracket and as an r th order cohomology operation. We also show
how the result simplifies under a sparseness assumption, discuss several examples
and give an elementary proof of a result of Heller, which implies that the 3–fold Toda
brackets in principle determine the higher Toda brackets.

55T15; 18E30

1 Introduction

The Adams spectral sequence is an important tool in stable homotopy theory. Given
finite spectra X and Y , the classical Adams spectral sequence is

E
s;t
2
D Exts;tA .H

�Y;H�X / H) Œ†t�sX;Y ^p �;

where H�X WDH�.X IFp/ denotes mod p cohomology and ADH F�p H Fp denotes
the mod p Steenrod algebra. Determining the differentials in the Adams spectral
sequence generally requires a combination of techniques and much ingenuity. The
approach that provides a basis for our work is found in [28], where Maunder showed
that the differential dr in this spectral sequence is determined by r th order cohomology
operations, which we now review.

A primary cohomology operation in this context is simply an element of the Steenrod
algebra, and it is immediate from the construction of the Adams spectral sequence
that the differential d1 is given by primary cohomology operations. A secondary
cohomology operation corresponds to a relation among primary operations, and is
partially defined and multivalued: it is defined on the kernel of a primary operation
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2688 J Daniel Christensen and Martin Frankland

and takes values in the cokernel of another primary operation. Tertiary operations
correspond to relations between relations, and have correspondingly more complicated
domains and codomains. The pattern continues for higher operations. Using that
cohomology classes are representable, secondary cohomology operations can also
be expressed using 3–fold Toda brackets involving the cohomology class and two
operations whose composite is null. However, what one obtains in general is a subset
of the Toda bracket with less indeterminacy. This observation will be the key to
our generalization of Maunder’s result to other Adams spectral sequences in other
categories.

The starting point of this paper is the following observation. On the one hand, the
Adams spectral sequence can be constructed in any triangulated category equipped
with a projective class or an injective class, as shown by Christensen [14]. For example,
the classical Adams spectral sequence is constructed in the stable homotopy category
with the injective class consisting of retracts of products

Q
i †

ni H Fp . On the other
hand, higher Toda brackets can also be defined in an arbitrary triangulated category.
This was done by Shipley in [40], based on Cohen’s construction [15] for spaces and
spectra, and was studied further by Sagave [36]. The goal of this paper is to describe
precisely how the Adams dr can be described as a particular subset of an .rC1/–fold
Toda bracket which can be viewed as an r th order cohomology operation, all in the
context of a general triangulated category.

Triangulated categories arise throughout mathematics, so our work applies in various
situations. As an example, we give calculations involving the Adams spectral sequence
in the stable module category of a group algebra. Even in stable homotopy theory,
there are a variety of Adams spectral sequences, such as the Adams–Novikov spectral
sequence or the motivic Adams spectral sequence, and our results apply to all of them.
Moreover, by working with minimal structure, our approach gains a certain elegance.

Organization and main results

In Section 2, we review the construction of the Adams spectral sequence in a triangulated
category equipped with a projective class or an injective class. In Section 3, we review
the construction of 3–fold Toda brackets in a triangulated category and some of their
basic properties. Section 4 describes how the Adams d2 is given by 3–fold Toda
brackets. This section serves as a warm-up for Section 6.

In Section 5, we recall the construction of higher Toda brackets in a triangulated
category via filtered objects. We provide a family of alternate constructions, and prove
that they are all equivalent. The main result is Theorem 5.11, which says roughly the
following.

Algebraic & Geometric Topology, Volume 17 (2017)



Higher Toda brackets and the Adams spectral sequence 2689

Theorem There is an inductive way to compute an n–fold Toda bracket hfn; : : : ; f1i�

T .†n�2X0;Xn/, where the inductive step picks three consecutive maps and reduces
the length by one. The .n� 2/! ways of doing this yield the same subset, up to an
explicit sign.

As a byproduct, we obtain Corollary 5.13, which would be tricky to prove directly
from the filtered object definition.

Corollary Toda brackets are self-dual up to suspension: hfn; : : : ;f1i�T .†n�2X0;Xn/

corresponds to the Toda bracket computed in the opposite category

hf1; : : : ; fni � T op.†�.n�2/Xn;X0/D T .X0; †
�.n�2/Xn/:

Section 6 establishes how the Adams dr is given by .rC1/–fold Toda brackets. Our
main results are Theorems 6.1 and 6.5, which say roughly the following.

Theorem Let Œx� 2 E
s;t
r be a class in the Er term of the Adams spectral sequence.

As subsets of E
sCr;tCr�1
1

, we have

dr Œx�D h†
r�1d1; : : : ; †

2d1; †d1; †psC1; ısxi

D h†r�1d1
!
; : : :

!
; †d1

!
; d1;xi:

Here, d1 , psC1 and ıs are maps appearing in the Adams resolution of Y , where
each d1 is a primary cohomology operation. The first expression for dr Œx� is an
.rC1/–fold Toda bracket. The second expression (with the superscripts !) denotes
an appropriate subset of the bracket h†r�1d1; : : : ; †d1; d1;xi with some choices
dictated by the Adams resolution of Y . This description exhibits dr Œx� as an r th order
cohomology operation applied to x .

In Section 7, we show that when certain sparseness assumptions are made, the subset
h†r�1d1

!; : : : !; †d1
!; d1;xi coincides with the full Toda bracket, and we give examples

of this phenomenon. See Theorem 7.14, Proposition 7.15 and Example 7.17. The main
application is to computing maps in the homotopy category of R–module spectra, for
a ring spectrum R whose coefficient ring ��R is sufficiently sparse, such as ku. See
Example 7.21.

In Appendix A, we compute examples of Toda brackets in stable module categories.
In particular, Proposition A.1 provides an example where the inclusion d2Œx� �

h†d1; d1;xi is proper. Appendix B provides for the record a short, simple proof
of a theorem due to Heller, that 3–fold Toda brackets determine the triangulated
structure. As a corollary, we note that the 3–fold Toda brackets indirectly determine
the higher Toda brackets.

Algebraic & Geometric Topology, Volume 17 (2017)



2690 J Daniel Christensen and Martin Frankland

Related work

Detailed treatments of secondary operations can be found in [1, Section 3.6], where
Adams used secondary cohomology operations to solve the Hopf invariant one problem;
see Mosher and Tangora [32, Chapter 16] and Harper [19, Chapter 4].

There are various approaches to higher order cohomology operations and higher Toda
brackets in the literature, many of which use some form of enrichment in spaces, chain
complexes or groupoids; see for instance Spanier [42], Maunder [29], Kochman [24]
and Klaus [23]. In this paper, we work solely with the triangulated structure, without
enhancement, and provide no comparison to those other approaches.

In [6; 7], Baues and Jibladze express the Adams d2 in terms of secondary cohomology
operations, and this is generalized to higher differentials by Baues and Blanc in [5].
Their approach starts with an injective resolution as in diagram (2-3), and witnesses
the equations d1d1 D 0 by providing suitably coherent null-homotopies, described
using mapping spaces. Using this coherence data, the authors express a representative
of dr Œx� as a specific element of the Toda bracket h†r�1d1; : : : ; †d1; d1;xi. While
this approach makes use of an enrichment, we suspect that by translating the (higher
dimensional) null-homotopies into lifts to fibers or extensions to cofibers, one could
relate their expression for dr Œx� to ours.

Acknowledgments We thank Robert Bruner, Dan Isaksen, Peter Jorgensen, Fernando
Muro, Irakli Patchkoria, Steffen Sagave and Dylan Wilson for helpful conversations, as
well as the referee for their useful comments. Frankland also thanks the Max-Planck-
Institut für Mathematik for its hospitality. Frankland was partially funded by a grant of
the DFG SPP 1786: Homotopy Theory and Algebraic Geometry.

2 The Adams spectral sequence

In this section, we recall the construction of the Adams spectral sequence in a triangu-
lated category, along with some of its features. We follow [14, Section 4], or rather its
dual. Some references for the classical Adams spectral sequence are [2, Section III.15],
[26, Chapter 16] and [10]. Background material on triangulated categories can be found
in [33, Chapter 1; 26, Appendix 2; 44, Chapter 10]. We assume that the suspension
functor † is an equivalence, with chosen inverse †�1 . Moreover, we assume we have
chosen natural isomorphisms ††�1 Š id and †�1†Š id making † and †�1 into
an adjoint equivalence. We silently use these isomorphisms when needed, eg when we
say that a triangle of the form †�1Z!X ! Y !Z is distinguished.

Algebraic & Geometric Topology, Volume 17 (2017)



Higher Toda brackets and the Adams spectral sequence 2691

Definition 2.1 [14, Proposition 2.6] A projective class in a triangulated category T
is a pair .P;N /, where P is a class of objects and N is a class of maps satisfying the
following properties:

(1) A map f W X ! Y is in N if and only if the induced map

f�W T .P;X /! T .P;Y /

is zero for all P in P . In other words, N consists of the P –null maps.
(2) An object P is in P if and only if the induced map

f�W T .P;X /! T .P;Y /

is zero for all f in N .

(3) For every object X , there is a distinguished triangle P ! X
f
�! Y ! †P ,

where P is in P and f is in N .

In particular, the class P is closed under arbitrary coproducts and retracts. The objects
in P are called projective.

Definition 2.2 A projective class is stable if it is closed under shifts, ie P 2P implies
†nP 2 P for all n 2 Z.

We will assume for convenience that our projective class is stable. We suspect that many
of the results can be adapted to unstable projective classes, with a careful treatment of
shifts.

Definition 2.3 Let P be a projective class and f W X ! Y be a map.
(1) f is P –epic if the map

f�W T .P;X /! T .P;Y /

is surjective for all P 2 P . Equivalently, the map to the cofiber Y ! Cf is
P –null.

(2) f is P –monic if the map

f�W T .P;X /! T .P;Y /

is injective for all P 2 P . Equivalently, the map from the fiber †�1Cf !X is
P –null.

Example 2.4 Let T be the stable homotopy category and P the projective class
consisting of retracts of wedges of spheres

W
i Sni . This is called the ghost projective

class, studied for instance in [14, Section 7].

Now we dualize everything.

Algebraic & Geometric Topology, Volume 17 (2017)



2692 J Daniel Christensen and Martin Frankland

Definition 2.5 An injective class in a triangulated category T is a projective class in
the opposite category T op . Explicitly, it is a pair .I;N /, where I is a class of objects
and N is a class of maps satisfying the following properties:

(1) A map f W X ! Y is in N if and only if the induced map

f �W T .Y; I/! T .X; I/

is zero for all I in I .

(2) An object I is in I if and only if the induced map

f �W T .Y; I/! T .X; I/

is zero for all f in N .

(3) For every object X , there is a distinguished triangle †�1I !W
f
�!X ! I ,

where I is in I and f is in N .

In particular, the class I is closed under arbitrary products and retracts. The objects
in I are called injective. Just as for projective classes, we will assume for convenience
that our injective class is stable.

Example 2.6 Let T be the stable homotopy category. Take N to be the class of maps
inducing zero on mod p cohomology and I to be the retracts of (arbitrary) productsQ

i †
ni H Fp with ni 2Z. One can generalize this example to any cohomology theory

(spectrum) E instead of H Fp , letting IE denote the injective class consisting of
retracts of products

Q
i †

ni E .

Definition 2.7 Let I be an injective class and f W X ! Y be a map.

(1) f is I–monic if the map

f �W T .Y; I/! T .X; I/

is surjective for all I 2 I . Equivalently, the map from the fiber †�1Cf !X is
I–null.

(2) f is I–epic if the map

f �W T .Y; I/! T .X; I/

is injective for all I 2 I . Equivalently, the map to the cofiber Y !Cf is I–null.

Algebraic & Geometric Topology, Volume 17 (2017)
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Remark 2.8 The projectives and P–epic maps determine each other via the lifting
property:

X

f
����

P

>>

// Y

Dually, the injectives and I–monic maps determine each other via the extension
property:

X //

��

f
��

I

Y

??

This is part of the equivalent definition of a projective (resp. injective) class described
in [14, Proposition 2.4].

Convention 2.9 We will implicitly use the natural isomorphism

T .A;B/Š T .†kA; †kB/

sending a map f to †kf .

Definition 2.10 An Adams resolution of an object X in T with respect to a projective
class .P;N / is a diagram

(2-1)

X DX0

i0
// X1

ı0~~

i1
// X2

ı1~~

i2
// X3

ı2~~

// � � �

P0

p0

````

P1

p1

````

P2

p2

````

where every Ps is projective, every map is is in N , and every triangle

Ps

ps
�!Xs

is
�!XsC1

ıs
�!†Ps

is distinguished. Here the arrows ısW XsC1�!ı Ps denote degree-shifting maps, namely,
maps ısW XsC1!†Ps .

Dually, an Adams resolution of an object Y in T with respect to an injective class .I;N /
is a diagram

(2-2)

Y D Y0
��

p0 ��

Y1
��

p1 ��

i0
oo Y2

��

p2 ��

i1
oo Y3

i2
oo � � �oo

I0

ı0

??

I1

ı1

??

I2

ı2

??

Algebraic & Geometric Topology, Volume 17 (2017)



2694 J Daniel Christensen and Martin Frankland

where every Is is injective, every map is is in N , and every triangle

†�1Is
†�1ıs
�! YsC1

is
�! Ys

ps
�! Is

is distinguished.

From now on, fix a triangulated category T and a (stable) injective class .I;N / in T .

Lemma 2.11 Every object Y of T admits an Adams resolution.

Given an object X and an Adams resolution of Y , applying T .X;�/ yields an exact
coupleL

s;t T .†t�sX;Ys/
i D

L
.is/�

//
L

s;t T .†t�sX;Ys/

p D
L
.ps/�uuL

s;t T .†t�sX; Is/

ı D
L
.ıs/�

ii

and thus a spectral sequence with E1 term

E
s;t
1
D T .†t�sX; Is/Š T .†tX; †sIs/

and differentials
dr W E

s;t
r !EsCr;tCr�1

r

given by dr D p ı i�.r�1/ ı ı , where i�1 means choosing an i –preimage. This is
called the Adams spectral sequence with respect to the injective class I abutting to
T .†t�sX;Y /.

Lemma 2.12 The E2 term is given by

E
s;t
2
D Exts;tI .X;Y / WD ExtsI.†

tX;Y /;

where ExtsI.X;Y / denotes the sth derived functor of T .X;�/ (relative to the injective
class I ) applied to the object Y .

Proof The Adams resolution of Y yields an I–injective resolution of Y

(2-3) 0 // Y
p0
// I0

.†p1/ı0
// †I1

.†2p2/.†ı1/
// †2I2

// � � � :

Remark 2.13 We do not assume that the injective class I generates, ie that every
nonzero object X admits a nonzero map X ! I to an injective. Hence, we do not
expect the Adams spectral sequence to be conditionally convergent in general; compare
[14, Proposition 4.4].

Algebraic & Geometric Topology, Volume 17 (2017)
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Example 2.14 Let E be a commutative (homotopy) ring spectrum. A spectrum is
called E–injective if it is a retract of E ^W for some W [22, Definition 2.22]. A
map of spectra f W X ! Y is called E–monic if the map E ^ f W E ^X !E ^Y is
a split monomorphism. The E–injective objects and E–monic maps form an injective
class in the stable homotopy category. The Adams spectral sequence associated to this
injective class is the Adams spectral sequence based on E–homology, as described
in [35, Definition 2.2.4], also called the unmodified Adams spectral sequence in [22,
Section 2.2]. Further assumptions are needed in order to identify the E2 term as Ext
groups in E�E–comodules.

Definition 2.15 The I–cohomology of an object X is the family of abelian groups
H I .X / WD T .X; I/ indexed by the injective objects I 2 I .

A primary operation in I–cohomology is a natural transformation H I .X /!H J .X /

of functors T op ! Ab. Equivalently, by the (additive) Yoneda lemma, a primary
operation is a map I ! J in T .

Example 2.16 The differential d1 is given by primary operations. More precisely, let
x 2E

s;t
1

be a map xW †t�sX ! Is . Then d1.x/ 2EsC1;t
1

is the composite

†t�sX
x
// Is

ıs
// †YsC1

†psC1
// †IsC1:

In other words, d1.x/ is obtained by applying the primary operation

d1 WD .†psC1/ısW Is!†IsC1

to x .

Proposition 2.17 A primary operation � W I ! J appears as d1W Is�!ı IsC1 in some
Adams resolution if and only if � admits a factorization into an I–epic followed by an
I–mono.

Proof The condition is necessary by construction. In the factorization d1D.†psC1/ıs ,
the map ıs is I–epic while psC1 is I–monic.

To prove sufficiency, assume given a factorization � D iqW I ! W ! J , where
qW I � W is I–epic and i W W ,! J is I–monic. Taking the fiber of q twice yields
the distinguished triangle

†�1W // Y0
// // I

q
// // W;

which we relabel
Y1

i0
// Y0

//
p0
// I

ı0
// // †Y1:

Algebraic & Geometric Topology, Volume 17 (2017)
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Relabeling the given map i W W ,! J as †p1W †Y1 ,! †I1 , we can continue the
usual construction of an Adams resolution of Y0 as illustrated in diagram (2-2), in
which � D iq appears as the composite .†p1/ı0 . Note that by the same argument, for
any s � 0, � appears as d1W Is�!ı IsC1 in some (other) Adams resolution.

Example 2.18 Not every primary operation appears as d1 in an Adams resolution. For
example, consider the stable homotopy category with the projective class P generated
by the sphere spectrum S D S0 , that is, P consists of retracts of wedges of spheres.
The P –epis (resp. P –monos) consist of the maps which are surjective (resp. injective)
on homotopy groups. The primary operation 2W S ! S does not admit a factorization
into an I–epic followed by an I–mono.

Indeed, assume that 2 D iqW S � W ,! S is such a factorization. We will show
that this implies �2.S=2/ D Z=2˚Z=2, contradicting the known fact �2.S=2/ D

Z=4. Here S=2 denotes the mod 2 Moore spectrum, sitting in the cofiber sequence
S

2
�! S ! S=2.

By the octahedral axiom applied to the factorization 2D iq , there is a diagram

S
q
// // W
��

i
��

// Cq

˛
��

//
ı0
// S1

S
2
// S

j
����

// S=2

ˇ
��

ı
// S1

Ci Ci

with distinguished rows and columns. The long exact sequence in homotopy yields
�nCq D 2�n�1S , where the induced map �n.ı

0/W �nCq! �nS1 corresponds to the
inclusion 2�n�1S ,!�n�1S . Likewise, we have �nCi D .�nS/=2, where the induced
map �n.j /W �nS ! �nCi corresponds to the quotient map �nS � .�nS/=2. The
defining cofiber sequence S

2
�! S ! S=2 yields the exact sequence

�nS
2
// �nS

�n
// .S=2/

�nı
// �n�1S

2
// �n�1S;

which in turn yields the short exact sequence

0 // .�nS/=2 // �n.S=2/
�nı
//
2�n�1S // 0:

The map �n.˛/W 2�n�1S ! �n.S=2/ is a splitting of this sequence, because of the
equality �n.ı/�n.˛/D �n.ı˛/D �n.ı

0/. However, the short exact sequence does not
split in the case nD 2, by the isomorphism �2.S=2/D Z=4. For references, see [38,
Proposition II.6.48], [37, Proposition 4] and [27].

Algebraic & Geometric Topology, Volume 17 (2017)



Higher Toda brackets and the Adams spectral sequence 2697

3 3–fold Toda brackets

In this section, we review different constructions of 3–fold Toda brackets and some of
their properties.

Definition 3.1 Let X0

f1
�!X1

f2
�!X2

f3
�!X3 be a diagram in a triangulated cate-

gory T . We define subsets of T .†X0;X3/ as follows:

� The iterated cofiber Toda bracket hf3; f2; f1icc�T .†X0;X3/ consists of all maps
 W †X0!X3 that appear in a commutative diagram

(3-1)

X0

f1
// X1

// Cf1

'
��

// †X0

 
��

X0

f1
// X1

f2
// X2

f3
// X3

where the top row is distinguished.

� The fiber-cofiber Toda bracket hf3; f2; f1ifc � T .†X0;X3/ consists of all com-
posites ˇ ı†˛W †X0!X3 , where ˛ and ˇ appear in a commutative diagram

(3-2)

X0

˛
��

f1
// X1

†�1Cf2
// X1

f2
// X2

// Cf2

ˇ
��

X2

f3
// X3

where the middle row is distinguished.

� The iterated fiber Toda bracket hf3; f2; f1iff � T .†X0;X3/ consists of all maps
†ıW †X0!X3 where ı appears in a commutative diagram

(3-3)

X0

ı
��

f1
// X1


��

f2
// X2

f3
// X3

†�1X3
// †�1Cf3

// X2

f3
// X3

where the bottom row is distinguished.

Algebraic & Geometric Topology, Volume 17 (2017)
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Remark 3.2 In the literature, there are variations of these definitions, which some-
times differ by a sign. With the notion of cofiber sequence implicitly used in [43],
our definitions agree with Toda’s. The Toda bracket also depends on the choice of
triangulation. Given a triangulation, there is an associated negative triangulation whose
distinguished triangles are those triangles whose negatives are distinguished in the
original triangulation; see [3]. Negating a triangulation negates the 3–fold Toda
brackets. Dan Isaksen has pointed out to us that in the stable homotopy category there
are 3–fold Toda brackets which are not equal to their own negatives. For example,
Toda showed in [43, Section VI.v and Theorems 7.4 and 14.1] that the Toda bracket
h2�; 8; �i has no indeterminacy and contains an element � of order 8. We give another
example in Example A.4.

The following proposition can be found in [36, Remark 4.5 and Figure 2] and was
kindly pointed out by Fernando Muro. It is also proved in [31, Section 4.6]. We provide
a different proof, more in the spirit of this article. In the case of spaces, it was originally
proved by Toda [43, Proposition 1.7].

Proposition 3.3 The iterated cofiber, fiber-cofiber and iterated fiber definitions of Toda
brackets coincide. More precisely, for any diagram X0

f1
�!X1

f2
�!X2

f3
�!X3 in T ,

we have the following equalities of subsets of T .†X0;X3/:

hf3; f2; f1icc D hf3; f2; f1ifc D hf3; f2; f1iff:

Proof We will prove the first equality; the second equality is dual.

(�) Let ˇ.†˛/ 2 hf3; f2; f1ifc be obtained from maps ˛ and ˇ as in diagram (3-2).
Now consider the diagram with distinguished rows

X0

˛
��

f1
// X1

// Cf1

'

��

// †X0

†˛
��

†�1Cf2
// X1

f2
// X2

// Cf2

ˇ

��

X2

f3
// X3

where there exists a filler 'W Cf1
!X2 . The commutativity of the tall rectangle on the

right exhibits the membership ˇ.†˛/ 2 hf3; f2; f1icc .
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Higher Toda brackets and the Adams spectral sequence 2699

(�) Let  2 hf3; f2; f1icc be as in diagram (3-1). The octahedral axiom comparing
the cofibers of q1 , ' and ' ı q1 D f2 yields a commutative diagram

†�1C'

�†�1�
��

†�1C'

�†�1�

��

X0

˛
��

f1
// X1

q1
// Cf1

'

��

�1
// †X0

†˛

��

 

��

�†f1
// †X1

†�1Cf2

�†�1�2
// X1

f2
// X2

q

��

f3
$$

q2
// Cf2

�

��

ˇzz

�2
// †X1

X3

C'

� 99

C'

where the rows and columns are distinguished. By exactness of the sequence

T .Cf2
;X3/

.†˛/�
// T .†X0;X3/

.�†�1�/�
// T .†�1C' ;X3/

there exists a map ˇW Cf2
!X3 satisfying  D ˇ.†˛/ if and only if the restriction of

 to the fiber †�1C' of †˛ is zero. That condition does hold: one readily checks
the equality  .�†�1�/ D 0. The chosen map ˇW Cf2

! X3 might not satisfy the
equation ˇq2 D f3 , but we will correct it to another map ˇ0 which does. The error
term f3�ˇq2 is killed by restriction along ' , and therefore factors through the cofiber
of ' , ie there exists a factorization

f3�ˇq2 D ��

for some � W C'!X3 . The corrected map ˇ0 WDˇC��W Cf2
!X3 satisfies ˇ0q2Df3 .

Moreover, this corrected map ˇ0 still satisfies ˇ0.†˛/ D  D ˇ.†˛/, since the
correction term satisfies ��.†˛/D 0.

Thanks to the proposition, we can write hf3; f2; f1i if we do not need to specify a
particular definition of the Toda bracket.

We also recall this well-known fact, and leave the proof as an exercise.

Lemma 3.4 For any diagram X0

f1
�!X1

f2
�!X2

f3
�!X3 in T , the subset hf3; f2; f1i

of T .†X0;X3/ is a coset of the subgroup

.f3/� T .†X0;X2/C .†f1/
� T .†X1;X3/:

Algebraic & Geometric Topology, Volume 17 (2017)



2700 J Daniel Christensen and Martin Frankland

The displayed subgroup is called the indeterminacy, and when it is trivial, we say that
the Toda bracket has no indeterminacy.

Lemma 3.5 Consider maps X0

f1
�!X1

f2
�!X2

f3
�!X3

f4
�!X4 . The following in-

clusions of subsets of T .†X0;X4/ hold:

(a) f4hf3; f2; f1i � hf4f3; f2; f1i;

(b) hf4; f3; f2if1 � hf4; f3; f2f1i;

(c) hf4f3; f2; f1i � hf4; f3f2; f1i;

(d) hf4; f3; f2f1i � hf4; f3f2; f1i:

Proof Inclusions (a)–(b) are straightforward.

For (c)–(d), using the iterated cofiber definition, the subset hf4f3; f2; f1icc consists
of the maps  W †X0!X4 appearing in a commutative diagram

X0

f1
// X1

// Cf1

'

��

// †X0

 
��

X0

f1
// X1

f2
// X2

f3
// X3

f4
// X4

where the top row is distinguished. Given such a diagram, the diagram

X0

f1
// X1

// Cf1

f3'

  

// †X0

 
��

X0

f1
// X1

f2
// X2

f3
// X3

f4
// X4

exhibits the membership  2 hf4; f3f2; f1icc . A similar argument can be used to
prove the inclusion hf4; f3; f2f1iff � hf4; f3f2; f1iff .

Example 3.6 The inclusion hf4f3; f2; f1i � hf4; f3f2; f1i need not be an equality.
For example, consider the maps X 0

�! Y 1
�! Y 0

�! Z 1
�! Z . The Toda brackets

being compared are

h1Z 0; 1Y ; 0i D h0; 1Y ; 0i D f0g;

h1Z ; 01Y ; 0i D h1Z ; 0; 0i D T .†X;Z/:
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Definition 3.7 In the setup of Definition 3.1, the restricted Toda brackets are the
subsets of the Toda bracket

hf3; f2
˛
;f1ifc � hf3; f2; f1ifc;

hf3
ˇ
;f2; f1ifc � hf3; f2; f1ifc

consisting of all composites ˇ.†˛/W †X0!X3 , where ˛ and ˇ appear in a commu-
tative diagram (3-2) where the middle row is distinguished, with the prescribed map
˛W X0!†�1Cf2

(resp. ˇW Cf2
!X3 ).

The lift to the fiber ˛W X0!†�1Cf2
is a witness of the equality f2f1 D 0. Dually,

the extension to the cofiber ˇW Cf2
!X3 is a witness of the equality f3f2 D 0.

Remark 3.8 Let X1

f2
�! X2

q2
�! Cf2

�2
�! †X1 be a distinguished triangle. By

definition, we have equalities of subsets

hf3; f2
˛
;f1ifc D hf3; f2

1
; �†�1�2ifc.†˛/;

hf3
ˇ
;f2; f1ifc D ˇhq2

1
;f2; f1ifc:

4 Adams d2 in terms of 3–fold Toda brackets

In this section, we show that the Adams differential dr can be expressed in several ways
using 3–fold Toda brackets. One of these expressions is as a secondary cohomology
operation.

Given an injective class I , an Adams resolution of an object Y as in diagram (2-2),
and an object X , consider a class Œx� 2 Es;t

2 represented by a cycle x 2 E
s;t
1
D

T .†t�sX; Is/. Recall that d2Œx� 2EsC2;tC1
2

is obtained as illustrated in the diagram

� � � Ys
oo

  

ps   

YsC1
!!

psC1 !!

is
oo YsC2

!!

psC2 !!

isC1
oo YsC3

isC2
oo � � �oo

Is

ıs

<<

IsC1

ısC1

==

IsC2

ısC2

==

†t�sX

x

OO
zx

66

d2.x/

44

Explicitly, since x satisfies d1.x/D.†psC1/ısxD0, we can choose a lift zxW†t�sX�!ı

†YsC2 of ısx to the fiber of †psC1 . Then the differential d2 is given by

d2Œx�D Œ.†psC2/zx �:
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From now on, we will unroll the distinguished triangles and keep track of the suspen-
sions. Following Convention 2.9, we will use the identifications

E
sC2;tC1
1

D T .†t�s�1X; IsC2/Š T .†t�sX; †IsC2/Š T .†t�sC1X; †2IsC2/:

Proposition 4.1 Denote by d2Œx��E
sC2;tC1
1

the subset of all representatives of the
class d2Œx� 2E

sC2;tC1
2

. Then the following equalities hold:

(a) d2Œx�D h†d1

†2psC2
; †psC1; ısxifc

D h†d1; †psC1; ısxi;

(b) d2Œx�D .†
2psC2/h†ısC1

1
;†psC1; ısxifc

D .†2psC2/h†ısC1; †psC1; ısxi;

(c) d2Œx�D h†d1
ˇ
;d1;xifc;

where ˇ is the composite C
ž

�!†2YsC2

†2psC2

�����!†2IsC2 and ž is obtained from the
octahedral axiom applied to the factorization d1D .†psC1/ısW Is!†YsC1!†IsC1 .

In (c), ˇ is a witness to the fact that the composite .†d1/d1 of primary operations is
zero, and so the restricted Toda bracket is a secondary operation.

Proof Note that t plays no role in the statement, so we will assume without loss of
generality that t D s holds.

(a) The first equality holds by definition of d2Œx�, namely choosing a lift of ısx to the
fiber of †psC1 . The second equality follows from the fact that †2psC2 is the unique
extension of †d1 D .†

2psC2/.†ısC1/ to the cofiber of †psC1 . Indeed, †ısC1 is
I–epic and †IsC2 is injective, so that the restriction map

.†ısC1/
�
W T .†2YsC2; †

2IsC2/! T .†IsC1; †
2IsC2/

is injective.

(b) The first equality holds by Remark 3.8. The second equality holds because †ısC1

is I–epic and †IsC2 is injective, as in part (a).

(c) The map d1W Is ! †IsC1 is the composite Is
ıs
�! †YsC1

†psC1

�! †IsC1 . The
octahedral axiom applied to this factorization yields the dotted arrows in a commutative
diagram
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Is

ıs
// †YsC1

†psC1

��

†is
// †Ys

z̨
��

�†ps
// †Is

Is

d1
// †IsC1

†ısC1
��

q
// Cd1

ž

��

�
// †Is

†2YsC2

�†2isC1
��

†2YsC2

��

†2YsC1

†2is
// †2Ys

where the rows and columns are distinguished and the equation .�†2isC1/ ž D .†ıs/�

holds. The restricted bracket h†d1
ˇ; d1;xifc consists of the maps †X ! †2IsC2

appearing as downward composites in the commutative diagram

†X

†˛
��

�†x
// †Is

Is

d1
// †IsC1

q
// Cd1

ž

zz

ˇ

��

�
// †Is

†2YsC2
†2psC2

$$

†IsC1
†d1

//

†ısC1
::

†2IsC2

(�) Let ˇ.†˛/2hd1
ˇ
;d1;xifc . By definition of ˇ , we have ˇ.†˛/D.†2psC2/ ž.†˛/.

Then ž.†˛/W †X !†2YsC2 is a valid choice of the lift zx in the definition of d2Œx�:

.†2isC1/ ž.†˛/D�.†ıs/�.†˛/

D�.†ıs/.�†x/

D†.ısx/:

(�) Given a representative .†psC2/zx2d2Œx�, we will show that †zxW †X!†2YsC2

factors as †X †˛
�! Cd1

ž
�! †2YsC2 for some †˛ , yielding a factorization of the

desired form:
.†2psC2/.†zx/D .†

2psC2/ ž.†˛/

D ˇ.†˛/:
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By construction, the map .†2is/.�†
2isC1/W †

2YsC2!†2Ys is a cofiber of ž. The
condition

.†2is/.†
2isC1/.†zx/D .†

2is/†.ısx/D 0

guarantees the existence of some lift †˛W †X!Cd1
of †zx . The chosen lift †˛ might

not satisfy �.†˛/D�†x , but we will correct it to a lift †˛0 which does. The two sides
of the equation become equal after applying �†ıs , ie .�†ıs/.�†x/D .�†ıs/�.†˛/

holds. Hence, the error term factors as

�†x� �†˛ D .�†ps/.†�/

for some †� W †X ! †Ys , since �†ps is a fiber of �†ıs . The corrected map
†˛0 WD†˛Cz̨.†�/W †X!Cd1

satisfies �.†˛0/D�†x and still satisfies ž.†˛0/D
ž.†˛/D†zx , since the correction term z̨.†�/ satisfies žz̨.†�/D 0.

Proposition 4.2 The following inclusions of subsets hold in E
sC2;tC1
1

:

d2Œx�� .†
2psC2/h†ısC1; d1;xi � h†d1; d1;xi:

Proof The first inclusion is

d2Œx�D .†
2psC2/h†ısC1; †psC1; ısxi � .†2psC2/h†ısC1; .†psC1/ıs;xi;

whereas the second inclusion is

.†2psC2/h†ısC1; d1;xi � h.†
2psC2/.†ısC1/; d1;xi;

both using Lemma 3.5.

Proposition 4.3 The inclusion .†2psC2/h†ısC1; d1;xi � h†d1; d1;xi need not be
an equality in general.

It was pointed out to us by Robert Bruner that this can happen in principle. We give an
explicit example in Proposition A.1.

5 Higher Toda brackets

We saw in Section 3 that there are several equivalent ways to define 3–fold Toda
brackets. Following the approach given in [30], we show that the fiber-cofiber definition
generalizes nicely to n–fold Toda brackets. There are .n � 2/! ways to make this
generalization, and we prove that they are all the same up to a specified sign. We also
show that this Toda bracket is self-dual.
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Other sources that discuss higher Toda brackets in triangulated categories are [40,
Appendix A], [18, Chapter IV, Section 2] and [36, Section 4], which all give definitions
that follow Cohen’s approach for spectra or spaces [15]. We show that our definition
agrees with those of [40] and [36]. (We believe that it sometimes differs in sign
from [15]. We have not compared carefully with [18].)

Definition 5.1 Let X0

f1
�!X1

f2
�!X2

f3
�!X3 be a diagram in a triangulated cate-

gory T . We define the Toda family of this sequence to be the collection T.f3; f2; f1/

consisting of all pairs .ˇ;†˛/, where ˛ and ˇ appear in a commutative diagram

X0

˛
��

f1
// X1

†�1Cf2
// X1

f2
// X2

// Cf2

ˇ
��

X2

f3
// X3

with distinguished middle row. Equivalently,

†X0

†˛
��

�†f1
// †X1

X1

f2
// X2

// Cf2

ˇ
��

// †X1

X2

f3
// X3

where the middle row is again distinguished. (The negative of †f1 appears, since
when a triangle is rotated, a sign is introduced.) Note that the maps in each pair form a
composable sequence †X0

†˛
�! Cf2

ˇ
�! X3 , with varying intermediate object, and that

the collection of composites ˇ ı†˛ is exactly the Toda bracket hf3; f2; f1i, using the
fiber-cofiber definition; see diagram (3-2). (Also note that the Toda family is generally
a proper class, but this is only because the intermediate object can be varied up to
isomorphism, and so we will ignore this.)

More generally, if S is a set of composable triples of maps, starting at X0 and ending
at X3 , we define T.S/ to be the union of T.f3; f2; f1/ for each triple .f3; f2; f1/

in S .

Definition 5.2 Let X0

f1
�!X1

f2
�!X2

f3
�! � � �

fn
�!Xn be a diagram in a triangulated

category T . We define the Toda bracket hfn; : : : ; f1i inductively as follows. If nD 2,
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it is the set consisting of just the composite f2f1 . If n> 2, it is the union of the sets
hˇ;†˛;†fn�3; : : : ; †f1i, where .ˇ;†˛/ is in T.fn; fn�1; fn�2/.

In fact, there are .n�2/! such definitions, depending on a sequence of choices of which
triple of consecutive maps to apply the Toda family construction to. In Theorem 5.11
we will enumerate these choices and show that they all agree up to sign.

Example 5.3 Let us describe 4–fold Toda brackets in more detail. We have

hf4; f3; f2; f1i D

[
ˇ;˛

hˇ;†˛;†f1i D

[
ˇ;˛

[
ˇ0;˛0

fˇ0 ı†˛0g

with .ˇ;†˛/ 2 T.f4; f3; f2/ and .ˇ0; †˛0/ 2 T.ˇ;†˛;†f1/. These maps fit into a
commutative diagram

†2X0
†˛0

// C†˛ //

ˇ0

��

†2X1 row = �†2f1

†X1
†˛

// Cf3
//

ˇ
##

OO

†X2 row = �†f2

X2

f3
// X3

OO

f4

// X4

0

OO

where the horizontal composites are specified as above, and each “snake”

� // �

� // �

OO

is a distinguished triangle. The middle column is an example of a 3–filtered object as
defined below.

Next, we will show that Definition 5.2 coincides with the definitions of higher Toda
brackets in [40, Appendix A] and [36, Section 4], which we recall here.

Definition 5.4 Let n� 1 and consider a diagram in T

Y0

�1
// Y1

�2
// Y2

// � � �
�n�1

// Yn�1
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consisting of n�1 composable maps. An n–filtered object Y based on .�n�1; : : : ; �1/

consists of a sequence of maps

0D F0Y
i0
// F1Y

i1
// � � �

in�1
// FnY D Y

together with distinguished triangles

Fj Y
ij
// FjC1Y

qjC1
// †j Yn�1�j

ej
// †Fj Y

for 0� j � n� 1, such that for 1� j � n� 1, the composite

†j Yn�1�j

ej
// †Fj Y

†qj
// †j Yn�j

is equal to †j�n�j . In particular, the n–filtered object Y comes equipped with maps

� 0Y W Yn�1 Š F1Y ! Y;

�Y W Y D FnY !†n�1Y0:

Definition 5.5 Let X0

f1
�!X1

f2
�!X2

f3
�! � � �

fn
�!Xn be a diagram in a triangulated

category T . The Toda bracket in the sense of Shipley and Sagave, hfn; : : : ; f1iSS �

T .†n�2X0;Xn/, is the set of all composites appearing in the middle row of a commu-
tative diagram

Xn�1

� 0
X
��

fn

##

†n�2X0

†n�2f1 %%

// X

�X
��

// Xn

†n�2X1

where X is an .n�1/–filtered object based on .fn�1; : : : ; f3; f2/.

Example 5.6 For a 3–fold Toda bracket hf3; f2; f1iSS , a 2–filtered object X based
on f2 amounts to a cofiber of �f2 , more precisely, a distinguished triangle

X2

� 0X
// X

�X
// †X1

†f2
// †X2:

Using this, one readily checks the equality hf3; f2; f1iSS D hf3; f2; f1ifc , as noted in
[36, Definition 4.5].
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Example 5.7 For a 4–fold Toda bracket hf4; f3; f2; f1iSS , a 3–filtered object X

based on .f3; f2/ consists of the data displayed in the diagram

F3X DX
q3D�X

// †2X1

†X1

�†�1e2
// F2X

q2
//

i2

OO

†X2 row = �†f2

X2

�†�1e1
// F1X

i1

OO

q1

Š
// X3 row = �f3

F0X D 0

i0

OO

where the two snakes are distinguished. The bracket consists of the maps †2X0!X4

appearing as composites of the dotted arrows in a commutative diagram

†2X0
// X

�X
//

��

†2X1 row = †2f1

†X1

�†�1e2
// F2X

q2
//

OO

†X2 row = �†f2

X2

�f3
// X3

OO

f4
// X4

0

OO

where the two snakes are distinguished. By negating the first and third map in each
snake, this recovers the description in Example 5.3, thus proving the equality of subsets

hf4; f3; f2; f1iSS D hf4; f3; f2; f1i:

Proposition 5.8 Definitions 5.2 and 5.5 agree. In other words, we have the equality

hfn; : : : ; f1iSS D hfn; : : : ; f1i

of subsets of T .†n�2X0;Xn/.

Proof This is a straightforward generalization of Example 5.7.
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We define the negative of a Toda family T.f3; f2; f1/ to consist of pairs .ˇ;�†˛/ for
.ˇ;†˛/ 2 T.f3; f2; f1/. (Since changing the sign of two maps in a triangle doesn’t
affect whether it is distinguished, it would be equivalent to put the minus sign with
the ˇ .)

Lemma 5.9 Let X0

f1
�!X1

f2
�!X2

f3
�!X3

f4
�!X4 be a diagram in a triangulated

category T . Then the two sets of pairs T.T.f4;f3;f2/;†f1/ and T.f4;T.f3;f2;f1//

are negatives of each other.

This is stronger than saying the two ways of computing the Toda bracket hf4; f3; f2; f1i

are negatives, and the stronger statement will be used inductively to prove Theorem 5.11.

Proof We will show that the negative of T.T.f4; f3; f2/; †f1/ is contained in the
family T.f4;T.f3; f2; f1//. The reverse inclusion is proved dually.

Suppose .ˇ;†˛/ is in T.T.f4; f3; f2/; †f1/, that is, .ˇ;†˛/ is in T.ˇ0; †˛0; †f1/ for
some .ˇ0; †˛0/ in T.f4; f3; f2/. This means that we have the following commutative
diagram, in which the long row and column are distinguished triangles:

†X1

�†f2
//

†˛0

��

†X2

X2

f3
// X3

f4   

// Cf3

ˇ0~~

//

��

†X2

X4

C†˛0

ˇ
``

��

†2X0

†˛
>>

�†2f1
  

†2X1

Using the octahedral axiom, there exists a map ıW Cf2
!X3 in the following diagram

making the two squares commute, and such that the diagram can be extended as shown,
with all rows and columns distinguished:
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†X0


}}

�†f1

!!

X2
// Cf2

//

ı

��

†X1

�†f2
//

†˛0

��

†X2

X2

f3
// X3

f4

!!

//

��

Cf3

ˇ0}}

//

��

†X2

X4

Cı

��

C†˛0

ˇaa

��

†2X0

†˛
==

�†2f1
!!

†

}}

†Cf2
// †2X1

Define † to be the composite †2X0! C†˛0 D Cı ! †Cf2
, where the first map

is †˛ . Then the small triangles at the top and bottom of the last diagram commute
as well. Therefore, .ı;  / is in T.f3; f2; f1/. Moreover, this diagram shows that
.ˇ;�†˛/ is in T.f4; ı;  /, completing the argument.

To concisely describe different ways of computing higher Toda brackets, we introduce
the following notation. For 0 � j � n� 3, write Tj .fn; fn�1; : : : ; f1/ for the set of
tuples

f.fn; fn�1; : : : ; fn�jC1; ˇ;†˛;†fn�j�3; : : : ; †f1/g;

where .ˇ;†˛/ is in T.fn�j ; fn�j�1; fn�j�2/. (There are j maps to the left of the
three used for the Toda family.) If S is a set of n–tuples of composable maps, we define
Tj .S/ to be the union of the sets Tj .fn; fn�1; : : : ; f1/ for .fn; fn�1; : : : ; f1/ in S .
With this notation, the standard Toda bracket hfn; : : : ; f1i consists of the composites
of all the pairs occurring in the iterated Toda family

T.fn; : : : ; f1/ WD T0.T0.T0. � � �T0.fn; : : : ; f1/ � � � ///:

A general Toda bracket is of the form Tj1
.Tj2

.Tj3
. � � �Tjn�2

.fn; : : : ; f1/ � � � ///, where
j1; j2; : : : ; jn�2 is a sequence of natural numbers with 0� ji < i for each i . There
are .n� 2/! such sequences.

Remark 5.10 There are six ways to compute the 5–fold Toda bracket hf5;f4;f3;f2;f1i

Algebraic & Geometric Topology, Volume 17 (2017)



Higher Toda brackets and the Adams spectral sequence 2711

as the set of composites of the pairs of maps in one of the following sets:

T0.T0.T0.f5; f4; f3; f2; f1///D T.T.T.f5; f4; f3/; †f2/; †
2f1/;

T0.T0.T1.f5; f4; f3; f2; f1///D T.T.f5;T.f4; f3; f2//; †
2f1/;

T0.T1.T1.f5; f4; f3; f2; f1///D T.f5;T.T.f4; f3; f2/; †f1//;

T0.T1.T2.f5; f4; f3; f2; f1///D T.f5;T.f4;T.f3; f2; f1///;

T0.T0.T2.f5; f4; f3; f2; f1///;

T0.T1.T0.f5; f4; f3; f2; f1///:

The last two cannot be expressed directly just using T.

Now we can prove the main result of this section.

Theorem 5.11 The Toda bracket computed using the sequence j1; j2; : : : ; jn�2 equals
the standard Toda bracket up to the sign .�1/

P
ji .

Proof Let j1; j2; : : : ; jn�2 be a sequence with 0 � ji < i for each i . Lemma 5.9
tells us that if we replace consecutive entries k; kC 1 with k; k in any such sequence,
the two Toda brackets agree up to a sign. To begin with, we ignore the signs. We will
prove by induction on ` that the initial portion j1; : : : ; j` of such a sequence can be
converted into any other sequence, using just the move allowed by Lemma 5.9 and its
inverse, and without changing ji for i > `. For `D 1, there is only one sequence 0.
For `D 2, there are two sequences: 0; 0 and 0; 1, and Lemma 5.9 applies. For ` > 2,
suppose our goal is to produce the sequence j 0

1
; : : : ; j 0

`
. We break the argument into

three cases:

j 0
`

D j` We can directly use the induction hypothesis to adjust the entries in the first
`� 1 positions.

j 0
`

> j` By induction, we can change the first `� 1 entries in the sequence j so that
the entry in position `� 1 is j` , since j` < j 0

`
� `� 1. Then, using Lemma 5.9, we

can change the entry in position ` to j` C 1. Continuing in this way, we get j 0
`

in
position `, and then we are in the first case.

j 0
`

< j` Since the moves are reversible, this is equivalent to the second case.

To handle the sign, first note that signs propagate through the Toda family construction.
More precisely, suppose S is a set of n–tuples of maps, and let S 0 be a set obtained
by negating the k th map in each n–tuple for some fixed k . Then Tj .S/ has the same
relationship to Tj .S

0/, possibly for a different value of k .
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As a result, applying the move of Lemma 5.9 changes the resulting Toda bracket by
a sign. That move also changes the parity of

P
i ji . Since we get a plus sign when

each ji is zero, it follows that the difference in sign in general is .�1/
P

i ji .

An animation of this argument is available at [13]. It was pointed out by Dylan Wilson
that the combinatorial part of the above proof is equivalent to the well-known fact that
if a binary operation is associative on triples, then it is associative on n–tuples.

In order to compare our Toda brackets to the Toda brackets in the opposite category,
we need one lemma.

Lemma 5.12 If X0

f1
�!X1

f2
�!X2

f3
�!X3 is a diagram in a triangulated category T , then

the Toda family T.†f3; †f2; †f1/ is the negative of the suspension of T.f3; f2; f1/.
That is, it consists of .†ˇ;�†2˛/ for .ˇ;†˛/ in T.f3; f2; f1/.

Proof Given a distinguished triangle †�1Cf2

k
�!X1

f2
�!X2

�
�!Cf2

, a distinguished
triangle involving †f2 is

Cf2

�†k
// †X1

†f2
// †X2

†�
// †Cf2

:

Because of the minus sign at the left, the maps that arise in the Toda family based on
this triangle are �†2˛ and †ˇ , where †˛ and ˇ arise in the Toda family based on
the starting triangle.

Given a triangulated category T , the opposite category T op is triangulated in a natural
way. The suspension in T op is †�1 and a triangle

Y0

g1
// Y1

g2
// Y2

g3
// †�1Y0

in T op is distinguished if and only if the triangle

††�1Y0 Y1

g0
1

oo Y2

g2
oo †�1Y0

g3
oo

in T is distinguished, where g0
1

is the composite of g1 with the natural isomorphism
Y0 Š††

�1Y0 .

Corollary 5.13 The Toda bracket is self-dual up to suspension. More precisely, let
X0

f1
�! X1

f2
�! X2

f3
�! � � �

fn
�! Xn be a diagram in a triangulated category T . Then

the subset

hf1; : : : ; fni
T op
� T op.†�.n�2/Xn;X0/D T .X0; †

�.n�2/Xn/
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defined by taking the Toda bracket in T op is sent to the subset

hfn; : : : ; f1i
T
� T .†n�2X0;Xn/

defined by taking the Toda bracket in T under the bijection †n�2WT .X0;†
�.n�2/Xn/!

T .†n�2X0;Xn/.

Proof First we compare Toda families in T and T op . It is easy to see that the Toda
family TT op

.f1; f2; f3/ computed in T op consists of the pairs .˛;†�1ˇ/ for .†˛; ˇ/
in the Toda family TT .f3; f2; f1/ computed in T . In short, one has to desuspend and
transpose the pairs.

Using this, one can see that the iterated Toda family

TT op
.TT op

� � �TT op
.f1; f2; f3/; : : : ; †

�.n�3/fn/

is equal to the transpose of

†�1TT �†�.n�3/fn; †
�1TT .†�.n�4/fn�1; †

�1TT
� � �†�1TT .f3; f2; f1/ � � � /

�
:

By Lemma 5.12, the desuspensions pass through all of the Toda family constructions,
introducing an overall sign of .�1/1C2C3C���C.n�3/ , and producing

†�.n�2/TT .fn;TT .fn�1;TT
� � �TT .f3; f2; f1/ � � � //:

By Theorem 5.11, composing the pairs gives the usual Toda bracket up to the sign
.�1/0C1C2C���C.n�3/ . The two signs cancel, yielding the result.

We do not know a direct proof of this corollary. To summarize, our insight is that
by generalizing the corollary to all .n� 2/! methods of computing the Toda bracket,
we were able to reduce the argument to the 4–fold case (Lemma 5.9) and some
combinatorics.

Remark 5.14 As with the 3–fold Toda brackets (see Remark 3.2), the higher Toda
brackets depend on the triangulation. If the triangulation is negated, the n–fold Toda
brackets change by the sign .�1/n .

6 Higher order operations determine dr

In this section, we show that the higher Adams differentials can be expressed in terms
of higher Toda brackets, in two ways. One of these expressions is as an r th order
cohomology operation.

Algebraic & Geometric Topology, Volume 17 (2017)



2714 J Daniel Christensen and Martin Frankland

Given an injective class I , an Adams resolution of an object Y as in diagram (2-2)
and an object X , consider a class Œx� 2 E

s;t
r represented by an element x 2 E

s;t
1
D

T .†t�sX; Is/. The class dr Œx� is the set of all .†psCr /zx , where zx runs over lifts
of ısx through the .r�1/–fold composite †.isC1 � � � isCr�1/ which appears across
the top edge of the Adams resolution.

Our first result will be a generalization of Proposition 4.1(a), expressing dr in terms of
an .rC1/–fold Toda bracket.

Theorem 6.1 As subsets of E
sCr;tCr�1
1

, we have

dr Œx�D h†
r�1d1; : : : ; †

2d1; †d1; †psC1; ısxi:

Proof We compute the Toda bracket, applying the Toda family construction starting
from the right, which introduces a sign of .�1/1C2C���C.r�2/ , by Theorem 5.11. We
begin with the Toda family T.†d1; †psC1; ısx/. There is a distinguished triangle

†YsC2

†isC1
// †YsC1

†psC1
// †IsC1

†ısC1
// †2YsC2;

with no needed signs. The map †d1 factors through †ısC1 as †2psC2 , and this
factorization is unique because †ısC1 is I–epic and †2IsC2 is injective. The other
maps in the Toda family are †x1 , where x1 is a lift of ısx through †isC1 . So

T.†d1; †psC1; ısx/D f.†2psC2; †x1/ j x1 a lift of ısx through †isC1g:

(The Toda family also includes .†2psC2 �; �
�1.†x1//, where � is any isomorphism,

but these contribute nothing additional to the later computations.) The composites of
such pairs give d2Œx�, up to suspension, recovering Proposition 4.1(a).

Continuing, for each such pair we compute

T.†2d1; †
2psC2; †x1/D�†T.†d1; †psC2;x1/

D�†f.†2psC3; †x2/ j x2 a lift of x1 through †isC2g:

The first equality is Lemma 5.12, and the second reuses the work done in the previous
paragraph, with s increased by 1. Composing these pairs gives �d3Œx�. The sign
which is needed to produce the standard Toda bracket is .�1/1 , and so the signs cancel.

At the next step, we compute

T.†3d1;†
3psC3;�†

2x2/D�†
2T.†d1;†psC3;x2/

D�†2
f.†2psC4; †x3/ jx3 a lift of x2 through †isC3g:
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Again, the composites give �d4Œx�. Since it was a double suspension that passed
through the Toda family, no additional sign was introduced. Similarly, the sign to
convert to the standard Toda bracket is .�1/1C2 , and since 2 is even, no additional
sign was introduced. Therefore, the signs still cancel.

The pattern continues. In total, there are 1C 2C � � � C .r � 2/ suspensions that pass
through the Toda family, and the sign to convert to the standard Toda bracket is also
based on that number, so the signs cancel.

Remark 6.2 Theorem 6.1 can also be proved using the definition of Toda brackets
based on r –filtered objects, as in Definitions 5.4 and 5.5. However, one must work in
the opposite category T op . In that category, there is a unique r –filtered object, up to
isomorphism, based on the maps in the Toda bracket. One of the dashed arrows in the
diagram from Definition 5.5 is also unique, and the other corresponds naturally to the
choice of lift in the Adams differential.

In the remainder of this section, we describe the analog of Proposition 4.1(c). We begin
by defining restricted higher Toda brackets, in terms of restricted Toda families.

Consider a Toda family T.gh1;g1h0;g0h/, where the maps factor as shown, there are
distinguished triangles

(6-1) Zi

gi
// Ji

hi
// ZiC1

ki
// †Zi

for i D 0; 1, and g and h are arbitrary maps Z2 ! A and B ! Z0 , respectively.
This information determines an essentially unique element of the Toda family in the
following way. The octahedral axiom applied to the factorization g1h0 yields the
dotted arrows in a commutative diagram

J0

h0
// Z1

g1

��

k0
// †Z0

˛2

��

�†g0
// †J0

J0

g1h0
// J1

h1
��

q
// W2

ˇ2
��

�
// †J0

Z2

k1
��

Z2

2
��

†Z1

†k0
// †2Z0
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where the rows and columns are distinguished and 2 WD .†k0/k1 . It is easy to see
that �†.g0h/ lifts through � as ˛2.†h/, and that gh1 extends over q as gˇ2 . We
define the restricted Toda family to be the set T.gh1

!;g1h0
!;g0h/ consisting of the pairs

.gˇ2; ˛2.†h// that arise in this way. Since ˛2 and ˇ2 come from a distinguished
triangle involving a fixed map 2 , such pairs are unique up to the usual ambiguity of
replacing the pair with .gˇ2�; �

�1˛2.†h//, where � is an isomorphism. Similarly,
given any map xW B! J0 , we define T.gh1

!;g1h0;x/ to be the set consisting of the
pairs .gˇ2; †˛/, where ˇ2 arises as above and †˛ is any lift of �†x through �.

Definition 6.3 Given distinguished triangles as in (6-1), for i D 1; : : : ; n� 1, and
maps gW Zn!A and xW B! J1 , we define the restricted Toda bracket

hghn�1
!
;gn�1hn�2

!
; : : :

!
;g3h2

!
;g2h1;xi

inductively as follows. If nD 2, it is the set consisting of just the composite gh1x . If
nD 3, it is the set of composites of the pairs in T.gh2

!;g2h1;x/. If n > 3, it is the
union of the sets

hgˇ2
!
; ˛2.†hn�3/

!
; †.gn�3hn�4/

!
; : : : ; †xi;

where .gˇ2; ˛2.†hn�3// is in T.ghn�1
!;gn�1hn�2

!;gn�2hn�3/.

Remark 6.4 Despite the notation, we want to make it clear that these restricted Toda
families and restricted Toda brackets depend on the choice of factorizations and on the
distinguished triangles in (6-1). Moreover, the elements of the restricted Toda families
are not simply pairs, but also include the factorizations of the maps in those pairs, and the
distinguished triangle involving ˛2 and ˇ2 . This information is used in the .n�1/–fold
restricted Toda bracket that is used to define the n–fold restricted Toda bracket.

Recall that the maps d1 are defined to be .†psC1/ıs , and that we have distinguished
triangles

Ys

ps
// Is

ıs
// †YsC1

†is
// †Ys

for each s . The same holds for suspensions of d1 , with the last map changing sign
each time it is suspended. Thus for xW †t�sX ! Is in the E1 term, the .rC1/–fold
restricted Toda bracket h†r�1d1

!; : : : !; †d1
!; d1;xi makes sense for each r , where

we are implicitly using the defining factorizations and the triangles from the Adams
resolution.

Theorem 6.5 As subsets of E
sCr;tCr�1
1

, we have

dr Œx�D h†
r�1d1

!
; : : :

!
; †d1

!
; d1;xi:
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This is a generalization of Proposition 4.1(c). The data in the Adams resolution is the
witness that the composites of the primary operations are zero in a sufficiently coherent
way to permit an r th order cohomology operation to be defined.

Proof The restricted Toda bracket h†r�1d1
!; : : : !; †d1

!; d1;xi is defined recursively,
working from the left. Each of the r �2 doubly restricted Toda families has essentially
one element. The first one involves maps ˛2 , ˇ2 and 2 that form a distinguished
triangle, and 2 is equal to Œ.�1/r†r isCr�2�Œ�.�1/r†r isCr�1�. We will denote
the corresponding maps in the following octahedra ˛k , ˇk and k , where each k

equals Œ.�1/r†r isCr�k � k�1 , and so k D �.�1/rk†r .isCr�k � � � isCr�1/. One is
left to compute the singly restricted Toda family h†r psCrˇr�1

!; ˛r�1†
r�2ıs; †

r�2xi,
where ˛r�1 and ˇr�1 fit into a distinguished triangle

†r�1YsC1

˛r�1
// Wr�1

ˇr�1
// †r YsCr

r�1
// †r YsC1;

and r�1 D�†
r .isC1 � � � isCr�1/. Thus, to compute the last restricted Toda bracket,

one uses the following diagram, obtained as usual from the octahedral axiom:

†t�sCr�1X

�†r�1x
��

†r�2Is
†r�2ıs

// †r�1YsC1

˛r�1

��

.�1/r†r�1is
// †r�1Ys

˛r

��

�†r�1ps
// †r�1Is

†r�2Is
// Wr�1

ˇr�1
��

qr�1
// Wr

ˇr
��

�r�1
// †r�1Is

†r IsCr †r YsCr

†r psCr
oo

r�1

��

†r YsCr

r

��

†r YsC1

.�1/r †r is
// †r Ys

Up to suspension, both dr Œx� and the last restricted Toda bracket are computed by
composing certain maps zxW †t�sCr�2X ! †r YsCr with †r psCr . For dr Œx�, the
maps zx must lift †r�1.ısx/ through �r�1 . For the last bracket, the maps zx are of
the form ˇr y , where yW †t�sCr�1X !Wr is a lift of �†r�1x through �r�1 . As in
the proof of Proposition 4.1(c), one can see that the possible choices of zx coincide.

We next give a description of dr Œx� using higher Toda brackets defined using filtered
objects, as in Definitions 5.4 and 5.5. The computation of the restricted Toda bracket
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above produces a sequence

(6-2) 0DW0

q0
// W1

q1
// � � �

qr�1
// Wr ;

where Wk is the fiber of the k –fold composite †r .isCr�k � � � isCr�1/. (The map k

may differ in sign from this composite, but that doesn’t affect the fiber.) For each k ,
we have a distinguished triangle

Wk

qk
// WkC1

�k
// †r�1IsCr�k�1

�.†˛k/.†
r�1ısCr�k�1/

// †Wk ;

where we extend downwards to k D 0 by defining W1 D†
r�1IsCr�1 and using the

nonobvious triangle

W0

q0D0
// W1

�0D�1
// †r�1IsCr�1

0
// †W0:

One can check that

.†�k�1/.�†˛k/.†
r�1ısCr�k�1/D .†

r psCr�k/.†
r�1ısCr�k�1/

D†r�1d1

D†k.†r�k�1d1/;

where †r�k�1d1 is the map appearing in the .kC 1/st spot of the Toda bracket. In
other words, the sequence (6-2) is an r –filtered object based on .†r�2d1; : : : ; d1/.

The natural map �W W Wr!†r�1Is is �r�1 , and the natural map � 0
W
W †r�1IsCr�1Š

W1!Wr is the composite qr�1 � � � q1�0 D�qr�1 � � � q1 . The Toda bracket computed
using the filtered object W consists of all composites appearing in the middle row of
this commutative diagram:

(6-3)

†r�1IsCr�1

� 0
W
��

†r�1d1

&&

†t�sCr�1X

†r�1x ''

a
// Wr

�W
��

b
// †r IsCr

†r�1Is

We claim that there is a natural choice of extension b . Since

†r�1d1 D .†
r psCr /.†

r�1ısCr�1/;
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it suffices to extend †r�1ısCr�1 over � 0
W

. Well, ˇ2 by definition is an extension
of †r�1ısCr�1 over q1 , and each subsequent ˇk gives a further extension. Because
�0 D�1, �.†r psCr /ˇr is a valid choice for b .

On the other hand, as described at the end of the previous proof, the lifts a of †r�1x

through �W D �r�1 , when composed with �.†r psCr /ˇr , give exactly the Toda
bracket computed there.

In summary, we have the following theorem.

Theorem 6.6 Given an Adams resolution of Y and r � 2, there is an associated
r –filtered object W and a choice of a map b in diagram (6-3), such that for any X and
class Œx� 2E

s;t
r , we have

dr Œx�D h†
r�1d1; : : : ; †d1; d1;xi;

where the Toda bracket is computed only using the r –filtered object W and the chosen
extension b .

7 Sparse rings of operations

In this section, we focus on injective and projective classes which are generated by an
object with a “sparse” endomorphism ring. In this context, we can give conditions under
which the restricted Toda bracket appearing in Theorem 6.5 is equal to the unrestricted
Toda bracket, producing a cleaner correspondence between Adams differentials and
Toda brackets. We begin in Section 7.1 by giving the results in the case of an injective
class, and then briefly summarize the dual results in Section 7.2. Section 7.3 gives
examples.

Let us fix some notation and terminology, also discussed in [36; 34; 39, Section 2; 8].

Definition 7.1 Let N be a natural number. A graded abelian group R� is N –sparse
if R� is concentrated in degrees which are multiples of N , ie Ri D 0 whenever
i 6� 0 .mod N /.

7.1 Injective case

Notation 7.2 Let E be an object of the triangulated category T . Define the E–
cohomology of an object X to be the graded abelian group E�X given by EnX WD

T .X; †nE/. Postcomposition makes E�X into a left module over the graded endo-
morphism ring E�E .

Algebraic & Geometric Topology, Volume 17 (2017)



2720 J Daniel Christensen and Martin Frankland

Assumption 7.3 For the remainder of Section 7.1, we assume the following:

(1) The triangulated category T has infinite products.

(2) The graded ring E�E is N –sparse for some N � 2.

Let IE denote the injective class generated by E , as in Example 2.6. Explicitly, IE

consists of retracts of (arbitrary) products
Q

i †
ni E .

Lemma 7.4 With this setup, we have the following:

(1) Let I be an injective object such that E�I is N –sparse. Then I is a retract of a
product

Q
i †

mi N E .

(2) If, moreover, W is an object such that E�W is N –sparse, then we have
T .W; †tI/D 0 for t 6� 0 .mod N /.

Proof (1) I is a retract of a product P D
Q

i †
ni E , with a map �W I ,! P and

retraction � W P � I . Consider the subproduct P 0 D
Q

N jni
†ni E , with inclusion

�0W P 0 ,! P (via the zero map into the missing factors) and projection � 0W P � P 0 .
Then the equality

�0� 0�D �W I ! P

holds, using the fact that E�I is N –sparse. Therefore, we obtain ��0� 0�D ��D 1I ,
so that I is a retract of P 0 .

(2) By the first part, T .W; †tI/ is a retract of

T .W; †t
Y

i

†mi N E/D T .W;
Y

i

†mi NCtE/

D

Y
i

T .W; †mi NCtE/

D

Y
i

Emi NCtW

D 0;

using the assumption that E�W is N –sparse.

Lemma 7.5 Let I0

f1
�! I1

f2
�! I2! � � �

fr
�! Ir be a diagram in T , with r �N C 1.

Assume that each object Ij is injective and that each E�.Ij / is N –sparse. Then
the iterated Toda family T.fr ; fr�1; : : : ; f1/ is either empty or consists of a single
composable pair †r�2I0! C ! Ir , up to automorphism of C .
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Proof In the case r D 2, there is nothing to prove, so we may assume r � 3.
The iterated Toda family is obtained by r � 2 iterations of the 3–fold Toda family
construction. The first iteration computes the Toda family of the diagram

Ir�3

fr�2
// Ir�2

fr�1
// Ir�1

fr
// Ir :

Choose a cofiber of fr�1 , ie a distinguished triangle Ir�2

fr�1
�! Ir�1! C1!†Ir�2 .

A lift of fr�2 to the fiber †�1C1 , if it exists, is determined up to

T .Ir�3; †
�1Ir�1/D T .†Ir�3; Ir�1/;

which is zero by Lemma 7.4(2). Likewise, an extension of fr to the cofiber C1 , if it
exists, is determined up to

T .†Ir�2; Ir /D 0:

Hence, T.fr ; fr�1; fr�2/ is either empty or consists of a single pair .ˇ1; †˛1/, up to
automorphisms of C1 . It is easy to see that the object C1 has the following property:

(7-1) If E�W D 0 for � � 0; 1 .mod N /, then T .W;C1/D 0.

For r � 4, the next iteration computes the Toda family of the diagram

†Ir�4

†fr�3
// †Ir�3

†˛1
// C1

ˇ1
// Ir :

The respective indeterminacies are

T .†2Ir�4;C1/;

which is zero by property (7-1), and

T .†2Ir�3; Ir /;

which is zero by Lemma 7.4(2), since N � 3 in this case. Hence, T.ˇ1; †˛1; †fr�3/

is either empty or consists of a single pair .ˇ2; †˛2/, up to automorphism of the cofiber
C2 of †˛1 . Repeating the argument inductively, the successive iterations compute the
Toda family of a diagram

†j Ir�3�j

†jfr�2�j
// †j Ir�2�j

†˛j
// Cj

ˇj
// Ir

for 0� j � r � 3, where Cj has the following property:

(7-2) If E�W D 0 for � � 0; 1; : : : ; j .mod N /, then T .W;Cj /D 0.
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The indeterminacies T .†jC1Ir�3�j ;Cj/ and T .†jC1Ir�2�j ;Ir/ again vanish. Hence,
T. ǰ ; † j̨ ; †

jfr�2�j / is either empty or consists of a single pair . ǰC1; † j̨C1/,
up to automorphism of CjC1 . Note that the argument works until the last iteration
j D r � 3, by the assumption r � 2<N .

We will need the following condition on an object Y .

Condition 7.6 Y admits an IE –Adams resolution Y� (see (2-2)) such that for each
injective Ij in the resolution, E�.†j Ij / is N –sparse.

Remark 7.7 (1) Condition 7.6 implies that E�Y is itself N –sparse, because of
the surjection E�I0 � E�Y .

(2) The condition can be generalized to: there is an integer m such that for each j ,
E�.†j Ij / is concentrated in degrees � � m .mod N /. We take m D 0 for
notational convenience.

(3) We will see in Propositions 7.9 and 7.10 situations in which Condition 7.6 holds.

Theorem 7.8 Let X and Y be objects in T and consider the Adams spectral sequence
abutting to T .X;Y / with respect to the injective class IE . Assume that Y satisfies
Condition 7.6. Then for all r � N , the Adams differential is given, as a subset of
EsCr;tCr�1

1
, by

dr Œx�D h†
r�1d1; : : : ; †d1; d1;xi:

In other words, the restricted bracket appearing in Theorem 6.5 coincides with the full
Toda bracket.

Proof We will show that

h†r�1d1
!
; : : :

!
; †d1

!
; d1;xi D h†

r�1d1; : : : ; †d1; d1;xi:

Consider the diagram

Is
d1
// †IsC1

†d1
// †2IsC2

// � � � // †r�1Ir�1

†r�1d1
// †r IsCr

X

x
OO

whose Toda bracket is being computed. The corresponding Toda family is

T.†r�1d1; : : : ; †d1; d1;x/D T
�
T.†r�1d1; : : : ; †d1; d1/; †

r�2x
�
:

We know that

T.†r�1d1
!
; : : :

!
; †d1

!
; d1/� T.†r�1d1; : : : ; †d1; d1/:
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By Lemma 7.5, the Toda family on the right has at most one element, up to automor-
phism. But fully restricted Toda families are always nonempty, so the inclusion must
be an equality. Write †r�2Is

f
�! C

g
�!†r IsCr for an element of these families. It

remains to show that the inclusion

hg
!
; f;†r�2xi � hg; f;†r�2xi

is an equality, ie that the extension of g to the cofiber of f is unique. This follows
from the equality T .†r�1Is; †

r IsCr /D 0, which uses the assumption on the injective
objects Ij and that r � 1<N .

Next, we describe situations in which Theorem 7.8 applies.

Proposition 7.9 Assume that every product of the form
Q

i †
mi N E has cohomology

E�
�Q

i †
mi N E

�
which is N –sparse. Then every object Y such that E�Y is N –

sparse also satisfies Condition 7.6.

Proof Let .yi/ be a set of nonzero generators of E�Y as an E�E–module. Then the
corresponding map Y !

Q
i †
jyi jE is IE –monic into an injective object; we take this

map as the first step p0W Y0! I0 , with cofiber †Y1 . By our assumption on Y , each
degree jyi j is a multiple of N , and thus E�I0 is N –sparse, by the assumption on E .
The distinguished triangle Y1! Y0

p0
�! I0!†Y1 induces a long exact sequence on

E–cohomology which implies that the map I0!†Y1 is injective on E–cohomology.
It follows that E�.†Y1/ is N –sparse as well. Repeating this process, we obtain an
IE –Adams resolution of Y such that for every j , E�.†j Yj / and E�.†j Ij / are
N –sparse.

The condition on E is discussed in Example 7.17.

Proposition 7.10 Assume that the ring E�E is left coherent, and that E�Y is N –
sparse and finitely presented as a left E�E–module. Then Y satisfies Condition 7.6.

Proof Since E�Y is finitely generated over E�E , the map p0W Y !I0 can be chosen
so that I0 D

Q
i †

mi N E Š
L

i †
mi N E is a finite product. It follows that E�I0 is

N –sparse and finitely presented. We have that E��1Y1 D ker.p�
0
W E�I0 � E�Y /.

This is N –sparse, since E�I0 is, and is finitely presented over E�E , since both E�I0

and E�Y are, and E�E is coherent [9, Section I.2, Exercises 11–12]. Repeating this
process, we obtain an IE –Adams resolution of Y such that for every j , †j Ij is a
finite product of the form

Q
i †

mi N E .
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7.2 Projective case

The main applications of Theorem 7.8 are to projective classes instead of injective
classes. For future reference, we state here the dual statements of the previous subsection
and adopt a notation inspired from stable homotopy theory.

Notation 7.11 Let R be an object of the triangulated category T . Define the homotopy
(with respect to R) of an object X as the graded abelian group ��X given by

�nX WD T .†nR;X /:

Precomposition makes ��X a right module over the graded endomorphism ring ��R.

Assumption 7.12 For the remainder of Section 7.2, we assume the following:

(1) The triangulated category T has infinite coproducts.

(2) The graded ring ��R is N –sparse for some N � 2.

Let PR denote the stable projective class spanned by R, as in Example 2.4. Explicitly,
PR consists of retracts of (arbitrary) coproducts

L
i †

ni R.

Condition 7.13 X admits a PR –Adams resolution X� as in diagram (2-1) such that
��.†

�j Pj / is N –sparse for each projective Pj .

Theorem 7.14 Let X and Y be objects in T and consider the Adams spectral se-
quence abutting to T .X;Y / with respect to the projective class PR . Assume that X sat-
isfies Condition 7.13. Let Œy�2E

s;t
r be a class represented by y2E

s;t
1
DT .†t�sPs;Y /.

Then for all r �N , the Adams differential is given, as a subset of E
sCr;tCr�1
1

, by

dr Œy�D hy; d1; †
�1d1; : : : ; †

�.r�1/d1i:

Note that we used Corollary 5.13 to ensure that the equality holds as stated, not merely
up to sign.

Proposition 7.15 Assume that every coproduct of the form
L

i †
mi N R has homotopy

��
�L

i †
mi N R

�
which is N –sparse. Then every object X such that ��X is N –

sparse also satisfies Condition 7.13.

Recall the following terminology.

Definition 7.16 An object X of T is compact if the functor T .X;�/ preserves
infinite coproducts.
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Example 7.17 If the object R is compact in T , then R satisfies the assumption of
Proposition 7.15. This follows from the isomorphism

��

�M
i
†mi N R

�
Š

M
i
��.†

mi N R/D
M

i
†mi N��R

and the assumption that ��R is N –sparse. The same argument works if R is a retract
of a coproduct of compact objects.

Dually, if E is cocompact in T , then E satisfies the assumption of Proposition 7.9.
This holds more generally if E is a retract of a product of cocompact objects.

Remark 7.18 Some of the related literature deals with compactly generated triangu-
lated categories. As noted in Remark 2.13, we do not assume that the object R is a
generator, ie that the condition ��X D 0 implies X D 0.

Proposition 7.19 Assume that the ring ��R is right coherent, and that ��X is N –
sparse and finitely presented as a right ��R–module. Then X satisfies Condition 7.13.

The following is a variant of [34, Lemma 2.2.2], where we do not assume that R is a
generator. It identifies the E2 term of the spectral sequence associated to the projective
class PR . The proof is straightforward.

Proposition 7.20 Assume that the object R is compact.

(1) Let P be in the projective class PR . Then the map of abelian groups

T .P;Y /! Hom��R.��P; ��Y /

is an isomorphism for every object Y .

(2) There is an isomorphism

ExtsPR
.X;Y /Š Exts��R.��X; ��Y /

which is natural in X and Y .

7.3 Examples

Theorem 7.14 applies to modules over certain ring spectra. We describe some examples,
along the lines of [34, Examples 2.4.6–7].
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Example 7.21 Let R be an A1 ring spectrum, and let hModR denote the homotopy
category of the stable model category of (right) R–modules [39, Example 2.3(ii); 17,
Section III]. Then R itself, the free R–module of rank 1, is a compact generator
for hModR . The R–homotopy of an R–module spectrum X is the usual homotopy
of X , as suggested by the notation

hModR.†
nR;X /Š hModS .S

n;X /D �nX:

In particular, the graded endomorphism ring ��R is the usual coefficient ring of R.

The projective class PR is the ghost projective class [14, Section 7.3], generalizing
Example 2.4, where R was the sphere spectrum S . The Adams spectral sequence
relative to PR is the universal coefficient spectral sequence

Exts��R.†
t��X; ��Y / H) hModR.†

t�sX;Y /

as described in [17, Section IV.4] and [14, Corollary 7.12]. We used Proposition 7.20
to identify the E2 term.

Some A1 ring spectra R with sparse homotopy ��R are discussed in [34, Sections 4.3,
5.3 and 6.4]. In view of Proposition 7.20, the Adams spectral sequence in hModR

collapses at the E2 page if ��R has (right) global dimension less than 2.

The Johnson–Wilson spectrum E.n/ has coefficient ring

��E.n/D Z.p/Œv1; : : : ; vn; v
�1
n �; jvi j D 2.pi

� 1/;

which has global dimension n and is 2.p�1/–sparse. Hence, Theorem 7.14 applies in
this case to the differentials dr with r � 2.p�1/, while dr is zero for r > n. Likewise,
connective complex K–theory ku has coefficient ring

��kuD ZŒu�; juj D 2;

which has global dimension 2 and is 2–sparse.

Example 7.22 Let R be a differential graded (dg for short) algebra over a commutative
ring k , and consider the category of dg R–modules dgModR . The homology H�X

of a dg R–module is a (graded) H�R–module. The derived category D.R/ is defined
as the localization of dgModR with respect to quasi-isomorphisms. The free dg R–
module R is a compact generator of D.R/. The R–homotopy of an object X of D.R/

is its homology ��X D H�X . In particular, the graded endomorphism ring of R

in D.R/ is the graded k –algebra H�R.

The Adams spectral sequence relative to PR is an Eilenberg–Moore spectral sequence

ExtsH�R.†
tH�X;H�Y / H) D.R/.†t�sX;Y /
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from ordinary Ext to differential Ext, as described in [4, Section 8, 10]. See also [25,
Section III.4; 21, Example 10.2(b); 16].

Remark 7.23 Example 7.22 can be viewed as a special case of Example 7.21. Letting
HR denote the Eilenberg–MacLane spectrum associated to R, the categories ModHR

and dgModR are Quillen equivalent, by [39, Example 2.4(i)] and [41, Corollary 2.15],
yielding a triangulated equivalence hModHRŠD.R/. The generator HR corresponds
to the generator R via this equivalence.

Example 7.24 Let R be a ring, viewed as a dg algebra concentrated in degree 0. Then
Example 7.22 yields the ordinary derived category D.R/. The graded endomorphism
ring of R in D.R/ is H�R, which is R concentrated in degree 0. This is N –sparse
for any N � 2.

The Adams spectral sequence relative to PR is the hyperderived functor spectral
sequence

ExtsH�R.†
tH�X;H�Y /D

Y
i2Z

ExtsR.Hi�tX;HiY /

H) D.R/.†t�sX;Y /D Exts�t
R .X;Y /

from ordinary Ext to hyper Ext, as described in [44, Section 5.7 and 10.7].

Appendix A: Computations in the stable module category of
a group

In this appendix, we give some computations in the stable module category of a group
algebra kG , where k is a field and G is a finite group. These computations are used
in Proposition 4.3.

Write R for the group algebra kG . We will work in the stable module category
T WD StMod.R/. This is the category whose objects are (left) R–modules, and whose
morphisms from M to N consist of the R–module homomorphisms from M to N

modulo those that factor through a projective module. An isomorphism in StMod.R/
is called a stable equivalence, and two R–modules M and N are stably equivalent if
and only if there are projectives P and Q such that M ˚P ŠN ˚Q. The category
StMod.R/ is triangulated. The suspension †M is defined by choosing an embedding
of M into an injective module and taking the quotient, the desuspension �M is
defined by choosing a surjection from a projective to M and taking the kernel, and
these are inverse to each other because the projectives and injectives coincide. Given a
short exact sequence

0!M1!M2!M3! 0
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and an embedding of M1 into an injective module I , one can choose maps

(A-1)

0 // M1
// M2

//

��

M3
//

��

0

0 // M1
// I // †M1

// 0

making the diagram commute in ModR . The distinguished triangles are defined to be
those triangles isomorphic in StMod.R/ to one of the form

M1!M2!M3!†M1

constructed in this way.

Rather than working with respect to an injective class in T , we will consider the
ghost projective class P , which is generated by the trivial module k . More precisely,
P consists of the retracts of coproducts

L
i †

ni k , and the associated ideal consists of
the maps which induce the zero map in Tate cohomology. See [12, Section 4.2] for
details.

Proposition A.1 Let G be the cyclic group C4 D hg j g
4 D 1i, let k D F2 , and

write R D kG . There exists an R–module M , an Adams resolutions of M with
respect to the ghost projective class, and a map �W M !M such that the inclusion
h�; d1; ıi.†p/� h�; d1; d1i from Proposition 4.2 (dualized) is proper.

Proof To produce our counterexample, we will consider the Adams spectral sequence
abutting to StMod.M; ��M /, where M is a two-dimensional module with basis
vectors that are interchanged by g .

In order to make concrete computations, it will be helpful to observe that, as a k –algebra,
R is the truncated polynomial algebra

RD kŒg�=.g4
� 1/D kŒg�=.g� 1/4 D kŒx�=x4;

where we define x WD g� 1 2R. In this notation, the trivial module k is R=x and
the module M is R=x2 .

We will need to compute their desuspensions, which are given, as R–modules, by

�k D ker.R � k/D kfx;x2;x3
g ŠR=x3;

�2k D ker.R � R=x3/D kfx3
g ŠR=x D k;

�M D ker.R � R=x2/D kfx2;x3
g ŠR=x2

DM;

where curly brackets denote the k –vector space with the given generating set.
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In order to produce a P –epic map to M , we need to know the maps from suspensions
of k to M . Since k is 2–periodic, the following calculations give us what we need:

T .k;M /DModR.k;M /=�ŠModR.R=x;R=x
2/=�Dkf�xg=�Dkf�xg;

T .�k;M /DModR.�k;M /=�DModR.R=x
3;R=x2/=�Dkf�1;�xg=�Dkf�1g;

where f � g if f �g factors through a projective, and �r W R=x
m!R=xn denotes

the R–module map given by multiplication by r 2R (when this is well-defined). Here,
we used the fact that �x W R=x

3!R=x2 is stably null, since it factors as

R=x3
�x
// R

�1
// R=x2:

Using this, we obtain a P–epic map p WD �x C �1W k ˚�k ! M . Since p is
surjective, its fiber is its kernel. This kernel is generated by .1;x/ and is readily
seen to be isomorphic to M . Under the identification of �M with M , the natural
map �M !M (using the dual of Equation (A-1)) is �x . Since we are working at
the prime 2, fiber sequences and cofiber sequences agree, so we obtain the following
Adams resolution of M :

M
�x

// M

ı||

�x
// M

ı||

�x
// M

ı||

// � � �

k˚�k

p

bbbb

k˚�k

p

bbbb

k˚�k

p

bbbb

where ı D
� �1
�x

�
, and we have chosen to put the degree shifts on the horizontal arrows.

We will be considering the Adams spectral sequence formed by applying the functor
T .�;M /. The map d1 D ıpW k ˚�k ! k ˚�k is

�
0 �1
�x2 �x

�
, which simplifies

to
�

0 �1
�x2 0

�
, using the fact that �x W �k!�k is stably null, because we have that

it factors as �k
�x
�! R

�1
�! �k . The stable maps k ˚�k ! M are of the form

Œa�x b�1� for a and b in k , and all composites Œa�x b�1� are stably null. Using
this twice for d1 ’s in different positions, one sees that if �W k˚�k!M is any map,
then d2Œ�� is defined and has no indeterminacy.

Now consider h�; d1; ıi.†p/. One part of the indeterminacy here consists of maps
of the form f †.ı/†.p/ D f †.d1/, for f W †.k ˚�k/!M . As above, all such
composites are zero. The other part of the indeterminacy consists of maps of the form
�f †.p/, for f W †M ! k˚�k , and again, one can show that all such composites
are zero. So h�; d1; ıi.†p/ has no indeterminacy and therefore equals d2Œ��.
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Finally, consider h�; d1; d1i. The part of the indeterminacy involving d1 is again zero.
The other part consists of all composites �f , for f W †.k˚�k/! k˚�k . Since
there is an isomorphism †.k˚�k/! k˚�k , this indeterminacy is nonzero if and
only if � is nonzero.

Since nonzero maps �W k˚�k!M exist, we conclude that the containment

h�; d1; ıi.†p/� h�; d1; d1i

can be proper.

Remark A.2 If in the proof above we take � to be the map Œ�x 0�W k˚�k!M ,
then using the same techniques one can show that

h�; d1; ıi D f1M g;

h�; d1; ıi.†p/D f†pg D d2Œ��D fŒ�1 �x �g;

h�; d1; d1i D fŒ�1 b�x � j b 2 F2g;

as subsets of T .�k˚k;M /Š T .†.k˚�k/;M /, where we identify M with �M

and †M , as before.

Remark A.3 Theorem 7.14 does not apply to the example in Proposition A.1. Indeed,
the graded endomorphism ring of k in StMod.kG/ is the Tate cohomology ring
zH n.GI k/D StMod.kG/.�nk; k/ [11, Section 6]. This ring is not sparse, as we have
zH�1.GI k/¤ 0.

Example A.4 The following example illustrates the fact that a Toda bracket need not
be equal to its own negative, as noted in Remark 3.2.

Consider the ground field k D F3 and the group algebra RD kC3 Š kŒx�=x3 , where
we denote x D g� 1 2R for g 2 C3 a generator. Consider the R–modules k DR=x

and M DR=x2 . Let us compute the Toda bracket of the diagram

M
�1
// k

�x
// M

�1
// k

in the triangulated category T D StMod.R/. We will use appropriate isomorphisms
†k ŠM and †M Š k , and in particular compute the Toda bracket as a subset of
T .k; k/ Š T .†M; k/. Via these isomorphisms, the suspension †�1W †M ! †k
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equals �x W k!M . Consider the commutative diagram in T

k

†˛
��

��x
// M

k
�x
// M

�1
// k

ˇ
��

�x
// M

M
�1
// k

where the middle row is distinguished. The only choices for the dotted arrows are
†˛ D�1k and ˇ D 1k , from which we conclude

h�1; �x; �1ifc D f�1kg � T .k; k/:

Appendix B: 3–fold Toda brackets determine the
triangulated structure

Heller proved the following theorem in [20, Theorem 13.2]. We present an arguably
simpler proof here. The argument was kindly provided by Fernando Muro.

Theorem B.1 In a triangulated category T , the diagram X
f
�! Y

g
�!Z

h
�!†X is

a distinguished triangle if and only if the following two conditions hold:

(1) The sequence of abelian groups

T .A; †�1Z/
.†�1h/�

// T .A;X /
f�
// T .A;Y /

g�
// T .A;Z/

h�
// T .A; †X /

is exact for every object A of T .

(2) The Toda bracket hh;g; f i � T .†X; †X / contains the identity map 1†X .

Proof .)/ A distinguished triangle satisfies the first condition. For the second
condition, consider the following commutative diagram:

X
f
// Y

g
// Z

1Z
��

h
// †X

1†X
��

X
f
// Y

g
// Z

h
// †X

Since the top row is distinguished, this diagram exhibits the membership 1†X 2

hh;g; f i.

.(/ Assume that 1†X 2 hh;g; f i holds. By definition of the Toda bracket, there
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exists a map 'W Cf !Z making the diagram

X
f
// Y

q
// Cf

�
//

'
��

†X

1†X
��

X
f
// Y

g
// Z

h
// †X

commute, where the top row is distinguished. To show that the bottom row is dis-
tinguished, it suffices to show that 'W Cf ! Z is an isomorphism. By the Yoneda
lemma, it suffices to show that '�W T .A;Cf /! T .A;Z/ is an isomorphism for every
object A of T .

Consider the following diagram:

(B-1)
X

f
// Y

q
// Cf

�
//

'
��

†X

1†X
��

�†f
// †Y

1†Y
��

X
f
// Y

g
// Z

h
// †X

�†f
// †Y

Applying T .A;�/ yields the following diagram of abelian groups:

T .A;X /
f�
// T .A;Y /

q�
// T .A;Cf /

��
//

'�
��

T .A; †X /

1
��

.�†f /�
// T .A; †Y /

1
��

T .A;X /
f�
// T .A;Y /

g�
// T .A;Z/

h�
// T .A; †X /

.�†f /�
// T .A; †Y /

The top row is exact, since the top row of (B-1) is a cofiber sequence, and the bottom
row is exact, using the first condition. By the five lemma, '� is an isomorphism.

Remark B.2 Here are some remarks about the first condition.

(1) It implies gf D g�f�.1X /D 0 and hg D h�g�.1Y /D 0.

(2) It is equivalent to the exactness of the long sequence (infinite in both directions)

� � �! T .A;†nX /
.†nf /�

// T .A;†nY /
.†ng/�

// T .A;†nZ/
.†nh/�

// T .A;†nC1X /!� � �

for every object A of T .

(3) It is a weaker version of what is sometimes called a pretriangle [33, Section 1.1].
Indeed, the condition states that the sequence

H.†�1Z/
H.†�1h/

// H.X /
H.f /

// H.Y /
H.g/

// H.Z/
H.h/

// H.†X /

is exact for every decent homological functor H W T !Ab of the form H D T .A;�/.
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Corollary B.3 Given the suspension functor †W T ! T , 3–fold Toda brackets in T
determine the triangulated structure. In particular, 3–fold Toda brackets determine the
higher Toda brackets, via the triangulation.

Remark B.4 It is unclear to us if the higher Toda brackets can be expressed directly
in terms of 3–fold brackets.
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A generalized axis theorem for cube complexes

DANIEL J WOODHOUSE

We consider a finitely generated virtually abelian group G acting properly and
without inversions on a CAT.0/ cube complex X . We prove that G stabilizes a
finite-dimensional CAT.0/ subcomplex Y � X that is isometrically embedded in
the combinatorial metric. Moreover, we show that Y is a product of finitely many
quasilines. The result represents a higher-dimensional generalization of Haglund’s
axis theorem.

20F65

1 Introduction

A CAT.0/ cube complex X is a cell complex that satisfies two properties: it is a
geodesic metric space satisfying the CAT.0/ comparison triangle condition, and each
n–cell is isometric to Œ0; 1�n . We will call this metric the CAT.0/ metric dX and refer
to Bridson and Haefliger [2] for a comprehensive account. A hyperplane ƒ�X is the
subset of points equidistant between two adjacent vertices. Despite the brevity of this
definition, hyperplanes are better understood via their combinatorial definition, and the
reader is urged to consult the literature; see Sageev [10], Haglund [6] and Wise [12]
for the required background. There also exists an alternative metric on the 0–cubes
of X , which we will refer to as the combinatorial metric dcX , sometimes referred to as
the `1–metric. The combinatorial distance between two 0–cubes is the length of the
shortest combinatorial path in X joining the 0–cubes. Equivalently, the combinatorial
distance between two 0–cubes is the number of hyperplanes in X separating them. We
will always assume that a group G acting on a CAT.0/ cube complex preserves its cell
structure and maps cubes isometrically to cubes. A group G acts without inversions
if the stabilizer of a hyperplane also stabilizes each complementary component. The
requirement that the action be without inversions is not a serious restriction as G acts
without inversions on the cubical subdivision.

A connected CAT.0/ cube complex X is a quasiline if it is quasiisometric to R. The
rank of a virtually abelian group commensurable to Zn is n. The goal of this paper
will be the following theorem:
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Theorem 4.3 Let G be virtually Zn . Suppose G acts properly and without inversions
on a CAT.0/ cube complex X . Then G stabilizes a finite-dimensional subcomplex
Y �X that is isometrically embedded in the combinatorial metric, and Y Š

Qm
iD1 Ci ,

where each Ci is a cubical quasiline and m�n. Moreover, StabG.ƒ/ is a codimension-
1 subgroup for each hyperplane ƒ in Y .

Note that Y will not in general be a convex subcomplex.

Corollary 1.1 Let A be a finitely generated virtually abelian group acting properly on
a CAT.0/ cube complex X . Then A acts metrically properly on X .

Corollary 1.2 Let G be a finitely generated group acting properly on a CAT.0/ cube
complex X . Then virtually Zn subgroups are undistorted in G .

Let g be an isometry of X , and let x 2X . The displacement of g at x , denoted by
�x.g/, is the distance dX .x; gx/. The translation length of g , denoted by �.g/, is
inff�x.g/ j x 2 Xg. Similarly, if x is a 0–cube of X , we can define the combinato-
rial displacement of g at x , denoted by �cx.g/, as dcX .x; gx/ and the combinatorial
translation length, denoted by �c.g/, is inff�cx.g/ j x 2 Xg. Note that � and �c are
conjugacy invariant. An isometry g of a CAT.0/ space is semisimple if �x.g/D �.g/
for some x 2 X , and G acts semisimply on a CAT.0/ space X if each g 2 G is
semisimple.

If a virtually Zn group G acts metrically properly by semisimple isometries on a
CAT.0/ space X , then the flat torus theorem of Bridson and Haefliger [2] provides a
G–invariant, convex, flat En�X . A group acting on a CAT.0/ cube complex does not,
in general, have to do so semisimply. See Algom-Kfir, Wajnryb and Witowicz [1] for
examples of nonsemisimple isometries in Thompson’s group F acting on an infinite-
dimensional CAT.0/ cube complex. Alternatively, in Gersten [5], a free-by-cyclic group
G is shown not to permit a semisimple action on a CAT.0/ space. Yet in Wise [13] it
is shown that G does act freely on a CAT.0/ cube complex. Thus Theorem 4.3 can be
applied to such actions, whereas the classical flat torus theorem cannot.

A virtually abelian subgroup is highest if it is not virtually contained in a higher rank
abelian subgroup. If G is a highest virtually abelian subgroup of a group acting properly
and cocompactly on a CAT.0/ cube complex X , then G cocompactly stabilizes a
convex subcomplex Y which is a product of quasilines, as above; see Wise and
Woodhouse [14]. However, this theorem fails without the highest hypothesis. Moreover,
most actions do not arise in the above fashion.

Despite the fact that the flat torus theorem will not hold under the hypotheses of
Theorem 4.3, we can deduce the following:

Algebraic & Geometric Topology, Volume 17 (2017)
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Corollary 4.4 Let G be virtually Zn . Suppose G acts properly and without inversions
on a CAT.0/ cube complex X . Then G cocompactly stabilizes a subspace F � X
homeomorphic to Rn such that for each hyperplane ƒ�X , the intersection ƒ\F is
either empty or homeomorphic to Rn�1 .

The initial motivation for Theorem 4.3 and Corollary 4.4 was to resolve the following
question, posed by Wise. Although we have not found a combinatorial flat, Corollary 4.4
is perhaps better suited to applications (see Woodhouse [15]).

Problem 1.3 Let Z2 act freely on a CAT.0/ cube complex Y . Does there exists a
Z2–equivariant map F ! Y , where F is a square 2–complex homeomorphic to R2 ,
and such that no two hyperplanes of F map to the same hyperplane in Y ?

A combinatorial geodesic axis for g is a g–invariant, isometrically embedded in the
combinatorial metric, subcomplex  � X with  Š R. Note that  realizes the
minimal combinatorial translation length of g . Theorem 4.3 is a high-dimensional
generalization of Haglund’s combinatorial geodesic axis theorem. Haglund’s proof
involved an argument by contradiction, exploiting the geometry of hyperplanes. We
reprove the result in Section 5 by using the dual cube complex construction of Sageev.
The results are further support for Haglund’s slogan “in CAT.0/ cube complexes the
combinatorial geometry is as nice as the CAT.0/ geometry”.

The following is an application of Theorem 4.3, and the argument is inspired by the
solvable subgroup theorem of Bridson and Haefliger [2]. Note that since we do not
require that the action of G on a CAT.0/ cube complex be semisimple the following
is not covered by the solvable subgroup theorem.

Corollary 1.4 Let H be virtually Zn , and let �W H!H be an injection with �¤�i

for all i > 1. Then GDhH; t j t�1ht D�.h/; h2H i cannot act properly on a CAT.0/
cube complex.

Proof Suppose that G acts properly on a CAT.0/ cube complex X . After subdividing
X we can assume that G acts without inversions. As H is finitely generated, there exists
an a in the finite generating set such that �i .a/¤ a for all i 2N , otherwise �i D� for
some i , contradicting our hypothesis. Thus, jf�i .a/gj D1. By Theorem 4.3 there is
an H–equivariant isometrically embedded subcomplex Y �X such that Y Š

Qm
iD1 Ci ,

where each Ci is a cubical quasiline.

As Y is isometrically embedded in X in the combinatorial metric, the combinatorial
translation length �c.�i .a// is the same in Y as it is in X . The set f�c.�i .a//gi2N

Algebraic & Geometric Topology, Volume 17 (2017)
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must be unbounded since the action of H on Y is proper and Y is locally finite. How-
ever, since �c is conjugacy invariant in G , we conclude that �c.�i .a//D �c.�j .a//
for all i; j 2 N . Thus, we arrive at the contradiction that f�c.�i .a//gi2N is both
bounded and unbounded.

However, we have the following example of a solvable group which does act freely on
a CAT.0/ cube complex.

Example 1.5 Let H D ha1; a2; : : : j Œai ; aj � for i ¤ j i. Note that H is the funda-
mental group of the nonpositively curved cube complex Y obtained from a 0–cube v ,
and 1–cubes e1; e2; e3 : : : with n–cubes inserted for every cardinality-n collection of
1–cubes to create an n–torus. One should think of Y as an infinite cubical torus. The
oriented loop ei represents the element ai .

Let �W H ! H be the monomorphism such that �.ai / D aiC1 . Let G D H�� D
ht; a1; a2; : : : j Œai ; aj � for i ¤ j; t�1ai t D aiC1i be the associated ascending HNN
extension. Note that G is generated by a1 and t . There is a graph of spaces X obtained
by letting Y be the vertex space and Y � Œ0; 1� be the edge space and identifying .v; 1/
and .v; 0/ with v , and the 1–cube ei �f1g with ei and ei �f0g with eiC1 . Note that
X is nonpositively curved, and therefore G D �1X acts freely on the CAT.0/ cube
complex zX , the universal cover of X .

Acknowledgements I would like to thank Daniel T Wise, Mark F Hagen, Jack Button,
Piotr Przytycki and Dan Guralnik.

2 Dual cube complexes

Let S be a set. A wall ƒDf Eƒ; Eƒg in S is a partition of S into two disjoint, nonempty
subsets. The subsets Eƒ and Eƒ are the halfspaces of ƒ. A wall ƒ separates x; y 2 S
if they belong to distinct halfspaces of ƒ. Let K � S . A wall ƒ intersects K if
K nontrivially intersects both Eƒ and Eƒ. Let W be a set of walls in S ; then .S;W/

is a wallspace if for all x; y 2 S , the number of walls separating x and y is finite.
If ƒ intersects K , then the restriction of ƒ to K is the wall in K determined by
ƒjK D f Eƒ\K; Eƒ\Kg.

In this paper, duplicate walls are not permitted in W . Let H be the set of all halfspaces
corresponding to the walls in W .

Example 2.1 Let X be a CAT.0/ cube complex, and let ƒ � X be a hyperplane
in X . The complement X �ƒ has two components, therefore defining a wall in
X such that Eƒ is an open halfspace not containing ƒ and Eƒ is a closed halfspace

Algebraic & Geometric Topology, Volume 17 (2017)
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containing ƒ. Note that Eƒ t Eƒ D X . Let L.ƒ/ and R.ƒ/ denote the maximal
subcomplexes contained in Eƒ and Eƒ, respectively. Note that L.ƒ/ and R.ƒ/ are
convex subcomplexes. Let W be the set of walls determined by the hyperplanes in X .
Then .X;W/ is the wallspace associated to X . Note that we are using ƒ to denote
both the hyperplane and the wall corresponding to the hyperplane.

A function cW W!H is a 0–cube if cŒƒ� 2 f Eƒ; Eƒg and the following two conditions
are satisfied:

(1) For all ƒ1; ƒ2 2W , the intersection cŒƒ1�\ cŒƒ2� is nonempty.

(2) For all x 2 S , the set fƒ 2W j x … cŒƒ�g is finite.

The dual cube complex C.S;W/ is the connected CAT.0/ cube complex obtained by
letting the union of all 0–cubes be the 0–skeleton. Two 0–cubes c1¤ c2 are endpoints
of a 1–cube if c1Œƒ� D c2Œƒ� for all but precisely one ƒ 2W . An n–cube is then
inserted wherever there is the 1–skeleton of an n–cube. The hyperplanes in C.S;W/

are identified naturally with the walls in W . A proof of the fact that C.S;W/ is in
fact a CAT.0/ cube complex can be found in [9].

A point x 2 S determines a 0–cube cx defined such that x 2 cxŒƒ� for all ƒ 2W .
Condition (1) holds immediately since x 2 cxŒƒ� for all ƒ 2W . Condition (2) holds
for cx , since if y 2 S a wall ƒ does not separate x and y , we can deduce that
y 2 cxŒƒ�, hence all but finitely many ƒ satisfy y 2 cxŒƒ�. Such 0–cubes are called
the canonical 0–cubes.

Lemma 2.2 Let X be a CAT.0/ cube complex. Let W be a set of walls obtained
from the hyperplanes in X . Let Z be a connected subcomplex of X , and let WZ �W
be the subset of walls intersecting Z . Let V be the set of walls in WZ restricted
to Z . Then .Z;V/ is a wallspace and C.Z;V/ embeds in C.X;W/ isometrically in
the combinatorial metric.

Proof We first claim that the map WZ!V is an injection. Suppose that ƒ1; ƒ22WZ

are distinct walls. As ƒ1 and ƒ2 intersect Z , and since Z is connected, there are
1–cubes e1 and e2 in Z that are dual to the hyperplanes corresponding to ƒ1 and ƒ2 .
Therefore, both 0–cubes in e1 belong in a single halfspace of ƒ2jZ , so ƒ1jZ ¤ƒ2jZ .

We construct a map �W C.Z;V/ ! C.X;W/ on the 0–skeleton first. Let c be a
0–cube in C.Z;V/. We let �.c/ 2 C.X;W/ be the uniquely defined 0–cube such
that �.c/Œƒ� � cŒƒjZ � for ƒjZ 2 V , and �.c/Œƒ� � Z for ƒ 2 W �WZ . To
verify that �.c/ is a 0–cube, first observe that �.c/Œƒ1� \ �.c/Œƒ2� is nonempty
since ƒ1jZ \ƒ2jZ � X . Secondly, if x 2 X we need to show that x 2 �.c/Œƒ�
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for all but finitely many ƒ 2 W . Choose z 2 Z ; then z 2 cŒƒjZ � for all ƒjZ 2
V � fƒ1jZ ; : : : ; ƒkjZg, hence z 2 �.c/Œƒ� for all ƒ 2 WZ � fƒ1; : : : ; ƒkg. Let
fƒkC1; : : : ; ƒkC`g be the set of walls in W separating x and z . Then x 2 �.c/Œƒ�
for all ƒ 2W �fƒ1; : : : ƒkC`g.

The 0–cubes are embedded since if c1¤ c2 , there exists ƒjZ 2 V such that c1ŒƒjZ �¤
c2ŒƒjZ �, hence �.c1/Œƒ�¤ �.c2/Œƒ�. If c1 and c2 are adjacent 0–cubes in C.Z;V/,
then c1ŒƒjZ �D c2ŒƒjZ � for all ƒjZ 2V , with the exception of precisely one wall yƒjZ .
Therefore, we can deduce that �.c1/Œƒ�D�.c2/Œƒ� for all walls in W , with the precise
exception of yƒ. Therefore, the 1–skeleton of C.Z;V/ embeds in C.X;W/, which is
sufficient for � to extend to an embedding of the entire cube complex.

Consider C.Z;V/ as a subcomplex of C.X;W/. The set of hyperplanes in C.Z;V/
embeds into the set of hyperplanes in C.X;W/. To see that C.Z;V/ is an isomet-
rically embedded subcomplex, let z1 and z2 be 0–cubes in Z and  be a geodesic
combinatorial path in C.Z;V/ joining them. Each hyperplane dual to  in C.Z;V/
intersects  precisely once, and since the hyperplanes in C.Z;V/ inject to hyperplanes
in C.X;W/, it is geodesic there as well.

Given a wall ƒ associated to a hyperplane in X we let N.ƒ/ denote the carrier of ƒ,
by which we mean the union of all cubes intersected by ƒ.

The following lemma describes what is called the restriction quotient in [3].

Lemma 2.3 Let S be a set and let W be a set of walls of S . Let G be a group
acting on .S;W/. Let V �W be a G–invariant subset. Then there is a G–equivariant
function �W C.S;W/0!C.S;V/0 . Moreover, ��1.z/ is nonempty for all 0–cubes z
in C.S;V/.

Proof Let c be a 0–cube in C.S;W/. Let �.c/Œƒ�D cŒƒ� for ƒ2V . It is immediate
that � is G–equivariant.

To verify �.c/Œƒ� is a 0–cube in C.S;V/ first note that �.c1/Œƒ1�\�.c2/Œƒ2�¤∅
for all ƒ1; ƒ2 2 V , since c1Œƒ1�\ c2Œƒ2�¤∅ for all ƒ1; ƒ2 2W . Secondly, for all
x 2 S observe that x 2 �.c/Œƒ� for all but finitely many ƒ 2 V . Indeed, this is true
for all but finitely many ƒ 2W .

To see that ��1.z/ is nonempty for all 0–cubes z in C.S;V/, we determine a 0–cube
x in C.S;W/ such that �.x/D z . Fix s 2 S . Let xŒƒ�D zŒƒ� for ƒ 2 V . Suppose
that ƒ 2W �V . If Eƒ� zŒƒ0� for some ƒ0 2 V let xŒƒ�D Eƒ. Similarly if Eƒ� zŒƒ0�.
Otherwise, if ƒ intersects zŒƒ0� for all ƒ0 2 V then let s 2 xŒƒ�.
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To verify that x is a 0–cube, consider the following cases to show xŒƒ1�\xŒƒ2�¤∅
for ƒ1; ƒ22W . If ƒ1; ƒ22V then xŒƒ1�\xŒƒ2�DzŒƒ1�\zŒƒ2�¤∅. Suppose that
ƒ1 2W �V and xŒƒ1�� zŒƒ01� for some ƒ01 2 V . If ƒ2 2 V , then xŒƒ1�\xŒƒ2��
zŒƒ01� \ zŒƒ2� ¤ ∅. If ƒ2 2 W � V and xŒƒ2� � zŒƒ

0
2� for some ƒ02 2 V then

xŒƒ1� \ xŒƒ2� � zŒƒ
0
1� \ zŒƒ

0
2� ¤ ∅. If ƒ2 intersects zŒƒ� for all ƒ 2 V , then

xŒƒ1�\ xŒƒ2�� zŒƒ
0
1�\ xŒƒ2�¤∅. Finally if both s 2 xŒƒ1� and s 2 xŒƒ2�, then

their intersection will contain at least s .

Finally, we verify that for s0 2 S there are only finitely many ƒ 2 W such that
s0 … xŒƒ�. Suppose, by way of contradiction, that there is an infinite subset of walls
fƒ1; ƒ2; : : :g �W such that s0 … xŒƒi � for all i 2N . We can assume, by excluding at
most finitely many walls, that each ƒi 2W �V . Similarly, by excluding finitely many
walls, we can assume that ƒi does not separate s and s0 . Therefore, s … xŒƒi � for
i 2N . Therefore, by construction of x , there exist ƒ0i 2 V such that zŒƒ0i �� xŒƒi �,
which implies that s0 … zŒƒ0i �. There are infinitely many distinct ƒ0i , as otherwise there
is a ƒ0 2 V such that zŒƒ0� � xŒƒi � for infinitely many i , which would imply that
infinitely many ƒi separate s0 from an element in the complement of zŒƒ0�. Therefore,
infinitely many distinct walls ƒ0i 2 V have s0 … zŒƒ0i �, contradicting that z is a 0–cube
in C.S;V/.

3 Minimal Zn–invariant convex subcomplexes

The following is Theorem 2 from [4]. As this paper is written in Russian, we give
a proof in an appendix based on the work in [8] as well as stating the definition of
codimension-1.

Theorem 3.1 (Gerasimov [4]) Let G be a finitely generated group that acts on a
CAT.0/ cube complex X without a fixed point or inversions. Then there is a hyperplane
in X that is stabilized by a codimension-1 subgroup of G .

The goal of this section is to prove the following:

Lemma 3.2 Let G be a finitely generated group acting without fixed point or inver-
sions on a CAT.0/ cube complex X . There exists a minimal, G–invariant, convex
subcomplex Xo �X such that Xo contains only finitely many hyperplane orbits, and
every Xo hyperplane stabilizer is a codimension-1 subgroup of G .

Proof Since G is finitely generated, by taking the convex hull of a G–orbit we obtain
a G–invariant convex subcomplex Xo � X containing finitely many G–orbits of
hyperplanes. Assume that Xo is a minimal such subcomplex in terms of the number of
hyperplane orbits.
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Let .Xo;W/ be the wallspace obtained from the hyperplanes in Xo . Suppose that
StabG.ƒ/ is not a codimension-1 subgroup of G for some ƒ 2W . Let Gƒ�W be
the G–orbit of ƒ. By Lemma 2.3 there is an G–invariant map �W X0o !C.Xo; Gƒ/

0 .
Since StabG.ƒ/ is not commensurable to a codimension-1 subgroup, Theorem 3.1
implies that there is a fixed 0–cube x in C.Xo; Gƒ/. Lemma 2.3 then implies that
��1.x/ is nonempty. Assuming that ��1.x/� Eƒ, then the intersection

T
g2G gL.ƒ/

contains a proper, convex, G–invariant subcomplex of Xo , with one less hyperplane
orbit. This contradicts the minimality of Xo .

The following corollary follows since all codimension-1 subgroups of a rank n virtually
abelian group are of rank n� 1.

Corollary 3.3 Let G be a rank n, virtually abelian group acting without fixed point
or inversions on a CAT.0/ cube complex X . Then there exists a minimal, G–invariant,
convex subcomplex Xo � X such that Xo contains only finitely many hyperplane
orbits, and every hyperplane stabilizer is a rank n� 1 subgroup of G .

4 Proof of the main theorem

Definition 4.1 Regard R as a CAT.0/ cube complex whose 0–skeleton is Z. Let g
be an isometry of X . A geodesic combinatorial axis for g is a g–invariant subcomplex
homeomorphic to R that embeds isometrically in X .

Definition 4.2 Let .M; d/ be a metric space. The subspaces N1; N2�M are coarsely
equivalent if each lies in an r –neighborhood of the other for some r > 0.

Theorem 4.3 Let G be virtually Zn . Suppose G acts properly and without inversions
on a CAT.0/ cube complex X . Then G stabilizes a finite-dimensional subcomplex
Y �X that is isometrically embedded in the combinatorial metric, and Y Š

Qm
iD1 Ci ,

where each Ci is a cubical quasiline and m�n. Moreover, StabG.ƒ/ is a codimension-
1 subgroup for each hyperplane ƒ in Y .

Proof By Corollary 3.3 there is a minimal, nonempty, convex subcomplex Xo �X
stabilized by G , containing finitely many hyperplane orbits, and StabG.ƒ/ is a rank
n� 1 subgroup of G for each hyperplane ƒ�Xo .

Let x 2 Xo be a 0–cube. Let ‡ be the Cayley graph of G with respect to a finite
generating set S . Let N D maxfdcX .x; gx/ j g 2 Sg. Let �W ‡ ! Xo be a G–
equivariant map that maps the vertex corresponding to 1G to x , and edges to geodesic
combinatorial paths in Xo . Note that the image �.e/ of each edge e in ‡ has length at
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most N and is intersected at most once by each hyperplane. Let QD�.‡/. As G acts
properly on X , and cocompactly on ‡ , the graph Q is quasiisometric to G . Let WQ

be the set of hyperplanes intersecting Q , and let .Q;WQ/ be the associated wallspace.
By Lemma 2.2 we know that C.Q;WQ/ is an isometrically embedded subcomplex
of Xo . Fix a proper action of G on Rn , and let qW Q ! Rn be a G–equivariant
quasiisometry. Note that StabG.ƒ/ is a quasiisometrically embedded codimension-1
subgroup of G , for all ƒ 2WQ . We claim that q.ƒ\Q/ is coarsely equivalent to a
codimension-1 affine subspace H �Rn .

As G is virtually Zn and StabG.ƒ/ is a codimension-1, there exists g 2 S such that
hgi is not virtually contained in StabG.ƒ/. There are finitely many StabG.ƒ/–orbits
of vertices in ‡=hgi, so let A D fa0; : : : akg be representatives in ‡ such that ƒ
separates �.ai / and �.gai /. Let i be the biinfinite geodesic in ‡ containing hgiai .
Then ƒ\�.i / is contained in the N.N C 1/ neighborhood of �.ai / in �.i /, since
otherwise ƒ would intersect a pair of 1–cubes in �.i / that lie in the same hgi–orbit,
implying that hgi is virtually contained in StabG.ƒ/. Thus, ƒ\ h�.i / is contained
in the N.N C 1/ neighborhood of h�.ai / in h�.i / for all h 2 StabG.ƒ/.

Now suppose that ƒ intersects Q outside of the N.NC2/ neighborhood of StabG.ƒ/A.
Then ƒ must intersect �.e/, where e is an edge connecting h1i and h2j for some
h1; h2 2 StabG.ƒ/. Up to taking the inverse of g , we can assume that ge is further
away from h1ai and h2aj than e . Then ƒ must intersect �.ge/ since ƒ is 2–sided,
intersects �.e/ precisely once, and cannot intersect the intervals in h1i and h2j that
lie between e and ge . Similarly, ƒ intersects �.gne/ for all n > 0 implying that ƒ
intersects a pair of 1–cubes in the same hgi–orbit, further implying that hgi is virtually
contained in StabG.ƒ/ and contradicting the initial assumption on g . Thus, ƒ cannot
intersect Q outside of the N.N C2/ neighborhood of StabG.ƒ/A. Thus q.ƒ\Q/ is
coarsely equivalent to a codimension-1 affine subspace H �Rn . Moreover, q. Eƒ\Q/
and q. Eƒ\Q/ are coarsely equivalent to the halfspaces of H .

Let n > 0. Since there are finitely many orbits of hyperplanes in Xo , there are only
finitely many commensurability classes of stabilizers. Therefore, we may partition WQ

as the disjoint union
Fm
iD1Wi , where each Wi contains all walls with commensurable

stabilizers. For each ƒi 2Wi let q.ƒi\Q/ be coarsely equivalent to a codimension-1
affine subspace Hi � Rn , stabilized by StabG.ƒi /. If i ¤ j then Hi and Hj are
nonparallel affine subspaces, and therefore ƒi and ƒj will intersect in Q . Therefore,
every wall in Wi intersects every wall in Wj if i ¤ j , and thus C.Q;WQ/ ŠQm
iD1 C.Q;Wi /.

Finally, we show that C.Q;Wi / is a quasiline for each 1 � i �m. As G permutes
the factors in

Qm
iD1 C.Q;Wi /, there is a finite index subgroup G0 6G that preserves

each factor. For each i , the stabilizers StabG.ƒ/ are commensurable for all ƒ 2Wi .
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Therefore, there is a cyclic subgroup Zi that is not virtually contained in any StabG.ƒ/
and thus acts freely on C.Q;Wi /. As the stabilizers of ƒ 2Wi are commensurable,
all q.ƒ\Q/ will be quasiequivalent to parallel codimension-1 affine subspaces of Rn ,
which implies that only finitely many Zi –translates of ƒ can pairwise intersect. As
there are finitely many Zi –orbits of ƒ in Wi , there is an upper bound on the number
of pairwise intersecting hyperplanes in Wi . Thus, there are finitely many Zi –orbits of
maximal cubes in C.Q;Wi /, which implies that C.Q;Wi / is CAT.0/ cube complex
quasiisometric to R.

We can now prove Corollary 4.4.

Corollary 4.4 Let G be virtually Zn . Suppose G acts properly and without inversions
on a CAT.0/ cube complex X . Then G cocompactly stabilizes a subspace F � X
homeomorphic to Rn such that for each hyperplane ƒ�X , the intersection ƒ\F is
either empty or homeomorphic to Rn�1 .

Proof By Theorem 4.3, there is a G–equivariant, isometrically embedded, subcomplex
Y � X such that Y D

Qm
iD1 Ci , where each Ci is a quasiline, and StabG.ƒ/ is a

codimension-1 subgroup. Considering Y with the CAT.0/ metric, note that Y is a
complete CAT.0/ metric space in its own right, and G acts semisimply on Y . By the
flat torus theorem [2] there is an isometrically embedded flat F � Y . Note that F �X
is not isometrically embedded. As StabG.ƒ/ is a codimension-1 subgroup of G for
each hyperplane ƒ in X , the intersection ƒ\F D .ƒ\Y /\F is either empty or,
as F � Y is isometrically embedded, the hyperplane intersection is an isometrically
embedded copy of Rn�1 .

5 Haglund’s axis

The goal of this section is to reprove the following result of Haglund as a consequence
of Corollary 4.4.

Theorem 5.1 (Haglund [6]) Let G be a group acting on a CAT.0/ cube complex
without inversions. Every element g 2 G either fixes a 0–cube of G , or stabilizes a
combinatorial geodesic axis.

Proof As finite groups don’t contain codimension-1 subgroups, Theorem 3.1 implies
that if g is finite order then it fixes a 0–cube. Suppose that G does not fix a 0–cube,
then hgi must act properly on X . By Corollary 4.4, there is a line L�X stabilized
by G , that intersects each hyperplane at most once at a single point in L. Let WL be
the set of hyperplanes intersecting L. Note that the intersection points of the walls in
WL with L is a locally finite subset.
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Fix a basepoint p 2L that doesn’t belong to a hyperplane intersecting L, and let x be
the canonical 0–cube corresponding to p . Let ƒ1; : : : ; ƒk be the set of hyperplanes
separating p and gp , and assume that p 2 Eƒi . Reindex the hyperplanes such that
Eƒ1 \L � Eƒ2 \L � � � � � Eƒk \L. The ordering of the hyperplanes separating p

and gp determines a combinatorial geodesic joining x and gx of length k , where the
i th edge is a 1–cube dual to ƒi . This can be extended hgi–equivariantly, to obtain a
combinatorial geodesic axis Lc , since each hyperplanes intersects Lc at most once.

Appendix: Codimension-1 subgroups

Definition A.1 Let G be a finitely generated group. Let ‡ denote the Cayley graph
of G with respect to some finite generating set. A subgroup H 6G is codimension-1
if K=‡ has more than one end.

Let ˚ denote the operation of symmetric difference. A subset A�G is H–finite if
A�HF where F is some finite subset of G . We will use the following equivalent
formulation (see [11]) of codimension-1: A subgroup H � G is a codimension-1
subgroup if there exists some A�G such that:

(1) ADHA.

(2) A is H–almost invariant, that is to say that A˚Ag is H–finite for any g 2G .

(3) A is H–proper, that is to say that neither A nor G �A is H–finite.

We will reprove the following theorem from [4] using techniques from [8].

Theorem A.2 Let G be a finitely generated group acting on a CAT.0/ cube com-
plex X without edge inversions or fixing a 0–cube. Then the stabilizer of some
hyperplane in X is a codimension-1 subgroup of G .

Proof Suppose that no hyperplane stabilizer is a codimension-1 subgroup of G . We
will find a 0–cube fixed by G .

Let H denote the set of hyperplanes in X . We can assume that X has finitely many
G–orbits of hyperplanes after possibly passing to the convex hull of a single 0–cube
orbit in X . If x and y are 0–cubes in X , then let �.x; y/ � H denote the set of
hyperplanes separating x and y . Note that

dcX .x; y/D j�.x; y/j:

Let ƒ1; : : : ; ƒn be a minimal set of representatives of the orbits of hyperplanes. Let
x0 be some fixed choice of 0–cube in X . Let

Hi D StabG.ƒi / and Ai D fg 2G j gx0 2 Eƒig:
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We can verify that Ai satisfies the first two criteria in Definition A.1.

(1) It is immediate that Ai DHiAi , as G doesn’t invert the hyperplanes in X .

(2) Let xor denote the exclusive or. For f 2 G we can deduce that Ai ˚Aif is
Hi –finite:

g 2 Ai ˚Aif () gx0 2 Eƒi xor gf �1x0 2 Eƒi

() x0 2 g
�1 Eƒi xor f �1x0 2 g�1 Eƒi

() g 2G is such that g�1ƒi separates x0 and f �1x0:

As .X;H/ is a wallspace, there are only finitely many g2G such that g�1ƒi separates
x0 and f �1x0 . If g1ƒi ; : : : ; gkƒi are the translates then

Ai ˚Aif D fg1; : : : ; gkgHi ;

which implies almost Hi –invariance.

Therefore, Ai cannot be Hi –proper for any i , as we have assumed that none of the Hi
are codimension-1. This means that either Ai or G �Ai is Hi –finite. After possibly
reversing the orientation of ƒi we can assume that Ai is Hi –finite, so Ai �HiFi
where Fi �G is finite.

Claim dX .x0; f x0/ < 2maxi .jFi j/ for all f 2G .

Proof gƒi 2�.x0; f x0/ () x0Œgƒi �¤ f x0Œgƒi �

() x0 2 g Eƒi xor f x0 2 g Eƒi

() g�1x0 2 Eƒi xor g�1f x0 2 Eƒi

() g�1 2 Ai xor g�1 2 Af �1

() g�1 2 Ai ˚Aif
�1:

As the final set is covered by 2jFi j translates of Hi , we can deduce that there are at
most 2jFi j hyperplanes in �.x0; f x0/.

Thus, we can conclude that the G–orbit of x0 is a bounded set. If G has a finite
orbit in X , then the convex hull of the orbit is a compact, finite-dimensional, complete
CAT.0/ cube complex, and we can apply Corollary II.2.8(1) from [2] to find a fixed
point p . If p is a 0–cube then we are done. Otherwise, p is in the interior of some
n–cube that is fixed by G , and since G doesn’t invert hyperplanes we can deduce that
G fixes a 0–cube in that cube. If the G–orbits in X are infinite, then their convex hull
may not be complete, so the above argument will not hold. Instead, we will follow the
strategy of [8] and embed the cube complex into a Hilbert space.
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Let C.H/ denote the connected cube, a graph with vertices given by functions cW H!
f0; 1g with finite support, and edges that join a pair of distinct vertices if and only if
they differ on precisely one hyperplane.

Fix a 0–cube x0 . Then there is an embedding

�W X1 ,! C.H/

that maps the 0–cube x to cx , where

cx.ƒ/D

�
1 if xŒƒ�¤ x0Œƒ�;
0 if xŒƒ�D x0Œƒ�:

A hyperplane ƒ 2 H separates two vertices c1 and c2 in C.H/ if c1.ƒ/ ¤ c2.ƒ/.
Note that ƒ separates 0–cubes x; y in X if and only if it separates �.x/ and �.y/.
Therefore, we can define �.c1; c2/ for vertices in C.H/ and conclude that if x; y are
0–cubes in X then �.x; y/ D �.�.x/; �.y//. This implies that � is an isometric
embedding in the combinatorial metric.

We will show that a bounded orbit in X implies there is a fixed 0–cube in C.H/ and
then argue that we can go one step further and find a fixed 0–cube in X .

Let `2.H/ be the Hilbert space of square summable functions sW H!R. There is an
embedding �W C.H/! `2.H/ given by

�.c/.ƒ/D cŒƒ�:

It is straightforward to verify that k�.c1/� �.c2/k2 D dC.H/.c1; c2/. There is a G–
action on `2.H/ such that if s 2 `2.H/, ƒ 2H and g 2G , then

gs.ƒ/D

�
s.g�1ƒ/ if cx0

.g�1ƒ/D cx0
.ƒ/;

1� s.g�1ƒ/ if cx0
.g�1ƒ/¤ cx0

.ƒ/:

It is again straightforward to verify that this action is by isometries, and that � is
G–equivariant.

As Gx0 is bounded, so is G.� ı �.x0//. It then follows that G has a fixed point
in `2.H/ (a proof is in [8], which also cites Lemma 3.8 in [7]). Let sW H! R be
the fixed point. For all g 2G we can deduce that s.gƒ/ is either s.ƒ/ or 1� s.ƒ/.
Therefore s can only take two values on the hyperplanes in a single G–orbit. As s
has to be square summable the two values have to be 0 and 1, and s can only take the
value 1 on finitely many hyperplanes. Thus, s is the image of a point c in C.S/.

Let c 2 C.S/ be a G–invariant vertex which minimizes the distance to the image of X1

in C.S/. Let Z be a G–orbit of 0–cubes in X such that �.Z/ realizes the minimal
distance from c .

Algebraic & Geometric Topology, Volume 17 (2017)



2750 Daniel J Woodhouse

Let V be the set of hyperplanes that intersect fcg [ V . Every hyperplane in V must
intersect Z , otherwise if F � V is the finite, G–invariant subset of hyperplanes
separating c from Z then we can define a 0–cube c0 such that

c0.ƒ/D

�
c.ƒ/ if ƒ … F ;
1� c.ƒ0/ if ƒ 2 F ;

and deduce that c0 is G–invariant and is jF j closer to Z than c .

Let z0; z1; z2; : : : be an enumeration of 0–cubes in Z . Each hyperplane separating
z0 and z1 must lie in either �.z0; c/ or �.z1; c/. As z0 is minimal distance in X
from c , the edges in X incident to z0 must be dual to hyperplanes not in �.z0; c/, and
instead belongs to �.z1; c/. Therefore, the hyperplane ƒ0 2 V dual to the first edge in
a combinatorial geodesic joining z0 to z1 must lie in �.z1; c/. Similarly, there exists
a hyperplane ƒ1 dual to the first edge of the combinatorial geodesic in X joining z1 to
z2 that belongs to �.z2; c/ but not �.z1; c/. Note that ƒ1 cannot intersect ƒ0 in X ,
otherwise ƒ0 would be dual to an edge incident to z1 , which would imply that there
exists a 0–cube in X adjacent to z1 that is closer to c . Therefore ƒ0; ƒ1 separates
z0 from z2 in X . Iterating this argument produces a sequence of disjoint hyperplanes
ƒ0; ƒ2; ƒ3; : : : such that ƒ0; : : : ; ƒk separates z0 from zkC1 in X . This contradicts
the hypothesis that Z is a bounded set in X .
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On growth of systole along congruence coverings
of Hilbert modular varieties

PLINIO G P MURILLO

We study how the systole of principal congruence coverings of a Hilbert modular
variety grows when the degree of the covering goes to infinity. We prove that, given a
Hilbert modular variety Mk of real dimension 2n defined over a number field k , the
sequence of principal congruence coverings MI eventually satisfies

sys1.MI /�
4

3
p

n
log.vol.MI //� c;

where c is a constant independent of MI .

22E40, 11R80; 53C22

1 Introduction

The systole of a riemannian manifold is the least length of a noncontractible closed
geodesic in M and it is denoted by sys1.M /. In 1994, P Buser and P Sarnak [2]
constructed the first explicit examples of surfaces with systole growing logarithmically
with the genus using a sequence of principal congruence coverings of an arithmetic
compact Riemann surface. These sequences of surfaces fSpg satisfy the inequality

sys1.Sp/�
4
3

log.genus.Sp//� c;

where c is a constant independent of p . This result was generalized in 2007 by M
Katz, M Schaps and U Vishne [6] to principal congruence coverings of any compact
arithmetic Riemann surface and arithmetic hyperbolic 3–manifolds. It is known that a
sequence of principal congruence coverings of a compact arithmetic hyperbolic manifold
asymptotically attains the logarithmic growth of the systole (see Gromov [4, 3.C.6])
but the examples above are the only cases where the explicit constant in the systole
growth is known so far. In particular, it would be interesting to understand how the
asymptotic constant depends on the dimension.

The purpose of this paper is to generalize the construction of Buser and Sarnak to
Hilbert modular varieties which are noncompact riemannian manifolds of dimension 2n.
We will show that the sequence of principal congruence coverings MI !Mk of a

Published: 19 September 2017 DOI: 10.2140/agt.2017.17.2753
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Hilbert modular variety eventually satisfies

(1) sys1.MI /�
4

3
p

n
log.vol.MI //� c;

where c is a constant independent of I . We also prove that inequality (1) is asymp-
totically sharp. We refer to Theorem 4.2 and Theorem 4.3 for the precise statement
of the results.

Since Mk is noncompact, it is a priori not clear if the systole of MI is bounded above
by a logarithmic function of its volume. In fact, an interesting more general question is
to understand if the systole of a sequence of congruence coverings of a noncompact
finite-volume arithmetic manifold of nonpositive curvature and which is not flat grows
logarithmically in its volume. An affirmative answer seems very plausible but, to our
knowledge, it has not been established in the literature. In this regard we will prove
that the sequence of principal congruence coverings MI !Mk of a Hilbert modular
variety eventually satisfies

(2) sys1.MI /�
4
p

n

3
log.vol.MI //� d

for some constant d independent of MI . These results give us the first examples of
explicit constants for the growth of systole of a sequences of congruence coverings of
arithmetic manifolds in dimensions greater than three.

We will begin in Section 2 recalling basic aspects of the action of .PSL2.R//
n on .H2/n .

We then define the congruence coverings MI of a Hilbert modular variety Mk , and
we prove inequality (2). In Section 3 we estimate the length of closed geodesics of MI

in terms on the norm of the ideal I . In Section 4 we relate the norm of the ideal I to
vol.MI /, and we prove inequality (1) and the sharpness of the constant 4=.3

p
n/.
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2 Preliminaries

2.1 The action of .PSL2.R//
n on .H2/n

The group PSL2.R/ acts on the upper half plane model of the hyperbolic plane H2 by
fractional linear transformations via

Bz D
azC b

czC d
if B D

�
a b

c d

�
and z 2H2:
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An element B 2 PSL2.R/ is called elliptic if it has a fixed point in H2 , parabolic if it
has no fixed points in H2 and has only one fixed point in @H2 , and hyperbolic if it
has no fixed points in H2 and has two fixed points in @H2 . An equivalent description
is the following:

� B is elliptic if and only if jtr.B/j< 2;
� B is parabolic if and only if jtr.B/j D 2;
� B is hyperbolic if and only if jtr.B/j> 2.

Here tr.B/ denotes the trace of the matrix B .

Given a hyperbolic transformation B , the translation length of B , denoted by `B , is
defined by

`B D inffdH2.z;Bz/ j z 2H2
g:

This infimum is attained at points on the unique geodesic x̨B in H2 joining the fixed
points of B in @H2 . The transformation B leaves x̨B invariant and acts on it as a
translation. In particular, if a subgroup ƒ� PSL2.R/ acts properly discontinuously
and freely on H2 , every hyperbolic element B 2ƒ determines a noncontractible closed
geodesic ˛ on the Riemann surface H2=ƒ, whose length is equal to the translation
length `B of B . Reciprocally, any closed geodesic ˛ in H2=ƒ lifts to a geodesic x̨B
in H2 fixed by a hyperbolic matrix B 2ƒ.

On the other hand, since B is hyperbolic, B is conjugate to a matrix of the form�
� 0

0 ��1

�
;

where j�j D e`B=2 . Hence 2 cosh.`B=2/D jtr.B/j and for any z 2H2 we have

(3) dH2.z;Bz/� 2 log.jtr.B/j � 1/ > 0:

We refer to [1, Chapter 7] for further details about the geometry of the isometries of
the hyperbolic plane H2 .

The action of PSL2.R/ on H2 extends to an action of the n–fold product .PSL2.R//
n

on the n–fold product .H2/n in a natural way: if z D .z1; : : : ; zn/ 2 .H2/n and
B D .B1; : : : ;Bn/ 2 .PSL2.R//

n , then

Bz WD .B1z1; : : : ;Bnzn/;

where the action in every factor is the action by fractional linear transformations.

Let us recall the definition of a Hilbert modular variety (see [3]). Let k be a totally
real number field of degree n, Ok the ring of integers of k and �1; : : : ; �n the
n embeddings of k into the real numbers R. The group PSL2.Ok/ becomes an

Algebraic & Geometric Topology, Volume 17 (2017)
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arithmetic noncocompact irreducible lattice of the semisimple Lie group .PSL2.R//
n

via the map �.B/D .�1.B/; : : : ; �n.B//, where �i.B/ denotes the matrix obtained
by applying �i to the entries of B (see [7, Proposition 5.5.8]). Via this embedding,
PSL2.Ok/ acts on the n–fold product of hyperbolic planes .H2/n with finite covolume.
The quotient Mk D .H

2/n=PSL2.Ok/ is called a Hilbert modular variety and the
group � D PSL2.Ok/ is called a Hilbert modular group.

2.2 Congruence coverings of Mk

Let I � Ok be an ideal, the principal congruence subgroup �.I/ � � at level I is
defined by

�.I/D fA 2 SL2.Ok/ jA� Id mod Ig=f1;�1g;

where Id denotes the identity 2�2 matrix. Since Ok=I is finite, �.I/ is a finite-index
subgroup of � for any ideal I of Ok . We associate to �.I/ a congruence cover
MI D .H

2/n=�.I/!Mk . Note that � is an irreducible lattice in .PSL2.R//
n and so

the varieties Mk and MI do not split into products. We remark that Mk has quotient
singularities, so the covering MI !Mk should be interpreted in the orbifold sense.
For large enough I the varieties MI are manifolds by Selberg’s lemma (see also
Corollary 3.3).

This construction is a particular case of a more general situation: if G is a semisimple
Lie group, a discrete subgroup ƒ � G is called arithmetic if there exists a num-
ber field K , a algebraic K–group H, and a surjective continuous homomorphism
'W H.K ˝Q R/! G with compact kernel such that '.H.OK // is commensurable
to ƒ, where H.OK / denotes the OK –points of H with respect to some fixed embedding
of H into GLm . For any ideal I �OK the principal congruence subgroup of H.OK /

at level I is defined by

H.I/ WD ker
�
H.OK /

�I
�! H.OK=I/

�
;

where �I is the reduction map modulo I . Any discrete subgroup of G containing
some of these subgroups H.I/ is called a congruence subgroup of G.

By Margulis’ arithmeticity theorem (see [7, Chapter 5]), for n � 2 any irreducible
lattice in .PSL2.R//

n is arithmetic. A conjecture of Serre, proved to be true in the
nonuniform case, shows that any nonuniform lattice of .PSL2.R//

n is a congruence
subgroup.

The coverings MI ! Mk are regular coverings because the subgroups �.I/ are
normal subgroups of � . It is worth noting that in a sequence of nonregular congruence
coverings of an arithmetic manifold the systole could grow slower than logarithmically
with respect to the volume (see [5, Section 4.1]).

Algebraic & Geometric Topology, Volume 17 (2017)
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2.3 Upper bound for the systole growth of MI

As was explained above, if ƒ is any discrete group of isometries of H2 acting freely
on H2 , every hyperbolic element  2ƒ produces a noncontractible closed geodesic
on H2=ƒ. We can use this idea to see that the quotients MI which we are interested
in have closed geodesics, and subsequently we find a upper bound for sys1.MI /.

We denote by N.I/ the norm of an ideal I � Ok , which is the cardinality of the
quotient ring Ok=I , and similarly N.r/ denotes the field norm of an element r of the
number field k .

Suppose I �Ok is an ideal with N.I/ > 2 and such that MI is a riemannian manifold
(see Corollary 3.3). The norm N.I/ is a rational integer with N.I/ 2 I , so if we take
the matrix

B D

�
1�N.I/2 N.I/
�N.I/ 1

�
;

then B 2 �.I/ and jtr.�i.B//j> 2 for any i D 1; : : : ; n. This means that the matrices
�1.B/D �2.B/D � � � D �n.B/ are hyperbolic and if we take x̨ to be the only geodesic
in H2 fixed by B , the curve x̌ D x̨ � � � � � x̨ is a geodesic in .H2/n that is fixed by
.�1.B/; : : : ; �n.B//, and x̌ projects to a noncontractible closed geodesic ˇ in MI .
Note that this geodesic might not be the shortest one, so sys1.MI /� `.ˇ/D

p
n`B ,

where `B denotes the translation length of B along x̨ .

We know that 2 cosh.`B=2/D jtr.B/j D N.I/2� 2< N.I/2 , and so

sys1.MI /� 4
p

n log N.I/:

Now, as we will see in Section 4, there exists a constant Ck independent of I such
that Œ� W �.I/�� Ck N.I/3 (Lemma 4.1), and then

(4) sys1.MI /�
4
p

n

3
log Œ� W �.I/�� 4

p
n

3
log Ck :

This proves inequality (2) since vol.MI /D Œ� W �.I/� vol.M /.

3 Distance estimate for congruence subgroups

In this section we will prove that the congruence subgroups �.I/ act freely on .H2/n

when the norm of the ideal I is big enough and we will relate the length of closed
geodesics in MI to the norm of the ideal I . The first fact follows from Selberg’s
lemma [7, Section 4.8] but in our case the proof gives an explicit bound in terms of the
norm of I . Some of the ideas are inspired by [6], where the authors studied the systole
of compact arithmetic hyperbolic surfaces and 3–manifolds.
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In this section, sometimes we will use the notation A or .�1.A/; : : : ; �n.A// for the
same element in � or its image in .PSL2.R//

n via the map � defined in Section 2.

For our purpose, it is convenient to express any element AD
�

a
c

b
d

�
of � in the form

AD

�
x0Cx1 x2Cx3

x2�x3 x0�x1

�
;

where
x0 D

aCd

2
; x1 D

a�d

2
; x2 D

bCc

2
; x3 D

b�c

2

are elements of the field K . We have x2
0
�x2

1
�x2

2
Cx2

3
D 1 and we write y0D x0�1.

With this notation, if I �Ok is an ideal and A 2 �.I/ then 2x0� 2 2 I and 2xi 2 I

for i D 1; 2; 3. In terms of fractional ideals it means that y0;x1;x2 and x3 lie in I=2.

Lemma 3.1 If A 2 �.I/, then y0 2 I2=8. In particular, if y0 ¤ 0 then jN.y0/j �

N.I/2=8n .

Proof We know that A 2 �.I/ implies x0� 1;x1;x2;x3 2 I=2. Now, by replacing
x0 D 1Cy0 in the equation x2

0
�x2

1
�x2

2
Cx2

3
D 1 we obtain

2y0 D�y2
0 Cx2

1 Cx2
2 �x2

3 2 I2=4:

Hence y0 2 I2=8.

Lemma 3.2 If A 2 �.I/ with y0 ¤ 0 then jtr.�j .A//j � N.I/2=n=4� 2 for some
j 2 f1; : : : ; ng.

Proof By definition we have N.y0/ D
Qn

jD1 �j .y0/, so by Lemma 3.1, for some
j 2 f1; : : : ; ng, we have j�j .y0/j � N.I/2=n=8. Therefore

jtr.�j .A//j D j2�j .x0/j D j2�j .y0/C 2j �
N.I/2=n

4
� 2:

With this we can guarantee the riemannian structure for MI :

Corollary 3.3 For any ideal I �Ok with N.I/� 4n , the subgroup �.I/ acts freely
on .H2/n and so MI D .H

2/n=�.I/ admits a structure of a riemannian manifold with
nonpositive sectional curvature.

Proof The element AD .�1.A/; : : : ; �n.A// 2 �.I/ has a fixed point on .H2/n if
and only if �i.A/ has a fixed point in H2 for any i D 1; : : : ; n, but this happens if and
only if jtr.�i.A//j< 2, which, by Lemma 3.2, is impossible if N.I/� 4n .

Now observe that for i D 1; : : : ; n and A 2 � ,

(5) 2j�i.y0/j � 2� jtr.�i.A//j � 2C 2j�i.y0/j:

Algebraic & Geometric Topology, Volume 17 (2017)
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Proposition 3.4 Let I � Ok be an ideal with N.I/ � 40n=2 and A 2 �.I/ with
y0 ¤ 0. Then for any point z D .z1; : : : ; zn/ 2 .H2/n we have

d.H2/n.z;Az/�
4
p

n
log N.I/� 2

p
n log 40:

Proof By Lemma 3.2, jtr.�j .A//j�8 for some j 2f1; : : : ; ng, hence we can subdivide
our analysis into two different cases:

Case 1 jtr.�i .A//j � 8 for any i D 1; : : : ;n In this case all of the matrices �i.A/

are hyperbolic and the right-hand side of (5) implies that j�i.y0/j � 3 for i D 1; : : : ; n.

Using (3), the left-hand side of (5), the fact that j�i.y0/j � 3 for i D 1; : : : ; n, the
convexity of the function x2 and Lemma 3.1 we obtain

d.H2/n.z;Az/D
p

d2
H2.z1; �1.A/z1/C � � �C d2

H2.zn; �n.A/zn//

� 2
p

log2.jtr.�1.A//j � 1/C � � �C log2.jtr.�n.A//j � 1/

� 2
p

log2.2j�1.y0/j � 3/C � � �C log2.2j�n.y0/j � 3/

� 2
p

log2
j�1.y0/jC � � �C log2

j�n.y0/j

�
2
p

n

�
log j�1.y0/jC � � �C log j�n.y0/j

�
D

2
p

n
log jN.y0/j �

4
p

n
log N.I/� 2

p
n log 8:

Case 2 There are exactly k< n of the indices 1; : : : ;n such that jtr.�j .A//j< 8

Without loss of generality we assume that jtr.�j .A//j < 8 for j D 1; : : : ; k . By the
left-hand side of (5), j�j .y0/j< 5 for any such j and by Lemma 3.1 we have

nY
iDkC1

j�i.y0/j D
jN.y0/jQk

iD1 j�i.y0/j
>

1

5n � 8n
N.I/2:

Now, as jtr.�i.A//j � 8 for i D k C 1; : : : ; n, for these indices �i.A/ is hyperbolic
and j�i.y0/j � 3 by the left-hand side of (5). By using (3) and the previous facts we
obtain

d.H2/n.z;Az/D
p

d2
H2.z1; �1.A/z1/C � � �C d2

H2.zn; �n.A/zn//

�

p
d2

H2.zkC1; �kC1.A/zkC1/C � � �C d2
H2.zn; �n.A/zn//

� 2
p

log2.jtr.�kC1.A//j � 1/C � � �C log2.jtr.�n.A//j � 1/

� 2
p

log2.2j�kC1.y0/j � 3/C � � �C log2.2j�n.y0/j � 3/

Algebraic & Geometric Topology, Volume 17 (2017)



2760 Plinio G P Murillo

� 2
p

log2
j�kC1.y0/jC � � �C log2

j�n.y0/j

�
2

p
n�k

�
log j�kC1.y0/jC � � �C log j�n.y0/j

�
D

2
p

n�k
log

nY
iDkC1

j�i.y0/j �
4
p

n
log N.I/� 2

p
n log 40:

In both cases we get

d.H2/n.z;Az/�
4
p

n
log.N.I//� 2

p
n log.40/:

Corollary 3.5 For any ideal I � Ok with N.I/ � 40n=2 , the length of any noncon-
tractible closed geodesic ˛ in MI satisfies

`.˛/�
4
p

n
log N.I/� 2

p
n log 40:

Proof By Corollary 3.3, MI is a riemannian manifold with the metric induced
from .H2/n . If we lift ˛ to a geodesic z̨ D .z̨1; : : : ; z̨n/ in its universal cover .H2/n

there is an element A 2 �.I/ acting on z̨ as a translation and for any z in the graph of
z̨ we have `.˛/D d.H2/n.z;Az/. Since ˛ is noncontractible, z̨ is not a point, then
for some i 2 f1; : : : ; ng z̨i is a nontrivial geodesic in H2 , and so �i.A/ acts on it as a
translation. This implies that �i.A/ is hyperbolic and, in particular, jtr.A/j ¤ 2. Since
jtr.A/j ¤ 2 implies y0 ¤ 0, the result now follows from Proposition 3.4.

4 Proof of the main results

To finish the proofs of the theorems we need to find uniform bounds for the quotient
Œ� W �.I/�=N.I/3 , for ideals I �Ok with norm sufficiently large.

Lemma 4.1 For almost any ideal I �Ok we have

(6) �k.2/
�1 N.I/3 � Œ� W �.I/� < N.I/3;

where �k denotes the Dedekind zeta function of k .

Proof A well-known corollary of the strong approximation theorem (see Theorem 7.15
of [8]) implies that for almost all ideals I �Ok the reduction map

SL2.Ok/
�I
�! SL2.Ok=I/
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is surjective. For those ideals the index Œ� W �.I/� is equal to the cardinality of
SL2.Ok=I/, which is given by the formula

N.I/3
Y
pjI

�
1�

1

N.p/2

�
:

From this the right-hand side of inequality (6) follows easily. On the other hand, the
product formula for the Dedekind zeta function of k says that

�k.2/D
Y

p�Ok

1

1�N.p/�2
�

Y
pjI

1

1�N.p/�2
:

This proves the second inequality.

Theorem 4.2 Let k be a totally real number field of degree n and Ok be the ring of
integers of k . Any sequence of ideals in Ok with N.I/!1 eventually satisfies

sys1.MI /�
4

3
p

n
log.vol.MI //� c;

where �.I/ is the principal congruence subgroup of � D PSL2.Ok/ at level I , MI D

.H2/n=�.I/ and c is a constant independent of I .

Proof For any ideal I with N.I/ � 40n=2 , Corollary 3.3 implies that MI is a
riemannian manifold with the metric induced by the product metric on .H2/n . Now,
by Corollary 3.5 and Lemma 4.1, we conclude that

sys1.MI /�
4

3
p

n
log Œ� W �.I/�� 2

p
n log 40

when N.I/!1.

To finish, we prove that among congruence coverings of Hilbert modular varieties the
constant 4=.3

p
n/ in the growth of the systole in general cannot be improved to any

 > 4=.3
p

n/.

Theorem 4.3 Let k be a totally real number field of degree n and Ok be the ring of
integers of k . Then there exists a sequence of ideals in Ok with N.I/!1 such that

sys1.MI /�
4

3
p

n
log.vol.MI //C c1;

where �.I/ is the principal congruence subgroup of � D PSL2.Ok/ at level I , MI D

.H2/n=�.I/ and c1 is a constant independent of MI .
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Proof Let p be a rational integer and consider the ideal Ip D pOk in Ok . Since
N.Ip/D pn , by following the same argument as in Section 2.3 with the matrix

B D

�
1�p2 p

�p 1

�
;

we obtain that sys1.MIp
/�4
p

n log.p/ when p is large enough. Therefore, Lemma 4.1
implies that

sys1.MIp
/�

4

3
p

n
log Œ� W �.Ip/�C

4

3
p

n
log �k.2/

when p!1, and then we obtain the result with

c1 D
4

3
p

n
log

�k.2/

vol.Mk/
;

where Mk D .H
2/n=� .
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Stable Postnikov data of Picard 2–categories
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Picard 2–categories are symmetric monoidal 2–categories with invertible 0–, 1– and
2–cells. The classifying space of a Picard 2–category D is an infinite loop space, the
zeroth space of the K–theory spectrum KD . This spectrum has stable homotopy
groups concentrated in levels 0 , 1 and 2 . We describe part of the Postnikov data
of KD in terms of categorical structure. We use this to show that there is no strict
skeletal Picard 2–category whose K–theory realizes the 2–truncation of the sphere
spectrum. As part of the proof, we construct a categorical suspension, producing a
Picard 2–category †C from a Picard 1–category C , and show that it commutes
with K–theory, in that K†C is stably equivalent to †KC .

55S45; 18C20, 18D05, 19D23, 55P42

1 Introduction

This paper is part of a larger effort to refine and expand the theory of algebraic models
for homotopical data, especially that of stable homotopy theory. Such modeling has
been of interest since May [46] and Segal [53] gave K–theory functors which build
connective spectra from symmetric monoidal categories. Moreover, Thomason [57]
proved that symmetric monoidal categories have a homotopy theory which is equivalent
to that of all connective spectra.

Our current work is concerned with constructing models for stable homotopy 2–types
using symmetric monoidal 2–categories. Preliminary foundations for this appear, for
example, in Gurski and Osorno [31], Gurski, Johnson and Osorno [29], Johnson and
Osorno [33] and Schommer-Pries [52]. In forthcoming work [30], we prove that
all stable homotopy 2–types are modeled by a special kind of symmetric monoidal
2–categories, which we describe below and call strict Picard 2–categories.

Research leading to the methods in [30] has shown that the most difficult aspect of
this problem is replacing a symmetric monoidal 2–category modeling an arbitrary
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connective spectrum (see Gurski, Johnson and Osorno [29]) by a strict Picard 2–
category with the same stable homotopy 2–type. This paper can then be interpreted as
setting a minimum level of complexity for such a categorical model of stable homotopy
2–types. Furthermore, we intend to construct the Postnikov tower for a stable homotopy
2–type entirely within a categorical context, and the results here give some guidance
as to the assumptions we can make on those Postnikov towers.

This paper has three essential goals. First, we explicitly describe part of the Postnikov
tower for strict Picard 2–categories. Second, and of independent interest, we show that
the K–theory functor commutes with suspension up to stable equivalence. This allows
us to bootstrap previous results on Picard 1–categories to give algebraic formulas for
the two nontrivial Postnikov layers of a Picard 2–category. Third, we combine these to
show that, while strict Picard 2–categories are expected to model all stable homotopy
2–types, strict and skeletal Picard 2–categories cannot. We prove that there is no strict
and skeletal Picard 2–category modeling the truncation of the sphere spectrum.

1.1 Background and motivation

Homotopical invariants, and therefore homotopy types, often have a natural interpreta-
tion as categorical structures. The fundamental groupoid is a complete invariant for
homotopy 1–types, while pointed connected homotopy 2–types are characterized by
their associated crossed module or Cat1 –group structure; see Brown and Spencer [11],
Conduché [16], Loday [43], MacLane and Whitehead [44] and Whitehead [58]. Such
characterizations provide the low-dimensional cases of Grothendieck’s homotopy hy-
pothesis [23].

Homotopy hypothesis There is an equivalence of homotopy theories between Gpd n ,
weak n–groupoids equipped with categorical equivalences, and Topn , homotopy n–
types equipped with weak homotopy equivalences.

Restricting attention to stable phenomena, we replace homotopy n–types with stable
homotopy n–types: spectra X such that �iX D 0 unless 0� i � n. On the categorical
side, we take a cue from May [46] and Thomason [57] and replace n–groupoids with a
grouplike, symmetric monoidal version that we call Picard n–categories. The stable
version of the homotopy hypothesis is then the following.

Stable homotopy hypothesis There is an equivalence of homotopy theories between
Picn , Picard n–categories equipped with categorical equivalences, and Spn

0
, stable

homotopy n–types equipped with stable equivalences.
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For nD 0, Pic0 is the category of abelian groups Ab with weak equivalences given by
group isomorphisms. It is equivalent to the homotopy theory of Eilenberg–Mac Lane
spectra. For n D 1, a proof of the stable homotopy hypothesis appears in Johnson
and Osorno [33], and a proof for nD 2 will appear in [30]. The advantage of being
able to work with categorical weak equivalences is that the maps in the homotopy
category between two stable 2–types modeled by strict Picard 2–categories are realized
by symmetric monoidal pseudofunctors between the two strict Picard 2–categories,
instead of having to use general zigzags. In fact, as will appear in [30], the set of
homotopy classes between two strict Picard 2–categories D and D0 is the quotient of
the set of symmetric monoidal pseudofunctors D!D0 by the equivalence relation
F �G if there exists a pseudonatural transformation F )G .

More than a proof of the stable homotopy hypothesis, we seek a complete dictionary
translating between stable homotopical invariants and the algebra of Picard n–categories.
The search for such a dictionary motivated three questions that lie at the heart of this
paper. First, how can we express invariants of stable homotopy types in algebraic terms?
Second, how can we construct stable homotopy types of interest, such as Postnikov
truncations of the sphere spectrum, from a collection of invariants? Third, can we make
simplifying assumptions, such as strict inverses, about Picard n–categories without
losing homotopical information?

The results in this paper provide key steps toward answering these questions. In
particular, we characterize the three stable homotopy groups of a strict Picard 2–
category in terms of equivalence classes of objects, isomorphism classes of 1–cells
and 2–cells, respectively, and deduce that a map of Picard 2–categories is a stable
equivalence if and only if it is a categorical equivalence (Proposition 3.3). This fact is
used in [30] to prove the stable homotopy hypothesis for nD 2.

1.2 Postnikov invariants and strict skeletalization

It has long been folklore that the symmetry in a Picard 1–category should model the
bottom k –invariant, k0 . Along with a proof of the stable homotopy hypothesis in
dimension 1, this folklore result was established in Johnson and Osorno [33]. This
shows that a Picard 1–category is characterized by exactly three pieces of data: an
abelian group �0 of isomorphism classes of objects, an abelian group �1 of automor-
phisms of the unit object, and a group homomorphism k0W �0˝Z=2! �1 (ie a stable
quadratic map from �0 to �1 ) corresponding to the symmetry. Such a characterization
is implied by the following result.

Theorem 1.1 [33, Theorem 2.2] Every Picard category is equivalent to one which is
both strict and skeletal.

Algebraic & Geometric Topology, Volume 17 (2017)
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We call this phenomenon strict skeletalization. This theorem is quite surprising given
that it is false without the symmetry. Indeed, Baez and Lauda [3] give a good account
of the failure of strict skeletalization for 2–groups (the nonsymmetric version of Picard
1–categories), and how it leads to a cohomological classification for 2–groups. Johnson
and Osorno [33] show, in effect, that the relevant obstructions are unstable phenomena
which become trivial upon stabilization.

When we turn to the question of building models for specific homotopy types, the strict
and skeletal ones are the simplest: given a stable 1–type X , a strict and skeletal model
will have objects equal to the elements of �0X and automorphisms of every object
equal to the elements of �1X , with no morphisms between distinct objects. All that
then remains is to define the correct symmetry isomorphisms, and these are determined
entirely by the map k0 .

As an example, a strict and skeletal model for the 1–truncation of the sphere spectrum
has objects the integers, each hom-set of automorphisms the integers mod 2, and k0

given by the identity map on Z=2 corresponding to the fact that the generating object
1 has a nontrivial symmetry with itself. One might be tempted to build a strict and
skeletal model for the 2–type of the sphere spectrum (the authors here certainly were,
and such an idea also appears in Bartlett [4, Example 5.2]). But here we prove that this
is not possible for the sphere spectrum, and in fact a large class of stable 2–types.

Theorem 1.2 (Theorem 3.14) Let D be a strict skeletal Picard 2–category with
k0 surjective. Then the 0–connected cover of KD splits as a product of Eilenberg–
Mac Lane spectra. In particular, there is no strict and skeletal model of the 2–truncation
of the sphere spectrum.

Our proof of this theorem identifies both the bottom k –invariant k0 and the first
Postnikov layer k1i1 (see Section 3) of KD explicitly, using the symmetric monoidal
structure for any strict Picard 2–category D. In addition, we provide a categorical
model of the 1–truncation of KD in Proposition 3.6. This provides data which is
necessary, although not sufficient, for a classification of stable 2–types akin to the
cohomological classification in Baez and Lauda [3]. Remaining data, to be studied in
future work, must describe the connection of �2 with �0 . For instance, stable 2–types
X with trivial �1 are determined by a map H.�0X /! †3H.�2X / in the stable
homotopy category. For general X , the third cohomology group of the 1–truncation of
X with coefficients in �2X has to be calculated. In the spectral sequence associated
to the stable Postnikov tower of X (see Greenlees and May [22, Appendix B]), the
connection between �0 and �2 becomes apparent in the form of a d3 differential.

Algebraic & Geometric Topology, Volume 17 (2017)
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In addition to clarifying the relationship between Postnikov invariants and the property
of being skeletal, Theorem 1.2 suggests a direction for future work developing a 2–
categorical structure that adequately captures the homotopy theory of stable 2–types.
Such structure ought to be more specific than that of strict Picard 2–categories but more
general than strict, skeletal Picard 2–categories. Interpretations of this structure which
are conceptual (in terms of other categorical structures) and computational (in terms of
homotopical or homological invariants, say) will shed light on both the categorical and
topological theory.

1.3 Categorical suspension

In order to give a formula for the first Postnikov layer, we must show that K–theory
functors are compatible with suspension. More precisely, given a strict monoidal
category C , one can construct a one-object 2–category †C , where the category of
morphisms is given by C , with composition defined using the monoidal structure.
Further, if C is a permutative category then †C is naturally a symmetric monoidal
2–category, with the monoidal structure also defined using the structure of C . Unstably,
it is known that this process produces a categorical delooping: if C is a strict monoidal
category with invertible objects, the classifying space B.†C / is a delooping of BC ;
see Carrasco, Cegarra and Garzón [12] and Jardine [32]. We prove the stable analogue.

Theorem 1.3 (Theorem 3.11) For any permutative category C , the spectra K.†C /

and †.KC / are stably equivalent.

Here K.�/ denotes both the K–theory spectrum associated to a symmetric monoidal
category — see May [46] and Segal [53] — and the K–theory spectrum associated to a
symmetric monoidal 2–category; see Gurski and Osorno [31] and Gurski, Johnson and
Osorno [29].

This theorem serves at least three purposes beyond being a necessary calculation
tool. A first step in the proof is Corollary 2.35, which shows that the categories of
permutative categories and of one-object permutative Gray monoids are equivalent;
this is a strong version of one case of the Baez–Dolan stabilization hypothesis [2],
stronger than the usual proofs in low dimensions; see Cheng and Gurski [13; 14; 15].
The second purpose of this theorem is to justify, from a homotopical perspective, the
definition of permutative Gray monoid, the construction of the K–theory spectrum,
and the categorical suspension functor. The suspension functor of spectra and the K–
theory spectrum of a permutative category are both central features of stable homotopy
theory, so any generalization of the latter should respect the former. A final purpose
of this theorem will appear in future work, namely in the categorical construction of
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stable Postnikov towers. Suspension spectra necessarily appear in these towers, and
Theorem 3.11 and Corollary 2.35 together allow us to replicate these features of a
Postnikov tower entirely within the world of symmetric monoidal 2–categories.

1.4 Relation to supersymmetry and supercohomology

The theory of Picard 2–categories informs recent work in mathematical physics related
to higher supergeometry — see Kapranov [36] — and invertible topological field theo-
ries; see Freed [19]. Kapranov [36] links the Z–graded Koszul sign rule appearing in
supergeometry to the 1–truncation of the sphere spectrum. He describes how higher
supersymmetry is governed by higher truncations of the sphere spectrum, which one
expects to be modeled by the free Picard n–category on a single object. Likewise,
Freed [19] describes examples using the Picard bicategory of complex invertible super
algebras related to twisted K–theory; see Freed, Hopkins and Teleman [20].

The failure of strict skeletalization for a categorical model of the 2–truncation of the
sphere spectrum shows that already for nD 2 capturing the full higher supersymmetry
in algebraic terms is more complicated than one might expect.

Furthermore, it would be interesting to relate examples appearing in physics literature
about topological phases of matter — see Gu and Wen [24] and Bhardwaj, Gaiotto and
Kapustin [6] — to cohomology with coefficients in Picard n–categories. The superco-
homology in Gu and Wen [24] is assembled from two different classical cohomology
groups of a classifying space BG with a nontrivial symmetry. One expects that this
supercohomology can be expressed as the cohomology of BG with coefficients in a
Picard 1–category, and similarly, for the extension of this supercohomology in [6] as
cohomology with coefficients in a Picard 2–category.

Outline

In Section 2 we sketch the basic theory of Picard categories and Picard 2–categories.
This includes some background to fix notation and some recent results of Gurski,
Johnson and Osorno [29] about symmetric monoidal 2–categories. In Section 3 we
develop algebraic models for some of the Postnikov data of the spectrum associated
to a Picard 2–category, giving formulas for the two nontrivial layers in terms of the
symmetric monoidal structure. This section closes with applications showing that strict
skeletal Picard 2–categories cannot model all stable 2–types. Section 4 establishes
formal strictification results for 2–categorical diagrams using 2–monad theory. We use
those results in Section 5 to prove that the K–theory functor commutes with suspension.
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2 Picard categories and Picard 2–categories

This section introduces the primary categorical structures of interest which we call
Picard 2–categories, as well as the particularly relevant variant of strict skeletal Picard
2–categories. Note that we use the term 2–category in its standard sense [38], and in
particular all composition laws are strictly associative and unital.

Notation 2.1 We let Cat denote the category of categories and functors, and let
2Cat denote the category of 2–categories and 2–functors. Note that these are both
1–categories.

Notation 2.2 We let Cat2 denote the 2–category of categories, functors, and natural
transformations. This can be thought of as the 2–category of categories enriched
in Set . Similarly, we let 2Cat2 denote the 2–category of 2–categories, 2–functors and
2–natural transformations; the 2–category of categories enriched in Cat .

2.1 Picard categories

We will begin by introducing all of the 1–categorical notions before going on to discuss
their 2–categorical analogues. First we recall the notion of a permutative category (ie
symmetric strict monoidal category); the particular form of this definition allows an
easy generalization to structures on 2–categories.

Definition 2.3 A permutative category C consists of a strict monoidal category
.C;˚; e/ together with a natural isomorphism

C �C C �C

C

�
//

˚||˚ ""
)ˇ
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where � W C �C !C �C is the symmetry isomorphism in Cat , such that the following
axioms hold for all objects x , y and z of C :

� ˇy;xˇx;y D idx˚y .
� ˇe;x D idx D ˇx;e .
� ˇx;y˚z D .y˚ˇx;z/ ı .ˇx;y ˚ z/.

Remark 2.4 We will sometimes say that a symmetric monoidal structure on a category
is strict if its underlying monoidal structure is. Note that this does not imply that the
symmetry is the identity, even though the other coherence isomorphisms are. Thus a
permutative category is nothing more than a strict symmetric monoidal category.

Notation 2.5 Let PermCat denote the category of permutative categories and symmet-
ric, strict monoidal functors between them.

Next we require a notion of invertibility for the objects in a symmetric monoidal
category.

Definition 2.6 Let .C;˚; e/ be a monoidal category. An object x is invertible if
there exists an object y together with isomorphisms x˚y Š e and y˚x Š e .

Definition 2.7 A Picard category is a symmetric monoidal category in which all of
the objects and morphisms are invertible.

The terminology comes from the following example.

Example 2.8 Let R be a commutative ring, and consider the symmetric monoidal
category of R–modules. We have the subcategory PicR of invertible R–modules and
isomorphisms between them. The set of isomorphism classes of objects of PicR is the
classical Picard group of R.

Remark 2.9 If we drop the symmetric structure in Definition 2.7 above, we get the
notion of what is both called a categorical group [34] or a 2–group [3]. These are
equivalent to crossed modules [58; 43], and hence are a model for pointed connected
homotopy 2–types (ie spaces X for which �i.X /D 0 unless i D 1; 2).

One should consider Picard categories as a categorified version of abelian groups. Just
as abelian groups model the homotopy theory of spectra with trivial homotopy groups
aside from �0 , Picard categories do the same for spectra with trivial homotopy groups
aside from �0 and �1 .

Theorem 2.10 [33, Theorem 1.5] There is an equivalence of homotopy theories
between the category of Picard categories, Pic1 , equipped with categorical equivalences,
and the category of stable 1–types, Sp1

0
, equipped with stable equivalences.

Algebraic & Geometric Topology, Volume 17 (2017)



Stable Postnikov data of Picard 2–categories 2771

Forthcoming work [30] proves the 2–dimensional analogue of Theorem 2.10. This
requires a theory of Picard 2–categories, which began in [29] and motivated the work
of the current paper. We now turn to such theory.

2.2 Picard 2–categories

To give the correct 2–categorical version of Picard categories, we must first describe
the analogue of a mere strict monoidal category: such a structure is called a Gray
monoid. It is most succinctly defined using the Gray tensor product of 2–categories,
written A˝B for a pair of 2–categories A and B. We will not give the full definition
of ˝ here (see [29; 27; 8; 9]) but instead give the reader the basic idea. The objects
of A˝B are tensors a˝ b for a 2A and b 2 B, but the 1–cells are not tensors of
1–cells as one would find in the cartesian product. Instead they are generated under
composition by 1–cells f ˝ 1 and 1˝g for f W a! a0 a 1–cell in A and gW b! b0

a 1–cell in B. These different kinds of generating 1–cells do not commute with each
other strictly, but instead up to specified isomorphism 2–cells

†f;gW .f ˝ 1/ ı .1˝g/Š .1˝g/ ı .f ˝ 1/;

which obey appropriate naturality and bilinearity axioms. We call these † the Gray
structure 2–cells. The 2–cells of A˝B are defined similarly, generated by ˛˝ 1,
1˝ˇ and the †f;g . The function .A;B/ 7!A˝B is the object part of a functor of
categories

2Cat � 2Cat ! 2Cat ;

which is the tensor product for a symmetric monoidal structure on 2Cat with unit the
terminal 2–category.

Definition 2.11 A Gray monoid is a monoid object .D;˚; e/ in the monoidal category
.2Cat ;˝/.

Remark 2.12 By the coherence theorem for monoidal bicategories [21; 27], every
monoidal bicategory is equivalent (in the appropriate sense) to a Gray monoid. There is
a stricter notion, namely that of a monoid object in .2Cat ;�/, but a general monoidal
bicategory will not be equivalent to one of these.

We now turn to the symmetry.

Definition 2.13 A permutative Gray monoid D consists of a Gray monoid .D;˚; e/
together with a 2–natural isomorphism

D˝D D˝D

D

�
//

˚||˚ ""
)ˇ
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where � W D˝D!D˝D is the symmetry isomorphism in 2Cat for the Gray tensor
product, such that the following axioms hold:

� The following pasting diagram is equal to the identity 2–natural transformation
for the 2–functor ˚:

D˝D D˝D D˝D

D

�
//

�
//

˚
%%

˚

��
˚

yy

1

))

)ˇ )ˇ

� The following pasting diagram is equal to the identity 2–natural transformation
for the canonical isomorphism 1˝DŠD:

1˝D D˝D D˝D

D

e˝id
//

�
//

˚
uu

˚
��Š
))

D )ˇ

� The following equality of pasting diagrams holds, where we have abbreviated
the tensor product to concatenation when labeling 1– or 2–cells:

D˝3

D˝3 D˝3

D˝2

D˝2

D˝2 D

D˝3

D˝3 D˝3

D˝2

D˝2 D

D˝2

� id :: � id ::

id�
//

id�
//

˚id
$$

˚id
$$

˚

��

˚

��

˚id

��

˚id

��

˚

//

˚

//

id˚
++

� 33

˚
��

˚id

��

id˚
��

id˚

��

˚

��

D

D

D

D

D

)ˇ

)ˇid

)idˇ

Remark 2.14 A symmetric monoidal 2–category is a symmetric monoidal bicategory
(see [29] for a sketch or [49] for full details) in which the underlying bicategory is a
2–category. Every symmetric monoidal bicategory is equivalent as such to a symmetric
monoidal 2–category by strictifying the underlying bicategory and transporting the
structure as in [26]. A deeper result is that every symmetric monoidal bicategory is
equivalent as such to a permutative Gray monoid; this is explained fully in [29], making
use of [52].

Notation 2.15 For convenience and readability, we use the following notational con-
ventions for cells in a Gray monoid D:

� For objects, we may use concatenation instead of explicitly indicating the
monoidal product.
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� For an object b and a 1–cell f W a! a0 , we denote by f b the 1–cell in D

which is the image under ˚ of f ˝1W a˝b! a0˝b in D˝D. We use similar
notation for multiplication on the other side, and for 2–cells.

� We let †f;g also denote the image in D of the Gray structure 2–cells under ˚,

†f;gW .f b0/ ı .ag/Š .a0g/ ı .f b/:

Notation 2.16 Let PermGrayMon denote the category of permutative Gray monoids
and strict symmetric monoidal 2–functors between them.

We are actually interested in permutative Gray monoids which model stable homotopy
2–types, and we therefore restrict to those in which all the cells are invertible. We
begin by defining invertibility in a Gray monoid, then the notion of a Picard 2–category,
and finish with that of a strict skeletal Picard 2–category.

Definition 2.17 Let .D;˚; e/ be a Gray monoid.

(1) A 2–cell of D is invertible if it has an inverse in the usual sense.
(2) A 1–cell f W x! y is invertible if there exists a 1–cell gW y! x together with

invertible 2–cells g ıf Š idx and f ıg Š idy . In other words, f is invertible
if it is an internal equivalence (denoted with the ' symbol) in D.

(3) An object x of D is invertible if there exists another object y together with
invertible 1–cells x˚y ' e and y˚x ' e .

Remark 2.18 The above definition actually used none of the special structure of a
Gray monoid that is not also present in a more general monoidal bicategory.

Definition 2.19 A Picard 2–category is a symmetric monoidal 2–category (see
Remark 2.14) in which all of the objects, 1–cells, and 2–cells are invertible. A
strict Picard 2–category is a permutative Gray monoid which is a Picard 2–category.

Remark 2.20 The definition of a strict Picard 2–category does not require that cells be
invertible in the strict sense, ie having inverses on the nose rather than up to mediating
higher cells. It only requires that the underlying symmetric monoidal structure is strict
in the sense of being a permutative Gray monoid.

Definition 2.21 A 2–category A is skeletal if the following condition holds: whenever
there exists an invertible 1–cell f W x ' y , then x D y .

Remark 2.22 This definition might more accurately be named skeletal on objects, as
one could impose a further condition of being skeletal on 1–cells as well. We have
no need of this further condition, and so we work with this less restrictive notion of
a skeletal 2–category. It is also important to remember that, in the definition above,
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the invertible 1–cell f need not be the identity 1–cell. The slogan is that “every
equivalence is an autoequivalence”: an object is allowed to have many nonidentity
autoequivalences, and there can be 1–cells between different objects as long as they
are not equivalences.

Definition 2.23 A strict skeletal Picard 2–category is a strict Picard 2–category whose
underlying 2–category is skeletal.

2.3 Two adjunctions

Our goal in this subsection is to present two different adjunctions between strict Picard
categories and strict Picard 2–categories. While we focus on the categorical algebra
here, later we will give each adjunction a homotopical interpretation. The unit of
the first adjunction will categorically model Postnikov 1–truncation (Proposition 3.6),
universally making �2 zero, while the counit of the second will categorically model
the 0–connected cover (Proposition 3.10).

Recall that for any category C , we have its set of path components, denoted by �0C ;
these are given by the path components of the nerve of C , or equivalently by quotienting
the set of objects by the equivalence relation generated by x � y if there exists an
arrow x ! y . This is the object part of a functor �0W Cat ! Set , and it is easy to
verify that this functor preserves finite products. It is also left adjoint to the functor
d W Set! Cat which sends a set S to the discrete category with the same set of objects.
Being a right adjoint, d preserves all products. The counit �0 ı d) id is the identity,
and the unit id) d ı �0 is the quotient functor C ! d�0C sending every object
to its path component and every morphism to the identity. Since d and �0 preserve
products, by applying them to hom-objects they induce change of enrichment functors
d� and .�0/� , respectively. We obtain the following result.

Lemma 2.24 The adjunction �0 a d lifts to a 2–adjunction

2Cat2 Cat2:

.�0/�
++

d�

kk ?

Notation 2.25 We will write the functor .�0/� as D 7!D1 or .�/1 to lighten the nota-
tion. This anticipates the homotopical interpretation in Proposition 3.6. Furthermore,
we will write d� as d ; it will be clear from context which functor we are using.

Lemma 2.26 The functor .�/1 is strong symmetric monoidal .2Cat ;˝/! .Cat ;�/.
The functor d is lax symmetric monoidal .Cat ;�/! .2Cat ;˝/.
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Proof The second statement follows from the first by doctrinal adjunction [37]. For
the first, one begins by checking that

D1 �E1 Š .D˝E/1I

this is a simple calculation using the definition of ˝ that we leave to the reader. If we
let I denote the terminal 2–category, the unit for ˝, then I1 is the terminal category,
so .�/1 preserves units up to (unique) isomorphism. It is then easy to check that these
isomorphisms interact with the associativity, unit, and symmetry isomorphisms to give
a strong symmetric monoidal functor.

Remark 2.27 It is useful to point out that if A and B are categories, then the com-
parison 2–functor

�A;BW dA˝ dB! d.A�B/

is the 2–functor which quotients all the 2–cells †f;g to be the identity. In view of the
adjunction in Lemma 2.24, the 2–functor �A;B can be identified with the component
of the unit at dA˝ dB .

Our first adjunction between Picard 1– and 2–categories is contained in the following
result.

Proposition 2.28 The functors D 7!D1 and d induce adjunctions between

� the categories PermGrayMon and PermCat , and

� the category of strict Picard 2–categories and the category of strict Picard cate-
gories.

The counits of these adjunctions are both identities.

Proof It is immediate from Lemma 2.26 and the definitions that applying D 7!D1

to a permutative Gray monoid gives a permutative category, and that the resulting
permutative category is a strict Picard category if D is a strict Picard 2–category;
this constructs both left adjoints. To construct the right adjoints, let .C;˚; e/ be a
permutative category. We must equip dC with a permutative Gray monoid structure.
The tensor product is given by

dC ˝ dC
�C;C
��! d.C �C /

d˚
�! dC

using Lemma 2.26 or the explicit description in Remark 2.27. The 2–natural isomor-
phism ˇdC is d.ˇC / ��C;C , using the fact that d.��/ ı�D � ı �˝ by the second
part of Lemma 2.26. The permutative Gray monoid axioms for dC then reduce to the
permutative category axioms for C and the lax symmetric monoidal functor axioms
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for d . Once again, dC is a strict Picard 2–category if C is a strict Picard category.
The statement about counits follows from the corresponding statement about the counit
for the adjunction �0 a d , and the unit is a strict symmetric monoidal 2–functor by
inspection. The triangle identities then follow from those for �0 a d , concluding the
construction of both adjunctions.

Remark 2.29 The proof above is simple, but not entirely formal: while symmetric
monoidal categories are the symmetric pseudomonoids in the symmetric monoidal
2–category Cat , permutative Gray monoids do not admit such a description due to the
poor interaction between the Gray tensor product and 2–natural transformations.

We now move on to our second adjunction between permutative categories and per-
mutative Gray monoids which restricts to one between strict Picard categories and
strict Picard 2–categories. This adjunction models loop and suspension functors, and
appears informally in work of Baez and Dolan [1] on stabilization phenomena in higher
categories.

Lemma 2.30 Let .C;˚; e/ be a permutative category with symmetry � . Then the
2–category †C with one object �, hom-category †C.�;�/ D C , and horizontal
composition given by ˚ admits the structure of a permutative Gray monoid .†C; z̊ /.
The assignment .C;˚/ 7! .†C; z̊ / is the function on objects of a functor

†W PermCat ! PermGrayMon :

Proof Since C is a strict monoidal category, †C is a strict 2–category when hori-
zontal composition is given by ˚. We can define a 2–functor z̊ W †C ˝†C !†C

as the unique function on 0–cells, by sending any cell of the form a˝ 1 to a, any
cell of the form 1˝ b to b , and †a;b to the symmetry �a;bW a˚ b Š b˚ a. With the
unique object as the unit, it is simple to check that this 2–functor makes †C into a
Gray monoid. All that remains is to define ˇ and check the three axioms. Since there
is only one object and it is the unit, the second axiom shows that the unique component
of ˇ must be the identity 1–cell. Then naturality on 1–cells is immediate, and the
only two-dimensional naturality that is not obvious is for the cells †a;b . This axiom
becomes the equation

ˇ˚†a;b D†
�1
b;a˚ˇ;

which is merely the claim that �a;b is a symmetry rather than a braid. It is then obvious
that this assignment defines a functor as stated.

Example 2.31 The permutative Gray monoid constructed in [52, Example 2.30] is a
suspension †C for the following permutative category C :
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� The objects of C are the elements of Z=2 with the monoidal structure given by
addition.

� Each endomorphism monoid of C is Z=2 and there are no morphisms between
distinct objects.

� The symmetry of the nonunit object with itself is the nontrivial morphism.

Remark 2.32 It is natural to expect that the permutative Gray monoid †C in the
previous example models the 0–connected cover of the 2–type of the sphere spectrum,
and indeed this will follow from Theorem 3.11. One might also hope that a skeletal
model for the sphere spectrum can be constructed as a “many-object” version of †C

together with an appropriate symmetry. However, Theorem 3.14 will prove that this is
not possible.

Lemma 2.33 Let .D;˚; e/ be a permutative Gray monoid. Then the category D.e; e/

is a permutative category, with tensor product given by composition. The assignment
D 7!D.e; e/ is the function on objects of a functor

�W PermGrayMon! PermCat :

Proof For a Gray monoid D, the hom-category D.e; e/ is a braided, strict monoidal
category [21; 14] in which the tensor product is given by composition and the braid
f ı g Š g ı f is the morphism †f;g in D.e; e/; we note that fe D f and eg D g

since all the 1–cells involved are endomorphisms of the unit object, and the unit object
in a Gray monoid is a strict two-sided unit. The component ˇe;e is necessarily the
identity, and the calculations in the proof of Lemma 2.30 show that †f;g D†�1

g;f
, so

we have a permutative structure on D.e; e/.

Proposition 2.34 The functor †W PermCat!PermGrayMon is left adjoint to the functor
�W PermGrayMon! PermCat .

Proof It is easy to check that the composite �† is the identity functor on PermCat ,
and we take this equality to be the unit of the adjunction. The counit would be a functor
†.D.e; e//!D which we must define to send the single object of †.D.e; e// to the
unit object e of D and then to be the obvious inclusion on the single hom-category.
This is clearly a 2–functor, and the arguments in the proofs of the previous two lemmas
show that this is a strict map of permutative Gray monoids.

The counit is then obviously the identity on the only hom-category when D has a single
object, and this statement is in fact the commutativity of one of the triangle identities
for the adjunction. It is simple to check that � applied to the counit is the identity as
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well since the counit is the identity functor when restricted to the hom-category of the
unit objects, and this is the other triangle identity, completing the verification of the
adjunction.

Since the unit 1)�† is the identity, and the counit is an isomorphism on permutative
Gray monoids with one object, we have the following corollary.

Corollary 2.35 The adjunction † a� in Proposition 2.34 restricts to the categories
of strict Picard categories and strict Picard 2–categories. Moreover, this adjunction
gives equivalences between

� the category of permutative categories and the category of one-object permutative
Gray monoids, and

� the category of strict Picard categories and the category of one-object strict Picard
2–categories.

Proof The first statement follows from the definitions, since both † and � send
strict Picard objects in one category to strict Picard objects in the other. The other two
statements are obvious from the proof above.

3 Stable homotopy theory of Picard 2–categories

In this section we describe how to use the algebra of Picard 2–categories to express
homotopical features of their corresponding connective spectra categorically. We begin
with a brief review of stable Postnikov towers, mainly for the purpose of fixing notation.
Subsequently, we identify algebraic models for this homotopical data in terms of the
categorical structure present in a Picard 2–category.

For an abelian group � , the Eilenberg–Mac Lane spectrum of � is denoted by H� .
Its nth suspension is denoted by †nH� , and has zeroth space given by the Eilenberg–
Mac Lane space K.�; n/. With this notation, the stable Postnikov tower of a connective
spectrum X is given as follows:

X0 †2H.�1X /

†1H.�1X / X1 †3H.�2X /

†2H.�2X / X2 †4H.�3X /

:::

k0
//

k1
//

k2
//

i1
//

i2
//
��

��

��
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Since X is connective, it follows that X0DH.�0X / and k0 is therefore a stable map
from H.�0X / to †2H.�1X /. When X is the K–theory spectrum of a strict Picard
2–category, we will model k0 and k1i1 algebraically via stable quadratic maps. A
stable quadratic map is a homomorphism from an abelian group A to the 2–torsion
of an abelian group B . The abelian group of stable homotopy classes ŒHA; †2HB�

is naturally isomorphic to the abelian group of stable quadratic maps A! B by [17,
Equation (27.1)]. Moreover [18, Theorem 20.1] implies that, under this identification,
k0W H.�0X /! †2H.�1X / corresponds to the stable quadratic map �0X ! �1X

given by precomposition with the Hopf map �W †S! S , where S denotes the sphere
spectrum.

The stable Postnikov tower can be constructed naturally in X , so that if

X 0!X

is a map of spectra, we have the following commuting naturality diagram of stable
Postnikov layers:

(3-1)

†nH.�nX / Xn †nC2H.�nC1X /

†nH.�nX 0/ X 0n †nC2H.�nC1X 0/

in
//

kn
//

i0n
//

k0n
//

�� �� ��

Picard 2–categories model stable 2–types via K–theory. The K–theory functors for
symmetric monoidal n–categories, constructed in [53; 57; 45] for nD 1 and [29] for
nD 2, give faithful embeddings of Picard n–categories into stable homotopy. For the
purposes of this section we can take K–theory largely as a black box; in Section 5 we
give the necessary definitions and properties.

3.1 Modeling stable Postnikov data

For a Picard category .C;˚; e/, the two possibly nontrivial stable homotopy groups of
its K–theory spectrum K.C / are given by

�0K.C /Š ob C=fx � y if there exists a 1–cell f W x! yg;

�1K.C /Š C.e; e/:

The stable homotopy groups of the K–theory spectrum of a strict Picard 2–category can
be calculated similarly. We denote the classifying space of a 2–category D by BD [12].

Lemma 3.2 Let D be a strict Picard 2–category. The classifying space BD is
equivalent to �1K.D/. The stable homotopy groups �iK.D/ are zero except when
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0� i � 2, in which case they are given by the formulas below:

�0K.D/Š obD=fx � y if there exists a 1–cell f W x! yg;

�1K.D/Š obD.e; e/=ff � g if there exists a 2–cell ˛W f ) gg;

�2K.D/ŠD.e; e/.ide; ide/:

Proof First, note that D has underlying 2–category a bigroupoid, and the above are
the unstable homotopy groups of the pointed space .BD; e/ by [12, Remark 4.4]. Since
the objects of D are invertible, the space BD is group-complete, and hence it is the
zeroth space of the �–spectrum K.D/. Thus the stable homotopy groups of K.D/

agree with the unstable ones for BD.

Proposition 3.3 A map of strict Picard 2–categories induces a stable equivalence of
K–theory spectra if and only if it is an equivalence of Picard 2–categories.

Proof Note that the existence of inverses in a Picard 2–category implies that for
any object x we have an equivalence of categories D.e; e/ ' D.x;x/ induced by
translation by x . Similarly, for any 1–morphism f W e! e there is an isomorphism of
sets D.e; e/.ide; ide/ŠD.e; e/.f; f / induced by translation by f .

A map F W D!D0 of strict Picard 2–categories is a categorical equivalence if and only
if it is an equivalence of underlying 2–categories, that is, if it is biessentially surjective
and a local equivalence (see [26, Section 5] and [52, Theorem 2.25]). By Lemma 3.2
and the observation above, this happens exactly when f induces an isomorphism on
the stable homotopy groups of the corresponding K–theory spectra.

We will use the adjunctions from Section 2.3 to reduce the calculation of the stable qua-
dratic maps corresponding to k0 and k1i1 of K.D/ to two instances of the calculation
of k0 in the 1–dimensional case.

Lemma 3.4 [33] Let C be a strict Picard category with unit e and symmetry ˇ . Then
the bottom stable Postnikov invariant k0W H�0K.C /!†2H�1K.C / is modeled by
the stable quadratic map k0W �0K.C /! �1K.C /,

Œx� 7! .e Š�!xxx�x�
ˇx;xx�x�
�����!xxx�x� Š�! e/;

where x is an object in C and x� denotes an inverse of x .

Remark 3.5 The middle term of the composite k0.x/ was studied in [54; 34] and is
called the signature of x .
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Proof of Lemma 3.4 Note that k0W �0K.C /! �1K.C / is a well-defined function
(does not depend on the choices of x , x� and xx� Š e ). Indeed, given isomorphisms
x Š y , xx� Š e and yy� Š e , there is a unique isomorphism j W x� Š y� such that

yx� //

yj

��

xx�

��

yy� // e

commutes.

Moreover, it is clear that k0 is compatible with equivalences of Picard categories. By
[33, Theorem 2.2], we can thus replace C by a strict skeletal Picard category. In [33,
Section 3], a natural action S �C ! C is defined, where S is a strict skeletal model
for the 1–truncation of the sphere spectrum. It follows from the definition of the action
that

�1.BS/��1.BC;x/! �1.BC; e/

sends .�; idx/ to ˇx;xx�x� , where � denotes the generator of �1.BS/ŠZ=2. Finally,
it follows from [33, Proposition 3.4] that the action S �C ! C models the truncation
of the action of the sphere spectrum on KC , thus the image under the action of .�; idx/

agrees with the image of Œx� under the stable quadratic map associated to the bottom
stable Postnikov invariant.

Proposition 3.6 Let D be a strict Picard 2–category and let D! d.D1/ be the unit
of the adjunction in Proposition 2.28. Then

K.D/!K.d.D1//

is the 1–truncation of K.D/.

Proof Using the formulas in Lemma 3.2, it is clear that D ! d.D1/ induces an
isomorphism on �0 and �1 , and that �2K.d.D1//D 0. Moreover, both K–theory
spectra have �i D 0 for i > 2, so D1 models the 1–truncation of D.

Lemma 3.7 For any permutative category C , the K–theory spectrum of C is sta-
bly equivalent to the K–theory spectrum of the corresponding permutative Gray
monoid, dC .

Proof This follows directly from the formulas in [29], and in particular Remark 6.32.

For any connective spectrum X , the bottom stable Postnikov invariant of X and its
1–truncation X1 agree. Thus combining Lemma 3.4, Proposition 3.6 and Lemma 3.7
yields the following result.
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Corollary 3.8 Let D be a strict Picard 2–category with unit e and symmetry ˇ . Then
the bottom stable Postnikov invariant k0W H�0K.D/!†2H�1K.D/ is modeled by
the stable quadratic map k0W �0K.D/! �1K.D/,

Œx� 7! Œe '�!xxx�x�
ˇx;xx�x�
�����!xxx�x� '�! e�;

where x is an object in D and x� denotes an inverse of x .

Remark 3.9 It can be checked directly that the function k0W ob.D/!�1.KD/ is well-
defined using the essential uniqueness of the inverse: given another object xx together
with an equivalence e ' xxx , there is an equivalence x� ' xx and an isomorphism
2–cell in the obvious triangle, which is unique up to unique isomorphism. This follows
from the techniques in [26], and many of the details are explained there in Section 6.

In order to identify the composite k1i1 categorically, we analyze the relationship
between Postnikov layers and categorical suspension.

Proposition 3.10 Let D be a strict Picard 2–category and let †�D! D be the
counit of the adjunction in Proposition 2.34. Then

K.†�D/!K.D/

is a 0–connected cover of K.D/.

Proof It is clear from the formulas in Lemma 3.2 that †�D ! D induces an
isomorphism on �1 and �2 , and moreover, the corresponding K–theory spectra have
�i D 0 for i > 2. Since †�D has only one object, we have �0K.†�D/ D 0, so
†�D models the 0–connected cover of D.

In addition to the elementary algebra and homotopy theory of Picard 2–categories
discussed above, we require the following result.

Theorem 3.11 Let C be a permutative category. Then †K.C / and K.†C / are
stably equivalent.

The proof of Theorem 3.11 requires a nontrivial application of 2–monad theory. We
develop the relevant 2–monadic techniques in Section 4 and give the proof in Section 5.
These two sections are independent of the preceding sections.

Lemma 3.12 Let .D;˚; e/ be a strict Picard 2–category. Then the composite

k1i1W †H�1K.D/!†3H�2K.D/

is modeled by the stable quadratic map �1K.D/! �2K.D/,

Œf � 7! .ide
Š
�! f ıf ıf � ıf �

†f;f f
�ıf �

������!f ıf ıf � ıf � Š�! ide/;

where f W e! e is a 1–cell in D and f � denotes an inverse of f .
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Proof We use superscripts to distinguish Postnikov data of different spectra. The
composite kD

1
iD
1

in the first Postnikov layer of the spectrum K.D/ identifies with
the composite k†�D

1
i†�D
1

since K.†�D/ is the 0–connected cover of K.D/ by
Proposition 3.10 and the Postnikov tower can be constructed naturally; see (3-1).

Since K.†�D/'†K.�D/ by Theorem 3.11 and K.�D/ is connective, it follows
that

k†�D
1 i†�D

1 D†.k�D
0 i�D

0 /D†.k�D
0 /

in the stable homotopy category.

Finally, we deduce from Lemma 3.4 that the map †.k�D
0
/ is represented by the desired

group homomorphism.

3.2 Application to strict skeletal Picard 2–categories

Now we make an observation about the structure 2–cells †f;g in a strict Picard 2–
category. This algebra will be a key input for our main application, Theorem 3.14.

Lemma 3.13 Let .D;˚; e/ be a strict Picard 2–category. Let gW e! e be any 1–
cell and let s D ˇx;xx�x� be a representative of the signature of some object x with
inverse x� . Then †s;g and †g;s are identity 2–cells in D.

Proof By naturality of the symmetry and interchange, †ˇy;z ;h and †h;ˇy;z
are identity

2–cells for any 1–cell h [29, Proposition 3.41]. The result for †g;s follows by noting
that †g;fw D †g;f w for any 1–cells f and g and object w by the associativity
axiom for a Gray monoid. Hence †g;s D†g;ˇx;xx�x� D†g;ˇx;x

x�x� , which is the
identity 2–cell.

For the other equality, we note the final axiom of [27, Proposition 3.3] reduces to the
following equality of pasting diagrams for objects y , z and w with endomorphisms
ty , tz and tw , respectively:

yzw

yzw

yzw

yzw

yzw

yzwyzw

tyzw

AA

ytzw
//

yztw

��

yztw

��

ytzw
//

tyzw

AA

ytzw
//

tyzw

AA

yztw

��

†ty ;tzw
QY

y†tz ;tw
CK

†.tyz/;tw

KS
D yzw

yzw

yzw

yzw

yzw

yzwyzw

tyzw

AA

ytzw
//

yztw

��

yztw

��

ytzw
//

tyzw

AA

yztw

��

tyzw

AA

ytzw
//†ty ;.ztw/

KS

†ty ;tzw
QY

y†tz ;tw
CK

Algebraic & Geometric Topology, Volume 17 (2017)



2784 Nick Gurski, Niles Johnson, Angélica M Osorno and Marc Stephan

Thus the result for †s;g follows by taking .y; z; w/ D .xx;x�x�; e/, ty D ˇx;x ,
tz D id and tw D g .

We are now ready to give our main application regarding stable Postnikov data of strict
skeletal Picard 2–categories.

Theorem 3.14 Let D be a strict skeletal Picard 2–category and assume that

k0W �0K.D/! �1K.D/

is surjective. Then k1i1 is trivial.

Proof We prove that the stable quadratic map �1K.D/!�2K.D/ from Lemma 3.12
that models the composite k1i1 is trivial. Since k0 is surjective by assumption, it
suffices to consider k1i1.f / for f of the form

(3-15) e
w
�!xxx�x�

ˇx;xx�x�
�����!xxx�x�

w�
�! e

for some object x with inverse x� . Here w denotes the composite

e
u
�!xx�

xux�
��!xxx�x�

for a chosen equivalence uW e ' xx� and w� denotes the corresponding reverse
composite for a chosen u�W xx� ' e inverse to u. Note that the isomorphism class
of f is independent of the choices of the inverse object x� and the equivalences u

and u� (see Remark 3.9). Since D is skeletal, it must be that xx� D e . Therefore
we can choose the equivalence uW e ' xx� to be ide and then choose u� to be ide

as well. With these choices, the composite f is actually equal to ˇx;xx�x� . By
Lemma 3.13, the Gray structure 2–cell †f;f is the identity 2–cell idf ıf . This implies
that k1i1.f /D idide

.

Remark 3.16 The result of Theorem 3.14 may be viewed as the computation of a
differential in the spectral sequence arising from mapping into the stable Postnikov
tower of KD. This spectral sequence appears, for example, in [35] and is a cocellular
construction of the Atiyah–Hirzebruch spectral sequence (see [22, Appendix B]).

Our most important application concerns the sphere spectrum.

Corollary 3.17 Let D be a strict skeletal Picard 2–category. Then D cannot be a
model for the 2–truncation of the sphere spectrum.

Proof The nontrivial element in �1 of the sphere spectrum is given by k0.1/, so
k0 is surjective and therefore Theorem 3.14 applies. But k1i1 is Sq2 , which is the
nontrivial element of H 2.Z=2IZ=2/ [50, pages 117–118].
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Remark 3.18 To understand the meaning of this result, recall that one can specify a
unique Picard category by choosing two abelian groups for �0 and �1 together with a
stable quadratic map k0 for the symmetry. This is the content of Theorem 1.1. However,
one does not specify a Picard 2–category by simply choosing three abelian groups
and two group homomorphisms. This is tantamount to specifying a stable 2–type by
choosing the bottom Postnikov invariant k0 and the composite k1i1 . Theorem 3.14
shows that such data do not always assemble to form a strict Picard 2–category. For
example, the construction of [4, 5.2] does not satisfy the axioms of a permutative Gray
monoid.

4 Strictification via 2–monads

In this section we develop the 2–monadic tools used in the proof of Theorem 3.11. In
Section 4.1 we recall some basic definitions as well as abstract coherence theory from
the perspective of 2–monads. Our focus is on various strictification results for algebras
and pseudoalgebras over 2–monads, and how strictification can often be expressed
as a 2–adjunction with good properties. In Section 4.2 we apply this to construct a
strictification of pseudodiagrams as a left 2–adjoint. The material in this section is
largely standard 2–category theory, but we did not know a single reference which
collected it all in one place.

The formalism of this section aids the proof of Theorem 3.11 in two ways. First, it
allows us to produce strict diagrams of 2–categories by working with diagrams which
are weaker (eg whose arrows take values in pseudofunctors) but more straightforward to
define. This occurs in Section 5.1. Second, it allows us to construct strict equivalences
of strict diagrams by working instead with pseudonatural equivalences between them.
This occurs in Section 5.2.

4.1 Review of 2–monad theory

We recall relevant aspects of 2–monad theory and fix notation. These include maps
of monads and abstract coherence theory [38; 51; 7; 39]. Let A be a 2–category and
.T W A!A; �; �/ be a 2–monad on A. We then have the following 2–categories of
algebras and morphisms with varying levels of strictness:

(1) T -Algs is the 2–category of strict T –algebras, strict morphisms, and algebra
2–cells. Its underlying category is just the usual category of algebras for the
underlying monad of T on the underlying category of A.

(2) T -Alg is the 2–category of strict T –algebras, pseudo-T –morphisms, and alge-
bra 2–cells.
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(3) Ps-T -Alg is the 2–category of pseudo-T –algebras, pseudo-T –morphisms, and
algebra 2–cells.

We have inclusions and forgetful functors as below:

T -Algs T -Alg Ps-T -Alg

A

i
// //

U ''

U
�� Uww

A map of 2–monads is precisely the data necessary to provide a 2–functor between
2–categories of strict algebras.

Definition 4.1 Let S be a 2–monad on A and T a 2–monad on B. A strict map of
2–monads S ! T consists of a 2–functor F W A!B and a 2–natural transformation
�W TF ) FS satisfying two compatibility axioms [5]:

� ı�F D F� ı�S ıT �;

� ı �F D F�:

Proposition 4.2 If F W S ! T is a strict map of 2–monads, then F lifts to the
indicated 2–functors in the following diagram:

A

S -Alg

S -Alg s

B

T -Alg

T -Alg s

F
//

F
//

F
//

i
��

U
��

i
��

U
��

Abstract coherence theory provides left 2–adjoints to T -Algs ,! T -Alg and the
composite T -Algs ,!Ps-T -Alg. Lack discusses possible hypotheses in [39, Section 3],
so we give the following theorem in outline form.

Theorem 4.3 [39, Section 3] Under some assumptions on A and T , the inclusions

i W T -Algs ,! T -Alg; j W T -Algs ,! Ps-T -Alg

have left 2–adjoints generically denoted by Q. Under even further assumptions, the
units 1) iQ and 1)jQ and the counits Qi)1 and Qj)1 of these 2–adjunctions
have components which are internal equivalences in T -Alg for Q a i and Ps-T -Alg
for Q a j , respectively.
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Remark 4.4 The proofs in [39] only concern the units, but the statement about counits
follows immediately from the 2-out-of-3 property for equivalences and one of the
triangle identities. We note that the components of the counits are actually always
1–cells in T -Algs , so saying they are equivalences in T -Alg or Ps-T -Alg requires
implicitly applying i or j , respectively.

Notation 4.5 We will always denote inclusions of the form T -Algs ,! T -Alg by i ,
and inclusions of the form T -Algs ,! Ps-T -Alg by j . If we need to distinguish
between the left adjoints for i and j , we will denote them by Qi and Qj , respectively.

4.2 Two applications of 2–monads

We are interested in two applications of Theorem 4.3: one which gives 2–categories
as the strict algebras (Proposition 4.12), and one which gives 2–functors with fixed
domain and codomain as the strict algebras (Proposition 4.16). Combining these in
Theorem 4.19, we obtain the main strictification result used in our analysis of K–theory
and suspension in Section 5.

We begin with the 2–monad for 2–categories and refer the interested reader to [41; 42]
for further details.

Definition 4.6 (1) A category-enriched graph or Cat –graph .S;S.x;y// consists
of a set of objects S and a category S.x;y/ for each pair of objects x;y 2 S .

(2) A map of Cat –graphs .F;Fx;y/W .S;S.x;y// ! .T;T .w; z// consists of a
function F W S ! T and a functor Fx;y W S.x;y/! T .Fx;Fy/ for each pair
of objects x;y 2 S .

(3) A Cat –graph 2–cell ˛W .F;Fx;y/) .G;Gx;y/ only exists when FDG as func-
tions S! T , and then consists of a natural transformation ˛x;y W Fx;y)Gx;y

for each pair of objects x;y 2 S .

Notation 4.7 Cat –graphs, their maps, and 2–cells form a 2–category, Cat -Grph , with
the obvious composition and unit structures.

Definition 4.8 Let A and B be 2–categories, and F;GW A ! B be a pair of 2–
functors between them. An icon ˛W F)G exists only when FaDGa for all objects
a 2A, and then consists of natural transformations

˛a;bW Fa;b)Ga;bW A.a; b/!B.Fa;Fb/

for all pairs of objects a and b such that the following diagrams commute:
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idFa F ida
D

// F ida

Gida

˛id

��

idFa

Gida

D
%%

Ff ıFg F.f ıg/
D

// F.f ıg/

G.f ıg/

˛f ıg

��

Ff ıFg

Gf ıGg

˛f �˛g

��

Gf ıGg G.f ıg/
D

//

(Note that we suppress the 0–cell source and target subscripts for components of the
transformations ˛a;b and instead only list the 1–cell for which a given 2–cell is the
component.)

Remark 4.9 We can define icons between pseudofunctors or lax functors with only
minor modifications, replacing some equalities above with the appropriate coherence
cell; see [42; 41].

Notation 4.10 2–categories, 2–functors, and icons form a 2–category, which we
denote by 2Cat2;i . 2–categories, pseudofunctors, and icons form a 2–category, which
we denote by 2Cat p,i . Bicategories, pseudofunctors, and icons also form a 2–category,
which we denote by Bicat p,i .

Recall that a 2–functor U W A!K is 2–monadic if it has a left 2–adjoint F and A is
2–equivalent to the 2–category of algebras .UF /-Algs via the canonical comparison
map.

Proposition 4.11 [42; 41] The 2–functor 2Cat2;i! Cat -Grph is 2–monadic, and the
left 2–adjoint is given by the Cat –enriched version of the free category functor.

The following is our first application of Theorem 4.3.

Proposition 4.12 The two inclusions

i W 2Cat2;i ,! 2Cat p,i; j W 2Cat2;i ,! Bicat p,i

have left 2–adjoints, and the components of the units and counits of both adjunctions
are internal equivalences in 2Cat p,i for Qi a i and Bicat p,i for Qj a j , respectively.

Proof The induced monad T on Cat -Grph satisfies a version of the hypotheses for
Theorem 4.3 (for example, it is a finitary monad) so we get left 2–adjoints to both
inclusions

i W T -Algs! T -Alg; j W T -Algs! Ps-T -Alg:

Now T -Alg can be identified with 2Cat p,i , and one can check that Ps-T -Alg can be
identified with Bicat p,i , and using these the two left 2–adjoints above are both given
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by the standard functorial strictification functor, often denoted by st (see [34] for the
version with only a single object, ie monoidal categories). The objects of st.X / are
the same as X , while the 1–cells are formal strings of composable 1–cells (including
the empty string at each object). Internal equivalences in either T -Alg or Ps-T -Alg
for the 2–monad T are bijective-on-objects biequivalences, and it is easy to check that
the unit is such; see [42; 28] for further details.

Remark 4.13 We should note that 2Cat2;i is complete and cocomplete as a 2–category,
since it is the 2–category of algebras for a finitary 2–monad on a complete and
cocomplete 2–category. This will be necessary for later constructions. On the other
hand, 2Cat p,i is not cocomplete as a 2–category, but is as a bicategory: coequalizers
of pseudofunctors rarely exist in the strict, 2–categorical sense, but all bicategorical
colimits do exist.

Our second application of Theorem 4.3 deals with functor 2–categories. Here we fix a
small 2–category A and a complete and cocomplete 2–category K.

Notation 4.14 Let ŒA;K� denote the 2–category of 2–functors, 2–natural transfor-
mations, and modifications from A to K. Let Bicat.A;K/ denote the 2–category of
pseudofunctors, pseudonatural transformations, and modifications from A to K. Let
Gray.A;K/ denote the 2–category of 2–functors, pseudonatural transformations, and
modifications from A to K. This is the internal hom-object corresponding to the Gray
tensor product on 2Cat [21].

Remark 4.15 Bicat.A;K/ inherits its compositional and unit structures from the
target 2–category K and is therefore a 2–category rather than a bicategory even though
all of its cells are of the weaker, bicategorical variety.

Let obA denote the discrete 2–category with the same set of objects as A. We have
an inclusion obA ,!A, which induces a 2–functor U W ŒA;K�! ŒobA;K�.

Proposition 4.16 The forgetful 2–functor U W ŒA;K�! ŒobA;K� is 2–monadic, and
the left 2–adjoint is given by enriched left Kan extension. The induced 2–monad
preserves all colimits, and so the inclusions

i W ŒA;K� ,! Gray.A;K/; j W ŒA;K� ,! Bicat.A;K/

have left 2–adjoints. The units and counits of these adjunctions have components
which are internal equivalences in Gray.A;K/ for Qi a i and Bicat.A;K/ for Qj a j ,
respectively.
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Proof That U is 2–monadic follows because it has a left 2–adjoint given by enriched
left Kan extension and is furthermore conservative. Thus ŒA;K� is 2–equivalent to the
2–category of strict algebras for U ıLan. The 2–functor U also has a right adjoint
given by right Kan extension since K is complete, so U ıLan preserves all colimits
as it is a composite of two left 2–adjoints. The 2–category ŒobA;K� is cocomplete
since K is, hence T D U ıLan satisfies the strongest version of the hypotheses for
Theorem 4.3. One can check that T -Alg is 2–equivalent to Gray.A;K/ and Ps-T -Alg
is 2–equivalent to Bicat.A;K/ [40]. This proves that the inclusions i and j in the
statement have left 2–adjoints. The version of Theorem 4.3 which applies in this
case proves, moreover, that the components of the units are internal equivalences in
Gray.A;K/ and Bicat.A;K/, respectively, and hence the claim about counits follows
(see Remark 4.4).

We require one further lemma before stating the main result of this section.

Lemma 4.17 For a fixed 2–category A, Bicat.A;�/ is an endo-2–functor of the
2–category of 2–categories, 2–functors, and 2–natural transformations.

Proof For any 2–category B, we know that Bicat.A;B/ is a 2–category. Furthermore,
if F W B! C is a 2–functor, it is straightforward to check that F�W Bicat.A;B/!
Bicat.A;C/ is also a 2–functor. The only interesting detail to check is on the level of 2–
cells, where we must show that if � W F)G is 2–natural, then so is �� . The component
of �� at H W A ! B is the pseudonatural transformation �H W FH ) GH with
.�H /aD�Ha and similarly for pseudonaturality isomorphisms. We must verify that ��
is 2–natural in H . Thus, for any ˛W H)K , we must check that G˛ı�H D �KıF˛

as pseudonatural transformations and then similarly for modifications. At an object a,
we have components

.G˛ ı �H /a DG.˛a/ ı �Ha D �Ka ıF.˛a/D .�K ıF˛/a

by the 2–naturality of � in Ha. A short and simple pasting diagram argument that we
leave to the reader also shows that the pseudonaturality isomorphisms for G˛ ı �H

and �K ıF˛ are the same, once again relying on the 2–naturality of � in its argument.
This completes the 1–dimensional part of 2–naturality, and the 2–dimensional part is
a direct consequence of the 2–naturality of � when written out on components.

Remark 4.18 While the argument above is simple, it is not entirely formal. The
“dual” version for Bicat.�;A/ does not hold due to an asymmetry in the definition
of the pseudonaturality isomorphisms for a horizontal composite of pseudonatural
transformations.
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We are now ready to prove the main result of this section, namely that we can replace
pseudofunctors A! 2Cat p,i with equivalent 2–functors A! 2Cat2;i .

Theorem 4.19 The inclusion

J W ŒA; 2Cat2;i� ,! Bicat.A; 2Cat p,i/

has a left 2–adjoint Q. The unit and counit of this adjunction have components which
are internal equivalences in Bicat.A; 2Cat p,i/.

Proof We will combine Propositions 4.12 and 4.16. The inclusion J factors into the
two inclusions

ŒA; 2Cat2;i�
j
,!Bicat.A; 2Cat2;i/

i�,�!Bicat.A; 2Cat p,i/:

Since 2Cat2;i is cocomplete, j has a left 2–adjoint Qj by Proposition 4.16. The
inclusion i has a left 2–adjoint Qi by Proposition 4.12, so i� has a left 2–adjoint
.Qi/� by Lemma 4.17. Both of these 2–adjunctions have units whose components
are equivalences, so the composite QDQj .Qi/� does as well, from which the claim
about counits follows.

5 Categorical suspension models stable suspension

The purpose of this section is to prove Theorem 3.11, which states that K–theory
commutes with suspension, in the appropriate sense. More precisely, we show that for
any permutative category C , the K–theory spectrum of the one-object permutative Gray
monoid †C is stably equivalent to the suspension of the K–theory spectrum of C .

This entails a comparison between constructions of K–theory for categories and 2–
categories. Both constructions use the theory of �–spaces developed by Segal [53].
We recall this theory in Section 5.1. Our interest in �–spaces arises from the fact that
they model the homotopy theory of connective spectra, as developed by Bousfield and
Friedlander [10] in the simplicial setting. Thus, in what follows, we will work with
�–simplicial sets to prove Theorem 3.11.

We model the spectra K.†C / and †KC with �–simplicial sets which are constructed
from certain �–objects in simplicial categories. These �–objects in simplicial categories
are two different strictifications of the same pseudofunctor F ! Bicat.�op; Cat2/,
where F is the category of finite pointed sets and pointed maps. The first of these
strictifications is provided in Definition 5.8 by applying the suspension of �–simplicial
sets (Definition 5.5) to a strictification of the pseudofunctor n 7!C n (Construction 5.7),
giving a model for †KC . The second is provided in Definition 5.16 and gives a model
for K.†C /.
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In Section 5.2 we use the formalism of Section 4 to compare the two strictifications
via a zigzag of levelwise equivalences. The key step in this comparison is constructed
in Theorem 5.21 by strictification of a pseudonatural equivalence.

5.1 Constructions of K –theory spectra and suspension

Let F denote the following skeletal model for the category of finite pointed sets and
pointed maps. An object of F is determined by an integer m� 0, which represents the
pointed set mCD f0; 1; : : : ;mg, where 0 is the basepoint. This category is isomorphic
to the opposite of the category � defined by Segal [53].

Definition 5.1 Let C be a category with a terminal object �. A �–object in C is a
functor X W F ! C such that X.0C/D �.

We give the above definition in full generality, but are only interested in the cases when
C is one of Cat , 2Cat , the category of simplicial sets sSet or of topological spaces Top .
In each of these cases, we have finite products and a notion of weak equivalence. In
Top and sSet this is the classical notion of weak homotopy equivalence, and in both
Cat and 2Cat we define a functor or 2–functor to be a weak equivalence if it induces a
weak homotopy equivalence in sSet after applying the nerve [25; 12].

Definition 5.2 Let X be a �–object in C. We say X is special if the Segal maps

X.nC/!X.1C/
n

are weak equivalences.

The main result of [53] is that, given a �–space X , one can produce a connective
spectrum zX . Moreover, if X is special then zX is an almost �–spectrum such that
�1 zX is a group completion of X.1C/. We recall how to express suspension of spectra
in terms of �–simplicial sets using the standard “inclusion” �op!F , as specified in
[48, Lemma 3.5] and the following smash product. Let ^W F �F !F be the functor
that sends .nC;pC/ to .np/C D nC_ � � � _nC . Our reverse lexicographic convention
differs from the smash product in [48, Construction 3.4], which considers .np/C as
pC _ � � � _pC .

Notation 5.3 Let

ˆW Bicat.A�B;C/! Bicat.A;Bicat.B;C//

denote the biequivalence of functor bicategories given in [55], sending a pseudofunctor
F W A�B! C to the pseudofunctor

ˆ.F /.a/.b/D F.a; b/:
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We also let ˆ denote the isomorphism of functor 2–categories

ŒA�B;C� Š�! ŒA; ŒB;C��:

In order to justify using the same notation ˆ for both of these, we note that both
versions (reading vertical arrows upwards or downwards) of the square

(5-4)

ŒA�B;C� Bicat.A�B;C/

ŒA; ŒB;C�� Bicat.A;Bicat.B;C//

OO

Š

��

//

//

OO

'

��

commute, with the downward direction being given by ˆ on the vertical arrows.

Definition 5.5 Let X W F ! sSet be a special �–simplicial set and let X ı^ denote
the composite

F ��op ^
�!F

X
�! sSet :

Let d W Œ�op; sSet �! sSet denote the diagonal functor. We define the suspension, †X ,
as the special �–simplicial set d ıˆ.X ı^/.

Proposition 5.6 [53; 10] Let X be a special �–simplicial set and zX its associated
spectrum. Then the spectrum associated to †X is stably equivalent to † zX .

Given a permutative category C , there are several equivalent ways of constructing a
special �–category. The following was first constructed by Thomason [56, Definition
4.1.2].

Construction 5.7 Let .C;˚; e/ be a permutative category. We can construct a pseudo-
functor

C .�/
W F ! Cat2

which sends mC to C m . Given a morphism �W mC! nC , the corresponding functor
��W C

m!C n is defined uniquely by the requirement that the square below commutes
for each projection �j W C

n! C :

C m

C n

C ��1.j/

C

//

��
��

˚
��

�j

//

The top horizontal map is the projection onto the coordinates which appear in ��1.j /.
The ˚ appearing on the right vertical map is the iterated application of the tensor
product ˚, with the convention that if ��1.j / is empty, then the map is the constant
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functor on the unit e . This assignment is not strictly functorial, but the permutative
structure provides natural isomorphisms

 � ı�� Š . ı�/�;

which are uniquely determined by the symmetry. These isomorphisms assemble to
make C .�/ a pseudofunctor.

Definition 5.8 The K–theory of C is the functor

KC DN ıQj .C
.�//W F ! sSet ;

where N is the usual nerve functor Cat ! sSet and Qj is the left 2–adjoint from
Proposition 4.16 when KD Cat2 .

Remark 5.9 Although the pseudofunctor C .�/ satisfies the property that it maps 0C
to �, its strictification Qj .C

.�// does not. Thus Qj .C
.�// is a functor F ! Cat , but

it is not a �–category as in Definition 5.1. Since Qj .C
.�// is levelwise equivalent

to C .�/ , and in particular Qj .C
.�//.0C/ is contractible, we can replace N ıQj .C

.�//

by a levelwise equivalent �–simplicial set. This replacement is made implicitly here,
and throughout the remainder of the paper.

Lemma 5.10 Consider the composite

ŒF ��op; Cat � ˆ�! ŒF ; Œ�op; Cat �� N�ı�
����! ŒF ; Œ�op; sSet �� dı�

��! ŒF ; sSet �:

If F is a levelwise weak equivalence of diagrams F ��op! Cat , then dN�ˆ.F / is a
levelwise weak equivalence of diagrams F ! sSet .

Proof This follows from [10, Theorem B.2], which states that if f W X ! Y is a map
of bisimplicial sets such that Xn;�! Yn;� is a weak equivalence of simplicial sets for
all n� 0, then d.f /W d.X /! d.Y / is a weak equivalence.

To relate the �–simplicial set †KC to the K–theory of the permutative Gray monoid
†C , we provide a new construction of a special �–2–category K.†C / and show it is
levelwise weakly equivalent to the K–theory defined in [29].

Notation 5.11 Let 2Cat p,p,m denote the tricategory whose objects are 2–categories
and whose higher cells are pseudofunctors, pseudonatural transformations, and modifi-
cations [27].

Lemma 5.12 Let .D;˚; e/ be a permutative Gray monoid. Then there is a pseudo-
functor of tricategories D.�/W F! 2Cat p,p,m with value at mC given by Dm . If D has
a single object, then this becomes a pseudofunctor of 2–categories D.�/W F ! 2Cat p,i .
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Proof The first claim is a special case of [31, Theorem 2.5]. For the second claim,
by Corollary 2.35, it suffices to work with †D for a permutative category D . Recall
from Construction 5.7 that we have the pseudofunctor

D.�/
W F ! Cat2:

The permutative structure on D in fact makes each Dm a strict monoidal category with
pointwise tensor product and unit, and each functor ��W Dm!Dn for �W mC! nC
a strong monoidal functor. One can verify that the isomorphisms  � ı�� Š . ı�/�
are themselves monoidal, so we get a pseudofunctor

D.�/
W F ! StMonCatp

from F to the 2–category StMonCatp of strict monoidal categories, strong monoidal
functors, and monoidal natural transformations. Note that .†D/m Š†.Dm/, so we
define

.†D/.�/ D† ıD.�/;

where † is now the 2–functor StMonCatp! 2Cat p,i which views each strict monoidal
category as the hom-category of a 2–category with a single object. This composite is
the desired pseudofunctor.

Definition 5.13 [42] Let A be a 2–category. The nerve of A is the simplicial
category NAW �op! Cat defined by

NAn D 2Cat2;i.Œn�;A/;

where Œn� is the standard category 0! 1! � � � ! n treated as a discrete 2–category.
This is the function on objects of a 2–functor from 2Cat2;i to Œ�op; Cat2�.

Remark 5.14 This is called the 2–nerve by Lack and Paoli. It is related but not equal
to the general bicategorical nerve of [25; 12]. Detailed comparisons are given in [12].

Unpacking this definition, NA0 D obA as a discrete category. When n� 1,

NAn D

a
a0;:::;an2obA

A.an�1; an/� � � � �A.a0; a1/:

Using this same formula, we define the nerve on Cat -Grph , which fits in the following
commuting diagram:

Cat -Grph

2Cat2;i

Œob�op; Cat2�

Œ�op; Cat2�

N
//

N
//

�� ��
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Let S be the 2–monad on Cat -Grph whose algebra 2–category is 2Cat2;i (Proposition
4.11). Let T be the 2–monad on Œob�op; Cat2� whose algebra 2–category is Œ�op; Cat2�

(Proposition 4.16). We now apply Proposition 4.2 to show that the nerve extends
to 2Cat p,i .

Lemma 5.15 The nerve N is a strict map of 2–monads S!T and therefore provides
the middle map in the commutative diagram below:

Cat -Grph

2Cat p,i

2Cat2;i

Œob�op; Cat2�

Gray.�op; Cat2/

Œ�op; Cat2�

N
//

N
//

N
//

i
��

U
��

i
��

U
��

We now define the �–objects we will use to understand K–theory of a suspension.

Definition 5.16 Let C be a permutative category with †C its suspension permu-
tative Gray monoid. Let Q D Qj .Qi/� denote the left 2–adjoint of the inclusion
J W ŒF ; 2Cat2;i� ,! Bicat.F ; 2Cat p,i/ constructed in Theorem 4.19.

(1) Define K.†C / to be Q..†C /.�//. This is a functor F ! 2Cat .

(2) The composite N ıK.†C / is a functor F ! Œ�op; Cat �. Define Kadj.†C / to
be ˆ�1.N ıK.†C //.

The composite
2Cat N
�! Œ�op; Cat � N�

�! Œ�op; sSet � d
�! sSet

is one of the versions of the nerve for 2–categories in [12]. Postcomposing K.†C /

with this functor (and, as noted in Remark 5.9, implicitly replacing with a reduced
diagram) yields a �–simplicial set which is a model of the K–theory of †C . We make
this rigorous in the following lemma, which relates the definition of K–theory here
with that introduced in [29], here denoted by zK .

For a permutative Gray monoid D, zK.D/ is a special �–2–category such that an
object at level n is an object in D, together with an explicit way of decomposing it
as a sum of n objects. This allows for strict functoriality with respect to F . This
construction generalizes the construction of [47; 45] for permutative categories.

Lemma 5.17 Let .C;˚; e/ be a permutative category. There is a levelwise weak
equivalence between the �–2–categories K.†C / and zK.†C /, hence a stable equiva-
lence between the spectra these represent.
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Proof We shall prove that there is a levelwise weak equivalence K.†C /! zK.†C /

of �–2–categories. Since both of these are special, it suffices to construct such a map
and check that it is a weak equivalence when evaluated at 1C . The functor Q is a left
adjoint, so strict maps ZW K.†C / D Q..†C /.�//! zK.†C / are in bijection with
pseudonatural transformations

LZW .†C /.�/! zK.†C /

in Bicat.F ; 2Cat p,i/. This bijection is induced by composition with a universal pseudo-
natural transformation �W .†C /.�/ ! Q..†C /.�//, so we have the commutative
triangle shown below:

.†C /.�/ Q..†C /.�//

zK.†C /

�
//

Z
��LZ

%%

We know that � is a levelwise weak equivalence by Theorem 4.19, so the component
of Z at 1C is a weak equivalence if and only if the same holds for LZ .

We will construct the pseudonatural transformation LZ . In order to do so, we briefly
review the data which define the cells of zK.†C /.nC/; we omit the axioms these data
must satisfy and refer the reader to [29]. Because †C has a single object, an object
of zK.†C /.nC/ consists of objects cs;t of the permutative category C for s and t

disjoint subsets of nD f1; : : : ; ng. We denote such an object by fcs;tg or, when more
detail is useful, a function

fs; t 7! cs;tg:

A 1–cell fcs;tg ! fds;tg consists of objects xs of C for s � n together with isomor-
phisms

s;t W xt ˚xs˚ cs;t Š ds;t ˚xs[t :

We denote this by fxs; s;tg or, in functional notation,

fs 7! xsI s; t 7! s;tg:

A 2–cell fxs; s;tg) fys; ıs;tg consists of morphisms ˛sW xs! ys in C . We denote
this by f˛sg or with a corresponding functional notation.

Now .†C /nC is .†C /n Š†.C n/ by definition. We define LZ on cells as follows.

� The unique 0–cell of †.C n/ maps to the object of zK.†C /.nC/ with cs;t D e

for all s and t .
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� A 1–cell .x1; : : : ;xn/ maps to the 1–cell�
s 7!

M
i2s

xi I s; t 7! �s;t

�
;

where �s;t denotes the unique interleaving symmetry isomorphism�M
i2s

xi

�
˚

�M
j2t

xj

�
Š

M
k2s[t

xk :

� A 2–cell .f1; : : : ; fn/ maps to the 2–cell�
s 7!

M
i2s

fi

�
:

Using the permutative structure of C , it is straightforward to verify that the formulas
above satisfy the axioms of [29, Section 6.1] and therefore define valid cells. Clearly,
LZ sends the identity 1–cell of †.C n/, namely .e; : : : ; e/, to the identity 1–cell

in zK.†C /.nC/. Now composition of 1–cells in †.C n/ is given by the monoidal
structure, so

.x1; : : : ;xn/ ı .y1; : : : ;yn/D .x1˚y1; : : : ;xn˚yn/:

We have a similar formula for composition in zK.†C /.nC/, with the object part of
fxs; s;tg ı fys; ıs;tg being given on s by xs˚ys . From these formulas, we see that
LZ does not strictly preserve 1–cell composition since

LZ.x1; : : : ;xn/ ı LZ.y1; : : : ;yn/D

�
s 7!

�M
i2s

xi

�
˚

�M
i2s

yi

�
I s; t 7! �s;t

�
;

where � denotes the unique interleaving symmetry isomorphism. On the other hand,

LZ.x1˚y1; : : : ;xn˚yn/D

�
s 7!

M
i2s

.xi ˚yi/I s; t 7! �s;t

�
:

These are isomorphic by a unique symmetry, and that data equips

LZ.nC/W .†C /n! zK.†C /.nC/

with the structure of a normal (ie strictly unit-preserving) pseudofunctor.

Now let �W mC! nC in F . We must construct an invertible icon in the square below:

.†C /m zK.†C /.mC/

.†C /n zK.†C /.nC/

��
��

LZ
//

LZ

//

��
��
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We begin by noting that this diagram obviously commutes on the unique object, so
there can exist an icon (see Definition 4.8) between the two composite pseudofunctors.
The top and right composite sends a 1–cell .x1; : : : ;xn/ to the 1–cell�

u 7!
M

i2��1.u/

xi I u; v 7! ���1.u/;��1.v/

�
:

The left and bottom composite then sends .x1; : : : ;xn/ to the 1–cell with�
u 7!

M
i2u

� M
j2��1.i/

xj

�
I u; v 7! �u;v

�
;

where �u;v interleaves the blocks
�L

j2��1.i/ xj

�
.

There is an invertible 2–cell between these 1–cells, which is given by the symmetry
isomorphism M

i2��1.u/

xi Š

M
i2u

� M
j2��1.i/

xj

�
:

Coherence for symmetric monoidal categories, together with the naturality of sym-
metries, implies that the icon axioms hold. Further, the same coherence shows that
these invertible icons are themselves the naturality isomorphisms which constitute a
pseudonatural transformation between pseudofunctors F ! 2Cat p,i .

Our final task is to verify that LZ.1C/ is a weak equivalence. It is a simple calculation to
check that in fact LZ.1C/ induces an isomorphism of 2–categories zK.†C /.1C/Š†C .

Remark 5.18 One can check that the equivalence constructed in Lemma 5.17 is
pseudonatural in the variable C .

5.2 Proof of Theorem 3.11

Given a permutative category C , we can construct two pseudofunctors from F to
Bicat.�op; Cat2/. One is the composite

F
.†C /.�/

����! 2Cat p,i
N
�!Gray.�op; Cat2/ ,! Bicat.�op; Cat2/;

where N denotes the nerve functor of Lemma 5.15. The other is given by ˆ.C .�/ı^/,
where

ˆW Bicat.F ��op; Cat2/! Bicat.F ;Bicat.�op; Cat2//
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is the 2–functor from Notation 5.3 and C .�/ ı^ is the composite

F ��op ^
�!F

C .�/

��! Cat2:

Proposition 5.19 With notation as above, ˆ.C .�/ ı^/DN ı .†C /.�/ .

Proof This result follows from a direct comparison of ˆ.C .�/ı^/ with N ı.†C /.�/ .
Both pseudofunctors send the object mC in F to the 2–functor �op! Cat2 given by

Œp� 7! C m�p
D .C m/p; .Œp�

˛
�! Œq�/ 7! .C m�p .m^˛/�

����!C m�q/:

For ˆ.C .�/ ı^/ this is immediate. For N ı .†C /.�/ this follows because †C has
only one object and the horizontal composition of cells is given by the monoidal product
in C .

Both pseudofunctors send a morphism �W mC ! nC in F to the pseudonatural
transformation whose component at Œp� 2�op is given by

C m�p .�^p/�
����!C n�p:

For ˆ.C .�/ ı^/, it is immediate that the pseudonaturality constraint has components
given by

(5-20) .nC ^˛/� ı .� ^ Œp�/� Š .� ^˛/� Š .� ^ Œq�/� ı .mC ^˛/�

at ˛W Œp�! Œq�. These isomorphisms are the pseudofunctoriality constraints of C .�/

and are instances of the symmetry in C (see Construction 5.7). A straightforward
check shows that the pseudofunctoriality constraint of N ı .†C /.�/ is given by the
same instances of the symmetry of C .

For a composable pair �W mC! nC and  W nC! kC , the symmetry of C provides

. ^ Œp�/� ı .� ^ Œp�/� Š .. ı�/^ Œp�/�

and these are the components of the pseudofunctoriality of ˆ.C .�/ ı^/. The same
computation holds for N ı .†C /.�/ .

We are now ready for the main theorem of this section, from which the proof of
Theorem 3.11 follows. Let Qj be as in Definition 5.8, the left 2–adjoint to the
inclusion functor

j W ŒF ��op; Cat2� ,! Bicat.F ��op; Cat2/:

Theorem 5.21 For any permutative category C , there is a zigzag of levelwise equiva-
lences between Qj .C

.�// ı^ and Kadj.†C /.

Algebraic & Geometric Topology, Volume 17 (2017)



Stable Postnikov data of Picard 2–categories 2801

Proof The components of the unit and counit of the 2–adjunction Qj a j are internal
equivalences in Bicat.F ��op; Cat2/ by Proposition 4.16. Assume that

˛W j .Qj .C
.�// ı^/ '�! j .Kadj.†C //

is a pseudonatural equivalence in Bicat.F ��op; Cat2/. Since a pseudonatural equiva-
lence is an internal equivalence in Bicat.F ��op; Cat2/, we can apply Qj and get an
internal equivalence in ŒF ��op; Cat2�. This gives a zigzag

Qj .C
.�// ı^

"
 �Qj j .Qj .C

.�// ı^/
Qj .˛/
����!Qj j .Kadj.†C //

"
�!Kadj.†C /

in ŒF ��op; Cat2� in which the first and third arrows are levelwise equivalences as they
are internal equivalences in Bicat.F ��op; Cat2/, and the second arrow is a levelwise
equivalence as it is an internal equivalence (ie 2–equivalence) in ŒF ��op; Cat2�. It
only remains to construct an equivalence ˛ as above.

In order to construct the pseudonatural equivalence ˛ , first recall from Definition 5.16(2)
that

Kadj.†C /Dˆ�1
�
N ıQ..†C /.�//

�
;

where ˆ denotes the adjunction of Notation 5.3 and Q denotes the left adjoint con-
structed in Theorem 4.19. We define ˛ as the composite

j .Qj .C
.�// ı^/

D
�! jQj .C

.�// ı^

'
�!C .�/

ı^

'
�!ˆ�1.N ı .†C /.�//

'
�!ˆ�1

�
N ıJQ..†C /.�//

�
D
�! jˆ�1

�
N ıQ..†C /.�//

�
D
�! jKadj.†C /;

which we now explain. The equality giving the first arrow is a simple calculation.
The equivalence giving the second arrow is a pseudoinverse of the unit for Qj a j ,
whiskered by ^ and hence still an equivalence. The equivalence giving the third arrow
is the adjoint of the equality in Proposition 5.19. The equivalence giving the fourth
arrow is derived from the unit of Q a J which is itself an equivalence, so whiskering
with N and applying ˆ�1 still yields an equivalence. The equality giving the fifth
arrow follows from the commutativity of (5-4), and the equality giving the final arrow
is Definition 5.16(2).

Remark 5.22 The zigzag in Theorem 3.11 is natural up to homotopy. More precisely,
this zigzag consists of three maps, two of which are counits for the 2–adjunction Qj aj .
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It is easy to see that C 7! C .�/ sends symmetric, strong monoidal functors between
permutative categories to pseudonatural transformations between their corresponding
pseudofunctors F ! Cat2 , so a symmetric, strong monoidal functor F W C !D will
yield a 2–natural transformation

Qj .C
.�// ı^!Qj .D

.�// ı^:

The counit " is strictly natural with respect to such, so the first map in our zigzag
is strictly natural in symmetric, strong monoidal functors. A similar argument holds
for Kadj , so the third map in our zigzag is also strictly natural in symmetric, strong
monoidal functors. The second map is what is called Qj .˛/ in the proof above. It
is more involved, but a careful check reveals that each of the maps of which it is a
composite is pseudonatural in symmetric, strong monoidal functors, and so the same
will be true after applying Qj . Thus our zigzag is actually pseudonatural in the
variable C , which in particular implies that it is natural up to homotopy when viewed
as a zigzag of spectra.

Proof of Theorem 3.11 On one hand, the suspension of �–simplicial sets given in
Definition 5.5 models the stable suspension by Proposition 5.6. Recalling [56; 48],
the �–simplicial set KC DN ıQj .C

.�// from Definition 5.8 models the K–theory
spectrum of C . Its suspension as a �–simplicial set, †K.C /, is given by composing
the diagonal d with ˆ.K.C / ı^/. By naturality of ˆ in its target 2–category, this
is given by dN�ˆ.Qj .C

.�// ı ^/. By Lemma 5.10, a levelwise weak equivalence
of functors X;Y W F ��op ! Cat2 induces a levelwise weak equivalence between
dN�ˆ.X / and dN�ˆ.Y /. Therefore it suffices to examine Qj .C

.�// ı ^. On the
other hand, in Definition 5.16 we have the �–2–category K.†C / D Q..†C /.�//

and the related adjoint Kadj.†C / D ˆ�1.N ıK.†C //. Lemma 5.17 shows that
dN�ˆ.Kadj.†C // models the K–theory spectrum of †C . Finally, the result follows
by Theorem 5.21, which shows that there is a zigzag of levelwise equivalences between
Qj .C

.�// ı^ and Kadj.†C /.
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Links with finite n–quandles

JIM HOSTE

PATRICK D SHANAHAN

Associated to every oriented link L in the 3–sphere is its fundamental quandle and,
for each n > 1 , there is a certain quotient of the fundamental quandle called the
n–quandle of the link. We prove a conjecture of Przytycki which asserts that the n–
quandle of an oriented link L in the 3–sphere is finite if and only if the fundamental
group of the n–fold cyclic branched cover of the 3–sphere, branched over L , is
finite. We do this by extending into the setting of n–quandles, Joyce’s result that
the fundamental quandle of a knot is isomorphic to a quandle whose elements are
the cosets of the peripheral subgroup of the knot group. In addition to proving the
conjecture, this relationship allows us to use the well-known Todd–Coxeter process to
both enumerate the elements and find a multiplication table of a finite n–quandle of a
link. We conclude the paper by using Dunbar’s classification of spherical 3–orbifolds
to determine all links in the 3–sphere with a finite n–quandle for some n .

57M25; 57M27

1 Introduction

While the algebraic study of racks and quandles dates back to the early 1900s, Fenn and
Rourke in [5] credit Conway and Wraith with introducing the concepts in 1959 as an
algebraic approach to study knots and links in 3–manifolds. In the late 1900s, several
mathematicians began studying similar concepts under names such as kei, distributive
groupoids, crystals, and automorphic sets. In 1982, Joyce [10] published a ground-
breaking work which included introducing the term quandle, giving both topological
and algebraic descriptions of the fundamental quandle of a link, and proving that the
fundamental quandle of a knot is a complete invariant up to reversed mirror image.
Much of Joyce’s work was independently discovered by Matveev [11]. In this article,
we consider a quotient of the fundamental quandle of a link called the fundamental
n–quandle, defined for any natural number n. Whereas the quandle of a link is usually
infinite and somewhat intractable, there are many examples of knots and links for
which the n–quandle is finite for some n. In his PhD thesis, Winker [13] developed a
method to produce the analog of the Cayley diagram for a quandle. In addition, Winker
established a relationship between the n–quandle of the link L and the fundamental

Published: 19 September 2017 DOI: 10.2140/agt.2017.17.2807
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group of �Mn.L/, the n–fold cyclic branched cover of the 3–sphere, branched over L.
When combined with previous work of Joyce, this implied that if the n–quandle of
a link L is finite, then so is �1. �Mn.L//. Przytycki (private communication, 2013)
then conjectured that this condition is both necessary and sufficient, which we prove to
be true in this paper. Our proof involves first generalizing a key result of Joyce: the
cosets of the peripheral subgroup of a knot group can be given a quandle structure
making it isomorphic to the fundamental quandle of the knot. We extend this result to
the n–quandle of a knot, showing that it can also be viewed as the set of cosets of the
peripheral subgroup in a certain quotient of the knot group. This result allows Winker’s
diagramming method to be replaced by the well known Todd–Coxeter method of coset
enumeration.

We assume the reader is familiar with the theory of racks and quandles, but include
basic definitions for completeness. The reader is referred to Fenn and Rourke [5], Joyce
[10; 9], Matveev [11], and Winker [13] for more information. A quandle is a set Q

together with two binary operations B and B�1 which satisfies the following three
axioms:

(Q1) x B x D x for all x 2Q.

(Q2) .x B y/B�1 y D x D .x B�1 y/B y for all x;y 2Q.

(Q3) .x B y/B z D .x B z/B .y B z/ for all x;y; z 2Q.

A rack is more general, requiring only (Q2) and (Q3). It is important to note that, in
general, the quandle operations are not associative. In fact, using axioms (Q2) and (Q3)
it is easy to show that

(1) x B .y B z/D ..x B�1 z/B y/B z:

This property allows one to write any expression involving B and B�1 in a unique
left-associated form (see Winker [13]). Henceforth, expressions without parenthesis
are assumed to be left-associated.

Given a quandle Q, each element q 2Q defines a map SqW Q!Q by Sq.p/Dp B q .
It follows from axiom (Q2) that Sq is a bijection and S�1

q .p/ D p B�1 q . From
axiom (Q3), it follows that Sq is a quandle homomorphism. The automorphism Sq is
called the point symmetry at q and the set of all point symmetries generate the inner
automorphism group Inn.Q/. A quandle Q is algebraically connected if Inn.Q/ acts
transitively on Q. An algebraic component of Q is a maximal algebraically connected
subset of Q.

In [9], Joyce defines two functors from the category of groups to the category of quandles.
These functors and their adjoints will be of importance in this paper. The first, denoted

Algebraic & Geometric Topology, Volume 17 (2017)
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Conj, takes a group G to a quandle QDConj.G/ defined as the set G with operations
given by conjugation. Specifically, x B y D y�1xy and x B�1 y D yxy�1 . Its
adjoint, denoted Adconj takes the quandle Q to the group Adconj.Q/ generated by
the elements of Q and defined by the group presentation

Adconj.Q/D hxq for all q in Q j p B q D xq�1
xp xq for all p and q in Qi:

A quandle Q is called an n–quandle if each point symmetry Sq has order dividing n.
It is convenient to write x Bk y for Sk

y .x/, the k th power of Sy evaluated at x . Thus
Q is an n–quandle if for all x and y in Q, we have x Bn y D x . A second functor
from groups to n–quandles is defined for each natural number n and is denoted Qn .
Given a group G , the n–quandle Qn.G/ is the set

Qn.G/D fx 2G j xn
D 1g

again with the operations given by conjugation. The adjoint of this functor is AdQn . If
Q is any n–quandle, the group AdQn.Q/ is defined by the presentation

AdQn.Q/D hxq for all q in Q j xq n
D 1;p B q D xq�1

xp xq for all p and q in Qi:

Quandles may be presented in terms of generators and relators in much the same way
as groups. See [5] for a rigorous development of this topic. If the quandle Q is given
by the finite presentation

QD hq1; q2; : : : ; qi j r1; r2; : : : ; rj i;

then Winker proves in [13] that Adconj.Q/ and AdQn.Q/ can be finitely presented
as

(2) Adconj.Q/D hxq1; xq2; : : : ; xqi j xr1; xr2; : : : ; xrj i

and

(3) AdQn.Q/D hxq1; xq2; : : : ; xqi j xq
n
1 D 1; xq n

2 D 1; : : : ; xq n
i D 1; xr1; xr2; : : : ; xrj i:

Here, each quandle relation ri is an equation between two quandle elements each
expressed using the generators, the operations B and B�1 , and parenthesis to indicate
the order of operations. The associated group relation xri must now be formed in
a corresponding way using conjugation. For example, if r is the quandle relation
x D y B .z B�1 w/, then xr is the relation xx D xw xz�1 xw�1 xy xw xz xw�1 .

Associated to every oriented knot or link L in the 3–sphere S3 is its fundamental quan-
dle Q.L/ which is defined by means of a presentation derived from a regular diagram
D of L with a arcs and c crossings. First assign quandle generators x1;x2; : : : ;xa

to each arc of D . Next, introduce a relation r` at each crossing of D as shown in
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Figure 1. It is easy to check that the three axioms, (Q1), (Q2), and (Q3), are exactly
what is needed to prove that Q.L/ is preserved by Reidemeister moves and hence is
an invariant of the link. Passing from this presentation

Q.L/D hx1; : : : ;xa j r1; : : : ; rci

to a presentation for Adconj.Q.L// by using Winker’s formula (2), we obtain the
well-known Wirtinger presentation of �1.S

3�L/. Thus for any link L, �1.S
3�L/Š

Adconj.Q.L//.
xi

xj xk

Figure 1: The relation xi D xk B xj is associated to a crossing with arcs
labeled as shown.

Joyce proves in [10] that Q.L/ is a complete invariant of knots up to reverse mirror
image. A less sensitive, but presumably more tractable, invariant is the fundamental
n–quandle Qn.L/ which can be defined for each natural number n. If

Q.L/D hx1; : : : ;xa j r1; : : : ; rci

is the presentation of the fundamental quandle of L given by a diagram D and n

is a fixed natural number, then the fundamental n–quandle of L is defined to be the
quandle with presentation

Qn.L/D hx1; : : : ;xa j r1; : : : ; rc ; s1; : : : ; ski

where the relations s` are of the form xi Bn xj D xi for all distinct pairs of generators
xi and xj . As before, it is easy to check that Qn.L/ is an invariant of L and moreover
that it is an n–quandle. Passing from this presentation of Qn.L/ to a presentation for
AdQn.Qn.L// by using Winker’s formula (3), we see that AdQn.Qn.L// is a quotient
of Adconj.Q.L//. In particular, we may present AdQn.Qn.L// by starting with the
Wirtinger presentation of �1.S

3�L/ and then adjoining the relations xnD 1 for each
Wirtinger generator x . While the fundamental quandle of a nontrivial knot is always
infinite, the associated n–quandle is sometimes finite. Determining when this occurs is
the focus of this paper.

If L is a link of more than one component, then both Q.L/ and Qn.L/ are alge-
braically disconnected with one algebraic component Qi.L/ and Qi

n.L/, respectively,
corresponding to each component Ki of L.
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If K is a knot, let P be the peripheral subgroup of G D �1.S
3�K/ generated by the

meridian � and longitude � of K . In [10], Joyce defines a quandle structure on the
set of right cosets PnG by declaring Pg B˙1PhD Pgh�1�˙1h. He denotes this
quandle as .PnGI�/ and then proves that it is isomorphic to Q.K/. This is the key
step in Joyce’s proof that the quandle is a complete knot invariant up to reverse mirror
image. It also implies that the order of Q.K/ is the index of P in G and hence that
Q.K/ is infinite when K is nontrivial. The key result of this paper is the following
theorem which extends Joyce’s result to the case of Qn.L/.

Theorem 1.1 If L D fK1;K2; : : : ;Ksg is a link in S3 and Pi is the subgroup of
AdQn.Qn.L// generated by the meridian �i and longitude �i of Ki , then the quandle
.PinAdQn.Qn.L//I�i/ is isomorphic to the algebraic component Qi

n.L/ of Qn.L/.

Section 2 is devoted to proving Theorem 1.1. In Section 3 we use this result, as well
as a theorem of Joyce, to prove the conjecture of Przytycki stated in the Abstract.
Theorem 1.1 implies that the Todd–Coxeter process for coset enumeration can be
used to describe Qi

n.L/ provided it is finite. In Section 4 we describe this in greater
detail and give examples. In the last section, we enumerate all links that have finite
n–quandles for some n. In a separate set of papers, we plan to describe the n–quandles
of these links, thereby providing a tabulation of all finite quandles that appear as the
n–quandle of a link. The first of these papers is [7], where we describe the 2–quandle
of every Montesinos link of the form M.p1=2;p2=2;p=qI e/. The authors extend
their thanks to Daryl Cooper and Francis Bonahon for their assistance with Section 5.
The authors also thank the referee for helpful comments.

2 Relating Qn.L/ to cosets in AdQn.Qn.L//

To prove Theorem 1.1 we make use of topological descriptions of both the fundamental
quandle Q.L/ and the n–quandle Qn.L/. We begin by recalling Fenn and Rourke’s
formulation of Q.L/ given in [5] and then extend it to Qn.L/. (Their formulation is
actually for the rack associated to a framed link.) Let X D S3� VN .L/ be the exterior
of L and choose a basepoint b in X . Define T .L/ to be the set of all homotopy
classes of paths ˛W Œ0; 1�! X such that ˛.0/ D b and ˛.1/ 2 @X . Moreover, we
require that any homotopy be through a sequence of paths each of which starts at b

and ends at @X . Define the two binary operations, B and B�1 , on T .L/ by

(4) ˛ B˙1 ˇ D ˇm�1ˇ�1˛

where m is a meridian of L. Namely, m is a loop in @N.L/ that begins and ends at
ˇ.1/, is essential in @N.L/, is nullhomotopic in N.L/, and has linking number C1

Algebraic & Geometric Topology, Volume 17 (2017)
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with L. Thus the arc ˛ B ˇ is formed by starting at the basepoint b , going along ˇ
to @N.L/, traveling around m�1 , following ˇ�1 back to the base point, and finally
following ˛ to its endpoint in @N.L/. See Figure 2. Note that the algebraic component
T i.L/ corresponding to the i th component Ki of L consists of those paths ending at
@N.Ki/. The equivalence of Q.L/ and T .L/ is proven in [5]. A similar description
using “nooses” is given in [10]. In order to give a topological description of Qn.L/

we introduce the following definition.

β

α

β

m L

L
X∂

b
α

L

L
X∂

β

Figure 2: The topological definition of ˛ B ˇ

Definition 2.1 Suppose ˛ is a path in X with ˛.0/Db and ˛.1/2fbg[@X . Suppose
further that there exists t0 with 0� t0� 1 such that ˛.t0/2 @N.L/. Let �1.t/D˛.t t0/

and �2.t/D ˛..1� t/t0C t/. We say that the path �1m˙n�2 is obtained from ˛ by a
˙n–meridian move. Two paths are called n–meridionally equivalent if they are related
by a sequence of ˙n–meridian moves and homotopies.

We now define the n–quandle Tn.L/ as the set of n–meridional equivalence classes
of paths with the quandle operations defined by (4). Again, paths that end at @N.Ki/

give the algebraic component T i
n.L/ of Tn.L/.

Theorem 2.2 The n–quandles Qn.L/ and Tn.L/ are quandle-isomorphic.

Proof In [5], the topological and algebraic-presentation definitions of the rack of a
framed link are proven to be quandle isomorphic by constructing homomorphisms
f W T !Q and gW Q!T and then showing that both f ıg and gıf are the identity.
The same maps can be used to show that Tn.L/ and Qn.L/ are isomorphic. Rather
than repeating and extending Fenn and Rourke’s proof here, we simply enumerate the
differences from which the interested reader can easily fill in the details of the proof.
� In [5] homotopies in T allow the endpoint of a path to move around on the

chosen longitude of L given by the framing, while we allow homotopies in Tn

to move the endpoint around in @N.L/. For our maps to be well-defined, this
requires the idempotency axiom (Q1) which is not present in a rack.
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� In Tn we allow n–meridional moves that are not present in T . In order for our
maps to be well-defined this requires the addition of the corresponding relations
qi Bn qj D qi to Qn .

We are now prepared to prove Theorem 1.1.

Theorem 1.1 If L D fK1;K2; : : : ;Ksg is a link in S3 and Pi is the subgroup of
AdQn.Qn.L// generated by the meridian �i and longitude �i of Ki , then the quandle
.PinAdQn.Qn.L//I�i/ is isomorphic to the algebraic component Qi

n.L/ of Qn.L/.

Proof Suppose that L D fK1;K2; : : : ;Ksg. Without loss of generality, we shall
prove the theorem for the first component K1 . We begin by fixing some element
� 2Qn.L/ which we think of as a path from the basepoint b in X to @N.K1/. We
now define a map � W AdQn.Qn.L//!Qn.L/ by �.˛/D ˛�1� .

Claim 1 The map � is onto Q1
n.L/.

Proof Let � be a path representing any element of Q1
n.L/. Move � by a homotopy

until �.1/D �.1/ and let ˛ be the loop ˛D ���1 . Now �.˛/D ˛�1� D ���1� D � .

Let P� be the subgroup of AdQn.Qn.L// generated by the meridian �1 D �m��1

and longitude �1 D �`�
�1 of K1 .

Claim 2 ��1.�/D P� .

Proof Notice first that ��1.�/ is a subgroup of AdQn.Qn.L//. For suppose that
˛; ˇ 2 ��1.�/. Now �.˛ˇ�1/D ˇ˛�1� D ˇ� D � because ˛�1� D � and ˇ�1� D �

implies �Dˇ� . Thus to show that P� � �
�1.�/ we need only show that �; �2 ��1.�/.

But �.�/D��1�D .�`��1/�1�D �`�1��1�D �`�1D � because `� @X . Similarly,
� 2 ��1.�/.

Now suppose that ˛ 2 ��1.�/. This means that ˛�1� can be taken to � by a sequence
of n–meridian moves separated by homotopies. We illustrate the situation in Figure 3.
The first homotopy begins at ˛�1� and ends at the path �1�1 where �1.1/D �1.0/

is a point in @X . We then do an n–meridian move, replacing �1�1 with the path
�1m˙n�1 . This path is then homotopic to the path �2�2 and so on until finally the last
homotopy ends at � . For simplicity, the Figure illustrates the case of three homotopies
separated by two n–meridian moves. Notice that the “right edge” of the i th homotopy
defines a path in @N.K1/ which we call ˇi . These homotopies can be reparametrized
so that the polygonal paths indicated in each homotopy depict the new level sets.
The first homotopy can now be thought of as one between the loop ˛ and the loop
�ˇ1�

�1
1
��1

1
. We then perform an n–meridian move to this loop and continue through
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b β1

α νb

σ1 ρ1

b β2

σ1 ρ1

σ2 ρ2

mn

b β3

σ2 ρ1

ν

mn

Figure 3: Homotopies separated by n–meridian moves

the second homotopy, ending at the loop �ˇ1ˇ2�
�1
2
��1

2
. Eventually we arrive at the

loop �ˇ1ˇ2 : : : ˇk�
�1 , an element of P� . Thus ˛ represents an element of P� and

hence ��1.�/� P� .

Claim 3 Let �1 be the automorphism of AdQn.Qn.L// given by conjugation by �1 .
Then �1 fixes every element of P� .

Proof Suppose that �ˇ��1 2 P� . Now

�1.�ˇ�
�1/D ��1

1 �ˇ��1�1

D .�m��1/�1�ˇ��1.�m��1/

D �m�1ˇm��1

D �m�1mˇ��1

D �ˇ��1

because loops in @N.K1/ commute.

We can now turn the set of right cosets P�nAdQn.Qn.L// into a quandle, which we
denote as .P�nAdQn.Qn.L//I�1/ by defining

P�˛ B˙1P�ˇ D P��
˙1
1 .˛ˇ�1/ˇ(5)

D P��
�1
1
˛ˇ�1�˙1

1 ˇ

D P�˛ˇ
�1�˙1

1 ˇ

because �1 2 P� .

Claim 4 The quandle operations defined in (5) are well-defined.
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Proof Suppose that P�˛ D P�a and P�ˇ D P�b . Then

˛ˇ�1�˙1
1 ˇ.ab�1�˙1

1 b/�1
D ˛ˇ�1�˙1

1 ˇb�1�
�1
1

ba�1

D ˛ˇ�1ˇb�1ba�1

D ˛a�1
2 P�

because conjugation by �˙1
1

fixes ˇb�1 , an element of P� . Hence P�˛ B˙1P�ˇ D

P�a B˙1P�b .

Claim 5 The map � determines a quandle isomorphism from .P�nAdQn.Qn.L//I�1/

to Q1
n.L/.

Proof Define � W .P�nAdQn.Qn.L//I�/ ! Q1
n.L/ as �.P�˛/ D �.˛/. Because

��1.�/D P� , it follows easily that � is both well-defined and injective. Because � is
onto Q1.L/, we also have that � is onto Q1

n.L/. Thus � is a bijection. However, � is
also a quandle homomorphism because

�.P�˛ B P�ˇ/D �.P�˛ˇ
�1��1

1 ˇ/

D �.˛ˇ�1��1
1 ˇ/

D ˇ�1��1
1 ˇ˛�1�

D .ˇ�1�/m�1.ˇ�1�/�1.˛�1�/

D �.˛/B �.ˇ/

D �.P�˛/B �.P�ˇ/:

This completes the proof of Theorem 1.1.

3 Przytycki’s conjecture

In this section we prove the conjecture of Przytycki stated in the abstract.

Theorem 3.1 Let L be an oriented link in S3 and let �Mn.L/ be the n–fold cyclic
branched cover of S3 , branched over L. Then Qn.L/ is finite, if and only if
�1. �Mn.L// is finite.

Before giving the proof of Theorem 3.1, we point out the relationship between
�1. �Mn.L// and a certain subgroup of AdQn.Qn.L//. The reader is referred to [13]
for more details. If Mn.L/ is the n–fold cyclic cover of S3�L, then �1.Mn.L// is
isomorphic to the subgroup E0 of �1.S

3�L/Š Adconj.Q.L// consisting of those
loops in S3 �L that lift to loops in the cover. Equivalently, E0 consists of loops
having total linking number zero with L, that is, those loops ˛ such that the sum
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of the linking numbers of ˛ with each component of L is zero. The subgroup E0

can also be described as those elements of �1.S
3�L/ which, when written as words

in the Wirtinger generators, have total exponent sum equal to zero. This concept is
well-defined, and defines a subgroup, because each of the relators in the Wirtinger
presentation has total exponent sum equal to zero. This last description extends to the
quotient group AdQn.Qn.L//. Let E0

n be the subgroup of AdQn.Qn.L// consisting
of all elements with total exponent sum equal to zero modulo n. In order to obtain
the fundamental group of the cyclic branched cover we must algebraically kill the nth

power of each Wirtinger generator in E0 , hence,

(6) �1. �Mn.L//ŠE0
n :

Notice further, that the index of E0
n in AdQn.Qn.L// is n.

One direction of Theorem 3.1 follows from work that appears in the PhD thesis of
Joyce [9]. For completeness, and because this result does not appear in Joyce’s paper
[10], we reproduce his proof here (with some modification).

Theorem 3.2 (Joyce) If Qn is any finite n–quandle, then jAdQn.Qn/j � njQnj and
hence AdQn.Qn/ is finite.

Proof Suppose that Qn is a finite n–quandle with elements fq1; q2; : : : ; qkg. Now
AdQn.Qn/ is generated by the ordered set of elements xq1; xq2; : : : ; xqk so that every
element in AdQn.Qn/ is a word in these generators and their inverses.

Claim 1 If w D xq �1

i1
xq
�2

i2
� � � xq

�m

im
, where each exponent is ˙1, then we may rewrite w

as w D xq �1

j1
xq
�2

j2
� � � xq

�m

jm
, where each exponent is ˙1, j1 D min.j1; j2; : : : ; jm/ and

j1 �min.i1; i2; : : : ; im/.

Proof Suppose xq �k

ik
is the first occurrence of the generator with smallest index and

that k > 1. Now qik�1
B�k qik

D qt for some t and so xq �k�1

ik�1
xq
�k

ik
D xq

�k

ik
xq
�k�1

t . If
we replace xq �k�1

ik�1
xq
�k

ik
with xq �k

ik
xq
�k�1

t in w , then either the first occurrence of the
generator with smallest index has moved one place closer to the beginning of w , or a
new generator of smaller index was introduced if t < ik . Hence, after a finite number
of steps of this kind, the first generator of w will have the smallest index and it will be
no greater than any of the indices in the original word.

Claim 2 If w D xq �1

i1
xq
�2

i2
� � � xq

�m

im
, where each exponent is ˙1, then we may rewrite w

as w D xq �1

j1
xq
�2

j2
� � � xq

�m

jm
, where each exponent is ˙1 and j1 � j2 � � � � � jm .

Proof We proceed by induction on m. The case with mD 2 is a direct consequence
of Claim 1. Assume now that the result is true for words of length m and suppose that
w D xq

�1

i1
xq
�2

i2
� � � xq

�mC1

imC1
. Applying the inductive hypothesis to the last m generators
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of w , we may assume that i2 � i3 � � � � � imC1 . If i1 � i2 , we are done. If not,
apply Claim 1 to w , which will strictly decrease the index of the first generator in w ,
and then again apply the inductive hypothesis to the last m generators. This cannot
continue forever because the index of the first generator in w cannot decrease below 1.

We may now write any word in AdQn.Qn/ as xq r1

1
xq

r2

2
� � � xq

rk

k
and, using the fact that

xq n
i D 1, we may assume that 0 � ri < n for each i . There are at most nk D njQnj

words of this kind.

Proof of Theorem 3.1 Suppose L is an oriented link and Qn.L/ is finite. By
Theorem 3.2, it follows that AdQn.Qn.L// is finite. Hence the subgroup E0

n of
AdQn.Qn.L// is finite and so �1. �Mn.L// is finite by (6).

Now suppose that �1. �Mn.L// is finite. Because E0
n has finite index in AdQn.Qn.L//,

it follows that AdQn.Qn.L// is finite. Hence, for each component Ki of L, the set
of cosets PinAdQn.Qn.L// is finite and therefore, by Theorem 1.1, each algebraic
component Qi

n.L/ of Qn.L/ is finite.

4 Examples

From the proof of Theorem 3.1, all information about the knot invariant Qn.L/ is
encoded by the cosets of the subgroups Pi in the group AdQn.Qn.L//. For example,
if Qn.L/ is finite, then

jQn.L/j D

sX
iD1

ŒAdQn.Qn.L// W Pi �:

Algorithmically computing the index of Pi in the group AdQn.Qn.L// from a pre-
sentation of the group is a well-known problem in computational group theory. The
first process to accomplish this task was introduced by Todd and Coxeter in 1936
[3] and is now a fundamental method in computational group theory. In addition to
determining the index (if it is finite), the Todd–Coxeter process also provides a Cayley
diagram that represents the action of right-multiplication on the cosets. In this section
we will apply the Todd–Coxeter process to several examples and determine the quandle
multiplication table from the Cayley diagram of the cosets. More detailed treatments
of the Todd–Coxeter process can be found in [6] and [8].

Consider the right-hand trefoil knot K and fix nD 3. From the Wirtinger presentation
we obtain the presentation

AdQ3.Q3.K//D hx;y j x
3
D 1;y3

D 1;x�1y�1xyxy�1
D 1i:
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A meridian for K is � D x and a (nonpreferred) longitude is � D yxxy . The
Todd–Coxeter process produces a coset table whose rows are numbered by indices
˛ 2 f1; 2; : : : ; �g that represent cosets of P . The columns are labeled by the generators
and their inverses and encode the action of AdQ3.Q3.K// on the cosets by right-
multiplication. An additional column will be added to give a representative �.˛/ 2
AdQ3.Q3.K// of coset ˛ .

We initialize the coset table by letting 1 represent the trivial coset P , thus �.1/D e is
a representative of this coset (we use e here for the identity element of AdQ3.Q3.K//

to avoid confusion). Since �D x 2 P , we have Px D P , this information is encoded
in a helper table where P is represented by index 1 and is encoded in the coset table
as a relation 1x D 1. Of course, it follows from this that 1x�1 D 1 as well, so there
are two defined entries in row 1 of the coset table:

x y x�1 y�1 �

1 1 1 e

x

1 1

Since �D yxxy 2P we also produce a helper table to encode 1yxxyD 1. Additional
entries in the table are required to represent the cosets 1y , 1yx , and 1yxx . These
entries are defined by adding indices 2, 3, and 4, respectively, and adding additional
information to the coset table for these indices coming from the helper table. For
example, 2 is defined to be the coset 1y and, thus, 1y D 2 and 2y�1 D 1 are encoded
in the coset table. At this point a deduction also occurs. Since 1yxxy D 1, we see in
the helper table that 4y D 1:

x y x�1 y�1 �

1 1 2 1 4 e

2 3 1 y

3 4 2 yx

4 1 3 yx2

y x x y

1 2 3 4 1

This completes the initial set up of the coset table and is referred to as scanning
the generators of P . The Todd–Coxeter process next proceeds to scan the relations
of AdQ3.Q3.K// for all indices. This encodes the fact that if ˛ is any coset and
w D e 2 AdQ3.Q3.K//, then ˛w D ˛ in the coset table since P�.˛/w D P�.˛/ in
AdQ3.Q3.K//. We scan the three relations x3D e , y3D e , and x�1y�1xyxy�1D e ,
in this order, for each index, defining new indices and obtaining new deductions along
the way.

Scanning x3 for ˛D1 gives no new information. Scanning y3 gives no new definitions
but does produce the deduction 2y D 4 and scanning x�1y�1xyxy�1 defines the
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indices 5 and 6 as shown in the coset tables below:

x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 1 y

3 4 2 yx

4 1 3 2 yx2

y y y

1 2 4 1

x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 6 1 y

3 4 2 yx

4 5 1 3 2 yx2

5 6 4 yx3

6 2 5 yx3y

x�1 y�1 x y x y�1

1 1 4 5 6 2 1

At this point we see that the representative for coset 5 is �.5/D yx3 . Since x3 D e

in the group �.5/D yx3 D y D �.2/ and so the cosets 5 and 2 are the same. This
information is determined by a coincidence which occurs when scanning x3 for ˛D 2.
Filling in the entries of the helper table from left to right, 2x D 3, 3x D 4, 4x D 5.
However we require 2xxx D 2 thus we see that 5D 2. In the coset table we process
this coincidence by replacing all values of 5 with 2, merging the data from row 5

into row 2, and then deleting row 5. In merging the data from 5 to 2 we see a new
coincidence, namely 6 D 4 and so we repeat the coincidence procedure for 6 D 4

before moving on to the next scan:

x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 664 1 y

3 4 2 yx

4 652 1 3 2 yx2

65 66 64 yx3

66 62 65 62 yx3y

x x x

2 3 4 5D 2

Scanning x�1y�1xyxy�1 for ˛D 2 completes the table. The process terminates after
the table is complete and all relations have been scanned for all indices. In our example,
no additional coincidences occur and the completed table is shown in Table 1.

It is important to note that the operation encoded by the coset table is that of right-
multiplication. It is not the operations of B˙1 in the quandle PnAdQ3.Q3.K//. The
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x y x�1 y�1 �

1 1 2 1 4 e

2 3 4 4 1 y

3 4 3 2 3 yx

4 2 1 3 2 yx2

Table 1: Completed coset table for PnAdQ3.Q3.K// , where K is the trefoil knot

B P Py Pyx Pyx2

P P Pyx2 Py Pyx

Py Pyx Py Pyx2 P

Pyx Pyx2 P Pyx Py

Pyx2 Py Pyx P Pyx2

Table 2: The multiplication table for Q3.K/ , where K is the trefoil knot

n jP j jQn.K/j jAdQn.Qn.K//j j�1. �Mn.K//j

2 2 3 6 3
3 6 4 24 8
4 16 6 96 24
5 50 12 600 120

Table 3: The order of AdQn.Qn.K// and index of P for the right-handed trefoil

multiplication table for the quandle can be easily worked out, however, from the coset
table and the definition of the operations Pg B˙1PhD Pgh�1x˙1h since �D x .
From the completed coset table, the quandle Q3.K/ has four elements P , Py , Pyx ,
and Pyx2 . So, for example, Py BPyxDPyx�1y�1xyx . This coset is represented
by 1yx�1y�1xyx D 4 in the coset table. Therefore, Py BPyx D Pyx2 . The full
multiplication table for Q3.K/ is given in Table 2.

Applying the Todd–Coxeter method in the case of the trefoil for nD 2; 3; 4; 5, enu-
merating the cosets of both the trivial subgroup as well as P D h�; �i, we obtain the
data in Table 3. These calculations agree with the well known fact that �1. �Mn.K//

for the trefoil with nD 2; 3; 4, or 5 is, respectively, the cyclic group of order 3, the
quaternion group of order 8, the binary tetrahedral group of order 24, and the binary
icosahedral group of order 120. See [12].

As another example, consider the .2; 2; 3/–pretzel link L and fix nD 2. Starting with
the standard pretzel diagram with Wirtinger generators x;y; z , we obtain the following
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presentation of AdQ2.Q2.L//:˝
x;y; z j x�1z�1xzxy�1x�1y D 1; y�1x�1yxyzyz�1y�1z�1

D 1;

y�1x�1yxyzyz�1y�1x�1y�1xyx�1z�1z D 1; x2
D 1; y2

D 1; z2
D 1

˛
:

The link L has two components and subgroups generated by a meridian and longitude
of each component are P1Dhx;x

�1zxy�1i and P2Dhy;y
�1x�1yzyz�1xzyzy�1i.

Applying the Todd–Coxeter process for each of these subgroups gives

jQ2.L/j D ŒAdQ2.Q2.L// W P1�C ŒAdQ2.Q2.L// W P2�D 8C 24D 32:

These calculations agree with Theorem 1.1 of [7] where it is shown using Winker’s dia-
gramming method [13] that if L is the Montesinos link of the form .1=2; 1=2;p=qI e/,
then jQ2.L/jD 2.qC1/j.e�1/q�pj. For the .2; 2; 3/–pretzel link L we have pD 1,
q D 3, and e D 0.

5 Links with finite n–quandles

The set of links which have a finite n–quandle for some n can be derived from
Thurston’s geometrization theorem. To see this, let L be a link and n> 1 an integer
such that Qn.L/ is finite. By Theorem 3.1, we have that �1. �Mn.L// is finite. Define
O.L; n/ to be the 3–orbifold with underlying space S3 and singular locus L where
each component of L is labeled n. (Both [1] and [2] are excellent references for
orbifolds.) We now have a manifold covering of the orbifold, pW �Mn.L/!O.L; n/,
and the covering map p induces a homomorphism p�W �1. �Mn.L//! �orb

1
.O.L; n//

for which the index of p�.�1. �Mn.L/// in �orb
1
.O.L; n// is the branch index n. Since

�1. �Mn.L// is finite, it follows that �orb
1
.O.L; n// is finite. In addition, the universal

orbifold cover of O.L; n/ is a simply connected manifold (equal to the universal cover
of �Mn.L/) and, since �orb

1
.O.L; n// is finite, the universal cover is also compact. Now

Thurston’s geometrization theorem asserts that the only compact, simply connected 3–
manifold is S3 . Therefore, O.L; n/ is a spherical 3–orbifold. In [4], Dunbar classifies
all geometric, nonhyperbolic 3–orbifolds. The following, obtained from Dunbar, is
the complete list of all spherical 3–orbifolds with underlying space S3 and singular
locus L with each component labeled n. Therefore, it also represents the list of all
links in S3 with finite Qn.L/ for some n.

In Table 4, we list the links as they appear in [4]. A box labeled k denotes k left-handed
half twists between the two strands and a box labeled m=n denotes the m=n rational
tangle with �n=2�m� n=2 and m¤ 0. See [4] for a detailed explanation.
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k

n>1 k¤0; nD2 nD3;4;5

nD3 nD2 nD2

k

nD3 nD2 k¤0; nD2

p
1
/q p

2
/q

k k

p/q

k

p
1
/2 p

2
/2 p

3 3
/q

kCp1=qCp2=q¤0; nD2 nD2 kCp1=2Cp2=2Cp3=q3¤0; nD2

k

p
1
/2 p

2
/3 p

3
/3

k

p
1
/2 p

2
/3 p

3
/4

k

p
1
/2 p

2
/3 p

3
/5

kCp1=2Cp2=3Cp3=3¤0; nD2 kCp1=2Cp2=3Cp3=4¤0; nD2 kCp1=2Cp2=3Cp3=5¤0; nD2

Table 4: Links L� S3 with finite Qn.L/
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Vanishing of L2–Betti numbers and failure of
acylindrical hyperbolicity of matrix groups over rings

FENG JI

SHENGKUI YE

Let R be an infinite commutative ring with identity and n� 2 an integer. We prove
that for each integer i D 0; 1; : : : ; n � 2 , the L2 –Betti number b

.2/
i .G/ vanishes

when G is the general linear group GLn.R/ , the special linear group SLn.R/ or the
group En.R/ generated by elementary matrices. When R is an infinite principal
ideal domain, similar results are obtained when G is the symplectic group Sp2n.R/ ,
the elementary symplectic group ESp2n.R/ , the split orthogonal group O.n; n/.R/

or the elementary orthogonal group EO.n; n/.R/ . Furthermore, we prove that G is
not acylindrically hyperbolic if n � 4 . We also prove similar results for a class of
noncommutative rings. The proofs are based on a notion of n–rigid rings.

20F65

1 Introduction

In this article, we study the s–normality of subgroups of matrix groups over rings
together with two applications. Firstly, the low-dimensional L2–Betti numbers of
matrix groups are proved to be zero. Secondly, the matrix groups are proved to be
not acylindrically hyperbolic in the sense of Dahmani, Guirardel and Osin [6] and
Osin [17]. Let us briefly review the relevant background.

Let G be a discrete group. Denote by

l2.G/D

�
f W G!C

ˇ̌̌ X
g2G

kf .g/k2 <C1

�
the Hilbert space with inner product hf1; f2i D

P
x2G f1.x/f2.x/. Let B.l2.G// be

the set of all bounded linear operators on the Hilbert space l2.G/. By definition, the
group von Neumann algebra NG is the completion of the complex group ring CŒG�
in B.l2.G// with respect to the weak operator topology. There is a continuous,
additive von Neumann dimension that assigns to every right NG–module M a value
dimNG.M / 2 Œ0;1�; see Definition 6.20 of Lück [14]. For a group G , let EG be
the universal covering space of its classifying space BG. Denote by C sing

� .EG/ the
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singular chain complex of EG with the induced ZG–structure. The L2–homology is
the singular homology H G

i .EGING/ with coefficients in NG , ie the homology of the
NG–chain complex NG˝ZG C sing

� .EG/. The i th L2–Betti number of G is defined by

b
.2/
i .G/ WD dimNG.H

G
i .EGING// 2 Œ0;1�:

The L2–homology and L2–Betti numbers are important invariants of spaces and groups.
They have many applications to geometry and K–theory. For more details, see [14].

It has been proved that the L2–Betti numbers are (almost) zero for several classes of
groups including amenable groups, Thompson’s group (see [14, Theorem 7.20]), the
Baumslag–Solitar group (see Bader, Furman and Sauer [1] and Dicks and Linnell [7]),
the mapping class group of a closed surface with genus g � 2 except b

.2/
3g�3

(see
Kida [12], Corollary D.15) and so on; for more information, see [14, Chapter 7]. Let R

be an associative ring with identity and n � 2 an integer. The general linear group
GLn.R/ is the group of all n�n invertible matrices with entries in R. For an element
r 2R and any integers i; j such that 1� i ¤ j � n, denote by eij .r/ the elementary
n� n matrix with ones in the diagonal positions, r in the .i; j /th position and zeros
elsewhere. The group En.R/ is generated by all such eij .r/, ie

En.R/D heij .r/ j 1� i ¤ j � n; r 2Ri:

When R is commutative, we define the special linear group SLn.R/ as the subgroup of
GLn.R/ consisting of matrices with determinant 1. For example, in the case RD Z,
the integers, we have that SLn.Z/ D En.R/. The groups GLn.R/ and En.R/ are
important in algebraic K–theory.

In this article, we prove the vanishing of lower L2–Betti numbers for matrix groups over
a large class of rings, including all infinite commutative rings. For this, we introduce
the notion of n–rigid rings; for details, see Definition 3.1. Examples of n–rigid (for
any n� 1) rings contain the following (see Section 3):

� infinite integral domains;
� Z–torsion-free infinite noetherian rings (may be noncommutative);
� infinite commutative noetherian rings (moreover, any infinite commutative ring

is 2–rigid);
� finite-dimensional algebras over n–rigid rings.

We prove the following results.

Theorem 1.1 Suppose n� 2. Let R be an infinite .n�1/–rigid ring and En.R/ the
group generated by elementary matrices. For each i 2 f0; : : : ; n� 2g, the L2–Betti
number b

.2/
i .En.R// vanishes.
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Since b
.2/
1
.E2.Z//¤ 0, this result does not hold for i D n� 1 in general.

Corollary 1.2 Let R be any infinite commutative ring and n � 2. For each i 2

f0; : : : ; n� 2g, the following L2–Betti numbers vanish:

b
.2/
i .GLn.R//D b

.2/
i .SLn.R//D b

.2/
i .En.R//D 0:

Let SLn.R/ be a lattice in a semisimple Lie group, eg when RD Z or a subring of
algebraic integers. It follows from results of Borel, which rely on global analysis on
the associated symmetric space, that the L2–Betti numbers of SLn.R/ vanish except
possibly in the middle dimension of the symmetric space; see Borel [5] and Olbrich [16].
In particular, all the L2–Betti numbers of SLn.Z/ .n� 3/ are zero; see Eckmann [8,
Example 2.5]. For any infinite integral domain R and any i 2 f0; : : : ; n�2g, Bader, Fur-
man and Sauer [1] prove that the L2–Betti number b

.2/
i .SLn.R// vanishes. Ershov and

Jaikin-Zapirain [9] prove that the noncommutative universal lattice En.Zhx1; : : : ;xki/

(and therefore En.R/ for any finitely generated associative ring R) has Kazhdan’s
property (T) for n� 3. This implies that for any finitely generated associative ring R,
the first L2–Betti number of En.R/ vanishes; see Bekka and Valette [4].

We consider more matrix groups as follows. Let R be a commutative ring with identity.
The symplectic group and the split orthogonal group are defined as

Sp2n.R/DfA2GL2n.R/ jA
T'nAD'ng; O.n; n/.R/DfA2GL2n.R/ jA

T nAD ng;

where AT is the transpose of A and

'n D

�
0 In

�In 0

�
;  n D

�
0 In

In 0

�
:

For symplectic and orthogonal groups, we obtain the following.

Theorem 1.3 Let R be an infinite principal ideal domain (PID ), Sp2n.R/ the sym-
plectic group with its elementary subgroup ESp2n.R/, and O.n; n/.R/ the orthogonal
group with its elementary subgroup EO.n; n/.R/. We have the following.

(i) For each i D 0; : : : ; n� 2 .n� 2/, the following L2–Betti numbers vanish:

b
.2/
i .Sp2n.R//D b

.2/
i .ESp2n.R//D 0:

(ii) For each i D 0; : : : ; n� 2 .n� 2/, the following L2–Betti numbers vanish:

b
.2/
i .O.n; n/.R//D b

.2/
i .EO.n; n/.R//D 0:

The proofs of Theorem 1.1 and Theorem 1.3 are based on a study of the notion of weak
normality of particular subgroups in matrix groups, introduced in [1] and by Peterson
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and Thom [18]. We present another application of the weak normality of subgroups in
matrix groups as follows.

Acylindrically hyperbolic groups are defined by Dahmani, Guirardel and Osin [6] and
Osin [17]. Let G be a group. An isometric G–action on a metric space S is said
to be acylindrical if for every " > 0, there exist R;N > 0 such that for every two
points x;y 2 S with d.x;y/�R, there are at most N elements g 2G which satisfy
d.x;gx/� " and d.y;gy/� ". A G–action by isometries on a hyperbolic geodesic
space S is said to be elementary if the limit set of G on the Gromov boundary @S
contains at most two points. A group G is called acylindrically hyperbolic if G admits
a nonelementary acylindrical action by isometries on a (Gromov-ı ) hyperbolic geodesic
space. The class of acylindrically hyperbolic groups includes nonelementary hyperbolic
and relatively hyperbolic groups, mapping class groups of closed surface †g of genus
g � 1, outer automorphism groups Out.Fn/ .n� 2/ of free groups, directly indecom-
posable right angled Artin groups, 1–relator groups with at least three generators, most
3–manifold groups, and many other examples.

Although there are many analogies among matrix groups, mapping class groups and
outer automorphism groups of free groups, we prove that they are different on acylin-
drical hyperbolicity, as follows.

Theorem 1.4 Suppose that n is an integer.

(i) Let R be a 2–rigid (eg commutative) ring. The group En.R/ .n � 3/ is not
acylindrically hyperbolic.

(ii) Let R be a commutative ring. The group G is not acylindrically hyperbolic if
G D GLn.R/ .n � 3/ the general linear group, SLn.R/ .n � 3/ the special
linear group, Sp2n.R/ .n � 2/ the symplectic group, ESp2n.R/ .n � 2/ the
elementary symplectic group, O.n; n/.R/ .n � 4/ the orthogonal group, or
EO.n; n/.R/ .n� 4/ the elementary orthogonal group.

When R is commutative, the failure of acylindrical hyperbolicity of the elementary
groups En.R/, ESp2n.R/ and EO.n; n/.R/ is already known to Mimura [15] by
studying property TT for weakly mixing representations. But our approach is different
and Theorem 1.4 is more general, even for elementary subgroups. Explicitly, for
noncommutative rings, we have the following.

Corollary 1.5 Let R be a noncommutative Z–torsion-free infinite noetherian ring, an
integral group ring over a polycyclic-by-finite group or a finite-dimensional algebra
over either. For each nonnegative integer i � n� 2, we have

b
.2/
i .En.R//D 0:

Furthermore, the group En.R/ .n� 3/ is not acylindrically hyperbolic.
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2 s–normality

Recall from [1] that the n–step s–normality is defined as follows.

Definition 2.1 Let n� 1 be an integer. A subgroup H of a group G is called n–step
s–normal if for any .nC1/–tuple ! D .g0;g1; : : : ;gn/ 2GnC1 , the intersection

H!
WD

n\
iD0

giHg�1
i

is infinite. A 1–step s–normal group is simply called s–normal.

The following result is proved by Bader, Furman and Sauer; see [1, Theorem 1.3].

Lemma 2.2 Let H be a subgroup of G . Assume that

b
.2/
i .H!/D 0

for all integers i; k � 0 with i C k � n and every ! 2 GkC1 . In particular, H is an
n–step s–normal subgroup of G . Then for every i 2 f0; : : : ; ng,

b
.2/
i .G/D 0:

The following result is important for our later arguments; see [14, Theorem 7.2, (1-2),
page 294].

Lemma 2.3 Let n be any nonnegative integer. Then:

(i) For any infinite amenable group G , the L2–Betti numbers b
.2/
n .G/ vanish.

(ii) Let H be a normal subgroup of a group G with vanishing b
.2/
i .H / for each

i 2 f0; 1; : : : ; ng. Then for each i 2 f0; 1; : : : ; ng, we have b
.2/
i .G/D 0.

We will also need the following fact; see [17, Corollaries 1.5, 7.3].

Lemma 2.4 The class of acylindrically hyperbolic groups is closed under taking
s–normal subgroups. Furthermore, acylindrically hyperbolic groups have finite center.

3 Rigidity of rings

We introduce the notion of n–rigidity of rings. For a ring R, all R–modules are right
modules and homomorphisms are right R–module homomorphisms.
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Definition 3.1 For a positive integer n, an infinite ring R is called n–rigid if every
R–homomorphism Rn!Rn�1 of free modules has an infinite kernel.

A related concept is the strong rank condition: a ring R satisfies the strong rank
condition if there is no injection Rn!Rn�1 for any n; see Lam [13, page 12]. Clearly,
n–rigidity for any n implies the strong rank condition for a ring. Fixing the standard
basis of both Rn and Rn�1 , the kernel of an R–homomorphism �W Rn ! Rn�1

corresponds to a system S of n� 1 linear equations with n unknowns over R:

S W
X

1�i�n

aij xi D 0; 1� j � n� 1;

with aij 2R, 1� i �n, 1� j �n�1. Therefore, the strong rank condition asserts that
the system S has nontrivial solutions over R, while the n–rigidity property requires
that S has infinitely many solutions.

Many rings are n–rigid. For example, infinite integral rings are n–rigid for any n by
considering the dimensions over quotient fields. Moreover, let A be a ring satisfying
the strong rank condition (eg a noetherian ring, see Theorem 3.15 of [13]). Suppose
that A is a torsion-free Z–module, where Z acts on A via Z � 1A . Since the kernel
An!An�1 is a nontrivial Z–module, the ring A is n–rigid for any n.

We present several basic facts on n–rigid rings as follows.

Lemma 3.2 n–rigidity implies .n�1/–rigidity.

Proof For any R–homomorphism f W Rn�1!Rn�2 , we could add a copy of R as
direct summand to get a map f ˚ idW Rn�1˚R!Rn�2˚R. The two maps have
the same kernel.

Lemma 3.3 Let R be an n–rigid ring for any n � 1. Suppose that an associative
ring A is a finite-dimensional R–algebra (ie A is a free R–module of finite rank with
compatible multiplications in A and R). Then A is n–rigid for any n� 1.

Proof Let f W An ! An�1 be an A–homomorphism. If we view A as a finite-
dimensional R–module, we see that f is also an R–homomorphism. Embed the target
An�1 into Rn�rankR.A/�1 . The kernel kerf is infinite by the assumption that R is
n � rankR.A/–rigid.

Proposition 3.4 Let R be an n–rigid ring and let u1;u2; : : : ;un�1 2Rm .m� n/ be
arbitrary n� 1 elements. Then the set

f� 2 HomR.R
m;R/ j �.ui/D 0; i D 1; 2; : : : ; n� 1g

is infinite.
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Proof When mD n, we define an R–homomorphism

HomR.R
n;R/!Rn�1; f 7! .f .u1/; f .u2/; : : : ; f .un�1//:

Since HomR.R
n;R/ is isomorphic to Rn , such an R–homomorphism has an infinite

kernel. When m> n, we may project Rm to its last n–components and apply a similar
proof.

Lemma 3.5 An infinite commutative ring R is 2–rigid.

Proof Let f W R2!R be any R–homomorphism, and let

I D hxRCyR j .x;y/ 2 kerf iE R:

Suppose that kerf is finite. When .x;y/ 2 kerf , the set xR and yR are also finite.
Thus I is finite. Let aD f ..1; 0// and b D f ..0; 1//. Note that .�b; a/ 2 kerf . For
any .x;y/ 2R2 , we have axC by 2 I . Since the set of right cosets R=I is infinite,
we may choose .x;x/ and .y;y/ with x;y from distinct cosets such that

axC bx D ayC by:

However, .x�y;x�y/ 2 kerf , and thus x�y 2 I . This is a contradiction.

To state our result in the most general form, we introduce the following notion.

Definition 3.6 A ring R is called size-balanced if any finite right ideal of R generates
a finite two-sided ideal of R.

It is immediate that any commutative ring is size-balanced.

Proposition 3.7 A size-balanced infinite noetherian ring is n–rigid for any n.

Proof Let f W Rn!Rn�1 be any R–homomorphism. Let AD .aij /.n�1/�n be the
matrix representation of f with respect to the standard basis, and let

I 0 D hx1RCx2RC � � �CxnR j .x1;x2; : : : ;xn/ 2 kerf iE R:

First we notice that I 0 is nontrivial by the strong rank condition of noetherian rings;
see Theorem 3.15 of [13]. Suppose that kerf is finite. For any

.x1;x2; : : : ;xn/ 2 kerf

and r 2R, each .x1r;x2r; : : : ;xnr/ 2 kerf . As kerf is finite, each right ideal xiR

is finite, and hence so is I 0. Let I be the two-sided ideal generated by the finite right
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ideal I 0. It is finite as R is assumed to be size-balanced. Therefore, the quotient ring
R=I is infinite and noetherian.

Let xf W R=I !R=I be the R=I–homomorphism induced by the matrix xAD .xaij /,
where xaij is the image of aij . If .xx1; xx2; : : : ; xxn/ 2 ker xf and xi is any preimage
of xxi , we have

A.x1;x2; : : : ;xn/
T
2 In�1:

As I is finite, so is In�1 . If ker xf is infinite, there are two distinct elements in ker xf
with preimage .x1;x2; : : : ;xn/ and .y1;y2; : : : ;yn/ in Rn such that

A.x1;x2; : : : ;xn/
T
DA.y1;y2; : : : ;yn/

T
2 In�1:

However, this implies that

.x1;x2; : : : ;xn/� .y1;y2; : : : ;yn/ 2 kerf:

We have a contradiction as .x1;x2; : : : ;xn/ and .y1;y2; : : : ;yn/ are distinct in .R=I/n.
Therefore, ker xf is finite. Moreover, ker xf is nontrivial by the strong rank condition
of noetherian rings. Let I 0

1
be the preimage of the right ideal generated by components

of elements in ker xf in R, which is a finite right ideal by a similar argument as above.
It generates a finite two-sided ideal I1 of R, and it properly contains I .

Repeating the argument, we get an infinite ascending sequence

I ˆ I1 ˆ I2 ˆ � � �

of finite ideals of R. This is a contradiction to the assumption that R is noetherian.

Corollary 3.8 Any commutative ring R containing an infinite noetherian subring is
n–rigid for each n.

Proof Let R0 be an infinite noetherian subring of R. Let

S W
X

1�i�n

aij xi D 0; 1� j �m

be a system of linear equations with aij 2R. Form the infinite commutative subring
R0 DR0Œaij ; 1� i � n; 1� j �m� of R. By the Hilbert basis theorem, R0 is infinite
noetherian. Proposition 3.7 asserts that the system S has infinitely many solutions
in R0 , and hence in R.

Example 3.9 Let G be a polycyclic-by-finite group and R D ZŒG� be its integral
group ring. It is known that R is infinite noetherian [11]. Moreover, R is size-balanced
by the trivial reason that there are no nontrivial finite right ideals. According to
Proposition 3.7, the ring R is n–rigid for any n.
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Example 3.10 Let F be a nonabelian free group and ZŒF � the group ring. Since
ZŒF � does not satisfy the strong rank condition [13, Exercise 29, page 21], the ring
ZŒF � is not n–rigid for any n� 2.

4 Proofs

Let

QD

��
1 x

0 A

� ˇ̌̌
x 2Rn�1; A 2 GLn�1.R/;

�
1 0

0 A

�
2En

�
:

It is straightforward that Q contains the normal subgroup

S D

��
1 x

0 In�1

� ˇ̌̌
x 2Rn�1

�
;

an abelian group. Therefore, all the L2–Betti numbers of S and Q are zero when the
ring R is infinite.

Lemma 4.1 Let k < n .n� 3/ be two positive integers. Suppose that R is an infinite
k–rigid ring. Then the subgroup Q is .k�1/–step s–normal in En.R/. In particular,
Q is s–normal if R is infinite 2–rigid.

Proof Without loss of generality, we assume k D n� 1. Let g1;g2; : : : ;gn�2 be
any n� 2 elements in En.R/. We will show that the intersection Q\

Tn�2
iD1 giQg�1

i

is infinite, which implies the .k�1/–step s–normality of H . Let feig
n
iD1

be the
standard basis of Rn . Denote by U DRn�1 the R–submodule spanned by feig

n
iD2

and pW Rn! U the natural projection.

For each gi (i D 1; 2; : : : ; n� 2), suppose that

gie1 D xie1Cui

for xi 2R and ui 2 U . Let

ˆD f� 2 HomR.U;R/ j �.ui/D 0; i D 1; 2; : : : ; n� 2g:

For any � 2ˆ, define T� W R
n!Rn by T�.v/D vC� ıp.v/e1 . It is obvious that

g�1
i T�gi.e1/D e1

for each iD1; 2; : : : ; n�2. Note that Q is the stabilizer of e1 . This shows that for each
� 2ˆ, the transformation T� lies in Q\

Tn�2
iD1 giQg�1

i . Denote by T the subgroup

(1) T D fT� j � 2ˆg:

By Proposition 3.4, ˆ is infinite, and thus T is infinite. The proof is finished.
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Lemma 4.2 The subgroup T from (1) is normal in Q\
Tn�2

iD1 giQg�1
i .

Proof For any � , write e� D .�.e2/; : : : ; �.en//. With respect to the standard basis,
the representation matrix of the transformation T� is

�
1 e�

0 In�1

�
. For any

�
1 x
0 A

�
2

Q\
Tn�2

iD1 giQg�1
i , the conjugate of the representation matrix has the following form:�

1 x

0 A

��1�
1 e�
0 In�1

��
1 x

0 A

�
D

�
1 e�A

0 In�1

�
:

Define  W U D Rn�1! R by  .x/ D e�Ax . For each i D 1; : : : ; n� 2, we have
that

�
1 x
0 A

�
D giqig

�1
i for some qi 2Q. Therefore,�

1 x

0 A

�
gie1 D giqie1;

and Aui D ui . This implies that  .ui/ D e�ui D 0 for each i , and thus  2 ˆ.
Therefore, the conjugate

�
1 e�A
0 In�1

�
lies in T , which proves that T is normal.

Proof of Theorem 1.1 By Lemma 4.2, any intersection Q\
Tn�2

iD1giQg�1
i contains

an infinite normal amenable subgroup T . Therefore, all the L2–Betti numbers of any
intersection Q\

Tk
iD1giQg�1

i vanish for k � n�2 considering Lemma 3.2. We have
that b.2/

i
.En.R//D 0 for any 0� i � n� 2 by Lemma 2.2.

Proof of Corollary 1.2 When nD 2, it is clear that both GLn.R/ and SLn.R/ are
infinite, since E2.R/ is an infinite subgroup. Thus b

.2/
0
.GL2.R//D b

.2/
0
.SL2.R//D 0.

We have already proved that b
.2/
i .En.S// D 0 for infinite commutative noetherian

ring S and 0 � i � n� 2, since the ring S would be k–rigid for any integer k by
Proposition 3.7. If S is a finite subring of R, the group En.S/ is also finite. Therefore,
we still have b

.2/
i .En.S//D 0 for 1 � i � n� 2. Note that every commutative ring

R is the directed colimit of its subrings S that are finitely generated as Z–algebras
(noetherian rings by the Hilbert basis theorem). Since the group En.R/ is the union of
the directed system of subgroups En.S/, we get that

b
.2/
i .En.R//D 0

for 0 � i � n� 2; see [14, Theorem 7.2(3)] and its proof. When R is commutative
and n � 3, a result of Suslin [19] says that the group En.R/ is a normal subgroup
of GLn.R/ and SLn.R/. Lemma 2.3 implies that b

.2/
i .GLn.R//D b

.2/
i .SLn.R//D 0

for each i 2 f0; : : : ; n� 2g.

We follow [2] to define the elementary subgroups of symplectic groups and orthogonal
groups. Let Eij denote the n � n matrix with 1 in the .i; j /th position and zeros
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elsewhere. Then for i ¤ j , the matrix eij .a/D InC aEij is an elementary matrix,
where In is the identity matrix of size n. With n fixed, for any integer 1� k � 2n, set
�k D kC n if k � n and �k D k � n if k > n. For a 2R and 1 � i ¤ j � 2n, we
define the elementary unitary matrices �i;� i.a/ and �ij .a/ with j ¤ � i as follows:
� �i;� i.a/D I2nC aEi;� i with a 2R.
� Fix " D ˙1. We define �ij .a/ D ��j ;� i.�a0/ D I2nC aEij � a0E�j ;� i with

a0 D a when i; j � n; a0 D "a when i � n< j ; a0 D a" when j � n< i ; and
a0 D a when nC 1� i; j .

When "D�1, we have the elementary symplectic group

ESp2n.R/D h�i;� i.a/; �ij .a/ j a 2R; i ¤ j ; i ¤ �j i:

When "D 1, we have the elementary orthogonal group

EO.n; n/.R/D h�ij .a/ j a 2R; i ¤ j ; i ¤ �j i:

Note that for the orthogonal group, each matrix �i;� i.a/ is not in EO.n; n/.R/.

There is an obvious embedding

Sp2n.R/! Sp2nC2.R/;

�
˛ ˇ

 ı

�
7!

0BB@
1 0 0 0

0 ˛ 0 ˇ

0 0 1 0

0  0 ı

1CCA :
Denote the image of A 2 Sp2n.R/ by I ˚A 2 Sp2nC2.R/. Let

Q1 D

�
.I ˚A/ �

2nY
iD1

�1i.ai/
ˇ̌̌
ai 2R; A 2 Sp2n�2.R/; I ˚A 2 ESp2n.R/

�
and

S1 D

� 2nY
iD1

�1i.ai/
ˇ̌̌
ai 2R

�
:

Similarly, we can define

Q2D

�
.I˚A/

Y
1�i�2n
i¤nC1

�1i.ai/
ˇ̌̌
ai 2R; A2O.2n�2; 2n�2/.R/; I˚A2EO.n; n/.R/

�
and

S2 D

� Y
1�i�2n
i¤nC1

�1i.ai/
ˇ̌̌
ai 2R

�
:

Since Si is abelian and normal in Qi , all the L2–Betti numbers of Qi vanish for
i D 1; 2.
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Proof of Theorem 1.3 We prove the theorem by induction on n. When nD 2, both
Sp2n.R/ and O.n; n/.R/ are infinite, and therefore we have

b
.2/
0
.Sp4.R//D b

.2/
0
.O.4; 4/.R//D 0:

The subgroup ESp2n.R/ is normal in Sp2n.R/ when n � 2, and the subgroup
EO.n; n/.R/ is normal in O.n; n/.R/ when n� 3; see [3, Corollary 3.10]. It suffices
to prove the vanishing of Betti numbers for G D ESp2n.R/ and EO.n; n/.R/.

We check the condition of Lemma 2.2 for QDQ1 (resp. Q2 ) as follows. Note that

QD fg 2G j ge1 D e1g:

Let g1;g2; : : : ;gk .g0 D I2n; k � n� 2/ be any k elements in G and

K D hg0e1;g1e1; : : : ;gke1i

the submodule in R2n generated by all gie1 . Recall that the symplectic (resp.
orthogonal) form h�;�iW R2n � R2n ! R is defined by hx;yi D xT 'ny (resp.
hx;yi D xT ny ). Let

C WD fv 2R2n
j hv;gie1i D 0 for each i D 0; : : : ; k � 1g:

Let "D �1 for ESp2n.R/ and "D 1 for EO.n; n/.R/. For each r 2 R, set ır
" D r

if "D�1 and ır
" D 0 if "D 1. For each u; v 2 C with hu;ui D hu; vi D hv; vi D 0,

define the transvections in G (see [20, page 287], Eichler transformations in [10,
pages 214, 223–224])

�.u; v/W R2n
!R2n; x 7! xC "uhv;xi � vhu;xi;

�v;r W R
2n
!R2n; x 7! x� ır

"vhv;xi:

Note that �v;r is nonidentity only in ESp2n.R/. We have

�.u; v/.gie1/D �v;r .gie1/D gie1

for each i . Therefore, the transvections �.u; v/; �v;r 2
Tk

iD0 giQg�1
i . Let

T D h�.u; v/; �v;r j u; v 2 C; hu;ui D hu; vi D hv; vi D 0; r 2Ri

be the subgroup generated by the transvections in G . For any g 2
Tk

iD0 giQg�1
i , we

have ggie1 D gie1 , and thus

hgu;gie1i D hgu;ggie1i D hu;gie1i D 0:

This implies that g�.u; v/g�1D �.gu;gv/2T and g�v;r g�1D �gv;r 2T . Therefore,
the subgroup T is a normal subgroup in

Tk
iD0 giQg�1

i .
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When R is a PID, the submodule K and the complement C are free of smaller ranks.

Case (i) K \ C D 0 Since R2n DK˚C (note that each gie1 is unimodular), the
symplectic (resp. orthogonal) form on R2n restricts to a nondegenerate symplectic
(resp. orthogonal) form on C . Let T < G be as defined before. It is known that
the transvections generate the elementary subgroups [10, pages 223–224], and thus
T Š ESp2m.R/ (resp. EO.m;m/.R/) for mD rank.C /� n�2. Since k � n�2, we
have m� 4. By induction,

b.2/s

� k\
iD0

giQg�1
i

�
D b.2/s .T /D 0

for s � 1
2

rank.C /� 2. When sC k � n� 2, we have that s � 1
2

rank.C /� 2 since
rank.C /�2n�.kC1/. Therefore, b.2/s

�Tk
iD0 giQ1g�1

i

�
D0, and Lemma 2.2 implies

that for any i � n� 2,
b
.2/
i .G/D 0:

Case (ii) K \ C ¤ 0 For any u; v 2K\C and any g 2
Tk

iD0 giQg�1
i ; we have

that guD u, gv D v and

g�.u; v/g�1
D �.gu;gv/D �.u; v/:

This implies that �.u; v/ lies in the center of
Tk

iD0 giQg�1
i . Note that when G D

ESp2n.R/, the transvection �.u;u/ is not trivial for any u 2 K \ C . When G D

EO.n; n/.R/ and rank.K \ C / � 2, the transvection �.u; v/ is not trivial for any
linearly independent u; v 2K\C . Moreover, for two elements r; s with r2 ¤ s2 , we
have �.ru; rv/¤ �.su; sv/ when �.u; v/¤ I2n (take note that for G D ESp2n.R/,
we can just let uD v from above). The infinite PID R contains infinitely many square
elements. In summary, as K\C is a free R–module, the subgroup

T 0 D h�.u; v/ j v 2K\C i<G

is an infinite abelian normal subgroup of
Tk

iD0 giQg�1
i . Therefore,

b.2/s

� k\
iD0

giQg�1
i

�
D b.2/s .T 0/D 0

for each integer s � 0. Therefore, for any i � n� 2, we have that b
.2/
i .G/ D 0 by

Lemma 2.2.

The remaining situation is that G D EO.n; n/.R/ and rank.K\C /D 1. Choose the
decomposition C D .K\C /˚C1 . The orthogonal form restricts to a nondegenerate
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orthogonal form on C1 . (Suppose that for some x 2 C1 , we have hx;yi D 0 for any
y 2C1 . Since hx; kiD 0 for any k 2K , we know that hx;yiD 0 for any y 2C . This
implies x 2K , which gives x D 0.) Since k � n� 2, the even number rank.C1/� 4.
A similar argument as in case (i) finishes the proof.

Remark 4.3 Let T be the normal subgroup of
Tk

iD0 giQg�1
i constructed in the

proof of Theorem 1.3. We do not know whether the L2–Betti numbers b
.2/
i .T / vanish

for a general infinite .2n�1/–rigid commutative ring R when i � n� 2� k . If so,
Theorem 1.3 would hold for any general infinite commutative ring by a similar argument
as in the proof of Corollary 1.2.

Proof of Theorem 1.4 Note that when R is commutative, the elementary subgroups
En.R/;ESp2n.R/ and EO.n; n/.R/ are normal in SLn.R/;Sp2n.R/ and O.n; n/.R/,
respectively; see [19; 3, Corollary 3.10]. Therefore, it is enough to prove the failure of
acylindrically hyperbolicity for elementary subgroups. We prove (i) first. If R is finite,
all the groups will be finite and thus not acylindrically hyperbolic. If R is infinite, then
it is 2–rigid, and the subgroup Q is s–normal by Lemma 4.1. Suppose that En.R/ is
acylindrically hyperbolic. Lemma 2.4 implies that both Q and S are acylindrically
hyperbolic. However, the subgroup S is infinite abelian, which is a contradiction to
the second part of Lemma 2.4.

For (ii), we may also assume that R is infinite since any finite group is not acylindrically
hyperbolic. It suffices to prove that Q1 (resp. Q2 ) is s–normal in ESp2n.R/ (resp.
EO.n; n/.R/). (Note that Q1 and Q2 contain the infinite normal subgroups S1

and S2 , respectively. If G is acylindrically hyperbolic, the infinite abelian subgroup
S1 or S2 would be acylindrically hyperbolic. This is a contradiction to the second
part of Lemma 2.4.) By definition, this is equivalent to proving that for any g 2 G ,
the intersection Q \ g�1Qg is infinite for Q D Q1 and Q D Q2 . Let ge1 D

.x1; : : : ;xn;y1; : : : ;yn/
T . Let

tA D
Y

1�i<j�n

�i;nCj .aij /D

�
In A

0 In

�
2G;

where A D .aij / is an n � n matrices with entries in R. Note that aji D aij if
G D ESp2n.R/ and aij D�aij if G D EO.n; n/.R/. Moreover, we have �i;nCi.a/ 62

EO.n; n/.R/ and �i;nCi.a/ 2 ESp2n.R/ for any a 2R. Direct calculation shows that
tA.ge1/� ge1 D ..y1; : : : ;yn/A

T ; 0; : : : ; 0/T . When n � 4 and G D EO.n; n/.R/,
the map f W Rn.n�1/=2!Rn defined by

.aij /1�i<j�n 7!A.y1; : : : ;yn/
T
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has an infinite kernel kerf by 2–rigidity of infinite commutative rings. This implies that
htA j .aij /1�i<j�n 2 kerf i<Q\g�1Qg is infinite. When n� 2 and GDESp2n.R/,
the map f W Rn.nC1/=2 ! Rn defined by .aij /1�i�j�n 7! A.y1; : : : ;yn/

T has an
infinite kernel kerf , and Q\g�1Qg is infinite by a similar argument.

Proof of Corollary 1.5 By Proposition 3.7, Example 3.9 and Lemma 3.3, all these
rings are n–rigid for any n� 1. The corollary follows Theorems 1.1 and 1.4.
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Klein-four connections and the Casson invariant
for nontrivial admissible U.2/ bundles

CHRISTOPHER SCADUTO

MATTHEW STOFFREGEN

Given a rank-2 hermitian bundle over a 3–manifold that is nontrivial admissible in
the sense of Floer, one defines its Casson invariant as half the signed count of its
projectively flat connections, suitably perturbed. We show that the 2–divisibility
of this integer invariant is controlled in part by a formula involving the mod 2
cohomology ring of the 3–manifold. This formula counts flat connections on the
induced adjoint bundle with Klein-four holonomy.

57M27

1 Introduction

Let E be a U.2/ bundle over a closed, oriented and connected 3–manifold Y with the
property that w2.E/� c1.E/ .mod 2/ has no torsion lifts to H 2.Y IZ/. Following
Floer [4], we call such bundles nontrivial admissible. Floer defined the instanton
homology I�.Y;E/, which is an abelian group that is Z2–graded. Define �.Y;E/ to
be half the Euler characteristic of the instanton homology:

�.Y;E/D 1
2
�ŒI�.Y;E/�:

This number is a signed count of suitably perturbed projectively flat connections on E .
It is well known that �.Y;E/ is an integer. Define the subset of triples

VY D
˚
fa; b; cg �H 1.Y IZ2/ W aC bC c D 0

	
:

This set is naturally in correspondence with the set of subspaces of the Z2–vector
space H 1.Y IZ2/ of dimension at most two. Write b1.2/ for the Z2–dimension
of H1.Y IZ2/. Define for any given x 2H 2.Y IZ2/ the following nonnegative integer:

vY .x/D
ˇ̌˚
fa; b; cg 2 VY W abC bcC ac D x

	ˇ̌
:

For the case in which x D w2.E/ we simply write vY .E/.
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Theorem 1.1 Suppose E is a nontrivial admissible U.2/ bundle over a closed, ori-
ented, connected 3–manifold Y with b1.2/�3. Then �.Y;E/ is divisible by 2b1.2/�3 .
Furthermore, we have

(1) 23�b1.2/�.Y;E/� vY .E/ .mod 2/:

If b1.2/D 2, this congruence also holds, implying that vY .E/ is even. If b1.2/D 1,
then the integer vY .E/ is zero. In these two cases vY .E/ .mod 2/ yields no informa-
tion about �.Y;E/.

Note that Y supports a nontrivial admissible bundle if and only if b1.Y /� 1, where
b1.Y / denotes the rank of H1.Y IZ/. In general we have b1.2/� b1.Y /, with strict
inequality if and only if H1.Y IZ/ has 2–torsion. Theorem 1.1 and its proof are
generalizations of a rather simple idea due to Ruberman and Saveliev [13]. Their result
is the case of Theorem 1.1 when H1.Y IZ/ is free abelian of rank 3, ie when Y is
a homology 3–torus. To obtain their statement, one identifies vY .E/ with the triple
cup product modulo 2, which for a homology 3–torus is a simple computation. (More
generally, see Corollary 1.6.) Our adaptation of Ruberman and Saveliev’s argument is
summarized, modulo perturbations, as follows.

The invariant �.Y;E/ is one half of a signed count of projectively flat connections on
the bundle E . There is an action of H 1.Y IZ2/ on this set of connections, and the
quotient is identified with flat connections on the adjoint SO.3/ bundle induced by E .
The only possible stabilizers of this action are f1g, Z2 and V4 , the Klein-four group
isomorphic to Z2�Z2 . Further, the connections with stabilizer V4 are flat connections
with holonomy group V4 . The number vY .E/ is the number of connections on the
induced SO.3/ bundle with holonomy V4 , up to gauge equivalence. The proof of
Theorem 1.1 follows from counting the H 1.Y IZ2/–orbits with stabilizer V4 .

Vanishing conditions, and relation to Lescop’s invariant The right-hand quantity
vY .E/ .mod 2/ of congruence (1) is often, but not always, equal to zero. The parity
also turns out to be independent of our choice of nontrivial admissible bundle E . To
state the result:

k.Y / WD dimZ2
fa 2H 1.Y IZ2/ W a

2
D 0g D dimZ2

ker.ˇ1/:

Here ˇ1 is the Bockstein homomorphism defined on H 1.Y IZ2/ associated to the
coefficient exact sequence 0!Z2!Z4!Z2!0. As is well known, ˇ1.a/Da2 . We
note that if H1.Y IZ/ is written as a direct sum of prime-power-order cyclic summands
and copies of Z, then k.Y / is just the number of Z2k summands with k > 1, plus the
number of Z summands. In particular, k.Y /� b1.Y /.
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Theorem 1.2 Let Y be a closed, oriented and connected 3–manifold with k.Y /� 1.
Let x 2H 2.Y IZ2/ be any element that is not a cup-square. Then vY .x/ .mod 2/ is
independent of the choice of such x . If furthermore k.Y /� 4 then vY .x/� 0 .mod 2/.

Note that the statement holds for a larger class of elements x 2H 2.Y IZ2/ than those
just coming from admissible bundles. The conditions are best understood through the
following examples, which are surgeries on the Borromean rings; see Figure 1. These
examples have b1.Y /D 0 and b1.2/D 3.

Example 1.3 Consider the 3–manifold Y obtained by performing .2; 2; 4/ surgery
on the Borromean rings. Such a manifold has first homology group isomorphic to
Z2 ˚Z2 ˚Z4 . Then k.Y / D 1. The rank-3 vector space H 1.Y IZ2/ has a basis
formed by a, b , c , classes that are Poincaré dual to the meridians of the surgery loops.
By intersecting homology classes and using Poincaré duality we obtain

c2
D 0; a2

D bc; b2
D ac;

where ab , bc , ac form a basis of H 2.Y IZ2/. Now, ab is not a square, as are not
abC bc , abC ac or abC acC bc . All four of these elements have vY .x/D 1 2 Z.
On the other hand, all other elements in H 2.Y IZ2/ have vY .x/ 2 f0; 2; 4g. This
illustrates the necessity of the nonsquare condition on x .

Example 1.4 Next, consider .2; 4; 4/ surgery on the Borromean rings. The Z2–
cohomology ring is much the same as before, except now b2 D 0, and k.Y /D 2. All
nonzero x 2H 2.Y IZ2/ have vY .x/ odd. In fact, if x ¤ 0, then vY .x/D 1, while
vY .a

2/ D 5 and vY .0/ D 4. Here a2 is a cup-square, but does not have a different
parity from the other nonzero elements.

Example 1.5 Finally, .4; 4; 4/ surgery on the Borromean rings has the same Z2–
cohomology ring as that of the 3–torus. Here k.Y /D 3, and vY .x/D 1 for x ¤ 0,
all nonsquares, while vY .0/D 8.

i j

k

Figure 1: Surgery on the Borromean rings with framings .i; j ; k/ on the
three components. When i , j , k are either 0 or various powers of 2, these
surgeries yield nonvanishing examples of the congruence in Theorem 1.1, in
which vY .E/� 1 .mod 2/ and k.Y /D 1; 2; 3 .
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To make use of Theorem 1.1, one can replace the 4–framings in the above three
examples by 0–framings, to get manifolds with the same Z2–cohomology rings but
b1.Y / > 0, ensuring that they support nontrivial admissible bundles.

In what follows, we describe how to deduce Theorem 1.2 using Theorem 1.1 and
related results of Poudel [11] and Turaev [16]. By Poudel [11], the Casson invari-
ant �.Y;E/ may be identified with Lescop’s invariant of [9], slightly modified. The
proof utilizes Floer’s exact triangle for instanton homology and Dehn surgery techniques
à la Lescop [9]. As a result, the parity of vY .E/ is independent of E , the choice of
nontrivial admissible bundle. After some substitutions, the congruences resulting from
Theorem 1.1 and [11] may be summarized as follows.

Corollary 1.6 Suppose x 2H 2.Y IZ2/ has no torsion lifts to H 2.Y IZ/. Then, mod 2,

(2) vY .x/�

8̂̂̂<̂
ˆ̂:

22�b1.2/�00
Y
.1/ if b1.Y /D 1;

23�b1.2/.#. \F // if b1.Y /D 2;

23�b1.2/N � .a[ b[ c/ŒY � if b1.Y /D 3;

0 if b1.Y /� 4;

where N is the cardinality of Tor H1.Y IZ/ and other terms are defined below. In
particular, if b1.Y /D3 and H1.Y IZ/ has an order-4 element, then vY .x/�0 .mod 2/.

The right-hand sides are defined as follows. First, for b1.Y / D 1, �Y .t/ is the
Alexander polynomial of Y , normalized so that �Y .1/D 1 and �Y .t/D�Y .t

�1/.
If Y is 0–surgery on a knot K in an integral homology 3–sphere †, then �Y .t/ is just
the Alexander polynomial �K�†.t/. Next, suppose b1.Y /D 2. Take two oriented
surfaces in Y that generate H2.Y IQ/. Let  be their intersection, and  0 the curve
parallel to  that induces the trivialization of the tubular neighborhood of  given by
the surfaces. Then N �  0 has a Seifert surface F in Y , and #. \F / is the count
of intersection points, in general position. Finally, in the b1.Y /D 3 case, the triple
a, b , c generates H 1.Y IZ/ up to torsion, and ŒY � is the fundamental class of Y .

The vanishing implications of Corollary 1.6 look rather similar to those of Theorem 1.2,
except that the role of k.Y / is weakened to that of b1.Y /. In other words, the role
of counting summands of the form Z and Z2k for k > 1 is replaced by that of just
counting Z summands. From the perspective of the Z2–cohomology ring, these kinds
of summands are all the same. With this thought in mind, it is a rather straightforward
task to establish Theorem 1.2 from Corollary 1.6 using realization results for the
Z2–cohomology structure of 3–manifolds due to Turaev. See Section 7. We remark
that, a posteriori, the divisibility properties of the quantities listed in Corollary 1.6
should imply Theorem 1.2. However, the authors prefer to mostly argue with the
Z2–cohomology ring structure, in line with the definition of vY .x/.
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Some more examples For any finitely generated abelian group H containing an
element of order 4 or 1, there is a 3–manifold Y with H1.Y IZ/ isomorphic to H

and vY .x/D0, in which x is any element that is not a cup-square. For this, just consider
integer-framed surgeries on unlinks. Note also that the integer vY .x/ is stable under
connect sums with RP3 , which increases b1.2/ by 1 while fixing k.Y /. This operation,
applied to the three Borromean surgeries examples above, gives examples where
vY .x/� 1 .mod 2/ for any pair b1.2/, k.Y / such that b1.2/� 3 and k.Y /2 f1; 2; 3g.
In fact, it is straightforward to produce nonvanishing examples with H1.Y IZ/ any
isomorphism class of finitely generated abelian group with those same two constraints.
We also have examples from Seifert-fibered spaces, with orientable base orbifold:

Proposition 1.7 Let Y be a Seifert-fibered space with Seifert invariants given by
.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //, where g is the genus of the base orbifold. Suppose
that x 2 H 2.Y IZ2/ is not a square. Then vY .x/ � 1 .mod 2/ if and only if g D 1,
all ˛i are odd, and bC

P
ˇi � 0 .mod 2/.

We note that such Seifert-fibered spaces have b1.Y /2f2; 3g and b1.2/D3. Included in
this list is of course the 3–torus. This proposition is easily proven using the description
of the mod 2 cohomology ring of a Seifert-fibered space given in Aaslepp, Drawe,
Hayat-Legrand, Sczesny and Zieschang [1]. See Section 8.

We mention that the Seifert-fibered spaces considered here for genus g D 0 are double
branched covers of Montesinos links. However, by Proposition 1.7 the relevant invariant
vY .x/ in these cases is always even. In Section 8 we give an example of a double
branched cover for which Theorem 1.1 has a nonvanishing congruence.

Discussion The integers vY .x/, and not just their parities, are interesting in the context
of SO.3/ gauge theory. Indeed, as is evident in the sequel, the V4–connection classes
counted by vY .E/ are persistent (unmoved) under a large class of perturbations. As
such, they form a distinguished set of generators in the instanton Floer chain complex for
the pair .Y;E/, defined using any such perturbation. Klein-four connections also play a
pivotal role in the SO.3/ instanton homology for webs of Kronheimer and Mrowka [8]
and its relation to the four-color theorem.

The authors did not see how to provide a general algebraic proof of Theorem 1.2,
but we believe it can be done. Our main purpose in this article is to exhibit how the
congruence in Theorem 1.1 requires hardly any work, once the picture for the relevant
moduli spaces is established.

Finally, it should be mentioned that although we refer to the invariant �.Y;E/ as a
“Casson invariant”, we are using the interpretation of Taubes [15] of Casson’s invariant
for integral homology 3–spheres, applied to nontrivial admissible bundles.
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Outline In Section 2 we review the notion of nontrivial admissibility and the suitable
generalization which motivates the hypotheses of Theorem 1.2. Sections 3 and 4 provide
the background for the main argument of Theorem 1.1, which was sketched above and
is presented concisely in Section 5. The issue of perturbations is ignored here, and then
taken up in Section 6. In Section 7 we complete the proof of Theorem 1.2. Finally,
in Section 8 we prove Proposition 1.7, record a connected sum formula for the parity
of vY .x/, and discuss double branched covers.

Acknowledgements The authors would like to thank Danny Ruberman and Nikolai
Saveliev for helpful discussions. Scaduto was supported by NSF grant DMS-1503100.

2 Nontrivial admissible bundles

Here we briefly discuss Floer’s nontrivial admissibility condition. A good reference for
this material is [2]. As in the introduction, we let Y be a closed, oriented and connected
3–manifold. An SO.3/ bundle over Y is nontrivial admissible if its second Stiefel–
Whitney class x 2H 2.Y IZ2/ satisfies the following three equivalent conditions; see
[2, Lemma 1.1]:
� The image of x under hW H 2.Y IZ2/! Hom.H2.Y IZ/;Z2/ is nonzero.
� There is an orientable surface †� Y such that hx; Œ†�i 6� 0.
� The element x 2H 2.Y IZ2/ has no torsion lifts to H 2.Y IZ/.

One then defines a U.2/ bundle to be nontrivial admissible if its induced adjoint
SO.3/ bundle is nontrivial admissible. The definition is motivated by the fact that a
nontrivial admissible U.2/ bundle admits no reducible flat connections. This avoids
complications in instanton Floer theory. Using that h is surjective, and the fact that
SO.3/ bundles over a 3–manifold are characterized by the second Stiefel–Whitney
class, we count the number of nontrivial admissible SO.3/ bundles:

.2b1.Y /� 1/2b1.2/�b1.Y /:

According to Theorem 1.1 and Poudel’s result mentioned in the introduction, the parity
of vY .E/ is the same for all nontrivial admissible bundles E . However, Theorem 1.2
indicates that the parity of vY .E/ is invariant under a larger collection of bundles. Such
bundles are characterized by having a second Stiefel–Whitney class x 2H 2.Y IZ2/

that satisfies the following equivalent conditions:
� The image of x under gW H 2.Y IZ2/! Hom.PD.ker.ˇ1//;Z2/ is nonzero.
� There is a surface †� Y such that hx; Œ†�i 6� 0 and † �†� 0 2H1.Y IZ2/.
� The element x 2H 2.Y IZ2/ has no order-2 lifts to H 2.Y IZ/.
� The element x2H 2.Y IZ2/ is not the cup-square of an element from H 1.Y IZ2/.
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Note that here † is not necessarily orientable, and PDW H 1.Y IZ2/! H2.Y IZ2/

is the Poincaré duality isomorphism. We briefly remark on the equivalence of these
conditions, leaving the details to the reader. The first two bullets are equivalent because
PD.ker.ˇ1// � H2.Y IZ2/ is spanned by the classes Œ†� with the stated conditions.
The equivalence of the third and fourth conditions follow from understanding the
Bockstein homomorphisms in this setting — see eg [5, Section 3.E] — and the remaining
equivalences make use of the nondegeneracy of Poincaré duality. These conditions are
the natural extensions of the prior three conditions when one wants to treat Z summands
and Z2k summands for k > 1 the same. We note that the ring H�.Y IZ2/ cannot see
the difference between such summands. Since g is surjective, the number of SO.3/
bundles of this more general type is

.2k.Y /
� 1/2b1.2/�k.Y /:

The most basic example of such a bundle that is not nontrivial admissible is the nontrivial
SO.3/ bundle over the lens space L.4; 1/.

3 Configuration spaces and stabilizers

Fix a connection A0 on det.E/, and let CE be the space of connections A on E

with determinant connection Tr.A/DA0 . Let GE be the gauge transformation group
consisting of smooth unitary automorphisms of E that are determinant 1. The configu-
ration space is the quotient BE D CE=GE . The nontrivial admissibility of E implies
that all projectively flat points in BE are irreducible, meaning that the GE–stabilizer
of every such connection A 2 CE is as small as possible:

StabGE
.A/D f˙1g:

The U.2/ bundle E induces an SO.3/ bundle su.E/, which may be defined as the
subbundle of End.E/ consisting of trace-free, skew-hermitian endomorphisms. We
let Gsu.E/ denote the full SO.3/ gauge transformation group of su.E/. Any A 2 CE

induces a connection Aad 2 Csu.E/ , and this induces a bijection between CE and Csu.E/ .
Indeed, any U.2/ connection A on E is uniquely determined by Tr.A/ on det.E/
and Aad on su.E/. The condition that A be projectively flat is equivalent to Aad being
flat. In contrast to the U.2/ case, however, when Aad is flat we have

StabGsu.E/
.Aad/ 2

˚
f1g;Z2;V4

	
:

Indeed, the difference between the determinant-1 unitary gauge group and the SO.3/
gauge group is described by an action of H 1.Y IZ2/ on BE that gives Bsu.E/ as its
quotient space. The action is as follows: H 1.Y IZ2/ parametrizes the isomorphism
classes of flat complex line bundles (with connection) � with holonomy f˙1g. Then
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Œ�� acts on ŒA�2BE by tensoring the bundle-with-connection .E;A/ with �. See eg [3,
Section 5.6]. We then have the more precise statement that StabGsu.E/

.Aad/ is naturally
a subspace of H 1.Y IZ2/, with the constraint that

dimZ2
StabGsu.E/

.Aad/ 2 f0; 1; 2g:

In summary, we see that even though any projectively flat connection in BE is irre-
ducible, its image in Bsu.E/ may not be irreducible. Flat connections on su.E/ with
Gsu.E/–stabilizer isomorphic to Z2 are exactly those whose holonomy is contained
in O.2/, but not in an SO.2/ or Klein-four subgroup. Equivalently, these are flat
connections that are compatible with a splitting

su.E/D �˚L;

where � is a nontrivial real line bundle and L is an unoriented real 2–plane bundle, and
for which the connection on L is irreducible. Connections with stabilizer V4 are those
whose holonomy is also isomorphic to V4 . Equivalently, these are flat connections
compatible with a splitting

su.E/D �1˚�2˚�3

into a sum of three nontrivial real line bundles. We write BV4

su.E/
� Bsu.E/ for the subset

of flat connections on su.E/ with V4–stabilizer, which we henceforth call Klein-four
connections.

Remark 3.1 If the assumption of nontrivial admissibility is removed, three other kinds
of stabilizers in the SO.3/–gauge group can occur: SO.2/, O.2/ and SO.3/.

4 Klein-four connections

The subset of Klein-four connections in Bsu.E/ is a finite, discrete set. As the elements
are characterized by having holonomy V4 , a finite group, they must all be flat, as a
simple continuity argument shows. Alternatively, each splitting su.E/D �1˚�2˚�3

into nontrivial real line bundles supports a unique compatible connection, which of
course must be flat. Let us consider the larger set

B�V4Dfconnections over Y on any SO.3/ bundle with holonomy inside a V4g=gauge:

Then B�V4 is parametrized by SO.3/ bundles of the form �1˚�2˚�3 over Y . Noting
that w1.su.E// D 0, sending such a bundle to the triple fw1.�1/; w1.�2/; w1.�3/g

sets up a bijection

B�V4
1W1
 !

˚
fa; b; cg �H 1.Y IZ2/ with aC bC c D 0

	
DW VY :
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Yet another description of B�V4 is as the set of homomorphisms Hom.�1.Y /;V4/

modulo the action of S3 D Aut.V4/. A simple counting argument shows that B�V4

has cardinality
2b1.2/�1

C
1
6
.4b1.2/C 2/:

Now, the elements of B�V4 that live on su.E/ are the ones with

w2.E/D w2.�1˚�2˚�3/D a1a2C a2a3C a1a3; ai D w1.�i/:

Thus we have the following bijection describing Klein-four connections on su.E/:

BV4

su.E/

1W1
 !

˚
fa; b; cg 2 VY with abC bcC ac D w2.E/

	
:

We see now that vY .E/DjBV4

su.E/
j, and the statement of Theorem 1.1 is the congruence

(3) �.Y;E/� 2b1.2/�3
� jBV4

su.E/j .mod 2b1.2/�2/:

5 The argument modulo perturbations

We now prove Theorem 1.1 under the assumption that all moduli spaces to follow
are nondegenerate, so that no perturbations are needed. The argument uses the most
basic information we have from the H 1.Y IZ2/–action. Consider the moduli space of
projectively flat connections on E :

ME WD
˚
ŒA� 2 BE W FA D

1
2
FA0
� idE

	
:

This is a finite set, and each of its points is irreducible. This moduli space is invariant
under the H 1.Y IZ2/–action, and its quotient is the space of flat connections on su.E/:

Msu.E/ WD fŒB� 2 Bsu.E/ W FB D 0g:

We need the following observation. An element w 2H 1.Y IZ2/ affects the relative
mod 8 Floer grading grŒA� of ŒA� 2ME by (see [2, Propositions 1.9 and 1.13])

gr.w � ŒA�/� grŒA�� 4.w2.E/wCw
3/ŒY � .mod 8/;

so the H 1.Y IZ2/–action preserves the Z2–gradings. Here ŒY � is the fundamental
class of Y . In particular, each H 1.Y IZ2/–orbit lies in a single Z2–grading. The proof
is now completed by counting orbit sizes. Each connection in Msu.E/ with stabilizer
at most Z2 gives an orbit of size either

jH 1.Y IZ2/j D 2b1.2/ or jH 1.Y IZ2/=Z2j D 2b1.2/�1;

lying upstairs in ME . Thus 2b1.2/�1 divides the signed count of ME , with the prior
observation about gradings in mind. The remaining connections downstairs in Msu.E/
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are Klein-four connections, and so in fact are given by the set BV4

su.E/
. Each point in

this set contributes an orbit of size

jH 1.Y IZ2/=V4j D 2b1.2/�2

upstairs in ME . Recalling that �.Y;E/ is half the signed count of points in ME , we re-
cover the congruence (3), proving Theorem 1.1 under the assumption of nondegeneracy.

6 Including holonomy perturbations

In general, the moduli space ME is degenerate and we need to perturb the projectively
flat equation to achieve the transversality we want. Henceforth we assume that our 3–
manifold Y is equipped with a Riemannian metric. The standard class of perturbations
used are known as holonomy perturbations [6; 13]. The input for such a perturbation is
an embedding � D fkg

m
kD1

into Y of solid tori k W S
1 �D2! Y . We require that

the embedded tori k have a common normal disk, meaning that the image of f1g�D2

under k is the same for all k . We also require that the images of the core loops
S1 � f0g are disjoint away from the normal disk. Fix a trivialization of det.E/ over
the image of � , which is homotopically a wedge (bouquet) of circles. This allows us
to consider the holonomy around the k as living in SU.2/. Let f W SU.2/m!R be
a conjugation invariant function, ie

f .ga1g�1; : : : ;gamg�1/D f .a1; : : : ; am/ for all g 2 SU.2/:

We also choose a smooth 2–form � on D2 with compact support in the interior and
integral 1. From this data one constructs a holonomy perturbation h, given as follows:

h.A/D

Z
D2

f .Hol1;z
.A/; : : : ;Holm;z

.A// �.z/:

Here k;z is the loop t 7! k.t; z/ in Y . Fixing only the data � , we define H� to be
the space of perturbations constructed as above. Each h 2H� yields a well-defined
function hW BE!R.

One way to guarantee that the perturbation h is H 1.Y IZ2/–equivariant is to require
that each loop im.k/ is zero as a class in H1.Y IZ2/. We call such � mod-2 trivial,
following [13], where this condition is introduced. We record their observation:

Lemma 6.1 If � is mod-2 trivial, then each h 2H� is H 1.Y IZ2/–equivariant.

Now, the perturbed U.2/ moduli space Mh
E

is the set of critical points of the perturbed
Chern–Simons functional CSCh. Specifically, for a suitable normalization of CS, we
obtain

Mh
E D

˚
ŒA� 2 BE W FA�

1
2
FA0
� idE C?rh.A/D 0

	
:
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If � is mod-2 trivial, this perturbed moduli space inherits the H 1.Y IZ2/–action
from BE , and its quotient space is the perturbed SO.3/ moduli space for su.E/. We
also record the following:

Lemma 6.2 Suppose � is mod-2 trivial. For any h 2H� , Klein-four connections are
unmoved in the SO.3/ moduli space. More precisely, we always have the relation

Mh
su.E/\BV4

su.E/ D BV4

su.E/:

As such perturbations are H 1.Y IZ2/–equivariant, a similar statement holds for the
connections in the U.2/ moduli space Mh

E
lying above Klein-four connections. In

fact, the lemma clearly follows from this latter case, which is justified as follows. First,
the H 1.Y IZ2/–equivariance of our perturbations imply that Klein-four connections
in BE are always perturbed to Klein-four connections. Second, we recall that the space
of Klein-four connection classes is a finite discrete set. Important here is our earlier
observation that any connection with Klein-four stabilizer is in fact flat. In particular,
the gradient of our perturbation is a Klein-four invariant vector v 2 TBE , which must
be the 0 vector by discreteness of the set of Klein-four connections.

Our goal is to find a mod-2 trivial � such that for small, generic h 2H� the moduli
space Mh

E
is nondegenerate. Section 5 of [13] shows that this can be achieved if �

is abundant at each projectively flat ŒA� 2ME . We need to slightly generalize the
definition of abundancy given in [13], which only considers stabilizers isomorphic to
f1g and Z2 . To begin, note that H 1.Y IAad/, the Zariski tangent space to ŒA� in ME ,
carries an action by the stabilizer, denoted

(4) SA WD StabH 1.Y IZ2/
ŒA�D StabGsu.E/

.Aad/:

We remark that the second equality in (4) is not true in general, and is contingent
upon the nontrivial admissibility of E . Recall that SA is one of f1g, Z2 or V4 . Now,
decompose the tangent space into its SA–invariant subspace VA , and the SA–equivariant
orthogonal complement to VA :

H 1.Y IAad/D VA˚V ?A :

The space VA is the Zariski tangent space of ŒA� internal to the stratum of ME

consisting of connection classes with stabilizer isomorphic to SA . The complement V ?
A

is the Zariski normal bundle fiber in ME at ŒA� relative to the aforementioned stratum.
For a vector space W we write Sym.W / for the space of symmetric bilinear forms
on W . If W has a linear G–action by some group G , we write Sym.W /G for the
forms that are G–invariant.
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Definition 6.3 A mod-2 trivial � is abundant at a projectively flat ŒA� 2ME if there
exist perturbations fhig

n
iD1
�H� and some k such that Dhi.A/D 0 for kC1� i � n,

and such that the following map that is defined from Rn to Hom.VA;R/˚Sym.V ?
A
/SA

is surjective:

(5) .x1; : : : ;xn/ 7!

� kX
iD1

xiDhi.A/;

nX
iDkC1

xi Hess hi.A/

�
:

Note that if SA is trivial, then VA accounts for the entire tangent space, and in particular
V ?

A
D 0. Thus only the left-hand factor of the map (5) is relevant. This is the condition

of “first-order abundancy”, and is sufficient to achieve nondegeneracy for small, generic
perturbations when there are no other (lower) strata to consider. At the other extreme,
when SA is isomorphic to V4 , we have VA D 0. In this case (5) reduces to a condition
purely of “second-order abundancy”.

If SA is isomorphic to Z2 , then VA and V ?
A

are the C1 and �1 eigenspaces of
the Z2–action, respectively, and are VC and V� in the notation of [13]. In this case
Sym.V ?

A
/SA is the same as Sym.V�/. Our choice of Sym.V ?

A
/SA in Definition 6.3 is

sufficient for the arguments of Section 5 in [13] to go through in part because a generic
element therein is nondegenerate; see the proof of Proposition 5.4 in [13]. When SA is
isomorphic to f1g or Z2 , our definition agrees with that of [13].

We are left with producing a mod-2 trivial � which is abundant for all ŒA� 2ME . To
this end, the work of Ruberman and Saveliev implies the following:

Lemma 6.4 [13, Proposition 5.2] There exists a mod-2 trivial � that is abundant for
all connections in ME that do not descend to SO.3/ Klein-four connections.

This allows us to focus on the situations in which SA is isomorphic to V4 , the case
in which Aad is a Klein-four connection. We have the following facts, used in [13,
Section 5.5], stated informally:

� If � is abundant, and � 0 is close to � , then � 0 is abundant.
� If � is abundant and � � � 0 , then � 0 is abundant.

In these situations, we are assuming that � and � 0 have the same fixed normal disk
with basepoint. Now suppose we can show, for each A with SA isomorphic to V4 , the
existence of a mod-2 trivial � abundant at ŒA�. Then it is straightforward to conclude,
using these two facts and Lemma 6.4, that there exists a mod-2 trivial � 0 abundant at
all ŒA� 2ME . Thus the following lemma completes the proof of Theorem 1.1:

Lemma 6.5 There is an abundant mod-2 trivial � for any ŒA� 2ME that descends
to an SO.3/ Klein-four connection.
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Proof We follow the method used in [13] of passing to a finite cover. Let A be a
projectively flat connection on E with stabilizer SA isomorphic to V4 . The SO.3/
connection Aad is compatible with a splitting su.E/D �1˚�2˚�3 in which the �i

are nontrivial and distinct real line bundles. The stabilizer SA is given explicitly by

SA D f0; a1; a2; a3g �H 1.Y IZ2/; ai D w1.�i/:

Here, ai corresponds to the gauge transformation of su.E/ that simultaneously re-
flects �iC1 and �iC2 , while fixing �i , where indices are taken mod 3. Define a
homomorphism �1.Y /! SA by

 7! a1. /a1C a2. /a2C a3. /a3:

Let pW Y 0! Y be the covering space corresponding to this homomorphism. Under
this covering Aad pulls back to a trivial connection, denoted A0ad ; see [13, Lemma 5.6].
In particular, each of �i pulls back under p to a trivial real line bundle �0i . Note that
the covering transformation group of Y 0! Y is the Klein-four group SA .

It is known [6, Proposition 67 and Lemma 58] that there is some � 0 , a collection
of embedded solid tori in Y 0 , that is abundant at the trivial connection A0ad in the
following sense: there exist perturbations fhig

n
iD1
�H� 0 such that the map from Rn

to Sym.H 1.Y 0IA0ad//
SO.3/ given by

(6) .x1; : : : ;xn/ 7!

nX
iD1

xi Hess hi.A
0
ad/

is surjective. The appearance of the SO.3/ here is the gauge stabilizer of the connec-
tion A0ad . Let � be the image of � 0 under p , slightly perturbed in Y so that it is of the
form described at the beginning of this section. By construction, � is mod-2 trivial.
Consider the following map:

(7) Sym.H 1.Y 0IA0ad//
SO.3/

! Sym.H 1.Y IAad//
V4 :

Here the V4 refers to SA . The map (5) is the composition of (6) with (7). Thus, to
show abundancy of � at A, it suffices to show that (7) is surjective. The map (7) is
induced by the pull-back map:

(8) V4 ˚ H 1.Y IAad/
p�

����! H 1.Y 0IA0ad/	 SO.3/

This map is equivariant with respect to the indicated gauge stabilizer actions, upon con-
sidering V4 as a subgroup of SO.3/. More precisely, V4 refers to the Gsu.E/–stabilizer
of Aad , while SO.3/ refers to the Gp�su.E/–stabilizer of A0ad .
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To show that (7) is surjective, consider the following two decompositions:

(9) H 1.Y IAad/D

3M
iD1

H 1.Y I�i/; H 1.Y 0IA0ad/DH 1.Y 0IR/˝R3:

Implicit here is a trivialization for each �0i , and the R3 should be thought of as coming
from the induced trivialization of �0

1
˚ �0

2
˚ �0

3
. The map (8) respects these decom-

positions. In the left-hand decomposition of (9), the V4 action is as follows: ai acts
as �1 on H 1.Y I�iC1/˚H 1.Y I�iC2/, and C1 on H 1.Y I�i/. In the tensor product
appearing in (9), the SO.3/–action on R3 is standard, and is trivial on H 1.Y 0IR/.
From these descriptions, it is straightforward to verify that these decompositions induce
identifications between the domain and codomain of (7) with Sym.H 1.Y 0IR// andL3

iD1 Sym.H 1.Y I�i//, respectively. The map (7) can then be seen as the map

(10) Sym.H 1.Y 0IR//!
3M

iD1

Sym.H 1.Y I�i//;

in which each of the three components is the map induced by pull-back, after trivializ-
ing �0i . Now, (10) is surjective because the three relevant pull-back maps are injective,
and their three images pairwise intersect at 0. This is evident from the decomposition

H 1.Y 0IR/DH 1.Y IR/˚H 1.Y I�1/˚H 1.Y I�2/˚H 1.Y I�3/;

which is induced by the covering transformation group SA acting on H 1.Y 0IR/. This
action should not to be confused with the gauge stabilizer action of SA on H 1.Y IAad/

which was used above. The summand H 1.Y IR/ is the invariant subspace under this
action, while H 1.Y I�i/ is the complement of H 1.Y IR/ inside the invariant subspace
for the subgroup f0; aig.

Remark 6.6 For a discussion of some of the technical assumptions used here, see
Section 5.6 of [13]. For a detailed study of the abundancy of holonomy perturbations
in the context of the equivariant Kuranishi method, see [7].

7 Establishing the vanishing result

Here we complete the proof of Theorem 1.2. The remaining step is to use a realization
result for the Z2–cohomology ring due to Turaev in conjunction with Corollary 1.6.
Recall that for a closed, oriented and connected 3–manifold we have the triple cup
product form

uY W H
1.Y IZ2/˝H 1.Y IZ2/˝H 1.Y IZ2/! Z2; uY .a; b; c/D .a[ b[ c/ŒY �:
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The trilinear form uY determines the Z2–cohomology ring of Y . It was originally
proven by Postnikov that any symmetric trilinear form satisfying u.a; a; b/Du.b; b; a/

is realized by a closed, oriented and connected 3–manifold. Recall also that we have
the linking form

LY W Tor H1.Y IZ/˝Tor H1.Y IZ/!Q=Z;

which is a nondegenerate symmetric bilinear form. The linking form interacts with
the Z2–cohomology ring in the following way. Let  W Z2!Q=Z be the injection
defined by  .k .mod 2//D k=2. Then for all a; b 2H 1.Y IZ2/ we have the relation

(11)  .uY .a; a; b//DLY .a
|; b|/;

where for any a 2 H 1.Y IZ2/ the element a| 2 Tor H1.Y IZ/ is defined by the
condition that LY .a

|; c/D  .a.c// for all c 2 Tor H1.Y IZ/. Here we are of course
identifying H 1.Y IZ2/ with Hom.H1.Y IZ/;Z2/. An implication of Turaev’s work
is the following result (see also [10; 14] for related results):

Theorem 7.1 [16] Let H be a finitely generated abelian group, and let

uW Hom.H;Z2/
˝3
! Z2

be a symmetric trilinear form. There exists a closed, orientable and connected 3–
manifold Y such that the pair .H;u/ is equivalent to .H1.Y IZ/;uY / if and only
if there exists a nondegenerate symmetric bilinear form LW Tor H˝2 ! Q=Z such
that (11) holds with uY D u and LY DL.

Proof of Theorem 1.2 Let Y be such that k.Y / � 4, and suppose that x is not a
cup-square. Equivalently, x has no order-2 lift to H 2.Y IZ/. Our goal is show that
vY .x/� 0 .mod 2/. We choose an isomorphism

H1.Y IZ/'
4M

iD1

Ai ˚B;

where Ai is an abelian group of the form Z2k for k > 1 or a copy of Z. Make these
choices so that x has a lift to H 2.Y IZ/ with support in A1 , not of order 2, which can
be done by our assumption on x . Recall that Tor H1.Y IZ/ is the torsion of H 2.Y IZ/
by the universal coefficients theorem. Now define H by replacing the Ai summands
with copies of Z:

H WD

4M
iD1

A0i ˚B; A0i WD Z

With our identifications we have a natural isomorphism between H 1.Y IZ2/ and
Hom.H;Z2/, and with this understood we set u WD uY . Also, noting that Tor H
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is simply Tor H1.Y IZ/ with some summands possibly thrown away, we define L

to be the restriction of LY . With our identifications, the terms appearing in (11)
are unchanged. Thus Theorem 7.1 implies the existence of a closed, oriented and
connected 3–manifold Z with first homology and triple cup product form given
by .H;u/. By our choices, x has no torsion lifts, and is thus equal to w2.E/ for a
nontrivial admissible U.2/ bundle E over Z . Now Poudel’s result in the guise of
Corollary 1.6 says vZ .x/� 0 .mod 2/, since b1.Z/� 4. Since the Z2–cohomology
rings of Y and Z are the same, we then get vY .x/� 0 .mod 2/. The independence
of x as a choice having no order-2 lift to H 2.Y IZ/ is established in much the same
way as the vanishing.

8 Examples and properties

In this section we prove Proposition 1.7, which yields examples of vY .x/ .mod 2/

for Seifert-fibered spaces. We then produce a connected sum formula for the parity
of vY .x/. Finally, we illustrate how to compute vY .x/ for double branched covers of
links.

Seifert-fibered spaces Let Y be a Seifert-fibered 3–manifold over an oriented base
orbifold, with Seifert invariants .g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //. Here g is the genus of
the base orbifold. The mod 2 cohomology ring of Y is completely described in [1].

Lemma 8.1 Suppose x 2H 2.Y IZ2/ is not a square. If any of the ˛i are even, or if
all ˛i are odd and bC

P
ˇi � 1 .mod 2/, then vY .x/D 0.

Proof We begin with the following easily verified observation. In general, we have

(12) fa2
W a 2H 1.Y IZ2/g � fab W a; b 2H 1.Y IZ2/g:

When these sets are equal, then vY .x/D 0. For if the triple fa; b; aC bg 2 VY had
a2C b2C ab D x , then x would in fact be a square, a contradiction. Now we appeal
to [1, Theorem 2.9]. When there is some even ˛i (“case n D 0” in [1]), we easily
check that these two sets in (12) are equal. This is particularly immediate when there
is an ˛i divisible by 4, and the mod 2 cohomology ring of Y is isomorphic to that of a
connect sum of some copies of RP3 and some copies of S1 �S2 . Finally, if all ˛i

are odd and bC
P
ˇi � 1 .mod 2/, then the ring is isomorphic to that of a connect

sum of 2g copies of S1 �S2 , whence by the same reasoning vY .x/D 0.

Proof of Proposition 1.7 First, since b1.Y / is equal to either 2g or 2gC1, the integer
vY .x/ is even by Corollary 1.6 unless gD 1. By the above lemma, it remains to check
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that vY .x/� 1 .mod 2/ when g D 1 and all ˛i are odd and bC
P
ˇi � 0 .mod 2/.

One can conclude from [1] that H 1.Y IZ2/ has a basis a, b , c with a2 D b2 D 0

and nonzero products ab , bc , ac , the three of which provide a basis for H 2.Y IZ2/.
Depending on some divisibility conditions on the ˇi , either c2 D 0 or c2 D ab . The
element ac , for one, is never a square, so we set x D ac . In either case we compute
vY .x/D 1.

Connected sums Now let x be any element of H 2.Y IZ2/. Recall that VY may be
viewed as Hom.�1.Y /;V4/ modulo the action of S3 D Aut.V4/. As such, it makes
sense to keep track of the S3–stabilizers of the orbits. For a set X with S3–action we
define the triple Lv.X /D . Lv1; Lv2; Lv3/ where Lv1 , Lv2 , Lv3 are the numbers of orbits with
stabilizers of orders 1, 2, 6, respectively. For two such sets X1 and X2 with S3–actions
we have

Lv.X1 �S3
X2/D Lv.X1/� Lv.X2/;

where we define the product � on triples as follows:

Lv� Lu WD .6 Lv1 Lu1C3 Lv1 Lu2C3 Lv2 Lu1C Lv1 Lu3C Lv3 Lu1C Lv2 Lu2; Lv2 Lu2C Lv2 Lu3C Lv3 Lu2; Lv3 Lu3/:

Define the norm of a triple to be the L1–norm: j Lvj D Lv1 C Lv2 C Lv3 . Write LvY .x/

for the triple Lv.X /, with X the subset of Hom.�1.Y /;V4/ that lives on an SO.3/
bundle E with x D w2.E/. Thus X=S3 is the subset of fa; b; cg 2 VY such that
abC bcC ac D x . With our new notation, we have

vY .x/D jLvY .x/j:

Now, given xi 2H 2.Yi IZ2/ it is easy to verify the connect sum relation

vY1#Y2
.x1Cx2/D jLvY1

.x1/� LvY2
.x2/j:

Note also that if x is not a cup-square, then LvY .x/ has the form

LvY .x/D . Lv1; 0; 0/:

In general, the third entry Lv3 is equal to 1 if and only if x D 0, and is otherwise 0.
Also, the second entry Lv2 is the number of nontrivial cup-square-roots of x :

Lv2 D jfa 2H 1.Y IZ2/ W a¤ 0; a2
D xgj; where LvY .x/D . Lv1; Lv2; Lv3/:

In particular, the sum Lv2 C Lv3 is either zero or the cardinality of the kernel of the
Bockstein map H 1.Y IZ2/!H 2.Y IZ2/, which is by definition 2k.Y / . Putting these
observations together, and using our freedom to choose x that is not a square (below
choose x2 D 0), we compute the following:
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Proposition 8.2 Suppose xi 2H 2.Yi IZ2/ and that x1 is not a cup-square. Then

vY1#Y2
.x1Cx2/�

�
vY1

.x1/ .mod 2/ if k.Y2/D 0;

0 .mod 2/ otherwise:

In particular, we recover the fact (mod 2) that vY .x/ is stable under connect summing
with RP3 . More generally, these statements clearly hold when the decompositions
are only algebraic, instead of geometric: for example, if there is a decomposition
H 1.Y IZ2/DA˚B where A[B D 0 and B has an element of order 4 or 1, then
vY .x/� 0 .mod 2/ for any x not a cup-square.

Double branched covers The above Seifert-fibered examples for genus g D 0 are
double branched covers of Montesinos links, but in all of those cases vY .x/ vanishes
(mod 2) for nonsquares x . Here we compute a nonvanishing example in which Y is a
double branched cover †.L/ of a link L in S3 . First, we describe the Z2 cohomology
rings of such manifolds. Let L be a link with components L1; : : : ;Ln , and let Si be a
Seifert surface for Li . Then Si lifts to a closed surface Fi in the branched cover †.L/.
Write ai 2H 1.†.L/IZ2/ for the Poincaré dual of ŒFi �.

Proposition 8.3 Let L be an n–component link. The vector space H 1.†.L/IZ2/

has dimension n� 1, and it is generated by the n classes ai subject to the one relation

(13) a1C � � �C an D 0:

The triple cup product form on H 1.†.L/IZ2/ is determined by the values

.ai [ aj [ ak/Œ†.L/��

8<:
P
`¤i lk.Li ;L`/ .mod 2/ for i D j D k;

lk.Li ;Lk/ .mod 2/ for i D j ¤ k;

0 .mod 2/ for i; j ; k distinct.

This proposition is proved for two-component links in [12, Proposition 9.2], and
the proof easily generalizes. We sketch the argument. To begin, we mention that
H1.†.L/IZ2/ is in bijection with the subsets of f1; : : : ; ng of even cardinality:

(14) H1.†.L/IZ2/
1W1
 !

˚
S � f1; : : : ; ng W jS j � 0 .mod 2/

	
:

The bijection goes as follows. Given such a subset, pair off elements. For the pair fi; j g,
draw an arc in S3 between components Li and Lj , otherwise missing L. Lift the arcs
to a union of loops in †.L/ to obtain a class in H1.†.L/IZ2/. Now, assume the Fi

are transverse to one another. Then it is not hard to see, when i ¤ j , that Fi \Fj is
mod 2 homologous to

lk.Li ;Lj / � fi; j g;

where we view fi; j g as an element of H1.†.L/IZ2/ via the above bijection. Upon
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1

2 3
4

Figure 2: The link LDL8n8 with its four components labeled by f1; 2; 3; 4g .
This link has determinant zero and thus its branched double cover supports
nontrivial admissible bundles.

taking Poincaré duals, this yields the proposition. We note that addition on the subsets
appearing on the right side of (14) is the symmetric difference of sets.

Let Y D †.L/, and let f be the function from VY to H1.Y IZ2/ that sends a flat
Klein-four connection class to the Poincaré dual of its second Stiefel–Whitney class:

f fa; b; cg D PD.abC bcC ac/:

Let L be the four-component link L8n8 depicted in Figure 2, and let ai be the classes
described in Proposition 8.3 for L, so that ai is dual to the lifted Seifert surface
of Li . In particular, a1 , a2 , a3 form a basis for H 1.Y IZ2/. For illustration, using
Proposition 8.3 we compute

PD.a2
1/D PD .a1.a2C a3C a4//D

4X
iD2

lk.L1;Li/ � f1; ig D f1; 2gC f1; 3g D f2; 3g:

The bijection (14) is implicit in our notation, aligning subsets of f1; 2; 3; 4g of even
size with elements of H1.Y IZ2/. We then compute f on all fifteen of the Klein-four
connection classes in VY :

f f0; 0; 0g D 0; f fa1; a2; a1Ca2g D f3; 4g;

f fa1; a1; 0g D f2; 3g; f fa1; a3; a1Ca3g D f2; 4g;

f fa2; a2; 0g D f1; 4g; f fa2; a3; a2Ca3g D 0;

f fa3; a3; 0g D f1; 4g; f fa1; a2Ca3; a1Ca2Ca3g D 0;

f fa1Ca2; a1Ca2; 0g D f1; 2; 3; 4g; f fa2; a1Ca3; a1Ca2Ca3g D f1; 3g;

f fa1Ca3; a1Ca3; 0g D f1; 2; 3; 4g; f fa3; a1Ca2; a1Ca2Ca3g D f1; 2g;

f fa2Ca3; a2Ca3; 0g D 0; f fa1Ca2; a1Ca3; a2Ca3g D 0;

f fa1Ca2Ca3; a1Ca2Ca3; 0g D f2; 3g:
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We find that the cup-squares form a 2–dimensional subspace of H 2.Y IZ2/, appearing
as the outputs of the left-hand column. Thus k.Y / D 1. We have four nonsquares,
appearing as the nonzero (underlined) entries in the right-hand column. Each has one
Klein-four class, and so vY .x/� 1 .mod 2/ when x is not a cup-square. The link L

has determinant zero, ie b1.Y / > 0, so Y has a nontrivial admissible U.2/ bundle E .
By Theorem 1.1 we conclude

�.Y;E/� 1 .mod 2/:

Proposition 8.3 similarly computes the parity of 24�n�.Y;E/, when det.L/D 0, from
only knowing the mod 2 linking matrix of L.
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Infinite order corks via handle diagrams

ROBERT E GOMPF

The author recently proved the existence of an infinite order cork: a compact, con-
tractible submanifold C of a 4–manifold and an infinite order diffeomorphism f of
@C such that cutting out C and regluing it by distinct powers of f yields pairwise
nondiffeomorphic manifolds. The present paper exhibits the first handle diagrams of
this phenomenon, by translating the earlier proof into this language (for each of the
infinitely many corks arising in the first paper). The cork twists in these papers are
twists on incompressible tori. We give conditions guaranteeing that such twists do
not change the diffeomorphism type of a 4–manifold, partially answering a question
from the original paper. We also show that the “ı–moves” recently introduced by
Akbulut are essentially equivalent to torus twists.

57N13, 57R55

1 Introduction

The failure of high-dimensional topology to apply to smooth 4–manifolds led to
the notion of a cork twist. As originally formulated, this consists of changing the
diffeomorphism type of a closed 4–manifold X by removing a compact, contractible,
smooth submanifold C from X and regluing it by an involution f of @C . The
first example of a cork twist was published by Akbulut [1] in 1991. A few years
later, Curtis, Freedman, Hsiang and Stong [8] and Matveyev [16] showed that any
two homeomorphic, simply connected (smooth) 4–manifolds are related by a cork
twist. (See Gompf and Stipsicz [14] and Gompf [13] for more history.) The question
was immediately raised of whether higher order corks may exist—and in particular,
whether there was such a pair C �X and an infinite order diffeomorphism f of @C
such that the Z–indexed family of homeomorphic manifolds obtained by regluing
using all powers of f were pairwise nondiffeomorphic. In weaker form, can there
even be a contractible 4–manifold C with a boundary diffeomorphism for which no
nonzero power extends to a self-diffeomorphism of C ? No progress was made on
these questions until recently. Corks of all finite orders were constructed in 2016 by
Tange [19] and Auckly, Kim, Melvin and Ruberman [7]. A withdrawn 2014 posting of
Akbulut [3] attempted to construct infinite order corks of the weaker sort, using handle
calculus. In 2016 [13], the author of the present paper constructed an infinite family
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of examples C.r; sIm/�X (for r; s > 0>m), each one affirmatively answering the
stronger question, using an entirely different plan of attack and no handle diagrams.
This raised the question of how the paper translates into the language of these diagrams.
Section 3 of the present paper gives the result, in a form independent of, but clearly
derived from, [13]. This section shows boundary diffeomorphisms of contractible 4–
manifolds, and how they can provide infinitely many diffeomorphism types of ambient
4–manifolds, as presented in the currently preferred language of the subject. We also
find conditions under which such diffeomorphisms necessarily do extend over a given
4–manifold, partially answering a question from [13]. A recent paper of Akbulut [4]
seeks to generalize the twists of Section 3; our final section shows that his viewpoint is
equivalent to ours.

After a quick exposition of the relevant 3–manifold diffeomorphisms in Section 2, this
paper proceeds with three independent sections, beginning with our translation of the
proofs in [13] into handle calculus (Section 3). We sketch the correspondence between
the proofs as we go along. We exhibit a cork C by a diagram (Figure 4) constructed
from the existence proof of [13], and show it is diffeomorphic to C.r; sIm/ as exhibited
by Figure 3. Then we embed C in a family of larger manifolds Zk.r; sIm/, related
(as k varies in Z, with the other variables fixed) by powers of a twist parallel to an
incompressible torus in @C (Figure 11). Finally, we show that these manifolds embed in
a family of closed manifolds Xk related by the same cork twists, and distinguish these
using the same method as [13]: we show that they are obtained by the Fintushel–Stern
knot construction on elliptic surfaces.

Section 4 gives our criterion guaranteeing that cutting and regluing does not change
the diffeomorphism type of a 4–manifold. We partially answer a question from [13]:
The nontrivial cork twists of that paper were diffeomorphisms of @C.r; sIm/ twisting
along an incompressible torus parallel to its longitude. It was asked whether twisting
parallel to the meridian was also nontrivial. We show that the answer is no for a family
of manifolds including each C.r; sI �1/. Thus, while the potential torus twists are
indexed by H1.T

2/Š Z˚Z, only one Z–summand is useful for producing exotic
4–manifolds. The question remains open for m < �1, but we also see that for the
specific embedding C.r; sIm/�X used in [13], only one Z–summand (the longitude)
affects the resulting diffeomorphism type. Thus, a nontriviality proof for meridian
twisting would at least require a different setup. Coupling our meridian twist criterion
with a recent observation of Ray and Ruberman, we see that there are contractible
manifolds C for which every boundary diffeomorphism extends over C even though
@C contains an incompressible torus.

Our final section concerns the recent paper [4]. Starting from the preliminary version
of Section 3 of the present paper, Akbulut sketched the proof of the simplest case
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C.1; 1I �1/. The apparent motivation was to introduce the notion of ı–moves as an
alternative to torus twists. Such moves depend on a choice of auxiliary band (and
other data not specified in that paper), so appear to provide additional generality. We
show, however, that ı–moves are essentially equivalent to torus twists under broad
hypotheses, for example, on irreducible homology spheres (Corollary 5.5). Since
incompressible tori are tightly constrained in 3–manifolds, ı–moves are harder to find
than they initially seem to be, and might be most easily located using the well-developed
theory of incompressible tori (as Akbulut implicitly did in obtaining the proof he posted
from our Section 3). To obtain our equivalence, we must first address foundational
issues such as well-definedness of ı–moves. We also observe technical difficulties that
need to be addressed whenever ı–moves (or torus twists) are used for diagrammatically
cutting and pasting 4–manifolds.

Remarks (a) It is known that a cork twist cannot change the homeomorphism
type of a 4–manifold, since every boundary diffeomorphism f of a contractible 4–
manifold C extends over it homeomorphically. For a short proof, use f to glue two
copies of C along their boundary, obtaining a homotopy 4–sphere that automatically
bounds a contractible 5–manifold W (via a smooth h-cobordism to S4 , or by working
topologically and observing that @W is homeomorphic to S4 by Freedman [11]). We
can view W as a topological h-cobordism of C with a fixed product structure over
@C realizing f . Freedman’s h-cobordism theorem [11] extends the product structure,
and projecting to C extends f .

(b) Some authors require corks to be Stein domains by definition. This seems to be
an entirely separate issue from that of changing diffeomorphism types by twisting,
although Akbulut and Matveyev [6] showed that corks, in the original sense where f
is an involution, can always be modified to admit Stein structures. The author has made
no attempt to address the Stein condition in this paper or its predecessor. It remains an
interesting question whether any of these corks are (or can be modified to be) Stein
domains.

We work in the smooth category throughout the paper. For simplicity, we assume
(unless otherwise indicated) that all 3–manifolds are orientable and closed, and all
4–manifolds are orientable and compact (allowing boundary).

2 Torus twists

We begin with a quick exposition of the 3–manifold diffeomorphisms that will be
central to this paper. Let T �M be a torus embedded in a 3–manifold. Identify a
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tubular neighborhood of T with S1 �S1 � I , and let ˛ and ˇ denote S1 � f�g � f0g

and f�g �S1 � f0g, respectively, for some � 2 S1 .

Definition 2.1 The torus twist on T parallel to ˛ is the diffeomorphism f W M !M

obtained from f .�; �; t/ D .� C 2� t; �; t/ by extending as the identity on the rest
of M and smoothing.

Informally, we cross a Dehn twist on the annulus ˛� I with the identity on ˇ . This is
a well-known, classical diffeomorphism of M , sometimes called a Dehn twist on T .
Since T can be identified with S1�S1 so that ˛ represents any preassigned primitive
homology class of T , every element of H1.T / determines some power of a torus twist.
More formally, T is contained, by Lie group multiplication, in the group DiffC.T / of
orientation-preserving self-diffeomorphisms of T , inducing an isomorphism �1.T /!

�1.DiffC.T //. This descends by torus twisting to a homomorphism Z˚ZŠ�1.T /!

�0.DiffC.M //. For example, when M is a torus bundle, all self-diffeomorphisms
fixing one fiber pointwise arise by twisting on another fiber. For most irreducible
3–manifolds M , torus twists on all incompressible tori together generate the group
�0.DiffC.M // up to a finite extension. (See the last corollary of Waldhausen [22].)
When T is compressible and M is irreducible, T either lies in a ball (bounded by the
compressed torus) or bounds a solid torus over which the action of T extends, so all
twists on T are isotopic to the identity. Note that irreducibility is necessary: For a
connected sum, we expect nontrivial slide diffeomorphisms constructed by dragging
the site of the sum around a loop  in one summand. Such a diffeomorphism can be
described as a twist about the compressible torus bounding a tubular neighborhood
of  .

We can similarly define twists on Klein bottles. We will see in Section 5 that these are
less useful than torus twists, but we introduce them for completing the discussion there
of ı–moves. If K �M is an embedded Klein bottle, we identify K as a bundle over a
circle ˇ with fiber ˛ . The previous description can still be applied over intervals in ˇ ,
since the monodromy around ˇ reverses orientations of both ˛ and I (by orientability
of M ), hence, commutes with the Dehn twist.

Both kinds of twists have a convenient surgery description. First, draw a framed link
diagram of M so that ˛ is an unknot in the ambient S3 with the torus or Klein bottle T

inducing the 0–framing. Such a diagram can be obtained from an arbitrary diagram, in
which ˛ appears as a framed knot, by blowing up to change some crossings and adjust
its framing. (One can also simultaneously control ˇ so that the two curves bound disks
in the ambient S3 with disjoint interiors.) To realize the twist, blow up a ˙1–framed
curve  at ˛ , slide it around T as in Figure 1 until it returns to its original position,
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˛

ˇ

 !

 !

�1

 !
T

Figure 1: Torus twisting

�s r

Figure 2: The double twist knot �.r;�s/

and blow it back down. Any curve intersecting T must slide over  as it passes,
creating the required twist. To verify that this gives a well-defined diffeomorphism, it
is not necessary to see that T is embedded, only that  returns to its original position
after sliding around M (to allow conjugation by the diffeomorphism from M to its
blowup.)

3 Diagrams of corks

The first examples of infinite order corks were constructed in [13]. Let E.r; s/ denote
the complement of the double twist knot �.r;�s/ shown in Figure 2 (where the boxes
count full twists). The manifold C.r; sIm/ obtained from I �E.r; s/ by adding a
2–handle along an m–framed meridian in f1g �E.r; s/ is contractible. Its boundary
has an obvious incompressible torus T , namely f0g�@E.r; s/. (In fact there is a pair of
incompressible tori, exhibited by moving the 2–handle to the middle level 1

2
and taking

the tori at levels 0, 1. These are interchanged by an orientation-reversing symmetry
of the construction, and they are only parallel when jmj D 1.) Let f W @C.r; sIm/!
@C.r; sIm/ be the torus twist on T parallel to the longitude � of T (the curve bounding
a Seifert surface in f0g �E.r; s/). In [13] it was shown that for fixed r; s; n> 0>m,
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Figure 3: The cork C.r; sIm/

there is a canonical embedding C.r; sIm/,!X 0
0
DE.n/ # .r C s�m� 3/CP2 into a

blown up elliptic surface. It was also shown that the manifold X 0
k

obtained from X 0
0

by cutting out C.r; sIm/ and regluing it using f k is the corresponding blowup of
the manifold Xk obtained from E.n/ by the Fintushel–Stern construction on the knot
�.k;�1/. (The blowups can usually be avoided.) Since these latter manifolds for k 2Z
are known to be pairwise nondiffeomorphic [9], [10], each choice of r; s > 0 > m

yields an infinite order cork. In particular, the self-diffeomorphisms f k are not related
to each other by any self-diffeomorphism of the cork, or to the identity unless k D 0.
(This last sentence applies to a larger range of r; s;m, due to the obvious symmetries
C.�r;�sIm/ D C.r; sIm/ D C.s; r Im/ and the reflection reversing the sign of m.
However, it is crucial that rs > 0, ie the twists in Figure 2 have opposite handedness.
Otherwise, C.1;�1I �1/ is a counterexample; see Corollary 4.4 and its preceding
discussion.) The existence proof of an infinite order cork producing the family fXkg

did not use any handle diagrams, and recognizing the corks required only some simple
3–dimensional surgery. Since it seems useful to understand the proofs using diagrams,
we now provide their translations. The resulting proofs are independent of [13] and
almost entirely handle-theoretic, but seem unlikely to have been conceived without
benefit of the abstract version.

To draw diagrams of the manifolds in [13], we need diagrams of products of various 3–
manifolds with I and S1 . We use a method that was pioneered by Akbulut and Kirby;
see eg [5; 2]. A detailed exposition is given in [14, Section 6.2], particularly the solved
Exercise 6.2.5(b) (and Example 4.6.8 for products with S1 ). We illustrate with the
diagrams of C.r; sIm/ in Figure 3. Ignoring the m–framed meridian in each diagram,
we obtain I �E.r; s/. To understand the resulting diagram on the left, consider the
horizontal plane of reflection. Adding its point at infinity and then thickening, we
obtain an embedding of I �S2 in S3 that represents the lateral boundary of I �B3 .
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Figure 4: The cork C � C.r; sIm/

The upper and lower complementary 3–balls in the diagram represent f1g �B3 and
f0g �B3 , respectively. The dotted knot �.r;�s/ #��.r;�s/ in the diagram is the
boundary of the ribbon disk I � �.r;�s/� I �B3 (where we interpret the knot as a
tangle in B3 ). This disk, which can also be interpreted as the half-spin of the tangle
in B4 , should be deleted from B4 to obtain I �E.r; s/ (as the dot indicates). The
dashed arc represents the ribbon move transforming the dotted knot into a 2–component
unlink, exhibiting the ribbon disk with a pair of local minima and a saddle point. If
we use this decomposition to build a handle diagram of the complement, we obtain
the diagram on the right, with the dotted unlink representing the pair of local minima
and the 0–framed 2–handle arising when the saddle is submerged into the 4–ball. The
m–framed meridian in each diagram is the 2–handle specified in the definition of
C.r; sIm/. To see the torus T in the left diagram, note that the bisecting 2–sphere
in S3 intersects the knot in two points. Remove these intersections by ambient surgery,
using a tube comprising the boundary of a tubular neighborhood of the lower knot
��.r;�s/D �.�r; s/. The resulting torus in @C.r; sIm/ is T D f0g � @E.r; s/ (seen
in the boundary orientation inherited from C.r; sIm/). This torus is also visible in
the right picture, running twice over the 0–framed 2–handle (corresponding to the two
intersections of T with the dashed arc in the left picture).

To exhibit infinite order corks, we need a very different description of C.r; sIm/ and
its boundary diffeomorphism. The 4–manifold C shown in Figure 4 arises from the
proof of the main theorem of [13]. We discuss how this figure arises and then show
that C is diffeomorphic to C.r; sIm/. (This entire discussion could be excised to
leave a complete but mysterious proof that C is an infinite order cork. Note that it is
obviously contractible, being simply connected with Euler characteristic 1.) In [13],
the cork C was constructed from Y D I �†�S1 , where † is a punctured torus, by
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adding three 2–handles and then drilling out the cores of two of them (connected by
annuli to the far boundary of the product with I ). If we modify Figure 4 by removing
all four circles passing through twist boxes, as well as the m–framed meridian, what
remains is this Y . We can see this by unwinding the two large dotted circles from
each other, but it is more instructive to view the picture as a product with S1 : Starting
from a trivial proper embedding † � B3 with � D @† on the equator of @B3 , we
obtain its tubular neighborhood I �† as the complement of a clasped pair of arcs,
with the boundary of each in a single hemisphere. By the method used in the previous
paragraph, this picture becomes the clasp of the two large dotted circles in the top
center of the figure, and its mirror image at the bottom. Thus, we have I �† � I

exhibited as a 0–handle and two 1–handles. The algorithm for changing a product with
I to a product with S1 introduces a .kC 1/–handle for each k –handle of the original
diagram. In this case, we obtain a new 1–handle (the central dotted circle) and the two
0–framed 2–handles. We can think of the 1–handle as connecting the top and bottom
boundaries I �†� f0; 1g to each other, and each 2–handle connects a meridian of a
dotted circle (essentially the core of the 1–handle) with its mirror image on the other
boundary component.

We complete the analysis of Figure 4 by restoring the remaining curves to get C . At
each twist box, we have a rationally canceling handle pair that represents a 2–handle
added along a generator of †, with its core drilled out (the dotted circle). The m–framed
circle represents the undrilled handle attached to a product circle. Note that the diagram
can be simplified by canceling the m–framed meridian, and when r D s D 1, there is
further cancellation at the twist boxes. (When mD�1 also, Figure 1 of Akbulut’s recent
preprint [4] shows the result.) According to the construction in [13], the cork twist on
C is a twist on the torus T Df0g�@†�S1 parallel to �Df0g�@†�f�g. Interpreting
� as the equator of @B3 as before, we draw it as in Figure 5. (It encircles the clasp
in I �†� I , but is drawn at one side to make room for the additional handles of Y .)
Since the dual curve �� T is a product circle in Y , the pair appears as in that same
figure. Thickening these to annuli using the 0–framing, we obtain a punctured torus T0

whose union with an embedded disk is T . We will verify directly from the diagrams
that ı D @T0 bounds an embedded disk in @C with interior disjoint from T0 , and that
the �–twist on the resulting torus has the required properties, but first we identify C :

Proposition 3.1 The 4–manifold C in Figure 4 is diffeomorphic to C.r; sIm/ in
Figure 3.

Note that this gives an independent check that C is made from a double twist knot
whose twists have opposite handedness. In [13], this handedness was determined by a
delicate inspection of 3–manifold orientations.
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Figure 5: The punctured torus T0 in @C is obtained by 0–framed thickening
of �[� . Its boundary is ı D @T0 .

Proof Starting from Figure 4, unwind the clasps of the two large dotted circles by
moving the leftmost strand in the diagram through the large right circle and back to its
place. After shortening the two 0–framed curves by an isotopy, we obtain Figure 6. Next,
we perform two double 1–handle slides as indicated. That is, each arrow represents
two strands of a dotted circle being slid across another one. Throughout this proof,
the link consisting of all dotted circles will be an unlink, so we are sliding 1–handles
in the classical sense (ie, no nontrivial dotted ribbon links appear). We encounter a
notational technicality: We slide using 0–framed parallel copies of the small dotted
circles. These pass through negative twist boxes, so to restore the 0–framings we must
add compensating positive twist boxes. The result, after the two obvious handle pair
cancellations, is Figure 7. Next, simplify the two large dotted curves by pulling the
clasps through all twist boxes as indicated by the arrows, dragging along the dotted
circle with the m–framed meridian. Raise the lowermost strand of the latter dotted
circle so that it is positioned between the �s–framed 2–handle and the ˙r twist boxes,
then eliminate its self-crossing by flipping over the clasp running through the ˙r twist
boxes. The rightmost dotted circle can then be shrunk into the middle of the figure,
which should then be recognizable as Figure 8. We next wish to cancel the �s–framed
2–handle. Since we cannot slide a dotted circle over a 2–handle, we first introduce
a canceling 1–2 pair as in Figure 9, then double slide the new 2–handle as indicated
and cancel the �s–framed handle, obtaining Figure 10. (Note that after the double
slide, the new 2–handle initially runs twice through the �s–twist box, consistent with
sliding over a �s–framed curve. However, we can immediately pull it down through
the twist box to its position in Figure 10.) Finally, slide the �r –twist box across the
circle with the rightmost dot. This is a standard 3–manifold move (see Figure 18 in
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Figure 6: Double 1–handle slides on a diagram of C obtained from Figure 4
by isotopy
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Figure 7: Further simplifying C

Section 5), obtained by repeatedly blowing up a C1–framed curve encircling the twist
box, sliding it across the dotted circle, and blowing it back down. One way to interpret
this move 4–dimensionally is to think of the dotted circles as representing #3 S1 �S2 ,
containing a framed link. Perform the move on this 3–manifold, then uniquely fill in
the 4–manifold \3 S1 �D3 . This move changes the framing on one 2–handle from
�r to 0, and that handle immediately cancels a dotted circle. The result is isotopic to
the right-hand diagram in Figure 3.

Proposition 3.2 The circle ıD @T0� @C in Figures 5 and 11 bounds a disk D in @C
with interior disjoint from T0 . The resulting torus twist parallel to � changes k by 1

in Figure 11 while otherwise preserving all curves in the figure (and their orientations).

There are various approaches to the proof. A simple way to exhibit D disjoint from
the fine curves is by handle sliding ı to get an unknot, as in Figure 12. (Although this
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Figure 8: An isotopic simplification of Figure 7
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Figure 9: A new 1–2 pair and a double slide
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Figure 10: Transferring �r twists yields C.r; sIm/

is unnecessary for proving our main theorem, an interested reader can verify that ı
is isotopic to ı1 . Two double handle slides change this to ı2 , and two more yield an
unknot. The boundary orientation of ı induced by the counterclockwise orientation
of T0 in Figure 11 is shown as an aid.) We can make D disjoint from int T0 by
3–manifold theory (see proof of Theorem 5.4), but this could create intersections with
the fine curves, resulting in their unexpected movement during the torus twist (see last
paragraph of Section 5.) This issue can presumably be dealt with, but we instead prove
the theorem definitively with a direct approach.
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Figure 11: The 4–manifold Zk.r; sIm/ is obtained from C.r; sIm/ by
adding 0–framed 2–handles along �1 , �2 and � , then a 3–handle (and ig-
noring the other fine curves). Note that some curves intersect the punctured
torus T0 , which is drawn explicitly as a thickening of the wedge �[� . Its
boundary ı is unlabeled.

Proof Set k D 0, and drag T0 and all auxiliary curves in Figure 11 simultaneously
through the computation of the previous proof. This is routine but tedious; details are
left to the intrepid reader. (One can treat T0 as a framed wedge of circles, as long as
its intersections with the auxiliary curves are handled carefully. These intersections
will eventually be dragged through the �s–twist box, in the downward direction. Note
that the curves �i will remain closely encircling the negative twist boxes, so need not
be carefully tracked; the curves �i will be similarly rooted to the positive twist boxes
as soon as these boxes appear.) The result is Figure 13, where the curves �i and �i
encircling the twist boxes are suppressed, and T0 is the obvious 0–framed thickening of
�[�. (We have drawn the thickening near where T0 intersects the other curves.) We

Algebraic & Geometric Topology, Volume 17 (2017)



Infinite order corks via handle diagrams 2875

�s
�r

m

0 0
ı1

ı2

Figure 12: A proof that ı bounds a disk disjoint from the fine curves of Figure 11

see that T0 is as originally described in C.r; sIm/, with � the longitude of �.�r; s/

and � a meridian, and the disk D easily visualized. The remaining curves can be
explicitly seen to avoid T except for the original intersections of T with � and � .
The torus twist f wraps these curves parallel to � at the intersections, and fixes all
curves elsewhere. When we transport this description back to Figure 11 with k D 0,
we can undo the wrapping caused by f k by an isotopy that restores the twist boxes to
their original values ˙k .

Figure 11 was drawn so that the case r D sD�mD 1 exhibits Akbulut’s “ı–curve” [4,
Figure 4] as the boundary of T0 . We will show in Section 5 that under broad hypotheses,
every ı–curve arises from a torus in this manner. The author’s first diagrammatic proof
used a different approach: Blow up a .�1/–framed unknot parallel to � in the lower
half of Figure 11 (encircling the �k –twist box), slide it around T to get a curve
encircling the Ck –twist box using a diagram similar to Figure 12, then blow it back
down. While this is the same torus twist (cf also Figure 1 and its discussion in the last
paragraph of Section 2), it is less clear from this method that the implicitly described
torus is embedded. However, the diffeomorphism is still well-defined by this procedure
and has the required properties. This easier method is strong enough for all of our
subsequent discussion, since we do not need to exhibit the diffeomorphism as a twist
on an embedded torus.

Now consider the 4–manifold obtained from C by attaching 0–framed 2–handles along
the fine curves �1 , �2 and � shown in Figure 11. We will show that its boundary
contains a nonseparating 2–sphere. Add a 3–handle along this sphere and call the result
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Figure 13: A complete picture of the torus T � @C , with the fine curves of
Figure 11. The generating circles of T are � and � , the latter of which has
been partially thickened in T to show the intersections of T with the fine
curves. The rest of T is given by the horizontal plane of symmetry (and point
at infinity), surgered by a tube following the lower half of the dotted circle so
that T contains � and � .

Zk.r; sIm/. This is independent of the choice of 2–sphere (by Trace [20], for example),
and canonically contains a copy of C . Another picture of Zk.r; sIm/ is given by
Figure 14, where we have switched to dotted ribbon knot notation and canceled the new
2–handles �1 , �2 and � against 1–handles. (Ignore the curve � in Figure 14 but include
the other fine curves, which come from 2–handles in Figure 11, and the 3–handle.)
Canceling � has joined the two large dotted circles, forming the knot Kk #�Kk , where
Kk is the twist knot �.k;�1/. This dotted ribbon knot represents I �E.k; 1/; cf
Figure 3. (The comparison with I �E.r; s/� C.r; sIm/ is superficial.) Without the
fine curves, Figure 14 represents the manifold Wk D S1 �E.k; 1/. (Each handle of
I �E.k; 1/ generates an additional handle of index higher by one in Wk (cf Figure 4),
with the canceled 2–handle � generating the 3–handle.) The fine curves in Figure 14,
two of which are isotopic, represent the product S1 (m–framed), meridians of Kk

(�r –framed and �s–framed), and its longitude � in f0g�E.k; 1/. Unlike previously,
this recognition of Wk is crucial to our proof, so we provide a check:

Proposition 3.3 The manifolds Zk.r; sIm/ and Wk given by the diagrams are well-
defined (ie the relevant 3–manifolds have a nonseparating sphere for the 3–handle). The
3–manifolds @Wk are all diffeomorphic, preserving the fine curves of Figure 14 and
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Figure 14: Another picture of Zk.r; sIm/ , with extra curve �

their orientations. The 4–manifold W0 is diffeomorphic to T 2 �D2 , with � bounding
the essential disk, and the �r– and m–framed curves arising as factors of a product
decomposition T 2 D S1 �S1 .

Proof Interpreting Figure 14 as a 3–manifold (ignoring the 3–handle), we can eliminate
the clasps from the dotted ribbon knot by blowing up a C1–framed unknot as in
Figure 15, sliding this unknot over the tall unknots as shown, and blowing back down.
We can now cancel the ˙k twist boxes by twisting one tall unknot k times about
its long axis. This identifies each @Wk with @W0 (and similarly for Zk.r; sIm/) and
reduces well-definedness to the kD 0 case. Now consider Figure 14 to be a 4–manifold.
When k D 0 the ˙k –twist boxes can be erased, so we can pull the outer strand of
� through the C1–twist box and unwind the outer strands of the large dotted circle
as in Figure 16. To get this figure, we also swing both tall curves to the inner rear
of the large dotted circle. They are then parallel, so one can be slid over the other to
become a 0–framed unknot unlinked from the rest of the diagram. This exhibits the
nonseparating sphere in @Wk . Canceling this unknot with the 3–handle, we obtain
Figure 16, which is the Borromean rings with fine meridians of each component. This
has the required interpretation.

We can now identify the manifolds Zk.1; 1I �1/ for all k 2 Z. First, Z0.r; sIm/ is
obtained from W0 D T 2 �D2 by adding three 2–handles along embedded circles in
copies of T 2 � fpg, as shown in Figure 17. (The 1–handles and 0–framed 2–handle
exhibit T 2 �D2 so that the trivial torus bundle structure on its boundary is easily
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Figure 15: Simplifying @Wk
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Figure 16: Identifying W0 as T 2 �D2

visible.) When r D sD 1 and mD�1, this diagram is a well-known description of an
elliptic fibration over a disk, a cusp neighborhood with an extra vanishing cycle; see
eg [14, Section 8.2]. Thus, Z0.1; 1I �1/ naturally embeds in the elliptic surface E.n/

for any fixed n > 0, and is easily seen in link diagrams of the latter. The curve � is
a section of the induced torus bundle structure on @Z0.1; 1I �1/ (as is again visible
in Figure 17; see [14]). For general k , Zk.r; sIm/ is obtained from Z0.r; sIm/ by
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Figure 17: Z0.r; sIm/ showing elliptic fibration of Z0.1; 1I �1/ with sec-
tion �

replacing W0 D T 2 �D2 by Wk , preserving the longitude � . This is precisely the
Fintushel–Stern knot construction, using the knot Kk , and (when r D s D 1 and
mD�1) using a regular fiber of the elliptic fibration on Z0.1; 1I �1/.

To prove our main theorem, we need one last routine lemma:

Lemma 3.4 A self-diffeomorphism ' of the pair .@Z0.1; 1I �1/; �/ that preserves
the orientation of � must be isotopic to the identity (through self-maps of the pair).

The control of � is necessary, in order to rule out twists on fiber tori. The proof rules
out horizontal tori.

Proof We can identify each fiber of the torus bundle with R2=Z2 so that � is zero in
each fiber. Then the monodromy is an element A 2 SL.2;Z/. If we use the obvious
basis for R2 in Figure 17, then A is given by �=2 rotation. (This is both well-known
and routine to verify in the figure. See also [14].) Choose a fiber F and assume its
image '.F / is transverse to it. Since F is incompressible, each circle of intersection
is trivial in F if and only if it is trivial in '.F /. Each innermost circle in '.F / also
bounds a disk in F . The two disks together bound a ball B . If one disk intersects �
(necessarily in a unique point), then so does the other, and � \B is an unknotted arc
in B . (Otherwise, the complement of a lift of � to the universal cover of @Z0.1; 1I �1/

would have nonabelian fundamental group.) Either way, we can eliminate trivial circles
by isotoping ' pairwise until all circles (if any remain) are essential. These must be
parallel to each other in both of the tori F and '.F /, cutting each into annuli. Since
˙1 is not an eigenvalue of A, no such annulus of '.F / can surject onto the base circle.
Thus, if the intersection is nonempty, '.F / has more than one annulus, and we can
choose one that does not contain the intersection point with � . This fits together with
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an annular region in F that we choose disjoint from � , to form a nullhomologous torus.
This torus is compressible (as seen, for example, in the Z–cover of @Z0.1; 1I �1/), so
it bounds a solid torus, with the annuli bounded by longitudes of it. We can now reduce
the number of intersection circles until '.F / is disjoint from F . Cutting along F ,
we see '.F / as an incompressible torus in F � I . Applying standard theory to the
complement of � (eg Waldhausen [21, Proposition 3.1]) we can arrange '.F / to be
a fiber, and then isotope ' so that it covers the identity map on the base circle. It is
easily checked that the only elements of SL.2;Z/ that commute with A are powers
of A. Thus, on each fiber, ' restricts to Aj for a fixed j . We can then change ' to
the identity by a fiber-preserving isotopy covering a 2�j –rotation on the base.

We can now prove our main theorem. For k 2 Z and fixed r; s; n > 0 > m, let Xk

be the 4–manifold obtained from E.n/ by the Fintushel–Stern construction on a fiber,
using the twist knot Kk (so X0 DE.n/). We have embeddings

C.r; sIm/�Z0.r; sIm/�X0 # N CP2;

where N D rCs�m�3� 0, and the last embedding is obtained from the simplest case
r D s D�mD 1 by blowing up meridians of the three negatively framed 2–handles
of Figure 17 to suitably lower their framings. Let X �

k
be the manifold obtained from

X0 # N CP2 by cutting out C.r; sIm/ and regluing it via the torus twist f k .

Theorem 3.5 [13] For each k , the manifold X �
k

is diffeomorphic to Xk # N CP2.
In particular, the manifolds X �

k
for k 2 Z are pairwise nondiffeomorphic, so (for each

fixed choice of r; s;m as above) .C.r; sIm/; f / is an infinite order cork.

Proof First consider the simplest case r D sD�mD 1. Starting from the embedding
Z0.1; 1I �1/ � X0 , we can cut out a regular neighborhood W0 of a fiber inside
Z0.1; 1I �1/ and replace it by Wk , obtaining Zk.1; 1I �1/�Xk with the embedding
preserving � (Proposition 3.3 and below). Alternatively, we can cut out the cork
C.1; 1I �1/ and reglue it by f k , obtaining Zk.1; 1I �1/ � X �

k
, again preserving �

(Proposition 3.2). Clearly, the complements of Zk.1; 1I �1/ in these two closed
manifolds are identified (preserving � ). But the two embeddings of Zk.1; 1I �1/ are
related by a diffeomorphism preserving � and its orientation, so by Lemma 3.4 we
can assume they agree on the identified boundaries of the complements. Thus, the
diffeomorphisms fit together as required.

For the general case, we blow up to obtain embeddings

Z0.r; sIm/�Z0.1; 1I �1/ # N CP2�X0 # N CP2:
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The first embedding is obtained from Figure 11 by adding �1–framed meridians to the
curves with framings �r , �s and m so that blowing down changes all three framings
to �1. After the two 2–handles �i of Z0.r; sIm/ cancel their 1–handles, two sets of
these �1–framed meridians can be drawn as parallel copies of the curves �i . Since
the torus twist does not disturb �1 , �2 or the m–framed meridian, it gives embeddings
Zk.r; sIm/�Zk.1; 1I �1/#N CP2�X �

k
. The theorem now follows from Lemma 3.4

as in the previous case.

In principle, there should be a direct proof of the theorem, by drawing X �
k

and
Xk # N CP2, and exhibiting an explicit diffeomorphism. A link diagram of Xk was
drawn by Akbulut, then independently produced as [14, Figure 10.2] (discussion on
pages 407–408), using the technique of [2]. This diagram is obtained from Figure 11
of Zk.1; 1I �1/ by adding some 2–handles and a 4–handle. One 2–handle is attached
along � with framing �n. The others are �1–framed and attached along parallel
copies of the circles with framing m and �r (or �s ), but the two types of new curves
are interleaved. A diagram of X �

k
can be similarly constructed by torus twisting

Z0.1; 1I �1/. To show the diagrams are diffeomorphic, it suffices to connect the �r –
and m–framed curves by a framed arc whose union with the two attached circles and �
is preserved (after handle slides) by the torus twist, since all the new 2–handles will be
attached in a neighborhood of these. This project has not been attempted with sufficient
intensity for success.

4 Twists that preserve 4–manifolds

Having explicitly exhibited infinite order cork twists, we now address the opposite
issue, finding conditions under which twisting a contractible submanifold does not
change the diffeomorphism type of a 4–manifold. Let T �M be an embedded torus
or Klein bottle in a 3–manifold, and let f be the twist on T parallel to a circle ˛ � T ,
as described in Section 2. Let W be the elementary cobordism built from I �M

by adding a 2–handle h to f1g �M along a parallel copy  of ˛ , with framing ˙1

relative to T . Thus, the top boundary @CW is obtained from M by surgery on  .

Theorem 4.1 The twist f on @�W D f0g �M extends over W so that it is the
identity on @CW .

Proof Let gt be an isotopy of the identity on M , supported in a tubular neighborhood
of T , that preserves T setwise but rotates it once parallel to a circle ˇ dual to ˛ .
Interpret the isotopy gt ıf as a self-diffeomorphism of I �M . We can assume that 
lies outside the support of this map in f1g �M , then extend over the handle h by the
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identity. In @CW , Figure 1 (reversed) shows an isotopy rotating T back to its original
position while undoing the twist produced by f .

In the case where T is a torus, the above diffeomorphism of W is a manifestation of
a fishtail twist. The latter has been used in various forms for some decades; see [12]
for a recent discussion. If N denotes a tubular neighborhood of T in M , then
I �N � T 2 �D2 , and I �N [ h is a fishtail neighborhood. It is well known that
the twist on f0g �T parallel to ˛ extends over this neighborhood as the identity on
the rest of its boundary. The main point is that the boundary is a torus bundle with
monodromy given by a Dehn twist parallel to ˛ , so the torus twist can be absorbed by
a fiber-preserving isotopy covering a full rotation of the base.

As an application, we partially answer [13, Question 1.6]. Let D � B4 be a slice
disk for a composite slice knot K D @D . For example, D can be the obvious ribbon
disk for any nontrivial knot of the form � # �� , the case considered in [13]. Let
C D C.D;m/ be the contractible 4–manifold obtained from the slice complement
by adding a 2–handle along a meridian with framing m¤ 0, so that C is C.r; sIm/

in the case � D �.r;�s/. The boundary of C is the homology sphere obtained by
.�1=m/–surgery on K . It is irreducible and has incompressible tori as in the previous
section: Start with a sphere S in S3 intersecting K in two points and splitting it
nontrivially as a sum K0 # K1 . Remove the intersections by surgering S to a torus in
S3�K , using a tube following K1 . Such a torus has an obvious product decomposition,
with one factor a meridian of K and the other a 0–framed longitude of K1 . The cork
twists of C.r; sIm/ in the previous section have this form for a longitudinal twist, on
the unique incompressible torus if m D �1. It was asked in [13] whether twisting
a fixed embedding of C by the full action of such a torus could give a family of
distinct diffeomorphism types indexed by Z˚Z. Previously, a preliminary version of
Akbulut’s 2014 posting [3] unsuccessfully attempted to show that the meridian twist
was an infinite order cork twist in the case of the obvious ribbon disk for the square knot
with m D �1, that is, the manifold C.1;�1I �1/ in our present notation. However,
both constructions are impossible when mD˙1:

Corollary 4.2 Every torus twist parallel to the meridian of K extends over C.D;˙1/.
In particular, for each r; s 2 Z, the meridian twist on @C.r; sI˙1/ extends over
C.r; sI˙1/.

Proof We find a cobordism W � C as in the theorem with @�W D @C . Since
the diffeomorphism extends over W as the identity on @CW , we can extend as the
identity over the rest of C . To construct W , begin with a collar of @C . The additional
2–handle h is obtained by thickening the cocore of the meridian 2–handle h� of C .
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The attaching circle of h is a 0–framed meridian to that of h� . Interpreting the diagram
as a 3–manifold and blowing down h� , we realize h by a �1–framed meridian of K

as required.

It follows that for a fixed embedding and torus, cutting C.DI˙1/ out of a 4–manifold
and regluing it by torus twists generates a family of 4–manifolds whose diffeomorphism
types are indexed at most by Z. The problem remains open when jmj> 1. However,
distinguishing meridian twists of C.r; sIm/ would require a somewhat different ap-
proach, since the proof in [13] depends on an embedding in a 4–manifold X satisfying
the hypothesis of the following for the meridian ˛ :

Corollary 4.3 Let Y � X be a 4–manifold pair, and let f be a twist on a torus or
Klein bottle T � @Y , parallel to some curve ˛ . Suppose that X� int Y contains an
embedded disk with boundary ˛ , inducing framing ˙1 relative to T . Then cutting
out Y and regluing it after twisting by a power of f yields a manifold diffeomorphic
to X .

Proof Observe the cobordism W in X� int Y . Extend f k outward from there by
the identity.

The same question of [13] asks about longitudinal twists for slice disks not covered
by the main theorem of that paper. Ray and Ruberman [18] have recently observed
that when K1 is a torus knot, every twist on the torus determined by K1 extends over
C.D;˙1/. This is seen by combining Corollary 4.2 with the Seifert circle action on
the complement of K1 , which shows that twisting on some (nonzero) longitude is
isotopic to the identity. A closer look yields the first examples of contractible manifolds,
including C.1;�1I �1/, that cannot be nontrivial corks even though their boundaries
have incompressible tori:

Corollary 4.4 Let C D C.D;˙1/ be obtained as above with @D D � #�� , where �
is a torus knot. Then every diffeomorphism of @C extends over C .

Proof The boundary of C is �1–surgery on � # �� , which is made by gluing
together the complements of � and �� along their boundary tori T . (The surgery can
be interpreted as a twist in the gluing map.) Since T is the unique incompressible
torus in @C , it is preserved by any self-diffeomorphism (up to isotopy). We have seen
that twists on T extend. The nonzero signature of � rules out orientation-preserving
diffeomorphisms of @C switching the two knot complements, and orientation-reversing
switches are ruled out by the handedness of the gluing map. The complement of � is
Seifert fibered with two exceptional fibers, and any self-diffeomorphism preserves this
structure, so we are left with only the involution of � that reverses its string orientation.
The induced involution of @C obviously extends.
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5 Torus twists and ı–moves

In this section, we give a careful definition of Akbulut’s ı–moves, and almost entirely
reduce them to twists on tori, Klein bottles and spheres. Torus and Klein bottle twists
were introduced in Section 2. Twists on spheres are defined similarly but have order
at most 2 in �0.DiffC.M // (since �1.SO.3// D Z=2). Klein bottle twists are of
limited use: They only arise when M contains the I –bundle over the Klein bottle
with orientable total space, a somewhat rare phenomenon. In particular, this does not
occur for homology spheres, so there can be no Klein bottle cork twists. A tubular
neighborhood of a Klein bottle K is bounded by a torus T double covering K . This is
incompressible if and only if K is, since any compressing disk for K must be bounded
by an orientation-preserving loop in K . It is easy to see that the square of a twist on K

is a twist on T parallel to the same circle ˛ .

We define ı–moves following Akbulut [4], with additional attention to detail in antici-
pation of the upcoming proofs. First, consider the standard 3–manifold diffeomorphism
given by Figure 18, which can be obtained by blowing up a ˙1–framed unknot around
one twist box, sliding this unknot over the 0–framed circle so that it surrounds the
other twist box, then blowing back down. For a ı–move, start with a framed circle C

in a 3–manifold M . Draw M as surgery on a link L in S3 so that C appears as a
0–framed unknot in S3�L, spanned by a disk �� S3 . Let C˙ be a pair of circles
parallel to C in the diagram and disjoint from �. Connect these circles by a (possibly
complicated) band b in the diagram, disjoint from � and from the interior of the
annulus A bounded by C˙ . (See Figure 19, ignoring the horizontal dashed curve.)
The surface T0 D A[ b is an embedded punctured torus or Klein bottle in S3 �L,
depending on the twisting of b . Let ı D @T0 . Under the additional hypothesis that ı
is unknotted in the 3–manifold M , we can add a suitably framed 2–handle to I �M

along ı and cancel it with a 3–handle to recover I �M . If T0 is orientable, this 2–
handle will be 0–framed in S3 (since the normal to ı along T0 will give the 0–framing
in both S3 and M ). Otherwise, we hypothesize that its framing is 0 in S3 . Since C

is unknotted in S3 and b avoids A and �, we can then apply Figure 18 to change k

to kC 1 in Figure 19. Canceling the new twists by an isotopy in S3 , we return to the
original diagram (ignoring the dashed curve). Assuming the 3–handle can be suitably
controlled (an issue we discuss below), the net effect is a self-diffeomorphism of M .
To see that this diffeomorphism may be nontrivial, note that it wraps the dashed curve
twice around A parallel to C .

Definition 5.1 The above diffeomorphism (when defined) is called a ı–move [4]. The
corresponding link diagram of M , with ı unknotted in M (inducing the 0–framing
in S3 ) and drawn as in Figure 19 for an explicit choice of b , will be called a ı–move
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C1 �1

0 0

Figure 18: Twisting along a 0–framed unknot

k

�k

CC

C

C�

 A� T0

b � T0

�

Figure 19: A ı–move, where ıD @T0 is the band-sum of CC and C� along
the band b

diagram. A ı–move diagram will be called orientable or nonorientable according
to whether T0 is orientable. It will be called compressible if there is a disk d �M

such that d \T0 D @d is neither trivial nor boundary-parallel in T0 . It will be called
incompressible otherwise.

The relation between surface twists and ı–moves begins with the following:

Proposition 5.2 Every torus (resp. Klein bottle) twist on a 3–manifold M is isotopic
to a ı–move with an orientable (resp. nonorientable) diagram.

Proof Let T � M be a torus or Klein bottle, containing circles ˛ and ˇ as in
Definition 2.1 (where ˇ is a section of the circle bundle in the Klein bottle case).
Choose a surgery diagram of M in which ˛ is given by an unknot in S3�L whose
0–framing is given by the normal vectors to ˛ in T , and whose spanning disk is disjoint
from ˇ . Then the subset ˛[ˇ has a neighborhood in T that can be identified with
T0 in the definition of a ı–move, with ˛ identified with C . The boundary ı of this T0

explicitly bounds a disk D � T �M , so is unknotted in M as required, and correctly
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framed. (Even a nonorientable T0 induces the 0–framing on ı in S3 , as seen by using
� to surger it to a disk.) To reinterpret the twist on T parallel to ˛ as a ı–move, we
attach a 2–handle to ı with framing 0, then cancel it with a 3–handle, whose attaching
sphere can be chosen to be D capped with the core of the 2–handle. The ı–move is
realized by blowing up a ˙1–framed circle  at CC , sliding it over the 2–handle at
ı to C� , blowing it back down, and canceling the twists as in Figure 19. If we cancel
the 2–3 handle pair, the slide over the 2–handle becomes an isotopy across the disk
D � T �M . Thus, the slide appears in M as an isotopy dragging  from CC to
C� around T in the direction that avoids the intervening annulus A. (In S3 , we see
a handle slide each time  follows D over a handle.) To show that this ı–move is the
twist on T , it suffices to work in a tubular neighborhood of T containing the support of
the diffeomorphisms and check that the ı–move diverts any curve in M that crosses T ,
parallel to ˛ . This is true for curves intersecting A, as Figure 19 shows. Other curves
through T will be suitably modified as in Figure 1 when  collides with them.

To make progress on a converse to this proposition, we must understand the extent to
which a ı–move is well-defined in general. Attaching the 2–handle along ı caps off
the surface T0 to an embedded torus or Klein bottle T . However, this lives not in M ,
but rather in the manifold M# DM # S1 �S2 obtained from M by 0–surgery on the
unknot ı . If the disk D in M along which the 3–handle is attached is disjoint from
int T0 , we can eliminate the difficulty by canceling the 2–3 pair, obtaining a torus or
Klein bottle twist on M as in the previous proof. However, a proposed advantage of
ı–moves is their apparent additional generality, so we should consider what happens
when int D is allowed to intersect T0 or other surfaces in the construction. (For a
specific example, start with a twist on a separating sphere, surger the sphere at its
poles to an immersed Klein bottle, and interpret this as a ı–move with a nonorientable
diagram.) In this generality, we have a torus or Klein bottle twist f# in M# that we
wish to interpret as a diffeomorphism of M . We recover M from M# by surgering out
the attaching sphere S �M# of the 3–handle, which is obtained by capping D with the
core of the new 2–handle. The first difficulty we encounter if int D intersects T0 is that
f# may move S . Thus, to have a well-defined diffeomorphism of M , we must isotope
f#.S/ back to S in M# before surgering back to M . This is not always possible. For
example, starting from a torus twist exhibited as in the previous proof, we can obtain D

from the obvious disk by tubing it together with an essential sphere along an arc that
intersects A. Then f# can change the arc by a nontrivial element of �1.M / so that f#

changes the class of S in �2.M /. If we know that f# is isotopic to a diffeomorphism
preserving S , then it does extend over the 3–handle, so restricts to a diffeomorphism
on M . However, this diffeomorphism need not be unique: Starting again from a torus
twist, with the torus bounding a solid torus in M , construct a new M 0 by connected
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sum with another 3–manifold. If the sum occurs outside the solid torus, the twist of M 0

is still trivial. If it occurs inside, we can obtain a slide diffeomorphism with infinite
order in �0.DiffC.M 0// (detected by its effect on �2.M

0/). Thus, a ı–move depends
in general on the particular choice of auxiliary disk D capping ı in M . This can be
difficult to specify explicitly in a diagram. To make matters worse, it is a nontrivial
problem to understand the extent to which the choice of isotopy from f#.S/ back to S

affects the resulting diffeomorphism of M . Fortunately, the issue can be resolved
through work of Hatcher and McCullough [15].

Theorem 5.3 Every ı–move diagram for an irreducible 3–manifold M determines a
unique ı–move diffeomorphism up to isotopy. On a reducible manifold M , a ı–move
diagram, together with a choice of auxiliary disk D �M spanning ı (up to isotopy
rel boundary) determines at most one diffeomorphism up to isotopy and elements of
order 2 in �0.DiffC.M //. The latter are composites of twists on a fixed collection of
disjoint spheres.

Proof Given a ı–move diagram and a fixed choice of spanning disk D�M for ı , let
S �M# be the associated surgery sphere. Given two isotopies of f#.S/ to S in M# ,
we wish to relate the corresponding diffeomorphisms of M . Before the surgery is
reversed, these are related by composition with a diffeomorphism of the pair .M#;S/

that is isotopic (not preserving S ) to the identity. By [15, Lemma 3.4] (with nD 0

and S0D S ), such a diffeomorphism, up to isotopy, comes from a composite of sphere
twists on the manifold M1 made by cutting M# along S . We reverse the surgery
by capping off the boundary components of M1 with balls. If M is irreducible, the
spheres in question all bound balls in M , so their twists are isotopic to the identity.
Otherwise, McCullough [17, Section 3] shows that the sphere twists of M generate
a normal subgroup R.M / of �0.DiffC.M // isomorphic to ˚r Z2 for some finite r .
We can surger M on 2–spheres to get a connected sum of irreducible manifolds, and
for any such presentation, the sum spheres and surgery spheres together can be assumed
disjoint and comprise a generating set for R.M /. (Thus, r is at most the number of
prime summands of M , with equality only when M D #rS1 �S2 .) The reducible
case of the theorem follows immediately, since any isotopy of D rel boundary results
in an isotopy of the corresponding diffeomorphisms of M . For the remaining case,
suppose M is irreducible. Existence follows since S lies in the unique isotopy class of
nonseparating spheres in M# , and uniqueness follows since the disk spanning ı in M

is unique up to isotopy rel boundary.

Because of the difficulty of tracking isotopy classes of spanning disks in diagrams, it is
natural either to assume that M is irreducible or to allow the spanning disk to vary. A
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ı–move diagram may represent more than one diffeomorphism in the reducible case
(although the curve ı itself is held fixed by the diagram). We show that under broad
hypotheses, every diagram represents a diffeomorphism, which can be taken to be a
torus or Klein bottle twist.

Theorem 5.4 Every ı–move diagram represents a ı–move that is isotopic to a torus
or Klein bottle twist parallel to C , provided that the 3–manifold M has no RP3

summand, or that the diagram is orientable or incompressible. (The case of a Klein
bottle only arises if the diagram is nonorientable.) If the diagram is compressible, the
resulting twist is isotopic to the identity, provided that the diagram is orientable or M

is irreducible (and not RP3 ).

Corollary 5.5 Every ı–move diagram for a homology sphere M represents a ı–move
that is isotopic to a torus twist. If M is also irreducible, then ı–moves and torus twists
comprise the same subset of �0.DiffC.M //.

Proof of Theorem 5.4. We begin with a ı–move diagram, whose curve ı bounds
an embedded disk D �M by definition. We wish to modify D so that its interior
becomes disjoint from T0 . Then T0[D is an embedded torus or Klein bottle, and the
proof of Proposition 5.2 shows that the resulting twist is realized up to isotopy by the
diagram. Recall that the surfaces T0 and D induce the same framing on their common
boundary ı , so we can assume their interiors intersect in a finite collection of circles.
We can eliminate all circles bounding disks in T0 by successively replacing disks in D

by innermost disks in T0 . If any innermost circle of D is then boundary-parallel in T0 ,
the required new version of D is obtained by joining the corresponding innermost
disk to an annulus parallel to a boundary collar of T0 . Otherwise, either there are no
remaining circles and we are done, or an innermost disk d of D exhibits the diagram
as compressible. In the latter case, if T0 is orientable, the required disk is obtained
by surgering a parallel copy of T0 along d . The resulting torus T is exhibited as the
boundary of a solid torus. Thus, the diagram represents a twist on the boundary of a
solid torus, which is in turn isotopic to the identity. If T0 is nonorientable, @d cannot
bound a Möbius band in T0 , or else we could construct an embedded projective plane,
whose tubular neighborhood would be an RP3 summand violating our hypotheses.
Thus, @d is the unique nonseparating circle in T0 with orientable complement, namely
the circle C generating the ı–move. Now we change tactics, modifying T0 : An
isotopy of M rotating d by a full turn untwists the ı–move near C at the expense of
adding twists on a pair of parallel copies of d . This isotopes the Klein bottle twist f#

in M# to a twist on the sphere S� � M# made from T0 by surgering on d . The
disk D , and hence the surgery sphere S , can easily be made disjoint from S� , so

Algebraic & Geometric Topology, Volume 17 (2017)



Infinite order corks via handle diagrams 2889

that they are not moved by the sphere twist in M# . Thus, f# only changes S by an
isotopy. It follows immediately that the original diagram, together with this S (or D )
and isotopy, determines a ı–move, and it is isotopic to the twist on the sphere in M

descending from S� by surgery on S . We can further surger this sphere in M along a
tube connecting its poles, obtaining a torus twist. Alternatively, if M is irreducible,
the sphere bounds a ball over which the twist extends, so the twist is isotopic to the
identity.

The proof also gives a more general result about the compressible case:

Corollary 5.6 If M has no RP3 summand, then every compressible ı–move diagram
represents an element of order at most 2 in �0.DiffC.M // (that is the identity in the
orientable case).

Proof The orientable case is given by the theorem. Its proof shows that the nonori-
entable case can be reduced to a twist on a sphere.

Corollary 5.7 Suppose M is atoroidal with no RP3 summand. Then every ı–move
diagram represents an element of order at most 2 in �0.DiffC.M //. If the diagram is
orientable or M is irreducible, it represents the identity.

Proof By definition, M has no incompressible tori, and hence no incompressible Klein
bottles. The proof of Theorem 5.4 generates such a surface from any incompressible
ı–move diagram, so the previous corollary applies. The last sentence follows from the
statement of the theorem.

Akbulut’s motivation for introducing ı–moves was to study cork twisting by diagrams
as in Section 3, starting from a pair Y � X and regluing Y . This raises a subtle
technical issue. From the viewpoint of the definition of ı–moves, the issue centers
on the isotopy from f#.S/ to S for surgery reversal. We start with a link diagram
of M D @Y , and then add additional handles along a framed link L0 �M to get X .
Given a ı–move diagram for M , we must understand the effects of a resulting move
on L0 . To introduce the canceling 2–3 handle pair without moving L0 , this link must be
disjoint from the disk D where the 3–handle attaches, a condition that can be routinely
checked. The effects of the resulting torus twist f# on L0 in M# are easy to see: We
can assume that L0 intersects the torus only in the annulus A in the diagram, and
then L0 is only changed at these intersections, by twisting parallel to C . However, we
must then compose f# with a diffeomorphism g (isotopic to idM# ) returning S to its
original position for surgery. Note that g can be complicated; for example, any sheets
of S intersecting T0 in parallel copies of ˇ will be dragged by f# over the 2–handle
attached to ı . The effect of g on f#.L

0/ is an unspecified isotopy in M# that could
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cause band-summing with parallel copies of ı . Reversing this isotopy could cause
intersections of the link with S that would prevent it from surviving the surgery. Thus,
it is not clear how the ı–move affects the auxiliary link L0 without a more careful
analysis.

An analogous problem arises from the viewpoint of expressing ı–moves as torus twists.
If we start from a ı–move diagram, we can see where T0 intersects L0 . Given a
procedure for seeing that ı is unknotted in M , it is routine to verify if the resulting
disk D is disjoint from L0 . If D is not directly visible in the diagram, however, we must
assume it intersects int T0 and apply the method of Theorem 5.4. This replaces D by a
new disk D0 disjoint from int T0 , and it is not generally clear whether D0 intersects L0 .
Since D0 is constructed in a neighborhood of T0[D , it avoids every link component
disjoint from T0 . However, the diffeomorphism is only interesting when L0 has
nontrivial intersection with T0 , in which case further analysis is needed to determine
whether f causes unexpected movement of L0 . This is why we exhibited L0 and the
entire torus T simultaneously in the same diagram for Proposition 3.2. As mentioned
there, there are other approaches, notably drawing T as an isotopy of a circle and
applying Figure 1.
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Detecting essential surfaces as intersections
in the character variety

MICHELLE CHU

We describe a family of hyperbolic knots whose character variety contain exactly
two distinct components of characters of irreducible representations. The intersection
points between the components carry rich topological information. In particular, these
points are nonintegral and detect a Seifert surface.

57M25; 20C15, 57M27, 57M50

1 Introduction

The SL2C character varieties of the fundamental groups of hyperbolic 3–manifolds
carry a lot of topological information. In particular, Culler and Shalen [4] developed
a technique to detect embedded essential surfaces in a 3–manifold that arise from
nontrivial actions of the fundamental group on a tree arising from ideal points in
the SL2C character variety. The SL2C character variety of a hyperbolic knot group
contains multiple components, including the canonical component, which contains the
character of a holonomy representation, and a component containing the characters of
reducible representations. We address the following question:

Question 1.1 How do multiple components in the SL2C character variety interact?
In particular, what can we say about the characters in the intersection between multiple
components?

In this paper we consider a family of two-bridge knots whose character varieties contain
two distinct curves containing characters of irreducible representations. For this family,
the existence of multiple curves was known to Ohtsuki [12] and the existence of exactly
two distinct curves was shown by Macasieb, Peterson, and van Luijk [9]. The main
result of this paper is the following theorem.

Theorem 1.2 There exist infinitely many two-bridge knots having two distinct alge-
braic curve components of irreducible representations in their character varieties and
whose intersection points detect a Seifert surface.
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As is well known, components of the character varieties of two-bridge knots have the
structure of algebraic curves which lie naturally in CP2 (see Section 3.1). As such,
Bezout’s theorem guarantees finitely many points of intersection between any two curves.
Some of these points are ideal, so that, following the methods in Culler and Shalen [4],
they detect essential surfaces. It turns out that for this family, affine intersection points
determine characters of algebraic nonintegral, irreducible representations and also give
interesting topological information. We once again obtain nontrivial actions on a tree,
and hence also detect essential surfaces (see Section 2.5).

Interestingly, the characters in the intersection are nonintegral over the prime 2. In
addition to these, one can check by explicit computation that the character varieties
for the two-bridge knots 77 , 811 , 96 , 910 , 917 , 105 , 109 and 1032 contain exactly
two distinct curves of irreducible representations. It is also true in these examples
that affine intersections between multiple curves are algebraic nonintegral, correspond
to irreducible representations, and, furthermore, the trace of the meridian in these
representations fails to be integral by a prime over 2.

There appears to be no algebrogeometric reason as to why these affine intersection
points are nonintegral, and in particular nonintegral by a prime over 2. For instance,
computed examples of affine intersection points between curves of characters for two
different knots were sometimes integral and other times not. This data suggests the
following questions.

Question 1.3 Suppose K is a hyperbolic two-bridge knot with multiple components of
characters of irreducible representations in its character variety. When are intersection
points between these components algebraic nonintegral? When are they nonintegral
over the prime 2? What slopes are detected? What happens for general knots?

1.1 Outline

The paper is organized as follows. In Section 2 we give the necessary background on
character varieties, two-bridge knots, boundary slopes and actions on trees associated
to algebraic nonintegral representations. We also introduce the family of two-bridge
knots of interest in this paper. Section 3 builds on the work of Macasieb, Petersen
and van Luijk [9]. We construct the character variety, define the smooth variety
birationally equivalent to the character variety introduced in [9], and then use the
birational equivalence to describe the points of intersection between components. In
Section 4 we state and prove a precise version of Theorem 1.2 and determine the
surfaces detected by affine intersection points. In Section 5 we describe in detail the
intersection points for the first two knots in the family. In Section 6 we make some
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final remarks on the existence of multiple components and describe examples of other
two-bridge knots with multiple components.

Acknowledgments The author thanks her advisor Alan W Reid for his generous
guidance, support, feedback and encouragement. The author also thanks Daryl Cooper,
Cameron Gordon, Darren Long, Matthew Stover and Anh Tran for insightful conversa-
tions and suggestions. Finally, we thank the anonymous referee for their comments and
in particular for pointing out that the knots in question do not have a unique Seifert
surface and for suggesting Lemma 4.4.

2 Preliminaries

2.1 Character varieties

We begin with some background on representation varieties and in particular character
varieties. For more on this material see [4].

Let � be a finitely generated group. The SL2C–representation variety of � is the set
R.�/D Hom.�;SL2C/ and has the structure of an affine algebraic set over Q with
coordinates given by the matrix entries of the images of the generators of � .

The SL2C character variety of � is the set zX .�/ D f�� W � 2 R.�/g, where the
character ��W � ! C is the map defined by ��. / D tr.� / for all  2 � . For all
 2 � define the map t W R.�/! C by t .�/D ��. /. The ring R generated by 1
and the maps t for  2 � turns out to be finitely generated by, say, ft1

; : : : ; tm
g for

some elements 1; : : : ; m 2 � . It follows that a character �� 2 zX .�/ is determined
by its values on the finitely many elements 1; : : : ; m 2 � . We get that zX .�/ has the
structure of an affine algebraic set in Cm with coordinate ring R. Different sets of
generators for R give different models for zX .�/ which are all isomorphic over Z.

An SL2C representation � 2 R.�/ is reducible if, up to conjugation, �. / is upper
triangular for every  , and otherwise irreducible. An SL2C representation � 2 R.�/
is abelian if its image is abelian, and otherwise is nonabelian. Every irreducible
representation is nonabelian. However, there exist reducible nonabelian representations.
The set of characters of abelian representations Xab.�/ is itself a variety. Let Xna.�/

be the Zariski closure of zX .�/�Xab.�/ and denote it by X.�/.

If two representations �; �0 2R.�/ are conjugate, then ��D��0 . Also if ��D��0 and
� is irreducible then � and �0 are conjugate. Therefore, when considering irreducible
representations, we may think of X.�/ as the space of irreducible representations
modulo conjugation.
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Whenever � is the fundamental group of an orientable, complete hyperbolic 3–
manifolds of finite volume, there is an irreducible component of X.�/ containing the
character of a holonomy representation of the 3–manifold. This component is called
the canonical component.

One can also define the PSL2C–character variety (see [3, Section 3; 8, Section 2.1;
9, Section 2.1.2]). In the case of � a knot group, the PSL2C–character variety zY .�/
is the quotient zX .�/=Hom.�;˙1/, where ˙1 is the kernel of the homomorphism
SL2C ! PSL2C . It has as coordinate ring the subring of R of elements invariant
under ˙1. Let Y .�/ denote the image of X.�/ in zY .�/.

2.2 Two-bridge knots

Two-bridge knots are those nontrivial knots admitting a knot diagram with two maxima.
Every two-bridge knot is associated to a two-bridge normal form .p; q/, where p and
q are integers with p odd and 0 < q < p . Whenever q ¤ 1, the associated knot is
hyperbolic. Two knots with two-bridge normal forms .p; q/ and .p0; q0/ are equivalent
if and only if p D p0 and either q D q0 or qq0 �˙1 mod p .

The knot group corresponding to the two-bridge normal form .p; q/ has a presentation
ha; b W aw D wbi, where a and b are meridians and w D a�1b�2 � � � a�p�2a�p�1 with
�i D .�1/biq=pc and b�c the floor function (see [13, Proposition 1; 10, Proposition 1]).

2n

2n

�1=n

�1=n

�1

�2

Figure 1: The two-bridge knot J.2n; 2n/ (left) and the Borromean rings (right)
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�1 �2

Figure 2: Borromean rings after isotopy

For this presentation the preferred meridian is given by a and the corresponding
preferred longitude is given by ww�a�2e.w/ , where w� is w written backwards and
e.w/D

P
�i , so that the total exponent sum of the longitude is 0 (see [6, Section 2]).

2.3 A family of two-bridge knots

The knots to be considered in this paper are the members of the family of hyperbolic two-
bridge knots J.2n; 2n/ for n� 2 with two-bridge normal form .4n2�1; 4n2�2n�1/.
Note that this form is equivalent to .4n2� 1; 2n/. These have knot diagrams as shown
in Figure 1, left, and are obtained as �1

n
and �1

n
surgeries on two components of the

Borromean rings as in Figure 1, right. The first knot in this family, J.4; 4/, is the knot
74 in the knot tables with two-bridge normal form .15; 11/.

The knot group �n for J.2n; 2n/ can be computed as in [6, Proposition 1]. It has
presentation

(2-1) �n D �1.S
3
nJ.2n; 2n//D ha; b W awn

D wnbi;

where w D .ab�1/n.a�1b/n . As in Section 2.2, the preferred meridian is a with
corresponding preferred longitude .wn/.wn/� .

These knots have an orientable Seifert surface of genus 1 whose fundamental group is
generated by the images of the meridians �1 and �2 after the two Dehn surgeries (see

s1 s2

Figure 3: A Seifert surface for the knot J.2n; 2n/
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Figures 2 and 3). From the proof of [6, Proposition 1], these correspond to

(2-2) s1 D ..ab�1/n.a�1b/n/n and s2 D .ab�1/n:

These two elements generate a free subgroup and their commutator s1s�1
2

s�1
1

s2 corre-
sponds to the preferred longitude. We note that this is not a unique Seifert surface. In
fact, it can be shown following [5] that there are two nonisotopic Seifert surfaces.

2.4 Boundary slopes

An essential surface in a 3–manifold is a properly embedded orientable incompressible
surface which is not boundary parallel. Let V WD V .K/ denote the exterior of the
knot K . Any embedded essential surface S with nonempty boundary in V will
have nonempty boundary @S D S \ @V , a collection of disjoint circles on the torus
boundary of V . Since these circles are disjoint, they represent the same element in the
fundamental group of the boundary torus. We identify �1.@V / with the group Z�Z,
where the factors are generated by the preferred meridian and the preferred longitude.
Therefore, these circles in @S correspond to a class .p; q/ 2 Z�Z, where p and q

are relatively prime. We call p=q the slope of S , and represent it in �1.V / by the
element M pLq , where M is the meridian and L the longitude. We say that p=q is a
boundary slope for K if there is an essential surface S in V with slope p=q . We call
the class .0; 1/ the 0–slope and the class .1; 0/ the 1–slope.

Note that two-bridge knots have small exteriors, that is, they do not contain closed
embedded essential surfaces (see [5]).

2.5 Algebraic nonintegral representations and actions on the tree

The topics in this section can be found in [17, Section II.1; 4, Sections 1 and 2.3; 18,
Section 3; 16, Section 1]. The description of the tree and the action follows from [18,
Section 3].

Let H be a number field with a discrete valuation vW H� ! Z[ f1g. There is a
canonical way to construct a simplicial tree TH ;v on which SL2.H / acts without
inversion. This construction was described by Serre in this form, but was previously
discovered by Bruhat and Tits. Let Ov be the valuation ring and let � be a choice of
uniformizer. Define the graph TH ;v with vertices given by the homothety classes of
lattices in H 2 and an edge between two vertices if there exist representative lattices ƒ0

and ƒ1 and a linear automorphism M of H 2 of determinant ˇ with v.ˇ/D 1 which
maps ƒ0 onto ƒ1 . It turns out that TH ;v is a tree and SL2.H / acts on it simplicially
and without inversions by the action induced from the action on H 2 .
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When the fundamental group �D�1.V / has a representation � into the group SL2.H /,
there is an induced action of � on the tree TH ;v via the representation � . If the action
of � on TH ;v is nontrivial, it induces a splitting of � D�1.V / along an edge stabilizer.
By Culler and Shalen, there is an essential surface associated to this action (see [4,
Theorems 2.2.1 and 2.3.1]). The fundamental group of this associated essential surface
is contained in an edge stabilizer. We say such an essential surface is detected by the
representation � .

Whenever there is an element  2 � with v.tr.� // < 0, the action of � on TH ;v is
nontrivial. In particular, consider a representation �W � ! SL2.H / where H is an
algebraic number field and such that there is some element  2 � with tr.� / not an
algebraic integer. We call such a representation an algebraic nonintegral representation.
Then there is some prime ideal P in Ov such that vP.tr.�. /// < 0.

The following lemma is a restatement of Corollary 3 of [16]. It describes how to
determine the slope detected by a representation with an algebraic nonintegral character.

Lemma 2.1 Let V be a hyperbolic knot exterior and �W �1.V /! SL2.k/ a repre-
sentation, where k is a number field. If ��. / is not an algebraic integer for some
slope  2 @V but ��.ı/ is an algebraic integer for another slope ı 2 �1.@V /, then ��
detects an essential surface S in V with boundary slope ı .

3 Character variety of J.2n; 2n/

3.1 Character varieties: the standard model

Consider the knot J.2n; 2n/ with knot group presentation as in (2-1). The generators
a and b are conjugate in the group, so ta D tb D tb�1 . We may take ta and tab�1 as
the generators for the ring R defined in Section 2.1 and also as coordinates in X.�n/

(see [4, Proposition 1.4.1]).

A nonabelian representation �0 2 R.�n/ with ta.�0/ D x and tab�1.�0/ D r is
conjugate in SL2C to a representation � with ADW �.a/ and B DW �.b/ given by

(3-1) AD

�
� 1

0 ��1

�
and B D

�
� 0

2� r ��1

�
:

This �0 is reducible exactly when r D 2.

We set x D tr.A/ and r D tr.AB�1/. Choose � for which x D �C ��1 and let
Wn D .AB�1/n.A�1B/n . Then an assignment of � and r extends to a representation
if and only if AW n

n DW n
n B . This results in four equations in � and r , one for each
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matrix coordinate. However, the vanishing set of these four equations can be defined by
a single equation in x and r which is independent of the choice between � and ��1

(see [14, Theorem 1]).

Definition 3.1 Let f0.u/D 0, f1.u/D 1 and define fjC1.u/D u �fj .u/�fj�1.u/.
Define also gj .u/D fj .u/�fj�1.u/.

The variety X.�n/ is defined as the vanishing set of the polynomial

(3-2) fn.t/.fn.r/gn.r/.�x2
C 2C r/� 1/Cfn�1.t/;

where

(3-3) t D tr.Wn/D .2� r/.x2
� 2� r/f 2

n .r/C 2

and Wn D .AB�1/n.A�1B/n (see [9, Proposition 3.8]).

The variety X.�n/ is an affine algebraic curve. Also, it is the double cover of the
variety Y .�n/ with variables .r;y/ via the covering map

(3-4) X.�n/! Y .�n/; .r;x/ 7! .r;x2
� 2/;

(see [9, Section 2.2.2]).

Affine algebraic curves may be completed naturally into projective curves by homog-
enizing their defining polynomials. Therefore, we may think of X.�n/ and Y .�n/

as projective curves in CP2 composed of an affine part and finitely many points of
completion, that is, ideal points.

3.2 Character varieties: the smooth model

The varieties X.�n/ and Y .�n/ for J.2n; 2n/ are not smooth at infinity. To get
around this, a new projective model D.�n/ was introduced in [9]. This new model is
birationally equivalent to Y .�n/ and each of its irreducible components is smooth.

Let D.�n/ be the projective closure of the affine variety in the coordinates r D tab�1

and t D tw . It is the vanishing set of the polynomial

(3-5) gnC1.r/gn.t/�gn.r/gnC1.t/:

Theorem 3.2 For n� 2 in Z the following statements hold:

(1) D.�n/ is birationally equivalent to Y .�n/ via the map

(3-6) Y .�n/!D.�n/; .r;y/ 7! .r; .2� r/.y � r/f 2
n .r/C 2/:
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(2) Y .�n/ and D.�n/ are isomorphic outside a finite number of points .r;y/ in
Y .�n/ given by .r � 2/fn.r/D 0.

(3) D.�n/ consists of two irreducible components: the component D0 defined by
the line r � t and the component D1 defined as the projective closure of the
complement of D0 . Furthermore, each component is smooth.

(4) Y .�n/ has two irreducible components: the canonical component Y0 and the
component Y1 . Furthermore, Y0 is birationally equivalent to D0 and Y1 to D1 .

(5) X.�n/ has two irreducible components: the canonical component X0 and the
component X1 . Furthermore, X0 is the double cover of Y0 and X1 the double
cover of Y1 (see (3-4)).

Proof These statements are given in Propositions 4.4 and 4.6 of [9].

3.3 Intersections between components

In this section we describe a polynomial Gn which determines the r –coordinate of the
intersection points of D0 and D1 . We show Gn also determines the r –coordinate in
the affine intersection points of Y0 and Y1 via the birational equivalence, and thus also
for the affine intersection points of X0 and X1 .

Definition 3.3 Let g0i D dgi=du and define

(3-7) Gj D g0jC1gj �gjC1g0j :

Lemma 3.4 For j � 2 in Z the following statements hold:

(1) fj is monic, separable and of degree n� 1.

(2) .uC 2/Gj D f2j C 2j .

(3) Gj is monic and of degree 2j � 2.

(4) Gj and fj do not share a root.

(5) f2j D uf 2
j � 2fjfj�1 .

(6) fj .2/D j .

Proof Proofs for (1), (2) and (3) are found in [9, Lemmas 3.3 and 5.4] but we gather
the necessary information here for convenience. Recall that f0 D 0, f1 D 1 and
fj D u � fj�1 � fj�2 . It follows by induction on j that fj is monic and of degree
j � 1. To prove separable consider the ring ZŒu�Œs�=.s2�usC 1/Š ZŒs; s�1�. Here
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u D s C s�1 and it follows that fj .u/ D .s
j � s�j /=.s � s�1/ by induction on j .

Consider the following polynomial in ZŒu�Œs�=.s2�usC 1/:

.sjC1
� sj�1/fj D .s

jC1
� sj�1/

sj � s�j

s1� s�1
D .s2j

� 1/
s1� s�1

s1� s�1
D s2j

� 1:

Since s2j � 1 is separable, so is fj , and this proves (1).

The identity in (2) follows directly from the definition of Gj by considering its image
in the ring ZŒu�Œs�=.s2�usC 1/.

By (1), f2j is monic and of degree 2j � 1� 3. Using the identity in (2), Gj is also
monic and is of degree .2j � 1/� 1D 2j � 2, proving (3).

Suppose ! is a root of Gj and pick � 2 C� such that ! D � C ��1 . By (2),
0D f2j .!/C 2j , so then

�2j D f2j .!/D
�2j � ��2j

� � ��1
D .�j

C ��j /
�j � ��j

� � ��1
D .�j

C ��j /fj .!/:

Then (4) follows since this implies fj .!/¤ 0.

The identity in part (5) follows by considering fj .u/D .s
j � s�j /=.sC s�1/ in the

ring ZŒu�Œs�=.s2�usC 1/ to get

f2j D fj .fjC1�fj�1/

and using the recursive definition for fjC1 .

The identity in part (6) follows from induction on j .

We can now describe the points of intersection between D0 and D1 .

Lemma 3.5 If the point P D .r0; t0/ is in the intersection of D0.�n/ and D1.�n/,
then P satisfies Gn.r0/DGn.t0/D 0.

Proof A similar statement is included in [9, Lemma 5.5]. We include a complete
proof for the relevant case.

In the ring ZŒu�Œs�=.s2�usC 1/,

f 2
n �fn�1fnC1 D

.sn� s�n/2

.s� s�1/2
�
.sn�1� s1�n/.snC1� s�n�1/

.s� s�1/2
D 1:

As a polynomial, we have that f 2
n �fn�1fnC1 D 1.
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Recall F DgnC1.r/gn.t/�gn.r/gnC1.t/ is the defining polynomial for D.�n/. Since
P is a point in the intersection of two components, it is a singular point of D.�n/.
Therefore Fr WD @F=@r.P /D 0 and F.P /D 0. We can then easily check that

0D gn.r0/Fr .P /�g0n.r0/F.P /D gn.t0/Gn.r0/

and
0D gnC1.r0/Fr .P /�g0nC1.r0/F.P /D gnC1.t0/Gn.r0/:

If Gn.r0/¤ 0 then gn.t0/D gnC1.t0/D 0. However,

fngn�fn�1gnC1 D f
2

n �fn�1fnC1 D 1

implies gn and gnC1 are relatively prime polynomials and contradicts gn.t0/ D

gnC1.t0/D 0. Thus Gn.r0/D 0 and also Gn.t0/D 0.

Lemma 3.6 The affine parts of X0 and X1 are smooth. Furthermore, their affine
intersection points correspond to irreducible representations and are determined 2-to-1
with the intersection points of D0 and D1 .

Proof From Theorem 3.2, D0 and D1 are smooth and isomorphic to Y0 and Y1

outside of the points with .r�2/fn.r/D 0. This implies that all the affine points of Y0

and Y1 , and equivalently of X0 and X1 outside of the points with .r�2/fn.r/D 0 are
smooth. The affine part of Y .�/ does not contain points .r;y/ satisfying fn.r/D 0.
Similarly, the affine part of X.�/ does not contain points .r;x/ satisfying fn.r/D 0.

Let F D fn.t.r;x//.fn.r/gn.r/.�x2 C 2C r/� 1/C fn�1.t.r;x// with t.r;x/ D

.2� r/.x2 � 2� r/f 2
n .r/C 2, the defining polynomial for X as in (3-2). Suppose

.r0;x0/ is a point in the affine part of X with r0 D 2. Then t.r0;x0/ D 2 and
x2

0
D .4n2� 1/=n2 . In particular, x0 ¤ 0. Let Fx D @F=@x . Then

FxD
@fn.t/

@t

dt

dx
.fn.r/gn.r/.�x2

C2Cr/�1/Cfn.t/fn.r/gn.r/.�2x/C
@fn�1.t/

@t

dt

dx

with
dt

dx
D .2� r/f 2

n .r/.x/:

Evaluating at .r0;x0/ we get dt=dx.r0;x0/D 0 and

Fx.r0;x0/D 0Cfn.2/fn.2/gn.2/.�2x0/C 0

D .n/.n/.n� nC 1/.�2x0/ by Lemma 3.4(6)

D�2n2x0

¤ 0:
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Therefore .r0;x0/ is a smooth point in X . In particular, .r0;x0/ is not an intersection
point of X0 and X1 .

If .r1;x1/ is a point in the affine intersection of X0 and X1 then r1 ¤ 2, so it
corresponds to an irreducible representation. This point .r1;x1/ maps to a point in the
intersection of D0 and D1 via the map X.�n/! Y .�n/!D.�n/ (the covering map
composed with the birational equivalence).

4 Proof of the main result

Theorem 1.2 will follow from Theorems 4.1 and 4.2.

4.1 Surface detection

In this section we show that the intersection points detect essential surfaces.

Theorem 4.1 Every intersection point in X.�n/ detects an essential surface in the
complement of J.2n; 2n/ in S3 .

Proof The work of Culler and Shalen (see [4, Theorem 2.2.1 and Proposition 2.3.1])
shows that any ideal point in the character variety will give rise to an embedded essential
surface in the knot exterior. Thus we need only consider the affine intersection points.

By Lemma 3.6, any affine intersection point .r0;x0/ of X0 and X1 maps to the point
.r0; r0/ in the intersection of D0 and D1 , since D0 is defined by the line r � t (see
Theorem 3.2(3)). Therefore, by Lemma 3.5, Gn.r0/ D 0. Notice that the defining
polynomials for D0 and D1 have degree 1 and 2n� 2, respectively, so by Bezout’s
theorem for smooth algebraic curves, they have 2n� 2 distinct intersections points.
Since Gn is of degree 2n� 2 (see Lemma 3.4(3)), it must be that the roots of Gn

exactly determine the intersection points of D0 and D1 . We will now show that the
x0 at each intersection point .r0;x0/ is not an algebraic integer. It will then follow
that the affine intersection points detect essential surfaces (see Section 2.5).

Let H DQ.r0; �0/ and v a valuation on H with v.�/D 1 and for some uniformizer
� over the prime 2 and �0 an eigenvalue of A. Let p be the prime associated with
v and Fp its residue field. Then Fp has characteristic 2. Combining Lemmas 3.4(2)
and 3.4(5), we get

.uC 2/Gn D uf 2
n � 2fnfn�1C 2n:
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The reduction of this equation to Fp shows Gn D f
2

n over Fp . Evaluating at r0 gives
0Df 2

n .r0/ in Fp . Therefore v.f 2
n .r0//> 0, so f 2

n .r0/ is not a unit and thus 1=f 2
n .r0/

is not an algebraic integer. Combining (3-3) with t0 D r0 we get that

(4-1) x2
0 D 2C r0�

1

f 2
n .r0/

is not an algebraic integer.

4.2 Detected slope

In this section we determine the slope of the detected surfaces and prove the following
theorem.

Theorem 4.2 The affine intersection points in X.�n/ detect a Seifert surface.

The following trace identities for M1;M2 2 SL2C follow from Cayley–Hamilton:

tr.M1/D tr.M�1
1 /;(4-2)

tr.M1M2/D tr.M2M1/;(4-3)

tr.M1M2/D .trM1/.trM2/� tr.M�1
1 M2/(4-4)

D .trM1/.trM2/� tr.M1M�1
2 /:

The following identities follows from the previous identities by induction:

tr.M k
1 /D tr.M1/fk.tr.M1//�2fk�1.tr.M1//(4-5)

D fkC1.tr.M1//�fk�1.tr.M1//;

trŒM1;M2�D tr.M1M2M�1
1 M�1

2 /(4-6)

D tr2.M1/Ctr2.M2/Ctr2.M1M2/�tr.M1/tr.M2/tr.M1M2/�2:

Lemma 4.3 Let S1 and S2 be the images of s1 and s2 at a representation correspond-
ing to a point .r;x/ in X.�n/. The trace of S1S�1

2
is given by

(4-7) fn.r/.fn.t/ı1;1� rfn�1.t//�fn�1.r/.fnC1.t/�fn�1.t//

with
t D .2� r/.x2

� 2� r/f 2
n .r/C 2

and
ı1;1 D tr.WnBA�1/D .2� r/fn�1.r/fn.r/.x

2
� 2� r/C r:
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Proof Recall that tr.S1/D tr.W n
n /, where tr.Wn/D t and tr.S�1

2
/D tr..BA�1/n/,

where tr.BA�1/D tr.AB�1/D r .

Set ıd;e D tr.W d
n .BA�1/e/ and

d;e D fe.r/.fd .t/ı1;1� rfd�1.t//�fe�1.r/.fdC1.t/�fd�1.t//:

The statement of the lemma is equivalent to ıd;e D d;e in the case d D n and e D n.

We have
ıd;0 D tr.W d

n /

D tr.Wn/fd .tr.Wn//� 2fd�1.tr.Wn// by (4-5)

D tfd .t/� 2fd�1.t/

D fdC1.t/�fd�1.t/

D d;0

and
ı0;e D tr..BA�1/e/

D tr.BA�1/fe.tr.BA�1//� 2fe�1.tr.BA�1// by (4-5)

D tr.AB�1/fe.tr.AB�1//� 2fe�1.tr.AB�1// by (4-2)

D rfe.r/� 2fe�1.r/

D 0;e:

Clearly 1;1 D ı1;1 , which is given by

ı1;1 D tr.WnBA�1/

D tr.BA�1Wn/ by (4-3)

D tr.BA�1.AB�1/n.A�1B/n/

D tr..AB�1/n�1.A�1B/n�1A�1B/

D tr.Wn�1A�1B/

D .2� r/fn�1.r/fn.r/.x
2
� 2� r/C r by [9, Lemma 3.6]:

Notice that ıd;1 satisfies the recursion

ıd;1D tr.W d
n BA�1/D tr.Wn/tr.W d�1

n BA�1/� tr.W d�2
n BA�1/D tıd�1;1�ıd�2;1;

as does

d;1 D fd .t/ı1;1� rfd�1.t/

D tfd�1.t/ı1;1�fd�2.t/ı1;1� r tfd�2.t/C rfd�3.t/

D t.fd�1.t/ı1;1� rfd�2.t//� .fd�2.t/ı1;1C rfd�3.t//

D t1;1� 2;1:
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Also notice that ıd;e satisfies the recursion

ıd;e D tr.W d
n .BA�1/e/

D tr.W d
n .BA�1/e�1BA�1/

D tr.W d
n .BA�1/e�1/tr.BA�1/� tr.W d

n .BA�1/e�2/

D rıd;e�1� ıd;e�2;

as does

d;e D fe.r/.fd .t/ı1;1� rfd�1.t//�fe�1.r/.fdC1.t/�fd�1.t//

D .rfe�1.r/�fe�2.r//.fd .t/ı1;1� rfd�1.t//

� .rfe�2.r/�fe�3.r//.fdC1.t/�fd�1.t//

D rd;e�1� d;e�2:

Since the equivalence is satisfied for ı0;0 , ı1;0 , ı0;1 and ı1;1 , this completes the
proof.

Lemma 4.4 If S is a connected essential surface in the exterior of J.2n; 2n/ with
slope zero, then S is a genus 1 Seifert surface.

Proof Recall from Section 2.3 that the knots J.2n; 2n/ have two-bridge normal form
.4n2�1; 2n/. Using the language of [5], the unique continued fraction expansion for the
knot J.2n; 2n/DK2n=.4n2�1/ of the form Œa1;�a2; a3; : : : ;˙ak � as in [5, Figure 5]
and the proceeding paragraph is given by Œ2n� 1;�1; 2n� 1�. By [5, Theorem 1(c)]
and the remarks on [5, page 229] and the top of [5, page 230], any essential surface is
carried by a branched surface corresponding to a minimal edge path involving only the
heavy lines in [5, Figure 5]. Following the remarks at the end of [5, page 229], there
are four minimal edge paths. These correspond to the continued fraction expansions

Œ�2; : : : ;�2„ ƒ‚ …
2n�2

;�3;�2; : : : ;�2„ ƒ‚ …
2n�2

�; Œ�2; : : : ;�2„ ƒ‚ …
2n�1

;2n�1�; Œ2n�1;�2; : : : ;�2„ ƒ‚ …
2n�1

�; Œ2n;2n�:

By [5, Proposition 2], the branched surfaces associated to these continued fraction
expansions will carry essential surfaces of slopes determined solely by the continued
fraction expansion. The corresponding slopes are 2�8n, �4n, �4n and 0, respectively.

Any connected surface of slope zero is therefore carried by the branched surface
†Œ2n; 2n�. By [5, Proposition 1(1)] and the remark directly following it, this surface is
a single-sheeted orientable surface. Such an essential connected surface of slope zero
is then isotopic to either S1.0/ or S1.1/ as constructed in [5, page 227]. It is easy to
see from the construction that S1.0/ and S1.1/ are nonseparating surfaces. Therefore,
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a connected essential surface of slope zero in the exterior of J.2n; 2n/ is a Seifert
surface.

By [5, Corollary to Proposition 1], all essential Seifert surfaces for a two-bridge knot
have the same genus. Since the Seifert surface described in Section 2.3 has genus 1,
all essential Seifert surfaces for J.2n; 2n/ also have genus 1.

We can now prove Theorem 4.2.

Proof of Theorem 4.2 Suppose that .r0;x0/ is a point in the affine intersection of
X0 and X1 and recall that t0D r0 (see Theorem 3.2(3)). Let S1 and S2 be the images
of s1 and s2 of a representation corresponding to .r0;x0/. Recall from Section 2.3
that the preferred longitude is given by .Wn/

n.W �n /
n D S1S�1

2
S�1

1
S2 .

By (4-6), S1S�1
2

S�1
1

S2 has trace

tr.S1S�1
2 S�1

1 S2/D tr2.S1/C tr2.S2/C tr2.S1S�1
2 /� tr.S1/tr.S2/tr.S1S�1

2 /� 2

D t2
0 C r2

0 C tr2.S1S�1
2 /� t0r0tr.S1S�1

2 /� 2

D 2r2
0 C .1� r2

0 /tr
2.S1S�1

2 /� 2:

Since tr.Wn/ D t0 D r0 , S1 D W n
n has trace r0fn.r0/ � 2fn�1.r0/ and, since

tr.AB�1/D r0 , also S2D .AB�1/n has trace r0fn.r0/�2fn�1.r0/. From Lemma 4.3,
S1S�1

2
has trace

.2� r0/.x
2
0 � 2� r0/fn�1f

3
n C r0f

2
n � r0fn�1fn�fn�1fnC1Cf

2
n�1

evaluated at r0 . Since r0 is an algebraic integer (see Lemmas 3.5 and 3.4(3)), it
suffices to show that x2

0
f 2

n .r0/ is an algebraic integer, guaranteeing the integrality of
tr.S1S�1

2
/. Applying (4-1), we get

x2
0f

2
n .r0/D

�
2C r0�

1

f 2
n .r0/

�
f 2

n .r0/D .2C r0/f
2

n .r0/� 1:

which is an algebraic integer. The theorem now follows from Lemmas 2.1 and 4.4.

Remark There are finitely many characters of reducible representations in X.�n/.
These are contained in X0 and also detect the slope zero. To see this, let .r0;x0/ 2X

correspond to a reducible representation � . Then r0 D 2. Substituting r0 D 2 at (3-3)
we get t0 D 2 and at (3-2) we get

(4-8) x2
0 D

4n2� 1

n2
;

which is not an algebraic integer. We may conjugate � so that �.�/ is generated by
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�
� 1

0 ��1

�
and

�
� 0

0 ��1

�
:

Then the character � is the same as a character of a diagonal representation, which is
abelian. Therefore the traces of the images of s1 , s2 and s1s�1

2
are all the same as the

trace of the image of the identity, which is the integer 2.

5 Two examples

We consider in detail the first two knots in the family J.2n; 2n/, namely 74 (nD 2)
and 11a363 (nD 3).

5.1 The first knot

The first knot in the family J.2n; 2n/ is the knot 74 of two-bridge normal form .15; 11/

with knot group
�2 D ha; b W aw

2
D w2bi;

where w D ab�1ab�1a�1ba�1b . The variety X.�2/ is defined by the polynomial

.�1C 2r2
C r3

� r2x2/.1C 4r � 4r2
� r3
C r4

� 2rx2
C 3r2x2

� r3x2/;

where the first factor defines the canonical component X0 and the second factor defines
the component X1 . These two curves intersect at 20 points, counting multiplicities.
However, 16 of these correspond to 2 ideal points (each with multiplicity 8). The
affine intersections points .r;x/ are�
1� i;

q
3� 3

2
i
�
;

�
1� i;�

q
3� 3

2
i
�
;

�
1C i;

q
3C 3

2
i
�
;

�
1C i;�

q
3C 3

2
i
�
;

each with multiplicity 1. The x–coordinates of these points are the four roots of the
polynomial 4x4 � 24x2 C 45. These algebraic nonintegral numbers determine the
traces of the meridian.

Consider the representation �W �2! SL2C given by

�.a/D

�
� 1

0 ��1

�
and �.b/D

�
� 0

1C i ��1

�
corresponding to the point

�
1� i;

p
3� 3

2
i
�
, with �D 1

2

�p
�1� 3

2
iC

p
3� 3

2
i
�
. The

image of the longitude is the matrix�
7C 12i C 2

p
�24C 42i �8

p
�3� 6i

0 7C 12i � 2
p
�24C 42i

�
with trace 14C 24i , an algebraic integer.
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Remark It is easy to see that for the representations given by these affine intersection
points, the restriction of the peripheral subgroup is faithful. The meridian and longitude
are mapped to loxodromics with the same axis. However, since one has nonintegral
trace and the other integral trace, these generate a nondiscrete Z2 . This leads us to
ask the following question: Could these representations be faithful? A positive answer
would imply that the noncanonical component contains faithful representations, and in
particular do not come from a quotient.

5.2 The second knot

The second knot in the family J.2n; 2n/ is the knot 11a363 of two-bridge normal form
.35; 29/ with knot group

�2 D ha; b W aw
3
D w3bi;

where w D ab�1ab�1ab�1a�1ba�1ba�1b . The variety X.�3/ is defined by the
polynomial

.1C r � 4r2
� 2r3

C 2r4
C r5

�x2
C 2r2x2

� r4x2/

�
�
1C8r�40r2

�46r3
C110r4

C71r5
�113r6

�43r7
C54r8

C11r9
�12r10

�r11
Cr12

� 8x2
� 8rx2

C 60r2x2
C 21r3x2

� 130r4x2
� 7r5x2

C 118r6x2
� 16r7x2

� 46r8x2
C 12r9x2

C 6r10x2
� 2r11x2

C 4x4
� 19r2x4

C 5r3x4
C 32r4x4

� 15r5x4
� 22r6x4

C 15r7x4
C 4r8x4

� 5r9x4
C r10x4

�
;

where the first factor defines the canonical component X0 and the second factor defines
the component X1 . These two curves intersect at 84 points, counting multiplicities.
However, 76 of these correspond to 2 ideal points (with multiplicities 24 and 52). There
are 8 affine intersections points .r;x/, each with multiplicity 1. The r –coordinates
are the four roots of the polynomial r4 � 2r3C 3. The x–coordinates are the eight
roots of the polynomial 144x8�1424x6C5160x4�8400x2C6125. These algebraic
nonintegral numbers determine the traces of the meridian.

Consider the representation �W �3! SL2C given by

�.a/D

�
� 1

0 ��1

�
and �.b/D

�
� 0

s ��1

�
corresponding to one of the intersection points, with �� 0:44228C 0:601587i (an
algebraic number of degree 8 over Q) and s � 2:60504C 0:835079i (an algebraic
integral of degree 4 over Q). The image of the longitude has trace a root of the
polynomial

`4
� 212`3

C 15768`2
� 385360`C 8647328

(� 95:247C 42:4755i ), an algebraic integer.
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6 Final remarks

6.1 Multiple components

Riley [15] describes three cases in which a noncanonical component of characters of
irreducible representations can arise in the character variety of two-bridge knots. One
way we get a noncanonical component is if there exists an epimorphism from the knot
group onto another knot group. However, this is not the case for the knots J.2n; 2n/.

Claim 6.1 There is no epimorphism from �n onto another knot group.

Proof The knot J.2n; 2n/ has Alexander polynomial

�n.t/D n2t2
C .1� 2n2/t C n2:

Since its quadratic discriminant, 1� 4n2 , is negative, �n is an irreducible integral
polynomial.

Denote the knot J.2n; 2n/ by K and suppose there exists an epimorphism from
�n onto the knot group � 0 for some other knot K0 . The Alexander polynomial of
K0 must divide �n (see eg Remark (3) of [2, Proposition 1.11]) and, furthermore,
K0 is necessarily a two-bridge knot [2, Corollary 1.3]. However, two-bridge knots
have nontrivial Alexander polynomials. Therefore K0 must have the same Alexander
polynomial �n.t/.

Let �M and �M 0 denote the infinite cyclic covers of S3 � J.2n; 2n/ and S3 �K0 ,
respectively. Mayland [10] expressed the derived groups  .M / and  .M 0/ of �M
and �M 0 for any two-bridge knots as a union of parafree groups in such a way that [1,
Proposition 2.1] applies to show  .M / and  .M 0/ are residually torsion-free nilpotent.
That is,  .M /! Š 1Š  .M 0/! , where G! is the !–term in the lower central series
and ! is the first infinite cardinal.

Since the knots share the same Alexander polynomial, H1. �M /ŠH1. �M 0/. We can
now apply a theorem of Stallings [19, Theorem 3,4] to the epimorphism hW �1. �M /!

�1. �M 0/ to conclude h is an isomorphism. Therefore, �n and � 0 are isomorphic.

Note that Claim 6.1 was also proved in [11, Proposition 3.1].

Another way in which noncanonical components of characters of irreducible represen-
tations can arise in the character variety is when the knot has a certain nice symmetry
described by Ohtsuki. In particular, whenever a two-bridge knot has two-bridge normal
form .˛; ˇ/ with ˇ2 � 1 mod ˛ and ˇ ¤ 1, there is a diagram from which one
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knot .p; q/ detected slope fibered .p; q/–symmetry epimorphism

74 .15; 11/ 0 no yes no
77 .21; 13/ 6 yes yes no
811 .27; 19/ 6 no no no
96 .27; 5/ 18 no no 31

917 .39; 25/ 10 yes yes no

Table 1: Knots with two components of irreducible representations

can see an orientation-preserving involution. This involution induces a nontrivial
action on the character variety. However, it fixes a neighborhood of the character of a
holonomy representation. Therefore, there exists a noncanonical component containing
characters of irreducible representations (see [12, Proposition 5.5]). Notice that the
knots studied in this paper satisfy these conditions. They have two-bridge normal form
.4n2� 1; 4n2� 2n� 1/.

6.2 Other examples of two-bridge knots with two components

In Table 1 we list knots with crossing number at most 9 whose character variety contain
exactly two components of irreducible components. For all of these, the intersection
points are Galois conjugates and detect the same slope. The table includes the 2–bridge
normal form, the detected slope, whether or not the knot is fibered or has the .p; q/–
symmetry described in Section 6.1, and if there is an epimorphism from the knot group
to another knot group. Whenever a knot is fibered, a Seifert surface cannot be detected
by ideal nor by algebraic nonintegral points in the character variety.

In addition to these, the knot groups for the knots 105 , 109 and 1032 are known to have
epimorphisms onto the trefoil knot group. Indeed, the two-bridge knots 96 , 105 , 109

and 1032 are the only knots up to 10 crossings whose knot groups have epimorphisms
to another two-bridge knot (see [7, Theorem 1.1]). The knot groups surject to the
trefoil knot group in such a way that the peripheral subgroup is sent to the peripheral
subgroup of the trefoil knot group. Since the noncanonical component of the character
variety corresponds to the canonical component of the trefoil character variety, the
detected slopes correspond to detected slopes of the trefoil knot. As a fibered knot, the
only detected slope of the trefoil knot is 6, so the detected slopes for 96 , 105 , 109

and 1032 are multiples of 6.

6.3 Two-bridge knots with three components

One may also want to consider two-bridge knots with three distinct components of
irreducible representations in the character variety. Two examples of these are the knots
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923 and 1040 with two-bridge normal forms .45; 19/ and .75; 29/, both of which
satisfy the symmetry condition described above and provide epimorphisms to the trefoil
group. These two knots each have character varieties with a canonical component, a
distinct component corresponding to the symmetry condition, and a distinct component
corresponding to the canonical component of the character variety of the trefoil (to
see that the knot group has an epimorphism to the trefoil knot group, refer to [7,
Theorem 1.1]). All pairwise intersection points between these three components are
algebraic nonintegral with the trace of the meridian nonintegral by a prime over 2, and
correspond to irreducible representations. We note that the character variety of the knot
1040 has triple intersection points between these three components.
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The surgery exact triangle in
Pin.2/–monopole Floer homology

FRANCESCO LIN

We prove the existence of an exact triangle for the Pin.2/–monopole Floer homology
groups of three-manifolds related by specific Dehn surgeries on a given knot. Unlike
the counterpart in usual monopole Floer homology, only two of the three maps are
those induced by the corresponding elementary cobordism. We use this triangle to
describe the Manolescu correction terms of the manifolds obtained by .˙1/–surgery
on alternating knots with Arf invariant 1 .

57M27

Introduction

The goal of this paper is to describe the relation between the Pin.2/–monopole Floer
homology groups of three-manifolds which are obtained from a given one by Dehn
surgery on a knot. Pin.2/–monopole Floer homology is a gauge-theoretic invariant of
closed connected and oriented three-manifolds. It was introduced by the author in [19]
as the analogue of Manolescu’s Pin.2/–equivariant Seiberg–Witten Floer homology
groups for rational homology spheres (see Manolescu [22]) in the context of Kron-
heimer and Mrowka’s monopole Floer homology [12]. In particular, it can be used
to give an alternative disproof of the long standing triangulation conjecture; see also
Manolescu [21] for a nice survey.

Unlike Manolescu’s construction, the definition in [19] works for every closed oriented
connected three-manifold Y . It associates in a functorial way to each such Y three
groups fitting in a long exact sequence

(1) � � �
i�
�!

c

HS�.Y /
j�
�! cHS�.Y /

p�
�! HS�.Y /

i�
�! � � �

which are read respectively H-S-to, H-S-from and H-S-bar. These are also (relatively)
graded topological modules over the graded ring

RD F ŒŒV ��ŒQ�=.Q3/;

where V and Q have degrees respectively �4 and �1, and F is the field with two
elements. The ring R should be thought as the completion (with reverse gradings) of

Published: 19 September 2017 DOI: 10.2140/agt.2017.17.2915

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M27
http://dx.doi.org/10.2140/agt.2017.17.2915


2916 Francesco Lin

the cohomology of the classifying space of

Pin.2/D S1
� jS1

�H;

where H denotes the quaternions. These objects are obtained by studying the negative
gradient flow of the Chern–Simons–Dirac functional on the three-manifold from a
Floer-theoretic point of view. For a general spinc structure s, the equations have an S1

symmetry, but when s is induced by a genuine spin structure, quaternionic geometry
comes into play and the equations acquire a Pin.2/ symmetry. Pin.2/–monopole Floer
homology is then constructed by suitably exploiting this extra input.

In the present paper, we develop in this setting one of the essential features of Floer
homology theories for three-manifolds, namely surgery exact triangles. Their con-
struction dates back to Floer’s original instanton invariants [8], and they turn out to
be a key tool for topological applications of Floer theories to three-manifold topology.
For example, the version for monopole Floer homology is introduced by Kronheimer,
Mrowka, Ozsváth and Szabó [13], and is used to prove a conjecture of Gordon [11]
regarding a surgery characterization of the unknot.

Suppose we are given a connected compact oriented three-manifold Z with torus bound-
ary @Z , and let i , i D 1; 2; 3, be oriented simple closed curves having intersection
numbers

1 � 2 D 2 � 3 D 3 � 1 D�1:

Call Yi the three-manifold obtained by Dehn filling @Z along i . Associated to this
data there is a canonical cobordism Wi from Yi to YiC1 given by a single 2–handle
attachment along a suitably framed copy of the knot. The key observation for our
purposes is that, among these three cobordisms, exactly two are spin, while the third is
not. The typical examples of such triples are given by

1;p;pC 1 and 0; 1=.qC 1/; 1=q

surgeries on a knot in the three-sphere, where both p and q are integers. In the first
case, the nonspin cobordism is W1 if p is odd and W3 if p is even. In the second case,
the nonspin cobordism is always W2 . The following is then main result of the paper.

Theorem 1 Suppose that the nonspin cobordism is W3 . There exists a map
LF3W

c

HS�.Y3/!

c

HS�.Y1/

of R–modules such that the trianglec

HS�.Y2/

c

HS�.Y3/

c

HS�.Y1/

c

HS�.W2/c

HS�.W1/ LF3

Algebraic & Geometric Topology, Volume 17 (2017)
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is exact. The map LF3 is uniquely defined for each pair of three-manifolds Y3 , Y1 such
that the latter is obtained by Dehn surgery in the former, and in which the corresponding
elementary cobordism given by a 2–handle attachment is not spin. The same statement
holds for the from and bar versions.

The map LF3 in the statement above is genuinely different from the one induced by the
cobordism W3 as defined in [19]. In fact, already in simple examples (see Section 5),
the triangle where all the maps are the ones induced by cobordisms might have nonzero
composite maps. This is due to the fact that in Pin.2/–monopole Floer homology, there
are interesting modulo four periodicity phenomena to take account of; see, for example,
the blow-up formula in Section 2. Unfortunately, we cannot provide a more geometric
interpretation of this map at the moment.

Before discussing examples of the surgery exact triangle, we compute the Pin.2/–
monopole Floer homology groups of the homology spheres obtained by surgery
on the trefoil knot. As these are (up to orientation reversal) the Brieskorn spheres
†.2; 3; 6n˙ 1/, we recover in our setting the results in [22]. In the statement, we
adopt the following notation. For any rational number d , let VC

d
be the F ŒŒV ��–module

F ŒV �1;V ��=V F ŒŒV ��, where the grading is shifted so that the element 1 has degree d .
Multiplication by V has degree �4, and the double square brackets indicate that we
are considering a quotient of the ring of Laurent power series. We will refer to these
F ŒŒV ��–modules simply as towers, and they will arise as the image of the map i� in
the long exact sequence (1). We also denote a trivial R–summand of the form Fk all
concentrated in degree d by Fkhdi.

Theorem 2 We have for k � 0 the isomorphisms of graded R–modulesc

HS�.†.2; 3; 12kC 5//Š VC
4
˚VC

3
˚VC

2
˚Fk

h1i;c

HS�.†.2; 3; 12kC 1//Š VC
2
˚VC

1
˚VC

0
˚Fk

h�1i;

where the action of Q (which has degree �1) is an isomorphism from the first tower to
the second tower, an isomorphism from the second tower to the third tower, and zero
otherwise. The direct sum of the three towers is the image of i� . Similarly, for k > 0,
we have c

HS�.†.2; 3; 12k � 1//Š VC
2
˚VC

1
˚VC

4
˚Fk�1

h1i;c

HS�.†.2; 3; 12k � 5//Š VC
0
˚VC
�1
˚VC

2
˚Fk�1

h�1i;

where the action of Q (which has degree �1) is an isomorphism from the first tower to
the second tower, maps the second tower onto the third tower, and is zero otherwise.
Again the direct sum of the three towers is the image of i� .

Algebraic & Geometric Topology, Volume 17 (2017)



2918 Francesco Lin

The idea behind the computation is that if the usual monopole Floer homology

b

HM� is
simple enough, the Pin.2/ counterpart can be determined in a purely algebraic way
from the Gysin exact sequence

(2) � � �
�Q
�!

c

HSk.Y /
��
�!

b

HMk.Y /
��
�!

c

HSk.Y /
�Q
�!

c

HSk�1.Y /
��
�! � � �

introduced in Section 4.3 of [19]. This granted, we will discuss how the Floer groups of
these manifolds fit in the surgery exact triangle, and this will provide a model for more
interesting computations. Similarly, we compute the Pin.2/–monopole Floer homology
groups of the homology spheres obtained by surgery on the figure-eight knot.

Theorem 3 Denote by En the manifold obtained by 1=n surgery on the figure-eight
knot. Let s0 be the only self-conjugate spinc structure on E0 . Then we have the
isomorphism of graded R–modulesc

HS�.E0; s0/Š VC
1
˚VC

0
˚VC
�1
˚VC

2
;

where the action of Q (which has degree �1) is an isomorphism from the first tower to
the second, maps the third tower onto the fourth tower, and zero otherwise. The group
for the other spinc structures vanishes, and the map i� is surjective. Furthermore, we
have for k � 0, c

HS�.E2kC1/Š VC
0
˚VC
�1
˚VC

2
˚Fk

h�1i;

and similarly for k > 0, c

HS�.E2k/Š VC
2
˚VC

1
˚VC

0
˚Fk

h�1i:

Here the action of Q is the same as the analogous modules appearing in Theorem 2,
and the image of i� consists exactly of the direct sum of the three towers.

Recall more generally that for any rational homology sphere Y equipped with a self-
conjugate spinc structure s, the group

c

HS�.Y; s/, considered as an F ŒŒV ��–module,
decomposes as a finite part and the sum of three towers

VCc ˚VC
b
˚VCa :

The action of Q sends the first tower onto the second and the second tower onto
the third, and the union of the sum of the three towers is the image of the map i� .
Manolescu’s correction terms are then defined to be the rational numbers

˛.Y /� ˇ.Y /�  .Y /;

all of which have the same fractional part, such that

aD 2˛.Y /; b D 2ˇ.Y /C 1; c D 2 .Y /C 2:

Algebraic & Geometric Topology, Volume 17 (2017)
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The inequalities between these quantities follow from the module structure. These are
rational lifts of the Rokhlin invariant of .Y; s/ which are invariant under spin homology
cobordisms, and they are integers in the case of a genuine homology sphere. The
direct sum of the three towers is an R–submodule whose abstract isomorphism class
as an absolutely graded R–module will be denoted by SC

˛;ˇ;
. We call this a standard

Pin.2/–module. For example, the four direct sums of towers appearing in the statement
of Theorem 2 are respectively

SC
1;1;1

; SC
0;0;0

; SC
2;0;0

; SC
1;�1;�1

:

We can use the surgery exact triangle to determine the Manolescu correction terms of
integral homology spheres obtained by .˙1/–surgery on alternating knots with Arf
invariant 1.

Theorem 4 Let K be an alternating knot with signature � D �.K/ � 0 and Arf
invariant 1. Then the value of ˛ , ˇ and  of the .˙1/–surgery on it is determined in
the following table:

(3)

� .C1/–surgery .�1/–surgery

� 8k �2kC 1;�2k � 1;�2k � 1 1;�2kC 1;�2k � 1

� 8k � 2 �2k � 1;�2k � 1;�2k � 1 1;�2k � 1;�2k � 1

� 8k � 4 �2k � 1;�2k � 1;�2k � 1 1;�2k � 1;�2k � 1

� 8k � 6 �2k � 1;�2k � 1;�2k � 3 1;�2k � 1;�2k � 1

The main idea is again that the Floer homology of surgeries on alternating knots is
simple enough so that the Pin.2/–case can be recovered from the usual one by means
of the Gysin exact sequence. Our computation relies on the knowledge of the monopole
Floer homology of these spaces. This follows from the results in the context of Heegaard
Floer homology provided by Ozsváth and Szabó [25] and the isomorphism between the
two theories (due to Kutluhan, Lee and Taubes [14; 15; 16; 17; 18] and Colin, Ghiggini
and Honda [3; 4; 5; 6]).

A nice consequence of this computation is the existence of homology spheres not
homology cobordant to any Seifert fibered space. In Stoffregen [28], an example
consisting of the connected sum of two Seifert fibered spaces is provided. We use
the following analogous obstruction, which we prove (as in [28]) using the results of
Mrowka, Ozsváth and Yu [23].

Proposition 5 For a Seifert fibered rational homology sphere Y equipped with a spin
structure s, either ˛.Y; s/D ˇ.Y; s/ or ˇ.Y; s/D  .Y; s/.

Algebraic & Geometric Topology, Volume 17 (2017)



2920 Francesco Lin

As a consequence of Theorem 4, we obtain the following.

Corollary 6 For k � 1, the manifold obtained by .�1/–surgery on an alternating
knot with signature �8k and Arf invariant 1 is not homology cobordant to any Seifert
fibered space.

Along the way, we will discuss maps on spin cobordisms with bC
2
D 1; 2. We record

the following result as we expect it to have interesting topological applications.

Theorem 7 Let W be a smooth spin cobordism between two spin rational homology
spheres .Y0; s0/ and .Y1; s1/. If bC

2
.W /D 1, then the inequalities

˛.Y1; s1/� ˇ.Y0; s0/C
1
8
.b�2 .W /� 1/;

ˇ.Y1; s1/�  .Y0; s0/C
1
8
.b�2 .W /� 1/

hold. If bC
2
.W /D 2, then the inequality

˛.Y1; s1/�  .Y0; s0/C
1
8
.b�2 .W /� 2/

holds.

This should be thought as a generalization of Donaldson’s Theorems B and C (see
Donaldson and Kronheimer [7]) regarding closed spin four-manifolds with bC

2
D 1; 2,

in the same way as Frøyshov’s result is a generalization of Donaldson’s Theorem A.
It is analogous in spirit to Kronheimer’s Seiberg–Witten theoretic proof that inspired
Furuta’s work on the 11

8
–conjecture [10].

Acknowledgements The author would like to thank his advisor Tom Mrowka for the
support throughout the development of this project, Tye Lidman and Ciprian Manolescu
for the useful comments, and the referee for carefully reading the manuscript and
suggesting many improvements. Part of the work was carried over while the author
was visiting the University of Pisa. He would like to express his gratitude to them, and
in particular Bruno Martelli, for their hospitality. This work was partially supported by
NSF grants DMS-0805841 and DMS-1005288.

1 Overview of Pin.2/–monopole Floer homology

In this section, we provide an overview of the formal properties of Pin.2/–monopole
Floer homology and discuss the key steps of its construction as in Chapter 4 of [19].
For a more detailed introduction to the usual case, see the first three chapters of [12].
Throughout the paper, we will always work with coefficients in the field with two
elements F .

Algebraic & Geometric Topology, Volume 17 (2017)
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The formal structure Let Y be a closed connected oriented three-manifold. There is
a natural action | of the set of spinc structures Spinc.Y / given by complex conjugation.
We denote the orbits by Œs�, and call the fixed points of this action self-conjugate spinc–
structures. The first Chern class of such a spinc structure s is always two-torsion. To
each self-conjugate spinc structure Œs�, we associate the (completed) Pin.2/–monopole
Floer homology groups c

HS�.Y; s/; cHS�.Y; s/; HS�.Y; s/:

There are analogous cohomological versions. These groups carry a relative Z grading
and an absolute Q grading. They also carry a structure of topological graded module
over the ring

RD F ŒŒV ��ŒQ�=.Q3/;

where the actions of V and Q have degrees respectively �4 and �1. These groups
should be thought as computing the middle-dimensional homology of an infinite-
dimensional manifold with boundary B� .Y; s/=| . In particular, they compute the
homology of the space, the homology relative to the boundary and the homology of
the boundary. Indeed, they fit in the expected long exact sequence (1), and they satisfy
a version Poincaré duality with respect to orientation reversal.

In the case in which s is not self-conjugate, we define
c

HS�.Y; Œs�/ to be the usual
monopole Floer homology groupsb

HM�.Y; s/�

b

HM�.Y;xs/;

which are canonically isomorphic. This can be thought as an R–module via the
coefficient extension

R! F ŒŒU ��

obtained by sending V to U 2 and Q to 0. It is convenient to work with the direct
sum of all these groups (all but finitely many of which are trivial), and definec

HS�.Y /D
M

Œs�2Spinc.Y /=|

c

HS�.Y; Œs�/;

and similarly for the other versions. This total group does not carry a relative Z grading
anymore, but has a canonical Z=2Z grading.

The basic computation is the case of the three sphere. Recall that we have discussed in
the introduction the basic modules VC

d
and SC

˛;ˇ;
. We then havec

HS�.S3/D SC
0;0;0
D VC

2
˚VC

1
˚VC

0
;

Algebraic & Geometric Topology, Volume 17 (2017)



2922 Francesco Lin

where in the second description the action of Q (which has degree �1) is an isomor-
phism from the first tower to the second and from the second tower to the third. Also,
for a rational number d the module Vd is defined to be the ring of Laurent power series
F ŒV �1;V �� seen as an F ŒŒV ��–module with the grading shifted so that the element 1

has degree d . We then have the isomorphism of R–modules

(4) HS�.S3/D V2˚V1˚V0:

The action of Q is an isomorphism from the first summand to the second and from the
second summand to the third. We will denote this absolutely graded R–module by S .
The map

i�W HS�.S3/!

c

HS�.S3/

is surjective. Finally cHS�.S3/ can be identified with Rh�1i where again the braces
indicate the grading shift.

These groups also satisfy functoriality properties. If W is a connected cobordism
from Y0 to Y1 , we obtain a homomorphism of R–modulesc

HS�.W /W

c

HS�.Y0/!

c

HS�.Y1/;

which also decomposes according to the pairs of conjugate spinc structures on W .
Furthermore, if W0 is a cobordism from Y0 to Y1 and W1 is a cobordism from Y1

to Y2 , we have the composition lawc

HS�.W1 ıW0/D

c

HS�.W1/ ı

c

HS�.W0/:

A more general functoriality property (following from the work of [2]) is the following.
Suppose W is a cobordism with several incoming ends Y� and Y1; : : : ;Yn and one
outgoing end YC . Then there is an induced mapc

HS�.Y�/˝cHS�.Y0/˝ � � �˝cHS�.Yn/!

c

HS�.YC/:

This holds also when the two to groups are replaced by their from and bar counterparts.
As a special case of this general construction, the cobordism I �Y with a ball removed
induces a map c

HS�.Y /˝Rh�1i !

c

HS�.Y /;

where we think of the additional boundary component as an incoming S3 end, and we
use this map as the definition of the R–module structure.

As briefly discussed in the introduction, in the case that Y is a rational homology
sphere equipped with a self conjugate spinc structure s the groups have a rather simple
structure. In particular, we have the isomorphism of relatively graded R–modules

HS�.Y; s/Š HS�.S3/Š S:

Algebraic & Geometric Topology, Volume 17 (2017)
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Analogously the group

c

HS�.Y; s/ is zero for degrees negative enough and the map i�
is an isomorphism in degrees high enough. This implies that for some ˛ � ˇ � 
rational numbers with the same fractional part we have that

i�.HS�.Y; s//Š SC
˛;ˇ;

as absolutely graded R–modules. A very interesting special case is when Y is an
actual integral homology sphere. In that case, the correction terms are integral lifts of
the Rokhlin invariant, and are invariant under homology cobordism. Furthermore,

ˇ.�Y /D�ˇ.Y /;

where �Y denotes the manifold with opposite orientation, and using these properties
one can show that the long standing triangulation conjecture is false; see [22; 19].

Construction of monopole Floer homology We quickly describe the construction of
monopole Floer homology. Equip Y with a riemannian metric. A spinc structure on Y

is given by a rank two hermitian bundle S! Y together with a Clifford multiplication

�W T Y ! Hom.S;S/;

ie a bundle map with the property that

�.v/2 D�kvk2IdS for each v 2 T Y:

We can define the configuration space C.Y; s/ consisting of pairs .B; ‰/ where

� B is a spinc connection on S , ie a connection compatible with the Clifford
action;

� ‰ is a spinor, ie a section of S .

The group of automorphisms of the Clifford bundle G.Y; s/ is given by the set of
maps u from Y to S1 , and it acts on the configuration space as

u � .B; ‰/D .B �u�1du;u �‰/:

A configuration with ‰ ¤ 0, called irreducible, has trivial stabilizer, while a con-
figuration .B; 0/, called reducible, has stabilizer S1 given by the constant gauge
transformations. The functional on the configuration space used to define the Floer
chain complex is the Chern–Simons–Dirac functional, given after a choice of a base
spinc connection B0 by

L.B; ‰/D� 1

8

Z
Y

.Bt
�Bt

0/^ .FBt CFBt
0
/C

1

2

Z
Y

hDB‰;‰i dvol:

Algebraic & Geometric Topology, Volume 17 (2017)
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Here Bt denotes the connection induced on the determinant line bundle
V

2S , and
DB is the Dirac operator associated to B . When c1.s/ is not torsion, this functional is
invariant only under the identity component of the gauge group, and is well defined
with values in R=2�2Z.

From here, the early approaches to Seiberg–Witten Floer homology went on considering
the flow of the L2 formal gradient of the functional L, given by the formula

gradL.B; ‰/D
��

1
2
�FBt C ��1.‰‰�/0

�
˝ 1S ;DB‰

�
on the space of irreducible configurations modulo gauge. This caused invariance
issues, and the loss of important information carried by the reducibles. Kronheimer
and Mrowka’s approach solved this by passing to the blown-up configuration space
C� .Y; s/. This consists of triples .B; r;  / where

� B is again a spinc connection;

� r is a nonnegative real number;

�  is a spinor with unit L2 norm.

This operation is essentially passing to polar coordinates in the spinor component, and
there is a canonical blow-down map � given by

.B; r;  / 7! .B; r /:

The action of the gauge group on this space is free, and the quotient B� .Y; s/ is an
infinite-dimensional manifold with boundary @B� .Y; s/ consisting of the preimage of
the reducibles under the blow-up map. Furthermore, the gradient of the Chern–Simons–
Dirac functional naturally extends to the blown-up configuration space as the vector field

(5) .gradL/� .B; r;  /
D
��
�

1
2
FBt C r2��1.  �/0

�
˝ 1S ; ƒ.B; r;  /r;DB �ƒ.B; r;  /

�
;

where ƒ.B; r;  / is the real valued function hDB ; iL2.Y / . Monopole Floer homol-
ogy is then defined by applying the usual ideas of Morse–Witten homology to this
vector field on the space B� .Y; s/.

There are a few observations to be made. First of all, the vector field .gradL/� is not
the gradient of any natural function on C� .Y; s/ with respect to any natural metric.
Furthermore, it is tangent to the boundary @B� .Y; s/, so the latter is invariant under
the flow. This implies that there are two kinds of reducible critical points: the stable
ones, for which the Hessian in the direction normal to the boundary is positive, and
the unstable ones. The unstable manifold of a stable critical point is entirely contained
in the boundary, and similarly for the stable manifold of an unstable critical point. In

Algebraic & Geometric Topology, Volume 17 (2017)
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@B� .Y; s/

indD 2

indD 0

indD 1

indD 1

Figure 1: A one-dimensional family of trajectories limiting to a broken
trajectory with three components

particular, a nonempty space of trajectories from a stable point to an unstable point is
never transversely cut out. We say that such a pair is boundary obstructed. This implies
for example that a one-dimensional family of unparametrized trajectories between two
irreducible critical points may break into three components, the middle one being a
boundary obstructed trajectory; see Figure 1.

Nevertheless, for generic perturbations one can define three chain complexes computing
the three relevant homologies as follows. Denote by C o , C u and C s the F–vector
spaces generated by the irreducible, unstable and stable critical points. One can define
the linear maps

@o
oW C

o
! C o; @o

s W C
o
! C s; @u

o W C
u
! C o; @u

s W C
u
! C s

obtained by counting irreducible trajectories in zero-dimensional moduli spaces between
critical points of a specified type, and similarly

x@s
sW C

s
! C s; x@s

uW C
s
! C u; x@u

s W C
u
! C s; x@u

uW C
u
! C u

obtained by counting reducible trajectories. Notice that the maps @u
s and x@u

s count
points in different moduli spaces. The three Floer chain complexes are then defined as
the F–vector spaces

LC� D C o
˚C s; yC� D C o

˚C u; xC� D C s
˚C u

equipped respectively with the differentials

L@D

"
@o

o @u
o
x@s

u

@o
s
x@s

sC @
u
s
x@s

u

#
; y@D

"
@o

o @u
o

x@s
u@

o
s
x@s

u@
u
s

#
; x@D

"
x@s

s
x@s

u

x@u
s
x@u

u

#
:
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The Floer homology groups are the homology groups of these complexes, and are
independent (in a functorial way) of the choices made.

We can give a nice description of the critical points in the blowup in the generic case.
Recall first that the compactness properties of the Seiberg–Witten equations imply
that for a generic perturbation there are only finitely many critical points downstairs.
The blow-down map is a diffeomorphism on the irreducibles, so we have a one-to-one
correspondence in this case, so the irreducible critical points upstairs consist of a finite
number of points. On the other hand, it is easy to see from (5) that each reducible
critical point downstairs gives rise to a countable collection of stable and unstable
critical points. Indeed, each of these corresponds to the quotient by the S1–action of the
unit sphere of an eigenspace of the Dirac operator. These are generically all (complex)
one-dimensional, and the eigenvalues form a discrete sequence of real numbers which
is infinite in both directions. The computation of the Floer groups for S3 then readily
follows because the positive scalar curvature implies that there are no irreducible critical
points for perturbations small enough.

Finally, given a cobordism W between Y0 and Y1 , the induced map is defined by
counting solutions to the four-dimensional Seiberg–Witten equations (in the blowup
of the configuration space) on the manifold W � obtained by adding cylindrical ends.
This generally involves infinitely many moduli spaces, and their sum only makes sense
after a suitable completion of the groups with respect to some negative filtration, which
we denote using the bullet. The map induced by W and the class U d 2 F ŒŒU �� is
defined by considering the manifold W �p with an additional incoming end of the form
.�1; 0��S3 obtained by removing a ball (such that the metric is a product near the
boundary) and adding a cylindrical end. We can choose the metric such that S3 has
positive scalar curvature, and the map is obtained by counting the solutions to the
Seiberg–Witten equations on W �p that converge to the d th unstable critical point at
this additional end.

The case of a self-conjugate spinc structure In the case that the spinc structure is
self-conjugate, or equivalently the spinc structure is induced by a genuine spin structure,
we have two extra features:
� a preferred base connection B0 with Bt

0
flat, the spin connection induced by

the Levi–Civita connection;
� a quaternionic structure j on the Clifford bundle S , ie a complex antilinear

automorphism such that j 2 D�Id.

The latter follows from the observation that Spin.3/ can be identified with SU.2/ and
the spinor representation is just the usual action on C2 DH . We will write the action
of j and the multiplication by complex numbers from the right. These two features
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are compatible in the sense that the Dirac operator DB0
is quaternionic linear. In this

case, the configuration space C.Y; s/ comes with a diffeomorphism | given by

| � .B0C b; ‰/D .B0� b; ‰ � |/:

This induces an involution on the moduli space of configurations B.Y; s/. Its only fixed
points are the equivalence classes ŒB; 0� with B the spin connection of a spin structure
inducing the spinc structure s. There are 2b1.Y / such spin structures: for example on
S2�S1 , the two spin structures both induce the only torsion spinc structure. Similarly,
there is an induced involution (still denoted by | ) on the blown-up moduli space of
configurations B� .Y; s/ which is fixed point-free.

The main idea is then to do Floer theory in a |–invariant fashion, and compute the
homology of the quotient B� .Y; s/=| . This is done by producing a (Morse–Bott) chain
complex with a natural Z=2Z–action, and consider the homology of the invariant
subchain complex. To do this we need to restrict to perturbations that preserve the
symmetry of our set up. The generic picture will then be the following. Irreducible
critical points are not fixed points of the action downstairs, so they will still constitute a
finite number of points, and furthermore they come in pairs related by the action of | .
The same thing happens for reducible critical points for which the connection is not
spin, with the action of | exchanging the two towers of reducible critical points. In the
case when the connection is spin, the perturbed Dirac operator will still be quaternionic,
hence the eigenspaces will always be even-dimensional over the complex numbers.
In particular, the perturbation will not be regular in the usual sense. Nevertheless,
generically the eigenspaces will all be two-dimensional, and we will obtain a copy
of S2 as critical submanifold for each of them. This is the quotient of the unit sphere
of the eigenspace by the action of S1 , which is just a Hopf fibration. Finally, the action
of | on S2 is just the antipodal map.

For a generic perturbation, the critical manifolds described above will be Morse–Bott,
meaning that the Hessian is nondegenerate in the normal directions. The three Morse–
Bott chain complexes computing the homology introduced in Chapter 3 of [19] are
defined following the framework of [9]. The underlying vector space is the direct
sum of some variants of the singular chain complexes of the critical submanifolds.
The differential combines the singular differential together with terms involving dif-
ferent critical submanifolds. In particular, given critical submanifolds ŒC˙�, there are
evaluation maps on the compactified moduli spaces of trajectories connecting them,

ev˙W MMC.ŒC��; ŒCC�/! ŒC˙�;

sending a trajectory to its limit points. Then a chain

f W � ! ŒC��
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gives rise (under suitable transversality hypotheses) to the chain

evCW � � MMC.ŒC��; ŒCC�/! ŒCC�;

where the underlying space is the fibered product under the maps f and ev� , and is
mapped to ŒCC� using the evaluation evC . The total differential of � is then defined to
be the sum of its singular differential and all these chains obtained via fibered products.
The proofs in this new framework carry over with the same formulas as the usual
one: identities relating zero-dimensional moduli spaces coming from boundaries of
one-dimensional spaces are now identities (at the chain level) of chains arising as the
codimension-one strata of fibered products as above. Of course, we need to consider
chains � in some class of geometric objects so that the fibered products with the
moduli spaces remain in that class. This is a delicate point because in our context
the compactified moduli spaces are not in general manifolds with corners, neither
combinatorially nor topologically. In Section 3.1 of [19], we introduce a suitable class
of such objects called ı–chains, and define a modified singular chain complex for a
smooth manifold obtained by quotienting out a class of degenerate ı–chains. These
degenerate chains are essentially chains whose image is contained in the image of a chain
of strictly smaller dimension; see also [20]. This construction leads to a well defined
homology theory for smooth manifolds satisfying the Eilenberg–Steenrod axioms.

These chain complexes come with a natural involution (given by composition with the
involution | ), and the Pin.2/–monopole Floer homology groups are defined as the
homologies of the invariant subcomplexes. Finally, by exploiting the positive scalar
curvature we see that the Pin.2/–monopole Floer homology groups of the three-sphere
are isomorphic (after grading reversal) to the claimed ones.

While transversality for the three-dimensional equations can be achieved using the
equivariant counterpart of the three-dimensional perturbations used in [12], in the case
of the map induced by a cobordism W new perturbations (defined only in the blown-up
configuration space of the cobordism) need to be considered. This is because the three-
dimensional perturbations always vanish at the fixed points of the involution | . In par-
ticular, if we are only considering them, a spin connection on a cobordism always gives
rise to a reducible solution, and this might not be regular simply for index reasons. In
Section 4.2 of [19], we define Pin.2/–equivariant ASD–perturbations. These are maps

(6) y!W C� .X /!L2.X I isu.2//;

which are gauge invariant, |–equivariant (where | acts on the right-hand side as
multiplication by �1) and satisfy suitable analytical properties. Furthermore, they
form a collection large enough so that we can achieve transversality while preserving
the Pin.2/–symmetry.
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2 Some additional background results

In this section, we discuss some aspects of Pin.2/–monopole Floer homology which
have not been treated in [19] and will be central to the discussion in the present work.
In particular, we discuss the blow-up formula and describe the reducible moduli spaces
on special spin cobordisms with bC

2
D 1.

Recall that the blowup of a smooth 4–manifold X (possibly with boundary) is the
smooth four-manifold

zX DX # CP2:

We will denote by E the exceptional divisor, which is a smooth embedded sphere of
self-intersection �1. We define sk to be the spinc structure on CP2 such that

hc1.sk/; ŒE�i D 2k � 1:

In particular, the conjugate of sk is s1�k . Given a spinc structure s on X , we define
s # sk to be the spinc structure on zX that restricts to s on X and to sk on CP2 . It is
shown in Section 39.3 of [12] that in monopole Floer homology, we have the identityb

HM�. zX ; s # sk/D

b

HM�.U k.k�1/=2
jX; s/:

The aim of this section is to prove the counterpart of this in the case of Pin.2/–monopole
Floer homology. It is important to notice that the blowup zX is never a spin manifold,
as it carries a homology class ŒE� with odd self-intersection.

Proposition 8 Let X be a cobordism. If s a self-conjugate spinc structure, then

(7)

c

HS�. zX ; Œs # sk �/D

�
0 if k � 0; 1 .mod 4/;c

HS�.Q2V bk.k�1/=4c jX; Œs�/ otherwise.

If the spinc structure on X is not self-conjugate, thenc

HS�. zX ; Œs # sk �/D 0

for every k . The same statement holds for the from and bar versions.

As it will be clear from the proof, it is natural to interpret the two cases in (7) by
considering the parity of 1

2
k.k � 1/: in the first case it is even, in the latter it is

odd. This quantity will arise in the formula (8) for the dimension of moduli spaces of
solutions on a punctured CP2 .

Proof The result can be proved by a neck stretching argument close to the ones in
Section 3.2 of [19], and in particular the construction of the R–module structure. We
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focus on the case of a self-conjugate spinc structure s first. Consider the separating
three-sphere S3 along which the connected sum is performed. We can suppose that
the metric on this S3 is the standard round one, and it is a product in a neighborhood.
Hence we can define a one-dimensional family of metrics parametrized by T 2 Œ0;1/

by adding longer and longer necks of the form Œ0;T � � S3 . By considering the
compactified moduli spaces of solutions parametrized by this family of metrics, we
can construct a chain homotopy between the map defining

c

HS�. zX ; Œs # sk �/ (which is
the map corresponding to the stratum T D 0), and a new chain map corresponding to
an additional stratum at T D1 which we describe in detail. Intuitively, at T D1

the cobordism is decomposed in two pieces, and the solutions converge to solutions on
each of the two pieces. On one hand we have the moduli spaces for the self conjugate
spinc structure on X with an additional cylindrical end .0;1��S3 (denoted by X �p
in [19]) with a Pin.2/–equivariant perturbation on it. Recall from Section 1 that the map
induced by the cobordism X and an element x in R is given by considering the moduli
spaces on X �p which are asymptotic on this additional end to a given representative of x

in cHS�.S3/. The latter can be realized as a |–invariant chain in a critical submanifold.
Furthermore, we have the moduli spaces on a punctured CP2 (which we denote by
.CP2/� ) and the perturbation on the cylindrical end is Pin.2/–equivariant. Denote
the critical submanifold corresponding to the i th negative eigenvalue by ŒC�i �. The
dimension of the moduli space of solutions in the spinc structure sk converging to the
critical submanifold ŒC�i � is given by

(8) dimMC
�
.CP2/�; ŒCbk.k�1/=4c�1�; sk

�
D k.k � 1/C 4i � 2;

see also Lemma 5.3 in [13]. As the critical submanifold is 2–dimensional, the only
interesting moduli space for our purposes when dealing with the spinc structure sk is

Mk DMC
�
.CP2/�; ŒCbk.k�1/=4c�1�; sk

�
;

as the others have dimension too big, so are degenerate, as discussed in Section 1.
Following the proof of Frøyshov’s theorem (Section 39.1 in [12]), as there are no L2

anti-self-dual forms on .CP2/� there is only one reducible connection. Furthermore,
as the solutions converge on the cylindrical end to an unstable configuration they
are necessarily reducible. If k � 0; 1 .mod 4/ then Mk is the projectivization of
to the two-dimensional kernel of the corresponding Dirac equation. In particular, it
is a two-dimensional sphere of reducible solutions, and the evaluation map is either
constant or a diffeomorphism. On the other hand, if k 6� 0; 1 .mod 4/, then Mk is the
projectivization of the one-dimensional kernel, so it consists of a single point.

Going back to the map induced by zX on

c

HS� , we see via the chain homotopy provided
by the neck stretching argument that this is equivalent to the map induced by X together
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with a specified cohomology class in R. In the case k � 0; 1 .mod 4/, this is defined
by the invariant chain given by the union Mk [M1�k . As again the two chains are
related by the action of | , we have that either they both represent a generator of the
top homology or they both represent the zero class. In any case, their union defines the
zero class in the homology of the invariant subcomplex, so the induced map is zero.
In the other case k 6� 0; 1 .mod 4/, the cohomology class is given by Q2V bk.k�1/=4c ,
as a pair of antipodal points is a generator of the invariant subcomplex of the critical
submanifold in dimension zero.

There is a subtlety regarding perturbations in this proof. Because the blowup X # CP2

is not spin, when performing the stretching argument we can use a nonequivariant
perturbation on the neck while preserving equivariance. On the other hand, at the limit
we need to use an equivariant perturbation on the manifold with cylindrical ends X �p in
order for the map to make sense. From this, it is clear that in the case in which the spinc

structure on X is not self-conjugate, we can use nonequivariant perturbations all the way
and obtain the second part of the result, as in this case the standard argument works.

The second fact we want to point out is that unlike the usual counterpart in monopole
Floer homology, the map HS�.W / induced by a cobordism W with bC

2
� 1 is not

necessarily zero. In fact, in a special case, we have the following characterization of
the moduli spaces.

Proposition 9 Let W be a cobordism between rational homology spheres with
b1.W /D 0 and bC

2
D 1, and consider a self-conjugate spinc structure s0 . Let A0 be

the corresponding spinc connection. Suppose that for the fixed perturbations at the
ends, there is only one reducible solution. Then there exists a regular perturbation on
the cobordism such that for each reducible moduli space MC.ŒC��; ŒCC�/ which is
one-dimensional, the evaluation maps

ev˙W MC.ŒC��; ŒCC�/! ŒC˙�

define |–invariant chains generating the one-dimensional |–invariant homologies.

If we restrict to Pin.2/–equivariant three-dimensional perturbations (which we recall
are introduced in a collar I � @W of the boundary of W ; see Chapter 24 in [12]),
the reducible configuration in the blowdown ŒA0; 0� is always a solution, because the
perturbations vanish at the fixed points of the involution. In the blowup, the reducible
moduli spaces MC.ŒC��; ŒCC�/ lying over ŒA0; 0� and such that the linearization of
the equations has index 1 are in the best scenario a copy of CP1 , given by the
projectivization of the one-dimensional (over the quaternions) kernel of the perturbed
Dirac operator DC

A0;yp
. In particular, the moduli spaces cannot be transversely cut out.
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Proof We will introduce a suitable regular perturbation for which we can explicitly
describe the moduli spaces in play. As bC

2
D 1, the operator dC does not have dense

image, so we can find a smooth compactly supported self-dual form !C
0

not contained
in it. We can suppose without loss of generality that the support of !C

0
is contained

in W away from the collar of the boundary where three-dimensional perturbations are
applied. This implies that the form !C

0
is not in the image of any of the linearizations of

the perturbed anti-self-duality operators. We claim that there exists a smooth function
on the (completion in the L2

k
norm of the) blown-up configuration space

�W C�k .W; sW /!R

with the following properties:

(1) the map is gauge invariant and |–equivariant where | acts on R as �1;

(2) the restriction of the map � to the reducible moduli space lying over ŒA0; 0� is
transverse to zero;

(3) the L2.W I isu.2//–valued map ���W .!
C

0
/ is, in the sense of Section 4.2 of [19],

a Pin.2/–equivariant ASD–perturbation, so it can be legitimately used to perturb
the equations.

The map � can be easily constructed from a given Pin.2/–equivariant ASD–perturba-
tion y! via the L2 projection to the line spanned by a single configuration. The proofs
in Section 4.2 in [19] carry over to show that the perturbation � ��.!C

0
/ has the required

analytic properties.

We can then describe the one-dimensional moduli spaces of reducible solutions as
follows. The new equations for a reducible configuration .A; 0; �/ are (a small pertur-
bation of)

DC
A
� D 0;

�.FC
At /� �.A; 0; �/!

C

0
D 0:

As !C
0

generates the cokernel of dC , the last equation implies �.A; 0; �/ is zero and
.A; 0; �/ is a reducible solution for the equations without the additional perturbation.
Hence the space of reducible solutions is identified as the zero locus of

�W CP1
!R:

This is transversely cut out by condition .2/ and consists of an odd number of circles
by condition .1/, hence the result follows.

Proof of Theorem 7 This result follows in the same way as the proof of monotonicity
of Manolescu’s invariants under negative definite cobordisms; see Section 4.4 of [19].
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If bC
2
D 1, after reducing to the case of b1 D 0 via surgery, the description above tells

us that for a self-conjugate spinc structure s the map

HS�.W; s/W HS�.Y0; s0/! HS�.Y1; s1/

is as follows. After fixing isomorphisms of graded R–modules

HS�.Yi ; si/Š Shdii;

where for some choice of di the angular brackets denote a global grading shift of di ,
the map is identified to be multiplication by QV k where the integer k is determined
by the intersection form of the cobordism, and the statement follows.

In the case bC
2
D 2, an analogous characterization of the reducible moduli space

holds: it consists of a number of points congruent to 2 modulo 4. The proof of this
characterization follows that of Proposition 9, and we briefly sketch it here. The cokernel
of dC now has dimension two, and we can construct an analogous | perturbation with
values in the cokernel. When restricted to the reducible unperturbed moduli space, this
has the form of

(9) �W CP1
!R2;

and the (transverse) zero set consists of a number of points congruent to 2 modulo 4 by
| equivariance. The same argument as in Proposition 9 implies then that the reducible
solutions are identified with the zero set of (9) and they are transversely cut out. This
identifies the map on the bar version as the multiplication by Q2V k , and the result
follows.

3 The exact triangle

This section is dedicated to the proof of the main result of the paper, Theorem 1 in
the introduction. We start by reviewing in detail the framework of the surgery exact
triangle; see also [13; 12, Chapter 42]. Suppose we are given a knot K inside a
three-manifold Y , and let Z be the manifold with torus boundary @Z obtained by
removing a tubular neighborhood of it. Let �1; �2; �3 be closed simple curves on @Z
with the property that the intersection numbers satisfy

(10) �1 ��2 D �2 ��3 D �3 ��1 D�1:

We can then obtain the three manifolds Y1;Y2 and Y3 by Dehn filling along these
curves. We extend this definition periodically so that, for example, �nC3 D �n .

This construction behaves well with four-dimensional topology in the following sense.
There is an elementary cobordism Wn from Yn to YnC1 obtained by attaching a
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single 2–handle D2 �D2 to Œ0; 1�� Yn along f1g �K with framing �nC1 . In this
case, the knot K � YnC1 with framing �nC2 can be identified with the boundary
f0g �S1 of the cocore of the attached handle with framing �1 relative to the cocore
f0g�D2 . In Wn , there is a closed 2–cycle †n defined as follows. On @Z there is the
distinguished simple closed curve � whose homology class generates the kernel of
H1.@Z/!H1.Z/, so in particular there is a surface T �Z with boundary � . The
closed cycle †n is obtained as the union of T , the core of the 2–handle and a piece in
the solid torus @D2 �D2 .

Suppose we are in the case Z is a knot complement in S3 . Then there is canonical
pair of curves m and l in @Z , namely the classical meridian and longitude of the knot.
These are oriented so that m � l D�1. In this case, any oriented simple closed curve �
can be described up to isotopy by its homology class

Œ��D pŒm�C qŒl �

with .p; q/ relatively prime. Forgetting about the orientation, this can be recorded by
the ratio

r D p=q 2Q[f1g:

Triples of curves satisfying the relations (10) come from triples of pairs

.p1; q1/; .p2; q2/; .p3; q3/

satisfying the conditions

�pnqnC1CpnC1qn D�1;

where as usual the subscripts are interpreted modulo 3. Very interesting cases are given
by the slopes

r1 D 0; r2 D 1=.qC 1/; r3 D 1=q

for q 2 Z and
r1 D p; r2 D pC 1; r3 D1

for p 2Z. In general, if none of the slopes is zero, up to cyclic permutation and change
of sign we can suppose that our triple looks like

r1 D
p

q
; r2 D

pCp0

qC q0
; r3 D

p0

q0

with the properties
p;p0 > 0; �p0qCpq0 D�1:

In particular, exactly two of p;p0 and pCp0 are odd. Furthermore, in this case the
cobordism with positive definite intersection form is W3 ; see Section 42.3 in [12].
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We now focus on the interactions of this construction with our invariants.

Lemma 10 Among the three cobordisms W1 , W2 and W3 , exactly two are spin.

Proof Because the cobordism Wn is given by a two-handle attachment and three-
manifolds are always spin, the fact that Wn is spin (ie its second Stiefel–Whitney
class is zero) is equivalent to the fact that the cycle Œ†n� has even self-intersection.
To see that this holds, we use the discussion above, which can be generalized to any
manifold Z with torus boundary by taking Œl � to be a primitive element in the kernel of

H1.@Z/!H1.Z/;

and Œm� any other curve such that Œm� � Œl � D �1. In particular, while the slope of a
curve n is not well defined (as it depends on the choice of the meridian Œm�), the
numerator pn is. The self-intersection is up to sign just the product of the numerators
pnpnC1 , so the result follows because exactly two of them are odd.

On the other hand, the composition Wn[YnC1
WnC1 is never spin. In fact, it always

contains a sphere En with self intersection �1. This is given by the union of the core
of the 2–handle of WnC1 and the cocore of the 2–handle in Wn . From this description,
it also follows that the cobordism

Wn[YnC1
WnC1

between Yn and YnC2 is diffeomorphic to the opposite cobordism SWnC2 blown up
at a point. Without loss of generality we will suppose from now on that the nonspin
cobordism is W3 .

We introduce the homological algebra needed for our purposes in an abstract setting.
This is a slight variation of a standard triangle detection result in Floer homology;
see Lemma 4.2 in [27] or Lemma 5.1 in [13]. Suppose we are given three chain
complexes C1 , C2 and C3 , and chain maps f1W C1!C2 and f2W C2!C3 such that
the composition f2 ıf1 is homotopic to zero via a nullhomotopy H1 . We can form
the “iterated mapping cone” C whose underlying vector space is C3˚C2˚C1 and
whose differential is

@D

0@@3 f2 H1

0 @2 f1

0 0 @1

1A :
This is a differential because f1 and f2 are chain maps and H1 is a chain nullhomotopy
for f2 ıf1 . The following is the key lemma in homological algebra we need.
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Lemma 11 Suppose the homology of the iterated mapping cone H�.C; @/ is trivial.
Then there is a map F3W H�.C3/!H�.C1/ such that the following triangle is exact:

H�.C2/ H�.C3/

H�.C1/

.f2/�

.f1/� F3

We will discuss the naturality properties of this construction (in our specific case) in
detail in the proof of Theorem 1.

Proof The proof of this result follows closely that of the standard triangle detection
lemma. First we form the mapping cone Mf1

of the chain map f1 , which is the chain
complex with underlying vector space C1˚C2 and differential

d D

�
@2 f1

0 @1

�
:

This is a differential because f1 is a chain map. The short exact sequence of chain
complexes

0! C2
i
�!Mf1

p
�! C1! 0;

where the maps are respectively the inclusion and the quotient, induces an exact triangle:

H�.C2/ H�.Mf1
/

H�.C1/

i�

.f1/� p�

Similarly the iterated mapping cone fits in the short exact sequence of chain complexes

0! C3! C !Mf1
! 0:

In particular, we have a connecting homomorphism

ıW H�.Mf1
/!H�.C3/;

which is induced by the chain map

(11) .f2CH1/W Mf1
D C2˚C1! C3:

The fact that H�.C / is trivial is equivalent to ı being an isomorphism. So in the
triangle above we can replace the homology of the mapping cone H�.Mf1

/ with
H�.C3/ using this isomorphism. Finally the connecting homomorphism ı is given
by (11), so we can identify the horizontal map as .f2/� .
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We now describe how our problem fits in the framework of Lemma 11. We denote
by LCi the chain complex LC�.Yi/ computing the to version, and by

Lfi W
LCi!

LCiC1

the chain map defining the map induced by the cobordism Wi . We denote by LM the
mapping cone of Lf1 . Recall that the composition W2 ıW1 is SW3 blown up at a point,
and as SW3 is not spin the induced map is zero by Proposition 8. There is in fact a
natural chain homotopy to zero

LH1W
LC1!

LC3

defined as follows. The chain homotopy is constructed by considering a one-dimensional
family of metrics on the composite cobordisms X1DW2ıW1 . There are two separating
hypersurfaces Y2 and S1 , the latter being the boundary of a neighborhood of the .�1/–
sphere E1 . Choose a metric on X1 such that S1 has a metric obtained by flattening
the round one near the Clifford torus Y2 \S1 . We can construct then the family of
metrics Q.S1;Y2/ parametrized by T 2R given by inserting a cylinder Œ�T;T ��S1

normal to S1 for T negative, and a cylinder Œ�T;T ��Y2 normal to Y2 for T positive.
Following the notation of [13] we will use the letter Q to denote one-dimensional
families of metrics. It will be clear from the context whether we are using this letter
to indicate this or the element of R. Also, we will denote by xQ its compactification
obtained by adding f˙1g. We can define the moduli spaces parametrized by the
family of metrics

Mz.ŒC��;X
�
1 ; ŒCC�/Q:

This will be a smooth manifold for a generic choice of Pin.2/–equivariant perturbation.
As in the proof of Proposition 8, this can be compactified to a moduli space

MC
z .ŒC��;X

�
1 ; ŒCC�/ xQ

obtained by considering both broken trajectories and the fibered products of the com-
pactified moduli spaces on the manifolds with (possibly more than two) cylindrical
ends one obtains for T D˙1, namely

W �1 qW �2

for T DC1 and
B�1 qZ�1

for T D�1. Here Z1 is a neighborhood of the exceptional divisor, and B1 can be
identified with SW3 with a ball removed. Similarly, one can consider the compactified
moduli spaces consisting entirely of reducibles M redC

z .ŒC��;X
�
1
; ŒCC�/ xQ . By taking
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fibered products with these moduli spaces one can define the |–invariant linear map

H o
o W C

o.Y1/! C o.Y3/

and similarly its companions H o
s ;H

u
o ;H

u
s ;
xH s

s ;
xH s

u ;
xH u

s and xH u
u . We then define

the map

LH1 D

"
H o

o H u
o
x@s

uCmu
o.W2/ xm

s
u.W1/C @

u
o
xH s

u

H o
s
xH s

s CH u
s
x@s

uCmu
s .W2/ xm

s
u.W1/C @

u
s
xH s

u

#
by the same formula that defines the chain map proving the composition formula; see
Chapter 26 in [12] and Section 3.3 in [19]. Here the maps m��.W�/ are the components
defining the chain maps Lf1 and Lf2 .

In fact, the same construction applies to the other two composites to give rise to the
maps LH2 and LH3 , and we have the following result.

Lemma 12 The map LH1 satisfies the identity

L@ ı LH1C
LH1 ı
L@D Lf2 ı

Lf1:

For nD 2; 3, the map LHn is a chain homotopy between the composite LfnC1 ı
Lfn and a

chain map
LgnW
LC�.Yn/! LC�.YnC2/

computing the blown-up map as in Proposition 8 in Section 2.

Proof One just has to identify the contributions of the various codimension one strata of
the moduli spaces MC

z .ŒC��;X
�
1
; ŒCC�/ xQ . The closure of the union of the codimension

one strata of MC
z .ŒC��;X

�
1
; ŒCC�/T for T finite corresponds to the left-hand side.

The moduli space MC
z .ŒC��;X

�
1
; ŒCC�/C1 consists of the fibered products of the

moduli spaces used to define the chain map on the right-hand side. The moduli spaces
MC

z .ŒC��;X
�
1
; ŒCC�/�1 define the zero map at the chain level. This is a manifestation

at the chain level of the phenomenon underlying the proof of Proposition 8 in the
non-self-conjugate case. The case of the other cobordisms is analogous and follows
the proof of Proposition 8.

We can then form as in Lemma 11 an iterated mapping cone LC of the three chain
complexes LC1; LC2; LC3 , the chain maps Lf1; Lf2 and the chain nullhomotopy LH1 . As
that lemma states, the main result underlying the existence of an exact triangle is the
following.

Proposition 13 The homology of the iterated mapping cone LC is zero.
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Y1 Y2 Y3 Y1

R1

S1 S2

Figure 2: The five hypersurfaces in the triple composite

To prove this assertion, we will construct a chain map L' from LC to itself homotopic
to zero that induces an isomorphism at the homology level. Let V1 be the manifold
obtained as the triple composite

V1 DW1[Y2
W2[Y3

W3:

We introduce a two-dimensional family of (possibly degenerate) metrics parametrized
by a pentagon as follows. This manifold contains five separating hypersurfaces, namely
Y2 , Y3 , the two three-spheres S1 and S2 and the manifold R1 homeomorphic to
S1 �S2 which is the boundary of a regular neighborhood of the .�1/–spheres E1

and E2 containing both S1 and S2 . We can arrange them cyclically as Y2;R1;Y3;S2

and S1 so that each of them intersects only its two neighbors; see Figure 2. For each pair
S;S 0 of nonintersecting hypersurfaces, we define the family of metrics parametrized
by R>0 �R>0 by inserting cylinders Œ�TS ;TS ��S and Œ�TS 0 ;TS 0 ��S 0 . This can
be completed to a family of riemannian metrics over the “square”

xP .S;S 0/Š Œ0;1�� Œ0;1�:

The five families obtained this way fit along their five edges corresponding to families of
metrics in which only one of the TS is nonzero. Hence we can obtain a family of metrics
on the pentagon xP obtained as their union; see Figure 3. For each hypersurface S ,
there is an edge xQS of the pentagon (consisting of two of the edges of the squares)
where TS D1. One can arrange that the family of metrics is such that R1;S1 and S2

have positive scalar curvature metrics.

One then considers the compactified moduli spaces of solutions parametrized by such
a family, and uses them to construct maps between the chain complexes. The two
strata corresponding to the edges Q.Y2/ and Q.Y3/ are exactly those that define the
maps LH2 ı

Lf1 and Lf3 ı
LH1 . Notice that unlike the case of [13], the sum of these

two maps is not a chain map, as LH2 is not a chain homotopy between Lf3 ı
Lf2 and

zero. The maps corresponding to the edges Q.S1/ and Q.S2/ correspond punctured
cobordisms with an additional punctured CP2 component.
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P .R1;S2/

P .Y2;S2/

P .Y2;Y3/P .S1;Y3/

P .R1;S1/

Q.Y3/

Q.Y2/

Q.S2/Q.R1/

Q.S1/

Figure 3: The family of metrics xP

The most interesting edge is the one given by Q.R1/. The hypersurface R1 is homeo-
morphic to S2�S1 , hence because of positive scalar curvature the only interesting spinc

structure is the one with torsion first Chern class s0 . As in Section 4.4 of [19] we can
fix a small regular perturbation with only two reducible solutions in the blowdown ˛1

and ˛0 corresponding to the spin connections B1 and B0 and no irreducible solutions.
This is induced by a smooth |–invariant Morse function on the one-dimensional torus T
of flat connections

f W T !R

with exactly two critical points via a gauge equivariant retraction of B.R1; s0/ onto T .
We can suppose that ˛1 is the maximum, so that there are exactly two trajectories
connecting ˛1 to ˛0 in the blowdown. We call the critical submanifolds in the blowup
ŒC
�
i � for �D 0; 1 and i 2 Z. Here the superscript indicates the reducible solution on

which the submanifold is lying over, and the index the eigenvalue it corresponds to.
As usual, the index zero is for the first stable critical submanifold. In this case, the
contributions of moduli spaces lying over the two trajectories connecting ˛1 to ˛0

in the blowdown cancel each other, so the homology is just the direct sum of the
homologies of the critical submanifolds.

This hypersurface R1 defines a decomposition of the triple composite as the union of
two four-manifolds. The first, which we call U1 , has three boundary components and is
the complement in Y1� Œ�1; 1� of a neighborhood of K�f0g. The second one, which
we call N1 , is the complement in CP2 of an unknotted loop. Its second homology
is generated by the two exceptional spheres E1 and E2 , and spinc structures sk that
restricts to s0 on the boundary is uniquely determined by

hc1.sk/; ŒE1�i D hc1.sk/; ŒE2�i D 2k � 1:

Here our notation slightly differs from [13]: what we call sk is denoted by them
as tk�1 . On the manifold with one cylindrical end N �

1
we can consider the moduli
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spaces Mk.N
�
1
; ŒC

�
i �/xQ where xQ is xQ.R1/ relative to the spinc structure sk of solutions

converging to ŒC�i �. We have the following lemma; see Lemma 5.7 and following
corollaries in [13].

Lemma 14 The dimension of the moduli space Mk.N
�
1
; ŒC

�
i �/ xQ is given by

dimMk.N
�
1 ; ŒC

�
i �/ xQ D

�
��� k.k � 1/� 4i; i � 0;

��� k.k � 1/� 4i � 1; i < 0:

In particular, the moduli spaces M red
k
.N �

1
; ŒC

�
i �/ xQ are empty for all i � 0.

The moduli spaces above define chains in the critical submanifolds of R1 . In particular,
we can consider � s , the one in the stable critical manifolds, �u

0
in the unstable critical

manifolds above ˛0 and �u
1

in the critical manifolds above ˛1 . We use the chains �u
�

in the unstable critical submanifolds to define the linear maps

Lo
o;�W C

o.Y1/! C o.Y1/

and its seven companions as the map induced by the manifold U1 with three ends by
fibered product with �u

� on the R1 end. We denote the sum of the two by dropping
the � and we can combine them in the maps

LL1 D
LL1;0C

LL1;1W
LC .Y1/! LC .Y1/; LL1 D

"
Lo

o Lu
o
x@s

uC @
u
o
xLs

u

Lo
s
xLs

sCLu
s
x@s

uC @
u
s
xLs

u:

#
:

Similarly, one can define the map

Go
o W C

o.Y1/! C o.Y1/

and its seven companions induced by the fiber products with the moduli spaces on the
triple composite parametrized by the pentagon of metrics xP , and the maps

xr s
uW C

s.Y1/! C u.Y1/;

xr s
s W C

s.Y1/! C s.Y1/

obtained by fiber products of the moduli spaces on the manifold with three ends U �
1

with the chain � s in the critical stable manifolds of R1 . Finally we define

LG1W
LC�.Y1/! LC�.Y1/; LG1 D

�
a b

c d

�
;

where

aDGo
o ; b D @u

o
xGs

uCGu
o
x@s

uCmu
o
xH s

u CH u
o xm

s
uC @

u
oxr

s
u;

c DGo
s ; d D xGs

s C @
u
s
xGs

uCGu
s
x@s

uCmu
s
xH s

u CH u
s xm

s
uC @

u
s xr

s
uCxr

s
s :
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Here again the m�� are the components of the corresponding maps Lfi . The following
is the analogue of Proposition 5.5 in [12]. We rephrase it in an alternative way because
in our case the map Lf3 ı

LH1C
LH2 ı

Lf1 is not a chain map.

Lemma 15 The map LG1 is a chain homotopy between the map arising as the sum
of LL1 and the maps induced by the moduli spaces parametrized by Q.S1/ and Q.S2/

and the map Lf3 ı
LH1C

LH2 ı
Lf1 .

Proof The proof follows as usual by identifying the codimension-one strata of the
moduli spaces involved in the definition of LG1 , which are described by the same
formulas as in [13]. In particular, the last map in the statement corresponds to the edges
of the pentagon Q.Y2/ and Q.Y3/.

We have the following key result, which is the analogue in our case of Lemma 5.10
in [13]. Because our critical submanifolds are two-dimensional, for our purposes we
are only interested in the moduli spaces which have dimension at most two, as the
others are degenerate as discussed in Section 1.

Lemma 16 Suppose k � 1. Then the chain �u
1

consists of a generator of the top
homology of the critical submanifold ŒC1

i � for i D�1
4
k.k � 1/� 1, for k congruent

to 0; 1 modulo four, while for k D 2; 3 modulo four, it consists of an even number of
points in ŒC1

i � for i D�1
4
k.k � 1/� 1

2
.

Proof We first recall a result on the unperturbed anti-self-duality equations

FC
At D 0

on the manifold N �
1

from the proof of Lemma 5.10 in [13]. Given a metric g on N �
1

which is standard on the end, there is a unique solution to such equation A.k;g/

with L2 curvature for the spinc structure sk . This is because the manifold has no first
homology and no self-dual, square integrable harmonic two forms (as the image of
the relative second homology in the absolute one is zero). On the cylindrical end this
connection A.k;g/ it is asymptotically flat so it defines a point

�k.g/ 2 S;

where S is the circle of flat spinc connections on S2 �S1 . On the family of metrics
xQ.R1/D Œ�1;1� we have that �k.˙1/ is a spin connection. For example, at �1,

the manifold decomposes in two pieces, one of which is a punctured S2 �D2 with
cylindrical ends, so it carries no L2 harmonic forms. The key point in the proof of
Lemma 5.10 in [13] is to show that the connection at the two ends of this family differ,
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so that without loss of generality we can assume �k.�1/D ˛1 and �k.C1/D ˛0 .
Furthermore, the map �1�k.g/ is obtained by conjugation on the circle (with our
convention: in that of [13] it is ��1�k.g/).

We then consider the moduli spaces with asymptotics into ŒC1
i �, which for dimensional

reasons is interesting when it has dimension two or zero. In the first case, k D 0; 1

modulo 4 and i D 1
4
k.k � 1/� 1. We claim that for some choice of perturbations,

� the stratum Mk.N
�
1
; ŒC1

i �/�1 is a generator of the one-dimensional |–invariant
homology of the critical submanifold ŒC1

i �;

� the stratum Mk.N
�
1
; ŒC1

i �/C1 is empty.

As we are only dealing with reducible solutions, the first claim follows in the same
way as in Proposition 9. Indeed, our cobordism has b1D 0 and before adding the extra
perturbation in the blowup of the configuration space of the cobordism the stratum
over �1 consists of a two-dimensional sphere of reducibles lying over the spin
connection. As in the case considered in Proposition 9, it is obstructed in codimension
one, and the same construction of the additional perturbation carries over. Furthermore,
as in that setting, the moduli spaces are already compact before we compactify them
because there are no possible breaking points, as there are no trajectories from ˛0

to ˛1 . The gluing results regarding our moduli spaces then imply that the union of the
moduli spaces

Mk.N
�
1 ; ŒC

�
i �/ xQ[M1�k.N

�
1 ; ŒC

�
i �/ xQ

is a |–equivariant generator of the top homology of the critical submanifold, hence the
claim. The second claim is clear as �k.C1/ is ˛0 .

Finally, when k D 2; 3 modulo four, the strata Mk.N
�
1
; ŒC1

i �/˙1 are both empty
by transversality, hence the moduli spaces consist of an even number of points by
symmetry.

Before proving Proposition 13, we need to discuss the R–module structure on the
mapping cones we have defined.

Lemma 17 The mapping cone H�.M Lf1
/ of the chain map Lf1 is an R–module, and

the mapping cone triangle for

c

HS�.W1/ is an exact triangle of R–modules. The
coboundary map ı in Proposition 13 is a map of R–modules.

Proof The construction of the module structure follows the ideas in [1], and is
described in Figure 4. Consider a point p which is not in the neighborhood of the
knot K where the surgery operation is performed. In particular, we can consider p as
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W1

Y1 Y2

ftg �p

Figure 4: The module structure on the mapping cone. The cobordism is a
product .Y n nbhd.K//� Œ�1; 1� above the dashed line.

a point in both Y1 and Y2 , and use the same ball Bp embedded in R� Yi centered
at p to compute the map induced (for example) by V 2R by looking at the moduli
spaces that are asymptotic to the second unstable critical submanifold ŒC�2� on the
additional incoming end. Here we assume that the metric has positive scalar curvature
on the boundary of Bp and is a product near there. Call the associated chain maps LV1

and LV2 . There is a natural chain homotopy LH1 between Lf1 ı
LV1 and LV2 ı

Lf1 obtained
by considering the compactifications of the moduli spaces of trajectories parametrized
by the moving point ftg �p . Indeed, we can identify the subset

R� .Y n nbhd.K//�W �1 ;

and consider the union of the moduli spaces of trajectories on the cobordism with a
puncture at ftg �p that are asymptotic to ŒC�2� on this additional end. As usual, we
can compactify these moduli spaces and use them to define a map LH1 satisfying

L@2 ı LH1C LH1 ı
L@1 D

Lf1 ı
LV1C

LV2 ı
Lf1:

The endomorphism of M Lf1
defined by the matrix 

LV2
LH1

0 LV1

!
is then a chain map, and we define the induced map to be the action of V of H�.M Lf1

/.
The usual arguments show that this is well defined, and the maps in the triangle commute
with this map.

The module structure on the iterated mapping cone H�. LC / is defined in an analogous
way. Indeed, the same construction above applied to the cobordism W2 leads to a chain
homotopy LH2 such that

L@3 ı LH2C LH2 ı
L@2 D

Lf2 ı
LV2C

LV3 ı
Lf1;

where LV3 is the analogous chain map inducing the action of V on

c

HS�.Y3/. We
claim that there is a map LG1 from LC1 to LC3 with the property that

(12) L@3 ı LG1C LG1 ı
L@3 D

Lf2 ı LH1C LH2 ı
Lf1C

LH1 ı
LV1C

LV3 ı
LH1;
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so we have that 0B@ LV3
LH2
LG1

0 LV2
LH1

0 0 LV1

1CA
is a chain map. We use this map to define the action of V on H�. LC /. The map LG1

is constructed as follows. The cobordism with cylindrical ends attached .W2 ıW1/
�

contains a copy of .Y n nbhd.K// � R hence in particular the line p � R, so we
can consider the moduli space parametrized by R � R where the first component
parametrizes the position of the point while the second parametrizes the family of metrics
used to define the chain homotopy LH1 . The map LG1 is then defined by considering
the moduli spaces of solutions parametrized by this family, and the identity (12)
follows as usual by identifying the contributions of the four edges of the square
Œ�1;1�� Œ�1;1�.

Proof of Proposition 13 Consider the map LG on the iterated mapping cone LC given by

LG D

0B@ LG3 0 0
LH3
LG2 0

Lf3
LH2
LG1

1CA :
Here LG2 and LG3 are the maps induced by the moduli spaces parametrized by the
pentagon of metrics and perturbations on the other two triple composites. They satisfy
the properties of LG1 that we have discussed above. We define the chain map

L'W LC ! LC

given by

L' D L@ ı LGC LG ı L@:

The map L' is nullhomotopic by definition, and our claim is that it also induces an
isomorphism at the homology level. We have (for example) the identity

(13) LV ı L'C L' ı LV D L@ ı . LG ı LV C LV ı LG/C . LG ı LV C LV ı LG/ ı L@;

so the map induced in homology is a map of R–modules. Using the relations of
Lemma 15 we can write the map L' as the matrix

L' D

0B@ LL3C
Lh3
Lf2
LG2C

LG3
Lf2C

LH1
LH2

LH1
LG1C

LG3
LH1

Lg3
LL2C

Lh2
Lf1
LG1C

LG2
Lf1C

LH3
LH1

0 Lg2
LL1C

Lh1

1CA :
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The lower diagonal terms Lgi are those appearing in Lemma 12, and the maps Lhi

indicate the maps induced by the two edges in the pentagon corresponding to the
blowups. For example, using the notation we have adopted throughout the section, the
map Lh1 is defined using the moduli spaces parametrized by the families of metrics
Q.S1/ and Q.S2/. Notice that these are not chain maps. Unfortunately there is not
a natural filtration respected by this map L' . Our strategy is to show that its mapping
cone (which has a natural filtration) has trivial homology. In particular, we consider the
chain complex whose underlying vector space is the sum of two copies of LC (where
we distinguish the elements and groups in the first copy with the apostrophe)

zC D LC 0˚ LC

and differential

z@D

0BBBBBBBBB@

L@03
Lf 02
LH 01
LL3C

Lh3 � �

0 L@02
Lf 01 Lg3

LL2C
Lh2 �

0 0 L@01 0 Lg2
LL1C

Lh1

0 0 0 L@3
Lf2

LH1

0 0 0 0 L@2
Lf1

0 0 0 0 0 L@1

1CCCCCCCCCA
:

This chain complex has a natural filtration induced by the upper triangular structure
of the differential z@. Because the left lower entry of L' vanishes, the E1 page of the as-
sociated spectral sequence does not involve differentials between the corresponding sub-
quotients of LC and LC 0 . In particular, the E2 page of the spectral sequence is given by

coker Lf 0
2

ker Lf 0
2
= Im Lf 0

1
ker Lf 0

1

coker Lf2 ker Lf2= Im Lf1 ker Lf1

Lg3 Lg2

LH 0
1

LH1

where by an abuse of the notation we are considering the maps induced on the subquo-
tients by the indicated maps. On the other hand Lemma 12 tells us that the chain maps
Lg2 and Lg3 induce at the homology level the maps Lf3 ı

Lf2 and Lf1 ı
Lf3 . In particular,

Lg2 is zero on the kernel of Lf2 and the image of Lg3 is contained in the image of Lf1 , so
the diagonal maps in the diagram above are both zero. So the subquotients of the two
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chain complexes LC and LC 0 do not interact at this page either, and the E3 page is simply

coker Lf 0
2
= Im LH 0

1
ker Lf 0

2
= Im Lf 0

1
ker Lf 0

1
\ ker LH 0

1

coker Lf2= Im LH1 ker Lf2= Im Lf1 ker Lf1\ ker LH1

LL3C
Lh3

LL2C
Lh2

LL1C
Lh1

Our claim is that the vertical maps are isomorphisms, so that the E4 page of the
spectral sequence is zero, proving our claim that L' is an isomorphism. From (13), it
follows that the objects involved are R–modules and the vertical arrows are maps of
R–modules. The maps Lhi above involve multiplication by the element Q2 in R, as
they are defined via moduli spaces on manifolds parametrized by a family of metrics
on which a blowup is already stretched to infinity (as for example in Proposition 8).

Recall from [19, Sections 3.3 and 4.4] that the group HS�.Y / is naturally a module overV
�.H1.Y IZ/=Tor˝F/˝R:

Indeed, consider a closed embedded loop  in Y representing a given homology class x .
A neighborhood of this loop has boundary S2�S1 and we can suppose that the metric
and perturbations on this are the same as we discussed above. In particular, we have thatcHS�.S2

�S1/D .R˚Rh�1i/h�1i;

where the first R summand corresponds to the critical submanifolds ŒC1
i � while the

second one to the critical submanifolds ŒC1
i �. Again here the brackets denote the grading

shift. The cobordism Œ�1; 1��Y n nbhd.f0g �  / induces a mapc

HS�.Y /˝ .R˚Rf�1g/f�1g !

c

HS�.Y /:

When restricting to the elements of the first R summand, we recover the usual R–
module structure, while the elements in the second summand correspond to the action
of the elements x˝R. Because of Lemma 16, the term LLi;1 induces the sum of a
power series in R with leading term 1. All the terms in the summand LLi;0 of LLi also
involve multiplication by the nilpotent element

ŒK� 2
V
�.H1.Y IZ/=Tor˝F/:

Hence each of the vertical maps on the E3 page is a sum of an isomorphism LLi;1 and
a nilpotent map LLi;0C

Lhi which commute because of the R–module structure, so it
is an isomorphism.

From Proposition 13, we can conclude the main result of the present paper.
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Proof of Theorem 1 The existence of the triangle follows from our discussion and
Lemma 11. It is a triangle of R–modules thanks to Lemma 17. It remains to show that
the third map is well defined (ie independent of the choices we have made). The mapping
cone construction satisfies the following naturality property: given two homotopic
chain maps f and f 0 between chain complexes C0 and C1 there is an isomorphism
between the two mapping cones such that the mapping cone exact triangles commute.
In fact, if h is a chain homotopy between f and f 0 , the canonical isomorphism is
given by the matrix

M.h/D

�
IdC0

h

0 IdC1

�
:

Furthermore, given another such chain homotopy h0 , if there exists a map

kW C0! C1

such that @0 ıkCk ı@D h�h0 , then the induced isomorphism is the same, as the two
maps M.h/ and M.h0/ are homotopic via the map

�
0 k
0 0

�
.

In our case, the two maps f and f 0 correspond to two different regular choices of metric
and perturbation .g0; p0/ and .g1; p1/. In order to identify the mapping cones, we
consider chain homotopy h constructed by considering the moduli spaces parametrized
by a regular path .gt ; pt / for t 2 Œ0; 1� connecting these two choices. Because the
space of metrics and perturbations is contractible, any two such paths are homotopic
via a generic homotopy hs;t (which we can think as a regular two-dimensional family
of metrics and perturbations) relative to their endpoints. The map k is then constructed
by considering the moduli spaces parametrized by this two-dimensional family.

The analogous construction carries over to show that the iterated mapping cone (hence
the boundary map ı ) is natural. Suppose we have two iterated mapping cones corre-
sponding to triples f1; f2;H1 and f 0

1
; f 0

2
;H 0

1
. Given, for iD1; 2, chain homotopies hi

as above between fi and f 0i , we claim that there is a map

KW C1! C3

satisfying the identity

(14) @3 ıKCK ı @1 D f
0

2 ı h1C h2 ıf1CH1CH 01;

so that the map 0@Id h2 K

0 Id h1

0 0 Id

1A
is an isomorphism between the two iterated mapping cones.
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In our case (where we add checks to be consistent with our notation), the map LK is
constructed by considering the moduli spaces parametrized by a pentagon of metrics
(which are possibly degenerate) and perturbations. The five vertices of the pentagon
correspond to the maps Lf2 ı

Lf1 , Lf 0
2
ı Lf1 , Lf 0

2
ı Lf 0

1
, and the two endpoints p and p0 of

the homotopies LH1 and LH 0
1

correspond to the blowup

W2 ıW1 D
SW3 # CP2

stretched to infinity. Four of the edges correspond to the four terms in the expression of
L@3 ı
LKC LK ı L@1 in (14). The fifth edge is a path between p and p0 through degenerate

metrics for which the blowup is stretched to infinity. We can choose this path so that the
copy of S3 along which the connected sum is performed always has positive scalar cur-
vature. The moduli spaces parametrized by this edge do not contribute to the boundary
terms for the same reason that the composite map is zero; see Proposition 8. These five
edges can be filled to a pentagon using again the contractibility of the space of metrics
and perturbations, and the induced isomorphism is well defined for the same reason.

4 Computations from the Gysin exact sequence

In this section, we show that when the usual monopole Floer homology of a three-
manifold is very simple, the Pin.2/–monopole Floer homology can be recovered in
purely algebraic terms from the Gysin exact sequence

(15) � � �
�Q
�!

c

HSk.Y /
��
�!

b

HMk.Y /
��
�!

c

HSk.Y /
�Q
�!

c

HSk�1.Y /
��
�! � � � :

For a rational number d , denote by T C
d

the graded F ŒŒU ��–module F ŒU�1;U ��=U F ŒŒU ��,
where 1 has degree d . In particular, T C

0
is isomorphic as a graded F ŒŒU ��–module to

the Floer homology group

b

HM�.S3/.

It is useful to have the basic example of S3 in mind, which we briefly recall. We have

(16)

b

HMk D

�
F if k � 0 even;
0 otherwise;

c

HSk D

�
F if k � 0; k ¤ 3 .mod 4/;

0 otherwise;

and the relevant Gysin exact sequence has the form

(17)

F4nC2
// F4nC2 F4nC2

uu

F4nC1 0 F4nC1

tt
F4n F4n

// F4n
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for every n� 0. Here the indices denote the gradings, while the arrows are for the maps
which are not trivial. Notice that these can be deduced directly by the group structure
of the two groups and the exactness of the sequence. For a given rational homology
sphere Y and a self conjugate spinc structure s, we know that the Gysin sequence
for .Y; s/ looks like the one of (16) up to grading shift in degrees high enough. This
motivates the following definition.

Definition 18 An abstract Gysin sequence G consists of the following data:
� an F ŒŒU ��–module M and a R–module S , both graded by a coset of Z in Q

and bounded below;
� an exact triangle of R–modules

S S

M

e�

�� ��

where the R–module structure on M is given by Q acting trivially and V acting
as U 2 ;

� the maps �� and �� have degree zero while e� has degree �1, and the triangle
is isomorphic to the exact triangle (17) in degrees high enough.

In particular, the module M has a unique infinite-dimensional F ŒŒU ��–submodule, and
we denote by 2h.M / the minimum degree in which it is nontrivial. Because the exact
triangle looks like (17) in degrees high enough, we have that the group S is trivial
degrees 2h.M /C 4N � 1 or 2h.M /C 4N C 1 for N big enough. Of course, only
one of the two possibilities is allowed.

Definition 19 If the group S is trivial in degrees 2h.M /C4N �1 for N big enough,
we say that the abstract Gysin sequence G is even, and we say that it is odd otherwise.

Here the terms even and odd refer to the grading modulo four in which S vanishes in
degrees high enough, relative to h.M /. For example, the Gysin exact triangle for S3

is even. We are ready to state the main result of the present section.

Proposition 20 Suppose we are given an F ŒŒU ��–module M of the form

T C
2k
˚Fn

h2k � 1i:

Then there exists a unique (up to isomorphism) abstract Gysin sequence in which M

fits. If nD 2m is even, then the sequence G is even, and

S Š SC
k;k;k

˚Fm
h2k � 1i;

Algebraic & Geometric Topology, Volume 17 (2017)



The surgery exact triangle in Pin.2/–monopole Floer homology 2951

while if nD 2mC 1 is odd, the sequence G is odd, and

S Š SC
kC1;k�1;k�1

˚FmC1
h2k � 1i:

Suppose we are given an F ŒŒU ��–module of the form

T C
2k
˚Fn

h2ki:

Then there exists a unique up to isomorphism abstract Gysin sequence in which M fits.
If nD 2mC 1 is odd, then the sequence G is even, and

S Š SC
k;k;k

˚FmC1
h2ki;

while if nD 2m is even, the sequence G is odd, and

S Š SC
kC1;kC1;k�1

˚FmC1
h2ki:

The key idea is the following easy observation which readily follows from the exactness
of the Gysin exact sequence.

Lemma 21 Given a Gysin exact sequence G , suppose that for some k we have

Mk�1 D 0; Mk D F ; MkC1 D 0:

Then we have the two possibilities

(18)

FaC1 0 FaC1

vv

FaC1 Fk
// FaC1

vv
Fa 0 Fa

Fa�1 0 Fa�1

vv
Fa // Fk Fa

vv
Fa 0 Fa

where a is nonnegative in the left case and positive in the right case.

Definition 22 In the first situation, we say that the Gysin sequence at the level k is
increasing, while in the second situation, we say that the Gysin sequence is decreasing.

Proof of Proposition 20 In the proof, we can assume without loss of generality
that k D 0 after a grading shift. Suppose first that we are in the last case, so that
M0 D F2mC1 . Clearly the suggested S fits in an abstract Gysin exact sequence,
hence we need to prove uniqueness. Dimensional considerations and the exactness of
the Gysin triangle imply that S is trivial in negative degrees while ��W M0! S0 is
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surjective. Let the rank of the latter be mC 1C l for some 0� l �m. To determine
the structure of the whole group we can then use Lemma 21. In particular, because the
rank of S1 is odd the sequence implies that the rank of S3C4N will be even for all
N � 0, hence the Gysin sequence is even.

We claim that the Gysin triangle in degrees 4N � i � 4N C 3 contains a copy of the
sequence (17) given by the image under a suitably high power of the map V . We prove
this by induction, as it is of course true for N big enough by assumption. Denote by

v�N ; qv�N ; q2v�N and u�2N�1;u�2N

the respective generators of this copy. Of course

V �u�2N�1
D u�2NC1;

so as �� maps v�N to u�2N�1 , we see that V � v�N is not zero. Denote this element
by v�NC1 . This is mapped by �� to u�2NC1 , so this map is not zero and the sequence
is decreasing at the level 4N � 1. This implies that Q � v�NC1 is not zero, and we
call this element qv�NC1 . Similarly, we denote the image of this element under the
action of Q by q2v�NC1 . This is not zero because M4NC1 is trivial. Also the module
structure implies that ��.u�2NC2/D q2v�NC1 .

This final observation implies that at each level 4N for N �1 the sequence is increasing,
so the ranks of S4N�1 form a nondecreasing sequence. As it has to be zero for N big
enough, all these ranks are zero. By dimensional considerations, l has to be zero, and
the result follows.

The proof in the other three cases is analogous. The only difference in the odd case is
that one shows that the Gysin triangle in degrees 4N C 2 � i � 4N C 5 for N � 0

contains a copy of the standard one.

Proof of Theorem 2 This follows readily by applying Proposition 20 to the case of
the Brieskorn spheres †.2; 3; 6n˙ 1/. In particular, we haveb

HM�.�†.2; 3; 12kC 5//D T C
�2
˚F2k

h�2i;b

HM�.†.2; 3; 12kC 1//D T C
0
˚F2k

h�1i;b

HM�.�†.2; 3; 12k � 1//D T C
�2
˚F2k�1

h�2i;b

HM�.†.2; 3; 12k � 5//D T C
0
˚F2k�1

h�1i;

and the result for the given orientations follows from Poincaré duality.
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Remark 23 It is not surprising that in general the Pin.2/–monopole Floer homology
cannot be recovered from the usual counterpart, as some ambiguities may arise. For
example, if Y is the Brieskorn sphere �†.2; 3; 11/, we haveb

HM�.Y # Y /Š T C
�4
˚F3

h�4i˚Fh�3i

as it can be computed by the connected sum formula in Heegaard Floer homology;
see [26]. Then the two R–modules

SC
0;�2;�2

˚F2
h�4i and SC

�2;�2;�2
˚F2

h�4i˚Fh�3i

both fit in an abstract Gysin sequence. Notice that in this case we cannot recover
Manolescu’s correction terms either.

5 Examples

In this section, we discuss some simple computations of the Pin.2/–monopole Floer
homology groups that can be done by applying the surgery exact triangle of Theorem 1.
In order to get acquainted with the ideas, we first start with two examples of 1; 0; 1
surgery on a knot in S3 in which we already know all the groups involved in the
computations. In general, we will label the maps by the surgery coefficient of the
manifold corresponding to the domain. In this particular case, the nonspin cobordism
is the one from Y1 to Y1 , so the map provided by Theorem 1 is xF1 .

Example 24 Suppose K is the unknot. Then

Y0 D S2
�S1 and Y1 D S3:

We know from the discussion in the previous section (see also Section 4.4 of [19]
for more details) that for the unique self-conjugate spinc structure s0 we have the
isomorphisms of graded R–modules

HS�.S2
�S1; s0/Š S˝ .F ˚Fh�1i/;c

HS�.S2
�S1; s0/Š SC

0;0;0
˝ .F ˚Fh�1i/:

In this case, for all the three-manifolds involved the map i� is surjective. In particular,
all the triangles are determined by the one for the bar version, and we will focus on the
latter. The map

HS�.W1/W HS�.S3/! HS�.S2
�S1; s0/;

which has degree �1, is an isomorphism onto the summand Sh�1i with lower degree,
while the map

HS�.W0/W HS�.S2
�S1; s0/! HS�.S3/;
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which has degree zero, sends the lower summand Sh�1i to zero and is an isomorphism
when restricted to the top summand S . Indeed, the spin connection on W1 restricts to
the spin connection B0 on S2 �S1 which is the minimum, while the spin connection
on W0 restricts to the spin connection B1 . The corresponding moduli spaces of
solutions are all copies of CP1 on which the evaluation maps diffeomorphically. This
description can also be derived from the exact triangle for the usual monopole groups.
It follows that the third map (which is called xF1 in our case)

xF1W HS�.S3/! HS�.S3/

is zero. In particular, it is different from the map induced by the corresponding
cobordism. In fact, the cobordism W1 is a twice-punctured CP2 so the induced
map is the multiplication by a nonzero power series in which each term involves the
multiplication by Q2 .

Example 25 Let K be the right-handed trefoil. Then .C1/–surgery is the Poincaré
homology sphere (oriented as the boundary of the negative definite E8 plumbing) and
we computed in [19] that as R–modules we havec

HS�.Y1/Š SC
�1;�1;�1

;

and the map i� is surjective. Similarly, the 0–surgery is a flat torus bundle over the
circle and we showed in Section 4.4 of [19] that as R–modules,

HS�.S3
0 .K/; s0/Š .V1˚V0/˚ .V�1˚V�2/;c

HS�.S3
0 .K/; s0/Š .VC1 ˚VC

0
/˚ .VC

�1
˚VC
�2
/:

In both cases, the action of Q (which has degree �1) is an isomorphism from the first
summand to the second summand and from the third summand to the fourth summand.
It is interesting to notice that (unlike in usual monopole Floer homology) the bar group
is significantly different from the case of S2 �S1 . This is another manifestation of
the modulo four periodicity of the groups, and is related to the fact that the trefoil knot
has Arf invariant 1. In more detail, in the blowdown the situation is analogous to that
of S2 �S1 , with two critical points ˛1 and ˛0 connected by two trajectories related
by the action of | . The key difference is that the family of Dirac operators has spectral
flow C1 (so is in particular odd) along these paths, and in particular that the reducible
solutions lying over ˛0 are shifted up in degree by 2. This implies that the generator of
the top homology of ŒC1

i � cancels with the generator of the bottom homology of ŒC0
i �.

For the remaining spinc structures, the groups are zero by the adjunction inequality.
Also in this case the i� maps are surjective so it suffices to determine the reducible
solutions and the bar version of the groups.
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The maps HS�.W1/ and HS�.W0/ have degrees respectively �1 and 0, and the first
map is given by multiplication by Q onto the first tower, while the latter is zero on the
first tower and the identity on the second one. This follows from the same discussion
of the moduli spaces on the cobordisms W1 and W0 as above, the only difference
being the cancellations happening in the chain complex of Y0 .

In particular, the map xF1 is nonzero in this case. It is not straightforward to identify
the map provided by the theorem in this case. Nevertheless we can say that the topmost
homogeneous part of xF1 lies in degree zero and that this part is an isomorphism in
degree divisible by four and zero otherwise. This statement follows from the degrees
of the to groups involved in the triangle and the module structure. Indeed, the generator
of

c

HS0.Y1/ has to be mapped to the generator of

c

HS0.S
3/ for degree reasons, so

the degree zero part of xF1 is an isomorphism. The module structure implies then
that in general on the elements of degree 4k the map xF1 is the product of the top
homogeneous part by a fixed power series in V with leading coefficient 1.

Example 26 We discuss the case of �1; 0 and 1–surgery on the right trefoil. Again,
we know all the groups involved in the triangle, as .�1=n/–surgery on the trefoil is the
Seifert fibered space †.2; 3; 6nC1/, but we take a more algebraic approach. Consider
the following triangle: c

HS�.†.2; 3; 7//
c

HS�.Y0/

c

HS�.S3/

LF�1

LF1 LF0

Again LF�1 and LF0 have degree respectively �1 and 0. From this, the maps are easily
determined (using again the fact that the reduced Floer groups are trivial). In particular,
the map

LF�1W

c

HS�1.†.2; 3; 7//!

c

HS�2.Y0/

is an isomorphism for degree reasons. The module structure implies then that LF�1 in
an isomorphism onto the image in degrees 4k and 4k � 1 for k � 0, and LF0 is an
isomorphism onto the image in degrees 4k and 4kC 1 for k � 0. From this, as in the
previous example, we see that LF1 has top degree zero, it is an isomorphism onto the
image in degree 4kC 2, and zero otherwise.

The computation of the third map (the one corresponding to the nonspin cobordism) in
the two examples we have just discussed ( xF1 and xF1 respectively) only relies on the
reducible solutions, so they hold in general for the map xF1=.nC1/ in the 0; 1=.nC1/; 1=n

surgery triangle for a knot in a homology sphere. It is important to remark that there is
a difference in the case n is even or odd related to relative grading of the reducibles.
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As we have discussed both parities in our examples, we have proved the following
result concerning the image of i� .

Lemma 27 Suppose the knot K has Arf invariant 1. Then in the setting as above, the
map xF1=.nC1/ corresponding to the nonspin cobordism is injective on the top tower
and zero on the other two towers.

The condition on the Arf invariant implies that the Rokhlin invariant of the 1=.nC 1/

and 1=n surgeries are different, so we are dealing with the cases of Examples 25 and 26.

Finally, we now show how to use the knowledge of the third map in order to provide a
previously inaccessible computation. The same ideas will be used in the next section
to compute the correction terms of .˙1/–surgery on alternating knots.

Proof of Theorem 3 As in [24], we have that .C1/–surgery on the figure-eight knot
is †.2; 3; 7/. Furthermore, we know that for s¤ s0 the Floer groups of E0 vanish
because of the adjunction inequality; see Corollary 40.1.2 in [12]. Using the fact that
the reduced groups of S3 and †.2; 3; 7/ are zero we can determine the Floer groupc

HS�.E0; s0/ as follows. In the trianglec
HS�.S3/

c
HS�.E0/

c

HS�.†.2; 3; 7//

LF1

LF1
LF0

the (top degree part) of the map LF1 is determined in light of Lemma 27. The result
then follows as we know the degrees of LF1 and LF0 . Finally, the other cases follow
from Proposition 20.

6 Surgery on alternating knots

In this final section, we show how to compute the Manolescu’s correction terms of
the homology spheres obtained by surgery on alternating knots. This relies on the
computation of the usual monopole Floer homology groups provided in [25] (via the
isomorphism between the theories due to Kutluhan, Lee and Taubes [14; 15; 16; 17; 18]
and Colin, Ghiggini and Honda [3; 4; 5; 6] plus some additional considerations regarding
absolute gradings) and some algebraic observations. We recall the main result from [25].
Given a knot K , its torsion coefficient ts.K/ for an integer s is defined to be

ts.K/D

1X
jD1

jajsjCj ;
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where the as are the coefficients of the symmetrized Alexander polynomial of K . For
� 2 2Z and an integer s , we define

ı.�; s/Dmax
�
0;
˙

1
4
.j� j � 2jsj/

��
:

Theorem 28 [25, Theorem 1.4] Let K be an alternating knot oriented so that � D
�.K/� 0, and let S3

0
.K/ be the three-manifold obtained by zero surgery. Then, letting

bs D .�1/sC�=2.ı.�; s/� ts.K//;

we have that:

� for all s > 0 we have an F ŒŒU �� module isomorphismb

HM�.S3
0 .K/; ss/Š Fbs ˚ .F ŒU �=U ı.�;s//

with the first summand supported in degree s C 1
2
� mod 2 while the second

summand lies in odd degree;
� there is an isomorphism of graded modulesb

HM�.S3
0 .K/; s0/Š T C

�1
˚ T C
�2ı.�;0/

˚Fb0
˝
1
2
� � 1

˛
:

As briefly mentioned above it is important to notice that the isomorphism between
monopole Floer homology and Heegaard Floer homology is only known to hold at the
level of relatively graded groups. Nevertheless, in our simple case it can be seen to
hold at the level absolutely graded groups thanks to the usual surgery exact triangle.
Indeed, the maps in the triangle b

HM�.S3/!

b

HM�.S3
0 .K/; s0/;b

HM�.S3
0 .K/; s0/!

b

HM�.S3
1 .K//

have absolute degrees respectively �1 and 0 (recall that the absolute gradings in
monopole Floer homology are shifted by �1

2
b1.Y / with respect to those in Heegaard

Floer homology), and the rank of the groups involved implies that the first map is an
isomorphism onto the T C

�1
summand.

The last group in the statement of the result is the sum of two particularly simple
modules, namely T C

�1
and T C

�2k
˚ Fb0 , where the degree of the third summand is

either �2k or �2k � 1.

We are now ready to provide the main computation in the present paper.

Proof of Theorem 4 The result follows from an application of the surgery exact
triangle together with the result on the simple monopole Floer homology groups
discussed above. Notice that we are only interested in the image of the map i� (as a
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graded R–module) as our goal is to compute Manolescu’s correction terms. In particular,
because of the module structure the map in the usual monopole Floer homology surgery
exact triangle b

HM�.S3/!

b

HM�.S3
0 .K//

is an isomorphism onto the summand T C�1 in the direct summand

b

HM�.S3
0
.K/; s0/,

while is zero onto the others. Hence

b

HM�.S3
1
.K// is isomorphic to a direct sum

T C
�2ı.�;0/

˚Fb0 ˚

� M
c1.s/¤0

b

HM�.S3
0 .K/; s/

�
:

The first two summands is a module of the form of Proposition 20. Furthermore, the
Gysin sequence for the remaining summand is clear as the spinc structures are conjugate
in pairs and the sequence is functorial under cobordism maps. We can then apply
Proposition 20 and determine

c

HS�.S3
1
.K//, and then reconstruct i�.HS�.S3

0
.K/; s0//

by applying the surgery exact triangle. The details in the case of a knot with Arf
invariant 1 are analogous to those of the surgeries on the trefoil and figure-eight knot
discussed in Section 5. From the knowledge of i�.HS�.S3

0
.K/; s0//, we can then easily

compute Manolescu’s correction terms by applying the surgery exact triangle. As an
example, we focus on the case in which K has signature �8 (and Arf invariant 1) as
it is particularly interesting in light of Corollary 6 in the introduction. In this case, we
have that

i�.HS�.S3
1 .K///Š SC

�1;�3;�3
:

This implies (as in the proof of Theorem 3 in the previous section) that as an absolutely
graded R–module we have

i�.HS�.S3
0 .K/; s0//Š .VC1 ˚VC

0
/˚ .VC

�5
˚VC
�2
/;

where the Q–action maps the first tower onto the second tower and the third tower
onto the fourth tower. Applying the surgery exact triangle again, we then obtain

i�.HS�.S3
�1.K///Š SC

1;�1;�3
;

from which the result follows.

We conclude by giving a proof of Proposition 5.

Proof of Proposition 5 It is shown in [23] that for a suitable choice of orientation
of Y , there is a choice of metric and perturbation such that all the critical points
(in the blowdown) have even degree. Suppose that Y is oriented in the same way
as [23]. This implies that the generators of the two- and zero-dimensional homology
of the reducible critical submanifolds are not affected by the differential in the chain
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complex computing

c

HS�.Y; s/. Consider the maximum degree at which a generator
of the one-dimensional homology of a reducible critical submanifold is involved in
a nontrivial differential. As there are no irreducible critical points of odd degree, the
module structure implies that the middle tower of i�.HS�.Y; s// stops at that level. For
the same reason, the bottom tower also stops at that level, hence we have that ˛.Y; s/
and ˇ.Y; s/ coincide.

Finally, if the orientation is the opposite, the same argument applied to �Y implies
that ˇ.Y; s/ and  .Y; s/ coincide.
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Odd knot invariants from quantum covering groups

SEAN CLARK

We show that the quantum covering group associated to osp.1j2n/ has an associated
colored quantum knot invariant à la Reshetikhin–Turaev, which specializes to a
quantum knot invariant for osp.1j2n/ , and to the usual quantum knot invariant for
so.1C 2n/ . In particular, this furnishes an “odd” variant of so.1C 2n/ quantum
invariants, even for knots labeled by spin representations. We then show that these
knot invariants are essentially the same, up to a change of variables and a constant
factor depending on the knot and weight.

17B37, 57M27

1 Introduction

1.1 Background

Quantum enveloping algebras associated to Kac–Moody Lie algebras are central ob-
jects in mathematics which have many remarkable connections to geometry, combina-
torics, mathematical physics, and other areas. One such connection was produced by
Reshetikhin and Turaev [23] and Turaev [27] by relating the representation theory of
these quantum enveloping algebras to Laurent polynomial knot invariants, often referred
to as quantum invariants, such as the (colored) Jones polynomial and the HOMFLYPT
polynomial. The procedure for constructing these quantum invariants is quite general,
and for instance has been generalized to construct quantum invariants from quantum
enveloping superalgebras as well; see Blumen [3], Geer and Patureau-Mirand [12],
Gould, Links and Zhang [13], Queffelec and Sartori [22], Sartori [25] and Zhang [30].
These super invariants are often equivalent to the nonsuper quantum invariants in some
sense, but provide a novel perspective that can reveal additional features.

Many other connections have arisen from the categorification of quantum enveloping
algebras and their representations; see Khovanov and Lauda [17] and Rouquier [24]. It
was recently shown by Webster [28] that in fact, one can categorify all Reshetikhin–
Turaev invariants using the machinery of categorified quantum enveloping algebras.
This procedure generalizes Khovanov’s homological categorification of the Jones
polynomial [16]. We can summarize some of these connections in the picture in
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Figure 1

Figure 1 (left), where “Decat” refers to the appropriate decategorification, “RT” stands
for the Reshetikhin–Turaev procedure for constructing the Jones polynomial from the
standard quantum sl.2/ representation, and “Web” stands for Webster’s categorification
of RT which produces Khovanov homology.

This beautiful picture recently developed a twist with the discovery of “odd Khovanov
homology”, an alternate homological categorification of the Jones polynomial; see
Ozsváth, Rasmussen and Szabó [21]. This discovery has spurred a program of “oddifi-
cation”: providing analogues of (categorified) quantum groups for this odd Khovanov
homology by developing “odd” analogues of standard constructions; see Ellis and
Lauda [11], Ellis, Khovanov and Lauda [10] and Mikhaylov and Witten [19]. In
particular, one would like an “odd (categorified) Uq.sl.2//” which could produce odd
Khovanov homology in a similar way to that described in Figure 1 (left). In particular,
the decategorified “odd” quantum group should produce the Jones polynomial through
some analogue of the Reshetikhin–Turaev procedure. It has been proposed (see [11]
and Hill and Wang [14]) that such categorifications might naturally arise through
categorifying the quantum covering group Uq;�.osp.1j2//, in other words, producing
a diagram such as in Figure 1 (right).

This proposal has some heuristic evidence. Since the work of Zhang [29] connecting
the representation theories of osp.1j2n/ and so.1C 2n/, it has been expected that the
associated knot invariants are essentially the same [30]. This expectation was partially
verified by Blumen [2; 3], who showed that there is a link invariant associated to the
two-dimensional quantum representation of osp.1j2/ (though no relation to the Jones
polynomial was claimed), and that the osp.1j2n/ and so.2nC 1/ invariants which
are colored by the standard .2nC1/–dimensional representations are related up to
some variable substitution, though the variable substitution has not been made explicit
in general. However, to our knowledge, no proof of any relation between super and
nonsuper colored type B knot invariants exists in the literature. The covering quantum
group is a natural tool for filling this gap, as it has an explicit algebraic bridge between
the super and nonsuper theories.

Algebraic & Geometric Topology, Volume 17 (2017)
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On the other hand, Mikhaylov and Witten [19] have produced candidates for “odd link
homologies” categorifying so.1C2n/–invariants via topological quantum field theories
using the orthosymplectic supergroups. This suggests that the conjecture represented
by Figure 1 (right) should be generalized to include colored link invariants associated
to osp.1j2n/ for any n� 1.

1.2 Results

A quantum covering group is an algebra U that marries the quantum enveloping
superalgebra of an anisotropic Kac–Moody Lie superalgebra (eg osp.1j2n/) with the
quantum enveloping algebra of its associated Kac–Moody Lie algebra, which is obtained
by forgetting the parity in the root datum (eg so.1C 2n/). This is done by introducing
a new “half-parameter” � satisfying �2 D 1, and substituting � everywhere a sign
associated to the superalgebra braiding should appear; such algebras were defined and
studied in detail in the series of papers by Clark, Fan, Hill, Li and Wang [4; 5; 6; 7; 8; 9].

These quantum covering groups retain the many nice properties of usual quantum groups
such as a Hopf structure, a quasi-R–matrix à la Lusztig [18, Chapter 4], a category O,
and even canonical bases. A key feature of a quantum covering group is that by
specializing � D 1 (resp. � D�1), we obtain the quantum enveloping (super)algebra
associated to the Kac–Moody Lie (super)algebra. Moreover, as discovered in [5], the
quantum algebra and quantum superalgebra can be identified by a twistor map; that
is, an automorphism of (an extension of) the covering quantum group which sends
� 7! �� and q 7! t�1q , where t2 D �1. This construction provides an algebraic
realization of the connection between osp.1j2n/ and so.1C 2n/ observed in [29].

In this paper, we use the machinery of covering quantum groups to construct “quantum
covering knot invariants”: knot invariants which arise from the representation theory of
the finite type quantum covering groups à la Turaev [27].1 To wit, consider the quantum
covering group associated to the Lie superalgebra osp.1j2n/. We first associate a U –
module homomorphism to each elementary tangle (cups, caps, crossings) such that
a straight strand is just the identity map, along with an interpretation of combining
tangles (with joining top-to-bottom being composition of the associated maps, and
placing along-side being tensor products of the maps). An arbitrary tangle can then
be framed and associated with a U –module homomorphism by “slicing” the diagram

1We do not need, and will not use, the usual additional ribbon structure of [23]. While the category of
representations we consider is certainly rigid, the R–matrix we use does not define a braiding in that the
maps it defines fail to satisfy the hexagon identity in general. This can be fixed (see Remark 2.20), but it
requires additional burdensome notation and analysis that we feel detracts more than it adds, particularly
for the results of Section 4.
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(that is, cutting it into vertical chunks containing at most one elementary diagram
alongside any number of straight strands). Each slice corresponds to a U –module
homomorphism, and the tangle is sent to the composition of these maps. Note that
a priori, this assignment is not unique, as many distinct slice diagrams and framings
exist for an arbitrary tangle.

We then derive some identities with these maps that are versions of Turaev moves on
the associated diagrams. These identities show that the map isn’t dependent on the
choice of slice diagram, but factors of � keep it from being an invariant of oriented
framed tangles. In order to eliminate these factors, we need to expand our base ring to
Q.q; t/� , where �2D� , and renormalize the maps corresponding to certain elementary
diagrams. Finally, a normalization factor (depending on the writhe of the tangle) yields
a oriented tangle invariant; see Theorem 3.7.

In the rank-1 uncolored case, this invariant is simply the (unnormalized) Jones poly-
nomial in the variable ��1q ; see Example 3.10. This suggests that the � D �1 (ie
� D t ) specialization of the knot invariant, viewed as a function of q , should be related
to the � D 1 (ie � D 1) specialization, viewed as a function of t�1q . To make this
connection precise, we further develop the theory of twistors (see [4; 5]) to define a
general operator on tensor powers of U and compatible operators on its representations.
In particular, we show that the twistors X on representations t–commute with the
maps S representing slices of tangles; that is, X ıS D txS ıX for some x 2 Z.

Once this is done, we obtain the following theorem (combining Theorems 3.7 and 4.24).

Main Theorem Let K be any oriented knot and �2XC a dominant weight. There is
a functor from the category OTAN of oriented tangles modulo isotopy to the category O

of U –module representations which sends K to a constant J�
K
.q; �/2Q.q; t/� , which

we call the covering knot invariant of K . Moreover, let soJ
�
K
.q/ D J�

K
.q; 1/ and

ospJ
�
K
.q/D J�

K
.q; t/ denote the specializations of the covering knot invariant to � D 1

and � D t . Then
ospJ

�
K .q/D t?.K ;�/soJ

�
K .t
�1q/

for some ?.K; �/ 2 Z.

In particular, this shows that, after extending scalars, there is indeed a map RT as in
Figure 1 (right), and in fact such a map exists for all colored link invariants of any rank.
In particular, this proves that the super and nonsuper colored knot invariants of type B
are essentially the same. It remains to develop an analogue of the construction in [28]
to complete the picture, though difficulties abound. For example, it is not necessarily
clear how to extend the categorification to Q.q; t/� . Moreover, the categorification of

Algebraic & Geometric Topology, Volume 17 (2017)



Odd knot invariants from quantum covering groups 2965

covering algebra representations is not yet developed enough to produce the analogous
machinery to [28]. We hope that our results will help cast light on these remaining
questions.

1.3 Organization

The paper is organized as follows. In Section 2, we recall the definition of quantum
covering osp.1j2n/, denoted by U , and set our conventions. We also develop some
additional facts about representations of U , specifically about dual modules and
(co)evaluation morphisms, and produce a universal-R–matrix, which we will simply
denote by R, from the quasi-R–matrix defined in [7]. In Section 3, we interpret the
maps in terms of the usual graphical calculus define an associated knot invariant. More
precisely, maps are represented by a finite number of labeled, nonintersecting oriented
strands such that the R–matrix is a positive crossing, the (co)evaluation morphisms are
various cups and caps, and orientation is determined by whether the associated module
in the domain/range is the dual module or not. We show that the maps satisfy identities
such that the associated graphical calculus is almost an framed oriented tangle invariant,
and is indeed an oriented tangle invariant after renormalizing these elementary diagrams
by an integer power of � and a factor depending on the writhe. Finally, in Section 4,
we use the twistor maps introduced in [4; 5] to relate the morphisms in the � D˙1

cases. In particular, we develop some further details about the Hopf structure and
representation theory of the enhanced quantum group yU , and construct twistors on
tensor products of simple modules and their duals. We then show that these twistors
almost commute (up to an integer power of t ) with the cups, caps, and crossings,
allowing us to relate the so and osp knot invariants.

Acknowledgements I would like to thank David Hill for first suggesting to me this
project constructing the quantum covering knot invariants, and Matt Hogancamp for
helping me learn about quantum knot invariants at this project’s inception. I would
also like to thank Aaron Lauda, Weiqiang Wang, and Ben Webster for stimulating
conversations about this project, and Sacha Blumen and several referees for very helpful
comments.

2 Quantum covering osp.1j2n/

We begin by recalling the definition of the quantum covering algebra associated to
osp.1j2n/ and setting our notation. We then elaborate on the representation theory of
this algebra.
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2.1 Root data

Let I D I0t I1 with I0 D f1; : : : ; n� 1g and I1 D fng, and define the parity p.i/ of
i 2 I by i 2 Ip.i/ . For 1� r; s � n, we define

r � s D

8̂̂̂<̂
ˆ̂:

2 if r D s D n;

4 if r D s ¤ n;

�2 if r D s˙ 1;

0 otherwise,

dr D
1
2

r � r ;

and note that p.r/Ddr mod 2. Then .I; � / is a bar-consistent anisotropic super Cartan
datum [7]. We extend � to a symmetric bilinear pairing on ZŒI � and p to a parity
function pW ZŒI �! Z=2Z. Moreover, for � D i1C � � �C it 2NŒI �, we set

(2-1) ht � D t; p.�/D
X

1�r<s�t

p.ir /p.is/; �.�/D
X

1�r<s�t

ir � is:

Let ˆC �NŒI � denote the set of positive roots, and set

(2-2) �D
X
˛2ˆC

˛ D
X
i2I

�ii 2NŒI �:

Note that we have i � �D i � i for all i 2 I .

Let Y D ZŒI � be the root lattice and X D Hom.ZŒI �;Z/ be the weight lattice, and let
h � ; � iW Y �X ! Z be the natural pairing. We also identify ZŒI � as a subspace of X

so that hr ; si D 2r � s=r � r . If � D
P

i2I �ii 2 ZŒI �, we set

(2-3) z� D
X
i2I

di�ii 2 ZŒI �;

and note hz�; �i D � �� for any �; � 2 ZŒI �; in particular, observe that for any i 2 I ,

(2-4) hz�; ii D i � i:

Then ..I; � /;X;Y; h � ; � i/ is the root datum associated to osp.1j2n/, and forgetting the
parity on the root datum yields the root datum associated to so.1C 2n/. As usual, we
define the dominant weights to be XC D f� 2X j hi; �i � 0 for all i 2 Ig.

Example 2.1 When nD 1, we identify X D Z where h1; ki D k for k 2 Z. Then
Y DZ1 can be identified with subset 2Z�X . We will freely use these identifications
in later examples.

Note that the weight lattice X doesn’t naturally have a parity grading compatible with
that on ZŒI �. However, a parity grading on X can be defined as follows. First observe
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that X carries an action of the Weyl group W of type Bn , and that in particular,
��w� 2 ZŒI � for any � 2 X . Let w0 denote the longest element of Bn . If � 2 X ,
then w0�D�� hence 2�D ��w0� 2ZŒI �. We write 2�D

P
i2I .2�/ii and define

(2-5) P .�/D p.2�/� .2�/n mod 2:

This defines a parity grading on X , though it is obviously not compatible with the
grading on ZŒI � (indeed, for any i 2 I we have P .i/D p.2i/D 2p.i/� 0 mod 2).
In particular, P is constant on cosets X=ZŒI �. This parity can be expressed explicitly
in terms of the rank and weight as follows.

Lemma 2.2 Let the notation be as above. Then P .�/� nhn; �i mod 2.

Proof Let 1� s � n� 1, and for convenience, set the notation .2�/0 D 0. We have

hs; �i D 1
2
hs; 2�i D 1

2

X
i2I

.2�/ihs; ii D .2�/s �
1
2
..2�/sC1C .2�/s�1/;

hn; �i D .2�/n� .2�/n�1:

In particular, we see that 1
2
..2�/sC1C .2�/s�1/D .2�/s�hs; �i 2N ; thus .2�/s�1�

.2�/sC1 mod 2 for all 1 � s � n � 1. Therefore, .2�/r � .2�/s mod 2 whenever
r � s mod 2.

In particular, since .2�/0 D 0, we see that .2�/s � 0 mod 2 for each s � 0 mod 2.
If n � 0 mod 2, then P .�/ � .2�/n � 0 mod 2. If n � 1 mod 2, then .2�/n D

hn; �i � .2�/n�1 � hn; �i mod 2.

Example 2.3 When nD 1, recall from Example 2.1 that we identify X D Z. Then
P .k/� .1/h1; ki � k mod 2 for any k 2 Z; hence our P–grading is just the natural
parity grading on Z.

Throughout, we will consider objects graded by yX DX � .Z=2Z/. If M is yX–graded
and m2M is homogeneous, we let kmk (resp. jmj, p.m/) denote its yX–degree (resp.
X–degree, Z=2Z–degree or parity). Further, for � D .�; �/ 2 yX , we will set j�j D �,
p.�/ D � , and P .�/ D P .�/. (Note that P .�/ is not the same as p.�/ in general!
They are independent quantities.)

For �2X , let y�D .�; 0/2 yX . The set f.�;p.�// j � 2ZŒI �g� yX can and will be iden-
tified with ZŒI � via � 7! .�;p.�//. In particular, if � D .�; �/ 2 yX and � 2ZŒI �, then

(2-6) �C � D .�C �; �Cp.�// 2 yX :

Algebraic & Geometric Topology, Volume 17 (2017)
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With that in mind, the action of W on X generalizes naturally to yX by setting

(2-7) si.�; �/D .�; �/� hi; �ii D .�� hi; �ii; �� hi; �ip.i//;

where i 2 I and si is the corresponding simple reflection.

Lastly, we have the parity swap function …W yX ! yX defined by

(2-8) …..�; �//D .�; 1� �/:

2.2 Parameters

Let t 2C such that t2D�1. Let q be a formal parameter and let � be an indeterminate
such that

�4
D 1:

For convenience, we will also define

� D �2:

If R is a commutative ring with 1, we let

(2-9) R�
DRŒ� �=.�4

D 1/; R�
DRŒ��=.�2

D 1/:

Throughout, our base ring will be Q.q; t/� , though occasionally we will also refer to
the subring generated by Q.q/ and � , which we identify with Q.q/� .

We denote by x� W Q.q; t/� ! Q.q; t/� the Q.t/�–algebra automorphism satisfying
xq D �q�1 . We also define the Q.t/–algebra automorphism X given by X.q/D t�1q

and X.�/ D t� . We caution the reader that x� and X will be used later to denote
extensions of these algebra automorphisms which are defined on Q.q; t/�–algebras
and Q.q; t/�–modules.

Given an Q.q; t/�–module (or algebra) M and x 2 f˙1;˙tg, the Q.q; t/–module (or
algebra) M j�Dx DQ.q; t/x ˝Q.q;t/� M , where Q.q; t/x DQ.q; t/ is viewed as a
Q.q; t/�–module on which � acts as multiplication by x . We call this the specialization
of M at � D x . Moreover, Q.q; t/� has orthogonal idempotents

(2-10) "tk D
1
4
.1C tk� C .tk�/2C .tk�/3/; 0� k � 3;

such that Q.q; t/� DQ.q; t/"1˚Q.q; t/"t˚Q.q; t/"�1˚Q.q; t/"�t . In particular,
since �"x D x"x , we see that for any Q.q; t/�–module M ,

M j�Dx Š "xM:
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For k 2 Z�0 and n 2 Z, the .q; �/–quantum integers, along with quantum factorial
and quantum binomial coefficients, are defined as follows (see [7]):

(2-11)

Œn�q;� D
.�q/n� q�n

�q� q�1
; Œn�!q;� D

nY
lD1

Œl �q;� ;

�
n

k

�
q;�

D

Qn
lDn�kC1..�q/l � q�l/Qk

mD1..�q/m� q�m/
:

If � D
P

i2I �ii 2 ZŒI �, we write

q� D
Y
i2I

q�i di ; �� D
Y
i2I

��i di ; �� D
Y
i2I

��i di D �p.�/; t� D
Y
i2I

t�i di :

In particular, note that qi D qdi and �i D �
di D �p.i/ , and set

Œn�i D Œn�qi ;�i
; Œn�!i D Œn�

!
qi ;�i

;

�
n

k

�
i

D

�
n

k

�
qi ;�i

:

2.3 The covering quantum group

The covering quantum group associated to osp.1j2n/ (as well as some variants) was
introduced and studied in the series of papers starting with [7]. We will recall the
necessary definitions and elementary facts now.

Remark 2.4 Note that contrary to [7] and further papers in that series, we will take
coefficients in the larger ring Q.q; t/� �Q.q/� . Nevertheless, all of the results until
Section 3 are essentially statements over Q.q/� which remain true after extending
scalars to Q.q; t/� , so the reader may effectively ignore � and t for the present.

Definition 2.5 [7] The half-quantum covering group f associated to the datum
.I; � / is the NŒI �–graded Q.q; t/�–algebra on the generators �i for i 2 I with j�i jD i ,
satisfying the relations

(2-12)
bijX

kD0

.�1/k�.
k
2/p.i/Ckp.i/p.j/

�
bij

k

�
i

�
bij�k

i �j�
k
i D 0 .i ¤ j /;

where bij D 1� hi; j i.

The algebra f carries a nondegenerate bilinear form . � ; � / which satisfies

(2-13) .1; 1/D 1; .�i ; �i/D
1

1��iq
�2
i

; .�ix;y/D .�i ; �i/.x; ir.y//;
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where ir W f ! f is the Q.q; t/�–linear map satisfying ir.1/D 0, ir.�j /D ıij , and
ir.xy/ D ir.x/y C �

p.i/p.x/qi�jxjx ir.y/. (Here, and henceforth, ıx;y is set to be
ıx;y D 1 if x D y and 0 otherwise.) We define the Q.t/�–linear bar involution x
on f by

x�i D �i ; xq D �q�1:

We also define the Q.q; t/�–linear anti-involution � on f by

�.�i/D �i ; �.xy/D �.y/�.x/;

and the divided powers
�
.n/
i D �n

i =Œn�
!
i :

Definition 2.6 [7] The quantum covering group U associated to the root datum
..I; � /; Y; X; h � ; � i/ is the Q.v/�–algebra with generators Ei ;Fi , K� , and J�
subject to the following relations for i; j 2 I and �; � 2 Y :

J�J� D J�C� ; K�K� DK�C� ; K0 D J0 D J 2
� D 1; J�K� DK�J�;(2-14)

J�Ei D �
h�;iiEiJ�; J�Fi D �

�h�;iiFiJ�;(2-15)

K�Ei D qh�;iiEiK�; K�Fi D q�h�;iiFiK�;(2-16)

EiFj ��
p.i/p.j/Fj Ei D ıij

Jdi iKdi i �K�di i

�iqi � q�1
i

;(2-17)

bijX
kD0

.�1/k�.
k
2/p.i/Ckp.i/p.j/

�
bij

k

�
qi ;�i

E
bij�k

i Ej Ek
i D 0 .i ¤ j /;(2-18)

bijX
kD0

.�1/k�.
k
2/p.i/Ckp.i/p.j/

�
bij

k

�
qi ;�i

F
bij�k

i Fj Fk
i D 0 .i ¤ j /:(2-19)

Since Y D ZŒI � in this case, we note that U is actually generated by Ei ;Fi ;Ki ;Ji

for i 2 I . For notational convenience, we set zJ� D Jz� and zK� DKz� so that (2-17)
becomes

EiFj ��
p.i/p.j/Fj Ei D ıij

zJi
zKi �

zK�1
i

�iqi � q�1
i

:

We also equip U with a bar involution x� W U ! U extending that on Q.q; t/� by
setting xEi DEi , xFi D Fi , xK� D J�K�� , and xJ� D J� .

The algebras U and f are related in the following way. Let U� be the subalgebra
generated by Fi with i 2 I , UC the subalgebra generated by Ei with i 2 I , and U 0

the subalgebra generated by K� and J� for � 2 Y . There is an isomorphism f !U�
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(resp. f !UC ) defined by �i 7! ��i D Fi (resp. �i 7! �Ci DEi ). As shown in [7],
there is a triangular decomposition

U ŠU�˝U 0
˝UC ŠUC˝U 0

˝U�:

There is also a root space decomposition

U D
M
�2ZŒI �

U� ; U� D fx 2U j J�K�mD �
h�;�iqh�;�img:

The root space decomposition induces a parity grading via p.u/D p.juj/; hence in
particular, U is yX–graded.

We say an algebra is a “Hopf covering algebra” if it is a Z=2Z–graded algebra over Z�

with a coproduct, antipode, and counit satisfying the usual axioms of a Hopf superalge-
bra, but with the braiding replaced by x˝y 7! �p.x/p.y/y˝x . Then the algebra U

is a Hopf covering algebra under the coproduct �W U !U ˝U satisfying

�.Ei/DEi ˝ 1CKi ˝Ei ; �.K�/DK� ˝K� ;

�.Fi/D Fi ˝
zK�1

i C 1˝Fi ; �.J�/D J� ˝J� I

the antipode S W U !U satisfying S.xy/D �p.x/p.y/S.y/S.x/ for x;y 2U and

S.Ei/D� zJ
�1
i
zK�1

i Ei ; S.Fi/D�Fi
zKi ; S.K�/DK�1

� ; S.J�/D J�1
� I

and the counit �W U !Q.q; t/� satisfying

�.Ei/D �.Fi/D 0; �.K�/D �.J�/D 1:

Moreover, for x 2 f , we have that

(2-20)
S˙1.xC/D .�1/ht ��p.�/q���=2q�� zJ�� zK���.x/

C;

S˙1.x�/D .�1/ht ��p.�/q����=2q˙��.x/
� zK� :

2.4 U –modules

In this paper, a weight U –module is a U –module M with a yX–grading compatible
with the grading on U , such that

M D
M
�2X

M�;0˚M�;1; M�;s D fm 2M j p.m/D s; J�K�mD �
h�;�iqh�;�img;

and each M�;s is a free Q.q; t/�–module of finite rank. For � 2 X , let M� D

M�;0˚M�;1 . We also define the parity-swapped module …M to be M as a vector
space with the same action of U , but with …M�;s D M�;1�s . We let Ofin be the
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category of weight U –modules of finite rank over Q.q; t/� . Henceforth, we shall
always assume our U –modules are in Ofin .

We define the (restricted) linear dual of a U –module M :

M �
D

M
�2X

.M�;0/
�
˚ .M�;1/

�; .M�;s/
�
D HomQ.q;t/� .M�;s;Q.q; t/

� /:

This is again a free Q.q; t/�–module, which has a Z=2Z–grading induced by that
of V : namely, p.f / D 0 if f .v/ D 0 for p.v/ D 1, and vice-versa. Moreover, the
Hopf superalgebra structure of U induces an action of U : for f 2 V � and x 2 U ,
we define xf 2 V � by xf .v/D �p.f /p.x/f .S.x/v/. In particular, note that V � is
a U –module with .V �/�;s D .V��;s/� . While V �

�
is therefore ambiguous, we will

always take it to denote .V �/� . (In other words, our convention is that taking duals
has precedence over taking weight spaces.)

We can construct the U –module V ˝W D V ˝Q.q;t/� W , for any U –modules V

and W , via the coproduct. In particular, we have U –modules V �˝V and V ˝V � ,
both of which contain a copy of the trivial module V .0/DQ.q; t/� as a direct summand.
As the following lemma shows, there are natural projection and inclusion maps to a
copy of the trivial module. We borrow notation from [26].

Lemma 2.7 Fix a U –module V and recall the definition of � from (2-2).

(1) Let evV W V
�˝V !Q.q; t/� be the Q.q; t/�–linear map defined by v�˝w 7!

v�.w/. Then evV is a U –module epimorphism.

(2) Let qtrV W V ˝V �!Q.q; t/� be the Q.q; t/�–linear map defined by v˝w� 7!
�p.v/p.w/q�hz�;jvjiw�.v/. Then qtrV is a U –module epimorphism.

(3) Let coevV W Q.q; t/
�
! V �˝ V be the Q.q; t/�–linear map defined by 1 7!P

b2B �
p.b/qhz�;jbjib�˝b for some homogeneous Q.q; t/�–basis B of V . Then

coevV is a U –module monomorphism.

(4) Let coqtrV W Q.q; t/
�
! V ˝ V � be the Q.q; t/�–linear map defined by 1 7!P

b2B b˝ b� for some homogeneous Q.q; t/�–basis B of V . Then coqtrV is
a U–module monomorphism.

Proof This is elementary to verify.

2.5 Simple modules and their duals

Let �2XC and recall from [7] that V .�/ is the simple U –module of highest weight �
such that the highest weight space has even parity. Then V .�/ has finite rank and has
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the same character as the so.2nC 1/ module of highest weight �. In particular, the
lowest weight vector has weight w0� D ��; hence the parity of the lowest weight
vector of V .�/ is P .�/. Using standard arguments (for example, analogues of [15,
Sections 5.3 and 5.16]), and considering the above analysis, we obtain the following
lemma.

Lemma 2.8 For each � 2XC , there is an isomorphism V .�/� Š…P.�/V .�/ and a
natural isomorphism V .�/��! V .�/.

Example 2.9 In the case n D 1, the module V D V .m/ for m 2 Z�0 has basis
vm�2k D F .k/vm with 0 � k � m, where vm is a choice of highest weight vector.
Note that by convention, p.vm/ D 0, so p.vm�2k/ � k mod 2. The dual module
V .m/� has a dual basis v�

m�2k
, 0� k �m, and the actions of E and F are given by

Ev�m�2k D��
k.�q/m�2k ŒnC 1� k�v�m�2.kC1/;

Fv�m�2k D��
k.�q/m�2kC2Œk�v�m�2.k�1/:

In particular, this is a simple module generated by the highest weight vector v��m ,
where jv��mj D �jv�mj Dm and p.v��m/D p.v�m/�m mod 2; hence we have an
isomorphism V .m/� Š…mV .m/.

For convenience, we will use the notation

(2-21) V .��/D V .�/�; � 2XC:

We denote the maps in Lemma 2.7 in the case V D V .�/ with the subscript � instead
of V .�/; for instance, ev� D evV .�/ . Note that

ev� ı coev� D
X

�2NŒI �

rankQ.q;t/� .V���/�
p.�/qhz�;���i D �P.�/ qtr� ı coqtr� :

Example 2.10 For nD 1, we have �D z�D 1; hence for �Dm, hz�; �i Dm. Then

evm ı coevm D qm
C�qm�2

C � � �C�mq�m
D �mŒmC 1�D �m qtrm ı coqtrm :

2.6 Further properties of the quasi-R–matrix

Let us recall the quasi-R–matrix from [7, Section 4].

Algebraic & Geometric Topology, Volume 17 (2017)



2974 Sean Clark

Theorem 2.11 [7] Let B be any Q.q; t/�–basis of f such that B� DB \f� is a
basis of f� for any � 2 NŒI �, with B0 D f1g. Let B� D fb� j b 2 Bg be the basis
of f dual to B under . � ; � /. Define

‚� D .�1/ht ��p.�/��q�
X

b2B�

b�˝ .b�/C 2U��� ˝UC� :

Then if M;M 0 are integrable modules of U , then ‚ D
P
�‚� is a well-defined

operator on M ˝M 0 which satisfies �.u/‚D‚x�.u/ as endomorphisms of M ˝M 0 ,
where x�.u/ D �.xu/. Moreover, ‚ is independent of the choice of basis B and is
invertible with inverse x‚.

Example 2.12 When n D 1, the quasi-R–matrix ‚ can be explicitly given by the
formula

‚D
X
n�0

.�1/n.�q/�.
n
2/Œn�!.�q� q�1/nF .n/˝E.n/

D 1� .�q� q�1/F ˝EC � � � :

(NB there is a typo in the power of �q in [7, Example 3.1.2].)

While x‚ can be evaluated easily, it will be more convenient to have the following
alternate description of x‚ using the properties of the bilinear form on f ; see [7,
Section 1.4].

Lemma 2.13 With the same notation as in Theorem 2.11, x‚D
P
�
x‚� is given by

x‚� D ��q
���=2

X
b2B�

b�˝ �.b�/C 2U��� ˝UC� :

Proof Let xB D fxb j b 2 Bg, with dual basis xB� . Then since ‚ is independent
of the choice of basis, we see that ‚� D .�1/ht ��p.�/��q�

P
b2B�

xb�˝ .xb�/C for
� 2NŒI �. We have

x‚� D .�1/ht ��p.�/q��
X

b2B�

.xb�/˝ . xb�
C
/;

and note that .xx/˙ D .x˙/, so .xb�/D b� .

On the other hand, recall from [7, Section 1.4] the variant bilinear form f�;�g defined
by fx;ygD .xx; xy/. Note that by construction, .xb�; xb0/D ıb;b0 . Then for any b; b0 2B ,
we apply Lemma 1.4.3(b) of [loc. cit.] to deduce that

ıb;b0 D .xb
�; xb0/D fxb�; b0g D .�1/ht ��p.�/��q

����=2q��.xb�; �.b
0//:
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(We note that while the power of � appears different from that in [loc. cit.], it is
equivalent.) Therefore, we have

xb� D .�1/ht ��p.�/q���=2��q��.b/
�:

Then the lemma follows from the observation that since .�.x/; �.y// D .x;y/, we
have �.b/� D �.b�/.

Now we will proceed to use ‚ to define a universal map RW M ˝N !N ˝M for
any modules M and N . These constructions will be modified versions of the standard
arguments in the nonsuper case; compare [15, Sections 7.3–7.6] or [18, Section 4.2
and Chapter 32].

For 1� s < t � 3, let ‚st
� 2U ˝U ˝U be defined by

‚st
� D .�1/ht ��p.�/��q�

X
b2B�

b1˝ b2˝ b3;

where bs D b� ,bt D .b
�/C , and bm D 1 for m¤ s; t .

Proposition 2.14 We have the following identities:

.�˝ 1/.‚�/D
X

�0C�00D�

‚23
�0 .1˝

zK��00 ˝ 1/‚13
�00 ;

.x�˝ 1/.‚�/D
X

�0C�00D�

‚13
�0 .1˝

zJ�0 zK�0 ˝ 1/‚23
�00 ;

.1˝�/.‚�/D
X

�0C�00D�

‚12
�0 .1˝

zJ�00 zK�00 ˝ 1/‚13
�00 ;

.1˝ x�/.‚�/D
X

�0C�00D�

‚13
�0 .1˝

zK��00 ˝ 1/‚12
�00 :

Proof These identities are proved exactly as in [18, Section 4.2] using the analogous
results in [7].

To construct a universal U –module homomorphism from ‚, we will need some
additional maps. The first is the swap map; that is, the algebra U ˝U is equipped with
an involution s defined by s.x˝y/D �p.x/p.y/y˝x . This induces involutions on
U˝m by applying s to sequential pairs of tensor factors; specifically, these involutions
are the maps st;tC1 D 1˝t�1˝ s˝ 1m�t�1 , and it is not hard to see they satisfy the
braid relations st�1;tst;tC1st�1;t D st;tC1st�1;tst;tC1 . In particular, we see that to
each element  of the permutation group Sm , there is an automorphism s of U m ;
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for example, s.23/ D s2;3 and s.123/ D s1;2s2;3 . Similarly, to any tensor product of
modules N D

Nm
iD1 Mt and  2Sm , we can define N D

Nm
iD1 M.t/ and a map

s W N !N given by
s.v/D �p.;v/v ;

where v D v1˝ � � �˝ vm , v D v.1/˝ � � �˝ v.m/ , and

p.; v/D
X

1�s<t�n
.s/>.t/

p.vt /p.vs/:

These maps are compatible in the sense that for v D
Nn

tD1 vt 2N and u 2U ,

s .�
m�1.u/v/D s .�

m�1.u//s .v/:

When mD 2, we will just write sD s1;2 .

The other ingredient is a weight-renormalization operator. This operator is induced by
the weight function defined in the following lemma.

Lemma 2.15 There exists a function fW X �X ! .Q.q; t/� /� satisfying

f.�C�0; �0C �0/f.�; �0/�1
D .�q/�hz�;�

0iq�hz�;�i����

for �; �0 2X and �; � 2 ZŒI �. Moreover,

(1) the function r.�; �0/ D f.�; �0/f.�;��0/ satisfies r.�C�; �0C �/ D r.�; �0/ for
any �; � 2 ZŒI �,

(2) the function l.�; �0/ D f.�; �0/f.��; �0/ satisfies l.� C �; �0 C �/ D l.�; �0/ for
any �; � 2 ZŒI �,

(3) we have f.�; �0/f.��;��0/�1 D �P.�/P.�0/ ; in particular,

l.�; �0/D �P.�/P.�0/r.�; �0/:

Proof It is easy to verify that such a function f exists by choosing a set of coset
representatives R for ZŒI � in X . Then (3) follows easily using (2-5) and Lemma 2.2.

Example 2.16 Let us consider the case nD 1. Then the function f is determined by
the values f.0; 0/, f.0; 1/, f.1; 0/, and f.1; 1/. Then for any �1; �2 2 f0; 1g,

f.�1C 2s; �2C 2t/D f.�1; �2/�
s�2q�t�1�s�2�2st :

By direct computation, one finds the corresponding coset functions to be

r.�1C 2s; �2C 2t/D f.�1; �2/
2q�1�2 ;

l.�1C 2s; �2C 2t/D f.�1; �2/
2��1�2q�1�2 :
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Given U –modules M and M 0 , define the Q.q; t/�–linear bijection FW M ˝M 0!

M ˝M 0 by F.m˝m0/ D f.jmj; jm0j/m˝m0 . For 1 � s < t � 3, we define Fst

on M1 ˝M2 ˝M3 via Fst .m1 ˝m2 ˝m3/ D f.jmsj; jmt j/m1 ˝m2 ˝m3 . Let
F‚st D‚st ıFst . The following results are then proven entirely analogously to the
classical case; see for instance, the arguments in [15, Chapter 7].

Proposition 2.17 (Yang–Baxter equation) As operators on M1˝M2˝M3 ,
F‚12

ı
F‚13

ı
F‚23

D
F‚23

ı
F‚13

ı
F‚12:

Proposition 2.18 Define RW M ˝M 0!M 0˝M by R D ‚ ı F ı s. Then R is a
U –module isomorphism.

We thus obtain the following crucial property of R.

Proposition 2.19 For any modules M1 , M2 , and M3 , let Rst D
F‚st ı s.st/ . Then

R12R23R12 D R23R12R23W M1˝M2˝M3!M3˝M2˝M1:

Remark 2.20 In [18, Section 32], it is shown that for gD sl.2/, which we can view
as the � D 1 (ie � D ˙1) specialization of Example 2.12, we can extend our field
Q.q/ to Q.

p
q/ and normalize so that f is bimultiplicative; that is f.mC a; nC b/D

f.m; n/f.m; b/f.a; n/f.a; b/. This is necessary for the maps R to satisfy the Hexagon
Identities and thus define a braiding on the category of finite dimensional modules.

Note that Example 2.12 shows such a renormalization is impossible in general in the
� D�1 case, so in particular the maps R can not be normalized to define a braiding
on the category of finite dimensional weight modules. It is possible to overcome this
difficulty by restricting the class of modules to those of “even” highest weight. One
could also expand the definition of f to a function on yX � yX , but as a consequence the
analysis in Section 4 becomes much more complex. Since it is not essential to have the
braiding, we opt to not do this here.

3 Diagrammatic calculus and knot invariants

We will now interpret the U –module homomorphisms in terms of planar diagrams.
At first, these diagrams should be interpreted as slice diagrams; that is, diagrams
together with vertical slices at various heights such that between consecutive slices is
an elementary diagram corresponding to a U –module homomorphism. However, we
will ultimately see that diagrams which can be identified by planar isotopies yield the
same morphisms.
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3.1 Cups, caps, and crossings

Recall that coqtr� , coev� , qtr� , and ev� are the maps defined in Lemma 2.7 where
V D V .�/. Likewise, let R˙�;˙�W V .˙�/˝V .˙�/! V .˙�/˝V .˙�/ be the map
defined in Proposition 2.18. Furthermore, we will use the notation 1˙� D 1V .˙�/ .

We will now begin to represent our maps via a graphical calculus in anticipation of
constructing tangle invariants. Specifically, we follow [27; 1] and interpret maps
between tensor products of the modules V .˙�/ for various � 2XC as sliced oriented
tangle diagrams with XC–labeled strands; a concise exposition of this approach is
lain out in [20, Chapter 3]. The elementary oriented tangle diagrams are interpreted as
follows (note that while sideways-oriented crossings aren’t considered elementary, we
include them here for convenience in later arguments):

�
D 1�;

�
D 1��;

�
D coqtr�; �

D �3P.�/ coev�;

� D �P.�/ qtr�; � D ev�;

� �
D �P.�/P.�/R�;�;

� �
D �3P.�/P.�/R��;��;(3-1)

� �
D �P.�/P.�/R�;��;

� �
D �3P.�/P.�/R��;�;

� �
D �3P.�/P.�/R�1

�;�; � �
D �P.�/P.�/R�1

��;��;

� �
D �P.�/P.�/R�1

��;�; � �
D �3P.�/P.�/R�1

�;��:

We construct more general diagrams from these elementary ones by the following
constructions. If T is some diagram denoting the morphism � and S is some
diagram denoting the morphism  , then we can combine them in two ways:

T S ;
T

S
:

� The first is the horizontal composition, which denotes the tensor product �˝ .

� The second is the vertical composition, which denotes the composition � ı ,
or zero if this composition is undefined (which is to say, when the strands on top
of S don’t match the number and labeling of the strands on the bottom of T ).
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We will say two diagrams are equal if the corresponding morphisms agree. Note that,
by construction and by Proposition 2.19, the following diagrams are equal for any
choice of orientation and labeling of strands:

T D T D T ;
T

S
D

T

S
;(3-2)

D D ; D :(3-3)

In (3-2), the symbols T and S stand for arbitrary subdiagrams with an arbitrary
number of strands protruding from the top and bottom.

3.2 Graphical identities

Now we shall prove some more substantial diagrammatic identities.

Lemma 3.1 We have an equality of diagrams

D D

for any choice of orientation or labeling of the strand.

Proof This follows by choosing a homogeneous basis for the module and applying
the definitions.

Lemma 3.2 Let � 2XC , and define c� D f.�; �/�P.�/q�hz�;�i . Then we have

�
D c�

�
D

�
;(a)

�
D c�1

�
�
D

�
;(b)

�
D c�

�
D

�
;(c)

�
D c�1

�
�
D

�
:(d)
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Proof This is easy to verify directly by evaluating the maps on either a highest-weight
or lowest-weight vector.

Lemma 3.3 We have equalities of diagrams

�

�

D r.�; �/

� �

D �P.�/P.�/r.�; �/

� �

;(a)

�

�
D �P.�/P.�/r.�; �/�1

� �

D r.�; �/�1

� �

(b)

for any �;� 2XC .

Proof The proof of (a) and (b) being similar, we shall only prove (a) here. First,
unpacking the graphical representation, we see that (a) is equivalent to

R�;�� D r.�; �/� D �p.�/p.�/r.�; �/ ;

where � and  are the compositions

� D .qtr�˝1��˝ 1�/ ı .1�˝R�1
��;��˝ 1�/ ı .1�˝ 1��˝ coev�/;

 D .1��˝ 1�˝ qtr�/ ı .1��˝R�1
�;�˝ 1��/ ı .coev�˝1�˝ 1��/:

Let B.�/ be a homogeneous basis for V .�/. Let v0 2 B.�/� and w0 2 V .�/� for
some �; � 2X . We shall compare the images of our three maps on v0˝w

�
0

.

First, let x D R�;��.v0˝w
�
0
/ and note that

(3-4) x D �p.w0/p.v0/f.��; �/
X
�

.�1/ht ��p.�/��q��
p.�/p.w0/

�

X
b2B�

b�w�0 ˝ .b
�/Cv0:

For � , first let us note the effect of each map in the composition separately. The
graphical representation tells us which tensor factors are impacted at each step, so we
restrict our view to these tensor factors when computing these maps. First, we have the
coevaluation which adds two tensor factors on the right:

coev�.1/D
X

v2B.�/

�p.v/qhz�;jvjiv�˝ v:
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Next, we apply R�1
��;�� D s ıF�1 ı x‚ to the middle tensor factors, and thus setting

y D R�1
��;��

.w�
0
˝ v�/, we see that

y D
X
�

f.�� � �;�jvjC �/�1�p.w0/p.v/Cp.�/p.v/q���=2
X

b2B�

�.b�/Cv�˝ b�w�0 :

Finally, we apply the quantum trace to the two tensor factors on the left; hence we
need to compute qtr.v0˝ �.b

�/Cv�/. Since x�.y/ D 0 unless kxk D kyk (that is,
unless x and y have the same weight and parity), we can assume jvj D � C � and
p.v/D p.v0/Cp.�/. Then we have

qtr�.v0˝ �.b
�/Cv�/

D �p.v0/q�hz�;jv0ji.�.b�/Cv�/.v0/

D .�1/ht ��p.�/Cp.v0/Cp.�/p.v0/Cp.�/q����=2�hz�;�i.�q/�hz�;�iq��v
�..b�/Cv0/:

Putting these computations together, we see that

�.v0˝w
�
0 /D

X
v2B.�/

X
�

X
b2B�

�p.v0/Cp.�/qhz�;�C�i

� f.�� � �;��/�1�p.w0/p.v0/Cp.w0/p.�/Cp.�/p.v0/Cp.�/q���=2

� .�1/ht ��p.�/Cp.v0/Cp.�/p.v0/Cp.�/q����=2�hz�;�i.�q/�hz�;�iq��

� v�..b�/Cv0/b
�w�0 ˝ v

D

X
�

.�1/ht �f.�� � �;��/�1.�q/�hz�;�i��q
hz�;�iq���

p.v0/p.w0/Cp.�/

�

X
b2B�

�p.w0/p.�/b�w�0 ˝

� X
v2B.�/

v�..b�/Cv0/v

�
:

But note that we have the following identities:

f.�� � �;��/.�q/hz�;�i D f.��;��/;

qhz�;�i D q2
� ;X

v2B.�/

v�..b�/Cv0/v D .b
�/Cv0:

Applying these identities to the computation of �.v0˝w
�
0
/, we find

�.v0˝w
�
0 /D r.��; �/�1R�;��.v0˝w

�
0 /:

Finally, since �� 2�CZŒI � and � 2�CZŒI �, we can apply Lemma 2.15(1) to conclude
that � D r.�; �/�1R�;�� . A similar computation shows that  D l.�; �/�1R�;�� ,
and the result then follows from Lemma 2.15.
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Note that since the maps in Lemma 3.3(a) and (b) are mutually inverse, we obtain the
following corollary.

Corollary 3.4 We have an equality of diagrams

� �

D

� �

D

� �

:

Finally, we show a somewhat more involved identity, leading us to our final result.

Lemma 3.5 We have an equality of diagrams

� �

D �P.�/P.�/

� �

for any choice of orientation.

Proof In order to prove the identity without referring to a particular orientation, it will
be convenient to introduce the following notation. Suppose m 2 V .�/ and n 2 V .��/

for some � 2XC . Let us denote by .n;m/ (resp. .m; n/) the evaluation ev�.n˝m/

(resp. the quantum trace qtr�.m˝ n/). In particular, one may think of .�;�/ as a
pairing on V .�/˚V .��/ satisfying, for v;w 2 V .�/,

(3-5)
.v; w/D .v�; w�/D 0; .v; w�/D �p.v/p.w/q�hz�;jvji.w�; v/;

.uv;w�/D �p.u/p.v/.v;S.u/w�/; .uw�; v/D �p.u/p.w/.w�;S.u/v/:

Indeed, all the statements of (3-5) are obvious except .uv;w�/D�p.u/p.v/.v;S.u/w�/,
which follows from a simple calculation on the generators: for example,

.Eiv;w
�/D �p.v/p.w/q�hz�;jvjiq�2

i .�Ei
zJ�1
i
zK�1

i w�/.v/D �p.v/p.i/.v;S.Ei/w
�/:

In this proof we will use the notation .�;�/ as shorthand for ev� and qtr� for both
� D �;� with the intended map (and highest weight) being clear from context. Using
this notation, the diagram equality is equivalent to showing that the maps

 D .�;�/ ı .1s�˝ .�;�/˝ 1�s�/ ı .Rs�;t�˝ 1�s�˝ 1�t�/;

� D .�;�/ ı .1t�˝ .�;�/˝ 1�t�/ ı .1s�˝ 1t�˝R�s�;�t�/

are �P.�/P.�/ multiples of each other for any choice of s; t 2 f1;�1g.
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Let w 2 V .s�/, x 2 V .t�/, y 2 V .�s�/, and z 2 V .�t�/, where V .��/ D V .�/�

for � 2XC . Then on one hand,

 .w˝x˝y˝ z/DX
�

X
b2B�

�p.x/p.w/f.jxj; jwj/.�1/ht ��p.�/��q��
p.�/p.x/.b�x; z/..b�/Cw;y/:

On the other hand, using the representation of ‚ in the basis �.B/,

�.w˝x˝y˝ z/DX
�

X
b2B�

�p.y/p.z/f.jzj; jyj/.�1/ht ��p.�/��q��
p.�/p.z/.x; �.b/�z/.w; �.b�/Cy/:

Thus to see that  .w˝ x˝ y˝ z/D �P.�/P.�/�.w˝ x˝ y˝ z/, and hence that
 D�p.�/p.�/� since w;x;y; z are arbitrary, it is enough to show that lD�P.�/P.�/r ,
where

l D �p.y/p.z/Cp.�/p.z/f.jzj; jyj/.x; �.b/�z/.w; �.b�/Cy/;

r D �p.w/p.x/Cp.�/p.x/f.jxj; jwj/.b�x; z/..b�/Cw;y/:

Using the properties of .�;�/ (see (3-5)) and S (see (2-20)), we see that

.x; �.b/�z/.w; �.b�/Cy/

D �p.x/p.�/Cp.w/p.�/q����Chz�;jxji.�q/�hz�;jwji.b�x; z/..b�/Cw;y/:

Note that l and r are both zero unless �kxk D kzk � � and �kwk D kykC � . In
particular, l and r are both zero unless p.y/Dp.w/Cp.�/ and p.z/Dp.x/Cp.�/,
in which case

p.y/p.z/Cp.�/p.z/Cp.x/p.�/Cp.w/p.�/� p.w/p.x/Cp.w/p.�/ mod 2:

Likewise, l and r are both zero unless �jyjD jwjC� and �jzjD jxj�� , in which case

f.jzj; jyj/q����Chz�;jxj�jwji D f.�jxj;�jwj/:

Finally, note that f.�jxj;�jwj/D �P.�jxj/P.�jwj/f.jxj; jwj/. Putting these observa-
tions together,

l D �p.w/p.x/Cp.�/p.x/CP.�jxj/P.�jwj/ f.jxj; jwj/.b�x; z/..b�/Cw;y/

D �P.�jxj/P.�jwj/r:

Since parity in X only depends on the X=ZŒI � cosets and we have �jxj 2 �CZŒI �
and �jwj 2 �CZŒI �, the result follows.

Lastly, note that Lemmas 3.5 and 3.1 immediately imply the following corollary.
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Corollary 3.6 We have an equality of diagrams

�

�

D

� �

D

� �

for any �;� 2XC .

3.3 Defining the tangle invariant

Recall that the writhe wr.T / of an oriented tangle T is defined by forgetting the
orientation and setting

wr
� �

D 1; wr
� �

D�1; wr.T /D
X

wr.X /;

where the sum is over all crossings X in T .

Theorem 3.7 Let T be an oriented tangle, and �2XC be a dominant weight. For any
slice diagram S.T / of T , let S.T /� be the associated map defined by the diagrammatic
calculus with strands colored by �. Then S.T /� is independent of the choice of slice
diagram, and T�D S.T /� is an isotopy invariant of oriented framed tangles. Moreover,
if J�

T
D .�p.�/f.�; �/�1qhz�;�i/wr.T /T� , then J�

T
is independent of the framing, hence

is an invariant of T .

Proof To prove the theorem, it suffices to show that the maps S.T /� (resp. J�
T

)
are invariant under the Turaev moves for framed (resp. unframed) oriented tangles
[27, Theorem 3.2; 20, Theorem 3.3, Equations (3.9)–(3.16)]. This is straightforward
to check.

We note that the proof of Theorem 3.7 actually implies a more general result, though
we first need to recall some notions. The category of XC–colored oriented tangles is
the strict monoidal category whose objects are finite sequences of pairs .�; s/ where
� 2XC and s 2 f˙1g, and whose morphisms from .�a; sa/1�a�b to .�c ; sc/1�c�d

are tangle diagrams where the labeling and orientation of the r th strand from the left at
the lower (resp. upper) boundary corresponds to .�r ; sr / (resp. .�c ; sc/); see [27; 1]
for more details. In particular, morphisms in this category (and thus colored tangles)
are generated from the elementary morphisms

Õ�;

Õ

�;

Ô

�;

Õ

�; .&./˙�;�; .%-/˙�;�;

subject to relations which are simply colored versions of the Turaev moves.
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We can extend Theorem 3.7 to framed multicolored tangles with the same proof. To
obtain the unframed invariant, we must similarly renormalize but now by the factorQ
�2XC.�

p.�/f.�; �/�1qhz�;�i/wr�.T / , where wr� is defined to be the writhe where we
exclude from the sum any crossings where there is a strand not labeled by �. Therefore,
we obtain the following corollary.

Corollary 3.8 There exists a covariant functor J from the category of XC–colored
oriented tangles modulo isotopy to Ofin satisfying

Õ� 7! �P.�/ ev�; Ô� 7! qtr�;

Ô

� 7! coqtr�;

Õ

� 7! ��P.�/ coev�;

.%-/˙�;� 7! .�p.�/f.�; �/�1qhz�;�i/˙ı�;��˙P.�/P.�/R˙�;�;

.&./˙�;� 7! .�p.�/f.�; �/�1qhz�;�i/˙ı�;���P.�/P.�/R˙
��;��:

In particular, if L is an oriented colored link, then J.L/ 2Q.q; t/� is the associated
quantum covering osp.1j2n/ colored link invariant.

Remark 3.9 Recall from Remark 2.4 that all the module homomorphisms of Section 2
are defined over the subring Q.q/� of Q.q; t/� . We observe that whenever P .�/D 0,
the maps represented by the diagrams are defined over Q.q/� . By Lemma 2.2, this
holds whenever � is an even weight (ie hn; �i 2 2N ) or n is even. In particular, this
means that the functor J can be defined to the category O of the quantum group over
Q.q/� provided all weights are even, or n is even.

Example 3.10 Let’s take g D osp.1j2/ and � D 1. Fix f.1; 1/ D 1, and note that
hz�; �i D 1 and p.�/ D 1. We can explicitly compute the maps represented by our
diagrams on V .1/ ˝ V .1/. Let v1; v�1 be the basis of V .1/ from Example 2.9.
Then with respect to the ordered basis fv1˝ v1; v1˝ v�1; v�1˝ v1; v�1˝ v�1g of
V .1/˝V .1/, we have

‚D

2664
1 0 0 0

0 1 0 0

0 q�1��q 1 0

0 0 0 1

3775 ; FD

2664
1 0 0 0

0 q 0 0

0 0 �q 0

0 0 0 �

3775 ; s D

2664
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 �

3775 ;
and thus

D

2664
� 0 0 0

0 0 �q 0

0 �3q ���3q2 0

0 0 0 �

3775 ; D

2664
�3 0 0 0

0 �3��q�2 �q�1 0

0 �3q�1 0 0

0 0 0 �3

3775 :
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Note that �p.�/qhz�;�i D �q . Then it is easy to verify directly that

� q2
D .� � �3q2/ :

Now let T be an unframed oriented link with all strands colored by �, and fix a
subdiagram which consists of two strands with either no crossing or a single crossing.
Since T ] is isotopy invariant and independent of framing, we may assume that the
strands are directed upward. Let TC , T0 and T� be T with the subdiagram replaced by

; and ;

respectively. Then using the above relation and the definition in Theorem 3.7,

.�q�1/J 1
TC
� .�q3/J 1

T�
D .� � �3q2/J 1

T0
;

hence

.�q2/�1J 1
TC
��q2J 1

T�
D .�q�1

� �3q/J 1
T0
:

Moreover, if T is the unknot, then for either orientation we have J 1
T
D �3qC�q�1 . In

particular, for any link K , we see that J 1
K

is simply a multiple of the Jones polynomial
of T in the variable �3qD ��1q . In particular, note that using the specialization � D t ,
which corresponds to � D�1, this shows the uncolored Uq.osp.1j2// link invariant
is equal to the Ut�1q.sl2/ link invariant.

4 Relating so.2n C 1/ and osp.1j2n/ invariants

The results of Example 3.10 suggest a connection between the specializations of
the tangle invariants in Theorem 3.7. We now make this precise by extending the
constructions in [5; 4]. We begin by recalling the definition of the twistor maps.

4.1 Definition of twistors

An enhancer � is an function �W ZŒI ��X ! Z satisfying

(4-1)

�.�; �C�/� �.�; �/C�.�; �/ mod 4 for �; � 2 ZŒI �;

�.�C�; �/� �.�; �/C�.�; �/ mod 4 for �; � 2 ZŒI �;

�.i; i/D di and �.i; j / 2 2Z for i ¤ j 2 I;

�.i; j /��.j ; i/� i � j C 2p.i/p.j / mod 4 for i; j 2 I:
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Note that �.i; i/ � �.i; i/ D 0 � i � i C 2p.i/p.i/ mod 4 since i � i D 2di and
2p.i/p.i/D 2p.i/D 2di . In particular, note that these congruences imply that

(4-2)
�4W ZŒI ��ZŒI �! Z=4Z; .�; �/ 7! �.�; �/ mod 4 is Z–bilinear,

�.�; �/� �.�; �/C� � �C 2p.�/p.�/ mod 4 for �; � 2 ZŒI �:

Note that an enhancer can always be defined on ZŒI ��ZŒI � by defining it for I and
extending in Z–bilinearly, and then it can be extended to ZŒI ��X by translation along
a transversal of X=ZŒI �.

When I has a unique odd element, as in the present case, the enhancer is closely related
to the usual pairing.

Lemma 4.1 Let � be an enhancer. Then �.�; �/C�.�; �/� � � � mod 4.

Proof It is straightforward using the fact that jI1j D 1.

The �–enhanced quantum covering group yU associated to U and the enhancer � is
the semidirect product of U with the algebra Q.q; t/� ŒT�; ‡� j � 2 ZŒI � � subject to
the relations

T�T�DT�C� ; ‡�‡�D‡�C� ; T0D‡0DT 4
� D‡

4
� D1; T�‡�D‡�T�;(4-3)

T�uD th�;jujiuT�; u 2U ; � 2 ZŒI �;(4-4)

‡�uD t�.�;juj/u‡�; u 2U ; � 2 ZŒI �:(4-5)

See [5; 4] for a more formal definition. The enhanced quantum covering group has a
useful Q.t/–linear automorphism called a twistor. There are several ways to define
such a twistor; we will need the following.

Proposition 4.2 [5, Theorems 4.3, 4.12] Define a product � on f by the following
rule: if x and y are homogeneous elements of f , let x � y D t�.jxj;jyj/xy . Let
.f ;�/ denote f with this multiplication. Finally, let XW Q.q; t/� !Q.q; t/� be the
Q.t/–linear automorphism satisfying X.q/D t�1q and X.�/D t�1� .

(1) There is a Q.t/–linear algebra isomorphism XW f ! .f ;�/ defined by

X.�i/D �i ; X.q/D t�1q; X.�/D t�1�:

(2) Let B be the canonical basis of f [8]. Then X on f satisfies X.b/D t`.b/b

for all b 2B, where `.b/ is some integer depending on b .
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(3) There is a Q.t/–algebra automorphism XW yU ! yU defined by

X.Ei/D t�1
i
zTi‡iEi ; X.Fi/D Fi‡�i ; X.K�/D T��K�; X.J�/D T2�J�;

X.T�/D T�; X.‡�/D ‡�; X.q/D t�1q; X.�/D t�1�;

where zT� D
Q

i2I T�i di i for �D
P

i2I �ii .

(4) For x 2 f Œt�, we have
(a) X.xC/D t2

� t�.jxj/X.x/C zTjxj‡jxj ,
(b) X.x�/D X.x/�‡�jxj .

Later on, we will need some alternate versions of the results in Proposition 4.2 which
we shall prove now. First, we note the following analogue of Proposition 4.2(2) for the
dual canonical basis.

Lemma 4.3 Let .�;�/ be the bilinear form on f defined in (2-13). Then

X�1..X.x/;X.y///D .�1/p.jxj/.x;y/:

In particular, X.b�/D .�1/p.b/t�`.b/b� for any b 2B.

Proof Let .x;y/XD .�1/p.jxj/X�1..X.x/;X.y/// and observe that this is a Q.q; t/�–
bilinear form on f Œt�. It suffices to show that this bilinear form satisfies the defining
properties of .�;�/, which is elementary to verify.

Remark 4.4 Though Lemma 4.3 as stated requires jI1j D 1, a version of it also
holds for arbitrary enhanced quantum covering algebras. Indeed, if jI1j > 1, then
X�1..X.x/;X.y///D t.

�
2/.x;y/, where jxj D � D

P
i2I �ii and

�
�
2

�
D
P

i2I

�
�i

2

�
di .

It will also be more convenient to have the following variant of Proposition 4.2(4b).

Lemma 4.5 We have
X.xC/D t�1

jxj
zTjxj‡jxjX.x/

C:

Proof This is true if x D �i . It suffices to show if it is true for x , then it is true
for �ix . We have

X.�ix
C/D X.�Ci /X.x

C/D t�1
i
zTi‡iEit

�1
� T�‡�X.x/

C

D t�1
iC�t

�i����.�;i/ zTi‡i
zT�‡�EiX.x/

C

D t�1
j�i xjt

�i����.�;i/��.i;�/ zTiC�‡iC�X.�ix/
C:

But then by Lemma 4.1,

�i � � ��.�; i/��.i; �/�4 �2i � � �4 0:
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4.2 yU–modules and Hopf structure

Let M be a U –weight module. Then M is naturally a yU –module by defining

T�mD th�;�im; � 2 ZŒI �; m 2M�I(4-6)

‡�mD t�.�;�/m; � 2 ZŒI �; m 2M�:(4-7)

To that end, we will call any yU –module which restricts to a U –weight module and
satisfies (4-6) a yU –weight module. If it additionally satisfies (4-7), we shall call it an
untwisted yU –weight module.

In particular, any tensor product of yU –modules can be given an untwisted yU –weight
module structure. However, such a procedure forgets the action of the ‡ elements on
the factors due to the lack of additivity in the second component of � .

Example 4.6 Consider the case n D 1. Then yU has the untwisted weight module
yV .1/DQ.q; t/�v1˚Q.q; t/�v�1 which is isomorphic to V .1/ as a U –module and
satisfies Tiv1D tv1 and ‡1v1D t�.1;1/v1 . Then yV .1/˝ yV .1/ is a U –weight module
hence has a untwisted yU –module structure, but note that

‡1v1˝ v1 D t�.1;2/v1˝ v1;

and by the definition of � , we have �.1; 2/D �.1; 1/D 1¤ �.1; 1/C�.1; 1/.

In particular, untwisted module structures will be too naive for our purposes. Instead,
we will introduce Hopf structure which will inform our classes of weight modules.

Proposition 4.7 The algebra yU has a Hopf covering algebra structure given by the
following:

(1) A coassociative coproduct�W yU! yU˝Q.q;t/�
yU extending�WU!U˝Q.q;t/�U

such that �.T�/DT�˝T� and �.‡�/D‡�˝‡� for �2ZŒI �. In particular,
we inductively define �t D .�˝ 1t�1/ ı�t�1W yU ! yU˝.tC1/ for any integer
t > 1.

(2) An antipode S W yU ! yU extending S W U ! U such that S.T�/ D T�� and
S.‡�/D ‡�� for � 2 ZŒI �.

(3) A counit map �W yU !Q.q; t/� extending �W U !Q.q; t/� such that �.T�/D
�.‡�/D 1 for � 2 ZŒI �.

Proof To show that these maps define a Hopf structure, we need only check that these
morphisms respect (4-3)–(4-5). This is obvious for (4-3), and can be quickly verified
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for (4-4) and (4-5) by checking it for the generators of U . Finally, the coassociativity
of � on yU follows immediately from the coassociativity of � on U and the fact that
T� and ‡� are grouplike elements.

The coproduct gives us another way to define an action of yU on tensor products of
untwisted yU –weight modules. Henceforth, given yU –weight modules M and N , we let
M y̋N denote the space M ˝Q.q;t/� N with the yU –weight module structure induced
by the coproduct on yU . (Note that in general, the module M y̋N is not untwisted!)

Example 4.8 Continuing the previous example, the action of ‡1 on yV .1/ y̋ yV .1/ is
given by

�.‡1/v1˝ v1 D t2�.1;1/v1˝ v1:

Another natural module to consider is the following. Given an untwisted yU –weight
module M , we can construct the restricted linear dual M � . This space is naturally
a U –weight module as in Section 2.4, hence has an untwisted yU structure. On the
other hand, let M \ denote the space M � with the action of yU defined by .uf /.x/D
�p.f /p.u/f .S.u/x/. Note that M \ is not untwisted: if f 2 .M�; s/

� , then jf j D��,
but nevertheless,

‡�f D t��.�;�/f:

Since modules with these unorthodox actions of the ‡� will be important, we give the
following definitions.

Definition 4.9 We say that a yU –weight module M is �–twisted if ‡�mDt��.�;��/m

for all m 2 M� . More generally, we say that M is a mixed weight module if
there exists an integer t � 1 and a sequence c D .c1; : : : ; ct / 2 f˙1gt such that
M� D

L
.�s/2.X t /�

M.�s/ , where

.X t /� D f.�1; : : : ; �t / 2X t
j �D �1C � � �C�sg;

M.�s/ D fm 2M j ‡�mD t
P

1�s�t cs�.�;cs�s/m for all � 2 ZŒI �g:

We say c is the signature of M , and denote it by sig.M /D c .

Remark 4.10 We note that just as any weight U –module can be given a untwisted
yU –module structure, it can also be given an �–twisted yU –module structure. In-
deed, suppose M is a weight U –module and define Tim D thi;jmjim and ‡im D

t��.i;�jmj/ . Then this defines an action of yU , since for any i 2 I and u 2 U ,
‡iumD t��.i;�.jmjCjuj//umD t�.i;juj/u‡im.
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In addition to classifying modules by the action of the ‡ elements, another property of
yU –weight modules which will be important to us is their interaction with the twistor
map XW yU ! yU .

Definition 4.11 Let M be a yU –weight module. We say M carries a twistor X (or X
is a twistor on M ) if there exists a homogeneous Q.t/–linear bijection XW M !M

such that X.um/D X.u/X.m/.

Modules which carry twistors are not hard to find. Indeed, the simple U –modules
V .�/ are themselves examples when given untwisted (or �–twisted) actions of yU .

Lemma 4.12 [4, Lemma 6.9] Let � 2XC , and let yV .�/ be the space V .�/ with the
untwisted action of yU . There is a Q.t/–linear map XW yV .�/! yV .�/ which satisfies
X.v�/D v� and X�.um/D X.u/X.m/ for all u 2 yU and m 2 yV .�/.

In light of Lemma 2.8, it follows that the U –module V .�/� , viewed as an untwisted
yU –module, also carries a twistor. A similar argument to [4, Lemma 6.9] can be used
to construct a twistor on V .�/ with a �–twisted action of U ; hence the yU –module
yV .�/\ carries a twistor. However, this construction is not very compatible with the
dual basis, since it relies on an isomorphism V .�/!…P.�/V .�/ and is defined by
descent from the highest weight vector. To obtain a convenient definition of a twistor
on the dual modules, we will define a map directly on yV .�/\ .

Define the dual twistor on yU to be the map X\.u/ D S ıX ı S�1.u/. This map is
clearly a bijection, and for any u; v 2 yU we have

X\.uv/D S.X.S�1.uv///

D t2p.u/p.v/S.X.S�1.u///S.X.S�1.v///

D t2p.u/p.v/X\.u/X\.v/:

Therefore, it is determined by the images of the generators, which are

X\.Ei/D tiEi‡�i ; X\.Fi/D ‡iFi
zTi ; X\.K�/D T��K�; X\.J�/D T2�J�;

X\.q/D t�1q; X\.�/D t�:

In particular, note that

(4-8) X\.x�/D ‡�X.x/
� zT� :

While X\ is not an algebra automorphism of yU , it shares many properties with X. In
particular, we have a version of Lemma 4.12.
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Lemma 4.13 Let �2XC . There is a Q.t/–linear map X\W yV .�/! yV .�/ which satis-
fies X\.v�/D v� and X\.um/D t2p.u/p.m/X\.u/X\.m/ for all u 2 yU and m 2 yV .�/.

Proof This follows from more or less the same proof as [4, Lemmas 6.8 and 6.9]. To
wit, we can identify the Verma module of highest weight � for U with f (see [loc. cit.]
for details), and in particular this is naturally an untwisted yU –module. Then we define
a map X\

�
W f ! f via X

\
�.x/D thz�;�iC�.�;���/X.x/. Then it is straightforward to

verify that X\
�
.ux/D t2p.u/p.x/X\

�
.u/X\

�
.x/ for x 2 f and uDFi ;T�;J�;K�; ‡� .

From the calculations in [loc. cit.] and the definition, we see that

X\
�
.Eix/D t?EiX

\
�
.x/;

where

?D hz��zi ;�i�hz�;�iC�.��i;���Ci/��.�;���/�diChzi ;���Cii��.i;��i/:

Now we can simplify ? and apply (4-2) to see that

?� �.�; i/��.i; �/��.i; ���/C i ��Cdi D 2p.�/p.i/��.i; ���/Cdi mod 4;

and thus

X\
�
.Eix/D tp.�/p.i/tiEi‡�iX

\
�
.x/D tp.�/p.i/X\.Ei/X

\
�
.x/:

Finally, we note that the kernel of the projection f ! yV .�/ is trivially preserved
by X\

�
; hence it descends to a map on yV .�/.

The dual twistor X\ is what will allow us to define a convenient twistor map on dual
modules, as follows. Recall that V .��/ denotes the U –module V .�/� . We will adapt
this notation to yV .�/\ .

Lemma 4.14 For � 2 XC , let yV .��/ D yV .�/\ ; that is, the space V .�/� with the
action of yU induced by the antipode S W yU ! yU . Define a map X on yV .��/ by
X.f /.x/D t2p.f /p.x/X.f ..X\/�1.x/// for homogeneous x 2 yV .�/ and f 2 yV .��/.
Then X.uf /D X.u/X.f / for all u 2 yU and f 2 yV .��/.

Proof Let f 2 yV .��/ and x 2 yV .�/ be homogeneous. First, observe that since X\

preserves the yX–grading, X.f /.x/D 0 unless kxkD kf k. Moreover, if a2Q.q; t/� ,

X.f /.ax/D t2p.f /p.x/X.f ..X\/�1.ax///

D t2p.f /p.x/X.X�1.a/f ..X\/�1.x///D aX.f /.x/;

so X.f / is indeed an element of yV .��/.
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Now suppose u 2 yU . We compute that

X.uf /.x/D t2p.uf /p.x/X..uf /..X\/�1.x///

D t2p.u/p.x/C2p.f /p.x/X.�p.u/p.f /f .S.u/.X\/�1.x///

and

X.u/X.f /.x/

D t2p.f /p.ux/�p.u/p.f /X.f ..X\/�1.S.X.u//x///

D t2p.f /p.u/C2p.f /p.x/C2p.u/p.x/�p.u/p.f /X.f ..X\/�1.S.X.u///X0�1.x///

D t2p.f /p.x/C2p.u/p.x/X.�p.u/p.f /f .S.u/.X\/�1.x///:

Therefore, X.uf /D X.u/X.f /.

4.3 Twistor on tensor products

Now let us return to the question of relating the osp.1j2/ and sl.2/ link invariants.
Since the invariants arise from maps between tensor products of simple modules and
their duals, we shall also need variants of the twistor maps on the corresponding yU –
modules. In the following, we shall define a number of versions of X in different
settings. However, they will all be compatible in natural ways, so rather than label these
maps differently, we shall treat them en suite as an operator on yU and its modules.

The following proposition takes the first step in this direction by showing that there is
a natural extension of the twistor maps to tensor powers of U .

Proposition 4.15 For each positive integer t , there exists a Q.t/–algebra isomorphism
XW yU˝tC1! yU˝tC1 which satisfies

X.x˝y/D X.x/�s.‡jyj/˝�
s0. zTjxj‡jxj/X.y/

for any positive integers s; s0 satisfying s C s0 D t C 1, x 2 yU˝s , and y 2 yU˝s0 .
Moreover, �t .X.x//D X.�t .x// for any x 2U .

Proof Define X0W yU˝tC1 ! yU˝tC1 as follows: for x D
NtC1

sD1 xs 2
yU˝tC1 , let

X.x/D
NtC1

sD1 X.x/s , where

(4-9) X.x/s D zTjx1jC���Cjxs�1j
‡jx1jC���Cjxs�1j

X.xs/‡jxsC1jC���CjxtC1j
:

It is elementary to check that

X.x˝y/D X.x/�s.‡jyj/˝�
s0 zTjxj‡jxjX.y/
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for any positive integers s; s0 satisfying s C s0 D t C 1, x 2 yU˝s , and y 2 yU˝s0 .
Moreover, since X on yU is a bijection, it is easy to see that so is X on yU˝tC1 .

We will prove that X is an algebra homomorphism, and hence isomorphism, by induc-
tion. Since X on yU is an isomorphism, let us assume X on yU˝t is an isomorphism.
Then for x; w 2 yU˝t and y; z 2 yU ,

X.x˝y/X.w˝ z/

D .X.x/‡jyj˝ zTjxj‡jxjX.y//.X.w/‡jzj˝ zTjwj‡jwjX.z//

D �p.y/p.w/X.x/‡jyjX.w/‡jzj˝ zTjxj‡jxjX.y/ zTjwj‡jwjX.z/

D �p.y/p.w/t�.jyj;jwj/��.jwj;jyj/�jwj�jyjX.xw/‡jyzj˝
zTjxwj‡jxwjX.yz/

D �p.y/p.w/t2p.y/p.z/X.xw˝yz/D X.�p.y/p.w/xw˝yz/

D X..x˝y/.w˝ z//:

This completes the induction showing X on yU˝tC1 is an isomorphism as claimed.
Finally, showing that X commutes with �t is straightforward using (4-9) and checking
on the generators.

Now that we have a viable twistor map on tensor powers of yU , we need an analogue
on the tensor powers of modules. In particular, suppose we have a collection of yU
modules which are untwisted or �–twisted, and which carry twistors. We will produce
a twistor on the tensor product of these modules.

As might be suggested by (4-9), this is not as simple as taking the tensor power of the
twistors. A version of such a twistor is produced in [4, Proposition 6.11] by rescaling
the tensor product of twistors by a power of t given by a function of the weights of
the tensor factors. We will do something similar, but it turns out that we will need
functions which depend not only on the weights of tensor factors but also their parities,
as well as the signature of the tensor product.

Lemma 4.16 Let c D .c1; c2/ where c1; c2 2 f1;�1g. There exists a function
�c W
yX 2! Z satisfying �..0; 0/; �/� �.�; .0; 0//� 0 mod 4 and

�c.�C�; �
0
C �/� �c.�; �

0/

� hz�; j�0jiC c2�.�; c2j�
0
j/C 2p.�/p.�/C c1�.�; c1j�j/C� � �C�.�; �/ mod 4

for all �; �0 2 yX and �; � 2 ZŒI �.

Proof Fix c D .c1; c2/ where c1; c2 2 f1;�1g. Note that it suffices to show such a
function � D �c exists on each coset of ZŒI ��ZŒI � (where as in (2-6), we view ZŒI �
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as a subset of yX ), so fix a set of representatives C of yX=ZŒI �. For �0; �1 2 C , set

�.�0C�; �1C �/

D hz�; j�1jiC c2�.�; c2j�1j/C 2p.�0/p.�/C c1�.�; c1j�0j/C� � �C�.�; �/:

It is elementary to verify that this has the desired properties.

We henceforth suppose we have fixed choices of �c for each c 2 f1;�1g2 . We can
extend � naturally to larger powers of yX . Let t > 1 be a positive integer and fix a
sequence c D .cs/ 2 f˙1gt . Let �c W

yX t ! Z be the function defined by

�c.�/D
X

1�r<s�t

�.cr ;cs/.�r ; �s/; � D .�s/ 2 yX
t :

Then if we have � D .�s/ and �0D .�0s/ in yX t with �0s D �sCır;si for some 1� r � t ,
then

�.�0/��.�/�
X

r<s�t

.hzi ; j�sjiCcs�.i; csj�sj// C
X

1�s0<r

.2p.�s0/p.i/Ccs0�.i; cs0 j�s0 j//

modulo 4.

We can observe some convenient properties of the maps �c .

Lemma 4.17 Let c D .cs/ 2 f˙1gt , and let � D .�s/ and �0 D .�0s/ in yX t .

(1) Let 1� r � t , and define c�r D .c1; : : : ; cr / and c>r D .crC1; : : : ; ct /. Likewise,
define �00�r D .�

00
1
; : : : ; �00r / and �00>r D .�

00
rC1

; : : : ; �00t / for any �00 D .�00s / 2 yX
t .

Then

�c.�; �
0/D �c�r

.��r ; �
0
�r /C �c>r

.�>r ; �
0
>r /C

X
1�s<r<s0�t

�.cs ;cs0 /
.�s; �

0
s0/:

(2) Suppose that there exists 1� r < t such that �r D �0rC� , �rC1D �
0
rC1
�� , and

�s D �
0
s for s ¤ r; r C 1 and some � 2 ZŒI �. Then

�c.�/� �c.�
0/

D hz�; �rC1iC crC1�.�; crC1�rC1/C 2p.�/p.�r /� cr�.�; cr�r /� � � � ��.�; �/:

(3) For any � 2 yX and c1 D˙1, we have

�c1;˙1;�1.�Cy�; .˙�; 0/; .��; 0//D �c1;˙1;�1.�; .˙�; 0/; .��; 0//;

�˙1;�1;c1
..˙�; 0/; .��; 0/; �Cy�/D �˙1;�1;c1

..˙�; 0/; .��; 0/; �/:

Proof We note that (1) is an immediate consequence of the definition of �c . On the
other hand, (2) and (3) both follow from direct computations and the definition.
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The functions �c allows us to define a twistor on tensor product modules as follows.

Proposition 4.18 Let M1;M2; : : : ;Mt be untwisted or �–twisted yU –modules car-
rying twistors and let M DM1 y̋M2˝ � � � y̋Mt be the yU˝t–module (and hence a
mixed yU –module via �t�1 ) with the natural action. Set c D sig.M /D .c1; : : : ; ct /.
Then the automorphism

X.m1˝ � � �˝mt /D t�c..kmki //X.m1/˝ � � �˝X.mt /

satisfies

X..x1˝ � � �˝xt /.m1˝ � � �˝mt //D X.x1˝ � � �˝xt /X.m1˝ � � �˝mt /:

In particular, X.um/D X.u/X.m/ for u 2 yU and m 2M .

Proof First, observe it is enough to show

X..1s�1
˝xs˝ 1t�s/.m1˝ � � �˝mt //D X.1s�1

˝xs˝ 1t�s/X.m1˝ � � �˝mt /;

where 1� s � t and xs is a generator of yU . This is trivial when xs is K� , J� , T�
and ‡� for some � 2 ZŒI � so it suffices to check the case xs D Ei ;Fi for i 2 I .
To do this, let us make our equations more compact with the following notation: for
m1˝ � � �˝mt 2M , let

m<s Dm1˝ � � �˝ms�1; m>s DmsC1˝ � � �˝mt ;

X.m/<s D X.m1/˝ � � �˝X.ms�1/; X.m/>s D X.msC1/˝ � � �˝X.mt /;

kmk<s D .km1k; : : : ; kms�1k/; kmk>s D .kmsC1k; : : : ; kmtk/;

�0.i;m<s/D
X

1�r<s

cr�.i; cr jmr j/; �00.i;m>s/D
X

s<r�t

cr�.i; cr jmr j/:

Using this notation, we compute that

X..1s�1
˝Ei ˝ 1t�s/.m<s˝ms˝m>s//

D X.�
p.m<s/
i m<s˝Eims˝m>s/

D t2p.i/p.m<s/C�c.kmk<s ;kmskCyi;kmk>s/�p.i/p.m<s/X.m/<s˝X.Eims/˝X.m>s/

D t�.km<sk;kmsk;km>sk/C�
0.i;m<s/C�

00.i;m>s/Chzi;jm>s ji

��p.i/p.m<s/X.m/<s˝X.Ei/X.ms/˝X.m>s/

D t�.km<sk;kmsk;km>sk/�p.i/p.m<s/

� .‡
˝.s�1/
i X.m/<s/˝ .X.Ei/X.ms//˝ ..‡i

zTi/
˝.t�s/X.m>s//

D X.1s�1
˝Ei ˝ 1t�s/X.m<s˝ms˝m>s/:

The case xs D Fi proceeds similarly.
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We now have defined a family of compatible twistor maps on untwisted modules,
�–twisted modules and their tensor products. Moreover, the twistor maps on tensor
products of modules are compatible with one another in the following sense. Let
M1; : : : ;Mt , c1; : : : ; cs and M be as in Proposition 4.18. Fix 1 � r � t and set
m�r Dm1˝ � � �˝mr and m>r DmrC1˝ � � �˝mt . Then by Lemma 4.17(1),

(4-10) X.m�r ˝m>r /D

� Y
1�s�r<s0�t

t
�cs ;cs0

.kmsk;kms0k/

�
X.m�r /˝X.m>r /:

4.4 Twisting the crossings, caps, and cups

We have now lain the groundwork for studying the atomic maps in our graphical
calculus from Section 3 under the twistor functor. Specifically, we will show that the
twistor almost commutes with cups, caps, and crossings up to a factor of an integral
power of t , where the power depends on the map. We begin by considering the cups
and caps on their domains of definition.

Proposition 4.19 Let � 2 XC . Then the map ev� (resp. qtr� , coev� , and coqtr� )
viewed as a function yV .��/ y̋ yV .�/ ! Q.q; t/� (resp. yV .�/ y̋ yV .��/ ! Q.q; t/� ,
Q.q; t/�! yV .��/ y̋ yV .�/, and Q.q; t/�! yV .�/ y̋ yV .��/) is a yU –module homomor-
phism. Moreover, we have

(1) ev�XD t�.�1;1/..��;0/;.�;0//X ev� ;

(2) qtr�XD t�.1;�1/..�;0/;.��;0//�hz�;�iX qtr� ;

(3) coev�XD t��.�1;1/..��;0/;.�;0//Chz�;�iX coev� ;

(4) coqtr�XD t��.1;�1/..�;0/;.��;0//X coqtr� .

Proof First, observe that since these maps are U –module homomorphisms, they
preserve weight spaces hence preserve the action of Ti for i 2 I . Therefore, it only
remains to check that they commute with the action of ‡i for i 2 I , As the arguments
are all similar, let us show this for ev� . Let f 2 yV .��/ and x 2 V .�/. Then

‡i ev�.f ˝x/D t�.i;0/ ev�.f ˝x/D f .x/:

On the other hand, ‡i.f ˝x/D .‡if /˝ .‡ix/D t��.i;�jf j/C�.i;jxj/f ˝x , hence

ev�.‡i.f ˝x//D t�.i;jxj/��.i;�jf j/f .x/:

However, since f .x/D 0 if jf j ¤ �jxj, we see that

ev�.‡i.f ˝x//D t�.i;jxj/��.i;jxj/f .x/D f .x/D ‡i ev�.f ˝x/:
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In order to verify (1)–(4), it suffices to compute the images X.b�v�˝ .b
�v�/

�/ and
X..b�v�/

�˝ b�v�/ for b 2B� DB\f� . We compute directly that

X.b�v�/D t`.b/��.�;�/b�v�;

X\.b�v�/D t`.b/Ch�;�iC�.�;���/b�v�:

This implies that for any b; b0 2B� ,

X..b�v�/
�/.b0�v�/D t2p.�/X..b�v�/

�..X\/�1.b0�v�///

D t2p.�/�`.b/�h�;�i��.�;���/ıb;b0 ;

and hence X..b�v�/
�/ D t2p.�/�`.b/�h�;�i��.�;���/.b�v�/

� . In particular, for c D

.1;�1/, observe that

X..b�v�/˝ .b
�v�/

�/

D t�c..�;0/�y�;.��;0/Cy�/C`.b/��.�;�/C2p.�/�`.b/�h�;�i��.�;���/.b�v�/˝ .b
�v�/

�

D t�c..�;0/;.��;0//C2p.�/����.b�v�/˝ .b
�v�/

�:

It is easy to verify that 1
2
� � � D p.�/ mod 2 by induction; hence we see that

X..b�v�/˝ .b
�v�/

�/D t�.1;�1/..�;0/;.��;0//.b�v�/˝ .b
�v�/

�:

A similar computation shows that

X..b�v�/�˝.b
�v�//D t�.�1;1/..��;0/;.�;0/.b�v�/

�
˝ .b�v�/:

Note that in either case, the power of t is independent of b 2 B, and applying
this to the definition of the maps proves (1) and (4). For (2) and (3), also note
that �p.�/q˙hz�;���i D ��q

�2
� q˙hz�;�i , and we compute that X.��q

�2
� q˙hz�;�i/ D

t�hz�;�i��q
�2
� q˙hz�;�i ; the result follows.

Example 4.20 Consider the case n D 1 and � D m. As noted in Example 2.10,
hz�; �i D m and evm ı coevm D �mŒmC 1�. Then we have evm ı coevm ıX.1/ D

�mŒmC 1�, and

X ı evm ı coevm.1/D X.�mŒmC 1�/D t�m�mŒmC 1�D t�m evm ı coevm ıX.1/:

Note that this is consistent with Proposition 4.19, as we see that

evm ı coevm ıXD t��.�1;1/..��;0/;.�;0//Chz�;�i evm ıXı coevm D tmXı evm ı coevm :

The last elementary diagram to consider is the crossing, which is to say the automor-
phism R D ‚Fs of a tensor product of two modules. In order to have a concrete
comparison of RX and XR on tensor products carrying twistors, it will be necessary
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to have a precise description of X.f.�; �// for any �; � 2 X . To that end, let us once
and for all fix a transversal T of X=ZŒI � and note that yT D f.�; 0/; .�; 1/ j � 2 T g is a
transversal of yX=ZŒI �. Then for �0; �1 2 T , we shall henceforth require that

(4-11) f.j�0j; j�1j/D 1:

Then we have the following proposition.

Proposition 4.21 Let �; �0 2 XC[�XC. Let y�; y�0 2 yT be the corresponding coset
representatives of .�; 0/ and .�0; 0/ in yX=ZŒI �, and let .c1; c2/D sig. yV .�/ y̋ yV .�0//.
Let RW yV .�/ y̋ yV .�0/! yV .�0/ y̋ yV .�/ be the map described in Proposition 2.18. Then
R is a yU –module homomorphism. Moreover, as maps on yV .�/ y̋ yV .�0/, we have

XRD t�.c2;c1/
.y�0;y�/��.c1;c2/

.y�;y�0/C2p.y�/p.y�0/RX:

Proof Recall that R D ‚fs by definition. It is easy to see that R is a yU –module
homomorphism: indeed, since R preserve weight spaces, it commutes with the action
of the Ti for i 2 I ; moreover, fs obviously commutes with the diagonal action of ‡i ,
and it is easy to check directly that ‚��.‡i/D�.‡i/‚� . We will prove the remainder
of the proposition in two steps.

First we shall show that X.‚�/ D ‚� for any � 2 Z�0ŒI �, and thus X‚ D ‚X

as maps on V .�/˝ V .�0/. This is straightforward: applying Lemmas 4.5, 4.3 and
Proposition 4.15, we compute that

X.‚�/

D .�1/ht �t2p.�/�p.�/t2
���t

�1
� q�

X
b2B�

X.b�/‡� ˝ zT��‡��X..b
�/C/

D .�1/ht �Cp.�/�p.�/t���q�
X

b2B�

.X.b/�‡��/‡� ˝ zT��‡��.t
�1
�
zT�‡�X.b

�/C/

D .�1/ht �Cp.�/�p.�/t���q�
X

b2B�

.t`.b/b�/˝ .t�1
� t�`.b/.�1/p.�/.b�/C/

D .�1/ht ��p.�/��q�
X

b2B�

b�˝ .b�/C D‚� :

Now it remains to show that we have XFsD t�.c2;c1/
.y�0;y�/��.c1;c2/

.y�;y�0/C2p.y�/p.y�0/FsX

as maps on V .�/˝ V .�0/. Set c D .c1; c2/, and zc D .c2; c1/. Let m 2 V .�/ and
n 2 V .�0/. Then we see directly that

XFs.m˝ n/D t2p.m/p.n/C�zc.knk;kmk/X.f.jnj; jmj//�p.m/p.n/X.n/˝X.m/;

FsX.m˝ n/D t�c.kmk;knk/f.jnj; jmj/�p.m/p.n/X.n/˝X.m/:
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The proposition then follows by verifying that

t2p.m/p.n/C�zc.knk;kmk/X.f.jnj; jmj//

D t�zc.
y�0;y�/��c.y�;y�

0/C2p.y�/p.y�0/C�c.kmk;knk/f.jnj; jmj/:

Note that y� D kmkC� and y�0 D knkC � for some �; � 2ZŒI �. Let � D jy�j 2X and
�0 D jy�0j 2X . Then in particular, (4-11) implies

f.jnj; jmj/D .�q/hz�;�iqhz�;�
0i���� ;

so X.f.jnj; jmj//D thz�;�i�hz�;�
0iC���f.jnj; jmj/. Therefore, we are reduced to showing

that `� r mod 4, where

`D 2p.m/p.n/Chz�; �i � hz�; �0iC� � �C �zc.knk; kmk/;

r D 2p.y�/p.y�0/C �zc.y�
0; y�/� �c.y�; y�

0/C �c.kmk; knk/ mod 4:

We compute directly that

�zc.knk; kmk/� �zc.y�
0; y�/C �c.y�; y�

0/� �c.kmk; knk/

D �zc.y�
0
� �; y� ��/� �zc.y�

0; y�/C �c.y�; y�
0/� �c.y� ��; y�

0
� �/

�4 �hz�; �i � c1�.�; c1�/C 2p.y�/p.�/� c2�.�; c2�/C� � �C�.�; �/

Chz�; �iC c1�.�; c1�/� 2p.y�/p.�/C�.�; �/�� � � ��.�; �/

�4 2p.y�/p.�/C 2p.y�/p.�/C 2p.�/p.�/� hz�; �iC hz�; �iC� � �

�4 2p.m/p.n/� 2p.y�/p.y�/� hz�; �iC hz�; �iC� � �;

where here �4 denotes equivalence modulo 4. This finishes the proof.

We have seen that the twistor map commutes (up to an integral power of t ) with the
elementary functions in our graphical calculus. However, note that in Theorem 3.7, the
typical composition factor of a tangle invariant is not just one of these maps, but in
fact is a tensor product of these maps with various identities. It is important to note
that a consequence of Proposition 4.18 is that the twistor maps on tensor products are
not local, since the power of t in the construction depends on the weight and signature
of each tensor factor. Nevertheless, we can extend Propositions 4.19 and 4.21 to this
more general setting.

Proposition 4.22 Let M1; : : : ;Mt be yU –modules such that for each 1 � s � t ,
Ms D

yV .�s/ for some �s 2 XC [ �XC . Let M D M1 y̋ � � � y̋Mt and let c D

.c1; : : : ; ct /Dsig.M /. For any �2XC and 0� r� t , we define M�rDM1 y̋ � � � y̋Mr ,
M>r DMrC1 y̋ � � � y̋Mt , and

M.r;˙�/DM�r y̋
yV .˙�/ y̋ yV .��/ y̋M>r :
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(1) Let Rs D 1M�s�1
˝R˝ 1M>sC1

W M !M for some 1 � s � t � 1. Then as
maps on M , we have that XRs and RsX are proportional up to an integral
power of t .

(2) Let ev.M; r; �/ D 1M�r
˝ ev�˝1M>r

for some 1 � r � t . Then as maps on
M.r;��/, we have that X ev.M; r; �/ and ev.M; r; �/X are proportional up to
an integral power of t .

(3) Let qtr.M; r; �/D 1M�r
˝ qtr�˝1M>r

for some 1 � r � t . Then as maps on
M.r; �/, we have that X qtr.M; r; �/ and qtr.M; r; �/X are proportional up to
an integral power of t .

(4) Let coev.M; r; �/D 1M�r
˝ coev�˝1M>r

for some 1� r � t . Then as maps
on M , we have that X coev.M; r; �/ and coev.M; r; �/X are proportional up to
an integral power of t .

(5) Let coqtr.M; r; �/D 1M�r
˝ coqtr�˝1M>r

for some 1� r � t . Then as maps
on M , we have that X coqtr.M; r; �/ and coqtr.M; r; �/X are proportional up
to an integral power of t .

Remark 4.23 The precise constants of proportionality can be determined directly as
in Propositions 4.19 and 4.21 (and can be worked out from the following proof), but
we leave them out of the statement of Proposition 4.22 because they are not particularly
illuminating, and are not necessary for Theorem 4.24

Proof As the proofs of (2)–(5) are similar, we shall only prove (1) and (2) here in detail.

We will begin with the proof of (1), which is essentially the same as the proof of
Proposition 4.21. To wit, we first observe that for any a; b � 0 and � 2NŒI �,

X.1˝a
˝‚� ˝ 1˝b/D .‡j‚� j/

˝a
˝X.‚�/˝ .‡j‚� j

zTj‚� j/
˝b;

and the result follows from the observation that j‚� j D � � � D 0. Then XRs D

.1˝s�1˝‚˝ 1t�s�1/XFsss . Then we verify directly that

XFsss D t
�.csC1;cs/.

y�0;y�/��.cs ;csC1/
.y�;y�0/C2p.y�/p.y�0/FsssX;

where y� (resp. y�0 ) is the coset representative for .�s; 0/ (resp. .�sC1; 0/).

Now, we shall prove (2). Note that an arbitrary element of M.r;��/ is a linear
combination of simple tensors of the form x D m�r ˝ .b

�v�/
� ˝ .b0�v�/˝m>r ,

where b; b0 2B, m�r Dm1˝� � �˝mr 2M�r and m>r DmrC1˝� � �˝mt 2M>r ;
hence we need only prove (1) holds when evaluating both sides at such elements. Since
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ev�..b�v�/�˝ .b0�v�// D ıb;b0 , note that (1) is trivially true when b ¤ b0 , so let’s
assume b D b0 2B� . Then

ev.M; r; �/X.x/D t}.m1;:::;mt /C|X.m�r /˝ ev�X..b
�v�/

�
˝ .b�v�//˝X.m>r /;

where we set

}.m1; : : : ;mt /D
X

s<r<s0

�.cs ;c
0
s/
.kmsk; km

0
sk/;

|D

X
s<r

.�.cs ;�1/.kmsk; .��; 0/Cy�/C �.cs ;1/.kmsk; .�; 0/�y�//

C

X
s>r

.�.�1;cs/..��; 0/Cy�; kmsk/C �.1;cs/..�; 0/�y�; kmsk//:

Now | can be simplified to

|D

X
s<r

.�.cs ;�1/..�s; 0/; .��; 0//C �.cs ;1/..�s; 0/; .�; 0///

C

X
s>r

.�.�1;cs/..��; 0/; .�s; 0//C �.1;cs/..�; 0/; .�s; 0///:

Note that | is independent of x . Then

ev.M; r; �/X.x/D t}.m1;:::;mt /C|X.m�r /˝ ev�X..b
�v�/

�
˝ .b�v�//˝X.m>r /

D t}.m1;:::;mt /C|C�.�1;1/..��;0/;.�;0//X.m�r /˝X.m>r /

D t|C�.�1;1/..��;0/;.�;0//X.m�r ˝m>r /:

Since X.m�r ˝m>r /D X.ev�.x// and the exponent of t is independent of x , this
completes the proof of (2).

Theorem 4.24 Let K be any oriented knot, and let J�
K
.q; �/ 2 Q.q; t/� be the �–

colored knot invariant defined in Theorem 3.7. Let soJ
�
K
.q/DJ�

K
.q; 1/ and ospJ

�
K
.q/D

J�
K
.q; t/. Then

ospJ
�
K .q/D t?.K ;�/soJ

�
K .t
�1q/

for some ?.K; �/ 2 Z.

Proof Let J D J�
K
.q; �/. First, observe that J can be thought of as a function

Q.q; t/�!Q.q; t/� , and in that spirit X.J / is XıJ.1/. On the other hand, JDWK ıS,
where WK D .f.�; �/�1�P.�/qh�;�i/wr.K / (interpreted as a function Q.q; t/� !
Q.q; t/� ) and S is a slice diagram of K interpreted as a composition of morphisms
as described in Section 3 (with strands colored by �). In particular, observe that
X.f.�; �//D txf.�; �/ for some x 2 Z depending on the coset representative of � in
X=ZŒI �, and that X.�P.�/qh�;�i/D �P.�/qh�;�i/ . Then XW D t�xwr.K /W X.
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Likewise, note that S can be written as a composition of maps of the form ev.M; r; �/,
coev.M; r; �/, qtr.M; r; �/, coqtr.M; r; �/, and RsW M !M for various r; s 2 N
with the notation being the same as in Proposition 4.22. In particular, we see that
X ıS D tyS ıX for some y 2 Z, and thus

X.J /D X ıWK ıS.1/D t�xwr.K /CyWK ıS ıX.1/D t�xwr.K /CyJ:

On the other hand, observe that X.J�
K
.q; �//D J�

K
.t�1q; t�1�/, and so

ty�xwr.K /J�K .t
�1q; t�1�/D J�K .q; �/:

The theorem follows from specializing � D t .

Remark 4.25 Note that since soJ
�
K
.q/ 2 ZŒq; q�1�, Theorem 4.24 implies that (after

a renormalization) ospJ
�
K
.q/ D soJ

�
K
.v/ 2 ZŒv; v�1� where v D qt�1 . Furthermore,

note that when n or hn; �i is even, ospJ
�
K
.q/ 2Q.q/ (see Remark 2.4); thus in this

case, ospJ
�
K
.q/� soJ

�
K
.q/ mod 2.
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Localization of cofibration categories
and groupoid C �–algebras

MARKUS LAND

THOMAS NIKOLAUS

KAROL SZUMIŁO

We prove that relative functors out of a cofibration category are essentially the same
as relative functors which are only defined on the subcategory of cofibrations. As an
application we give a new construction of the functor that assigns to a groupoid its
groupoid C �–algebra and thereby its topological K –theory spectrum.

55U35; 46L80

Let .C; wC; cC/ be a cofibration category, ie a structure dual to a category of fibrant
objects in the sense of Brown [1]. Here, wC and cC are the subcategories of weak
equivalences and cofibrations, ie they have the same objects as C but morphisms are
the weak equivalences or the cofibrations, respectively. Similarly, wcC will denote the
subcategory of acyclic cofibrations. In addition to Brown’s axioms, we will assume that
C has good cylinders, which is a mild technical condition explained in Definition 9.

In this paper we will prove the following theorem. It will be formulated using the
language of 1–categories, following the notation of Lurie [11; 12]. In particular, an
ordinary category C can be considered as an 1–category by taking its nerve NC.

Theorem 1 If a cofibration category C has good cylinders, then the map induced by
the inclusion

NcCŒwc�1� '�!NCŒw�1�

is an equivalence of 1–categories.

By NCŒw�1� we denote the universal 1–category obtained from NC by inverting
the weak equivalences; see [12, Definition 1.3.4.1 and Remark 1.3.4.2]. By passing to
opposite categories, the dual statement of Theorem 1 for fibration categories also holds.

The proof of Theorem 1 will be given at the end of the paper, but let us first establish a
consequence and the application to C �–algebras associated to groupoids.

Let C be a cofibration category with good cylinders and M a model category which is
Quillen equivalent to a combinatorial model category and has functorial fibrant and
cofibrant replacements, eg any of the model categories of spectra.
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Proposition 2 For any functor F W cC!M that sends acyclic cofibrations in cC to
weak equivalences in M there exists a functor yF W C!M with the following properties:

(1) yF sends weak equivalences in C to weak equivalences in M.

(2) yF extends F in the sense that there exists a zigzag of natural weak equivalences
between F and yF jcC .

Moreover, yF is unique in the following sense: for any other functor yF 0W C!M that
satisfies (1) and (2) there exists a zigzag of natural weak equivalences between yF
and yF 0 .

Proof We denote the 1–category NMŒw�1� associated to the model category M

by M1 . We claim that for any ordinary category A the canonical map

N Fun.A;M/Œ`�1�! Fun.NA;M1/

is an equivalence of 1–categories, where ` is the class of levelwise weak equivalences.
Here Fun.�;�/ is used both for the ordinary category of functors between ordinary
categories and the 1–category of functors between 1–categories; we hope that it is
clear from the context which of the two is meant. If M is a simplicial, combinatorial
model category, this is a special case of [11, Proposition 4.2.4.4], using that for a
simplicial model category M, the 1–category M1 is equivalent to the homotopy
coherent nerve of the simplicial subcategory of M on the fibrant and cofibrant objects;
see [12, Theorem 1.3.4.20]. From the existence of functorial (co)fibrant replacements
and Hovey [8, Proposition 1.3.13] it follows that a Quillen equivalence M ' M0

induces a Quillen equivalence Fun.A;M/' Fun.A;M0/. Thus the domain of the map
in question is invariant under Quillen equivalences in M. The same is true for the
codomain, thus the statement that this map is an equivalence is invariant under Quillen
equivalences in M. Hence it is also true for all model categories M with functorial
(co)fibrant replacements that are Quillen equivalent to a combinatorial, simplicial model
category. Since every combinatorial model category is equivalent to a combinatorial,
simplicial model category by a result of Dugger [6, Corollary 1.2], the claim holds in
our generality. If A is a relative category, it also follows that the induced functor

N Funw.A;M/Œ`�1�! Funw.NA;M1/

is an equivalence, where the superscript w refers to functors that send weak equiva-
lences in A to weak equivalences or equivalences in the target. This follows imme-
diately from the nonrelative case, noting that both sides are just full subcategories of
N Fun.A;M/Œ`�1� and Fun.NA;M1/. Thus in the canonical commuting square
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N Funw.C;M/Œ`�1� N Funw.cC;M/Œ`�1�

Funw.NC;M1/ Funw.NcC;M1/

the vertical maps are equivalences of 1–categories. By Theorem 1 the lower map is
also an equivalence, therefore also the upper one is. Passing to homotopy categories we
obtain the desired result, using that isomorphisms in homotopy categories of functor
categories are represented by zigzags of natural weak equivalences.

Applications

Groupoids

We denote by Gpd the 1–category of small groupoids and by Gpd2 the 1–category
associated to the .2; 1/–category of groupoids in which the 2–morphisms are natural
isomorphisms. The category Gpd admits a simplicial model structure in which the
equivalences are equivalences of categories and the cofibrations are functors that are
injective on the set of objects. In this model structure all objects are cofibrant and
fibrant, compare Casacuberta, Golasiński and Tonks [2]. Furthermore, if we denote by
Gpd! the full subcategory on groupoids with at most countable many morphisms then
Gpd! inherits the structure of a cofibration category.

The following lemma is a well-known fact, but we had difficulties finding a clear
reference for this so we state it as an extra lemma.

Lemma 3 The canonical map N GpdŒw�1�! Gpd2 is an equivalence of 1–cate-
gories.

Proof This follows from the description of the 1–category associated to a simplicial
model category — see [12, Theorem 1.3.4.20] — as being the homotopy coherent nerve
of the simplicial category of cofibrant and fibrant objects.

Corollary 4 Let C be an 1–category. Then the canonical map NcGpd ! Grp2

induces an equivalence

Fun.Gpd2;C/ '�! Funw.NcGpd;C/;

where the superscript w refers to functors that send equivalences of groupoids to
equivalences in C.

Proof Since the canonical map N GpdŒw�1�! Gpd2 is an equivalence by Lemma 3,
this is a direct application of Theorem 1.
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The following corollary of Proposition 2 implies that in the approach to assembly maps
discussed by Davis and Lück [4, Section 2], one can directly restrict to functors from
groupoids to spectra that are only defined for maps of groupoids that are injective on
objects. This resolves the issues illustrated in [4, Remark 2.3].

Corollary 5 Let Sp be any of the standard model categories of spectra. Then every
functor F W cGpd! Sp which sends equivalences of groupoids to weak equivalences in
Sp extends uniquely (in the sense of Proposition 2) to a functor yF W Gpd! Sp which
also sends weak equivalences of groupoids to weak equivalences of spectra.

Remark The statements of Corollaries 4 and 5 remain true if we replace Gpd by Gpd! .
Furthermore, Corollary 5 does not depend on the exact choice of model category of
spectra as long as it is Quillen equivalent to a combinatorial model category. Notice
that this is automatically fulfilled if the model category is stable, due to the rigidity
result of Schwede; see [17].

Next we want to demonstrate how to apply these results by functorially constructing C �–
algebras and topological K –theory spectra associated to groupoids. This discussion
is similar to the one given by Joachim [9, Section 3] but we use our main theorem to
obtain full functoriality instead of an explicit construction.

Definition 6 Let G be a groupoid. We let CG be the C–linearization of the set
of morphisms of G . This is a C–algebra by linearization of the multiplication on
morphisms given by

f �g D

�
f ıg if f and g are composable,
0 otherwise.

We remark that CG is unital if and only if the set of objects of G is finite. Then
we complete CG in a universal way, like for the full group C �–algebra, to obtain
a C �–algebra C �G . More precisely, the norm is given by the supremum over all
norms of representations of CG on a separable Hilbert space. This is isomorphic to
the C �–algebra associated to the maximal groupoid C �–category of Dell’Ambrogio
[5, Definition 3.16] using the construction C 7! AC of Joachim [9, Section 3].

The association G 7!C �G is functorial for cofibrations of groupoids but not for general
morphisms, since it can happen that morphisms are not composable in a groupoid, but
become composable after applying a functor; compare the remark in Davis and Lück
[4, page 214]. We observe that the C �–algebra C �G is separable provided G 2 Gpd! .
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Lemma 7 Let F W G1! G2 be an acyclic cofibration of groupoids. Then the induced
morphism

C �F W C �G1! C �G2

is a KK–equivalence.

Proof The C �–algebra associated to a groupoid with finitely many connected compo-
nents is the product of the C �–algebras associated to each connected component. For
an infinite number of components, the associated C �–algebra is the filtered colimit
of the C �–algebras associated to finitely many connected components. Since finite
products of KK–equivalences are again KK–equivalences, and the filtered colimit
of these KK–equivalences is again a KK–equivalence, we may assume that G1 (and
thus G2 ) is connected. Let x 2G be an object. We let G1DEnd.x/ and G2DEnd.F x/

be the endomorphism groups and notice the fact that F is an equivalence implies that
F induces an isomorphism G1 ŠG2 . Then we consider the diagram

C �G1 C �G2

C �G1 C �G2

C�F

Š

in which the lower horizontal arrow is an isomorphism. Thus to show the lemma
it suffices to prove the lemma in the special case where F is the inclusion of the
endomorphisms of an object x of a connected groupoid G .

This can be done in the abstract setting of corner algebras. For this suppose A is a
C �–algebra and p 2 A is a projection. It is called full if ApA is dense in A. The
algebra pAp is called the corner algebra of p in A. It is called a full corner if p is a full
projection. We write ip for the inclusion pAp � A. Given a projection p the module
pA is an imprimitivity pAp�ApA bimodule; see eg [15, Example 3.6]. Thus if p is
full, then pA gives rise to an invertible element ŒpA; ip; 0�D F.p/ 2 KK.pAp; A/.
In this KK–group we have an equality

F.p/D Œ pA; ip; 0�C Œ.1�p/A; 0; 0�D Œ pA˚ .1�p/A; ip; 0�D ŒA; ip; 0�D Œip�I

in other words, the inclusion pAp!A of a corner algebra associated to a full projection
is a KK–equivalence.

To come back to our situation let us suppose G is a groupoid, x 2 G is an object and
let us denote its endomorphism group by G D End.x/. We can consider the element
p D idx 2 C �G , which is clearly a projection. Its corner algebra is given by

p �C �G �p Š C �G:
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If G is connected, it follows that every morphism in G may be factored through idx

and thus p is full. Hence it follows that the inclusion C �G!C �G is an embedding of
a full corner algebra. Thus, by the general theory, this inclusion is a KK–equivalence,
which proves the lemma.

Let us denote by KK1 the 1–category given by the localization of the category
C �Alg of separable C �–algebras at the KK–equivalences; see eg [10, Definition 3.2].
In formulas we have KK1 WD NC �AlgŒw�1�, where w denotes the class of KK–
equivalences. The homotopy category of KK1 is Kasparov’s KK–category of C �–
algebras.

Corollary 8 There exists a functor

Gpd!
2 ! KK1

which on objects sends a groupoid G to the full groupoid C �–algebra C �G .

Remark The .2; 1/–category Orb! consisting of (countable) groups, group homomor-
phisms and conjugations is the full subcategory of the .2; 1/–category of (countable)
groupoids on connected groupoids and hence along this inclusion we also obtain a
functor

Orb!
! KK1

which on objects sends a group to its full group C �–algebra. This will be used by the
first two authors in [10] to compare the L–theoretic Farrell–Jones conjecture and the
Baum–Connes conjecture.

Proof of Corollary 8 By Corollary 4 and the remark after Corollary 5, we have an
equivalence

Funw.NcGpd! ; KK1/' Fun.Gpd!
2 ; KK1/;

and thus it suffices to construct a functor

cGpd!
! C �Alg

which has the property that it sends equivalences of groupoids to KK–equivalences. We
have established in Lemma 7 that the functor of Definition 6 satisfies this property.

Remark In [10, Proposition 3.7] it is shown that the topological K –theory functor

KW NC �Alg! Sp

factors over KK1 , in fact becomes corepresentable there. It thus follows from
Corollary 8 that there is a functor sending a groupoid to the topological K –theory
spectrum of its C �–algebra.
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The proof of Theorem 1

In this section we will prove Theorem 1. Recall that we consider a cofibration category
.C; wC; cC/ and aim to compare the 1–categories associated to the relative categories
.C; wC/ and .cC; wcC/. As our model of the homotopy theory of .1; 1/–categories
we will use the complete Segal spaces of Rezk; see [16]. This homotopy theory is
modelled by the Rezk model structure on the category of bisimplicial sets in which
fibrant objects are the complete Segal spaces. The model structure is constructed
as a Bousfield localization of the Reedy model structure and hence every levelwise
weak equivalence of bisimplicial sets is a Rezk equivalence, ie an equivalence of
1–categories.

The 1–category associated to a relative category .D; wD/ is modelled by the classifi-
cation diagram N RD of Rezk, which is given by

.N RD/k 7!Nw.DŒk�/;

where the weak equivalences in DŒk� are levelwise weak equivalences; compare [16,
Section 3.3; 13, Theorem 3.8]. See also Cisinski’s response in [3]. Here, again, the
notation N refers to the nerve of a category, which is a simplicial set, and here it should
be thought of as a homotopy type as opposed to an 1–category. The classification
diagram is not fibrant in the Rezk model structure, but it is levelwise equivalent to a
fibrant object if D is a cofibration category.

Let X be an object of a cofibration category C. Recall that a cylinder on X is a
factorization of the canonical morphism X tX !X via a cofibration X tX ! IX

and a weak equivalence IX ! X . A cylinder functor on C is a functor I W C! C

equipped with natural transformations that provide such factorizations for all objects
of C. In the introduction we stated Theorem 1 under the following assumption on C.

Definition 9 A cofibration category C has good cylinders if it has a cylinder functor I

such that for every cofibration X � Y the induced morphism IXtXtX .Y tY /! IY

is a cofibration.

For example, any cofibration category arising from a monoidal model category (or a
model category enriched over a monoidal model category) has good cylinders, since
they are given by tensoring with a chosen interval object. In particular the cofibration
category underlying the model category of groupoids we discussed has good cylinders.

Theorem 10 If C has good cylinders, then the inclusion cC! C induces a levelwise
weak equivalence of the classification diagrams N RcC!N RC.
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For the proof we will need a series of auxiliary definitions and lemmas. Let us first fix
some notation. If J is a category, then yJ denotes J considered as a relative category
with all morphisms as weak equivalences. If J is any relative category, then CJ

stands for the cofibration category of all relative diagrams J ! C with levelwise weak
equivalences and cofibrations. If J is any relative direct category, then CJ

R stands for
the cofibration category of all relative Reedy cofibrant diagrams J ! C with levelwise
weak equivalences and Reedy cofibrations. See [14, Theorem 9.3.8] for the construction
of these cofibration categories and [14, Sections 9.1 and 9.2] for definitions of (relative)
direct categories and Reedy cofibrations. (Note that Radulescu-Banu [14] uses the word
“restricted” instead of “relative”.) For our purposes we only need the direct category
J D Œk�, so we will recall the definitions just in this case. A diagram over Œk� is
Reedy cofibrant if all its structure maps are cofibrations. A morphism X ! Y of such
diagrams is a Reedy cofibration if all the induced morphisms XiC1tXi

Yi ! YiC1 are
cofibrations. In [14] cofibration categories are assumed to have certain infinite colimits
that are necessary for these results to hold for arbitrary J . However, as mentioned
above, we will only use finite categories J D Œk�, in which case the cited theorem is
valid with Brown’s original definition, which asserts only existence of an initial object
and pushouts along cofibrations.

Definition 11 A subcategory gC of a cofibration category C is said to be good if

� all cofibrations are in gC;
� the morphisms of gC are stable under pushouts along cofibrations;
� C has functorial factorizations that preserve gC, in the sense that if

A0 B0

A1 B1

is a square in C such that both vertical morphisms are in gC and

A0
zB0 B0

A1
zB1 B1

�

�

is the resulting factorization, then the induced morphism A1 tA0
zB0! zB1 is

also in gC. In particular, so is zB0! zB1 by the second condition and most of
the time only this conclusion will be used. However, the stronger property that
A1 tA0

zB0! zB1 is in gC is necessary for the inductive argument in the proof
of Lemma 15(3).
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Now suppose that C is a cofibration category with a good subcategory gC. We let W C

be the bisimplicial set whose .m; n/–bisimplices are all diagrams in C of the form

X0;0 X0;1 : : : X0;n

X1;0 X1;1 : : : X1;n

:::
:::

:::

Xm;0 Xm;1 : : : Xm;n

� � �

� � �

� � �

�

g

�

g

�

g

�

g

�

g

�

g

�

g

�

g

�

g

ie relative diagrams �Œm�� �Œn�! C where all horizontal morphisms are cofibrations and
all vertical morphisms are in gC. In other words, W C is the nerve of a double category
with the same objects as C, whose horizontal morphisms are acyclic cofibrations,
vertical morphisms are weak equivalences in gC, and double morphisms are just
commutative squares.

Lemma 12 The bisimplicial set W C is vertically homotopically constant, ie every
simplicial operator Œn�! Œn0� induces a weak homotopy equivalence .W C/�;n0 !

.W C/�;n .

Proof Note that .W C/�;nDN zCn , where zCn is a category whose objects are diagrams�Œn�! cC and whose morphisms are weak equivalences with all components in gC. It is
enough to consider the case n0D 0, ie to show that the constant functor constW zC0!

zCn

is a homotopy equivalence. The evaluation at n functor evnW
zCn !

zC0 satisfies
evn const D idzC0

. Moreover, the structure maps of every diagram X 2 zCn form a
natural weak equivalence X ! const evn X since every cofibration is in gC.

Lemma 13 The bisimplicial set W C is horizontally homotopically constant, ie every
simplicial operator Œm�! Œm0� induces a weak homotopy equivalence .W C/m0;�!

.W C/m;� .

Proof Note that .W C/m;� D NCm , where Cm is a category whose objects are di-
agrams �Œm�! gC and whose morphisms are acyclic levelwise cofibrations. Again,
it is enough to consider the case m0 D 0 and to show that the constant functor
constW C0 ! Cm and the evaluation at m functor evmW Cn ! C0 form a homotopy
equivalence.
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We have evm constD idC0
. Moreover, given any object X 2Cm and i 2 Œm� we consider

the composite weak equivalence Xi
�
�!Xm . We combine it with the identity Xm!Xm

and factor functorially the resulting morphism Xi t Xm ! Xm as Xi t Xm �
zXi
�
�!Xm . In the square

Xm tXi Xm

Xm tXiC1 Xm

both vertical morphisms are in gC (since gC is closed under pushouts). Thus the
induced morphism zXi ! zXiC1 is in gC. Moreover, we obtain acyclic cofibrations
Xi
�� zXi and Xm

�� zXi that constitute a zigzag of natural weak equivalences connecting
const evm and idCm

.

Lemma 14 The inclusion NwcC!NwgC is a weak homotopy equivalence.

Proof Observe that the 0th row and the 0th column of W C are NwgC and NwcC,
respectively. Since W C is homotopically constant in both directions, it follows from
[7, Proposition IV.1.7] that we have weak equivalences

NwgC �
�! diag W C �

 �NwcC:

Moreover, the restrictions along the diagonal inclusions Œm�! Œm� � Œm� induce a
simplicial map diag W C! NwgC whose composites with the two maps above are
the identity on NwgC and the inclusion NwcC!NwgC. Hence the latter is a weak
equivalence by 2-out-of-3.

Next we establish that under specific circumstances certain subcategories of C are
good.

Lemma 15 Let C be a cofibration category.

(1) If C has functorial factorizations, then C itself is a good subcategory.

(2) If C has good cylinders, then cC is a good subcategory of C.

(3) If cC is a good subcategory of C, then the subcategory of levelwise cofibrations
is a good subcategory of C

Œk�
R for all k .

Proof (1) This is vacuously true.

(2) We will show that the standard mapping cylinder factorization makes cC into a
good subcategory. Let
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A0 B0

A1 B1

be a square where both vertical morphisms are cofibrations. The mapping cylinder of
Ai !Bi is constructed as IAi tAitAi

.Ai tBi /. We need to show that the morphism
induced by the square

A0 IA0 tA0tA0
.A0 tB0/

A1 IA1 tA1tA1
.A1 tB1/

is a cofibration. This morphism coincides with

IA0 tA0tA0
.A1 tB0/! IA1 tA1tA1

.A1 tB1/;

which factors as

IA0 tA0tA0
.A1 tB0/! IA0 tA0tA0

.A1 tB1/! IA1 tA1tA1
.A1 tB1/:

The first morphism is a pushout of A1 tB0! A1 tB1 , which is a cofibration since
B0! B1 is. Comparing the pushouts of rows and columns in the diagram

IA0 IA0 IA1

A0 tA0 A0 tA0 A1 tA1

A1 tB1 A1 tA1 A1 tA1

shows that the second morphism above is a pushout of IA0tA0tA0
.A1tA1/! IA1 ,

which is a cofibration since A0! A1 is and C has good cylinders.

(3) Clearly, every Reedy cofibration is a levelwise cofibration and levelwise cofibra-
tions are stable under pushouts. Consider a diagram

A0
zB0 B0

A1
zB1 B1

�

�
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in CJ
R , where zB0 and zB1 are obtained by the standard Reedy factorization (see [14,

Proof of Theorem 9.2.4(v)]) induced by the given functorial factorization in C. As-
suming that A0! A1 and B0! B1 are levelwise cofibrations, we need to check that
A1;i tA0;i

zB0;i ! zB1;i is a cofibration for every i 2 Œm�.

For i D 0, this follows directly from the assumption that cC is a good subcategory
of C. The Reedy factorization is constructed by induction over Œm�, so assume that the
conclusion is already known for i < m. The factorization at level i C 1 arises as

A0;iC1 tA0;i
zB0;i

zB0;iC1 B0;iC1

A1;iC1 tA1;i
zB1;i

zB1;iC1 B1;iC1

�

�

where the left square comes from the diagram

A0;i
zB0;i

A0;iC1 � zB0;iC1

A1;i
zB1;i

A1;iC1 � zB1;iC1

where the bullets stand for the pushouts above. The conclusion we need to obtain
amounts to the composite of the two squares in the front being a Reedy cofibration
when seen as a morphism from left to right. The right square is a Reedy cofibration
since cC is a good subcategory of C and so is the left one since it is a pushout of the
back square, which is a Reedy cofibration by the inductive hypothesis.

Lemma 16 The inclusion Nw.C
Œk�
R /!Nw.CŒk�/ is a weak homotopy equivalence.

Proof Functorial factorization induces a functor in the opposite direction as well as
natural weak equivalences connecting both composites with identities.

Proof of Theorem 10 Recall that we want to show that Nw..cC/Œk�/! Nw.CŒk�/

is a weak equivalence for all k . In the diagram
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Nwc.C
Œk�
R / Nw.C

Œk�
R /

Nw..cC/Œk�/ Nwc.CŒk�/ Nw.CŒk�/

(1)

(2)

(3)
(4)

the labelled maps are weak equivalences. The map (1) is a weak equivalence by
Lemma 14 applied to C

Œk�
R with itself as a good subcategory and so is the map (2) by

the same argument applied to CŒk� . The map (3) is a weak equivalence by Lemma 14
applied to C

Œk�
R with the good subcategory of levelwise cofibrations, which is indeed

good by Lemma 15. Finally, the map (4) is a weak equivalence by Lemma 16. Hence
by 2-out-of-3, the bottom composite is also a weak equivalence as required.
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HOMFLY-PT homology for general link diagrams
and braidlike isotopy

MICHAEL ABEL

Khovanov and Rozansky’s categorification of the HOMFLY-PT polynomial is invariant
under braidlike isotopies for any general link diagram and Markov moves for braid
closures. To define HOMFLY-PT homology, they required a link to be presented
as a braid closure, because they did not prove invariance under the other oriented
Reidemeister moves. In this text we prove that the Reidemeister IIb move fails in
HOMFLY-PT homology by using virtual crossing filtrations of the author and Rozansky.
The decategorification of HOMFLY-PT homology for general link diagrams gives a
deformed version of the HOMFLY-PT polynomial, P b.D/ , which can be used to
detect nonbraidlike isotopies. Finally, we will use P b.D/ to prove that HOMFLY-PT

homology is not an invariant of virtual links, even when virtual links are presented as
virtual braid closures.

57M25, 57M27

1 Introduction

Khovanov and Rozansky in [12] introduced a triply graded link homology theory
categorifying the HOMFLY-PT polynomial. The construction given in [12] of Khovanov–
Rozansky HOMFLY-PT homology, or briefly HOMFLY-PT homology, is an invariant
of link diagrams up to braidlike isotopy (isotopies which locally resemble isotopies
of a braid) and Markov moves for closed braid diagrams. However, Khovanov and
Rozansky were not able to prove invariance under all oriented Reidemeister moves. In
particular, they could not prove the Reidemeister IIb move, and in fact expected that it
would fail in general. Because of this, they required that a link be presented as a braid
closure so that HOMFLY-PT homology would be an invariant of links. In this text we
will directly address this issue by proving the failure of the Reidemeister IIb move in
HOMFLY-PT homology, and explore the consequences of this failure.

The framework of HOMFLY-PT homology can be extended to include the use of “virtual
crossings”, degree-4 vertices which are not actually positive or negative crossings.
Virtual links (links with virtual crossings) were first introduced by Kauffman in [9]. The
author and Rozansky in [1] proved that a filtration can be placed on the chain complex
whose homology is HOMFLY-PT homology. The associated graded complex of this
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filtration is described using diagrams containing only virtual crossings. The filtration
allows us to rewrite the chain complexes in an illuminating manner, allowing us to see
new isomorphisms which would be difficult to see otherwise. Using the framework of
virtual crossing filtrations we prove the following theorem.

Theorem 1.1 (see Theorem 4.11) Let H.D/ denote the HOMFLY-PT homology
of the virtual link diagram D. Suppose D1, D2, and D3 are oriented virtual link
diagrams which are identical except in the neighborhood of a single point. Suppose
in the neighborhood of that point, D1 is , D2 is , and D3 is . Then
H.D1/'H.D3/ up to a grading shift, while H.D1/ 6'H.D2/ in general.

In Section 4 we prove the above theorem and give an explicit example of a diagram of
the unknot that does not have the HOMFLY-PT homology of the unknot (Example 4.12).
Recall H.D/ is a triply graded vector space. Suppose dijk D dim.H.D/i;j ;k/. Then
we can define the Poincaré series of H.D/ as

(1-1) P.D/D
X

i;j ;k2Z

dijkqiaj tk :

Let P .D/ denote the HOMFLY-PT polynomial of the link diagram D. In [13], Mu-
rakami, Ohtsuki and Yamada introduced a state-sum formulation of the HOMFLY-PT

polynomial commonly called the MOY construction. Their approach resolves a link
diagram into a Z.q; a/–linear combination of oriented planar 4–regular graphs. They
give relations which evaluate each such planar graph as an element of Z.q; a/. The
resulting rational function from this process for any link diagram D is its HOMFLY-PT

polynomial P .D/.

We now define a deformed HOMFLY-PT polynomial Pb.D/D P.D/jtD�1. In the case
that D is presented as a braid closure then Pb.D/D P .D/. However, this is not true
for general link diagrams. We collect known relations and properties of Pb.D/ into
the following theorem.

Theorem 1.2 (see Theorem 5.1) Let D be a link diagram. Pb.D/ is an invariant of
link diagrams up to braidlike isotopy satisfying the skein relation

qPb. /� q�1Pb. /D .q� q�1/Pb. /:

Furthermore, Pb.D/ satisfies the relations in Figure 1 in addition to the virtual
MOY/Reidemeister moves and Z-moves (see Figures 14 and 15).

In Section 5 we use Pb.D/ to show that H.D/ is not an invariant of virtual links, even
when presented as a virtual braid closure, by showing it violates the virtual exchange
move (see Kamada [8]).

Algebraic & Geometric Topology, Volume 17 (2017)
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D � q�2 D �

D
1C aq2

1� q2

(MOY 0)

D
1C aq4

1� q2

(MOY I)

D .1C q2/

(MOY IIa)

D C
q2C aq6

1� q2

(MOY IIb*)

C q2 D q2 C

(MOY III)

Figure 1: Relations for P b.D/ (the notation P b. � / omitted for readability)

We note that the relations in Figure 1 may not always be enough to determine Pb.D/,
though in many examples the relations do suffice. We expect that in fact these relations
will not compute Pb.D/ in general. The “nonbraidlike” MOY III diagram in Figure 2
does not split in a tractable manner and applying the MOYIIb relation introduces
virtual crossings. Kauffman and Manturov in [10] construct an sl3 specialization of the
HOMFLY-PT polynomial for virtual links as formal ZŒq; q�1�–linear combinations of
directed graphs which are irreducible under MOY I, MOY IIa, MOY III, virtual MOY
moves and Z-moves. Since our Pb.D/ for virtual braid closures specializes to their
invariant, we expect that certain virtual MOY graphs will be irreducible with respect to
the relations in Figure 1.

Figure 2: A “nonbraidlike” MOY III configuration

Algebraic & Geometric Topology, Volume 17 (2017)
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Recent research involving annular link homology by Auroux, Grigsby and Wehrli in
the sl2 case [4] and Queffelec and Rose in the sln case [15] give some insight into
why to expect this issue. We consider links in the thickened annulus as closed braids in
a 3–ball D3 with the braid axis ` removed from D3. Annular link homology theories,
that is homology theories of closed braids in the thickened annulus D3�`, are normally
constructed via the use of Hochschild homology on chain complexes of bimodules
associated to braids. Hochschild homology HH.C / acts as a (horizontal) trace on
the homotopy category of bimodules, but in general does not act like a Markov trace.
In particular, if ˇ1 and ˇ2 are two braids which are Markov equivalent and C.ˇ1/

and C.ˇ2/ are their associated chain complexes of bimodules, then HH.C.ˇ1// is not
necessarily homotopy equivalent to HH.C.ˇ2//. This corresponds to the fact that even
though the braid closures of ˇ1 and ˇ2 are isotopic as links in S3, they may not be
isotopic in D3� `.

From this viewpoint, H.D/ is an annular link invariant that happens to satisfy the
Markov moves (that is, H.D/ is a categorified Markov trace). This is why H.D/
gives invariants of links in S3 when D is presented as the closure of a braid. The
Reidemeister IIb configuration can only appear in a braid closure when the braid
axis is between the two strands. In the case of annular invariants the braid axis is an
obstruction to isotopy, and disallows the isotopy � . In an annular invariant
the exchange move � is disallowed; however, this move preserves the
isomorphism type of H.D/.

Outline of the paper In Section 2 we review the definition of the HOMFLY-PT poly-
nomial and the MOY construction of the HOMFLY-PT polynomial. We use nonstandard
conventions in this text to illuminate the connections with HOMFLY-PT homology. In
Section 3 we review the construction of HOMFLY-PT homology of links using closed
braid diagrams. We also review some homological algebra, in particular properties of
Koszul complexes. In Section 4 we explore the properties of HOMFLY-PT homology for
general link diagrams. We introduce the role of virtual crossings in this framework and
use virtual crossings as a tool to prove that HOMFLY-PT homology is not invariant under
the Reidemeister IIb move. Finally, in Section 5 we explore the decategorification
(Euler characteristic) of HOMFLY-PT homology and use it to prove that HOMFLY-PT

homology cannot be extended to an invariant of virtual links.

Acknowledgements The author would like to thank Mikhail Khovanov, Lev Rozansky
and Lenny Ng for many helpful conversations and their feedback. The author would like
to also thank Matt Hogancamp for encouraging him to further explore an observation
which eventually became the text here. The author was supported in part by NSF grant
DMS-1406371.
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2 MOY construction of the HOMFLY-PT polynomial

We begin by recalling two constructions of the HOMFLY-PT polynomial for oriented
links. Most of this material is well-known, but we introduce it with the purpose of
setting our conventions for the sequel. The first construction is given by a skein relation
and first appeared in [6]. The second construction, first introduced by Murakami,
Ohtsuki and Yamada in [13], constructs the HOMFLY-PT polynomial in terms of a state-
sum formula. It is this second construction which is categorified in the construction of
Khovanov and Rozansky’s HOMFLY-PT homology.

2.1 The HOMFLY-PT polynomial of an oriented link diagram

Let L denote a link in R3. In this text we will assume all links are oriented. Let D

denote a link diagram of L, that is a regular projection of L onto a copy of R2. The
HOMFLY-PT polynomial is an invariant of links which takes (oriented) link diagrams to
elements of Z.q; a/.

Definition 2.1 Let D be a link diagram and let O be a simple closed curve in the
plane of the link diagram. We define the HOMFLY-PT polynomial, P .D/ 2Z.q; a/, via
the following relations:

(1) P .∅/D 1 and P .O/D .1C aq2/=.1� q2/.

(2) P .D tO/D P .D/P .O/.

(3) qP .DC/� q�1P .D�/ D .q � q�1/P .D0/, where DC, D�, and D0 are link
diagrams which are the same except in the neighborhood of a single point where
DC D , D� D , and D0 D .

(4) If D and D0 differ by a sequence of Reidemeister II and III moves (with any
orientation), then P .D/D P .D0/.

We will call a crossing which locally looks like a positive crossing, and a crossing
that locally looks like a negative crossing. Let f;g 2 Z.q; a/ be nonzero. We
will write f PDg if f D .�1/iaj qkg for some i; j ; k 2 Z. In other words, we write
f PDg if f=g is a unit in ZŒq˙1; a˙1�.

Theorem 2.2 (HOMFLY [6]; PT [14]) Let D and D0 be two link diagrams of a
link L. Then P .D/ PDP .D0/. Furthermore, P .D2/ D �q�2P .D1/ and P .D3/ D

aq2P .D1/, where D1, D2, D3 are link diagrams which are the same except in the
neighborhood of a single point where they are as in Figure 3.

We will often denote the HOMFLY-PT polynomial of a link by P .L/, suppressing the
choice of link diagram. In this case P .L/ is well defined up to a unit in ZŒq˙1; a˙1�.

Algebraic & Geometric Topology, Volume 17 (2017)
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D1 D2 D3

Figure 3: The diagrams D1, D2, and D3 from Theorem 2.2

Remark 2.3 We are using nonstandard conventions for the HOMFLY-PT polynomial
in this text. The HOMFLY-PT polynomial as defined here is not a polynomial, but rather
is a rational function. One may choose a different normalization where both P .D/ 2

ZŒa˙1; q˙1� is honestly a (Laurent) polynomial and P .D1/DP .D2/DP .D3/ where
D1, D2, and D3 are as in Figure 3. The choice of normalization here coincides with
our conventions for HOMFLY-PT homology in the sequel.

2.2 The MOY construction of the HOMFLY-PT polynomial

Murakami, Ohtsuki and Yamada in [13] give a construction of the sln polynomial,
Pn.L/ 2 ZŒq; q�1�, of a link L using evaluations of oriented colored trivalent plane
graphs. These trivalent plane graphs correspond to the intertwiners between tensor
powers of fundamental representations of Uq.sln/. The sln polynomial is actually a
specialization of the HOMFLY-PT polynomial, that is Pn.L/.q/DP .L/.q; aD q2�2n/

in our conventions. We may adjust the MOY construction of the sln polynomial to
compute the HOMFLY-PT polynomial. We will replace the “wide edge” graph of [13]
with a single degree-4 vertex (see Figure 4) which we will call a MOY vertex.

Recall an oriented graph is 4–regular if every vertex has degree 4, that is if each vertex
has a total of 4 outgoing/incoming edges. The MOY state model of the HOMFLY-PT

polynomial writes a link diagram as a formal Z.q; a/–linear combination of planar,
oriented, 4–regular graphs. The orientation locally at each vertex is the same as the
orientation of the MOY vertex in Figure 4. We call such planar, oriented, 4–regular
graphs MOY graphs.

We now define the MOY construction of the HOMFLY-PT polynomial. Let D be a link
diagram. We can resolve any crossing c into either an oriented smoothing or a
MOY vertex (with consistent orientation). To each resolution of c we associate a
weight. If we smooth the crossing then the resolution has weight 0. If we replace the
crossing with a MOY vertex, then the weight is �2 if the crossing was positive and 0

$

Figure 4: The MOY wide edge graph and our MOY vertex

Algebraic & Geometric Topology, Volume 17 (2017)
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0

0

0

�2

Figure 5: Resolution chart

if the crossing was negative. A resolution chart is given in Figure 5 for reference. We
define a state � of D as a choice of resolution for every crossing c in D. If D has n

crossings, then it has 2n possible states. We define the weight of a state �.�/ to be the
sum of the weights of the chosen resolutions of � . Finally we will set �.�/ to be the
number of MOY vertices in � .

Theorem 2.4 (Murakami, Ohtsuki and Yamada [13]) The relations given in Figure 6
are sufficient to compute P .D� / as an element of Z.q; a/ for any link diagram D and
any state � .

D
1C aq2

1� q2

(MOY 0)

D
1C aq4

1� q2

(MOY I)

D .1C q2/

(MOY IIa)

D C
1C aq6

1� q2

(MOY IIb)

C q2 D q2 C

(MOY III)

Figure 6: MOY relations (the notation P . � / omitted for readability)

Definition 2.5 The MOY polynomial, P .D/, is given by

(2-1) P .D/D
X
�

.�1/�.�/q�.�/P .D� /:

Algebraic & Geometric Topology, Volume 17 (2017)



3028 Michael Abel

Theorem 2.6 (Murakami, Ohtsuki and Yamada [13]) Let D be an oriented link
diagram. Then P .D/D P .D/.

Example 2.7 Using the relations in Figure 6, we compute P .D/ for the diagram of the
left-handed trefoil knot given in Figure 7. We leave it as an exercise to the reader to show

(2-2) P .D/D

�
1C aq2

1� q2

�
.q2
C aq2

C aq6/:

D

Figure 7: Diagram of the left-handed trefoil knot

3 HOMFLY-PT homology for closed braid diagrams

In this section we introduce the construction of Khovanov and Rozansky’s HOMFLY-PT

homology. The approach of this construction is to associate a chain complex of modules
to every MOY graph and a bicomplex of modules to every link diagram. Our approach
in this section is most similar to the approach of Rasmussen in [16] where we ignore
his “sln ” differential, as it is not needed in the construction of HOMFLY-PT homology.

3.1 Koszul complexes

Before introducing HOMFLY-PT homology, we recall some terminology and notation
involving Koszul complexes. Let R D

L
i2Z Ri be a Z–graded commutative Q–

algebra and M D
L

i2Z Mi be a Z–graded R–module. It will be instructive to keep
the example of R D QŒx;y � in mind, where x and y are finite lists of variables
(not necessarily of the same length). We define the grading shift functor �.k/ by
M.k/j DMj�k for all j 2 Z. We will commonly use a nonstandard notation for
grading shifts. In particular, we will set qkM WD M.k/ and say degq.x/ D qj

if x 2Mj .

Algebraic & Geometric Topology, Volume 17 (2017)
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Definition 3.1 Let p 2 R be an element of degree k. The Koszul complex of p is
defined as the chain complex

Œp�R D qkR1
p
�!R0;

where p is used to denote the algebra endomorphism of R given by multiplication
by p. Here R0 DR1 DR and the subscript is simply used to denote the homological
degree of the module. We will often write Œp�D Œp�R when there can be no confusion.
Now let p D p1; : : : ;pk be a sequence of elements in R. Then we define the Koszul
complex of p as the complex264p1

:::

pk

375D Œp1�˝R � � � ˝R Œpk �;

where ˝R denotes the ordinary tensor product of chain complexes.

As a convention, we will call the homological grading in Koszul complexes the
Hochschild grading and denote it by dega. We write dega.x/D ak to say that x is in
Hochschild degree k and similarly write akM to denote that M is being shifted k in
Hochschild degree.

We say a sequence of elements pDp1; : : : ;pk in R is a regular sequence if pm is not
a zero divisor in R=.p1; : : : ;pm�1/ for all mD 1; : : : ; k. The following proposition
is a standard fact in homological algebra and is proven in many introductory texts such
as [18].

Proposition 3.2 Let p D p1; : : : ;pn be a regular sequence in R. Then the Koszul
complex of p is a graded free R–module resolution of R=.p1; : : : ;pn/.

The notation we use for Koszul complexes is reminiscent of the notation for a column
vector in R˚n. Note that we will always use square brackets for Koszul complexes
and round brackets for row vectors in R˚n to eliminate any confusion. Along these
lines, we can look at “row operations” on Koszul complexes.

Proposition 3.3 Let p D p1; : : : ;pk be a sequence of elements in R, and let � 2Q.
Then 26666664

:::

pi
:::

pj
:::

37777775'
26666664

:::

pi C�pj
:::

pj
:::

37777775 :

A homotopy equivalence of this form will be called a change of basis.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proof We will omit grading shifts in the proof for clarity. We consider the map
ˆW Œpi �˝R Œpj �! Œpi C�pj �˝R Œpj � given by:

Œpi �˝R Œpj �

ˆ

��

R

�
pi

pj

�
//

1

��

R˚R�
1 �

0 1

�
��

.�pj pi/
// R

1

��

Œpi C�pj �˝R Œpj � R �
pi C�pj

pj

� // R˚R
.�pj pi C�pj /

// R

This map is clearly invertible.

3.2 Marked MOY graphs

A marked MOY graph is a MOY graph � (possibly with boundary) with markings
such that the marks partition the graph into some combination of elementary MOY
graphs as shown in Figure 8. We label the marks and the endpoints of the graph (if
any) with variables. Typically, though not necessarily, we will label outgoing edges by
variables yi , incoming edges by variables xi , and internal marks by variables ti . An
example of this process is given in Figure 8.

x1 x2 x3

y1 y2 y3

t1 t2 t3

t4 t5 t6

Figure 8: An example of a marked MOY graph and the elementary MOY graphs

To a marked MOY graph � , we will associate a collection of rings. Let x;y ; t denote
the lists of incoming, outgoing, and internal variables respectively. We first define the
total ring Et .�/ of � as the polynomial ring QŒx;y ; t� containing all variables. We
make this ring into a graded ring by setting degq.xi/D degq.yi/D degq.ti/D q2. We
call this grading the internal or quantum grading. We also suppose that all elements
in Et .�/ have Hochschild degree a0. The other rings we will define will be subrings
of Et .�/. The edge ring, E.�/, is the polynomial ring of incoming and outgoing
(“edge”) variables QŒx;y �. The total ring Et .�/ has a natural free E.�/–module
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structure. We also define the incoming ring (resp. outgoing ring) by Ei.�/DQŒx�
(resp. Eo.�/DQŒy �). Since E.�/ŠEi.�/˝Q Eo.�/ as Q–algebras, any E.�/–
module can be considered as an Ei.�/–Eo.�/–bimodule. Note that if � does not
have any boundary (eg if it is a resolution of a link diagram), then E.�/ŠEi.�/Š

Eo.�/ŠQ.

We will now define chain complexes C.�/ of free E.�/–modules associated to a
marked MOY graph � . The chain modules of C.�/ will be direct sums of shifted
copies of Et .�/. We do this by first defining Koszul complexes associated to the
elementary MOY graphs and then give rules for how gluing the graphs together affects
the complexes associated to them. We will use the symbols and to denote the
elementary arc and vertex MOY graphs. To the arc, we associate the Koszul complex
of modules over Et . /DE. /DQŒx;y�,

(3-1) C. /D Œy �x�
E. /

D q2aE. /
y�x
���!E. /;

and to the vertex graph, we associate the Koszul complex of modules over Et . /D

E. /DQŒx1;x2;y1;y2�,

(3-2)
C. /D

�
y1Cy2�x1�x2

.y1�x1/.y1�x2/

�
E. /

D q6a2E. / A
�! q4aE. /˚ q2aE. / B

�!E. /;

where

AD

�
y1Cy2�x1�x2

.y1�x1/.y1�x2/

�
; B D

�
�.y1�x1/.y1�x2/ y1Cy2�x1�x2

�
:

Now suppose � is a marked MOY graph with edge ring E and total ring Et . Also
let � 0 be another marked MOY graph with edge ring E0 and total ring E0t . The
disjoint union of these graphs � t � 0 has edge ring E00 Š E ˝Q E0 and total ring
E00t ŠEt˝Q E0t . To the marked MOY graph �t� 0 we will associate the complex of
E00–modules C.� t� 0/ WD C.�/˝Q C.� 0/. A picture of the corresponding diagram
is shown in Figure 9.

� � 0

� t� 0

� � 0

z1

z2

� [z �
0

Figure 9: Examples of disjoint union and gluing of marked MOY graphs
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Finally, we define a complex for when we glue two marked MOY graphs together.
Let � and � 0 be two marked MOY graphs. We can glue outgoing edges of � to
incoming edges of � 0 (or vice versa) to get a new marked MOY graph. First suppose
only one pair of endpoints, one from each graph, are being glued together. Suppose
that in both � and � 0 the endpoint being glued is labeled by the variable z (that is,
z 2Ei.�/\Eo.� 0/ or z 2Ei.� 0/\Eo.�/). Then we define the new graph � [z �

0

by identifying the endpoints labeled by z and associate to � [z �
0 the complex

(3-3) C.� [z �
0/ WD C.�/˝QŒz� C.�

0/:

The edge ring of � [z �
0 is E.� [z �

0/ D .E.�/˝QŒz� E.� 0//=.z/ and the total
ring is Et .� [z �

0/ D Et .�/˝QŒz� E
t .� 0/. Note that after gluing, z is no longer

in the edge ring as it is an internal variable. We may glue multiple edges at once in
a similar manner. If z D z1; : : : ; zn are the variables at the marked endpoints being
identified, then we define C.� [z �

0/ WD C.�/˝QŒz� C.� 0/. Similar to the case
where we only identified one pair of edges, the edge ring of � [z �

0 is given by
E.� [z �

0/D .E.�/˝QŒz�E.�
0//=.z1; : : : ; zn/ and the total ring is Et .� [z �

0/D

Et .�/˝QŒz�E
t .� 0/.

We can also describe disjoint union and gluing of marked MOY graphs in terms of
Koszul complexes. Suppose C.�/ and C.� 0/ are given by the Koszul complexes

C.�/D

264p1
:::

pm

375
Et .�/

and C.� 0/D

264p0
1
:::

p0n

375
Et .� 0/

:

We can present C.� t� 0/ and C.� [z �
0/ as the Koszul complexes

(3-4) C.� t� 0/D

2666666664

p1
:::

pm

p10

:::

p0n

3777777775
Et .�t� 0/

and C.� [z �
0/D

2666666664

p1
:::

pm

p10

:::

p0n

3777777775
Et .�[z� 0/

:

Here the distinction comes from the difference in total and edge rings. C.� t � 0/

is a chain complex of free E.� t � 0/–modules with the chain modules as direct
sums of shifted copies of Et .� t � 0/. However C.� [z �

0/ is a chain complex of
free E.� [z �

0/–modules with the chain modules as direct sums of shifted copies
of Et .� [z �

0/. We now give another useful technique for simplifying the complexes
associated to marked MOY graphs, called mark removal.

Algebraic & Geometric Topology, Volume 17 (2017)



HOMFLY-PT homology for general link diagrams and braidlike isotopy 3033

Lemma 3.4 Suppose that z is an internal variable of a marked MOY graph � and
C.�/ is the Koszul complex of the sequence p D p1; : : : ; z � pi ; : : : ;pk , where
p1; : : : ;pk 2E.�/. Let  W Et .�/!Et .�/=.z�pi/ be the quotient map identifying z

with pi . Then we have

C.�/'  

0BBBBBB@

26666664
p1
:::

1z�pi

:::

pk

37777775

1CCCCCCA'
26666664

p1
:::

1z�pi

:::

pk

37777775
Et .�/=.z�pi /

as complexes of E.�/–modules, omitting the term z�pi from the sequence.

Various forms of this lemma are proven in other texts on HOMFLY-PT homology, such
as the original work of Khovanov and Rozansky [12] or work of Rasmussen [16]. We
refer the reader to Lemma 3.8 in [16] for this exact form, omitting the “backward”
differentials of the matrix factorizations. Lemma 3.4 allows us to freely add or remove
marks without changing the homotopy type of the complex (as a complex of E.�/–
modules). This implies the following very useful statement.

Corollary 3.5 Let � and � 0 be two marked MOY graphs whose underlying (un-
marked) MOY graphs are the same (isomorphic as oriented graphs). Then C.�/ '

C.� 0/ as complexes of modules over E.�/DE.� 0/.

Example 3.6 Consider the marked MOY graph from Figure 10. The marks partition
the MOY graphs into six elementary MOY graphs (three MOY vertices and three arcs)
which are drawn in Figure 10.

x1 x2 x3

y1 y2 y3

t1 t2 t3

t4 t5 t6

�

x1 x2 t2 t3 t4 t5 x3 t1 t6

t1 t2 t5 t6 y1 y2 t3 t4 y3

�1 �2 �3 �4 �5 �6

Figure 10: The marked MOY graph in Example 3.6 and its elementary MOY graphs

We can write � as .�1 t�4/[t1;t2;t3
.�2 t�5/[t4;t5;t6

.�3 t�6/, and therefore

C.�/D C.�1 t�4/˝QŒt1;t2;t3� C.�2 t�5/˝QŒt4;t5;t6� C.�3 t�6/:
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We can write C.�/, after some applications of mark removal to remove t3, t4, and t6, as:

C.�/'

266666664

y1Cy2� t1� t5
y1y2� t1t5

t5Cy3� t2�x3

t5y3� t2x3

t1C t2�x1�x2

t1t2�x1x2

377777775
QŒx1;x2;x3;y1;y2;y3;t1;t2;t5�

We invite the reader to finish the process of removing the internal variables t1, t2,
and t5 to get a finite-rank complex of QŒx1;x2;x3;y1;y2;y3�–modules.

3.3 MOY braid graphs

A MOY braid graph is a graph formed by taking a braid and replacing every crossing
with a MOY vertex, whose incoming and outgoing edges are consistent with the
orientation of the braid. The complexes associated to MOY braid graphs and their
“braid closures” satisfy the following local relations (as proven in [12; 16]):

Proposition 3.7 Let �0, �1a, �1b , �2a, �2b , �3a, �3b , �3c , and �3d be MOY
graphs as in Figure 11. Then

C.�0/'

1M
iD0

q2i.Q˚ aq2Q/;(3-5)

C.�1a/'

1M
iD0

q2i.C.�1b/˚ aq4C.�1b//;(3-6)

C.�2a/' C.�2b/˚ q2C.�2b/;(3-7)

C.�3a/˚ q2C.�3b/' q2C.�3c/˚C.�3d /;(3-8)

where ' denotes homotopy equivalence over the corresponding edge rings.

To compare the isomorphisms in Proposition 3.7 to the relations in Figure 6 we introduce
the notation of a “Laurent series shift functor”. Suppose F.q; a/2NŒŒq˙1; a˙1��, that is

F.q; a/D
X

i;j2Z

cij qiaj ; cij 2N [f0g:

Suppose M is a Z�Z–graded R–module with grading shifts denoted by qiaj . Then

(3-9) F.q; a/M WD
M

i;j2Z

qiaj M˚cij :

We can write similar expressions for chain complexes C of Z�Z–graded R–modules.
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�0 �1a �1b �2a �2b

�3a �3b �3c �3d

Figure 11: MOY graphs for Proposition 3.7

Let
F.q; a; t/D

X
i;j ;k2Z

cijkqiaj tk
2NŒŒq˙1; a˙1; t˙1��;

and let the homological grading shift on C be denoted by tk . Then

(3-10) F.q; a; t/C WD
M

i;j ;k2Z

qiaj tkC˚cijk :

The coefficients in MOY 0 and MOY I are not actually Laurent series, but rather rational
functions. However, considering the rational function with Laurent polynomial numera-
tor F.q; a/ as a geometric series, we can write the rational functions as a Laurent series

F.q; a/

1� q2
D F.q; a/

1X
iD0

q2i :

With this notation in mind, we can rewrite the isomorphism (3-5) as

(3-11) C.�0/'

1M
iD0

q2i.Q˚ aq2Q/D
1M

iD0

q2i.1C aq2/Q

D .1C aq2/

1X
iD0

q2iQD
1C aq2

1� q2
Q

and the isomorphism (3-6) as

(3-12) C.�1a/'

1M
iD0

q2i.C.�1b/˚ aq4C.�1b//

D .1C aq4/

1X
iD0

q2iC.�1b/D
1C aq4

1� q2
C.�1b/:
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We invite the reader to compare the rewritten relation (3-11) to (MOY 0) from Figure 6
and (3-12) to (MOY I). This comparison can be made for (3-7) to (MOY 2a) and (3-8)
to (MOY 3) as well.

3.4 Khovanov–Rozansky HOMFLY-PT homology

We now have recalled the necessary tools to define Khovanov–Rozansky HOMFLY-PT

homology, or briefly HOMFLY-PT homology. We first define two q–degree 0 maps
�i W ! q�2 and �oW ! . Set E D QŒx1;x2;y1;y2� to be the edge
ring of both and . Then we define �i by

(3-13) �i

��

a2q4E

�
y1�x1

y2�x2

�
//

1

��

aq2E˚ aq2E
.x2�y2 y1�x1/

//�
y1�x2 0

1 1

�
��

E

y1�x2

��

q�2 a2q4E �
P2

P1

� // aE˚ aq2E
.�P1 P2/

// q�2E

and �o by

(3-14) �o

��

a2q6E

�
P2

P1

�
//

y1�x2

��

aq2E˚ aq4E
.�P1 P2/

//�
1 0

�1 y1�x2

�
��

E

1

��

a a2q4E �
y1�x1

y2�x2

� // aq2E˚ aq2E
.x2�y2 y1�x1/

// E

Above, we set P1 D y1C y2 � x1 � x2 and P2 D .y1 � x1/.y1 � x2/ for the sake
of legibility. We now define two bicomplexes of free E–modules for the positive
crossing and the negative crossing :

C. / WD C. /
�i
�! tq�2C. /;(3-15)

C. / WD t�1C. /
�o
�!C. /:(3-16)

Note that we use the notation tkC.�/ to mean that the complex for � sits in homological
degree k. This is a different homological degree than our Hochschild degree we
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introduced earlier. We will simply denote this degree by degt and call it the homological
degree. We will say that x has (total) degree deg.x/Dqiaj tk if it has quantum degree i ,
Hochschild degree k, and homological degree j . We will denote the differential in the
complexes for the MOY graphs as dg and the differentials in the complexes (built from
�i and �o ) associated to crossings as dc . Both C. / and C. / are bicomplexes
with commuting differentials dg and dc .

A marked tangle diagram is a tangle diagram with markings such that the marks
partition the tangle diagram into arcs, positive crossings, and negative crossings. We
label the marks and the endpoints (if any) by variables in a similar fashion to marked
MOY graphs. We define rings associated to each marked tangle diagram � in a similar
manner to our constructions for marked MOY graphs.

Before defining a bicomplex for a tangle diagram, we recall a definition from homolog-
ical algebra.

Definition 3.8 Let C D .C��; dh; dv/ and C 0 D .C 0
��
; d 0

h
; d 0v/ be two bicomplexes.

We define the tensor product bicomplex C ˝C 0 D ..C ˝C 0/��; d
˝

h
; d˝v / as follows:

.C ˝C 0/mn D

M
iCkDm;jC`Dn

.Cij ˝C 0k`/;

d˝
h
.x˝y/D dh.x/˝yC .�1/ix˝ d 0h.y/ for x 2 Cij and y 2 C 0k`;

d˝v .x˝y/D dv.x/˝yC .�1/kx˝ d 0v.y/ for x 2 Cij and y 2 C 0k`:

We can now build a bicomplex for any tangle diagram (and link diagram) in a similar
manner to what we did in Section 3.3 for MOY graphs. To a disjoint union of (marked)
tangles � D �1 t �2 we associate the bicomplex of E.�/–modules

C.�/ WD C.�1/˝Q C.�2/:

Similarly if we are gluing two tangles �1 and �2 at the marked points zD z1; : : : ; zk

in such a way that the orientations are consistent, then we define a bicomplex of
E.�1[z �2/–modules

C.�1[z �2/D C.�1/˝QŒz� C.�2/:

We omit the rest of the details in this case, and leave it to the reader to compare with
the analogous conventions for marked MOY graphs. Now let ˇ 2 Brn be a braid with
n strands. We can mark ˇ in such a way that we partition it into arcs and crossings of
the form or and we label the endpoints and markings in a similar manner to
our conventions for marked MOY graphs. Therefore we can use the rules of disjoint
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unions and gluing of tangles to write a bicomplex C.ˇ/ of E.ˇ/–modules. In this
case, E.ˇ/DQŒx;y � where jxj D jy j D n.

We now describe the construction of the HOMFLY-PT homology of a link L. Suppose
that ˇ 2 Brn is a braid representative of L, that is L is the circular closure of ˇ
in R3. We will often use the notation Lˇ for the link diagram of the closure of ˇ.
Then we can describe the bicomplex C.Lˇ/DC.ˇ/˝QŒx;y�C.1n/, where 1n denotes
the identity braid (oriented downwards) with the top endpoints labeled by y and the
bottom endpoints labeled by x. We refer the reader to Figure 12 for an example of this
decomposition of a braid closure.

Lˇ

x1 x2

y1 y2

x1 x2

y1 y2

ˇ

x1 x2

y1 y2

12

Figure 12: A link presented as a braid closure and the constituent tangles

Definition 3.9 Suppose L is a link with braid representative ˇ2Brn. The HOMFLY-PT

homology of Lˇ is H.Lˇ/DHdc�
.Hdg

.C.Lˇ///.

Remark 3.10 H.Lˇ/, as defined above, arises as the E2–page of a spectral sequence.
Let L be an n–component link. It is easily shown that the E1–page of that spectral
sequence is the homology of the n–component unlink (up to a grading shift). In
particular, Hdc

.C.L// is isomorphic to the E1–page.

Theorem 3.11 (Khovanov and Rozansky [12]) Suppose ˇ 2 Brn and ˇ0 2 Brn0 are
two braid representatives of a link L. Then H.Lˇ/ Š H.Lˇ0/ up to a grading shift.
Furthermore, suppose the Poincaré series (see (1-1)) of H.Lˇ/ is given by

P.Lˇ/D
X

i;j ;k2Z

di;j ;kqiaj tk ; where di;j ;k D dimQ.H.Lˇ//i;j ;k :

Then
P.Lˇ/jtD�1 D

X
i;j ;k2Z

di;j ;kqiaj .�1/k D P .Lˇ/:
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4 HOMFLY-PT homology for general link diagrams

In this section we study what happens when we consider general link diagrams in the
construction of HOMFLY-PT homology. We will see that not all Reidemeister moves
are respected, and that in general HOMFLY-PT homology is only an invariant up to
braidlike isotopy.

4.1 Virtual crossings and marked MOY graphs

We start by introducing virtual crossings into the framework of (marked) MOY graphs.
We will not fully discuss virtual knot theory here, but rather refer the reader to Kauff-
man [9]. Virtual crossings were first considered as a tool in HOMFLY-PT and sln
homologies by Khovanov and Rozansky in [11], and studied further by the author and
Rozansky in [1].

A virtual MOY graph is a MOY graph where we allow the underlying graph to be
nonplanar. Such a graph can always be drawn where the intersections forced by the
projection onto the plane are transverse double points. An example of this is given in
Figure 13. To the marked virtual crossing graph we associate the following complex of
free E. /DQŒx1;x2;y1;y2�–modules:

(4-1) C. /D

�
y1�x2

y2�x1

�
E. /

Dq4E. / A
�!q2E. /˚q2E. / B

�!E. /;

where

AD

�
y1�x2

y2�x1

�
; B D

�
x1�y2 y1�x2

�
:

Note that C. / resembles C. / except for a transposition of x1 and x2 in the
definition of the complexes. In this sense, we can think of a virtual crossing as being a
permutation of strands with no additional crossing data or vertex at the intersection.

x1 x2

y1 y2

Figure 13: A (marked) virtual crossing and an example of a virtual MOY graph

Proposition 4.1 The moves in Figure 14 preserve the homotopy equivalence type
of C.�/.
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$ $

(VMOY2a)

$

(VMOY2b)

$ $

(VMOY3a) (VMOY3b)

Figure 14: Virtual MOY moves (marks included for reference for Proposition 4.1)

Proof We begin with (VMOY2a). Let t1 and t2 be the variables associated to the
marks (from left to right) in the diagram on the left for (VMOY2a). The left-hand side
of (VMOY2a) is presented as the Koszul complex of the sequence

.y2� t1;y1� t2; t1C t2�x1�x2; .t1�x1/.t1�x2//:

Let w D y1Cy2�x1�x2. Then2664
y2� t1
y1� t2

t1C t2�x1�x2

.t1�x1/.t1�x2/

3775
QŒx;y;t�

'

2664
y2� t1
y1� t2
w

.t1�x1/.t1�x2/

3775
QŒx;y;t�

'

24 y1� t2
w

.y1�x1/.y1�x2/

35
QŒx;y;t2�

'

�
w

.y1�x1/.y1�x2/

�
QŒx;y�

:

The first isomorphism is a change of basis and the other two isomorphisms are mark
removals. The last term is the Koszul complex for C. /. The second isomorphism
in (VMOY2a) is proven by a similar argument. Next we prove (VMOY2b). For
consistency, we label the bottom endpoints x1 and x2, the top endpoints y1 and y2

and the marks by t1 and t2 (reading from left to right). The left-hand side of (VMOY2b)
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can be written as2664
y2� t1
t2�y1

t1Cx1� t2�y2

.t1�x2/.t1� t2/

3775
QŒx;y;t�

'

�
y2Cx1�y1�y2

.y2�x2/.y2� t2/

�
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1 and t2. Likewise,
the right-hand side of (VMOY2b) can be written as2664

y2C t2�y1� t1
.y2�y1/.y2� t1/

t1�x2

x1� t2

3775
QŒx;y;t�

'

�
y2Cx1�y1�y2

.y2�x2/.y2� t2/

�
QŒx;y�

;

where again the isomorphism is given by removing the internal variables t1 and t2.
This proves (VMOY2b).

Now we approach (VMOY3a). For both diagrams in (VMOY3a), label the top variables
as y1, y2, y3 and bottom variables as x1, x2, x3 from left to right. Also label the
marks as t1, t2, t3 from bottom to top. The associated Koszul complex to the left-hand
side is 266666664

y1� t3
y2� t2
t2�x2

t1�x1

y3C t3� t1�x3

.t3� t1/.t3�x3/

377777775
QŒx;y;t�

'

24 y2�x2

y1Cy3�x1�x3

.y1�x1/.y3�x3/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. Likewise,
the associated Koszul complex to the right hand-side is given by266666664

y3� t3
y2� t2
t1�x3

t2�x2

21C t3� t1�x1

.y1�x1/.y1� t1/

377777775
QŒx;y;t�

'

24 y2�x2

y1Cy3�x1�x3

.y1�x1/.y3�x3/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. This
proves (VMOY3a).

The approach to proving (VMOY3b) is almost identical, but we include it for com-
pleteness. For both diagrams in (VMOY3b), label the top variables as y1, y2, y3 and
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bottom variables as x1, x2, x3 from left to right. Also label the marks as t1, t2, t3
from bottom to top. The associated Koszul complex to the left-hand side is266666664

y1� t3
y2� t2
y3� t1
t3�x3

t2C t1�x1�x2

.t2�x1/.t2�x2/

377777775
QŒx;y;t�

'

24 y1�x3

y2Cy3�x1�x2

.y2�x1/.y2�x2/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. Likewise,
the associated Koszul complex to the right hand-side is given by266666664

y1� t1
y2Cy3� t3� t2
.y2� t3/.y2� t2/

t3�x1

t2�x2

t1�x3

377777775
QŒx;y;t�

'

24 y1�x3

y2Cy3�x1�x2

.y2�x1/.y2�x2/

35
QŒx;y�

;

where the isomorphism is given by removing the internal variables t1, t2, t3. Therefore,
(VMOY3b) is proven.

For any virtual link diagram D, that is a link diagram with virtual crossings, we can
repeat the procedure from Section 3.4 to build a bicomplex of E.D/–modules. We
now record the additional “virtual” Reidemeister moves.

Proposition 4.2 The moves in Figure 15 preserve the homotopy equivalence type
of C.D/. The isomorphisms (VR1), (VR2a), (VR2b), (VR3), and (SVR) are called
virtual Reidemeister moves, and the isomorphisms (Z1˙) and (Z2˙) are called Z-
moves.

The proofs of (VR1), (VR2a), (VR2b), and (VR3) follow the same outline (write
Koszul complexes for both sides, and compare after mark removal) as the proof of
Proposition 4.1. (SVR) and the Z-moves follow from resolving the single crossing and
applying the moves (VR2a), (VR2b), (VMOY2a), (VMOY2b), and (VMOY3a). Note
that our Koszul complexes for many of our diagrams are free resolutions of certain
bimodules. On the level of these bimodules these moves are proven in other sources.
(VR1) is proven in Lemma 6.5 of [1], (VR2a), (VR3), (SVR), (Z1C), and (Z1�) are
proven in [17, Lemma 3.1, Lemma 3.2 and Theorem 3.4] and [1, Theorem 2.2]. Strictly
speaking, a different move from the Z-moves, called “virtualization moves” are proven
in these texts. However, the Z-moves follow via tensoring with a virtual crossing
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$

(VR1)

$

(VR2a)

$

(VR2b)

$

(VR3)

$

(SVR)

$ $ $ $

(Z1C) (Z1�) (Z2C) (Z2�)

Figure 15: Virtual Reidemeister moves and Z-moves

and applying (VR2a). A little more needs to be said about the moves (Z2˙). After
resolving the crossing we apply (VMOY2b) and note, up to a relabeling of variables,
the differential does not change.

4.2 Virtual filtrations of signed MOY graphs and a key lemma

Virtual crossing filtrations were first introduced by the author and Rozansky in [1]. We
now introduce these filtrations in our current setting as an eventual tool in proving the
failure of certain Reidemeister moves. In this text, we use virtual filtrations to prove a
key lemma in the process of finding an explicit example of failure of Reidemeister IIb.

Definition 4.3 Let R be a commutative ring and let C and D be chain complexes of
objects in an additive category. Let � Œi � denote the homological shift functor given by
Cj Œi �DCj�i . Define Homk.C;D/ to be the Z–module of chain maps f W C!DŒ�k�

quotiented by the submodule of chain maps homotopic to the zero map.

In [11], Khovanov and Rozansky make the following observation.

Proposition 4.4 There exists a unique map F 2 Hom1.C. /; q2C. //, up to
rescaling, such that Cone.F / is homotopy equivalent to C. /. Likewise there exists
a unique map, up to rescaling, G 2 Hom1.C. /; q2C. // such that Cone.G/ is
homotopy equivalent to C. /.
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We will call the maps F and G virtual saddle maps. In our presentation of C. /

and C. / we can write the virtual saddle maps explicitly. We give the following
explicit presentation of the virtual saddle map G and leave it to the reader to do the
same for the analogous map F :

C. /

G

��

a2q4E

�
x1�y2

x2�y1

�
//�

1
�1

�
&&

aq2E˚ aq2E
.x2�y1 y2�x1/

//

.1 1/

((

E

q2C. / a2q6E �
x1�y1

x2�y2

� // aq4E˚ aq4E
.x2�y2 y1�x1/

// q2E

The mapping cone presentations give rise to filtrations. In particular, Cone.F / has
q2C. / as a submodule and C. / as the quotient Cone.F /=q2C. /. We call
this filtration the negative filtration and denote it as C�. /. Likewise Cone.G/ has
q2C. / as a subcomplex and C. / as the quotient complex Cone.F /=q2C. /.
We call this filtration the positive filtration and denote it as CC. /.

We will often identify C�. / with Cone.F / (and CC. / with Cone.G/) and con-
sider the filtered complexes as mapping cones. This process simplifies the differential dc

so that it can be presented in the following manner (as proven in [1]).

Proposition 4.5 The bicomplex C. / is homotopy equivalent to the bicomplex
C. /

�i
�! tq�2CC. /, where �i denotes the canonical inclusion of C. / into

Cone.G/. Suppose C. / has the trivial filtration. Then �i is a filtered map with
respect to the filtration on CC. / and thus C. / is a filtered bicomplex.

In addition, C. / is homotopy equivalent to the bicomplex t�1C. /
�o
�!C. /,

where �0 is the canonical projection of C. / from Cone.F /. The projection �o is
a filtered map with respect to the filtration on C�. / and thus C. / is a filtered
bicomplex.

We can extend this filtration to any tangle or link diagram via the tensor product
filtration. We will also refer to the given filtration on the bicomplex associated to a
tangle as a virtual filtration. The following theorem was the main focus of [1].

Theorem 4.6 Let ˇ be a braid on n strands, and Lˇ denote its circular closure. Then
the virtual filtration on C.ˇ/ is invariant under Reidemeister IIa and is violated by at
most two levels by Reidemeister III. Furthermore, the virtual filtration on H.Lˇ/ is
invariant under the Markov moves (up to a possible shift in filtration).
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We now focus on describing the filtrations on MOY graphs, which will be useful in
proving Lemma 4.10. A signed MOY graph is a MOY graph where each vertex is
marked by a sign C or �. Suppose � is a signed MOY graph marked so that it is
partitioned into graphs of the form and . Then we can define a filtration on C.�/.
To each MOY vertex marked with a C we associate CC. /, and to each MOY vertex
marked with a � we associate C�. /. We give the trivial filtration to C. /. Then
the filtration on C.�/ is given by the tensor product filtration.

If we choose different sign assignments, then we receive homotopy equivalent com-
plexes for C.�/, but not necessarily filtered homotopy equivalent complexes (eg
C�. / and CC. / are not filtered homotopy equivalent). For this reason, if " is a
assignment of signs to each MOY vertex of � , then we will write C".�/ for the filtered
complex we get from the above construction.

With this construction in mind, we may present every MOY graph as an iterated
mapping cone of graphs with only virtual crossings and no MOY vertices. We will
commonly use the alternate notation for mapping cones shown in Figure 16.

A B
f

WD Cone.f W A! B/

Figure 16: Alternate notation for mapping cones

Example 4.7 We now consider the signed MOY graph � D whose left vertex
is labeled by C and right vertex is labeled by �. We can present CC�.�/ as one of
the two equal iterated mapping cones:

C. / q2C. /

q2C. / q4C. /

1˝F

G˝ 1

1˝F

�G˝ 1

C. / q2C. /

q2C. / q4C. /

1˝F

G˝ 1

1˝F

�G˝ 1

Equality of the above iterated mapping cones follows from the associativity of the
mapping cone operation. Note that the dotted arrow is the zero map, but is drawn in
the diagram above as a reminder that such a map may be needed after simplifying the
above complex.
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� � �

� � �

�

Figure 17: Partial braid closure of a virtual braidlike MOY graph

Next we state a few simplifications and tools which will be necessary in proving our
key lemma. The following lemma is proven in [1].

Lemma 4.8 Let y and y denote the partial braid closure of and respec-
tively (see Figure 17). We write yGW C. y /! q2C. y / for the map induced by G

under partial braid closure, and similarly for yF . Then

(1) Cone. yG/' Cone.0/' C. /˚ q2C. /,

(2) Cone. yF /' Cone
�

aq2C. /˚
1C aq4

1� q2
C. /

.1 0/
���! q2C. /

�
,

(3) Cone. yF /' Cone. yG/'
1C aq4

1� q2
C. /.

Furthermore, the homotopy equivalences in (1) and (2) are filtered.

A proof of the following result can be found in other texts on link homology such as [5].

Proposition 4.9 Consider the complex

A

�
�
˛

�
// B˚C

�
'
�
�
�

�
// D˚E

�
�
"

�
// F;

where 'W B!D is an isomorphism and all other maps are arbitrary up to the condition
that d2 D 0. Then there exists a homotopy equivalence:

A

�
�
˛

�
//

.1/

��

B˚C

.0 1/

��

�
'
�
�
�

�
// D˚E

.��'�1 1/

��

.� "/
// F

.1/

��

A

.1/

OO

.˛/
// C

�
�'�1�

1

�OO

.���'�1�/
// E

�
0
1

�OO
."/

// F

.1/

OO

We call this homotopy equivalence Gaussian elimination.

We now look at the analogue of (MOYIIb) from Figure 6. This will be our key lemma
in simplifying the Reidemeister IIb complex.
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Lemma 4.10 Let

zC . /D
q2C aq6

1� q2
C. /:

Then

C. /' zC . /˚C. /:

Proof Consider C. / with the filtration described in Example 4.7. We then
consider C. / as the iterated mapping cone:

(4-2)

C. / q2C. /

q2C. / q4C. /

1˝F

G˝ 1

1˝F

�G˝ 1

The maps

G˝ 1W C. /! q2C. / and 1˝F W q2.C. //! q4C. /

can be viewed as maps between partial braid closures yG˝1# and 1"˝ yF respectively.
We now apply isomorphisms (1) and (2) of Lemma 4.8 and associativity of the mapping
cone operation to simplify the complex (4-2) to:

(4-3)

C. / q2C. /

aq4C. /˚ zC . / q4C. /

1˝F

0 �
1
0

� �G˝ 1

Note the dotted arrow may no longer be the zero map, but knowledge of the exact map
will ultimately not be necessary. Now we apply Gaussian elimination to the bottom
mapping cone in (4-3) to get:
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(4-4)

C. / q2C. /

zC . / 0

1˝F

0

0

0

The top mapping cone is isomorphic to C. / by Proposition 4.5. Therefore
C. /' zC . /˚C. / as desired.

4.3 Failure of Reidemeister IIb for H.D/

Now with the introduction of virtual crossings, we can study the exact outcome of
allowing general link diagrams in the computation of H.D/.

We now state the main result of this section.

Theorem 4.11 The isomorphism C. /' tq�2C. / holds.

Proof We first write C. / using (3-15) and (3-16):

C. /D t�1C. / A
�!C. /˚ q�2C. / B

�! tq�2C. /;

where the tensor product above is over the appropriate ring of internal variables and

AD

�
1˝�0

�i ˝ 1

�
and B D

�
�i ˝ 1 �1˝�o

�
:

We use the isomorphisms from Proposition 3.7 and Lemma 4.10 to rewrite the complex
as

q�2 zC . / D
!q�2 zC . /˚C. /˚q�2C. / F

!C. /˚q�2C. /;

where the underlined term is in homological degree 0 (omitting homological shifts for
compactness of notation) and

D D

0@1

�

�

1A and F D

�
� 1 0

� � �1˝�o

�
:

Note the maps � are irrelevant to our discussion. Note above, we use the map �1˝�o

to denote the map �1˝�o W q
�2C. /!C. /'C. / (the isomorphism
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following from (VR1)). After performing Gaussian elimination on the complex above,
we are left with

C. /' q�2C. /
1˝�o
���! tq�2C. /

' tq�2C. /˝ .t�1C. /
�o
�!C. //

' tq�2C. /:

Example 4.12 We now give an example where the local failure of Reidemeister IIb
gives a failure of isotopy invariance for a certain link diagram. Let D be the diagram
for the unknot given in Figure 18, and let O denote the standard diagram of the unknot
as a circle bounding a disc in R2. Then we have the following chain of isomorphisms

H.D/' t2q�4H.D0/' t2q�4H.D00/' t2q�4H.D000/:

The first isomorphism is given by applying Theorem 4.11 twice. The second isomor-
phism following from applying (Z2�) from Proposition 4.1. The last isomorphism
follows from applying (VR2b) from Proposition 4.1. D000 is the diagram of the left-
handed trefoil knot, and we computed P .D000/ in Example 2.7. This is enough to show
that H.D/ 6'H.O/; however, it is an easy exercise to show that

H.D000/D .aq2
C t2q2

C t2aq4/
1C aq2

1� q2
Q 6'

1C aq2

1� q2
Q'H.O/:

D D0

D00 D000

Figure 18: The failure of Reidemeister IIb for an unknot diagram. The above
diagrams all have the same HOMFLY-PT homology up to a grading shift.
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4.4 Braidlike isotopy and H.L/

As we saw in Example 4.12, HOMFLY-PT homology for general link diagrams is not
an isotopy invariant. However, it was proven in [12] that it was a braidlike isotopy
invariant. We now carefully recall the definition of braidlike isotopy.

Definition 4.13 Two oriented link diagrams D and D0 are said to represent braidlike
isotopic links if they differ by a sequence of planar isotopies and the following moves
in Figure 19. Such a sequence of moves will be called a braidlike isotopy.

� � �

Figure 19: Braidlike Reidemeister moves

Theorem 4.14 (Khovanov and Rozansky [12]) Let D and D0 be two braidlike
isotopic link diagrams. Then H.D/'H.D0/.

Braidlike isotopy is an important notion in studying links in the solid torus. It is a
well-known fact that two braid closures in the solid torus give isotopic links if and
only if the braids are equivalent, or rather if they are braidlike isotopic. Audoux and
Fiedler in [3] give a deformation of Khovanov homology which detects braidlike
isotopy of links in R3. Their invariant decategorifies to a deformation of the Jones
polynomial which can be computed using a Kauffman bracket-like relation. In the case
of closed braid diagrams, their invariant corresponds with the homology theory studied
in [2] by Asaeda, Przytycki and Sikora and the decategorification corresponds with the
polynomial invariant studied by Hoste and Przytycki in [7].

We can now interpret Example 4.12 in the following manner: The unknot diagram D

shown in Figure 18 is isotopic, but not braidlike isotopic to the standard unknot
diagram O . In particular, there is no sequence of Reidemeister moves transforming
D to O which does not contain the Reidemeister IIb move. In this sense, we see that
H.D/ can detect nonbraidlike isotopy. Note that H.D/ is isomorphic to the homology
of the left-handed trefoil knot (after two negative Reidemeister I moves), though clearly
D is not a diagram for the left-handed trefoil knot. Therefore, this viewpoint of H.D/
may not be useful in determining isotopy type of general diagrams, but can be very
useful when we know the two diagrams are of the same isotopy type and we wish to
determine if they are of the same braidlike isotopy type.
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We can also see easily that the Poincaré series of H.D/ and H.O/ differ. Direct
calculation shows that P.D/D .aq2C t2q2C t2aq4/P.O/. This implies that we may
be able to detect nonbraidlike isotopies on the level of the MOY calculus. As we will
see in the next section, after a deformation of the MOY theory, this is indeed the case.

5 Decategorification of H.D/ for general link diagrams

In this section we study the decategorification of H.D/, which we will denote by Pb.D/.
As we saw in Example 4.12, Pb.D/¤P .D/ in general. In particular, when this occurs,
this implies that D is not braidlike isotopic to a closed braid presentation of a link. We
will end this section with a note on virtual links and give an explicit example of where
Pb.D/ is not invariant under the virtual exchange move, which implies that H.D/
cannot be extended to a virtual link invariant.

5.1 A deformation of the HOMFLY-PT polynomial

Let D be a link diagram and recall P.D/ is defined as the Poincaré series of H.D/.
We define our deformed HOMFLY-PT polynomial as

(5-1) Pb.D/D P.D/jtD�1 2 Z.q; a/:

Theorem 5.1 Let D and D0 be two link diagrams which are braidlike isotopic. Then
Pb.D/D Pb.D0/. Furthermore, Pb satisfies the following skein relation:

(5-2) qPb. /� q�1Pb. /D .q� q�1/Pb. /:

Proof The first statement is an immediate corollary of Theorem 4.14. For the
second part of the statement, note that we have a map of homological degree 1
 W tq�1C. /! qC. / given by:

tq�1C. /

 
��

q�1C. /
�o
//

1

&&

tq�1C. /

qC. / qC. /
�i
// tq�1C. /

The mapping cone of  , after Gaussian elimination, is homotopy equivalent to

qC. /
��o�i
���! tq�1C. /;

and therefore

(5-3) Cone
�
tq�1C. /

 
�!C. /

�
'
�
qC. /

��o�i
���! tq�1C. /

�
:

Properties of the Euler characteristic of a chain complex and (5-3) gives us the relation
(5-2) as desired.
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D � q�2 D �

D
1C aq2

1� q2

(MOY 0)

D
1C aq4

1� q2

(MOY I)

D .1C q2/

(MOY IIa)

D C
q2C aq6

1� q2

(MOY IIb*)

C q2 D q2 C

(MOY III)

Figure 20: MOY relations for P b.D/ and the deformed MOY IIb relation
(the notation P b. � / omitted for readability)

Corollary 5.2 If D is a link diagram presented as a braid closure, then Pb.D/ D

P .D/. Equivalently if D is a link diagram for some link L and Pb.D/¤ P .D/, then
D is not braidlike isotopic to a braid presentation of L.

Corollary 5.3 The relation Pb. / = �q�2Pb. / holds. We call this rela-
tion the deformed Reidemeister II relation and denote it by (RIIb*).

We can also give a MOY-style construction for Pb.D/. In particular, we address the
relation (MOY IIb) from Figure 6. As we saw in Lemma 4.10, the categorified MOY IIb
relation does not hold as we would expect. However, we can decategorify the results in
Proposition 3.7, Proposition 4.1, Theorem 4.11 and Lemma 4.10 in a natural way.

Proposition 5.4 Let D be a link diagram. The braidlike Reidemeister moves, virtual
MOY moves, virtual Reidemeister moves, and the relations in Figure 20 hold for
Pb.D/.

Example 5.5 Let D be the diagram of the .2; 2kC 1/–torus knot given in Figure 21.
First note that we can transform D to D0 using (RIIb*) so that Pb.D/D q�4Pb.D0/.
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More precisely, we use the fact that

Pb. /D�q�2Pb. /D�q�2Pb. /

D q�4Pb. /D q�4Pb. /:

The equalities above follow (from left to right) by (R2b*), (Z2C), (MOYIIb*), and
(R2b*). D0 is isotopic to the .2; 2k�1/–torus knot via a planar isotopy and a (braidlike)
Reidemeister IIa move. Therefore via a straightforward calculation similar to that in
Example 2.7,

Pb.D/D
1C aq2

1� q2

�
.aC 1/

k�1X
iD1

q�i
C q�4k

�
:

However, if zD is a braid presentation of the .2; 2kC 1/–torus knot, then

Pb. zD/D
1C aq2

1� q2

�
.aC 1/

kX
iD1

q�i�2
C q�4k�2

�
:

Therefore D is not braidlike isotopic to a braid presentation of the .2; 2kC 1/–torus
knot for all k � 1.

:::
2k

D

:::
2k

D0

Figure 21: A nonbraidlike diagram D for the .2; 2kC 1/–torus knot and a
braidlike link diagram D0 for the .2; 2k � 1/–torus knot such that P b.D/D

q�4P b.D0/.

5.2 An obstruction to extending HOMFLY-PT homology to virtual links

Finally we wish to present an argument showing that the current definition of H.D/
cannot be extended to virtual links, even when they are presented as closures of virtual
braids. We will ultimately use Pb.D/ to justify this statement.

A virtual braid is a braid in which we allow virtual crossings alongside positive and
negative crossings. Two virtual braids are said to be equivalent if they differ by the
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moves from Figure 19 and the moves (VR2a), (VR3), and (SVR) from Figure 15.
Kauffman in [9] proves that every virtual link can be presented as the closure of a
virtual braid. There is also an analogue of the Markov theorem for virtual links.

Theorem 5.6 (Kamada [8]) Let ˇ and ˇ0 be two virtual braids. Their braid closures
are equivalent virtual links if and only if they differ by a sequence of virtual braid
equivalence moves (the braidlike Reidemeister moves, (VR2a), (VR3), and (SVR)),
the Markov moves, and the virtual exchange move. The Markov moves and virtual
exchange more are pictured in Figure 22.

� � �

� � �

� � �

ˇ

˛

� � �

� � �

� � �

˛

ˇ

$

Markov move I

� � �

� � �

� � �

ˇ

� � �

� � �

� � �

ˇ

� � �

� � �

ˇ

$ $

Markov move II

$

� � �

� � �

� � �

ˇ

˛

ˇ
$

˛

ˇ

Virtual exchange move

� � �

� � �

� � �

� � �

Figure 22: Markov moves for virtual links and the virtual exchange move. ˛
and ˇ are virtual braids.

Now we show by example that Pb.D/ is not invariant under the virtual exchange
move. Therefore H.D/ is not an invariant of virtual links, even when the links are
presented as virtual braid closures.

Example 5.7 Let L be a connected sum of two virtual Hopf links as shown in
Figure 23. ˇ1 and ˇ2 are two virtual braids whose closures are equivalent as virtual
links to L. In particular, ˇ1 and ˇ2 are related by Markov move I and the virtual
exchange move shown in Figure 22. Let D1 be the braid closure of ˇ1 and D2 be the
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L ˇ1 ˇ2

Figure 23: A connected sum of two virtual Hopf links, L, and two braid
presentations of L

braid closure of ˇ2. Using the relations from Figure 20 we can directly compute that

Pb.D1/D
1C aq2

1� q2

�
1� q�2

�
1C aq4

1� q2

��2

;

Pb.D2/D
1C aq2

1� q2

�
aq2
C 2

�
1C aq4

1� q2

�
� q�2

�
1C aq4

1� q2

�2�
:

It is easy to see that Pb.D2/¤ Pb.D1/. In particular,

Pb.D2/�Pb.D1/D q2.1C a/
1C aq2

1� q2
:

Therefore, Pb.D/ is not an invariant of virtual links and thus neither is H.D/.
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The topological sliceness of 3–strand pretzel knots

ALLISON N MILLER

We give a complete characterization of the topological slice status of odd 3–strand
pretzel knots, proving that an odd 3–strand pretzel knot is topologically slice if and
only if it either is ribbon or has trivial Alexander polynomial. We also show that topo-
logically slice even 3–strand pretzel knots, except perhaps for members of Lecuona’s
exceptional family, must be ribbon. These results follow from computations of the
Casson–Gordon 3–manifold signature invariants associated to the double branched
covers of these knots.
57M25; 57N70

1 Introduction

In the years since Fox first posed the slice-ribbon conjecture (Problem 1.33 on Kirby’s
list [14]), its validity has been established for several families of knots. The usual
strategy is to give an explicit list of ribbon knots in the family and then to provide an
obstruction to the smooth sliceness of all others in the family. An early example of this
is the following classification of the smoothly slice rational knots due to Lisca.

Theorem 1.1 (Lisca [16]) A rational knot is smoothly slice if and only if it is ribbon
if and only if it is in R.

R is an explicit family of rational knots known to be ribbon at least since the work
of Casson and Gordon [4]. Lisca argues that if K is not in R, then Donaldson’s
diagonalization theorem obstructs †2.K/ from smoothly bounding a rational homology
ball, and hence obstructs K from being smoothly slice.

In a similar spirit, though with entirely different methods, we give an almost complete
characterization of the topological sliceness of 3–strand pretzels via the computation of
Casson–Gordon signatures corresponding to the double branched cover. In particular,
we have the following complete characterization of topologically slice odd 3–strand
pretzel knots. (Note that we call a pretzel knot P .p1; : : : ;pn/ odd if all of its parameters
pi are odd and even if one parameter is even.)

Theorem 1.2 (Main Theorem A) Let K be an odd 3–strand pretzel knot with non-
trivial Alexander polynomial. Then K is topologically slice if and only if K is of the
form ˙P .p; q;�q/ or ˙P .1; q;�q � 4/ for some odd p; q 2N , in which case it is
obviously ribbon.
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By work of Freedman in [9], every knot with trivial Alexander polynomial is topologi-
cally slice. The following result, originally proved by Fintushel and Stern, illustrates
that this is far from true for 3–strand pretzel knots in the smooth category.

Theorem 1.3 (Fintushel and Stern [8]) Let K be a nontrivial odd 3–strand pretzel
knot with �K .t/D 1. Then K is not smoothly slice.

Theorems 1.2 and 1.3 therefore together give an alternate proof of the following
complete characterization of smoothly slice 3–strand pretzel knots given by Greene
and Jabuka in [11]. Their arguments, like Lisca’s, are smooth in nature and rely on
Donaldson’s theorem along with additional obstructions coming from Heegaard Floer
homology.

Theorem 1.4 (Greene and Jabuka [11]) Let K be an odd 3–strand pretzel knot.
Then K is smoothly slice if and only if it is ribbon if and only if K is of the form
˙P .p; q;�q/ or ˙P .1; q;�q� 4/ for odd p; q 2N .

Note that both Lisca and Greene and Jabuka actually prove stronger results that com-
pletely characterize the order of rational knots and odd 3–strand pretzel knots in the
smooth concordance group. Theorem 1.2 has the following nice corollary.

Corollary 1.5 Let K be a genus-one alternating knot. Then K is topologically slice
if and only if K is ribbon.

Proof Let K be a genus-one alternating knot. Then by work of Stoimenow in [18], K

either is an odd 3–strand pretzel knot with all parameters of the same sign (and hence
has nonzero signature and is not even algebraically slice) or is rational. Therefore we
may assume that K is a genus-one rational knot and hence (up to reflection) corresponds
to the fraction .4abC1/=.2a/ for some a; b> 0; see for example Burde and Zieschang
[2, Proposition 12.26]. Note that K has determinant 4abC 1> 1 and hence does not
have trivial Alexander polynomial. Therefore, since such knots can also be described
as the 3–strand pretzel knot P .1; 2a� 1;�.2bC 1//, Theorem 1.2 implies that K is
topologically slice if and only if it is ribbon.

We also consider the topological slice status of even 3–strand pretzel knots, and are
able to use Casson–Gordon signatures to prove the following theorem, where for odd
a> 0 we define Pa to be the even 3–strand pretzel knot P .a;�a� 2;�.aC 1/2=2/.

Theorem 1.6 (Main Theorem B) Let K be an even 3–strand pretzel knot that is not
of the form ˙Pa for a � 1; 11; 37; 47; 59 mod 60. Then K is topologically slice if
and only if K is of the form P .p; q;�q/ for some even p and odd q , in which case it
is obviously ribbon.

Algebraic & Geometric Topology, Volume 17 (2017)
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The family f˙Pag was first considered by Lecuona in [15]. Lecuona uses techniques
analogous to those of Greene and Jabuka to describe the smooth sliceness of even
3–strand pretzel knots, except for this exceptional family f˙Pag. In fact, Lecuona’s
results are much broader, essentially characterizing the smooth sliceness up to mutation
of all even pretzel knots not in this exceptional family. It follows from work of Jabuka
in [13] that the knots f˙Pag are exactly the even 3–strand pretzel knots with trivial
rational Witt class and determinant one.

Theorem 1.7 (Lecuona [15]) Let K be an even 3–strand pretzel knot that is not of
the form ˙Pa for any a� 1; 11; 37; 47; 49; 59 mod 60. Then K is smoothly slice if
and only if it is ribbon if and only if it is of the form P .p; q;�q/ for some even p and
odd q .

Lecuona conjectures that the (non)existence of a Fox–Milnor factorization for the
Alexander polynomial obstructs even the algebraic sliceness of the f˙Pag family.
When combined with Theorem 1.6, this would imply an affirmative answer to the
following conjecture.

Conjecture 1.8 Let K be an even 3–strand pretzel knot. Then K is topologically
slice if and only if K is ribbon.

We conveniently summarize Theorems 1.2 and 1.6 in this (slightly weaker) statement:

Theorem 1.9 Let K be a 3–strand pretzel knot with nontrivial determinant. Then K

is topologically slice if and only if K is ribbon.

Note that despite our almost complete understanding of topological sliceness for 3–
strand pretzel knots, it remains open whether smoothly slice equals topologically slice
for rational knots. Recent work of Feller and McCoy [7] shows that there are rational
knots with distinct smooth and topological 4–genera.

A natural next question is the extent to which double branched cover Casson–Gordon
signatures obstruct the topological sliceness of pretzel knots with more than three
strands. However, several difficulties arise. First, pretzel knots with more than three
strands have nontrivial mutations which often persist in concordance. (See the work of
Herald, Kirk and Livingston [12] for examples.) However, even if we are willing to
consider knots only up to mutation we cannot expect a complete answer from these
techniques. In particular, there exist algebraically slice odd 5–strand pretzel knots
with nontrivial Alexander polynomial but trivial determinant. (For example, consider
P .7; 11; 53;�5;�19/.) There is no reason to believe that these knots are topologically
slice, but there are also no double branched cover Casson–Gordon signatures to serve
as sliceness obstructions.

Algebraic & Geometric Topology, Volume 17 (2017)
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Outline of the paper In Section 2, we provide background and basic results on
Casson–Gordon signatures. In Section 3, we provide necessary results concerning the
colored signatures of links. In Section 4, we prove Main Theorem A (Theorem 1.2),
completely characterizing which odd 3–strand pretzel knots are topologically slice.
Finally, in Section 5 we briefly outline the arguments used to prove Main Theorem B
(Theorem 1.6), our result for even 3–strand pretzel knots.

2 Casson–Gordon signature invariants

Casson and Gordon associate to a knot K and a map �W H1.†n.K// ! Zd the
invariant �.K; n; �/ 2 L0.Q.!/.t//˝Q. Note that L0.Q.!/.t// is the Witt group
of nonsingular Hermitian forms on finite-dimensional Q.!/.t/–modules, where ! D
e2�i=d . These invariants obstruct the topological sliceness of K as follows.

Theorem 2.1 (Casson and Gordon [4]) Let K be a topologically slice knot and n a
prime power. Then there exists a square-root order subgroup M �H1.†n.K//, invari-
ant under the action of the covering transformations, with the linking form of †n.K/

vanishing on M �M (ie M is a metabolizer for the linking form) such that if � is a
prime-power order character with �jM D 0, then �.K; n; �/D 0.

While this is a powerful sliceness obstruction, �.K; n; �/ cannot generally be di-
rectly computed. Instead, as originated in [4], one relates the Witt class signature
x�1.�.K; n; �// to a simpler signature associated to any 3–manifold Y and character
from H1.Y / to a cyclic group. We give the definition of this signature, following [3].

First, whenever X�!X is a cyclic d–fold cover, perhaps branched, we let !D e2�i=d

and define the �–twisted homology of X to be the Q.!/ vector space

H
�
� .X / WDH�.C�.X�/˝ZŒZd �Q.!//ŠH�.X�/˝ZŒZd �Q.!/:

We now let Y be a closed 3–manifold and �W H1.Y /! Zd an onto homomorphism.
The map � induces a d–fold cyclic cover Y�! Y with a canonical generator � for
the group of covering transformations. Suppose that there is some d–fold branched
cyclic cover of 4–manifolds W�!W with branch set a closed surface F � int.W /

such that @.W�!W /D r.Y�! Y / for some r 2N . Suppose also that the covering
transformation z� of W� that induces rotation by 2�=d on the fibers of the normal
bundle of the preimage of F in W� induces the canonical covering transformation �
on Y� . We can always choose either F D∅ or r D 1 by bordism group considerations
and an explicit description in [3], respectively, and all of our work will be in one of these

Algebraic & Geometric Topology, Volume 17 (2017)
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cases. The action of z� on H WDH2.W�;C/ allows us to decompose H as the direct
sum of eigenspaces H k

2
.W�/ corresponding to eigenvalues !k for k D 0; : : : ; d � 1.

For k > 0, define �k.W�/ to be the signature of the intersection form of W� when
restricted to H k

2
.W�/. Note that �1.W�/ can be equivalently be defined as the signature

of the twisted intersection form on H
�
2
.W /DH2.W�/˝ZŒZd �Q.!/.

Definition 2.2 With the above setup, the k th Casson–Gordon signature of .Y; �/ is

�k.Y; �/D
1

r

�
�.W /� �k.W�/�

2k.d�k/

d2
.ŒF � � ŒF �/

�
:

Those familiar with the definition of �.K; n; �/ should note that we generally have
�1.†n.K/; �/ ¤ x�1.�.K; n; �//. However, we can bound the difference between
�1.†n.K/; �/ and x�1.�.K; n; �//, in a straightforward extension of [4, Theorem 3].

Theorem 2.3 (Casson and Gordon [4]) Let �W H1.†n.K//!Zd be an onto homo-
morphism. Then

j�1.†n.K/; �/� x�1.�.K; n; �//j � dim H
�
1
.†n.K//C 1:

Proof We follow the proof of [4, Theorem 3]. Let Mn denote the n–fold cyclic cover
of the 3–manifold S3

0
.K/ obtained by doing 0–surgery along K . For convenience

we let †n D †n.K/. Note that � determines a map H1.Mn/! Zd , which by an
abuse of notation we also refer to as �. By the usual bordism group considerations,
for some r 2N there is a compact 4–manifold Wn with boundary r†n such that �
extends over H1.Wn/. Note that Mn can be obtained from †n by a single 0–framed
surgery along eK , the preimage of K under the branched covering map. Therefore
rMn bounds a 4–manifold Vn obtained by attaching r 0–framed 2–handles to Wn .
Let � denote the nullity of the twisted intersection form on H

�
2
.Vn/. The arguments

of the proof of [4, Theorem 3] carry over verbatim to establish the inequality

j�1.Mn; �/� x�1.�.K; n; �//j �
�

r
:

Since our covers are unbranched, Definition 2.2 gives us

�1.†n; �/D
1

r

�
�.Wn/� �.H

�
2
.Wn//

�
;

�1.Mn; �/D
1

r

�
�.Vn/� �.H

�
2
.Vn//

�
:

By our construction of Vn from Wn , it is straightforward to verify that �.Vn/D �.Wn/

and that H
�
2
.Vn/ has a codimension-r subspace which is isometric to H

�
2
.Wn/. Note

that by duality the intersection form on H
�
2
.Vn/ has nullity equal to r dim H

�
1
.†n/,
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whereas by definition the intersection form on H
�
2
.Wn/ has nullity � . We thus have the

following, which when combined with our previous inequality gives the desired result:

j�1.†n;�/��1.Mn;�/jD
ˇ̌̌
1

r

�
�.Wn/��.H

�
2
.Wn//

�
�

1

r

�
�.Vn/��.H

�
2
.Vn//

�ˇ̌̌
D

1

r

ˇ̌
�.H

�
2
.Wn//��.H

�
2
.Vn//

ˇ̌
�

1

r

�
r �.��r dimH

�
1
.†n//

�
D dimH

�
1
.†n/C1�

�

r
:

The following corollary will be our main obstruction to topological sliceness.

Corollary 2.4 [4] Suppose that K is a topologically slice knot and that nD pr is a
prime power. Then there exists a metabolizer M for the linking form on H1.†n.K//

such that if � is a character of prime-power order d vanishing on M , then for any
k D 1; : : : ; d � 1,

j�k.†n.K/; �/j � dim H
�
1
.†n.K//C 1:

Proof Replacing � with a nonzero multiple of itself permutes f�k.†n.K/; �/g
d�1
kD1

while preserving the property of vanishing on M , so Theorems 2.1 and 2.3 combine
to give the desired result.

If the obstruction of Corollary 2.4 vanishes for characters from H1.†2.K// to Zd ,
then we will refer to K as CG-slice at d . The following proposition is often convenient
in recognizing that †n.K/� is a rational homology sphere, and hence that the bound
of Corollary 2.4 reduces to j�1.†n.K/; �/j � 1.

Proposition 2.5 (Casson and Gordon [3]) Suppose that Y is a rational homology
sphere with H1.Y;Zp/ cyclic for some prime p . Then any cyclic pn–fold cover of Y

is also a rational homology sphere.

In order to effectively apply this obstruction, we would like to be able to compute
�k.Y; �/ from an arbitrary integral surgery description of Y .

Definition 2.6 Let K be an oriented knot, and A an embedded annulus such that
@ADKt�K0 and lk.K;K0/D �. An �–twisted a–cable of K is any oriented link L

obtained as the union of n D nCC n� parallel copies of K in A such that nC are
oriented with K , n� opposite to K , and nC� n� D a.

Let LD
Sn

iD1 Li be an oriented link in S3 such that surgery along L with integer
framings f�ig

n
iD1

gives Y . We refer to the meridian of component Li as �i and let
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AD Œaij � be the linking matrix of L. The following proposition is a generalization of
[3, Lemma 3.1].

Proposition 2.7 (Gilmer [10]) Let Y be obtained by integer surgery on L as above
and �W H1.Y /! Zd be an onto homomorphism. Let L� be a satellite of L obtained
by replacing each Li by a nonempty �i–twisted mi–cable of Li , such that �.�i/�

mi mod d . Then for any 0< k < d ,

�k.Y; �/D �.A/� �L�
.!k/�

2k.d�k/

d2

� nX
i;jD1

mimj aij

�
:

In order to effectively apply Proposition 2.7 we will need to compute the Tristram–
Levine signatures of cables of links. The techniques of colored signatures prove useful
for this, as well as providing an independent means of computation for �1.Y; �/.

3 Colored signatures of colored links

A n–colored link is an oriented link L together with a surjective map assigning to each
component of L a color in f1; 2; : : : ; ng. We let Li denote the sublink of L consisting
of i–colored components, and call each Li a colored component. A C-complex for a
colored link L consists of a union of Seifert surfaces for the colored components of L

which intersect only in a prescribed way (in “clasps”; see [5] for the precise definition).

The colored signature of L is a map �LW .S
1/n!Z that is defined via the C-complex

in a way exactly analogous to the definition of the Tristram–Levine signatures in terms
of a Seifert surface for a link. The colored signature shares many properties, including
a 4–dimensional interpretation, with the ordinary signatures. We need the following
results, due primarily to Cimasoni and Florens [5]:

Recovery of Tristram–Levine signatures Let L be a n–component, n–colored link,
and call the underlying ordinary link L0 . Then for any ! 2 S1 � f1g, we have
�L.!; : : : ; !/D �L0.!/C

P
i<j lk.Li ;Lj /.

Additivity Let L0 DL0
1
[ � � � [L0m and L00 DL00

mC1
[ � � � [L00mCn be colored links

and L be the .mCn�1/–colored link obtained by connected summing any compo-
nent of L0m with any component of L00

mC1
. Then �L.!1; : : : ; !m; : : : ; !mCn�1/ D

�L.!1; : : : ; !m/C �L00.!m; : : : ; !mCn�1/:

Behavior under reversal and mirroring The colored signature is invariant under
global reversal of orientations. Also, letting L denote the mirror of L we have
�L.!1; : : : ; !n/D��L.!1; : : : ; !n/.
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Behavior at 1 (Degtyarev, Florens and Lecuona [6]) Let L be an n–colored link and
L0 be the .n�1/–colored link obtained by deleting the nth colored component of L.
Then �L.!1; : : : ; !n�1; 1/D �L0.!1; : : : ; !n�1/.

Hopf link computation Let L be either Hopf link, considered as a 2–colored link.
Then the colored signature function of L is identically 0.

We also need the following consequence of Degtyarev, Florens and Lecuona’s general
description of the signature of a splice in [6].

Example 3.1 Let L be the following 5–colored link:

c1 c2 c3

d�
dC

Let ˆ.L/ be the satellite of L obtained by replacing each component ci with a
coherently oriented torus link T .ai ;piai/ for i D 1; 2; 3. Observe that as an ordinary
oriented link, L is isotopic to its mirror image in a way that swaps components
dC and d� and preserves all other components. It follows that �L.!0; !0; E!/D 0 for
all !0 2 S1 and E! 2 .S1/3 . Let � 2 S1 be such that �ai ¤ 1 for i D 1; 2; 3. Then [6,
Theorem 2.2] and the above results imply that �ˆ.L/.�/D

P3
iD1 �T .ai ;pi ai /.�/.

Finally, in some cases colored signatures give us an alternate computational method
for Casson–Gordon signatures.

Theorem 3.2 (Cimasoni and Florens [5]) Let Y be a 3–manifold obtained by surgery
on a framed n–component link L with linking matrix AD Œaij �. Let �W H1.Y /! Zd

be a character of prime-power order that takes the meridian of each component of L to
a unit in Zd . Denote the lift of the image of the i th meridian of L to f1; : : : ; d � 1g

by mi . Consider L as a n–colored link, and let !� D .!m1 ; : : : ; !mn/. Then

�1.Y; �/D �.A/�

�
�L.!�/�

X
i<j

aij

�
�

2

d2

�X
i;j

.d �mi/mj aij

�
:

Note that in the case that every meridian is sent to 1 and k D 1, Theorems 2.7 and 3.2
both reduce to the original [3, Lemma 3.1].

4 Casson–Gordon signatures of 3–strand pretzels

We now give the outline of the proof of Theorem 1.2, deferring computations to later
propositions.
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Proof of Theorem 1.2 Suppose that K is an algebraically slice odd 3–strand pretzel
knot with nontrivial Alexander polynomial. We will argue that either the Casson–
Gordon signatures of †2.K/ obstruct the topological sliceness of K or the knot K is
in fact ribbon. Since K is algebraically slice, the ordinary signature of K vanishes,
and so an easy computation from the standard genus-one Seifert surface for K shows
that pqC qr Cpr < 0; see also [13]. Also, jH1.†2.K//j D �pq � qr �pr DD2

for some odd D 2N . Note that since K is a genus-one algebraically slice knot with
nontrivial Alexander polynomial, D2 ¤ 1 and hence D has prime divisors. Since
pqCpr C qr < 0, the parameters p , q and r are not all of the same sign and so via
reflection and the symmetries of 3–strand pretzel knots we can assume that p; q > 0

and r < 0.

In the following cases, the existence of a prime d that divides D and satisfies the
given conditions implies that the Casson–Gordon signatures of †2.K/ corresponding
to characters to Zd obstruct the topological sliceness of K :

Case 1 (Proposition 4.1) d divides p and q but not r .

Case 2 (Proposition 4.3) d divides r and exactly one of p and q .

Case 3 (Proposition 4.6) d divides all of p , q and r .

Case 4 (Proposition 4.10) d divides D but none of p , q and r ; p 6� q mod d ;
and r ¤�.4pC q/ (assuming without loss of generality that q > p ).

Case 5 (Proposition 4.11) d divides D but none of p , q and r D�.4pC q/.

Case 6 (Proposition 4.12) d divides D but none of p , q and r ; p � q mod d ;
and d ¤ 3.

Now suppose that there is no prime satisfying any of the above. It follows that p , q

and r are relatively prime, p � q mod 3, and D is a power of three. We show that in
this case the Casson–Gordon signatures corresponding to characters of order 3 and 9
obstruct topological sliceness in Proposition 4.13.

We now set up for our various computations. Note that if r equals one of �p and �q ,
there is a single band move taking K to a 2–component unlink, and hence K is ribbon.
So we suppose r ¤�p;�q . We start with the surgery diagram for †2.K/ in Figure 1,
with linking matrix

AD

2664
0 1 1 1

1 p 0 0

1 0 q 0

1 0 0 r

3775
and �.A/D 0. We refer to the meridians of each component by �0 , �p , �q and �r

according to their framings.
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p q r

0

Figure 1: A surgery diagram L0 for †2.P .p; q; r//

Note that A is a presentation matrix for H1.†2.K/, and that it is straightforward to
use row and column moves and obtain the smaller presentation matrix A0D

�
pCq

p
p

pCr

�
.

Let d be any prime dividing D and suppose that d does not divide all of p , q and r .
Observe that this implies that some entry of A0 is a unit in Zd , and hence by choosing
this as our pivot entry and working over Zd we can use row and column moves to
obtain A00 D

�
1
0

0
�

�
. Observe that A00 is a presentation matrix for H1.†2.K/;Zd /,

and so we see that H1.†2.K/;Zd / is cyclic and hence every regular dn–fold cyclic
cover of †2.K/ is a rational homology sphere (Proposition 2.5). In addition, when
H1.†2.K/;Zd / is cyclic any character �W H1.†2.K// ! Zd will vanish on any
metabolizer for the linking form; see [12, Lemma 8.2]. So we have the following:

Useful fact Suppose that K D P .p; q; r/ is topologically slice, d is a prime divid-
ing pq C qr C pr that does not divide all of p , q and r , and � is any character
H1.†2.K//! Zd . Then j�1.†2.K/; �/j � 1.

4.1 Cases 1 and 2: d divides some but not all of p , q and r

Proposition 4.1 (Case 1) Let K DK.p; q; r/, where

p; q > 0; r < 0 and pqCpr C qr D�D2:

Suppose that d is a prime that divides p and q but not r . Then the Casson–Gordon
signatures of †2.K/ associated to characters to Zd obstruct the topological sliceness
of K .

Proof We start by manipulating our surgery description for †2.K/. Slide the curves
with framing p and q over the curve with framing r . Then convert the 0–framed
2–handle to a 1–handle, and cancel the 1–handle with the r–framed 2–handle. We
end with a new surgery description for †2.K/ with underlying link L D T .2; 2r/

and framings pC r and qC r . The linking matrix of L is AD
�

pCr
r

r
qCr

�
and has

�.A/ D 0. Note that if we consider the entries of A mod d we get a presentation
matrix for H1.†2.K/;Zd / with respect to basis f�p; �qg, which immediately implies
that H1.†2.K/;Zd /Š Zd , with generator �p D��q .
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By our useful fact, it suffices to show that for some �W H1.†2.K//! Zd we have
that j�1.†2.K/; �/j> 1. Define � on H1.†2.K// by �.�p/D �.��q/D 1. So L�
is the torus link T .2; 2r/ with strands oppositely oriented. Note that �L�

.!k/D�1

for 0< k < d and so we have by Proposition 2.7 that

�k.†2.K/; �/D 1�2..pC r/�2rC .qC r//
k.d�k/

d2
D 1�2

�
pCq

d

��
k.d�k/

d

�
:

Note that d divides p and q , so pC q � 2d . Note that k.d � k/ � .d � 1/ for all
choices of k D 1; : : : ; d � 1. Since d � 3, we have

j�k.†2.K/; �/j � 2 � 2 �
�
1� 1

3

�
� 1D 8

3
� 1> 1:

The above proof shows �k.†2.K/; �/ < �1 for all choices of �W H1.†2.K//! Zd

and k D 1; : : : ; d � 1, giving the following easy corollary.

Corollary 4.2 For each odd prime s , let Ks D P .ps; qs; rs/ be an odd 3–strand
pretzel knot such that ps; qs > 0 are divisible by s; rs < 0 is not divisible by s; and
psqsCpsrsC qsrs D�s2 . Then fKsg is a basis of algebraically slice knots for a Z1

subgroup of the topological concordance group.

Note that such Ks exist; for example, we can take Ks D .s
2; s2;�.s2C 1/=2/. (Note

since s is odd s2C1 is equivalent to 2 mod 4 and so this is an odd pretzel as desired.)

Proof Suppose that KD
Pn

iD1 aiKsi
is topologically slice, where each ai is nonzero.

By reflecting K , we can assume without loss of generality that a1 > 0. Since K is
topologically slice and H1.†2.K/;Zsi

/ is nonzero, it follows from Theorem 2.1 that
there is some nontrivial character �W H1.†2.K//!Zs1

such that x�1.�.K; 2; �//D 0.
Observe that

H1.†2.K//D

nM
iD1

�
H1.†2.Ksi

//˚jai j
�
D

nM
iD1

�
Zsi

Œt � =ht C 1i
�˚jai j:

Note that � is trivial on each H1.†2.Ksi
// factor for i ¤ 1, and that � can be

decomposed as � D
Lja1j

jD1
�j , where each �j W H1.†2.Ks1

// ! Zs1
and at least

one �j is nontrivial. By the additivity of Casson–Gordon signatures,

x�1.�.K; 2; �//D

ja1jX
jD1

x�1.�.Ks1
; 2; �j //:

However, the proof of Proposition 4.1 shows that �1.†2.Ks1
/; �j / <�1 whenever �j

is nontrivial, and thatˇ̌
x�1.�.Ks1

; 2; �j /� �1.†2.Ks1
/; �j /

ˇ̌
� 1:
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It follows that x�1.�.K; 2; �j // is strictly negative whenever �j is nontrivial (and zero
when �j is trivial), and so x�1.�.K; 2; �// < 0, which is our desired contradiction.

Now we continue to the next case.

Proposition 4.3 (Case 2) Let K DK.p; q; r/. Suppose that there exists a prime d

that divides r and exactly one of p and q , but that r ¤ �p;�q . Then the Casson–
Gordon signatures of †2.K/ associated to characters to Zd obstruct the topological
sliceness of K .

Proof The argument is exactly analogous to that of the proof of Proposition 4.1, except
that we choose k to be .d � 1/=2; the details are left to the reader.

4.2 Case 3: d divides all of p , q and r

In this case, we have that H1.†2.K/;Zd / Š Zd ˚ Zd , and so there may be me-
tabolizers M � H1.†2.K// with nontrivial image in H1.†2.K/;Zd /. For each
such metabolizer we provide a character � to Zd vanishing on M such that the
corresponding Casson–Gordon signature has sufficiently large absolute value. We first
determine what “sufficiently large” is in the context of Corollary 2.4.

Lemma 4.4 Let �W H1.†2.K//!Zd . Then dim H
�
1
.†2.K// is 1 if �.�p/, �.�q/

and �.�r / are all nonzero and 0 otherwise.

Proof By slight simplifications of the Wirtinger presentation, we obtain

�1.S
3
�L0/D h�0; �p; �q; �r W �0�p D �p�0; �0�q D �q�0; �0�r D �r�0i;

where �� is any meridian of the �–framed curve, for � D 0;p; q; r . Note that the
0–framed longitudes of the surgery curves are given with respect to this generating
set by �0 D �r�q�p and �p D �q D �r D �0 . Gluing in solid tori according to the
surgery framings gives new relations

�0D�r�q�pD1; �p
p�pD�

p
p�0D1; �q

q�qD�
q
q�0D1; �r

r�r D�
r
r�0D1:

We therefore have the following presentation for �1.†2.K//, in which generators and
relators correspond respectively to the 1– and 2–cells of a cell-complex structure (with
a single 0–cell) on a space homotopy equivalent to †2.K/:

�1.†2.K//D

�
�0; �p; �q; �r W

Œ�0; �p �D Œ�0; �q �D Œ�0; �r �D 1;

�r�q�p D �
p
p�0 D �

q
q�0 D �

r
r�0 D 1

�
D
˝
�p; �q; �r W �r�q�p D �

p
p�
�q
q D �

p
p�
�r
r D 1

˛
:
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Any choice of x;y; z 2 Zd such that xCyC z � 0 mod d will define a character �
via �p 7! x , �q 7! y and �r 7! z . First suppose that none of x , y and z are
equivalent to 0. Then by replacing � with a nonzero multiple, which does not change
the underlying cover, we may assume that x D 1.

We now follow the Reidemeister–Schreier algorithm to lift these 0–, 1–, and 2–cells
to obtain a 2–complex with the same fundamental group as †2.K/� . Note that all
subscripts are considered mod d . First, lift the single 0–cell to d 0–cells o1; : : : ; od .
Note that �p has d lifts ˛1; : : : ; ˛d , where ˛i is a 1–cell from oi to oiC1; �q has d

lifts ˇ1; : : : ; ˇd , where ˇi is a 1–cell from oi to oiCy; and �r has d lifts 1; : : : ; d ,
where i is a 1–cell from oi to oiCz . We similarly compute the attaching maps of
the d lifts of each of the 2–cells. For example, the lifts of the 2–cell corresponding to the
relator �r�q�p have attaching maps of the form iˇzCi˛yCzCi for iD1; : : : ; d . Now
contract along ˛2; : : : ; ˛d to obtain a complex with a single 0–cell, .2dC1/ 1–cells,
and .3d/ 2–cells, with a corresponding presentation for �1.†2.K/�/. Abelianizing
gives a presentation for H1.†2.K/�/ with generators a; b1; : : : ; bd ; c1; : : : ; cd and
relations a C b1 C cx D 0; bk C cxCk�1 D 0 for k D 2; : : : ; d ; and .p=d/a D

.q=d/.b1C � � �C bd /D .r=d/.c1C � � �C cd /. This simplifies to

H1.†2.K/�/D
D
a; b1; : : : ; bd W

p

d
aD

q

d
.b1C � � �C bd /D�

r

d
.b1C � � �C bd C a/

E
:

So as a Q–module, H1.†2.K/�;Q/ has generators b1; : : : ; bd and single relation
.pqCprCqr/.b1C� � �Cbd /D 0. Note that the covering transformation of †2.K/�
sends bi onto biC1 for i D 1; : : : ; d�1, and we have that H1.†2.K/�;Q/ is a cyclic
QŒZd �–module with generator b1 and relator .pqCprCqr/.1CtCt2C� � �Ctd�1/b1 .
Since 1C �d C �

2
d
C � � �C �d�1

d
D 0, we have

H
�
1
.†2.K//DH1.†2.K/�;Q/˝QŒZd �Q.�d /ŠQ.�d /:

When one of x , y and z is 0, an extremely similar argument shows that †2.K/� is a
rational homology sphere and so dim H

�
1
.†2.K//D 0.

By considering the linking matrix A for L0 with its entries taken mod d , we see
that H1.†2.K/;Zd / is generated as a Zd–module by the images of �p; �q and �r

(which we continue to refer to as �p , �q and �r by a mild abuse of notation) and
has single relation �p C �q C �r D 0. Suppose that �W H1.†2.K//! Zd sends
�p to a, �q to b and �r to c , where 0 < a; b; c < d . We must have �.�0/ � 0

and aC bC c � 0 mod d . We will use Proposition 2.7 to compute �1.†2.K/; �/,
letting L� be the distant union of T .a;pa/, T .b; qb/ and T .c; rc/, each with all
strands coherently oriented, along with two incoherently oriented linking 0 strands
parallel to �0 , as in Figure 2.
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T .a;pa/ T .b; qb/ T .c; rc/

Figure 2: The link L� , pictured with aD 2 , b D 3 and c D 2

Note, as computed in Example 3.1, �L�
.!/D�T .a;pa/.!/C�T .b;qb/.!/C�T .c;rc/.!/.

Also, Litherland’s formula in [17] for the Tristram–Levine signature of a torus link
implies that �T .j ;jkn/.e

2� i=n/ D �2j .j � 1/k for 0 < j < n. While Litherland’s
result is stated only for torus knots, it holds for torus links as well. In particular, the
underlying computation in [1] of the signature of the Brieskorn manifold V .p; q; r/ı D

f.z1; z2; z3/ 2C3 W z
p
1
Cz

q
2
Czr

3
D ıg\D6 does not depend on any relative primeness

of the parameters p , q and r .

Therefore, we have that

�1.†2.K/; �/

D 0� �L�
.!/� 2.a2pC b2qC c2r/

�
d�1

d2

�
D��T .a;pa/.!/� �T .b;qb/.!/� �T .c;rc/.!/� 2.a2pC b2qC c2r/

�
d�1

d2

�
D 2a.a� 1/

p

d
C 2b.b� 1/

q

d
C 2c.c � 1/

r

d
� 2.a2pC b2qC c2r/

�
d�1

d2

�
D

2

d2
.a.d � a/pC b.d � b/qC c.d � c/r/:

Unfortunately, we cannot conclude that j�1.†2.K/; �/j> 1 for all such choices of �.
For example, when K D P .3 � 7; 5 � 7;�17 � 7/, d D 7, and � sends �p to 2, �q to 4

and �r to 1, we have j�1.†2.K/; �/j D
8

11
. However, this choice of � does not

vanish on any metabolizer for the linking form �W H1.†2.K//�H1.†2.K//!Q=Z,
and so there is still some hope to obstruct the sliceness of K via double branched cover
Casson–Gordon signatures.

Lemma 4.5 Suppose M is a metabolizer for the linking form on H1.†2.K// with
nonzero image in H1.†2.K/;Zd /. If �W H1.†2.K// ! Zd vanishes on M and
takes �p , �q and �r to nonzero elements of Zd , then �1.†2.K/; �/ is an integer that
is divisible by 4.

Algebraic & Geometric Topology, Volume 17 (2017)



The topological sliceness of 3–strand pretzel knots 3071

Proof For convenience, we write p D dp0 , q D dq0 and r D dr 0 . Note we have
assumed that M has nontrivial image in H1.†2.K/;Zd /, and hence we can assume
there is ˛D x�pCy�q 2M such that not both of x and y are equivalent to 0 mod d .

The linking form is given with respect to our �0 , �p , �q , �r generating set for
H1.†2.K// by �A�1 (Gordon and Litherland). Direct computation shows that
�.x�pCy�q;x�pCy�q/D .1=D

2/..qCr/x2�2rxyC.pCr/y2/. Since ˛ 2M ,
we know D2 and hence d2 divides .qC r/x2� 2rxyC .pC r/y2 , and so we have

(�) .q0C r 0/x2
� 2r 0xyC .p0C r 0/y2

� 0 mod d:

Now, let �W H1.†2.K//! Zd be a character vanishing on M . As usual, we write
a D �.�p/, b D �.�q/ and c D �.�r /, with aC bC c � 0 mod d . Since �.˛/ D
axC by � 0 mod d , we can write y D�axbx , and so neither x nor y is equivalent
to 0 mod d . Substituting into (�), we obtain

0� .q0C r 0/x2
� 2r 0xyC .p0C r 0/y2

� .q0C r 0/x2
C 2r 0axbx2

C .p0C r 0/a2xb2x2

� Œa2xb2p0C q0C .axbC 1/2r 0�x2 mod d:

Multiplying through by .b2=x2/ and recalling that c2 � .aC b/2 mod d gives us that
a2p0C b2q0C c2r 0 � 0 mod d . Finally, we can write

d2

2
�1.†2.K/; �/D a.d � a/pC b.d � b/qC c.d � c/r

D d.a.d � a/p0C b.d � b/q0C c.d � c/r 0/

D d2.p0C q0C r 0/� d.a2p0C b2q0C c2r 0/:

Observe that the right side is divisible by d2 , and hence �1.†2.K// is an integer.
Also, since d is odd, a.d � a/pC b.d � b/qC c.d � c/r is even for any choice of a,
b and c and �1.†2.K/; �/ is divisible by 4.

Proposition 4.6 (Case 3) Let K D P .p; q; r/, with p; q ¤�r and suppose that d

is a prime dividing all of p , q and r . Then the Casson–Gordon signatures of †2.K/

associated to characters to Zd obstruct the topological sliceness of K .

Proof Suppose that K is CG-slice at d , for a contradiction. So there exists a me-
tabolizer M � H1.†2.K// such that any character �0 of prime-power order that
vanishes on M has j�1.†2.K/; k�0/j � dim H

�
1
.†2.K//C 1 for all 0 < k < d . If

there exists � to Zd vanishing on M that takes any of �p , �q and �r to 0, then
†2.K/� is a rational homology sphere and arguments as in Cases 1 and 2 show that
there is some k such that j�1.†2.K/; k�/j> 1.
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So we can now assume that no such � exists. In particular, this implies that the image
of M in H1.†2.K/;Zd / is nontrivial. So let �0W H1.†2.K//! Zd be a nontrivial
character vanishing on M and taking none of �p , �q and �r to 0. Since K is
CG-slice, Corollary 2.4 and Lemma 4.4 combine to give us that j�1.†2.K/; k�0/j � 2

for all k . Lemma 4.5 gives us that �1.K; k�0/ is an integer divisible by 4 and so
�1.†2.K/; k�0/D 0.

Now, let � be a multiple of �0 such that �.�p/D 1 and �.�q/D b , and so �.�r /D

d � b� 1. We therefore have

0D
d2

2
�1.K; �/D .d � 1/pC b.d � b/qC .bC 1/.d � b� 1/r:(1)

We split into cases depending on the value of b .

Case I (0 < b < .d � 1/=2) In this case, we have .2�/.�p/D 2, .2�/.�q/D 2b ,
and .2�/.�r /D d � 2b� 2, so

0D
d2

2
.�1.K; 2�//D 2.d � 2/pC 2b.d � 2b/qC .2bC 2/.d � 2b� 2/r:(2)

We then have that

1

2
.2 eq(1)� eq(2)/D pC b2qC .bC 1/2r D 0;

1

2d
.4 eq(1)� eq(2)/D pC bqC .bC 1/r D 0:

It follows that .bC 1/r D�.b� 1/q and finally that pC q D 0, which is our desired
contradiction.

Case II (bD .d�1/=2) In this case, (1) simplifies to show that qCrD�4p=.dC1/.
Also, .2�/.�p/D 2 and .2�/.�q/D .2�/.�r /D d � 1, so

0D 2.d � 2/pC .d � 1/qC .d � 1/r:(3)

Substituting our expression for qC r into (3), we obtain that .d2 � 3d/p D 0, and
so d D 3. But this implies that qC r D�p , and hence that p is even, which is our
desired contradiction.

Case III (d=2 < b < d ) In this case, we have .2�/.�p/D 2, .2�/.�q/D 2b � d

and .2�/.�r /D 2d � 2b� 2. Therefore

(4) 0D
d2

2
.�1.K; 2�//

D 2.d � 2/pC .2b� d/.2d � 2b/qC .2b� d C 2/.2d � 2b� 2/r:
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We then have that
1

2
.2 eq(1)� eq(4)/D pC .d � b/2qC .d � b� 1/2r D 0;

1

2d
.4 eq(1)� eq(4)/D pC .d � b/qC .d � b� 1/r D 0

It follows that .d � b/q D �.d � b � 2/r , and finally that pC r D 0, which is our
desired contradiction.

4.3 Cases 4, 5 and 6: d divides pqCprC qr but not any of p , q , r

The link L0 considered as a 4–colored link has identically 0 colored signature, since it
is a connected sum of 2–colored Hopf links. Note that since d divides none of p , q

and r , every nontrivial character � to Zd has all of �.�p/, �.�q/, �.�r / and �.�0/

nonzero, and so Theorem 3.2 applies and we have the following simple formula for
�1.†2.K/; �/.

Proposition 4.7 Let K D P .p; q; r/ and suppose �W H1.†2.K//! Zd has �.�p/,
�.�q/, �.�r / and �.�0/ all nonzero. Let a, b , c and � be the unique lifts of �.�p/,
�.�q/, �.�r / and �.�0/ to f1; : : : ; d � 1g. Then

�1.†2.K/; �/D 3�
2

d2
f .�/;

where f .�/ WD .d��/.aCbCc/C.d�a/.apC�/C.d�b/.bqC�/C.d�c/.crC�/.

Remark 4.8 Note that the parity of aC bC c and of � together determine the parity
of f .�/; in particular, if aC bC c is odd then � and f .�/ have opposite parities.
Also, when aC bC c D d we have that

f .�/D d2
C d�C a.d � a/pC b.d � b/qC .aC b/.d � .aC b//r:

Lemma 4.9 Let �W H1.†2.K//! Zd , where d divides none of p , q and r . Then
f .�/ is divisible by d2 .

Proof First, recall that H1.†2.K// is presented by linking matrix A, and so our
a, b , c and � values must satisfy

aC bC c � apC � � bqC � � cr C � � 0 mod d:

We can rewrite f .�/ as

f .�/D d
�
.aC bC c/C .apC �/C .bqC �/C .cr C �/

�
�
�
�.aC bC c/C a.apC �/C b.bqC �/C c.cr C �/

�
:
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The first term can immediately be seen to be divisible by d2 , and so it suffices to show
that g.�/D �.aCbC c/Ca.apC �/Cb.bqC �/C c.crC �/ is also divisible by d2 .
Writing apC �D k1d , bqC �D k2d and cr C �D k3d for k1; k2; k3 2Z, we have

g.�/D a.apC �C �/C b.bqC �C �/C c.cr C �C �/

D
k1d � �

p
.k1d C �/C

k2d � �

q
.k2d C �/C

k3d � �

r
.k3d C �/

D
k2

1
d2� �2

p
C

k2
2
d2� �2

q
C

k2
3
d2� �2

r
:

Note that since d is relatively prime to all of p , q and r , we can multiply through
by pqr without changing the divisibility of g.�/ by d2 . We therefore have the desired
result, since

g.�/pqr D .k2
1d2
� �2/qr C .k2

2d2
� �2/pr C .k2

3d2
� �2/pq

D d2.k2
1qr C k2

2qr C k2
3pr/� .pqC qr Cpr/�2:

Proposition 4.10 (Case 4) Let K D P .p; q; r/ with p , q and r odd, q � p > 0,
and r < 0, and let d be some prime dividing pqC pr C qr which divides none of
p , q and r . Suppose also that r ¤�.4pCq/ and that p 6� q mod d . Then the Casson–
Gordon signatures of †2.K/ associated to characters to Zd obstruct the topological
sliceness of K .

Proof For the sake of contradiction, assume K is CG-slice at d. Since H1.†2.K/;Zd /

is cyclic, for any �W H1.†2.K//! Zd we must have

j�1.†2.K/; �/j D
ˇ̌̌
3�

2

d2
f .�/

ˇ̌̌
� 1:

Note that the first equality comes from Proposition 4.7 in the above equation. Therefore,
by Lemma 4.9 we have f .�/D d2 or 2d2 .

We will work with two characters. Note that our formula for f .�/ uses the unique
integer lifts of �.�i/ to f1; : : : ; d � 1g, so we will be careful to only write �.�i/D x

if 0 < x < d . We define �1 to have �1.�r / D 1, and �2 D 2�1 . It follows that
�1.�0/ is the unique integer � in .0; d/ such that �C r � 0 mod d , �1.�p/ is the
unique integer a in .0; d/ such that �Cap� 0 mod d , and �1.�q/D d�a�1. Note
that �i.�p/C�i.�q/C�i.�r /D d , so by Remark 4.8, f .�i/ has the opposite parity
as �i.�0/ for i D 1; 2. We now define some convenient notation:�

x1

x2

�
y

D

�
x1 if 0< y < d=2;

x2 if d=2< y < d
and

�
x1

x2

�
p.y/

D

�
x1 if y is even;
x2 if y is odd:
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We therefore have

�2.�p/D

�
2a

2a� d

�
a

; �2.�q/D

�
d � 2a� 2

2d � 2a� 2

�
a

; �2.�0/D

�
2�

2�� d

�
�

;

f .�1/D

�
d2

2d2

�
p.�/

and f .�2/D

�
d2

2d2

�
�

:

(Note that if aD .d � 1/=2, then �1 sends both �p and �q to .d � 1/=2. But this
implies that p � q mod d , which we have assumed is not the case.)

We thus have the following two equations from our formulas for f .�1/ and f .�2/:�
0

d2

�
p.�/

D d�Ca.d�a/pC.aC1/.d�a�1/qC.d�1/r;(5) �
0

d2

�
�

D d�C

�
a.d�2a/pC.aC1/.d�2a�2/q

.2a�d/.d�a/pC.2C2a�d/.d�a�1/q

�
a

C.d�2/r:(6)

Consider eq(7)D eq(5)� eq(6) and eq(7)D .1=d/.2 eq(5)� eq(6)/:�
0

d2

�
p.�/

�

�
0

d2

�
�

D

�
a2pC .aC 1/2q

.d � a/2pC .d � a� 1/2q

�
a

C r;(7) �
0

2d

�
p.�/

�

�
0

d

�
�

D �C

�
apC .aC 1/q

.d � a/pC .d � a� 1/q

�
a

C r:(8)

Note that the left side of (8) is even exactly when � < d=2, while the right side has the
same parity as � . So we can assume � < d=2 if and only if � is even, and (7) and (8)
simplify to the following:

0 D

�
a2pC .aC 1/2q

.d � a/2pC .d � a� 1/2q

�
a

C r;(9) �
0

d

�
�

D �C

�
apC .aC 1/q

.d � a/pC .d � a� 1/q

�
a

C r:(10)

We can use (9) to see that if a < d=2 then D D apC .aC 1/q and if a > d=2 then
D D .d � a/pC .d � a� 1/q . We will now split into cases, and show that each leads
to a contradiction by using (9) to write r in terms of a, d , p and q and substituting
this expression into (10). Note that since d divides D , we certainly have that d �D .

Case I (a; � < d=2) By combining (9) and (10) in this case, we see that we have
� D a2.pC q/C a.q�p/, and so

2a2.pC q/ < 2a2.pC q/C 2a.q�p/D 2� < d �D D apC .aC 1/q:
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It follows that .2a2�a/pC .2a2�a�1/q < 0, which gives the desired contradiction.

Case II (a < d=2< � ) In this case we have

0< d � � D�a.a� 1/p� a.aC 1/q < 0:

Case III (� <d=2< a) First, suppose aD d�2. Then (9) implies that r D�.4pC

q/, which we have assumed is not the case. So we can assume that a< d � 2, and so

DD .d�a/pC.d�a�1/q < .d�a/.d�a�1/pC.d�a�1/.d�a�2/qD � < d:

Case IV (d=2< a; � ) As in Case III, we can assume that a< d � 2, and so

0< d � � D�.d � a/.d � a� 1/p� .d � a� 1/.d � a� 2/q < 0:

Proposition 4.11 (Case 5) Suppose K D P .p; q; r/ for r D �.4pC q/. Suppose
d is a prime that divides pq C pr C qr but none of p , q and r . Then either
K D P .1; q;�.qC 4//, in which case K is ribbon, or the Casson–Gordon signatures
of †2.K/ corresponding to characters to Zd obstruct the topological sliceness of K .

Note that KDP .1; q;�.qC4// is a 2–bridge knot. If we write qD2kC1, then K is a
generalized twist knot corresponding to the fraction �.4.kC1/.kC2/C1/=.2.kC1//

and has been known to be ribbon at least since [3].

Proof Let � be the character sending �p to d�2, �q and �r to 1 and �0 to � . Then
�0 D 1

2
.d � 1/� sends �p to 1, �q and �r to 1

2
.d � 1/ and �0 to �0 . Arguments as

in the proof of Proposition 4.10 show that if p > 1 then at least one of j�1.†2.K/; �/j

and j�1.†2.K/; �
0/j is strictly larger than 1, and hence that K is not CG-slice at d .

Proposition 4.12 (Case 6) Suppose d divides pqCprCqr but none of p , q and r ,
p� q mod d and d ¤ 3. Then the Casson–Gordon signatures of †2.K/ associated to
characters to Zd obstruct the topological sliceness of K .

Proof For i D 1; 2, consider the characters �i W H1.†2.K// ! Zd defined by
�i.�p/D �i.�q/D i , �i.�r /D d � 2i and �i.�0/D �i . (Note that since d ¤ 3 we
have that d �2i > 0 for i D 1; 2.) Arguments as in the proof of Proposition 4.10 show
that at least one of j�1.†2.K/; �i/j is strictly larger than 1, and hence that K is not
CG-slice at d .

Proposition 4.13 Suppose that K D P .p; q; r/ has p , q and r relatively prime,
jH1.†2.K/j D jpqCprCqr j D 32n for some n 2N , and p� q mod 3. Then either
K is ribbon or the Casson–Gordon signatures associated to characters of order 3 and 9

obstruct the topological sliceness of K .
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Proof First, suppose that n � 2. Since p , q and r are pairwise relatively prime,
H1.†2.K// is cyclic, and any character to Z3n will vanish on the unique metabolizer
for the linking form. Proposition 2.5 implies that the associated covers are rational
homology spheres, and so it suffices to find such a character � with j�1.†2.K/; �/j>1.
The arguments of Propositions 4.10, 4.11 and 4.12 applied to d D 9 (according to
whether r D�.4pC q/ and whether p � q mod 9) show that this is the case.

Now suppose that nD 1 and so pqCpr Cpq D�9 and r D�.pqC9/=.pCq/. A
slight variation on our usual arithmetic arguments then implies that �1.†2.K/; �/<�1

for some �W H1.†2.K//! Z3 , and hence that K is not CG-slice at d D 3.

5 Topological sliceness of even 3–strand pretzel knots.

We now outline the proof of our argument that all topologically slice even 3–strand
pretzel knots are either ribbon or in Lecuona’s family f˙Pag, leaving the details of
arithmetic to the reader.

Theorem 5.1 Let K be an even 3–strand pretzel knot. Suppose that K is topologically
slice. Then, up to reflection, either K D P .p;�p; q/ for some p; q 2 N (and K is
ribbon) or KDPaDP .a;�a�2;�.aC1/2=2/ for some a�1; 11; 37; 47; 59 mod 60.

Proof Suppose that K is an algebraically slice even 3–strand pretzel. First, note that
by Jabuka’s computation of the rational Witt classes of pretzel knots, we can assume that
either KDP .p;�p; q/ for some odd p and even q or KDP .�p;p˙2; q/ for some
odd p and even q such that det.K/D˙2q�p2� 2p Dm2 > 0 [13, Theorem 1.11].
In the first case K is ribbon, and so we assume that we are in the second case. By
the symmetries of 3–strand pretzel knots, we can also assume that up to reflection
KDP .�p;pC2; q/ for p 2N . Then our condition that det.K/D 2q�p2�2p > 0

implies that q > 0 as well.

First, observe that if det.K/D 1 then q D .pC 1/2=2 and up to reflection K is an
element of Lecuona’s family fPag. For a 6� 1; 11; 37; 47; 49; 59 mod 60, Theorem 4.5
of [15] states that K is not algebraically slice. When a � 49 mod 60, an argument
analogous to the proof of [15, Theorem 4.5] shows that �K .t/ does not have a Fox–
Milnor factorization and hence that K is not algebraically slice. (In particular, note
that since a � 49 mod 60 we have that 5 divides .aC 1/2=4 and 3 divides aC 2.
Working mod 5, we have �Pa

.t/ � …1¤d jaˆd .t/…1¤d jaC2ˆd .t/, where ˆd .t/

denotes the d th cyclotomic polynomial. Since ˆ3.t/ is symmetric, irreducible mod 5,
and relatively prime to each ˆd .t/ for d ¤ 3 dividing a or aC 2, the desired result
follows.)
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So we can assume that det.K/Dm2>1, and in particular that there is an (odd) prime d

dividing det.K/. Arguments as in the proof of Proposition 4.1 show that †2.K/ has a
surgery presentation with underlying link the coherently oriented torus link �T .2; 2p/

and linking matrix
�

2
�p
�p

q�p

�
. It follows that H1.†2.K// is cyclic, and hence that

H1.†2.K/;Zd / is certainly cyclic as well. It therefore suffices to show that there is a
single �W H1.†2.K//! Zd with j�k.†2.K/; �/j> 1 for some 1� k < d .

The construction of � and computation of the corresponding Casson–Gordon signatures
is extremely similar to the arguments of Section 4, and therefore we only list the cases
one must consider and leave the verification of the details to the interested reader. It
is convenient to consider six cases, according to the values mod d of the parameters
of K: �p� q� 0; pC2� q� 0; �p� 2q 6� 0; pC2� 2q 6� 0; �p�pC2 6� 0;
and �p , pC 2 and q are mutually distinct and nonzero.
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An index obstruction to positive scalar curvature
on fiber bundles over aspherical manifolds

RUDOLF ZEIDLER

We exhibit geometric situations where higher indices of the spinor Dirac operator
on a spin manifold N are obstructions to positive scalar curvature on an ambient
manifold M that contains N as a submanifold. In the main result of this note, we
show that the Rosenberg index of N is an obstruction to positive scalar curvature
on M if N ,!M � B is a fiber bundle of spin manifolds with B aspherical and
�1.B/ of finite asymptotic dimension. The proof is based on a new variant of the
multipartitioned manifold index theorem which might be of independent interest.
Moreover, we present an analogous statement for codimension-one submanifolds. We
also discuss some elementary obstructions using the OA-genus of certain submanifolds.

58J22; 46L80, 53C23

1 Introduction

We consider the following setup:

Geometric Setup 1.1 Let M be a closed connected spin m–manifold and N �M a
closed connected submanifold of codimension q with trivial normal bundle. Moreover,
we denote the fundamental groups of M and N by � and ƒ, respectively, and let
j W ƒ! � be the map induced by the inclusion �W N ,!M .

Hanke, Pape and Schick [6] have found that if the codimension q is 2 and some
assumptions on homotopy groups hold, then the Rosenberg index of N is an obstruction
to positive scalar curvature on M . Motivated by this result, it is an interesting endeavor
to find further situations where the Rosenberg index of N is an obstruction to positive
scalar curvature on the ambient manifold M . In this note, we exhibit certain cases
where it is possible to relax the restrictions on the codimension.

Recall the Rosenberg index ˛�.M / 2 K�.C���/ of a closed spin manifold M , where
� D �1.M / and C��� denotes the maximal (� D max) or reduced (� D red) group
C�-algebra. Abstractly, it is obtained by applying the Baum–Connes assembly map

�W K�.B�/! K�.C���/;
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to the image of the K-homological fundamental class of M under the map uW M!B�
that classifies the universal covering. The (maximal, if � D max) strong Novikov
conjecture predicts that �˝Q is injective.

All statements in the introduction are made under implicit assumption of Geometric
Setup 1.1. We start by recalling the precise statement of Hanke, Pape and Schick’s
codimension-two obstruction.

Theorem 1.2 [6, Theorem 1.1] Let � 2 fred;maxg. Let N have codimension q D 2

and suppose that j W ƒ ! � is injective and that �2.M / D 0. If ˛ƒ.N / ¤ 0 2

Km�2.C��ƒ/, then M does not admit a metric of positive scalar curvature.

Remark 1.3 The theorem was proved by applying methods from Roe’s coarse index
theory to a manifold that arises out of a modification of a certain covering of M . As
discussed in [6, Section 3], this proof only shows that M does not admit positive scalar
curvature and does not give ˛�.M /¤ 0. However, the theorem actually implies that
M stably does not admit positive scalar curvature and hence nonvanishing of ˛�.M /

would be a consequence of the stable Gromov–Lawson–Rosenberg conjecture (at least if
we worked with real K-theory throughout). It is an open question whether it is possible
to prove nonvanishing of ˛�.M / directly under the hypotheses of Theorem 1.2.

1.1 Obstructions on fiber bundles and codimension one

Hanke, Pape and Schick state the following application of Theorem 1.2 to fiber bundles:

Corollary 1.4 [6, Corollary 4.5] Let � 2 fred;maxg. Suppose that N ,!M �†

is a fiber bundle, where �2.N /D 0 and † is a closed surface different from S2 , RP2 .
If ˛ƒ.N / ¤ 0 2 Km�2.C��ƒ/, then M does not admit a metric of positive scalar
curvature.

In this special case it turns out that we can settle the question from Remark 1.3
by a more direct argument. Indeed, in the following main result of this note, we
generalize Corollary 1.4 to base manifolds of arbitrary dimension and obtain the
stronger conclusion that ˛�.M / is nonvanishing:

Theorem 1.5 Let �2fred;maxg. Suppose that N
�
,!M

��B is a fiber bundle, where
B is aspherical and �1.B/D �=ƒ has finite asymptotic dimension. If ˛ƒ.N /¤ 0 2

Km�q.C��ƒ/, then ˛�.M /¤ 0 2 Km.C���/. In particular, M does not admit positive
scalar curvature in this case.
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In the proof we also employ coarse index theory. More specifically, we apply the
multipartitioned manifold index theorem. Although variants of it have been established
previously by Siegel [13] and Schick and Zadeh [11], neither of these references
provides the theorem in sufficient generality for our purposes. Thus, in Section 2, we
have included a concise proof of the required result, which might be of independent
interest (see Theorem 2.7).

Unlike Theorem 1.2, in the proof of Theorem 1.5 we apply the q–multipartitioned
manifold index theorem directly to a covering of M (without modifying it further)
and thereby obtain the stronger conclusion that ˛�.M / ¤ 0. If B is a surface or,
more generally, admits nonpositive sectional curvature, then the fact that a suitable
covering of M is q–partitioned follows from the Cartan–Hadamard theorem applied
to B . To obtain the level of generality as stated, we apply a result of Dranishnikov
[1, Theorem 3.5] which says that an aspherical manifold with a fundamental group of
finite asymptotic dimension has a stably hypereuclidean universal covering.

Remark 1.6 Unlike Corollary 1.4, the condition �2.N / D 0 is not required by
Theorem 1.5. This, however, is not just a feature of our method: in fact, a careful
reading of the proof from [6] reveals that in Theorem 1.2 the hypothesis �2.M /D 0

can be weakened to surjectivity of the map �2.N /! �2.M /.

Moreover, the idea for Theorem 1.5 works even in full generality in codimension one
(without assumptions on higher homotopy groups or on being a fiber bundle):

Theorem 1.7 Let � 2 fred;maxg. Let N have codimension q D 1 and suppose that
j W ƒ! � is injective. If ˛ƒ.N /¤ 0 2 Km�1.C��ƒ/, then ˛�.M /¤ 0 2 Km.C���/.
In particular, M does not admit positive scalar curvature in this case.

Remark 1.8 In the proofs of Theorems 1.5 and 1.7, a homomorphism ‰W K�.C���/!
K��q.C��ƒ/ with ‰.˛�.M //D˛ƒ.N / is constructed, which might be of independent
interest.

1.2 Higher yA obstructions via submanifolds

In addition to our result on fiber bundles, we have some obstructions via the yA-genus of
submanifolds of arbitrary codimension under some restriction on the homotopy groups.
In contrast to the results above, the proofs of the results below do not employ coarse
index theory and essentially only rely on elementary techniques from (co)homology
theory.

First we state a result that applies to intersections of codimension-two submanifolds.
We continue to work in Geometric Setup 1.1.
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Theorem 1.9 Let N DN1\ � � � \Nk , where N1; : : : ;Nk �M are closed submani-
folds that intersect mutually transversely and have trivial normal bundles. Suppose that
the codimension of Ni is at most two for all i 2 f1; : : : ; kg and that �2.N /! �2.M /

is surjective.

If yA.N / ¤ 0, then ˛�.M / ¤ 0 2 K�.C�max�/. In particular, M does not admit a
metric of positive scalar curvature in this case.

In particular, specializing to a single codimension-two submanifold, this settles the
question of Remark 1.3 in the case when yA.N /¤ 0 (which implies ˛ƒ.N /¤ 0).

The proof of this theorem (see Section 3) proceeds as follows: First we show that
the surjectivity of �2.N /! �2.M / allows us to rewrite yA.N / as a higher yA-genus
of M . Afterwards we appeal to a result of Hanke and Schick [7, Theorem 1.2] about
the maximal strong Novikov conjecture in low cohomological degrees and conclude
that ˛�.M /¤ 0 2K�.C�max�/. If we allow higher codimensions for the submanifolds
Ni , our method still works but we are no longer in a position to apply [7, Theorem 1.2]
and hence need to assume the strong Novikov conjecture:

Theorem 1.10 Let � 2 fred;maxg. Let N DN1\� � �\Nk , where N1; : : : ;Nk �M

are closed submanifolds that intersect mutually transversely and have trivial normal
bundles. Let d be the maximum of the codimensions of Ni over all i 2 f1; : : : ; kg and
suppose that �j .M /D 0 for 26 j 6 d .

If yA.N / ¤ 0 and � satisfies the (maximal, if � D max) strong Novikov conjecture,
then ˛�.M /¤ 0 2 K�.C���/.

Note that the conditions on the homotopy groups are also slightly different than in
Theorem 1.9. In fact, in Proposition 3.2, we prove our results under a more general
homological condition which includes the restrictions on the homotopy groups from
Theorems 1.9 and 1.10 as a special case (see Lemma 3.3).

If we restrict Theorem 1.10 to a single submanifold, we obtain:

Corollary 1.11 Let � 2 fred;maxg. Suppose N has codimension q and �j .M /D 0

for 26 j 6 q . If yA.N /¤ 0 and � satisfies the (maximal, if �Dmax) strong Novikov
conjecture, then ˛�.M /¤ 0 2 K�.C���/.

In the special case that � is virtually nilpotent (which implies the strong Novikov
conjecture), the consequence of Corollary 1.11 that M cannot admit positive scalar
curvature was proved by Engel [2, Theorem 4.10] using a different method.

Moreover, under the assumptions of Corollary 1.11, even higher yA-genera of N are
obstructions to positive scalar curvature on M . This was also discovered by Engel
using yet a different method; see [3, Application A].
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2 The multipartitioned manifold index theorem

2.1 Coarse index theory

Here we briefly review the relevant aspects of coarse index theory; see [10; 8]. Let
� 2 fred;maxg be fixed in this section. Let X be a proper metric space endowed with an
isometric, free and proper action of a discrete group � . We denote the �–equivariant
Roe algebra of X by C�.X /� . It is defined to be the (spacial if �D red or maximal if
� Dmax) completion of the �-algebra of all �–equivariant locally compact operators
of finite propagation defined over a fixed suitable Hilbert space representation of C0.X /.
Recall the index map (or assembly map) from locally finite K-homology of the quotient
�nX to the K-theory of the equivariant Roe algebra:

(1) Ind� W Klf
�.�nX /! K�.C�.X /�/:

For an explicit definition of the assembly in the nonequivariant case (also pertaining
to � Dmax), see for instance [4, Subsection 4.6]. A straightforward generalization of
the same formulas to the equivariant case then yields the equivariant assembly map
Klf;�
� .X /! K�.C�.X /�/. To obtain the map as displayed in (1), we precompose

with the induction isomorphism Klf
�.�nX /ŠKlf;�

� .X / in analytic K-homology as it is
exhibited via the Paschke duality picture in [8, Lemma 12.5.4; 12, Theorem 4.3.25].

If X is a complete spin m–manifold, we may apply the index map to the class Œ =D�nX �2

Klf
m.�nX / of the spinor Dirac operator on �nX . We will use the notation Ind�. =DX / WD

Ind�.Œ =D�nX �/. If X D zM is the universal covering of a closed spin manifold M and
� D �1.M /, then there is a canonical isomorphism K�.C�. zM /�/Š K�.C���/ and
Ind�. =D zM

/ recovers the Rosenberg index ˛�.M /.

In the following we introduce some notation which will feature in our formulation of
the multipartitioned manifold index theorem. Let � be a countable discrete group and
fix a model for the classifying space B� as a locally finite simplicial complex. As
usual, we denote its universal covering by E� .

Definition 2.1 Let Y be a proper metric space and define

�Klf
i .Y / WD colim

Z
Klf

i .Z/;

�Ci.Y / WD colim
Z

Ki.C�. zZ/�/;

where the colimits range over admissible subsets Z � B� � Y and Z is called
admissible if it is closed and pr2 jZ W Z! Y is proper. Moreover, zZ denotes the lift
of Z to E� �Y .
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Roughly speaking, �Klf
i .Y / behaves like locally finite K-homology in Y and like

ordinary K-homology in the B�–slot.

Recall that a map f W .Y; d/ ! .Y 0; d 0/ between metric spaces is called coarse if
f �1.B0/ is bounded for each bounded set B0 � Y 0 and there exists a function
�W R>0 ! R>0 such that d 0.f .x/; f .y// 6 �.d.x;y// for all x;y 2 Y . Since
the K-theory of the (equivariant) Roe algebra is functorial with respect to (equivariant)
coarse maps [8, Definition 6.3.15], the group �Ci.Y / is functorial in Y with respect
to coarse maps.

The index map (1) induces an index map in the limit Ind� W �Klf
�.Y /! �C�.Y / which

is natural in Y with respect to continuous coarse maps.

Example 2.2 Taking Y D pt to be a point, we have �K�.pt/ D K�.B�/ as de-
fined via the K-theory spectrum and �C�.pt/ Š K�.C���/. Moreover, the index
map Ind� W �Klf

�.pt/! �C�.pt/ recovers the assembly map �W K�.B�/! K�.C���/
featuring in the strong Novikov conjecture.

The external product in K-homology also induces an external product,

�Klf
n.X /˝Klf

d .Y /
�
�!�Klf

nCd .X �Y /:

Proposition 2.3 (suspension isomorphism) Let Y be a proper metric space. There
are isomorphisms s and � which make the diagram

�Klf
�C1

.Y �R/ �C�C1.Y �R/

�Klf
�.Y / �C�.Y /

Šs

Ind�

�Š

Ind�

commute, and such that s.x � Œ =DR�/D x for all x 2 �Klf
�.Y /.

Proof To construct s and � we use the Mayer–Vietoris boundary maps associated to
the cover Y �RD Y �R>0[Y �R60 for K-homology and for the K-theory of the
Roe algebra, respectively. Indeed, take an admissible subset Z � B� �Y �R such
that the cover

(�) Z D
�
Z \ .B� �Y �R>0/

�
[
�
Z \ .B� �Y �R60/

�
is coarsely excisive, so that we have a Mayer–Vietoris sequence both in K-homology
and for the K-theory of the Roe algebra; see for example [9]. Let

sZ W Klf
�C1.Z/

@MV
��! Klf

�.Z \ .B� �Y � f0g//! �Klf
�.Y /;

�Z W K�C1.C�.eZ/�/ @MV
��! K�.C�.eZ \ .E� �Y � f0g//�/! �C�.Y /:
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The family of those admissible subsets where the cover (�) is coarsely excisive is
cofinal in the directed set of all admissible subsets, hence the maps sZ and �Z induce
the required maps s and � in the limit. Moreover, one can verify that the family of
admissible Z where sZ and �Z are both defined and an isomorphism is also cofinal
in the family of all admissible sets. The isomorphism statement relies on showing
that we have a cofinal collection of admissible Z such that Z \ .B� �Y �R>0/ and
Z \ .B� � Y �R60/ are flasque. A more detailed version of this argument can be
found in [14, Proposition 4.2.3].

Thus s and � are isomorphisms. Finally, the claim s.x�Œ =DR�/Dx for all x 2�Klf
�.Y /

is a standard fact in K-homology which follows from @MV.Œ =DR�/D 1 for the Mayer–
Vietoris boundary map associated to RDR>0[R60 .

Corollary 2.4 For every " > 0, we have

�Klf
�.R

q/Š colim
K�B�

Klf
�.K �Rq/

�!

Š colim
K�B�

Klf
�.K �B".0//;

where the colimit ranges over compact subsets K � B� and the second isomorphism
is induced by the inclusion of the open ball �W B".0/ ,!Rq .

Proof Since for a compact subset K � B� the set K�Rq is admissible, we obtain a
canonical map J W colimK�B� Klf

�.K �Rq/! �Klf
�.R

q/. The q–fold iteration of the
suspension isomorphism from Proposition 2.3 yields an isomorphism sqW �Klf

�.R
q/Š

K��q.B�/. An analogous argument as in the proof of Proposition 2.3 produces an
isomorphism tqW colimK�B�.K�Rq/ŠK��q.B�/ such that tqD sqıJ . In particular,
this shows that J must be an isomorphism.

For each K � B� , the restriction �!W Klf
�.K �Rq/! Klf

�.K �B".0// is induced by
the map on K �Rq that is the identity on K �B".0/ and takes K � .Rq nB".0//

to infinity in the one-point compactification of K �B".0/. Since this map induces
a homotopy equivalence between the one-point compactifications, this implies that
�!W Klf

�.K �Rq/! Klf
�.K �B".0// is an isomorphism.

Corollary 2.4 implies that classes in �Klf
�.R

q/ (and thus their images in �C�.Rq/)
depend only on the restrictions to arbitrarily small open subsets. A very similar
localization property was exhibited by Schick and Zadeh [11] and is at the heart of their
approach to the multipartitioned manifold index theorem. Analogously, our approach
to the theorem in the next subsection crucially relies on the localization property from
Corollary 2.4.
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2.2 Multipartitioned manifolds

Let f W X !Y be a proper map, uW X !B� classifying a covering pW zX !X . Then
the map u� f W X ! B� �Y induces a map .u� f /�W Klf

�.X /! �Klf
�.Y /. If f is

also coarse, then the �–equivariant map zu� .f ı p/W zX ! E� � Y induces a map
.zu� .f ıp//�W K�.C�. zX /�/! �C�.Y /.

Definition 2.5 A complete Riemannian manifold X is called q–multipartitioned by a
closed submanifold M �X via a continuous coarse map f W X !Rq if f is smooth
near f �1.0/ and 0 2Rq is a regular value with f �1.0/DM .

Definition 2.6 Let X be a complete spin m–manifold that is q–multipartitioned by
M � X via f W X ! Rq . Fix a �–covering pW zX ! X which is classified by a
map uW X ! B� . Consider the lifted map zuW zX ! E� . Then we define the higher
partitioned manifold index of X to be

˛
f;u
PM .X / WD .zu� .f ıp//�.Ind�. =D zX

// 2 �Cm.R
q/:

Furthermore, if M is a closed spin manifold and vW M ! B� a continuous map,
then we set ˛v.M / WD�.v�Œ =DM �/ 2K�.C���/, where �W K�.B�/!K�.C��/ is the
assembly map. If v classifies the universal covering of M this yields the Rosenberg
index ˛�.M /.

Theorem 2.7 (multipartitioned manifold index theorem) In the setup of Definition 2.6
we have

�q.˛
f;u
PM .X //D ˛

ujM .M / 2 Km�q.C���/;

where �qW �C�.Rq/! K��q.C���/ is the q–fold iteration of the suspension isomor-
phism from Proposition 2.3.

Proof We have �q.˛
f;u
PM .X //D Ind�.sq.u�f /�.Œ =DX �// by Proposition 2.3. We first

deal with the product situation X DM �Rq and uD v ı pr1 . In this special case we
have Œ =DX �D Œ =DM �� Œ =DRq � and the statement follows from an iterated application of
the product formula from Proposition 2.3:

�q.˛
f;u
PM .X //D Ind�

�
sq
�
v�.Œ =DM �/� Œ =DRq �

��
D Ind�.v�Œ =DM �/D ˛v.M /:

In the general case we may assume without loss of generality that there exists " > 0

such that f �1.B".0// Š M � B".0/ isometrically. Furthermore, we consider the
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following commutative diagram, where we set v WD ujM and make extensive use of
Proposition 2.3 and Corollary 2.4:

Klf
�.X / �Klf

�.R
q/

Klf
�.f
�1.B".0/// colimK�B� Klf

n.K �B".0//

Klf
�.M �B".0// K��q.B�/

Klf
�.M �Rq/ �Klf

�.R
q/

.u�f /�

�! �!Š sq

Š
.u�f /�

Š
.v�id/�

�! Š

.v�id/�

Š �!

Š

sq

Since f �1.B".0//ŠM �B".0/, the class Œ =DX � 2 Klf
m.X / goes to Œ =DM �� Œ =DRq � 2

Klf
m.M �Rq/ following the left vertical maps in the diagram from top to bottom. Thus

the diagram implies .u�f /�.Œ =DX �/D v�.Œ =DM �/� Œ =DRq � 2 �Klf
m.R

q/. This reduces
the general case to the product situation, which has already been established.

Corollary 2.8 If ˛ujM .M /¤ 0 in the setup of Definition 2.6, then Ind�. =D zX
/¤ 0. In

this case the Riemannian metric on X does not have uniform positive scalar curvature.

2.3 Fiber bundles and codimension one

We are now almost ready to prove Theorems 1.5 and 1.7. Before doing that, we state
the result of Dranishnikov which is needed for Theorem 1.5.

Theorem 2.9 [1, Theorem 3.5] Let zB be the universal covering of a closed aspherical
q–manifold B with asdim.�1.B// < 1. Then there exists k 2 N and a proper
Lipschitz map gW zB �Rk !RqCk of degree 1.

Proof of Theorem 1.5 By Theorem 2.9, we may assume that there exists a proper
Lipschitz map gW zB!Rq of degree 1 (if necessary, replace the entire bundle by its
product with the k–torus S1�� � ��S1 ). Since Lipschitz functions can be approximated
by smooth Lipschitz functions (see for example [5]), we may suppose without loss of
generality that g is smooth. In addition, we may assume that 0 2Rq is a regular value
by Sard’s theorem. Now consider the covering xM �M with �1. xM /DƒD �1.N /.
The bundle projection � W M !B lifts to a �=ƒ–equivariant smooth map x� W xM ! zB .
Let N 0 WD .g ı x�/�1.0/. Then xM is q–multipartitioned by N 0 via f WD g ı x� .
Let uW xM ! Bƒ be the map that classifies the ƒ–covering pW zM ! xM , where
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zM is the universal covering of M . Since g has degree 1 and each fiber of x� is a
copy of N inside xM over each of which p restricts to the universal covering, we
have that ˛ujN 0 .N 0/ D ˛ƒ.N / 2 Km�q.C�ƒ/. Now consider the homomorphism
‰W K�.C���/! K��q.C��ƒ/ given by the composition

‰W K�.C���/ŠK�.C�. zM /�/!K�.C�. zM /ƒ/
zu�.f ıp/
������!ƒC�.Rq/

�q

��!K��q.C��ƒ/;

where the second map is induced by the inclusion C�. zM /� �C�. zM /ƒ that just forgets
part of the equivariance. We have

‰.˛�.M //D �q.˛
f;u
PM .
xM //D ˛ujN 0 .N 0/D ˛ƒ.N /;

where the first equality is by definition of ˛f;uPM .
xM / and the second equality is due

to Theorem 2.7 applied to f D g ı x� W xM ! Rq and uW xM ! Bƒ. Since ‰ is a
homomorphism this concludes the proof.

Proof of Theorem 1.7 The following is very similar to the previous proof. We again
consider the covering xM!M such that �1

xM Dƒ. With the right choice of basepoints
it is possible to lift the inclusion N ,!M to an embedding N ,! xM . Since N ,! xM

has codimension one with trivial normal bundle and is an isomorphism on �1 , it follows
that xM nN has precisely two connected components. Hence xM is partitioned (or
1–multipartitioned in our terminology above) by N via a map f W xM !R which is
essentially the distance function from N . Let zM be the universal covering of M and
uW xM ! Bƒ the map that classifies the ƒ–covering pW zM ! xM . Again we obtain a
map

‰W K�.C���/Š K�.C�. zM /�/! K�.C�. zM /ƒ/
zu�.f ıp/
������!ƒC�.R/

�
�! K��1.C��ƒ/

such that ‰.˛�.M //D ˛ƒ.N /.

3 Higher yA obstructions via submanifolds

Geometric Setup 3.1 In addition to Geometric Setup 1.1, let N D N1 \ � � � \Nk ,
where N1; : : : ;Nk � M are closed submanifolds with trivial normal bundle that
intersect mutually transversely.1 Let d be the maximum of the codimensions of the
submanifolds Ni for i 2 f1; : : : ; kg. Denote by uW M ! B� a classifying map of
the universal covering and let v WD u ı �W N ! B� . Moreover, let wW N ! Bƒ be a
classifying map of the universal covering of N .

1To be precise, this means that the inclusion N1 � � � � �Nk ,! M k is transverse to the diagonal
embedding 4W M ,!M k in the usual sense.
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We follow the notation of [7] and let ƒ�.B�/ denote the subring of H�.B�IQ/
generated by cohomology classes of degree at most 2.

Proposition 3.2 Let � 2 fred;maxg. In Geometric Setup 3.1 suppose that the induced
map in relative homology satisfies

(2) .u; idN /�W Hk.M;N /! Hk.v/ is injective for 26 k 6 d :

Assume furthermore that one of the following conditions holds:

(a) We have � D max, d 6 2 and there exists x 2 ƒ�.B�/ such that the higher
yA-genus hyA.TN /[ v�.x/; ŒN �i does not vanish.

(b) The group � satisfies the (maximal, if � Dmax) strong Novikov conjecture and
there exists x 2H�.B�IQ/ such that the higher yA-genus hyA.TN /[v�.x/; ŒN �i

does not vanish.

Then ˛�.M / 2 K�.C���/ does not vanish. In particular, M does not admit a metric of
positive scalar curvature.

Proof Let �i 2H�.M IQ/ denote the Poincaré dual of Ni �M . Since Ni has trivial
normal bundle the restriction of �i to Ni vanishes. In particular, ���i D 02H�.N IQ/,
so there exists z�i 2 H�.M;N IQ/ that restricts to �i 2 H�.M IQ/. By the upper
bound on the codimensions, the degree of �i is at most d for each i 2 f1; : : : ; kg.
Note that uW M ! B� is 2–connected and thus .u; idN /�W H1.M;N /! H1.v/ is an
isomorphism by the Hurewicz theorem and the long exact sequence associated to the
triple N ,!M

u
�!B� . Together with (2) this implies that there exists z�i 2 H�.vIQ/

such that .u; idN /
�z�i D z�i for all i 2 f1; : : : ; kg. Restricting these to B� , we get

�i 2 H�.B�IQ/ such that u��i D �i . We have that �D �1[ � � � [ �k D u�.�/ is the
Poincaré dual of N DN1\� � �\Nk , where � WD �1[� � �[�k . For each x 2H�.B�IQ/,
we then compute

hyA.TN /[ v�.x/; ŒN �i D hyA.TN /[ yA.�.N ,!M //[ v�.x/; ŒN �i

D h��yA.TM /[ v�.x/; ŒN �i

D hyA.TM /[u�.x/[ �; ŒM �i

D hyA.TM /[u�.x[ �/; ŒM �i

D hu�.x[ �/; ch.Œ =DM �/i;

where triviality of the normal bundle �.N ,!M / is used in the first equality. In other
words, the particular higher yA-genus of N we started with can be rewritten as a higher
yA-genus of M .
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In case (a), this implies that hz; ch.u�Œ =DM �/i¤ 0, where z WD x[� 2ƒ�.B�/. Hence
by [7, Theorem 1.2], this shows that ˛�.M /D �.u�.Œ =DM �//¤ 0 2 K�.C�max�/. In
case (b), the computation simply shows that 0¤ u�.Œ =DM �/ 2 K�.B�/˝Q. Hence
by the postulated rational injectivity of the (maximal, if � Dmax) assembly map, the
higher index does not vanish.

It remains to put forward some further (sufficient) conditions for the homological
condition (2). For instance, we find it conceptually appealing to consider the square

N M

Bƒ B�

�

w u

j

and ask the induced map in relative homology H�.M;N /! H�.B�;Bƒ/ to be an
equivalence up to a certain degree. Indeed, as it turns out in the lemma below, this is
an easy sufficient condition for (2). Moreover, H�.M;N /! H�.B�;Bƒ/ being an
isomorphism up to degree 2 and surjective in degree 3 is equivalent to surjectivity of
�2.N /!�2.M /. The latter is precisely the condition that we have already encountered
in Remark 1.6.

Lemma 3.3 Suppose that in Geometric Setup 3.1 one of the following conditions
holds:

(a) The map �2.N /! �2.M / is surjective and d D 2.

(a0) The map Hk.M;N /! Hk.B�;Bƒ/ is an isomorphism for 2 6 k 6 d and
surjective for k D d C 1.

(b) The homotopy groups �k.M / vanish for 26 k 6 d .

Then the condition (2) from the statement of Proposition 3.2 is satisfied.

Moreover, for d D 2 the conditions (a) and (a0) are equivalent.

Proof We first show that for d D 2, (a) and (a0) are equivalent. Indeed, consider the
following diagram of homotopy cofiber sequences:

N M C�

Bƒ B� Cj

Cw Cu C

�

w u

j
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Since w and u are 2–connected by construction, it follows by the Hurewicz theorem that
Hk.Cw/DHk.Cu/D 0 for k D 1; 2 and that H3.Cw/Š �3.w/ and H3.Cu/Š �3.u/.
In particular, looking at the lower horizontal sequence in the diagram, we see that we
always have Hk.C /D 0 for k D 1; 2. Moreover, since B� and Bƒ are aspherical, we
have �3.u/Š �2.M / and �3.w/Š �2.N /. Thus surjectivity of �2.N /! �2.M /

is equivalent to surjectivity of �3.w/Š H3.Cw/! H3.Cu/Š �3.u/, which, in turn,
is equivalent to H3.C /D 0 since we always have H2.Cw/D 0. Finally, turning to the
right vertical sequence of the diagram, the vanishing of H3.C / is equivalent to (a0) for
d D 2 (since we have always Hk.C /D 0 for k D 1; 2).

To see that (a0) implies (2), we just note that the map Hk.M;N / ! Hk.B�;Bƒ/
factors as Hk.M;N /! Hk.v/! Hk.B�;Bƒ/.

To see that (b) implies (2), consider the long exact sequence of the triple N ,!M
u
!B� :

� � � ! HkC1.u/! Hk.M;N /! Hk.v/! Hk.u/! � � � :

If �k.M / D 0 for 2 6 k 6 d , then uW M ! B� is .dC1/–connected and hence
Hk.u/D 0 for k 6 d C 1. In particular, Hk.M;N /! Hk.v/ is even an isomorphism
for k 6 d .

Finally, Theorems 1.9 and 1.10 follow immediately now by combining cases (a) and (b)
from Proposition 3.2 (applied to x D 1 2 H0.B�/) with cases (a) and (b) from
Lemma 3.3, respectively.
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An algebraic model for rational SO.3/–spectra

MAGDALENA KĘDZIOREK

Greenlees established an equivalence of categories between the homotopy category
of rational SO.3/–spectra and the derived category dA.SO.3// of a certain abelian
category. In this paper we lift this equivalence of homotopy categories to the level of
Quillen equivalences of model categories. Methods used in this paper provide the first
step towards obtaining an algebraic model for the toral part of rational G –spectra,
for any compact Lie group G .

55N91, 55P42, 55P60

1 Introduction

Modelling the category of rational G –spectra This paper is a contribution to the
study of G–equivariant cohomology theories and gives a complete analysis for one
class of theories, namely rational SO.3/–equivariant cohomology theories. To start
with, let G be a compact Lie group. Recall that G–equivariant cohomology theories
are represented by G–spectra, so the category of G–equivariant cohomology theories is
equivalent to the homotopy category of G–spectra. The category of G–spectra is quite
complicated, with rich structures coming from two sources: topology and the group
actions, and one cannot expect a complete analysis of either cohomology theories or
spectra integrally.

For a compact Lie group G , the category of rational G–spectra is the category of
G–spectra, but with the model structure that is a left Bousfield localisation of the stable
model structure at the rational sphere spectrum; see for example Barnes [1, Section 2.2].
Thus the weak equivalences are maps which become isomorphisms after applying the
rational homotopy group functors, ie �H

� .�/˝Q for all closed subgroups H in G .

Rationalising the category of G–spectra reduces topological complexity, simplifying
it greatly. At the same time interesting equivariant behaviour remains. In order to
understand this behaviour, we try to find a purely algebraic description of the category,
that is an algebraic model category which is Quillen equivalent to the category of
rational G–spectra. As a result, the homotopy category of the algebraic model is
equivalent to the rational stable G–homotopy category via triangulated equivalences.
Moreover all the homotopy information, such as homotopy limits, in both is the same.
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The conjecture by Greenlees states that for any compact Lie group G there is a nice
graded abelian category A.G/ such that the category dA.G/ of differential objects in
A.G/ with a certain model structure is Quillen equivalent to the category of rational
G–spectra:

G�SpQ 'Q dA.G/:

If we find such dA.G/ we say that dA.G/ is an algebraic model for rational G–spectra.

Existing work There are several examples of specific Lie groups G for which an
algebraic model has been given. Firstly, when G is trivial, it was shown in Shipley
[22, Theorem 1.1] that rational spectra are monoidally Quillen equivalent to chain
complexes of Q–modules. An algebraic model for rational G–spectra for finite G is
described in Schwede and Shipley [21, Example 5.1.2] and simplified in Barnes [2]
and Kędziorek [16]. An algebraic model for rational torus-equivariant spectra was
presented in Greenlees and Shipley [11], whereas a slightly different approach in
Barnes, Greenlees, Kędziorek and Shipley [6] gives a symmetric monoidal algebraic
model for SO.2/. This was recently used by Barnes [4] to provide an algebraic model
for rational O.2/–spectra.

However, there is no algebraic model known for the whole category of rational G–
spectra for an arbitrary compact Lie group G . A first step in this direction, a model for
rational G–spectra over an exceptional subgroup (see Definition 5.1) for any compact
Lie group G , was provided in [16]. This result is used in Section 5.

The group SO.3/ The group SO.3/ is the group of rotations of R3 . This is the natural
next candidate to analyse on the way to understanding the behaviour of dA.G/ for an
arbitrary compact Lie group G . Notice that SO.3/ is significantly more complicated
than all groups considered so far, since it is the first group where the maximal torus
is not normal in the whole group. Dealing with this complication shows a method to
provide an algebraic model for a part of rational G–spectra called toral for any compact
Lie group G . The toral part models those G–spectra whose geometric isotropy is a set
of subgroups of the maximal torus and corresponds to cohomology theories with toral
support. We discuss this further in Remark 3.29.

Main result Let G be SO.3/. In this paper we work with orthogonal G–spectra; see
Mandell and May [18, Definition 2.6]. By Barnes [3, Theorem 4.4], the category of
rational SO.3/–orthogonal spectra splits into three parts: toral, dihedral and exceptional.
This uses idempotents of the rational Burnside ring A.SO.3//Q (see Section 2.3), and
reflects a similar splitting at the level of homotopy categories.

The toral part models rational SO.3/–spectra with geometric isotropy in the family
of subconjugates of the maximal torus SO.2/ in SO.3/. The dihedral part models
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rational SO.3/–spectra with geometric isotropy in the collection of subgroups D, which
consists of all dihedral subgroups of order greater than 4 and O.2/. The last part,
which we call the exceptional part, models rational SO.3/–spectra with geometric
isotropy in the collection of subgroups E, which consists of all remaining subgroups
(see Section 2.1). Thus we are able to work with each of these three parts separately to
obtain an algebraic model for rational SO.3/–spectra.

The main result of this paper is as follows.

Main Theorem There is a zig-zag of Quillen equivalences between rational SO.3/–
orthogonal spectra and the algebraic category dA.SO.3//.

The category dA.SO.3//, which we call the algebraic model for rational SO.3/–
spectra, is a product of three parts, which reflects the splitting of the category of
rational SO.3/–spectra

dA.SO.3//Š dA.SO.3/;T/�Ch.A.SO.3/;D//�
Y

.H /;H2E

Ch.QŒWSO.3/H �/:

Here dA.SO.3/;T/ is the algebraic model for the toral part described in Section 3.2,
Ch.A.SO.3/;D// is the algebraic model for the dihedral part described in Section 4.1
and Ch.QŒWSO.3/H �/ is the algebraic model for the rational SO.3/–spectra over an
exceptional subgroup H discussed in Section 5.1. Since A.SO.3/;T/ is a graded
abelian category we use the notation dA.SO.3/;T/ for differential objects in there. We
use the notation Ch.A.SO.3/;D// for differential graded objects (ie chain complexes)
in A.SO.3/;D/, since A.SO.3/;D/ doesn’t have a grading.

The Main Theorem follows from Proposition 2.6 and Theorems 3.36, 4.11 and 5.4.

Contribution of this paper The new idea in this paper concerns the toral part in
Section 3. Since the maximal torus is not normal in SO.3/ the algebraic model for the
toral part gets more complicated than that for the torus (see Greenlees [9] and Barnes,
Greenlees, Kędziorek and Shipley [6]) or O.2/ (see Barnes [4]). To control these
complications we use the following method. We consider the restriction–coinduction
adjunction between the toral part of rational SO.3/–spectra and the toral part of rational
O.2/–spectra. Here O.2/ is the normaliser of the maximal torus in SO.3/. This
adjunction is a Quillen adjunction, but not a Quillen equivalence.

However, the cellularisation principle of Greenlees and Shipley [12] (see Section 2.2.2
for the definition of cellularisation) gives a Quillen equivalence between the toral part
of rational SO.3/–spectra and a certain cellularisation of the toral part of rational
O.2/–spectra; see Theorem 3.28. Now it is enough to cellularise the algebraic model
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for the toral part of rational O.2/–spectra and simplify this category (see Section 3.4)
to obtain the model for the toral part of rational SO.3/–spectra.

The idea of using the restriction–coinduction adjunction between the toral part of rational
G–spectra and the toral part of rational NGT–spectra (where T is the maximal torus
in G ) together with the cellularisation principle allows one to provide an algebraic
model for the toral part of rational G–spectra, for any compact Lie group G ; see
Barnes, Greenlees and Kędziorek [5].

The method to obtain the algebraic model for the dihedral part of rational SO.3/–spectra
is a slight alteration of the method for the dihedral part for rational O.2/–spectra
from [4] and is presented in Section 4.2. Some changes in the proof from [4] are
needed to take into account the fact that our dihedral part excludes subgroups conjugate
to D2 and D4 (for reasons explained in Section 2.1), whereas the dihedral part of
O.2/–spectra contains them. However, the idea of the proof remains the same.

Finally, an algebraic model of the exceptional part is an application of the methods
from Kędziorek [16]. We point out that this is the only part of the paper that considers
monoidal structures and gives a monoidal algebraic model.

Outline of the paper This paper is structured as follows. In Section 2 we present
some general results about subgroups of SO.3/, its rational Burnside ring A.SO.3//Q
and the idempotents used to split the category of rational SO.3/–spectra into three
parts: toral, dihedral and exceptional (Proposition 2.6). Section 3 is the heart of this
paper. It contains the description of the algebraic model for the toral part of rational
SO.3/–spectra. It also presents Quillen equivalences used in obtaining this algebraic
model from the algebraic model for toral rational O.2/–spectra. Section 4 contains the
algebraic model for the dihedral part. Finally, in Section 5 we recall the results from
[16] to give an algebraic model for the exceptional part of rational SO.3/–spectra.

Notation We will stick to the convention of drawing the left adjoint above (or to the
left of) the right one in any adjoint pair. We use the notation G�Sp for the category of
G–equivariant orthogonal spectra.

Acknowledgements This work is based on a part of my PhD thesis (under the super-
vision of John Greenlees) and I would like to thank John Greenlees and David Barnes
for many useful discussions and comments.

2 General results for SO.3/

We start this part by considering the closed subgroups of SO.3/ in Section 2.1. We
discuss the space F.G/=G , which is the orbit space of all closed subgroups with
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finite index in their normaliser, where the topology is induced from the Hausdorff
metric; see [17, Section V.2]. In Section 2.2 we recall two ways of changing a given
stable model structure: left Bousfield localisation at an object and cellularisation. We
will use these techniques repeatedly throughout the paper. In Section 2.3 we discuss
the idempotents of the rational Burnside ring A.SO.3//Q and the induced splitting of
rational SO.3/–orthogonal spectra. The main part of Section 2.3 consists of the analysis
of two adjunctions: the induction–restriction and restriction–coinduction adjunctions
in relation to localisations of categories of equivariant spectra at idempotents.

2.1 Closed subgroups of SO.3/

Recall that SO.3/ is the group of rotations of R3 . We choose a maximal torus T in
SO.3/ with rotation axis the z–axis. We divide the closed subgroups of G into three
types: toral T , dihedral D and exceptional E. This division is motivated by the choice
of idempotents in the rational Burnside ring for SO.3/ that we will use to split the
category of rational SO.3/–spectra.

The toral part consists of all tori in SO.3/ and all cyclic subgroups of these tori. Note
that for any natural number n there is one conjugacy class of subgroups from the toral
part of order n in SO.3/.

The dihedral part consists of all dihedral subgroups D2n (dihedral subgroups of or-
der 2n) of SO.3/ where n is greater than 2, together with all subgroups O.2/. Note
that O.2/ is the normaliser for itself in SO.3/. Moreover, there is only one conjugacy
class of a dihedral subgroup D2n for each n greater than 2, and the normaliser of D2n

in SO.3/ is D4n for n > 2. Notice that we excluded subgroups in the conjugacy
classes of D2 and D4 from this part. Conjugates of D2 are excluded from the dihedral
part, since D2 is conjugate to C2 in SO.3/ and that subgroup is already taken into
account in the toral part. Conjugates of D4 are excluded from the dihedral part since
their normalisers in SO.3/ are †4 (symmetries of a cube), thus their Weyl groups
†4=D4 are of order 6, whereas all other finite dihedral subgroups D2n , n> 2 have
Weyl groups of order 2. For simplicity we decided to treat D4 separately and put it
into the exceptional part.

There are five conjugacy classes of subgroups which we call exceptional, namely SO.3/
itself, the rotation group †4 of a cube, the rotation group A4 of a tetrahedron, the
rotation group A5 of a dodecahedron and the dihedral group D4 of order 4. Normalisers
of these exceptional subgroups are as follows: †4 is equal to its normaliser, A5 is
equal to its normaliser and the normaliser of A4 is †4 , as is the normaliser of D4 .

Consider the space F.SO.3//=SO.3/ of conjugacy classes of subgroups of SO.3/ with
finite index in their normalisers. The topology on this space is induced by the Hausdorff
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metric. We will use this space for choosing idempotents of the rational Burnside ring
in Section 2.3. The topology on E is discrete, T consists of one point T and D forms
a sequence of points converging to O.2/, as shown in the following diagram:

space F.SO.3//=SO.3/part .subspace/

E SO.3/ †4 A4 A5 D4

T T

D D6 D8 D10 : : :
O.2/

Before we go any further we recall the space F.O.2//=O.2/. It consists of two parts:
toral and dihedral. To distinguish between these parts and their analogues for SO.3/
we choose the notation zT for the toral part of O.2/ and zD for the dihedral part of O.2/

(note that in [4] the notation without tilde was used for the toral and dihedral parts
of O.2/). We will stick to this new notation convention throughout the paper. The
toral part is just one point T corresponding to the maximal torus and all its subgroups.
The dihedral part corresponds to all dihedral subgroups together with O.2/ and we
present it below:

space F.O.2//=O.2/part .subspace/
zT T

zD D2 D4 D6 D8 D10 : : :
O.2/

The only difference in the dihedral parts for O.2/ and SO.3/ is captured by the fact
that the dihedral part for O.2/ is a disjoint union of D and two points (corresponding
to D2 and D4 , respectively). At a first glance the toral part for SO.3/ looks the same
as the toral part for O.2/. However, for SO.3/ it contains information about D2 (since
D2 is conjugate to C2 in SO.3/), whereas for O.2/ it does not. These differences will
become significant in Section 2.3.

2.2 Left Bousfield localisation and cellularisation

In this section we briefly recall two ways of changing a given stable model structure:
left Bousfield localisation at an object and cellularisation. We will repeatedly use them
in the rest of the paper.
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2.2.1 Left Bousfield localisation at an object For details on left Bousfield locali-
sation at an object we refer the reader to [18, Section IV.6]. We recall the following
result:

Theorem 2.1 [18, Chapter IV, Theorem 6.3] Suppose E is a cofibrant object in
G�Sp or a cofibrant based G–space. Then there exists a new model structure on the
category G�Sp, where a map f W X ! Y is

� a weak equivalence if it is an E–equivalence, ie IdE ^f W E ^X !E ^Y is a
weak equivalence;

� a cofibration if it is a cofibration with respect to the stable model structure;

� a fibration if it has the right lifting property with respect to all trivial cofibrations.

The E–fibrant objects Z are the E–local objects, ie those such that Œf;Z�G W ŒY;Z�G!
ŒX;Z�G is an isomorphism for all E–equivalences f . E–fibrant approximation gives
Bousfield localisation �W X !LEX of X at E .

We use the notation LE.G�Sp/ for the model category described above and will refer
to it as a left Bousfield localisation of the category of G–spectra at E . If E and F are
cofibrant objects in G�Sp then the localisation first at E and then at F is the same
model category as the localisation at E ^F (and F ^E ).

Recall that an E–equivalence between E–local objects is a weak equivalence (see [13,
Theorems 3.2.13 and 3.2.14]).

In this paper we use the above definition with X 2 G�Sp of the form eSQ (for
various e ) where e is an idempotent of a rational Burnside ring A.G/Q and SQ is a
rational sphere spectrum (see [2, Section 5] for construction of the rational sphere spec-
trum SQ ). Since we use idempotents of a rational Burnside ring, all our localisations
are smashing (see [19] for definition of a smashing localisation). Thus they preserve
homotopically compact generators (see Definition 2.5) since the fibrant replacement
preserves infinite coproducts.

2.2.2 Cellularisation A cellularisation of a model category is a right Bousfield
localisation at a set of objects. Such a localisation exists by [13, Theorem 5.1.1]
whenever the model category is right proper and cellular. When we are in a stable
context the results of [7] can be used.

In this section we recall the notion of cellularisation when C is a stable model category
and some basic definitions and results.
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Definition 2.2 Let C be a stable model category and K a stable set of objects of C,
ie a set such that the class of K–cellular objects of C is closed under desuspension
(note that the class is always closed under suspension). We call K a set of cells. We
say that a map f W A! B of C is a K–cellular equivalence if the induced map

Œk; f �C�W Œk;A�
C
�! Œk;B�C�

is an isomorphism of graded abelian groups for each k 2K . An object Z 2 C is said
to be K–cellular if

ŒZ; f �C�W ŒZ;A�
C
�! ŒZ;B�C�

is an isomorphism of graded abelian groups for any K–cellular equivalence f .

Definition 2.3 A right Bousfield localisation or cellularisation of C with respect to a
set of objects K is a model structure K�cell�C on C such that

� the weak equivalences are K–cellular equivalences,

� the fibrations of K�cell�C are the fibrations of C,

� the cofibrations of K�cell�C are defined via left lifting property.

By [13, Theorem 5.1.1], if C is a right proper, cellular model category and K a set
of objects in C, then the cellularisation of C with respect to K , K�cell�C, exists
and is a right proper model category. The cofibrant objects of K�cell�C are called
K–cofibrant and are precisely the K–cellular and cofibrant objects of C.

The cellularisation of a proper, cellular, stable model category at a stable set of cofibrant
objects K is very well behaved (see [7, Theorem 5.9]), in particular it is proper, cellular
and stable. Left properness follows from [7, Proposition 5.8].

There is another important property we will often want the cells to satisfy, which makes
right localisation behave in an even more tractable manner; see [7, Section 9]. This
property is variously called smallness, compactness or finiteness. We choose to call it
homotopical compactness, since there are several different meanings of compactness in
the literature.

Definition 2.4 [21, Definition 2.1.2] An object X in a stable model category C is
homotopically compact if for any family of objects fAigi2I the canonical mapM

i2I

ŒX;Ai �
C
!

h
X;
a
i2I

Ai

iC
is an isomorphism in the homotopy category of C.
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Recall that a homotopy category of a stable model category is triangulated; see
Definition 7.1.1 of [14]. In this setting we can make the following definition after
Definition 2.1.2 of [21].

Definition 2.5 Let C be a triangulated category with infinite coproducts. A full
triangulated subcategory of C (with shift and triangles induced from C) is called
localising if it is closed under coproducts in C. A set P of objects of C is called a
set of generators if the only localising subcategory of C containing objects of P is
the whole of C. An object of a stable model category is called a generator if it is a
generator when considered as an object of the homotopy category.

Using [21, Lemma 2.2.1] it is routine to check that if K consists of homotopically
compact objects of C then K is a set of generators for K�cell�C. Hence we know a
set of generators for each of our cellularisations.

Notice that derived functors of both left and right Quillen equivalences preserve homo-
topically compact objects.

2.3 Idempotents, splitting and reductions

By the results of tom Dieck [8, Propositions 5.6.4 and 5.9.13] there is an isomorphism
of rings

A.SO.3//Q D C.F.SO.3//=SO.3/;Q/:

Here A.SO.3//Q is the rational Burnside ring for SO.3/ and C.F.SO.3//=SO.3/;Q/
denotes the ring of continuous functions on the orbit space F.SO.3//=SO.3/ with
values in the discrete space Q.

Thus it is clear that idempotents of the rational Burnside ring of SO.3/ correspond to
the characteristic functions on subspaces of the orbit space F.SO.3//=SO.3/ discussed
in Section 2.1 which are both open and closed.

In this paper we use the following idempotents in the rational Burnside ring of SO.3/:
eT corresponding to the characteristic function of the toral part T , ie the conjugacy
class of the torus T ; eD corresponding to the characteristic function of the dihedral
part D; and eE corresponding to the characteristic function of the exceptional part E.
Since E is a disjoint union of five points, it is in fact a sum of five idempotents, one for
every (conjugacy class of a) subgroup in the exceptional part: eSO.3/ , e†4

, eA4
, eA5

and eD4
. We use a simplified notation eH to mean e.H /SO.3/

here.

Analogously, we will use the notation ezT for the idempotent in the rational Burnside
ring of O.2/ corresponding to the toral part zT and ezD for the idempotent corresponding
to the dihedral part zD of O.2/.
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For an idempotent e2A.SO.3//Q and a rational sphere spectrum SQ (see [2, Section 5]
for the construction) we define eSQ to be the homotopy colimit (a mapping telescope)
of the diagram

SQ
e
�!SQ

e
�!SQ

e
�!� � � :

We ask for this spectrum to be cofibrant either by choosing a good construction of
homotopy colimit, or by cofibrantly replacing the result in the stable model structure
for SO.3/–spectra. Now, by [18, Chapter IV, Theorem 6.3] (see also Theorem 2.1) the
following left Bousfield localisations exist:

LeTSQ.SO.3/�Sp/; LeDSQ.SO.3/�Sp/; LeESQ.SO.3/�Sp/:

Also, LeH SQ.SO.3/�Sp/ exists for any exceptional subgroup H 2 E.

The first step on the way towards an algebraic model for rational SO.3/–spectra is to
split this category using the above idempotents of the Burnside ring A.SO.3//Q . By
[3, Theorem 4.4] we get the following decomposition.

Proposition 2.6 The adjunction

SO.3/�SpQ

4

��

LeTSQ.SO.3/�Sp/�LeDSQ.SO.3/�Sp/�LeESQ.SO.3/�Sp/

…

OO

is a strong monoidal Quillen equivalence, where SO.3/�SpQ denotes the category of
rational SO.3/ orthogonal spectra, the left adjoint is the diagonal functor and the right
adjoint is the product.

The main idea is to relate each of these localised categories to corresponding ones
for simpler groups. Thus we recall that an inclusion i W H ! G of a subgroup H

into a group G induces two adjoint pairs at the level of orthogonal spectra, induction–
restriction and restriction–coinduction (see [18, Section V.2]):

G�Sp i� // N�Sp

FH .GC;�/

jj

GC^H�

tt

These are both Quillen pairs with respect to the usual stable model structures on both
sides. On the way to obtaining an algebraic model for rational SO.3/–spectra we will
relate both the toral and dihedral parts of this category to the corresponding parts for
rational O.2/–spectra. The natural choice of adjunction between SO.3/–spectra and
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O.2/–spectra would be the induction and restriction functors. However, this turns out
not to be a Quillen adjunction between the toral parts, as we discuss below.

Proposition 2.7 Suppose eT is the idempotent in A.SO.3//Q corresponding to the
characteristic function of the toral part T (ie all subconjugates of the maximal torus
of SO.3/) and ezT is the idempotent in A.O.2//Q corresponding to the characteristic
function of the toral part zT (ie all subconjugates of the maximal torus of O.2/). Then

i�W LeTSQ.SO.3/�Sp/ // LezTSQ.O.2/�Sp/ WSO.3/C ^O.2/�
oo

is not a Quillen adjunction.

Proof It is enough to show that SO.3/C^O.2/� does not preserve acyclic cofibrations.
This argument is the same as the one in [16, Proposition 4.5], since D2 is conjugate
to C2 in SO.3/ and thus i�.eT/¤ ezT .

Although the adjunction above does not behave well with respect to these model
structures, the one with restriction and coinduction does, as is shown in Proposition 2.12
below.

Proposition 2.8 Suppose eD is the idempotent of A.SO.3//Q corresponding to all
dihedral subgroups of order greater than 4 and all subgroups isomorphic to O.2/. Then

i�W LeDSQ.SO.3/�Sp/ // Li�.eD/SQ
.O.2/�Sp/ WSO.3/C ^O.2/�

oo

is a Quillen adjunction.

Proof The proof follows the same pattern as the proof of [16, Proposition 4.4]. It
was a Quillen adjunction before localisation by [18, Chapter V, Proposition 2.3] so the
left adjoint preserves cofibrations. It preserves acyclic cofibrations as SO.3/C^O.2/�

preserved acyclic cofibrations before localisation and we have a natural (in O.2/–
spectra X ) isomorphism

.SO.3/C ^O.2/X /^ eDSQ Š SO.3/C ^O.2/ .X ^ i�.eDSQ//:

It turns out that the other adjunction — restriction and coinduction adjunction — gives
a Quillen pair under general conditions on localisations.

Lemma 2.9 [16, Lemma 4.6] Suppose G is any compact Lie group, i W H ! G is
an inclusion of a subgroup and V is an open and closed set in F.G/=G . Then the
adjunction

i�W LeV SQ.G�Sp/ //
Li�.eV /SQ

.H�Sp/ WFH .GC;�/oo
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is a Quillen pair. We use the notation eV here for the idempotent corresponding to the
characteristic function on V .

In the next sections we will repeatedly use this lemma, mainly in situations where after
a further localisation of the right-hand side we get a Quillen equivalence. To prepare
for that, we distinguish the following two cases.

Corollary 2.10 Let D denote the dihedral part of SO.3/ and eD the corresponding
idempotent. Let i W O.2/! SO.3/ be an inclusion. Then

i�W LeDSQ.SO.3/�Sp/ //
Li�.eD/SQ

.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a Quillen adjunction.

Remark 2.11 Note that the idempotent on the right-hand side i�.eD/ corresponds
to the dihedral part of O.2/ excluding all subgroups D2 and D4 . Thus i�.eD/ D

i�.eD/ezD .

Proposition 2.12 Let i W O.2/! SO.3/ be an inclusion. Then

i�W LeTSQ.SO.3/�Sp/ //
LezTSQ.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a strong monoidal Quillen adjunction, where the idempotent on the right-hand side
corresponds to the family of all subgroups of O.2/ subconjugate to a maximal torus
SO.2/ in O.2/.

Proof This follows from Lemma 2.9 and the composition of Quillen adjunctions

LeTSQ.SO.3/�Sp/
i�
//
Li�.eT/SQ

.O.2/�Sp/
FO.2/.SO.3/C;�/
oo

Id
//
LezTSQ.O.2/�Sp/

Id
oo :

Note that i�.eTSQ/ has nontrivial geometric fixed points not only for all cyclic sub-
groups of O.2/ and SO.2/, but also for D2 , as D2 is conjugate to C2 in SO.3/. To
ignore that and take into account only the toral part we use the fact that ezTi�.eT/D ezT ,
which implies that the identity adjunction above is a Quillen pair.

3 The toral part

In this section we use results from [6] and [4] to obtain an algebraic model for the
toral part of rational SO.3/–spectra. The first paper establishes a zig-zag of symmetric
monoidal Quillen equivalences between rational SO.2/–spectra, while the second one
lifts this comparison to one compatible with the W DO.2/=SO.2/–action to obtain
an algebraic model for the toral part of rational O.2/–spectra.
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We begin by describing the category dA.O.2/; zT/ in Section 3.1 and dA.SO.3/;T/
in Section 3.2. Then we proceed to establish the comparison between the toral part of
rational SO.3/–orthogonal spectra and its algebraic model, dA.SO.3/;T/.

3.1 Categories A.O.2/; zT/ and dA.O.2/; zT/

Before we are ready to describe the category A.SO.3/;T/ we have to introduce the
category A.O.2/; zT/. We give a short description of A.O.2/; zT/ as a category on the
objects of A.SO.2// with W –action. Recall that W DO.2/=SO.2/ is the group of
order 2.

Material in this section is based on [9] and [4, Section 3].

Definition 3.1 Let F denote the family of all finite cyclic subgroups in O.2/. Then
we define a ring in the category of graded QŒW �–modules

OF WD

Y
H2F

QŒcH �

where each cH has degree �2 and w (the nontrivial element of W ) acts on each cH

by �1. For simplicity we set c WD c1 .

We use the notation E�1OF for the colimit

colimk OFŒc
�1; c�1

C2
; : : : ; c�1

Ck
�

of localisations, where the maps in the colimit are the inclusions. E�1OF is an OF–
module using the inclusion

OF! E�1OF:

Notice that we can perform a similar construction on the ring �OF WD .1� e1/OF and
call it BE�1OF , where e1 is the projection on the first factor in the ring OF . Then
another way to define E�1OF is as QŒc; c�1��BE�1OF . This last description of E�1OF

will be useful when we compare this model to the one for the toral part of rational
SO.3/–spectra.

Definition 3.2 An object of A.O.2/; zT/ consists of a triple .M;V; ˇ/ where M is an
OF–module in QŒW �–modules, V is a graded rational vector space with a W –action
and ˇ is a map of OF–modules (in QŒW �–modules)

ˇW M ! E�1OF˝V

such that

.?/ E�1OF˝OF
ˇ is an isomorphism of E�1OF–modules in QŒW �–modules.
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A morphism between two such objects .˛; �/W .M;V; ˇ/! .M 0;V 0; ˇ0/ consists of a
map of OF–modules ˛W M !M 0 and a map of graded QŒW �–modules such that the
relevant square commutes.

Instead of modules over OF in QŒW �–modules we can consider modules over OFŒW �

in Q–modules, where OFŒW � is a group ring with a twisted W –action (namely
wcH D�cHw ). We will use this description in the next section. Similarly, E�1OFŒW �

denotes a group ring with a twisted W –action.

Definition 3.3 An object of dA.O.2/; zT/ is an object of A.O.2/; zT/ equipped with
a differential, or in other words it consists of a triple .M;V; ˇ/ where M is an OF–
module in Ch.QŒW �/, V is an object of Ch.QŒW �/ and ˇ is a map of OF–modules
(in Ch.QŒW �/)

ˇW M ! E�1OF˝V

such that

.?/ E�1OF˝OF
ˇ is an isomorphism of E�1OF–modules in Ch.QŒW �/.

A morphism in this category is a morphism in A.O.2/; zT/ which commutes with the
differentials.

We proceed to discuss the properties of the category dA.O.2/; zT/. Firstly, all limits
and colimits exist in dA.O.2/; zT/, by an argument analogous to [6, Definition 2.2.1].

The existence of a model structure on dA.O.2/; zT/ follows from [9, Appendix B].

Theorem 3.4 There is a stable, proper model structure on the category dA.O.2/; zT/

where the weak equivalences are the homology isomorphisms. The cofibrations are the
injections and the fibrations are defined via the right lifting property. We call this model
structure the injective model structure.

The existence of another, monoidal, model category structure on d.A.O.2/; zT// was
established in [4]. However, since we are not considering monoidality of the algebraic
model in this paper, the injective model structure on dA.O.2/; zT/ is enough for our
purposes.

3.2 Categories A.SO.3/;T/ and dA.SO.3/;T/

Looking at the toral parts of the spaces of subgroups of SO.3/ and O.2/ we see that
the stabiliser of the trivial subgroup is connected in SO.3/, while it is not in O.2/.
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This is a consequence of the fact that the maximal torus is not normal in SO.3/ and it
is the main ingredient capturing the difference between the algebraic models for the
toral part of rational SO.3/–spectra and the toral part of rational O.2/–spectra.

Let us denote by FSO.3/ the family of all finite cyclic subgroups in SO.3/. Then we
use the simplified notation OF WD OFSO.3/

, by which we mean a graded ring

QŒd ��
Y

.H /2FSO.3/;H¤1

QŒc.H /�

where d is in degree �4 and all c.H / are in degree �2. The nontrivial element w 2W

acts on it by fixing d and sending c.H / to �c.H / for all subgroups H 2 FSO.3/ ,
H ¤ 1.

We define the ring OFŒW � as a product of QŒd � (with trivial W –action) and a group ring
.1� e1/OFŒW � with the twisted W –action, that is wc.H / D�c.H /w for H 2 FSO.3/ ,
H ¤ 1.

Recall that c was the element of the first factor of the ring OF (see Definition 3.1).
There is an adjunction

Q–mod
Triv

// QŒW �–mod
.�/W

oo

where .QŒc�/W DQŒd � (recall that QŒc� is the QŒW �–module with W –action given
by wc D�c ). Thus using for example [20, Section 3.3] we have the adjunction

QŒd �–mod in Q–mod
QŒc�˝QŒd ��

// QŒc�–mod in QŒW �–mod:
.�/W

oo

This extends to give the following result.

Proposition 3.5 There is an adjunction

OF˝OF
�W OFŒW ��mod //

OFŒW ��mod W.�/W � Id:oo

Proof The unit of this adjunction is the identity and the counit is the natural inclusion.

We can compose this adjunction with the usual restriction–induction adjunction

OFŒW �–mod
E�1OF˝OF

�
//
E�1OFŒW �–mod

res
oo

to get the adjunction

(3-1) OFŒW �–mod
E�1OF˝O

F
�
//
E�1OFŒW �–mod

U
oo

in Q–modules.
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We define the category A.SO.3/;T/ as follows.

Definition 3.6 An object in A.SO.3/;T/ consists of a triple .M;V; ˇ/ where M is
an OFŒW �–module in Q–modules, V is a graded rational vector space with a W –action
and ˇ is a map of OFŒW �–modules

ˇW M ! U.E�1OF˝V /

such that the adjoint (using (3-1)) satisfies

.?/ E�1OF˝OF
M ! E�1OF˝V is an isomorphism of E�1OFŒW �–modules.

A morphism between two such objects .˛; �/W .M;V; ˇ/! .M 0;V 0; ˇ0/ consists of a
map of OFŒW �–modules ˛W M !M 0 and a map of graded QŒW �–modules such that
the relevant square commutes.

Notice that the condition on the map ˇ implies that the image of e1M must lie in
.QŒc; c�1�˝V /W , ie in W –fixed points. From now on we will abuse the notation
slightly and leave out the functor U (3-1) in the codomain of ˇ in A.SO.3/;T/.

Remark 3.7 There are no idempotents in the category A.SO.3/;T/; however, the
category of OF–modules can be split, for example as QŒd �–mod� .1� e1/OF–mod.
We will use that property in the proof of Proposition 3.9.

Definition 3.8 An object of dA.SO.3/;T/ consists of an OFŒW �–module M equipped
with a differential and a chain complex of QŒW �–modules V together with a map
of OFŒW �–modules  W M ! E�1OF˝V which commutes with differentials. A
differential on a OFŒW �–module M consists of maps dnW Mn ! Mn�1 such that
dn�1 ıdn D 0 and xcdn D dn�2xc , where xc consists of elements c.H / on the H–factor,
for all .H / 2 F , H ¤ 1, and 0 on the first factor, and where xddn D dn�4

xd ; here xd is
d on the first factor and 0 everywhere else in the product.

A morphism in this category is a morphism in A.SO.3/;T/ which commutes with the
differentials.

We proceed to study the adjunction relating A.SO.3/;T/ and A.O.2/; zT/.

Proposition 3.9 We have the following adjunction, where the adjoints are defined in
the proof:

F W A.SO.3/;T/ //
A.O.2/; zT/ WR:oo

Proof Take X D . W M ! E�1OF˝V / in dA.SO.3/;T/. Then define

F.X / WD .x W OF˝OF
M ! E�1OF˝V /;
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where x is the adjoint of  (since OF˝OF
� is a left adjoint from OFŒW �–modules to

OFŒW �–modules; see Proposition 3.5). It is easy to see that this construction gives an
object in A.O.2/; zT/, ie that it satisfies the condition .?/ from Definition 3.2. Since
E�1OF˝OF

x agrees with E�1OF˝OF
 in E�1OFŒW �–modules, it is an isomorphism

by condition .?/ from Definition 3.6.

Now take Y D .ıW N ! E�1OF˝U / in dA.O.2/; zT/. Then define

R.Y / WD
�
ı ı i W .e1N /W � .1� e1/N !N ! E�1OF˝U

�
;

where i is the inclusion.

To see that R.Y /2A.SO.3/;T/, we show the adjoint condition .?/ from Definition 3.6
holds for ı ı i .

Thus we want to show that

ı ı i W E�1OF˝OF
..e1N /W � .1� e1/N /! E�1OF˝U

is an isomorphism of E�1OFŒW � modules.

Notice that we have a natural map

E�1OF˝OF
."N /W E

�1OF˝OF
..e1N /W � .1� e1/N /! E�1OF˝OF

.N /

where " is the counit of the adjunction from Proposition 3.5.

After applying e1 , the map e1"N is an isomorphism for finitely generated modules N .
Since every module is a colimit of finitely generated ones and ˝ commutes with
colimits, e1"N is an isomorphism for any N . Since "N is an isomorphism away
from e1 it is an isomorphism. To complete the argument notice that the diagram

E�1OF˝OF
..e1N /W � .1� e1/N /

E�1OF˝OF
."N /
//

ııi
**

E�1OF˝OF
.N /

xı

��

E�1OF˝U

commutes, where xı is the adjoint of ı (see Proposition 3.5).

It is easy to see that this is an adjoint pair, since the unit is the identity and the counit
is the pair of maps ."; Id/ and the identity on graded QŒW �–modules. Here " is the
counit of the adjunction in Proposition 3.5.

Proposition 3.10 All small limits and colimits exist in A.SO.3/;T/.

Algebraic & Geometric Topology, Volume 17 (2017)



3112 Magdalena Kędziorek

Proof Suppose we have a diagram of objects Mi ! E�1OF ˝ Vi in A.SO.3/;T/
indexed by a category I . The colimit of this diagram is

colimi Mi! E�1OF˝ .colimi Vi/:

If the diagram is finite, than the limit is formed in A.SO.3/;T/ in a similar way:

lim
i

Mi! E�1OF˝ .lim
i

Vi/:

To construct infinite limits in a category A.SO.3/;T/ we use the same method as in
[6, Definition 2.2.1]. However, since we don’t use the construction of infinite limits
anywhere in this paper, we skip the technicalities.

Verifying that these constructions define limits and colimits in A.SO.3/;T/ is routine.

Let gQŒW ��mod denote the category of graded QŒW �–modules. Recall that an
OFŒW �–module M is F–finite if it is a direct sum of its submodules e.H /M :

M D
M
.H /2F

e.H /M;

and let tors�OFŒW �f�mod denote the category of F–finite torsion OFŒW �–modules.
We define two functors relating A.SO.3/;T/ to some simpler categories, which will
allow us to create two classes of injective objects in A.SO.3/;T/.

Definition 3.11 Define the functor eW gQŒW ��mod!A.SO.3/;T/ by

e.V / WD .P ! E�1OF˝V /;

where

e1P DQŒd; d�1�˝V C˚†2QŒd; d�1�˝V � and .1�e1/P D .1�e1/E
�1OF˝V:

Here V C is the W –fixed part of V , V � is the �1 eigenspace and † is the suspension.
The structure map is essentially just an inclusion.

Define a functor f W tors�OFŒW �f�mod!A.SO.3/;T/ by

f .N / WD .N ! 0/:

The domain for this functor was chosen so that f .N /2A.SO.3/;T/, that is, it satisfies
condition .?/ from Definition 3.6.
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Proposition 3.12 For any object X D . W M ! E�1OF˝U / in ADA.SO.3/;T/,
any V in QŒW ��mod and any N in tors�OFŒW �f�mod, we have natural isomor-
phisms

HomA.X; e.V //D HomQŒW �.U;V /;

HomA.X; f .N //D HomOFŒW �.M;N /:

Remark 3.13 This proposition implies that an object e.V / is injective for any V and
that if N is an injective F–finite torsion OFŒW �–module then f .N / is also injective.

Lemma 3.14 The category A.SO.3/;T/ is a (graded) abelian category of injective
dimension 1. Moreover it is split, ie every object X of A.SO.3/;T/ has a splitting
X D XC ˚ X� such that Hom.Xı;Y�/ D 0 and Ext.Xı;Y�/ D 0 if ı ¤ � and
.†X /C D†.X�/ and .†X /� D†.XC/.

Proof The category A.SO.3/;T/ is enriched in abelian groups and by construction
of all limits and colimits we can conclude that it is an abelian category.

For an object X D . W M ! E�1OF ˝ V / we construct the injective resolution of
length 1 as follows. Let TM WD ker  , which is torsion. Thus, since QŒd � and all
QŒc.H /�ŒW � are of injective dimension 1, there is an injective resolution of F–finite
torsion OFŒW �–modules

0! TM ! I 0! J 0! 0;

where I 0;J 0 are injective F–finite torsion OFŒW �–modules.

Let us use simplified notation below. Let P denote the OFŒW �–module from the
definition of e.V / (see Definition 3.11).

If Q is the image of  then J 00 D P=Q is divisible and an F–finite torsion OFŒW �–
module and hence injective. We form a diagram of OFŒW �–modules

0

��

0

��

0

��

0 // TM //

��

M //

��

Q //

��

0

0 // I 0 //

��

I 0˚P //

��

P //

��

0

0 // J 0 //

��

J 0˚J 00 //

��

J 00 //

��

0

0 0 0
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where the middle vertical column is obtained using the horseshoe lemma (see for exam-
ple [23, Lemma 2.2.8]), since left and right vertical columns are injective resolutions
of TM and Q, respectively. Thus we get a diagram

0 // M //


��

I 0˚P //

��

J 0˚J 00 //

��

0

0 // E�1OF˝V // E�1OF˝V // 0 // 0

which is the required resolution of  W M ! E�1OF˝V in A.SO.3/;T/.

Finally, the splitting is given by taking the even- and odd-graded parts. This satisfies the
required conditions since the resolution above of an object Xı is entirely in parity ı .

3.3 Model category dA.SO.3/;T/

In this section we will concentrate on the model category dA.SO.3/;T/ and we will
investigate its properties. First notice that all constructions from the previous section
(limits and colimits, adjoints F and R) pass naturally to the category dA.SO.3/;T/.

By the results of the previous section and [9, Proposition 4.1.3] we can construct the
derived category of A.SO.3/;T/ by taking objects with differential in A.SO.3/;T/
and inverting the homology isomorphisms.

Theorem 3.15 There is an injective model structure on the category dA.SO.3/;T/
where weak equivalences are homology isomorphisms and cofibrations are monomor-
phisms.

Proof Since the category A.SO.3/;T/ is abelian of injective dimension 1 we can use
the construction from [9, Appendix A].

We call dA.SO.3/;T/ with the injective model structure the algebraic model for toral
rational SO.3/–spectra.

To show that the injective model structure is right proper in Proposition 3.19 we need to
introduce a class of objects in A.SO.3/;T/ called wide spheres. This class generalises
the images of representation spheres from rational SO.3/–spectra in A.SO.3/;T/,
hence the name.

Definition 3.16 Define c2n to be an element of the form .c2n; c2n; c2n; : : : / in
E�1OF . Notice that we can view c2n as an element of the form .dn; c2n; c2n; : : : /

in OF if n> 0.

For n>0 define c2nC1 to be an element of the form .c2nC1; c2nC1; c2nC1; c2nC1; : : : /

in E�1OF .
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Definition 3.17 A wide sphere in A.SO.3/;T/ is an object P D .S ! E�1OF˝T /

where T is a graded QŒW �–module which is finitely generated as a Q–module on
elements t1; : : : ; td , where every ti is either W –fixed or W acts on ti by �1 and
deg.ti/Dki . The module S is an OF–submodule of E�1OF˝T generated by elements
cai ˝ t1; : : : ; c

ad ˝ td where ai is either even if ti is W –fixed or odd if W acts on ti
by �1, and an element

Pd
iD1 �i ˝ ti of E�1OF ˝ T . It is also required that the

structure map be the inclusion. We denote by P the set of isomorphism classes of
wide spheres.

We want to show that there are enough wide spheres in A.SO.3/;T/, ie for any
X 2A.SO.3/;T/ there exists an epimorphism from some coproduct of wide spheres
to X .

Proposition 3.18 There are enough wide spheres in A.SO.3/;T/.

Proof We need to show that for any object X D .ˇW N!E�1OF˝U / in A.SO.3/;T/
and any n 2N there exists a wide sphere P and a map P !X such that n is in the
image and for any u 2 U there exists a wide sphere xP and a map xP !X such that
u is in the image. Since the adjoint of ˇ is an isomorphism it is enough to show the
above condition for any n 2N .

Take X D .ˇW N ! E�1OF ˝ U / in A.SO.3/;T/ and n 2 N . Then ˇ.n/ DPd
iD1 �i ˝ ti . We may assume that for every i , either ti is W –fixed or W acts

on ti by �1. Then notice that since e1ˇ.n/ is W –fixed, e1�i will be of the form c2k

if ti was W –fixed or c2kC1 if W acts on ti by �1 (k is some integer here).

For each i , there exist pi 2 N such that ˇ.pi/ D c2bi ˝ ti if ti was W –fixed or
ˇ.pi/D c2biC1˝ ti if W acts on ti by �1. Set f D .c/2b1C���C2bd . We may assume
that the bi were large enough that �ic

2b1C���C2bd =c2bi is in OF if ti was W –fixed
and �ic

�1c2b1C���C2bd =c2bi is in OF if W acts on ti by �1.

Now we have

ˇ
�XC

�ic
2b1C���C2bd =c2bi pi C

X�

�ic
�1c2b1C���C2bd =c2bi pi

�
D

dX
iD1

�if ˝ ti

D ˇ.f n/;

where
PC denotes the sum over all ti which are W –fixed and

P� denotes the sum
over all the others.

Since the adjoint of ˇ is an isomorphism there exists an element c2b such that

c2b
�XC

�ic
2b1C���C2bd =c2bi pi C

X�

�ic
�1c2b1C���C2bd =c2bi pi

�
D c2bf n:

Algebraic & Geometric Topology, Volume 17 (2017)



3116 Magdalena Kędziorek

We take c2b to be the smallest such element.

We take a wide sphere P D .S ! E�1
OF
˝T / where T is a Q–vector space generated

by ti for i D 1; : : : ; d , deg.ti/D ki and S is an OF submodule of E�1
OF
˝T generated

by
Pd

iD1 �i ˝ ti and c2bf ˝ ti if ti is W –fixed and c2b�1f ˝ ti if W acts on ti
by �1. The structure map is the inclusion.

To finish the proof we get a map from P to X by sending
Pd

iD1 �i ˝ ti to n

and c2bf ˝ ti to c2bc2b1C���C2bd =c2bi pi if ti is W –fixed and c2b�1f ˝ ti to
c2b�1c2b1C���C2bd =c2bi pi if W acts on ti by �1.

The elements c2b and f are needed to ensure that the relation between n and the pi’s
after applying ˇ is replicated in the wide sphere.

Proposition 3.19 The injective model structure on dA.SO.3/;T/ is proper.

Proof Since cofibrations are the monomorphism it is left proper. To show that it is
right proper, notice that among trivial cofibrations there are maps 0!Dn˝P , for any
P 2 P, where Dn˝P denotes an object built from P and †P with the differential
being the identity map from the suspension of P to P . Recall that P denotes the set
of isomorphism classes of wide spheres. Since there are enough wide spheres, the
fibrations are in particular surjections. Right properness follows from the fact that in
QŒW ��mod and OFŒW ��mod pullbacks along surjections of homology isomorphisms
are homology isomorphisms.

Corollary 3.20 The category dA.SO.3/;T/ is a Grothendieck category.

Proof Directed colimits are exact in dA.SO.3/;T/, since they are in R–modules,
for any ring R. Thus it remains to show that there is a (categorical) generator. We
take J WD

L
P2P P , where P is the set of all wide spheres. By Proposition 3.18,

Hom.J;�/ is faithful and thus J is a categorical generator.

Next we define a set of objects which will be generators for the homotopy category
of dA.SO.3/;T/ with the injective model structure. Before we were considering
categorical generators, but from now on the meaning of the word generator is as in
Definition 2.5. Recall that if ˇW M ! E�1OF˝V is an object in dA.SO.3/;T/, then
M is in particular a module over OFŒW � (which is an infinite product over conjugacy
classes of cyclic subgroups in SO.3/; see beginning of Section 3.2).

Definition 3.21 We define a set K in dA.SO.3/;T/ to consist of all suspensions and
desuspensions of the following objects:
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� For the trivial subgroup, we take

�1 WD .Q1! 0/;

where Q is at the place indexed by the trivial subgroup and all other factors
are 0.

� For every H 2 F , H ¤ 1, we take

�H WD .QŒW �.H /! 0/;

where QŒW � is at the place indexed by the conjugacy class of a subgroup H

and all other factors are 0.

� For the torus, we take

�T WD .M ! E�1OF˝QŒW �/;

where e1M DQŒd �˚†2QŒd �, .1� e1/M D .1� e1/OF . Here the map is the
inclusion.

It remains to show that the set of cells K is a set of generators for the injective model
structure on dA.SO.3/;T/.

Theorem 3.22 The set K is a set of homotopically compact generators for the category
dA.SO.3/;T/ with the injective model structure.

Proof First note that

�T D .OF! E�1OF˝Q/˚ .N ! E�1OF˝
zQ/;

where e1N D †2QŒd � and .1� e1/N D .1� e1/OF ˝
zQ (here zQ denotes Q with

the action of w by �1), and both structure maps are inclusions. We call the first
summand S0 and the second ��

T
. Therefore it is enough to show that all suspensions

and desuspensions of �1 , �H , ��
T

, S0 for all H 2 F , H ¤ 1 form a set of generators.
We will call this set L.

All cells are homotopically compact since they are compact and fibrant replacement
commutes with direct sums.

We will show that if Œ�;X �A� D 0 for all � 2L then H�.X /D 0 and thus X is weakly
equivalent to 0. By Lemma 3.14, [9, Lemma 4.2.4] and [4, Theorem 3.8] we can use
the following Adams short exact sequence to calculate the maps in the derived category
of ADA.SO.3/;T/ from X to Y in dA:

0! ExtA.†H�.X /;H�.Y //! ŒX;Y �A� ! HomA.H�.X /;H�.Y //! 0:
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Observe that for every X 2 dA.SO.3/;T/, where

X D . W P ! E�1OF˝V /;

we have the fibre sequence
yX !X ! e.V /;

where e.V / is the functor described before Proposition 3.12 and yX is the fibre of the
map X ! e.V /.

By definition, the structure map of e.V / is an inclusion, and thus it is a torsion–free
object. To simplify the notation, let

EFC D .†
�2QŒd; d�1�=QŒd �! 0/˚

M
.H /2F
H¤1

..†�2QŒc.H /; c
�1
.H /�=QŒc.H /�/! 0/:

We call the H–summand in the above formula ˛H . Then

yX 'EFC˝X:

Now observe that every summand ˛H in EFC is built as a sequential colimit from
suspensions of ˛n

H
D .QŒc.H /�=c.H /

n! 0/ and inclusions, or if it is the first summand
˛1 it is built as a sequential colimit of ˛n

1
D .QŒd �=dn! 0/ and inclusions, and thus

Œ�K ; yX �
A
� D Œ�K ;EFC˝X �A� Š

h
�K ;

M
.H /

.˛H ˝X /
iA
�
Š

M
i

Œ�K ; ˛H ˝X �A� ;

where the last isomorphism follows since �K is a homotopically compact object. For
all H , ˛n

H
is a strongly dualisable object (by [9, Corollary 2.3.7 and Lemma 2.4.3]),

and thus we can proceed:

(3-2) Œ�K ; ˛H ˝X �A� Š Œ�K ; colimn ˛
n
H ˝X �A�

Š colimi Œ�K ;Hom.D.˛n
H /;X /�

A
�

Š colimi ŒD.˛
n
H /˝ �K ;X �;

since D.˛n
H
/˝ �K D 0 if K ¤H and every D.˛n

H
/˝ �H is finitely built from �H

and by assumption Œ�;X �D 0 for all � 2 L, we have that ŒD.˛n
H
/˝ �H ;X �D 0 and

thus Œ�H ; yX �
A
� D 0 for all H 2 F .

Now take X to be an object in dA.SO.3/;T/ and assume that Œ�;X �A� D 0 for all
� 2 L. By the calculation above it follows that Œ�H ; yX �

A
� D 0 for all H 2 F .

From the Adams short exact sequence we get that

HomA.H�.�H /;H�. yX //D HomA.�H ;H�. yX //D e.H /H�. yX /D 0:
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Since H�. yX / D
L
.H /2F eH H�. yX / we conclude that yX is weakly equivalent to 0

and thus ŒS0; yX �A� D 0 and Œ��
T
; yX �A� D 0.

Now, by the fibre sequence and the fact that every fibre sequence induces a long exact
sequence on ŒE;�� we deduce that Œ�; e.V /�A� D 0 for every � 2 L. From the Adams
short exact sequence it follows that

HomA.H�.S
0/;H�.e.V ///D HomA.S

0;H�.e.V ///DHC� .e.V //D 0;

HomA.H�.�
�
T /;H�.e.V ///D HomA.�

�
T ;H�.e.V //DH�� .e.V //D 0;

where HC� .e.V // is the W –fixed part of H�.e.V // and H�� .e.V // denotes the �1

eigenspace. Since H�.e.V //DHC� .e.V //˚H�� .e.V // we get that e.V / is weakly
equivalent to 0. Since the fibre sequence induces a long exact sequence in homology
we conclude that H�.X /D 0 and thus X is weakly equivalent to 0, which finishes
the proof.

We finish this section by relating dA.SO.3/;T/ and dA.O.2/; zT/.

Lemma 3.23 The adjunction

dA.SO.3/;T/
F
//

dA.O.2/; zT/
R
oo

is a Quillen pair when we equip both categories with the injective model structures,
where F and R are defined as in the proof of Proposition 3.9.

Proof The left adjoint is exact, so it preserves cofibrations (monomorphisms) and
homology isomorphisms.

Theorem 3.24 The adjunction

dA.SO.3/;T/
F
//
F.K/�cell�dA.O.2/; zT/

R
oo

is a Quillen equivalence, where K is given in Definition 3.21.

Proof We cellularise the left-hand side of the adjunction in Lemma 3.23 at the
set K and the right one at F.K/. The left-hand side is then just dA.SO.3/;T/ by
Theorem 3.22. Thus to use the cellularisation principle [12, Theorem 2.1] we need to
prove that the derived unit is an isomorphism for every element of K. Since the right
adjoint preserves all weak equivalences it is enough to show that the categorical unit
is a weak equivalence. However, we already know that the unit of this adjunction is
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the identity (it was shown in the proof of Proposition 3.9). It remains to show that the
elements of the set F.K/ are homotopically compact in dA.O.2/; zT/ with the injective
model structure. This follows from the fact that R preserves coproducts (notice that
one component of R is taking W –fixed points and over Q this is isomorphic to taking
W –orbits; the other components of R are identities). This finishes the proof.

In the next section we will compare the cells coming from the topological generators
(see Proposition 3.27) with the ones used for cellularising dA.O.2/; zT/. For these two
sets of cells to agree we now change the set of cells used for cellularising dA.O.2/; zT/.
We introduce the following Quillen self-equivalence (which is also an equivalence of
categories) of dA.O.2/; zT/ with the injective model structure. Use the notation zQ for
the QŒW �–module Q with nontrivial W –action. We denote by �˝ zQ a self-adjoint
functor on dA.O.2/; zT/ defined as

�˝ zQ.ˇW M ! E�1OF˝V / WD .ˇ˝ zQW M ˝ zQ! E�1OF˝ .V ˝ zQ/:

Thus, below, we use the notation zF to denote �˝ zQıF and zR to denote Rı�˝ zQ.

The final result of this section follows from Theorem 3.24.

Corollary 3.25 The following is a Quillen equivalence, where K is as in Definition 3.21
and dA.SO.3/;T/ is considered with the injective model structure:

dA.SO.3/;T/
zF
// zF .K/�cell�dA.O.2/; zT/:

zR

oo

Remark 3.26 Let us calculate the cells from zF .K/ (ignoring suspensions as they
work in the same way in both categories):

zF .�1/D zF .Q1! 0/D zQ˚†�2Q! 0;

where c sends zQ to Q (both copies of Q are in the place corresponding to the trivial
subgroup) and

zF .�.H //D zF .QŒW �.H /! 0/DQŒW �H ;! 0

where the left QŒW � is in the place corresponding to .H / and the resulting QŒW � is
in the place corresponding to H . This holds for all .H / 2 F except for H D 1. For
the torus we have

zF .�.T //D zF .M ! E�1OF˝QŒW �/D†2 zQCOF˝QŒW �! E�1OF˝QŒW �;

where c acts on zQ in degree 2 ( zQ is in the place corresponding to the trivial subgroup)
by sending it to Q�QŒW � in degree 0 and the map is the inclusion.
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3.4 Restriction to the toral part of rational O.2/–spectra

The idea for the comparison is to restrict the toral part of rational SO.3/–spectra to
the toral part of rational O.2/–spectra using the functor i� as a left adjoint. Recall
that the adjunction (SO.3/C^O.2/�; i

� ) is not a Quillen pair for the model categories
localised at the idempotents corresponding to the toral parts; see Proposition 2.7.

We use the proof from [4] giving an algebraic model for the toral part of rational
O.2/–spectra, cellularising every step of the zig-zag of Quillen equivalences presented
there. This way we obtain an algebraic model for the toral part of rational O.2/–spectra
cellularised at the derived images of generators for LeTSQ.SO.3/�Sp/. This gives an
algebraic model; however, it is not very explicit. We finish this section by simplifying
this category in Theorem 3.35 and showing that it is Quillen equivalent to dA.SO.3/;T/
with the injective model structure.

We start by establishing generators for the toral part of rational SO.3/–spectra. We
used the notation K in Definition 3.21 for the generators on the algebraic side. We
will use the notation K for the generators on the topological side. We will end this
section by showing that the derived images of the topological generators im.K/ are
precisely the algebraic generators K in dA.SO.3/;T/.

Proposition 3.27 A set K consisting of all suspensions and desuspensions of one
SO.3/–spectrum

�n D SO.3/C ^Cn
eCn

S0

for every natural n > 0 and an SO.3/–spectrum SO.3/=SO.2/C is a set of cofibrant
homotopically compact generators for the category LeTSQ.SO.3/�Sp/.

Proof First consider a set L consisting of all suspensions and desuspensions of
one SO.3/–spectrum SO.3/=CnC for every natural n > 0 and an SO.3/–spectrum
SO.3/=SO.2/C . All objects in L are homotopically compact in LeTSQ.SO.3/�Sp/
since they are in SO.3/�Sp and fibrant replacement in LeTSQ.SO.3/�Sp/ commutes
with coproducts. This is a set of generators for LeTSQ.SO.3/�Sp/ by [18, Chapter IV,
Proposition 6.7]. Since

SO.3/=CnC D

_
Cm�Cn

�m;

which is a consequence of [9, Lemma 2.1.5], the set K is a set of homotopically
compact generators for LeTSQ.SO.3/�Sp/.

Next we restrict to the toral part of rational O.2/–spectra.
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Theorem 3.28 The adjunction

i�W LeTSQ.SO.3/�Sp/ //
i�.K/�cell�LezTSQ.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a Quillen equivalence, where the idempotent on the right-hand side corresponds to
the family of all cyclic subgroups of O.2/.

Proof The fact that this is a Quillen adjunction follows from Proposition 2.12 and the
cellularisation principle [12, Theorem 2.1] for K and i�.K/. Since K was a set of
generators for the category LeTSQ.SO.3/�Sp/, the cellularisation with respect to K

will not change this model structure.

All cells from K are homotopically compact and cofibrant by Proposition 3.27. We
need to check that their images with respect to i� are homotopically compact in
LezTSQ.O.2/�Sp/, ie suspension spectra of SO.3/=CnC for all n and SO.3/=SO.2/C
as toral O.2/–spectra. It is enough to show that they are homotopically compact as
O.2/–spectra, which follows from the fact that a smooth, compact G–manifold admits
a structure of a finite G–CW complex [15, Theorem I] and a suspension spectrum of a
finite G–CW complex is homotopically compact. It thus follows that the images of the
summands �n are also homotopically compact and cofibrant in LezTSQ.O.2/�Sp/.

It remains to show that the components of the derived unit maps at generators are
weak equivalences. For this, it is enough to check the induced map on the level of
homotopy categories. This is equivalent to showing that the derived functor Li� is
an isomorphism on hom-sets. This holds by [10, Theorem 6.1], which states that if
X Š eTX then Li� is an isomorphism

ŒX;Y �SO.3/
! ezT Œi

�X; i�Y �O.2/;

which implies that

Li�W ŒX;Y �LeT
SO.3/

Š ŒeTX; eTY �SO.3/

! ezT Œi
�.eTX /; i�.eTY /�O.2/ Š Œi�X; i�Y �

LezT
O.2/

is an isomorphism, where the superscript LeT SO.3/ was used to mean the homotopy
category of LeTSQ.SO.3/�Sp/. Similarly, the superscript LezT

O.2/ was used to
mean the homotopy category of LezTSQ.O.2/�Sp/. Thus the adjunction is a Quillen
equivalence.

Remark 3.29 The result above generalises to any compact Lie group G . The
restriction–coinduction adjunction is a Quillen equivalence between the toral part
of rational G–spectra and a certain cellularisation of the toral part of rational N –
spectra, where N is the normaliser of the maximal torus in G . This is used in [5] to
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provide an algebraic model for the toral part of rational G–spectra for any compact
Lie group G .

Since the Quillen equivalence above provides a link between the toral part of rational
SO.3/–spectra and the toral part of rational O.2/–spectra we use the result of [4].

Theorem 3.30 [4, Corollary 4.22] There is a zig-zag of Quillen equivalences be-
tween LezTSQ.O.2/�Sp/ and dA.O.2/; zT/, where dA.O.2/; zT/ is considered with
the dualisable model structure.

To provide an algebraic model for rational SO.3/–spectra we need to cellularise every
step of the zig-zag from [4, Section 4] with respect to derived images of i�.K/ from
Theorem 3.28. Cellularisation preserves Quillen equivalences and gives the following
result.

Theorem 3.31 There is a zig-zag of Quillen equivalences between LeTSQ.SO.3/�Sp/
and im.K/�cell�dA.O.2/; zT/, where dA.O.2/; zT/ is considered with the dualis-
able model structure. Here im.K/ denotes the derived image under the zig-zag of
Quillen equivalences described in [4, Section 4] of the set of cells K described in
Proposition 3.27.

Theorem 3.31 already gives an algebraic model for the toral part of rational SO.3/–
spectra. However, it is not easy to work with a cellularisation of a model category. Thus
we show that the model above is Quillen equivalent to the simpler, algebraic category
dA.SO.3/;T/ described in Section 3.2. To do this, we first switch to the cellularisation
of the injective model structure.

Lemma 3.32 The identity adjunction between

im.K/�cell�dA.O.2/; zT/ and im.K/�cell�dA.O.2/; zT/;

where one dA.O.2/; zT/ is equipped with the dualisable model structure and the other
is equipped with the injective model structure, is a Quillen equivalence.

Proof The result follows from the fact that the identity adjunction was a Quillen equiv-
alence between dA.O.2/; zT/ with the dualisable model structure and dA.O.2/; zT/

with the injective model structure.

Lemma 3.33 The set of homology of elements of im.K/ consists of the same objects
as zF .K/, where K is the set described in Definition 3.21 and im.K/ denotes the
derived image under the zig-zag of Quillen equivalences described in [4, Section 4] of
the set of cells K described in Proposition 3.27.
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Proof First we show that, for every n>1, �n is weakly equivalent in LezTSQ.O.2/�Sp/
to O.2/^Cn

eCn
S0 . The map is induced by the inclusion of O.2/ into SO.3/ and

we will show that it induces an isomorphism on all �H
� for H 2 zT . We will use the

notation N DO.2/ and G D SO.3/ below. We have

�H
� .N ^Cn

eCn
S0/D ŒN=HC;FCn

.NC;S
LN .Cn/ ^ eCn

S0/�N

D ŒN=HC;S
LN .Cn/ ^ eCn

S0�Cn :

Here LN .Cn/ is the tangent Cn–representation at the identity coset of N=Cn and thus
is the 1–dimensional trivial representation. Since the codomain has only geometric
fixed points for H D Cn we get a nonzero result only for H D Cn :

ŒˆCn.N=CnC/; ˆ
Cn.SLN .Cn//�D ŒS1

_S1;S1�D†.QŒW �/:

Similarly we have

�H
� .G ^Cn

eCn
S0/D ŒG=HC;FCn

.GC;S
LG.Cn/ ^ eCn

S0/�G

D ŒG=HC;S
LG.Cn/ ^ eCn

S0�Cn ;

and since the codomain has only geometric fixed points for H D Cn we get a nonzero
result only for H D Cn :

ŒˆCn.G=CnC/; ˆ
Cn.SLG.Cn//�D ŒS1

_S1;S1�D†.QŒW �/:

Notice that LG.Cn/ is 3–dimensional, but it has a 1–dimensional Cn–fixed subspace.

The images of the cells in A.O.2/; zT/ are therefore

im.G ^Cn
eCn

S0/D im.N ^Cn
eCn

S0/D .†QŒW �Cn
! 0/

by [9, Example 5.8.1], where †QŒW � is in the place Cn .

Now we will use the functors �A
� described in [9, Theorem 5.6.1 and Lemma 5.6.2].

Since SO.3/C is free we get

�A
� .SO.3/C/D .�T

� .SO.3/C/! 0/

D .��.†SO.3/=TC/! 0/

D .��.†S.R3/C/! 0/

D .†3 zQ˚†Q! 0/;

where †3 zQ˚†Q is in the place corresponding to the trivial subgroup 1 and c sends zQ
in degree 3 to Q in degree 1.
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Finally, SO.3/=TC D S.R3/C is built as an O.2/–space from the cells

N=TC _N=D2C[NC ^ e1:

Thus the cofibre sequence

NC!N=TC _N=D2C!G=TC

gives the long exact sequence

� � �! .†QŒW �! 0/! .OFŒW �!E�1OF˝QŒW �/˚.†Q! 0/! im.G=TC/!� � �

and hence
im.G=TC/D†

2 zQCOF˝QŒW �! E�1OF˝QŒW �;

where c acts on zQ in degree 2 ( zQ is in the place corresponding to the trivial subgroup)
by sending it to Q�QŒW � in degree 0 and the map is the inclusion.

These images are exactly the cells (up to suspension) in zF .K/ (see Remark 3.26),
which finishes the proof.

Remark 3.34 It remains to show that the derived images in dA.O.2/; zT/ of generators
described in Definition 3.21 are formal, that is, they are weakly equivalent to their
homology in dA.O.2/; zT/. We claim it’s clear for .†QŒW �Cn

! 0/, where †QŒW �

is in the place Cn . It is also clear for .†3 zQ˚†Q! 0/, where †3 zQ˚†Q is in
the place corresponding to the trivial subgroup 1 and c sends zQ in degree 3 to Q in
degree 1.

To show that AD .†2 zQCOF˝QŒW �! E�1OF˝QŒW �/ is formal (where c acts
on zQ in degree 2 ( zQ is in the place corresponding to the trivial subgroup) by sending
it to Q � QŒW � in degree 0 and the structure map is the inclusion) we proceed as
follows. Suppose X D .N ! E�1OF ˝ V / 2 dA.O.2/; zT/ such that H�.X / Š A.
We want to construct a map A! X in dA.O.2/; zT/ which is a weak equivalence.
We proceed in two parts, using the fact that QŒW �ŠQ˚ zQ and a QŒW �–map from
QŒW � is determined by the image of 1 2Q and the image of 1 2 zQ.

First, we choose an anti-fixed cycle x in e1N representing 1 in †2 zQ. This determines
c.x/ 2 Q which represents 1 in homology of e1N (it also determines all higher
powers of c applied to x ). Now we choose a fixed cycle xx 2 .1� e1/N in degree 0

representing x1 in homology (where x1 is 1 on all places of the infinite product except
the first one, where it’s 0); xx is fixed by W . It follows that .c.x/; xx/ is a cycle
in N representing constant (and fixed by W ) 1 in H0.N /. The element .c.x/; xx/
maps to an element 1˝ b 2 E�1OF ˝ V , which represents 1˝ 1 in degree 0 of
H�.E

�1OF˝V /Š E�1OF˝H�.V /Š E�1OF˝QŒW �.
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Second, we choose an anti-fixed cycle y in N in degree 0 representing a constant
element 1 in H0.N / which is W –anti-fixed. Element y maps into an element 1˝k 2

E�1OF ˝ V representing the anti-fixed 1˝ 1 in degree 0 of H�.E
�1OF ˝ V / Š

E�1OF˝H�.V /Š E�1OF˝QŒW �. The choices of x; xx and y determine a map in
dA.O.2/; zT/ which is clearly a homology isomorphism.

Theorem 3.35 The adjunction

zF W dA.SO.3/;T/ // im.K/�cell�dA.O.2/; zT/ W zRoo

defined after Theorem 3.24 is a Quillen equivalence, where both categories (before
cellularisation on the right) are equipped with the injective model structure. Here
im.K/ denotes the derived image under the zig-zag of Quillen equivalences described
in [4, Section 4] of the set of cells K described in Proposition 3.27.

Proof It is enough to show that im.K/ consists of the same objects (up to a weak
equivalence) as zF .K/, where K is the set described in Definition 3.21, which we estab-
lished in Lemma 3.33 and Remark 3.34. The result follows then from Corollary 3.25.

We summarise the results of this section.

Theorem 3.36 There is a zig-zag of Quillen equivalences between LeTSQ.SO.3/�Sp/
and dA.SO.3/;T/.

4 The dihedral part

The algebraic model for the dihedral part of rational SO.3/–spectra is almost identical
to the algebraic model of the dihedral part of rational O.2/–spectra presented in [4,
Section 5]. The difference comes from two things. First, in SO.3/ every dihedral
subgroup of order 2, namely D2 , is conjugate to cyclic subgroups C2 and thus is
already taken into account in the toral part. Second, the normaliser of D4 in SO.3/
is a subgroup †4 . For those reasons we exclude subgroups conjugate to D2 and
subgroups conjugate to D4 from the dihedral part D. Excluding D2 and D4 from
the dihedral part D allows us to deduce that the information captured by subgroups
of SO.3/ that are in D is the same as that captured by subgroups of O.2/ that are in
zD n fD2;D4g; see Proposition 4.8. This leads to the reduction of the dihedral part of
rational SO.3/–spectra to the (part of the) dihedral part of rational O.2/–spectra in
Theorem 4.9.

We know from [10] that the model for the homotopy category of the dihedral part of
rational SO.3/–spectra is of the form of certain sheaves over an orbit space for D,
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denoted further by A.SO.3/;D/. Section 4.1 discusses this category as well as the
category of chain complexes in A.SO.3/;D/; Ch.A.SO.3/;D//. In Section 4.2 we
present the comparison between the dihedral part of rational SO.3/–spectra and its
algebraic model Ch.A.SO.3/;D//.

4.1 Categories A.SO.3/;D/ and Ch.A.SO.3/;D//

First we recall the construction of A.SO.3/;D/ (see also [10]), then we present
the model structure on Ch.A.SO.3/;D// and recall a set of homotopically compact
generators for this model category.

Material in this section is based on [4, Section 5.1]. There is a slight difference between
the definition of A.O.2/; zD/ presented there (A.O.2/;D/ is the notation used in [4]
for this category) and A.SO.3/;D/ below, namely we start indexing modules from
k D 3, which corresponds to D6 DD2k . Indexing in [4] starts from 1.

Let W be the group of order two.

Definition 4.1 Define a category A.SO.3/;D/ as follows.

An object M consists of a Q–module M1 , a collection Mk 2QŒW �–mod for k > 2

and a map (called the germ map) of QŒW �–modules �M W M1! colimn>2

Q
k>n Mk ,

where the W –action on M1 is trivial.

A map f W M!N in A.SO.3/;D/ consists of a map f1W M1!N1 of Q–modules
and a collection of maps of QŒW �–modules fk W Mk!Nk which commute with germ
maps �M and �N :

M1

f1

��

�M
// colimn>2

Q
k>n Mk

colimn>2

Q
k>n fk

��

N1
�N
// colimn>2

Q
k>n Nk

Definition 4.2 Define Ch.A.SO.3/;D// to be the category of chain complexes in
A.SO.3/;D/ and gA.SO.3/;D/ to be the category of graded objects in A.SO.3/;D/.

An object M of Ch.A.SO.3/;D// consists of a rational chain complex M1 , a col-
lection of chain complexes of QŒW �–modules Mk for k > 2 and a germ map of chain
complexes of QŒW �–modules �M W M1! colimn>2

Q
k>n Mk , where the W –action

on M1 is trivial.

Note that we used a chain complex notation here, unlike for the toral part, where
we used dA.SO.3/;T/ to mean differential objects in A.SO.3/;T/. The difference
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between these two is that A.SO.3/;D/ is not a graded category, and we introduce a
grading taking chain complexes in A.SO.3/;D/. On the other hand, A.SO.3/;T/ is
already graded, and we are interested in differential objects in A.SO.3/;T/.

Remark 4.3 Since the only difference between our definition of A.SO.3/;D/ and the
one for A.O.2/; zD/ lies in index k , all constructions for A.SO.3/;D/ are analogous
to the ones for A.O.2/; zD/ presented in [4].

It is helpful to consider several adjoint pairs involving the category Ch.A.SO.3/;D//.
They are used to get a model structure on Ch.A.SO.3/;D//.

Definition 4.4 [4, Definition 5.9] Let A 2 Ch.Q/, X 2 Ch.QŒW �/ and M 2

Ch.A.SO.3/;D//. For a natural number k > 2 we define the following functors:

� ik W Ch.QŒW �/!Ch.A.SO.3/;D//, given by .ik.X //1D 0 and .ik.X //nD 0

for n¤ k and .ik.X //k DX .
� pk W Ch.A.SO.3/;D//! Ch.QŒW �/, given by pk.M /DMk .
� cW Ch.Q/! Ch.A.SO.3/;D//, given by .cA/k DA, .cA/1 DA, and where
�cA is the diagonal map into the product.

Then .ik ;pk/, .pk ; ik/ and .c;CW / are adjoint pairs, where the functor CW is given
in [4, Definition 5.6].

The category Ch.A.SO.3/;D// is bicomplete by [4, Lemma 5.7] so we can proceed
to define a model structure on it.

Proposition 4.5 [4, Proposition 5.10] There exists a model structure on the category
Ch.A.SO.3/;D// where f is a weak equivalence or fibration if f1 and each of the fk

are weak equivalences or fibrations, respectively. This model structure is cofibrantly
generated and proper.

We call this model structure the projective model structure on Ch.A.SO.3/;D//. By
[4, Proposition 5.10] the generating cofibrations are of the form cIQ and ikIQŒW � for
k > 3 and generating acyclic cofibrations are of the form cJQ and ikJQŒW � for k > 3.
Here IQ and JQ denote generating cofibrations and generating trivial cofibrations,
respectively, for the projective model structure on Ch.Q/, and IQŒW �;JQŒW � denote
generating cofibrations and generating trivial cofibrations, respectively, for the projective
model structure on Ch.QŒW �/ (for details see [14, Definition 2.3.3]).

We finish this section by giving a set of homotopically compact generators (recall
Definitions 2.5 and 2.4) for A.SO.3/;D/.
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Lemma 4.6 [4, Lemma 5.11] The set of objects Ga consisting of ikQŒW � for k > 3

and cQ is a set of homotopically compact, cofibrant and fibrant generators for the
category Ch.A.SO.3/;D// with the projective model structure.

4.2 Comparison

First we give homotopically compact, cofibrant generators for LeDSQ.SO.3/�Sp/.
We stick to the convention of writing eH for e.H /SO.3/

.

Lemma 4.7 The set

yG WD fSO.3/=O.2/Cg[ feD2n
SO.3/=D2nC j n> 2g

is a set of homotopically compact, cofibrant generators for LeDSQ.SO.3/�Sp/.

Proof The proof is the same as the proof of [4, Lemma 5.14].

To finish the discussion about generators, we show that the restriction functor

i�W LeDSQ.SO.3/�Sp/!Li�.eD/SQ
.O.2/�Sp/

preserves generators up to weak equivalence.

Proposition 4.8 Recall that i�.eD/ is the idempotent in A.O.2//Q corresponding to
the characteristic function on subgroups D2n for n> 2 and O.2/.

(1) The map f W O.2/=O.2/C! i�.SO.3/=O.2/C/ induced by inclusion O.2/!

SO.3/ is a weak equivalence in Li�.eD/SQ
.O.2/�Sp/.

(2) The map f2nW eD2n
O.2/=D2nC! i�.eD2n

SO.3/=D2nC/ for n > 2 induced
by the inclusion O.2/! SO.3/ is a weak equivalence in Li�.eD/SQ

.O.2/�Sp/.

Proof To show that the map f W O.2/=O.2/C! i�.SO.3/=O.2/C/ is a weak equiv-
alence in the given model structure, we need to show that i�.eD/f is an equivariant
rational ��–isomorphism. Thus we need to check that for all subgroups H � O.2/

the H–geometric fixed points map

ˆH .i�.eD/f /W ˆ
H .i�.eD/O.2/=O.2/C/!ˆH .i�.eD/i

�.SO.3/=O.2/C//

is a nonequivariant rational ��–isomorphism.

Since taking geometric fixed points commutes with smash product and suspensions, for
every subgroup H 62 . zD n fD2;D4g/, ˆH .i�.eD/f / is a trivial map between trivial
objects. For H DO.2/ the map is an identity on S0 since O.2/ is its own normaliser
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in SO.3/. For other H 2 . zD n fD2;D4g/ it is an identity on S0 since, for each n,
there is just one conjugacy class of D2n subgroups in O.2/ (and if g 2 SO.3/ and
g 62O.2/ then g�1D2ng 6�O.2/).

Part (2) follows the same pattern, however the domain and codomain of the map f2n are
already local in Li�.eD/SQ

.O.2/�Sp/, so f Š i�.eD/f . Since the idempotent used
is eD2n

the only nontrivial geometric fixed points will be for the subgroup H DD2n .
The result follows from the fact that NO.2/D2n DNSO.3/D2n , which implies that the
map on geometric fixed points for D2n is the identity on D4n=D2nC , and that finishes
the proof.

To give an algebraic model for the dihedral part of rational SO.3/–spectra we firstly
use the restriction–coinduction adjunction in the next theorem to move to a certain part
of rational O.2/–spectra. Then we show that this part of rational O.2/–spectra is a
localisation of the dihedral part of rational O.2/–spectra from [4]. As a result, the
method presented in [4] of obtaining an algebraic model for this part applies in our
case almost verbatim.

Theorem 4.9 Let i W O.2/! SO.3/ be an inclusion. Then the adjunction

i�W LeDSQ.SO.3/�Sp/ //
Li�.eD/SQ

.O.2/�Sp/ WFO.2/.SO.3/C;�/oo

is a Quillen equivalence. (Note that the idempotent on the right-hand side corresponds
to the set of all dihedral subgroups of order greater than 4 together with O.2/.)

Proof This is a Quillen adjunction by Corollary 2.10 and moreover i� is a right
Quillen functor by Proposition 2.8.

We will use [14, Corollary 1.3.16(c)]. To show that this adjunction is a Quillen equiva-
lence first notice that FO.2/.SO.3/C;�/ preserves and reflects weak equivalences be-
tween fibrant objects. For any fibrant X 2Li�.eD/SQ

.O.2/�Sp/ and H 2 zDnfD2;D4g

we have natural isomorphisms

ŒSO.3/=HC;FO.2/.SO.3/C;X /�Š Œi� SO.3/=HC;X �Š ŒO.2/=HC;X �;

where the second one follows from Proposition 4.8. Since weak equivalences between
fibrant objects are detected by H–homotopy groups, FO.2/.SO.3/C;�/ preserves and
reflects weak equivalences between fibrant objects.

We need to show that the derived unit

Y ! FO.2/.SO.3/C; yf i�.Y //
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is a weak equivalence on cofibrant objects in LeDSQ.SO.3/�Sp/. It is enough to
check that the induced map

ŒX;Y �
LeDSQ

.SO.3/�Sp/
Š ŒX; eDY �SO.3/

! ŒX;FO.2/.SO.3/C; yf i�.eDY //�SO.3/

is an isomorphism for every generator X of LeDSQ.SO.3/�Sp/ (see Lemma 4.7 for
the set of generators). This map fits into the commuting diagram below:

ŒX; eDY �SO.3/

i�

++��

ŒX;FO.2/.SO.3/C; yf i�.eDY //�SO.3/ Š
// Œi�X; yf i�.eDY /�O.2/

Since the horizontal map is an isomorphism it is enough to show that i� is an iso-
morphism on hom sets, where the domain is a generator for LeDSQ.SO.3/�Sp/. We
do this by using the second Quillen adjunction between these two categories, namely
.SO.3/C ^O.2/�; i

�/.

Let � denote the categorical unit of the adjunction .SO.3/C ^O.2/�; i
�/. The map �

on cofibrant generators is of the form

�eH O.2/=HC W eH O.2/=HC! eH i�.SO.3/=HC/;

induced by an inclusion O.2/! SO.3/. By Proposition 4.8 this is a weak equivalence
in Li�.eD/SQ

.O.2/�Sp/ for all H in D and thus �ı � induces an isomorphism in
the homotopy category. We have the commuting diagram

ŒeH SO.3/=HC; eDY �SO.3/

i�

,,

Š

��

ŒeH O.2/=HC; i
�.eDY /�O.2/ Œi�.eH SO.3/=HC/; i�.eDY /�O.2/

�ı�
oo

where H above denotes a finite dihedral subgroup or O.2/ (when H is O.2/ we
understand eH as eD ).

It follows that i� is an isomorphism on hom sets and thus the derived unit of the
adjunction where i� is the left adjoint is a weak equivalence in LeDSQ.SO.3/�Sp/,
which finishes the proof.

To obtain the algebraic model for rational SO.3/–spectra it is enough to get one for
Li�.eD/SQ

.O.2/�Sp/. We use the comparison method presented in [4] for the dihedral
part of rational O.2/–spectra in this case.
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Theorem 4.10 There is a zig-zag of Quillen equivalences from Li�.eD/SQ
.O.2/�Sp/

to Ch.A.SO.3/;D//.

Proof Notice that Li�.eD/SQ
.O.2/�Sp/ is a localisation of the dihedral part of

rational O.2/–spectra LezDSQ.O.2/�Sp/ at an idempotent i�.eD/, since i�.eD/ezDD

i�.eD/. The set

zG WD fO.2/=O.2/Cg[ feD2n
O.2/=D2nC j n> 2g

is a set of homotopically compact, cofibrant generators for Li�.eD/SQ
.O.2/�Sp/ by

the same argument as in [4, Lemma 5.14].

Thus it is enough to use the proof of [4, Theorem 5.18] based on the tilting theorem
of Schwede and Shipley [21, Theorem 5.1.1] restricted to the set of generators zG for
Li�.eD/SQ

.O.2/�Sp/ on one hand and the set of generators Ga (see Lemma 4.6) on
the algebraic side. This shows that Li�.eD/SQ

.O.2/�Sp/ is Quillen equivalent to the
category Ch.A.SO.3/;D//.

Theorem 4.9 and Theorem 4.10 give the algebraic model for the dihedral part of rational
SO.3/–spectra.

Theorem 4.11 There is a zig-zag of Quillen equivalences between LeDSQ.SO.3/�Sp/
and A.SO.3/;D/.

5 The exceptional part

The last part of rational SO.3/–spectra, LeESQ.SO.3/�Sp/, captures the behaviour of
conjugacy classes of five subgroups: SO.3/, †4 , A4 , A5 and D4 ; see Section 2.1.

Definition 5.1 [16, Definition 2.1] Recall that a subgroup H of G is exceptional if
three conditions are satisfied:

� there is an idempotent e.H / 2 A.G/Q corresponding to the conjugacy class
of H ,

� the Weyl group NGH=H of H is finite, and

� H does not contain any subgroup K such that H=K is a (nontrivial) torus.

All subgroups in this part satisfy the definition above, hence the name exceptional part.

Recall that the stable model structure on G–spectra is a monoidal model structure
satisfying the monoid axiom. Thus any left Bousfield localisation at a cofibrant object E
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of a category of G–spectra is again a monoidal model category (by a straightforward
check of the pushout-product axiom and the definition of E–weak equivalence). It also
satisfies the monoid axiom, since E ^� commutes with transfinite compositions and
pushouts. By [3, Theorem 4.4] we have the following result.

Proposition 5.2 There is a strong symmetric monoidal Quillen equivalence

4W LeESQ SO.3/�SpQ
// Q

.H /;H2E Le.H /SO.3/
SQ.SO.3/�Sp/ W…:oo

First we recall some details on what will be the building block of the algebraic model for
the exceptional part, ie the category Ch.QŒWGH �/ of chain complexes of QŒWGH �–
modules, and then we summarise the monoidal comparison from [16].

5.1 The category Ch.QŒW �/

Suppose W is a finite group. The category of chain complexes of left QŒW �–modules
can be equipped with the projective model structure, where weak equivalences are
homology isomorphisms and fibrations are levelwise surjections. This model structure
is cofibrantly generated by [14, Section 2.3].

Note that QŒW � is not generally a commutative ring, however it is a Hopf algebra
with cocommutative coproduct given by �W QŒW �! QŒW �˝QŒW �, g 7! g˝ g .
This allows us to define an associative and commutative tensor product on Ch.QŒW �/,
namely tensor over Q, where the W –action on the X ˝Q Y is diagonal. The unit is
a chain complex with Q at the level 0 with trivial W –action and zeros everywhere
else and it is cofibrant in the projective model structure. The monoidal product defined
this way is closed, where the internal hom is given by a formula for an internal hom in
Q–modules with W –action given by conjugation.

By [2, Proposition 4.3] the category Ch.QŒW �/ is a monoidal model category satisfying
the monoid axiom.

5.2 Monoidal comparison

The following result is the main theorem of [16].

Theorem 5.3 Suppose G is any compact Lie group. Then there is a zig-zag of
symmetric monoidal Quillen equivalences from Le.H /G

SQ.G�Sp/ of rational G–
spectra over an exceptional subgroup H to Ch.QŒWGH �/ equipped with the projective
model structure.
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We apply the result above for GD SO.3/ to get the algebraic model for the exceptional
part of rational SO.3/–spectra.

Theorem 5.4 There is a zig-zag of symmetric monoidal Quillen equivalences from
LeESQ.SO.3/�Sp/ to

Q
.H /;H2E Ch.QŒWSO.3/H �/

Proof This follows from Proposition 5.2 and Theorem 5.3.

Below we present a short sketch of steps in the monoidal comparison for rational
G–spectra over an exceptional subgroup to outline general ideas. We refer the reader
to [16] for all the details.

Fix an exceptional subgroup H in G . First, using the restriction–coinduction adjunction,
we move from the category Le.H /G

SQ.G�Sp/ to the category Le.H /N
SQ.N�Sp/,

where N denotes the normaliser NGH . The second step is to use the fixed point–
inflation adjunction between Le.H /N

SQ.N�Sp/ and Le1SQ.W �Sp/, where W de-
notes the Weyl group N=H . Recall that W is finite, as H is an exceptional subgroup
of G . Next we use the restriction of universe to pass from Le1SQ.W �Sp/ to the
category SpŒW � of rational orthogonal spectra with W –action. We then pass to
symmetric spectra with W –action using the forgetful functor from orthogonal spectra
and then to HQ–modules with W –action in symmetric spectra. From here we use
[22, Theorem 1.1] to get to Ch.Q/ŒW �, the category of rational chain complexes
with W –action, which is equivalent as a monoidal model category to Ch.QŒW �/, the
category of chain complexes of QŒW �–modules. That gives an algebraic model which
is compatible with the monoidal product, ie this zig-zag of Quillen equivalences induces
a strong monoidal equivalence on the level of homotopy categories.
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Betti numbers and stability for configuration spaces
via factorization homology

BEN KNUDSEN

Using factorization homology, we realize the rational homology of the unordered
configuration spaces of an arbitrary manifold M , possibly with boundary, as the
homology of a Lie algebra constructed from the compactly supported cohomology
of M . By locating the homology of each configuration space within the Chevalley–
Eilenberg complex of this Lie algebra, we extend theorems of Bödigheimer, Cohen
and Taylor and of Félix and Thomas, and give a new, combinatorial proof of the
homological stability results of Church and Randal-Williams. Our method lends itself
to explicit calculations, examples of which we include.

57R19; 17B56, 55R80

1 Introduction

We study the configuration space Bk.M / of k unordered points in a manifold M ,
defined as

Bk.M /D Confk.M /†k
WD f.x1; : : : ;xk/ 2M k

j xi ¤ xj for i ¤ j g=†k ;

where the permutation group †k acts by permuting the xi . Our main theorem concerns
the homology of these spaces.

Theorem 1.1 Let M be an n–manifold. There is an isomorphism of bigraded vector
spaces M

k�0

H�.Bk.M /IQ/ŠHL
�
H��c .M IL.Qw Œn� 1�//

�
:

Here H��c denotes compactly supported cohomology, Qw is the orientation sheaf
of M , HL denotes Lie algebra homology and L is the free graded Lie algebra functor.
The auxiliary grading on the left is by cardinality of the configuration and on the right
by powers of the Lie generator.

Our methods apply equally to the calculation of the twisted homology of configuration
spaces and of the homology of certain relative configuration spaces defined for manifolds
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with boundary; precise statements may be found in Theorem 4.5 and Theorem 4.9,
respectively. All results and arguments herein are valid over an arbitrary field of
characteristic zero.

The study of configuration spaces is classical. To name some highlights, the space
Bk.R

2/ is a classifying space for the braid group on k strands (see Artin [2]); the
space Confk.R

n/ has the homotopy type of the space of k –ary operations of the
little n–cubes operad and so plays a central role in the theory of n–fold loop spaces
(see eg Cohen, Lada and May [17], May [43] and Segal [51]); certain spaces of
labeled configurations provide models for more general types of mapping spaces (see
Bödigheimer [8], McDuff [44], Salvatore [48], Segal [51]); and, according to a striking
theorem of Longoni and Salvatore [39], the homotopy type of Bk.M / is not an invariant
of the homotopy type of M .

As this last fact indicates, configuration spaces depend in subtle ways on the structure
of the background manifold. On the other hand, the homology of these spaces has
often been shown to be surprisingly simple, provided one is willing to work over a field
of characteristic zero. Indeed, Bödigheimer, Cohen and Taylor [10] show that the Betti
numbers of Bk.M / are determined by those of M when M is of odd dimension, and
Félix and Thomas [24] show that, in the even-dimensional case, the Betti numbers
of Bk.M / are determined by the rational cohomology ring of M , as long as M is
closed, orientable and nilpotent. We recover extensions of these results as immediate
consequences of Theorem 1.1.

Corollary 1.2 The groups H�.Bk.M /IQ/ depend only on n and

� the graded abelian group H�.M IQ/ if n is odd, or

� the cup product H��c .M IQw/˝2!H��c .M IQ/ if n is even.

The computational power of Theorem 1.1 lies in the bigrading, which permits one to
isolate the homology of a single configuration space within the Chevalley–Eilenberg
complex computing the appropriate Lie homology. Employing this strategy, we show
that the chain complexes computing H�.Bk.M /IQ/ exhibited in [10] and [24] are
isomorphic to subcomplexes of the Chevalley–Eilenberg complex; precise statements
appear in Section 4.3. Better yet, in dealing with the entire Chevalley–Eilenberg
complex at once, one is able to perform computations for all k simultaneously; see
Section 6.

Another important aspect of the study of configuration spaces is the phenomenon
of homological stability. As k tends to infinity, the Betti numbers of Bk.M / are
eventually constant, despite the absence of a map of spaces Bk.M /! BkC1.M / in
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general; see Church [14], Church, Eilenburg and Farb [15], Randall-Williams [46] and
Cantero and Palmer [13]. Here too, characteristic zero is special.

Regarding stability, we prove the following.

Theorem 1.3 Let M be a connected n–manifold with n> 1. The cap product with
the unit in H 0.M IQ/ induces a map

H�.BkC1.M /IQ/!H�.Bk.M /IQ/

that is

� an isomorphism for �< k and a surjection for � D k when M is an orientable
surface, and

� an isomorphism for � � k and a surjection for � D kC 1 in all other cases.

The sense in which the homology of configuration spaces forms a coalgebra, so that the
cap product is defined, will be explained in Section 5. We lack a conceptual explanation
for the exceptional behavior in dimension 2, as it emerges from our argument solely as
a numerical/combinatorial coincidence.

This result improves on the stable range of Church [14] and very slightly on that of
Randal-Williams [46]. As in the former work, our stable range can be further improved
if the low-degree Betti numbers of M vanish. As the example of the Klein bottle
shows, the bound � � k is sharp in the sense that no better stable range holds for all
manifolds that are not orientable surfaces. When M is open, the surjectivity statement
is proven in [46]; to the author’s knowledge, the result is new for compact manifolds.

Conceptually, we think of Theorem 1.1 as providing an explanation and organizing
principle for the behavior of configuration spaces in characteristic zero. The germ of
our approach, and the source of the connection to Lie algebras, is the calculation, due
to Arnol’d and Cohen, of the homology of the ordered configuration spaces of Rn ,
which is the fundamental result of the subject; see Arnol’d [1] and Cohen, Lada and
May [17]. Specifically, for n� 2, the homology groups of the spaces Confk.R

n/ form
a shifted version of the operad governing Poisson algebras, with the shifted Lie bracket
given by the fundamental class of Conf2.R

n/' Sn�1 ; see Sinha [52] for a beautiful
geometric discussion of this identification. Locally, then, configuration spaces enjoy a
rich algebraic structure; factorization homology, our primary tool in this work, provides
a means of assembling this structure across coordinate patches of a general manifold,
globalizing the calculation of Arnol’d and Cohen. Theorem 1.1 is the natural output of
this procedure.

At a more formal level, we rely on the fact that the factorization homology of M , with
coefficients taken in a certain free algebra, can be computed in two different ways.
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On the one hand, according to Proposition 3.1, it has an expression in terms of the
configuration spaces of M . On the other hand, the free algebra may be thought of as a
kind of enveloping algebra, and a calculation of the author’s in [35] identifies the same
invariant as Lie algebra homology. On the face of it, these calculations only coincide
for framed manifolds; we show that they agree in general in characteristic zero.

In keeping with our metamathematical goal of making the case for factorization ho-
mology as a computational tool, we do not focus on the technical underpinnings of
the theory. The interested reader may find these in Ayala and Francis [5; 4; 3], Ayala,
Francis and Tanaka [7; 6], Francis [25] and Lurie [42].

The paper is split into seven sections. In Sections 2–3, we review the basics of
factorization homology and discuss calculations thereof in several cases of interest.
Theorem 1.1 and its variants are proved in Section 4 assuming several deferred results,
and the classical results alluded to above follow. In Section 5, we discuss coalgebraic
phenomena arising from configuration spaces, which lead us to the proof of Theorem 1.3
and one of the missing ingredients in the main theorem. Finally, Section 6 is concerned
with explicit computations, and Section 7 supplies the remaining missing ingredients.

Conventions (1) In accordance with the bulk of the literature on factorization homol-
ogy, we work in an 1–categorical context, where for us an 1–category will always
mean a quasicategory. The standard references here are Lurie [40; 42], but we will
need to ask only very little of the vast theory developed therein, and the reader may
obtain a sense of the arguments and results by substituting “homotopy colimit” for
“colimit” everywhere, for example.

(2) Every manifold is smooth and may be embedded as the interior of a compact
manifold with boundary (such an embedding is not part of the data). We view manifolds
as objects of the 1–category Mfldn , the topological nerve of the topological category
of n–manifolds and smooth embeddings, which is symmetric monoidal under disjoint
union.

(3) Our homology theories are valued in ChQ , the underlying 1–category of the
category of Q–chain complexes equipped with the standard model structure. With the
single exception of Theorem 2.1, ChQ is understood to be symmetric monoidal under
tensor product.

(4) The homology of a chain complex V is written H.V /, while the homology of a
space X is written H�.X /. Hence H�.X /DH.C�.X //. If g is a differential graded
Lie algebra, then H.g/ is a graded Lie algebra.

(5) Chain complexes are homologically graded. If V is a chain complex, V Œk� is
the chain complex with .V Œk�/n D Vn�k , and, for x 2 V , the corresponding element
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in V Œk� is denoted �kx . Cohomology is concentrated in negative degrees; to reinforce
this point, we write H��.X / for the graded vector space whose degree-�k part is
the k th cohomology group of X ; for example,

H��.Sn
IQ/Š

�
Q if � 2 f�n; 0g;

0 otherwise.

(6) If X is a space and V is a chain complex, the tensor of X with V is the chain
complex

X ˝V WD C�.X /˝V:

(7) If .X;A/ is a pair of spaces, the quotient of X by A is the pointed space X=A

defined as the pushout in the following diagram:

A

��

// X

��

pt // X=A

In particular, we have X=¿DXC .

(8) If X is an object of the 1–category C with an action of the group G , then XG

and X G denote the G–coinvariants and G–invariants of X , respectively, which are
objects of C. When C is topological spaces or chain complexes, this object coincides
in the homotopy category with homotopy coinvariants.
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2 Factorization homology

2.1 Homology theories

In this section, we review the basic notions of factorization homology, also known
as topological chiral homology. The primary reference is [5]. As there, our point of
view is that factorization homology is a natural theory of homology for manifolds.
To illustrate in what sense this is so, we first recall the classical characterization of
ordinary homology, phrased in a way that invites generalization.

Theorem 2.1 (Eilenberg–Steenrod axioms) Let V be a chain complex. There is
a symmetric monoidal functor C�.�IV / from spaces with disjoint union to chain
complexes with direct sum, called singular homology with coefficients in V , which
is characterized up to natural equivalence by the following properties:

(1) C�.ptIV /' V ;

(2) the natural map

C�.X1IV /
L

C�.X0IV /

C�.X2IV /! C�.X IV /

is an equivalence, where X is the pushout of the diagram of cofibrations

X1 -X0 ,!X2:

Property (2), a local-to-global principle equivalent to the usual excision axiom, is the
reason that homology is computable and hence useful.

Of course, ordinary homology is a homotopy invariant. In the study of manifolds,
the equivalence relation of interest is often finer than homotopy equivalence, and one
could hope for a theory better suited to such geometric investigations. To discover
what form this theory might take, let us contemplate a generic symmetric monoidal
functor .Mfldn;t/ ! .ChQ;˝/. By analogy with Theorem 2.1, we ask that this
functor be determined by its value on Rn , the basic building block in the construction
of n–manifolds. Unlike a point, however, Euclidean space has interesting internal
structure.

Definition 2.2 An n–disk algebra in ChQ is a symmetric monoidal functor

AW .Diskn;t/! .ChQ;˝/;

where Diskn �Mfldn is the full subcategory spanned by manifolds diffeomorphic toF
k Rn for some k 2 Z�0 .
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In other words, Diskn is the (nerve of the) category of operations associated to the
endomorphism operad of the manifold Rn , and an n–disk algebra is an algebra over
this operad. In contrast, the endomorphism operad of a point in topological spaces
is the commutative operad, and every chain complex is canonically and essentially
uniquely a commutative algebra in .ChQ;˚/.

Taking the extra structure of Rn into account, [5, Theorem 3.24] provides an analogous
classification theorem.

Theorem 2.3 (Ayala and Francis) Let A be an n–disk algebra. There is a symmetric
monoidal functor

R
.�/A from n–manifolds with disjoint union to chain complexes

with tensor product, called factorization homology with coefficients in A , which is
characterized up to natural equivalence by the following properties:

(1)
R

Rn A'A as n–disk algebras;

(2) the natural map Z
M1

A
NR

M0�RA

Z
M2

A!

Z
M

A

is an equivalence, where M is obtained as the collar-gluing of the diagram of
embeddings M1 -M0 �R ,!M2 .

Just as the functor of singular chains is but one model for ordinary homology, factor-
ization homology may be constructed in several equivalent ways. The construction that
we will favor is as follows.

Let AW Diskn ! ChQ be an n–disk algebra. Then factorization homology with
coefficients in A is the left Kan extension in the following diagram of 1–categories:

Diskn
A
//

��

ChQ

Mfldn

R
.�/

A

;;

Explicitly, it may be calculated as the colimitZ
M

A' colim.Diskn=M !Diskn
A
�! ChQ/:

Remark 2.4 Since ChQ admits sifted colimits and ˝ distributes over them, Theorem
3.2.3 of [4] guarantees that the left Kan extension and the symmetric monoidal left
Kan extension exist and coincide.
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2.2 Variant: framed manifolds

The category Diskn is closely related to the classical operad En of little n–cubes. To
make this connection, we recall that a framing of an n–manifold M is a nullhomotopy
of its tangent classifier

M
TM'�
�����! BO.n/:

With the corresponding notion of framed embedding between framed manifolds in hand,
one obtains an 1–category Mfldfr

n of framed n–manifolds; see [5, Definition 2.7].

Definition 2.5 A framed n–disk algebra in ChQ is a symmetric monoidal functor
AW .Diskfr

n ;t/! .ChQ;˝/, where Diskfr
n �Mfldfr

n is the full subcategory spanned by
framed manifolds diffeomorphic to

F
k Rn for some k 2 Z�0 .

As before, the factorization homology of a framed n–manifold with coefficients in a
framed n–disk algebra is defined as the left Kan extension from Diskfr

n . Indeed, the
whole theory carries over into the context of topological manifolds equipped with a
microtangential B –structure arising from a map B!BTop.n/. In this paper, we will
only make use of the cases B D BO.n/, corresponding to smooth manifolds (see [5,
Example 2.11 and Remark 3.29]), and B D �, corresponding to framed manifolds.

Now, the topological operad En has an associated 1–operad (see [42, Section 2.1]),
and [6, Example 2.11] asserts an equivalence

AlgDiskfr
n
.C/

�
�! AlgEn

.C/

for any symmetric monoidal 1–category C. Moreover, this equivalence induces a
further equivalence

AlgDiskn
.C/

�
�! AlgEn

.C/O.n/:

Informally, an n–disk algebra is an En –algebra with an action of O.n/ compatible
with the action on En given by rotating disks. In the language of [49], n–disk algebras
are algebras for the semidirect product En Ì O.n/.

Remark 2.6 The reader is cautioned not to confuse the framed n–disk algebras
employed here with the “framed En –algebras” that occur elsewhere in the literature.
These algebras carry an action of SO.n/ and yield homology theories for oriented
manifolds.

2.3 Free algebras

We introduce several functors that will be important for us in what follows. The
reference here is [3].
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Within the 1–category Diskn there is a Kan complex with a single vertex, the ob-
ject Rn , whose endomorphisms are Emb.Rn;Rn/' O.n/, so that we may identify
this Kan complex with BO.n/. Restricting to this subcategory defines a forgetful
functor

AlgDiskn
.ChQ/! Fun.BO.n/;ChQ/

�
�!ModO.n/.ChQ/:

The latter symbol denotes the 1–category of chain complexes equipped with an action
of C�.O.n/IQ/, which we refer to simply as O.n/–modules. This functor admits a
left adjoint Fn , the free n–disk algebra generated by an O.n/–module.

Evaluation on Rn defines a still more forgetful functor, which we think of as associating
to an algebra its underlying chain complex. The situation is summarized in the following
commuting diagram of adjunctions, in which the straight arrows are right and the bent
arrows left adjoints:

AlgDiskn
.ChQ/ //

''

ModO.n/.ChQ/

Fn
ss

��

ChQ

O.n/˝ .�/

XX``

In particular, for a chain complex V , the free n–disk algebra on V is naturally
equivalent to Fn.O.n/˝V /. More generally, there is the following description.

Proposition 2.7 There is a natural equivalence

Fn.K/
�
�!

M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k K˝k

�
;

where K is an O.n/–module.

Proof The map is supplied by the universal property of the free algebra. In the case
K DO.n/˝V , it is an equivalence, since Fn.K/ is now the free n–disk algebra on
the chain complex V , so that

Fn.K/'
M
k�0

�
Emb

�F
k Rn;�

�
˝†k

V ˝k
�

Š

M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k

�
O.n/k ˝V ˝k

��
Š

M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k K˝k

�
:
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Since a general O.n/–module may be expressed as a split geometric realization of
free O.n/–modules, and since Fn , as a left adjoint, preserves geometric realizations, it
suffices to show that the right-hand side shares this property. But both ModO.n/.ChQ/

and AlgDiskn
.ChQ/ are monadic over ChQ , so on both sides the geometric realization is

computed in ChQ , and the right-hand side clearly preserves colimits in chain complexes.

In the framed case, Embfr.Rn;Rn/ is contractible, so there is only the one forgetful
functor

Alg
Diskfr

n
.ChQ/! ChQ;

whose left adjoint, the free framed n–disk algebra functor, is denoted F fr
n .

By restriction along the natural inclusion Diskfr
n !Diskn , any n–disk algebra is in

particular a framed n–disk algebra, and there is an equivalence of Diskfr
n –algebras

Fn.V /' F fr
n .V /;

where V is a chain complex considered as a trivial O.n/–module.

3 Calculations

3.1 Frame bundles

The object of this section is twofold. First, we compute the factorization homology of
the free n–disk algebra generated by an O.n/–module K . Second, for suitable K , we
interpret this calculation in terms of the homology of configuration spaces.

For a manifold M , let FrM !M denote the corresponding principal O.n/–bundle.
Since Confk.M / is an open submanifold of M k , its structure group is canonically
reducible to O.n/k , and we denote the corresponding principal O.n/k –bundle by
Conf fr

k .M /.

Proposition 3.1 There is a natural equivalenceZ
M

Fn.K/
�
�!

M
k�0

�
Conf fr

k .M /˝†kËO.n/k K˝k
�
;

where K is an O.n/–module.

Proof The natural map

colim
Diskn=M

�
Emb

�F
k Rn;�

�� �
�! Emb

�F
k Rn;M

�
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is an equivalence by [42, page 726], so we haveZ
M

Fn.K/' colim
Diskn=M

�M
k�0

�
Emb

�F
k Rn;�

�
˝†kËO.n/k K˝k

��
'

M
k�0

�
colim

Diskn=M

�
Emb

�F
k Rn;�

��
˝†kËO.n/k K˝k

�
'

M
k�0

�
Emb

�F
k Rn;M

�
˝†kËO.n/k K˝k

�
:

To conclude, we note that evaluation at the origin defines a projection

Emb
�F

k Rn;M
�
! Confk.M /;

and the natural derivative map Emb
�F

k Rn;M
�
! Conf fr

k .M / covering the identity
is an equivalence of O.n/k –spaces over Confk.M /.

Remark 3.2 This proposition is a special case of a calculation carried out in the more
general context of zero-pointed manifolds in [3, Theorem 2.4.1]. We have included this
simplified argument for the reader’s convenience.

It will be important in what follows to be able to identify the summand of this object
corresponding to a particular choice of k .

Definition 3.3 The cardinality grading of the functor
R

M Fn.K/ is the grading corre-
sponding to the direct sum decomposition of Proposition 3.1.

Note that this grading corresponds to the grading induced on the colimit by the cardi-
nality grading of the functor Fn.K/.

We will be most interested in this calculation for particularly simple choices of O.n/–
module K .

Corollary 3.4 There is a natural equivalenceZ
M

Fn.Q/
�
�!

M
k�0

C�.Bk.M /IQ/:

Proposition 3.1 can also be used to study the twisted homology of Bk.M /. To pursue
this direction, we must first identify the orientation cover BBk.M / of Bk.M /. For this
we note that the orientation cover

DConfk.M /! Confk.M /! Bk.M /
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has structure group †k � C2 when considered as a bundle over Bk.M /; that the
automorphism corresponding to �1 2 C2 reverses orientation; and that the automor-
phism corresponding to � 2†k reverses orientation if sgn.�/D�1 and n is odd and
preserves orientation otherwise. Therefore, the action of the subgroup

H WD f.�; sgn.�/n/ j � 2†kg<†k �C2

is orientation-preserving, and we deduce the following proposition.

Proposition 3.5 BBk.M / Š DConfk.M /H as covers of Bk.M /.

For a chain complex V , let V sgn denote the sign representation of C2 on V , and
V det the O.n/–module obtained from the latter by restriction along the determinant
O.n/! C2 . Recall that, for an n–manifold N , the homology of N twisted by the
orientation character may be computed as the homology of the complex

C�.N IQ
w/ WD zN ˝C2

Qsgn
Š FrN ˝O.n/Qdet:

Proposition 3.6 Let M be an n–manifold.

(1) If n is even, there is a natural equivalenceZ
M

Fn.Q
det/

�
�!

M
k�0

C�.Bk.M /IQw/:

(2) If n is odd, there is a natural equivalenceZ
M

Fn.Q
detŒ1�/

�
�!

M
k�0

C�.Bk.M /IQw/Œk�:

Proof (1) We have that

Conffrk.M /˝†kËO.n/k .Q
det/˝k

Š Conffrk.M /˝†kËO.nk/Qdet

Š DConfk.M /˝†k�C2
Qsgn

Š DConfk.M /†k
˝C2

Qsgn

Š BBk.M /˝C2
Qsgn;

where we used the commutativity of the diagram

O.n/k //

detk
��

O.nk/

det
��

C k
2

multiply
// C2
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and the fact that H D †k � f1g when n is even. The claim follows after summing
over k and applying Proposition 3.1.

(2) Similarly, we have that

Conffrk.M /˝†kËO.n/k .Q
detŒ1�/˝k

Š Conffrk.M /˝†kËO.nk/ .Q
det
˝QŒ1�˝k/

Š DConfk.M /˝†k�C2
.Qsgn

˝QŒ1�˝k/

Š DConfk.M /H ˝C2
QsgnŒk�

Š BBk.M /˝C2
QsgnŒk�;

where we used that Qsgn˝QŒ1�˝k is a trivial H –module and Œ†k �C2 WH �D 2.

3.2 Commutative algebras

We now consider a calculation of factorization homology in a certain degenerate case,
which is a slight generalization of that considered in [5, Proposition 5.1]. We will make
use of this calculation in the next section.

Restriction of embeddings defines a map Emb
�F

k Rn;Rn
�
!
Q

k Emb.Rn;Rn/'Q
k O.n/, which assemble to form a symmetric monoidal functor

� W Diskn! BO.n/t;

where BO.n/t is the 1–category obtained as the nerve of the topological category
with objects the natural numbers and morphism spaces given by

MapBO.n/t.r; s/D
G

f W hri!hsi

sY
iD1

O.n/f
�1.i/;

which is symmetric monoidal under addition. For more on this and related 1–
categories, the reader may consult [42, Section 2.4.3]. For us, the relevance of this
object is the following consequence of [42, Theorem 2.4.3.18].

Theorem 3.7 (Lurie) There is an equivalence

Fun˝.BO.n/t;ChQ/
�
�!ModO.n/.AlgCom.ChQ//:

This result motivates our next definition.

Definition 3.8 A commutative refinement of an n–disk algebra A is a factorization
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Diskn

�
��

A
// ChQ

BO.n/t

::

through a symmetric monoidal functor BO.n/t! ChQ .

By the previous theorem, a commutative refinement endows the underlying object of A

with the structure of a commutative algebra for which the n–disk algebra structure
maps are homomorphisms. More formally, we obtain a factorization

Diskn

ACom
��

A
// ChQ

AlgCom.ChQ/

88

of A through the forgetful functor.

Example 3.9 By the Künneth theorem, the functor H W ChQ ! ChQ is symmetric
monoidal, whence the homology of an n–disk algebra is canonically an n–disk algebra.
Since H factors through the discrete 1–category of graded vector spaces, we have a
symmetric monoidal factorization

Diskn

�0

  

�
��

H.A/
// ChQ

BO.n/t

��

BCt
2

DD

through the homotopy category of Diskn , so that H.A/ is canonically commutative.

Definition 3.10 Let X be a topological space and B a commutative algebra. The
tensor of X and B is the colimit

X ˝B D colim
�
X ! pt

B
�! AlgCom.ChQ/

�
of the constant functor from X , viewed as an 1–groupoid, with value B .

Remark 3.11 When XDS1, this construction has the homotopy type of the Hochschild
chains of A. In general, one recovers Pirashvili’s higher Hochschild homology.
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Let Disk1
n=M denote the full subcategory of Diskn=M spanned by those arrowsF

k Rn!M with k D 1.

Proposition 3.12 Suppose that A admits a commutative refinement. There is a natural
equivalence

FrM ˝O.n/A' colim
�
Disk1

n=M !Diskn
ACom
�! AlgCom.ChQ/

�
:

Proof Since the colimit is the left Kan extension to a point, and since Kan extensions
compose, we may write

colim
Disk1

n=M

ACom ' colim
BO.n/

�! ACom ' .�! ACom/O.n/;

so that it suffices to identify �! ACom .

Since the projection Diskn=M!Diskn is a left fibration, so is � W Disk1
n=M!BO.n/;

in particular, this functor is a co-Cartesian fibration, which implies that the inclusion
��1.pt/! �=pt of the fiber over the basepoint into the overcategory is a right adjoint
and hence final. Therefore, we have

�! ACom D colim
�=pt

ACom ' colim
��1.pt/

ACom D �
�1.pt/˝A

According to [5, Corollary 2.13], the 1–category Disk1
n=M is equivalent to the Kan

complex M , and the map � W Disk1
n=M ! BO.n/ coincides under this identification

with the classifying map for the tangent bundle of M . In particular, the fiber of this
map is O.n/–equivalent to FrM , which completes the proof.

Proposition 3.13 Suppose that A admits a commutative refinement. There is a natural
equivalence Z

M

A' FrM ˝O.n/A:

Proof By the previous proposition, it suffices to show that the inclusion Disk1
n=M !

Diskn=M and the forgetful functor AlgCom.ChQ/! ChQ induce equivalences

colim
Disk1

n=M

ACom
�
�! colim

Diskn=M

ACom
�
�! colim

Diskn=M

A

when A is commutative.

Since ChQ is ˝–presentable (see [5, Definition 3.4]), the second equivalence fol-
lows from [5, Corollary 3.22], which asserts that Diskn=M is sifted, and [42, Corol-
lary 3.2.3.2], which implies that the forgetful functor from commutative algebras
preserves sifted colimits.
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The first equivalence holds whenever M is framed by [5, Proposition 5.1], since in
this case the diagram

Diskfr
n=M

��

�
// Diskn=M

��

Diskfr
n

��

// Diskn

��

FinD fegt // BO.n/t

commutes. In particular, the equivalence holds for M D
F

k Rn , and we conclude that

A' Fr.�/˝O.n/A

as n–disk algebras. Therefore, the claim will be established once we are assured that
the expression on the right satisfies condition (2) of Theorem 2.3. For this, we note
that the functor Fr.�/ takes a collar-gluing of manifolds to a pushout of O.n/–spaces,
and that the functor �˝O.n/A preserves colimits of O.n/–spaces.

3.3 A spectral sequence

We employ a certain “commutative-to-noncommutative” spectral sequence in the proof
of Theorem 1.1. For technical reasons, it will be convenient to restrict our attention to
n–disk algebras valued in Ch�0

Q , the full subcategory of chain complexes concentrated
in nonnegative homological degree. This restriction is not essential.

Proposition 3.14 Let M be an n–manifold and A an n–disk algebra in Ch�0
Q . There

is a natural first-quadrant spectral sequence

E2
p;q ŠHp;q

�
FrM ˝O.n/H.A/

�
H) HpCq

�Z
M

A

�
;

with differential dr of bidegree .�r; r � 1/.

The nature of the bigrading will become clear in the proof.

To construct this spectral sequence, we employ a rigidified version of the overcategory
Diskn=M , denoted Disj.M / following [42, Chapter 5], which is the poset of those
open subsets of M diffeomorphic to

F
k Rn for some k . We refer the reader to [42,

Proposition 5.5.2.13] for the proof of the following result.

Algebraic & Geometric Topology, Volume 17 (2017)



Betti numbers and stability for configuration spaces via factorization homology 3153

Proposition 3.15 There is a final functor N.Disj.M //!Diskn=M .

Thus, by [40, Proposition 4.1.1.8], the factorization homology of M may be computed
as a colimit over the nerve of the ordinary category Disj.M /. Having achieved
this simplification, we proceed as follows. Using the fact that Ch�0

Q arises from
a combinatorial simplicial model category, [40, Proposition 4.2.4.4] implies that any
functor N.Disj.M //! Ch�0

Q of 1–categories is equivalent in the 1–category of
functors to one coming from a functor of ordinary categories. Having chosen such a
“straightening” of A, which we abusively denote by A, [40, Theorem 4.2.4.1] now
guarantees that the homotopy colimit of A coincides with the 1–categorical colimit.

Proof of Proposition 3.14 From the discussion of the previous paragraph and [47,
Corollary 5.1.3], we have equivalencesZ

M

A' hocolim
Disj.M /

A' B.pt;Disj.M /;A/;

where B.pt;Disj.M /;A/ denotes the realization of the simplicial chain complex given
in simplicial degree p by

Bp.pt;Disj.M /;A/D
M

Up!���!U0!M

A.Up/

(here we use for a second time the fact that the model structure on nonnegatively graded
chain complexes is simplicial). Filtering by skeleta in the usual way, we obtain a
spectral sequence

E1
p;q D

M
Up!���!U0!M

Hq.A.Up// H) HpCq

�Z
M

A

�
;

with the differential d1 given by the alternating sum of the face maps (see [50, Propo-
sition 5.1], for example, which treats the case of a simplicial space). In other words,
the E1 page is the (graded) chain complex associated to the (graded) simplicial chain
complex B�.pt;Disj.M /;H.A// via the Dold–Kan correspondence, so that, invoking
Proposition 3.13, we have natural isomorphisms

E2
p;qŠHp;q.B.pt;Disj.M /;H.A///ŠHp;q

�Z
M

H.A/

�
ŠHp;q.FrM Ő.n/H.A//:

Remark 3.16 Horel discusses a version of this spectral sequence in [33, Section 5].

3.4 Enveloping algebras

In this section, we outline the place of Lie algebras in the theory of factorization
homology, the general reference for which is [35].
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It has long been known that configuration spaces are intimately related to Lie algebras;
see [17; 18; 16], for example. To see the connection, suppose that A is a Diskfr

n –
algebra in chain complexes, with n � 2. Part of the structure of such an object is a
multiplication map

mW Embfr�F
2 Rn;Rn

�
˝A˝2

!A;

and since the homology of Embfr�F
2 Rn;Rn

�
' Conf2.R

n/' Sn�1 is concentrated
in degrees 0 and n� 1, this multiplication encodes two maps

m0W A
˝2
!A and mn�1W A

˝2
!AŒ1� n�

defining a commutative multiplication on A and a Lie bracket on AŒn�1�, again up to
homotopy. The Jacobi identity for mn�1 follows from the three-term or Yang–Baxter
relations in H�.Conf3.R

n// (see [20]), and O.n/, acting on Sn�1 by degree ˙1

maps, interchanges it with the opposite bracket.

The fact that this discussion illustrates is the existence of a forgetful functor from
Diskfr

n –algebras to Lie algebras at the level of1–categories. Indeed, according to [35],
there is the following commuting diagram of adjunctions:

Alg
Diskfr

n
.ChQ/

��

// AlgL.ChQ/

��

Un

uu

ChQ

F fr
n

FF

Œn� 1�
// ChQ

L

ZZ

Œ1� n�

hh

Here L denotes the free Lie algebra functor.

The Diskfr
n –algebra Un.g/ is known as the n–enveloping algebra of g; see [31, Section

4.6] for a discussion of the identification between U1 and the usual universal enveloping
algebra. The factorization homology of these algebras is computed in [35].

Theorem 3.17 (Knudsen) There is a natural equivalenceZ
M

Un.g/
�
�! CL.gMC/:

We pause briefly to explain the terms of the theorem.

(1) The 1–category of differential graded Lie algebras has limits and is therefore
cotensored over pointed spaces; we denote by gX the cotensor of the pointed space X

with the Lie algebra g. A model for this object is provided by [32, Lemma 4.8.3].
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Proposition 3.18 Let X be a pointed finite CW complex. There is a natural equiva-
lence

gX
'APL.X /˝ g:

Here APL denotes the functor of reduced piecewise-linear de Rham forms (see [22,
Section 10(c)], for example), and the right-hand side carries the canonical Lie bracket
on the tensor product of a nonunital commutative algebra and a Lie algebra, which is
defined by the formula

Œa˝ v; b˝w�D .�1/jvjjbjab˝ Œv; w�:

(2) The symbol CL denotes the functor of Lie algebra chains. This coaugmented
cocommutative coalgebra is defined abstractly via the monadic bar construction against
the free Lie algebra monad, but it has a concrete incarnation as the Chevalley–Eilenberg
complex

CE.g/D .Sym.g Œ1�/; dgCD/;

where D is defined as a coderivation by specifying that

D.�x ^ �y/D .�1/jxj�Œx;y�:

See [27, Section 6] for a discussion of the comparison between the monadic bar construc-
tion and the Chevalley–Eilenberg complex. We remark that CE.g/ is a coaugmented
cocommutative differential graded coalgebra, and the resulting coproduct on HL.g/

coincides with the one inherited from the monadic bar construction; indeed, both are
induced by the diagonal g! g˚ g, which is a map of Lie algebras.

The equivalence of Theorem 3.17 specializes to a natural equivalence

Un.g/' CL.g.R
n/C/

of Diskfr
n –algebras. In this way, Theorem 3.17 can be thought of as identifying an n–

disk algebra refinement of the Diskfr
n –algebra Un.g/, so that the expression

R
M Un.g/

is sensible for manifolds M that are not necessarily framed.

Returning to the discussion that began this section, if A is now an n–disk algebra
rather than merely a Diskfr

n –algebra, then A determines a shifted Lie algebra in O.n/–
modules, but now with O.n/ acting on the suspension coordinates. A full discussion
of this phenomenon and the corresponding enveloping algebra is beyond the scope of
this paper. Since the analogue of Theorem 3.17 is true in that context, we will content
ourselves with making it our definition.

As a matter of notation, if X is a pointed O.n/–space and g a Lie algebra in O.n/–
modules, we denote the O.n/–invariants of gX by MapO.n/.X; g/.
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Definition 3.19 Let g be a Lie algebra in O.n/–modules. The n–enveloping algebra
of g is the n–disk algebra

Un.g/D CL.MapO.n/.Fr.Rn/C ; g//:

Here we take the frame bundle of the one-point compactification to be the cofiber

FrMC D cofib
�
FrM j@M ! FrM

�
of O.n/–spaces, where M is a compact n–manifold with boundary whose interior
is M ; see [4, Definition 4.5.1] for a more invariant interpretation of this object.

A choice of framing of Rn trivializes Fr.Rn/C , inducing an equivalence

MapO.n/.Fr.Rn/C ; g/' g.R
n/C ;

which is even equivariant for the diagonal action of O.n/ on the target, so this definition
specializes via Theorem 3.17 to our earlier one when g is an ordinary Lie algebra.

The corresponding factorization homology calculation is the following.

Proposition 3.20 There is a natural equivalenceZ
M

Un.g/
�
�! CL.MapO.n/.FrMC ; g//

for M an n–manifold and g a Lie algebra in O.n/–modules.

Proof Since CL , as a left adjoint, preserves colimits, it suffices to exhibit an equiva-
lence of Lie algebras Z

M

g.R
n/C �
�!MapO.n/.FrMC ; g/;

which is supplied by the argument of [5, Proposition 5.13], since sifted colimits of Lie
algebras are computed in ChQ by [41, Proposition 2.1.16].

We close this section with a definition of a grading that will play an important role in
what follows. Let g be a differential graded Lie algebra with a weight decomposition
as a direct sum of complexes g D

L
k g.k/ with the property that Œv; w� 2 g.r C s/

when v 2 g.r/ and w 2 g.s/.

Example 3.21 A free Lie algebra has a canonical weight decomposition

L.V /D
M
k�0

L.k/˝†k
V ˝k :

Algebraic & Geometric Topology, Volume 17 (2017)



Betti numbers and stability for configuration spaces via factorization homology 3157

Example 3.22 If g has a weight decomposition, then APL.X /˝g carries a canonical
weight decomposition for any space X .

Such a decomposition induces a weight grading on the underlying graded vector space
of Sym.gŒ1�/ of the Chevalley–Eilenberg complex. In fact, since we have assumed that
the bracket and differential of g each respect the weight decomposition, the Chevalley–
Eilenberg differential applied to a monomial of pure weight k again has pure weight k ,
so that CE.g/ is a bicomplex. In this way, a weight decomposition of g induces a
weight grading on H.Un.g//.

4 Configuration spaces

4.1 The main result

In this section, we prove Theorem 1.1 assuming the validity of several results, discus-
sion of which is postponed for the sake of continuity, as the proofs involve different
techniques from those used thus far.

As a preliminary step, we have the following basic pair of observations.

Proposition 4.1 (1) Let K be an O.n/–module and K its underlying chain com-
plex. There is a natural equivalence of framed n–disk algebras

F fr
n .K/' Fn.K/:

(2) Let g be a Lie algebra in O.n/–modules and g its underlying Lie algebra. There
is a natural equivalence of framed n–disk algebras

Un.g/' Un.g/:

Proof A choice of framing for Rn induces an O.n/–equivariant homotopy equivalence

Embfr�F
k Rn;Rn

�
�O.n/k

�
�! Emb

�F
k Rn;Rn

�
;

whence from Proposition 2.7 we have

Fn.K/Š
M
k�0

�
Embfr�F

k Rn;Rn
�
�O.n/k

�
˝†kËO.n/k K˝k

Š

M
k�0

��
Embfr�F

k Rn;Rn
�
�O.n/k

�
˝O.n/k K˝k

�
†k

Š

M
k�0

Embfr�F
k Rn;Rn

�
˝†k

K˝k

Š F fr
n .K/:
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This proves (1), and (2) is immediate from Definition 3.19.

Remark 4.2 Thinking topologically, the generic example of an n–disk algebra in
spaces is an n–fold loop space on an O.n/–space X ; see [49] or [54]. In this context,
the statement is that, as an n–fold loop space, the homotopy type of �nX does not
depend on the action of O.n/ on X .

Connecting (1) and (2) is the following formal observation, which amounts to the
statement that left adjoints compose.

Proposition 4.3 Let V be a chain complex. There is a natural equivalence

F fr
n .V /

�
�! Un.L.V Œn� 1�//

of framed n–disk algebras, where L is the free Lie algebra functor.

This observation is a generalization of the familiar fact that the universal enveloping
algebra of the free Lie algebra on a set of generators S is free on S as an associative
algebra; however, equipped with the involution given by its Hopf algebra antipode,
the universal enveloping algebra of the free Lie algebra on S is not the free algebra-
with-involution on S . This classical fact illustrates the n D 1 case of the general
phenomenon that the free n–disk algebra on the trivial O.n/–module V is not the
n–enveloping algebra of the free Lie algebra on V . As the following proposition shows,
the O.n/–action must be twisted to restore the equivalence.

Proposition 4.4 Let K be an O.n/–module. There is a natural equivalence

Fn.K/
�
�! Un

�
L..Rn/C˝KŒ�1�/

�
of n–disk algebras, where .Rn/C˝K carries the diagonal O.n/–action.

Proof First, we note that the unit

K! ..Rn/C˝K/.R
n/C

of the tensor/cotensor adjunction is an equivalence of O.n/–modules. Indeed, it suffices
to verify this in the case K D Q, in which case the map induces the isomorphism
QŠ .Qdet/˝2 in homology.

Now, composing this unit map with the natural inclusions

..Rn/C˝K/.R
n/C
!L..Rn/C˝KŒ�1�/.R

n/C Œ1�! CL
�
L..Rn/C˝KŒ�1�/.R

n/C
�
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of O.n/–modules, we obtain a map of n–disk algebras

Fn.K/! Un

�
L..Rn/C˝KŒ�1�/

�
from the universal property of the free algebra. It will suffice to show that this map is
an equivalence upon passing to underlying Diskfr

n –algebras, which follows from the
previous two propositions and the (nonequivariant) equivalence QŒn�' zC�..Rn/CIQ/.

Proof of Theorem 1.1 An equivalence of n–disk algebras induces an equivalence on
passing to factorization homology. Using the indicated results, we obtain equivalencesM

k�0

C�.Bk.M /IQ/'

Z
M

Fn.Q/ (3.4)

'

Z
M

Un

�
L
�
zC�..R

n/C/Œ�1�
��

(4.4)

' CL
�
MapO.n/

�
FrMC ;L

�
zC�..R

n/C/Œ�1�
���

(3.20)

' CL
�
MapO.n/.FrMC ;L.Q

detŒn� 1�//
�

(7.1)

' CL
�
MapC2. zMC;L.QsgnŒn� 1�//

�
' CL

�
H��c .M;L.Qw Œn� 1�//

�
: (7.5)

Applying Proposition 3.14 to this equivalence of algebras, we obtain an isomorphism
of spectral sequences. The weight and cardinality gradings of the two algebras pass to
factorization homology, so that these spectral sequences are each trigraded. According
to Proposition 5.4, the isomorphism preserves the extra grading on E2 and hence
on E1 .

4.2 Variations

In this section, we discuss the corresponding results for twisted homology and manifolds
with boundary.

Theorem 4.5 Let M be an n–manifold.

(1) If n is even, there is an isomorphism of bigraded vector spacesM
k�0

H�.Bk.M /IQw/ŠHL
�
H��c .M IL.QŒn� 1�//

�
:

(2) If n is odd, there is an isomorphism of bigraded vector spacesM
k�0

H�.Bk.M /IQw/Œk�ŠHL
�
H��c .M IL.QŒn�//

�
:
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Proof We imitate the proof of Theorem 1.1. In the even case, we haveM
k�0

C�.Bk.M /IQw/'

Z
M

Fn.Q
det/ (3.6)

'

Z
M

Un

�
L
�
zC�..R

n/C/˝QdetŒ�1�
��

(4.4)

' CL
�
MapO.n/

�
FrMC ;L

�
zC�..R

n/C/˝QdetŒ�1�
���

(3.20)

' CL
�
MapO.n/

�
FrMC ;L..Q

det/˝2Œn� 1�/
��

(7.1)

' CL
�
MapO.n/.FrMC ;L.QŒn� 1�//

�
' CL.L.QŒn� 1�/M

C

/

' CL
�
H��c .M;L.QŒn� 1�//

�
; (7.5)

and the odd case is essentially identical. The same argument as in the proof of
Theorem 1.1 shows that the resulting isomorphism is bigraded.

Now, if M is a manifold with boundary, then Bk.M /' Bk. VM /, since configuration
spaces are isotopy functors. A more interesting configuration space in this context is
the relative configuration space

Bk.M; @M / WD
Bk.M /

f.x1; : : : ;xk/ j xi 2 @M for some ig
:

From the point of view of factorization homology, the natural setting in which to study
these spaces is that of the zero-pointed manifolds of [4], a class of pointed spaces that
are manifolds away from the basepoint. Indeed, if M is a manifold with boundary,
then M=@M is naturally a zero-pointed manifold.

The algebraic counterpart of a basepoint is an augmentation.

Definition 4.6 An augmented n–disk algebra is an n–disk algebra A together with a
map of n–disk algebras �W A!Q.

Example 4.7 The free n–disk algebra Fn.K/ is naturally augmented via the unique
map of O.n/–modules K! 0.

Example 4.8 The n–enveloping algebra Un.g/ is naturally augmented via the unique
map of Lie algebras g! 0.

The theory of factorization homology for zero-pointed n–manifolds with coefficients
in augmented n–disk algebras is expounded at length in [4] and [3]. For us, what is
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important is that, if M is a manifold with boundary, then the factorization homology of
M=@M is defined for any choice of augmented n–disk algebra; moreover, if @M D¿,
then M=@M DMC , and the factorization homology of the zero-pointed manifold MC
with coefficients in �W A!Q is equivalent to the factorization homology of M with
coefficients in A defined previously.

Our arguments go through in this more general context.

Theorem 4.9 Let M be an n–manifold with boundary. There is an isomorphism of
bigraded vector spacesM

k�0

zH�.Bk.M; @M /IQ/ŠHL
�
H��c .M IL.Qw Œn� 1�//

�
:

Proof We explain the adjustments necessary in the proof of Theorem 1.1. First, [3,
Theorem 2.4.1] guarantees the equivalenceM

k�0

zC�.Bk.M; @M /IQ/'

Z
M=@M

Fn.Q/:

Second, it is immediate from its definition that the map of Proposition 4.4 is a map of
augmented n–disk algebras, so thatZ

M=@M

Fn.Q/'

Z
M=@M

Un

�
L
�
zC�..R

n/C/Œ�1�
��
:

The proof of Proposition 3.20 translates verbatim into the zero-pointed context, so that
we have the further equivalenceZ

M=@M

Un

�
L
�
zC�..R

n/C/Œ�1�
��
' CL

�
MapO.n/

�
FrMC ;L

�
zC�..R

n/C/Œ�1�
���
:

The remainder of the proof goes through unchanged.

Remark 4.10 When M has boundary, there are two obvious candidates for the
orientation sheaf of M , namely the ordinary and the exceptional pushforwards of the
orientation sheaf of the interior of M . We intend the former here.

4.3 Formulas

In this section, we use Theorem 1.1 and the Chevalley–Eilenberg complex to reproduce
and extend the classical results on the rational homology of configuration spaces alluded
to in the introduction.
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We remind the reader that the free Lie algebra on Qw Œr � is given as a graded vector
space by

L.Qw Œr �/Š

�
Qw Œr �˚QŒ2r � for r odd,
Qw Œr � for r even.

When r is odd, the only nonvanishing bracket is the isomorphism .Qw Œr �/˝2ŠQŒ2r �.

Corollary 4.11 If n is odd, there is an isomorphism

H�.Bk.M /IQ/Š Symk.H�.M IQ//:

Proof Since n is odd, the Lie algebra in question is abelian, so that the Chevalley–
Eilenberg complex has no differential, and the weight grading coincides with the usual
grading of the symmetric algebra. The claim follows after replacing shifted, twisted,
compactly supported cohomology with homology using Poincaré duality.

This result is [10, Theorem C] as formulated in dual form in [23, Theorem 4], in which
the isomorphism on cohomology is shown to be an isomorphism of algebras.

Corollary 4.12 If n is even, H�.Bk.M /IQ/ is isomorphic to the homology of the
complex� bk=2cM

iD0

Symk�2i.H��c .M IQw/Œn�/˝Symi.H��c .M IQ/Œ2n� 1�/;D

�
;

where the differential D is defined as a coderivation by the equation

D.�n˛^ �nˇ/D .�1/.n�1/jˇj�2n�1.˛ ^ ˇ/:

Proof It suffices by Theorem 1.1 to identify the complex in question with the weight-k
part of the Chevalley–Eilenberg complex for gDH��c .M IL.Qw Œn� 1�//, which as
a graded vector space is given by

Sym.gŒ1�/Š Sym.H��c .M IQw/Œn�/˝Sym.H��c .M IQ/Œ2n� 1�/;

with differential determined as a coderivation by the bracket of g, which is none other
than the shifted cup product shown above, with the sign determined by the usual Koszul
rule of signs. Since the cogenerators of the first tensor factor have weight 1 and those
of the second tensor factor weight 2, the subcomplex of total weight k is exactly the
sum shown above.
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When M is closed, orientable and nilpotent, we recover the linear and Poincaré dual
of [24, Theorem A], as formulated in [23, Theorem 1]. When M is a once-punctured
surface, we recover [9, Theorem C].

Remark 4.13 The proofs of Theorem 1 and the even-dimensional half of Theorem 3
of [23] rely crucially on the results of [24] and thereby on the hypotheses of compactness,
orientability and nilpotence. At the time of writing, these hypotheses do not appear in
the statements of the theorems.

It follows from our results, however, that these theorems are true at the stated level
of generality. Indeed, by [23, Theorem 6], the †k –invariants of the E1 page of the
Cohen–Taylor–Totaro spectral sequence (see [18] and [53]) coincide with the linear
dual of the complex exhibited in Corollary 4.12.

An analogous spectral sequence in the nonorientable case, possibly with twisted coeffi-
cients, is available due to [28] and [29]; see also [45].

We leave it to the reader to formulate the analogous results on twisted homology
and those concerning the homology of the relative configuration spaces Bk.M; @M /,
which follow in the same way from Theorems 4.5 and 4.9, respectively. To the author’s
knowledge, the computation in the twisted case is new in all cases except when M

is orientable and n is even, so that Bk.M / is orientable, and the computation in the
relative case is new in all cases except when @M D¿.

5 Coalgebraic structure

5.1 Primitives and weight

Our present goal is to supply the first of the missing ingredients in the proof of the
main theorem, namely the identification of the cardinality and weight gradings at the
level of homology (see Definition 3.3 and the end of Section 3.4 for definitions of these
gradings). We make this identification locally on M in this section and globalize in
the following section using a spectral sequence argument.

Let K be an O.n/–module. We define the following maps:

(1) �W K!Fn.K/ is the map of O.n/–modules given by the unit of the free/forgetful
adjunction;

(2) �W Q! Fn.K/ is the unit of Fn.K/ as an n–disk algebra;
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(3) ıW Fn.K/! Fn.K/˝ Fn.K/ is the map of n–disk algebras induced by the
composite

K
�
�!K˚K

�˝�C�˝�
������! Fn.Q/˝Fn.Q/;

where � is the diagonal and we have tacitly employed the canonical identifica-
tions K˝QŠK ŠQ˝K ;

(4) ıM and �M are the maps on factorization homology induced by ı and �,
respectively.

Note that we have suppressed the choice of K from the notation.

Although we will only use the case M DRn here, we record the following result for
its inherent interest.

Proposition 5.1 The maps H.ıM / and H.�M / endow H
�R

M Fn.K/
�

with the struc-
ture of a coaugmented cocommutative coalgebra.

Proof The functor
R

M is symmetric monoidal in the algebra variable by [42, Theorem
5.5.3.2], so it suffices to verify the claim in the case M DRn . The required axioms
all follow from the universal property of the free algebra; we spell out the argument for
coassociativity, leaving the remainder to the reader.

Consider the following cubical diagram:

K
�

//

�

��

�

vv

// K˚K

�˚1

��

�˝�C�˝�
tt

Fn.K/
ı

//

ı

��

Fn.K/˝Fn.K/

ı˝1

��

K˚K�˝�C�˝�

vv

1˚�
// K˚K˚K

�˝�˝�C�˝�˝�C�˝�˝�tt

Fn.K/˝Fn.K/
1˝ı

// Fn.K/˝Fn.K/˝Fn.K/

It will suffice to show that the square diagram given by the front face of the cube
commutes in the 1–category of n–disk algebras, since this square witnesses coasso-
ciativity after applying factorization homology and passing to the homotopy category
of chain complexes. Applying the universal property of the free algebra, the required
commutativity is equivalent to commutativity as a diagram of O.n/–modules after
precomposing with �. By a standard diagram chase, it suffices to verify that the
remaining five faces each commute:
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� The left and top face commute by the definition of ı .
� The back face commutes by the universal property of the direct sum, considered

as the 1–categorical product.
� The right and bottom face commute by the definition of ı and the universal

property of the direct sum, considered as the 1–categorical coproduct.

Although we have defined this coalgebra structure in abstract terms, it has an appealing
geometric interpretation, which we discuss in Section 5.2 below.

When M D Rn , the same homology is also an algebra, and even commutative for
n � 2. Since ı is a map of n–disk algebras, H.Fn.Q// inherits the structure of a
bialgebra, and in fact a Hopf algebra, although we will not make use of the antipode.

For the duration of this section, we make the abbreviation

g.K/ WD L..Rn/C˝KŒ�1�/.R
n/C :

Proposition 5.2 The isomorphism on homology induced by the equivalence of Proposi-
tion 4.4 is an isomorphism of bialgebras.

Proof Denote by ' the equivalence

Fn.K/
�
�! CL.g.K//

of Proposition 4.4. Since ' is a map of n–disk algebras, the induced map on homology
is a map of algebras; therefore, it will suffice to show that this map is also a map of
coalgebras.

Consider the cubical diagram

K //

�

��

�

ww

// g.K/Œ1�

�

��

tt

Fn.K/
'

//

ı

��

CL.g.K//



��

K˚K

�˝�C�˝�
ww

// g.K/Œ1�˚g.K/Œ1�

tt

Fn.K/˝Fn.K/
'˝'

// CL.g.K//˝CL.g.K//

where  denotes the comultiplication on Lie algebra chains. As before, we wish to
show that the front face commutes in the 1–category of n–disk algebras, and, as
before, this reduces to checking the commutativity of the remaining five faces in the
1–category of O.n/–modules:
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� The left face commutes by the definition of ı .

� The back face commutes by functoriality of the diagonal.

� The top face commutes by the definition of ' .

� The bottom face commutes by the definition of ' and the universal property of
the direct sum, considered as the categorical coproduct.

� The right face commutes because the functor CL is Cartesian monoidal.

This bialgebra is a familiar one, and the various components of its structure interact
predictably with the bigradings.

Proposition 5.3 (1) There are isomorphisms

HL.g.K//Š Sym
�
H.g.K//Œ1�

�
ŠH.Fn.K//

of graded bialgebras, where Sym is equipped with the standard product and
coproduct.

(2) The product in H.Fn.K// preserves the cardinality grading.

(3) The coproduct in H.Fn.K// preserves the cardinality grading.

(4) The product in HL.g.K// preserves the weight grading.

(5) The coproduct in HL.g.K// preserves the weight grading.

Proof (1) We note that g.K/ is a formal Lie algebra, since the pointed space .Rn/C

is formal; moreover, since H.g.K// is abelian, there is no differential in the Chevalley–
Eilenberg complex, so we have isomorphisms of coaugmented coalgebras

HL.g.K//ŠHL
�
H.g.K//

�
Š Sym

�
H.g.K//Œ1�

�
:

From the discussion of Section 3.4, the product of HL.g.K// is the map induced on
Lie algebra homology by the n–disk algebra structure map of g.K/ corresponding to
any embedding Rn tRn!Rn , and any such structure map induces the fold map

H.g.K//˚H.g.K//
C
�!H.g.K//

at the level of homology. Likewise, the coproduct is induced by the diagonal, and
we recognize the standard bialgebra structure on Sym. The second isomorphism now
follows by Proposition 5.2.

(2) The cardinality grading is natural, and the product is the map induced on homology
by the n–disk algebra structure map corresponding to any embedding Rn tRn!Rn .
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(3) Since the coproduct preserves the cardinality grading on generators by definition,
the claim follows from (2) and the fact that H.Fn.K// is a bialgebra.

(4) The claim is immediate from the definition of the weight grading.

(5) Since the coproduct preserves the cardinality grading on generators by definition,
the claim follows from (4) and the fact that HL.g.K// is a bialgebra.

The desired identification of bigradings now follows easily.

Proposition 5.4 In the case M DRn , the isomorphisms of Theorems 1.1, 4.5 and 4.9
are isomorphisms of bigraded vector spaces.

Proof We present the argument for Theorem 1.1, the others being essentially identical.

We follow the convention that a subscript indicates homological degree, a generator
decorated with a tilde has weight 2 and an unadorned generator has weight 1. There is
an isomorphism of bialgebras H.Fn.Q//Š Sym.Vn/, where

Vn D

�
Qhx0i for n odd,
Qhx0; Qyn�1i for n even.

Identifying both sides of the isomorphism of Theorem 1.1 with Sym.Vn/, Proposi-
tion 5.2 permits us to view this isomorphism as an automorphism f of this graded
bialgebra. Now, as a morphism of graded coalgebras, f takes primitives to primitives,
so that there is an induced map f jVn

W Vn! Vn of graded vector spaces, which we
claim is a bigraded isomorphism. In the case of odd n, the claim is implied by the
injectivity of f jVn

, while in the even case we note that, for degree reasons, f .x/ is a
scalar multiple of x and f . Qy/ is a scalar multiple of Qy . By injectivity, this scalar is
nonzero, and we conclude that f jVn

is a bigraded isomorphism.

Now, since f is also a map of algebras, we have f .x1 � � �xr /Df .x1/ � � � f .xr /, which,
together with the previous paragraph, shows that f preserves weight on monomials.
Since monomials form a bihomogeneous basis and f is linear, the proof is complete.

5.2 Interlude: splitting configurations

Configuration spaces of different cardinalities are interrelated by splitting and forgetting
maps inherited from the Cartesian product via the embedding Confk.M /!M k . This
rich structure invites an inductive way of thinking that appears in one form or another
in essentially every classical approach to these spaces; see [1] and [21] for the origins
of this approach and [14] for a modern implementation.
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In the setting of factorization homology, the importance of these splitting maps is that
they assemble to form a coproduct, a shadow of which we have seen in the previous
section, endowing Fn.K/ with the structure of an n–disk algebra in cocommutative
coalgebras. We will not need the full force of this statement, nor will we need
the geometric interpretation of this coalgebra structure; nevertheless, we devote the
remainder of this section to elucidating this interpretation, both for its general interest
and for the motivation it provides for our proof of homological stability.

Remark 5.5 The constructions of this section are valid in more general stable settings
than chain complexes, including the symmetric monoidal 1–category of spectra with
smash product. We intend to return to this setting in future work.

The basic ingredient is the collection of natural transformations

si;j W Conf fr
k ! Conf fr

i �Conf fr
j ;

defined whenever i C j D k , which make the diagram

Conf fr
k .M /

��

.si;j /M
// Conf fr

i .M /�Conf fr
j .M /

��Q
k FrM

Š
//
Q

i FrM �
Q

j FrM

commute; in other words,

.si;j /M .x1; : : : ;xk/D ..x1; : : : ;xi/; .xiC1; : : : ;xk//:

Given an O.n/–module K , we have maps

sK
i;j W Conf fr

k˝K˝k
ıi;j˝1
����! .Conf fr

i �Conf fr
j /˝K˝k '

�!Conf fr
i ˝K˝i

˝Conf fr
j ˝K˝j ;

which are .†i �†j /Ë O.n/k –equivariant. Taking O.n/k –coinvariants and using that
induction is right adjoint to restriction for the inclusion †i �†j !†k , we obtain by
adjunction a †k –equivariant map

QsK
i;j W Conf fr

k ˝O.n/k K˝k
! Ind†k

†i�†j
.Conf fr

i ˝O.n/i K˝i
˝Conf fr

j ˝O.n/j K˝j /:

Finally, taking †k –coinvariants and summing over k , i and j , we obtain a map

sK
W

M
k�0

�
Conf fr

k ˝†kËO.n/k K˝k
�

!

M
k

M
iCjDk

�
Conf fr

i ˝†i ËO.n/i K˝i
˝Conf fr

j ˝†j ËO.n/j K˝j
�
:
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Collecting terms and restricting to Diskn , we recognize this as a monoidal natural
transformation

sK
W Fn.K/! Fn.K/˝Fn.K/:

The proof of homological stability given in the next section is completely internal to
the Chevalley–Eilenberg complex, but the motivation behind it comes from thinking
of the symmetric coproduct, given by splitting monomials in all possible ways, as
corresponding to this geometric coproduct, given by splitting configurations in all
possible ways. To see the connection, we recall that, in the approach of [14], stability
is induced by the transfer maps

H�.ConfkC1.M /IQ/

P
i.pi/�

//

��

H�.Confk.M /IQ/

��

H�.BkC1.M /IQ/
tr

// H�.Bk.M /IQ/

where pi denotes the projection that forgets xi . In terms of our splitting maps, we
have a factorization

ConfkC1.M /

�i

��

pi
// Confk.M /

ConfkC1.M /
s1;k
// M �Confk.M /

OO

where �i denotes the permutation that moves xi to the first position while maintaining
the relative order of the remaining points, and the unmarked arrow is the projection. The
composite s1;k�i is a component of the coproduct defined above, and the projection
away from the M factor corresponds at the level of homology to evaluating against
the unit in H 0.M IQ/. Together, these observations suggest that homological stability
should be induced taking a cap product. We realize this idea in the next section.

5.3 Stability

This section assembles the proof of Theorem 1.3. Throughout, unless otherwise noted,
M will be connected, without boundary and of dimension n > 1. For the sake of
brevity, we make the abbreviation

gM DH��c .M IL.Qw Œn� 1�//:

Let � 2H 0.M / denote the multiplicative unit. We view this cohomology class as a
functional on H0.M /ŠH 0

c .M IQ
w/Œn� and hence, extending by zero, on CE.gM /,

since the former is canonically a summand of the underlying bigraded vector space of the
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latter. Thus we may contemplate the cap product with this element, denoted �_ .�/,
which is defined as the composite

CE.gM /ŠQ˝CE.gM /
�˝
���! CE.gM /_˝CE.gM /˝CE.gM /

h�;�i˝id
������! CE.gM /:

Denote by p 2 H n
c .M IQ

w/ � CE.gM / the Poincaré dual of a point in M , which
is well-defined since M is connected. Extend the set f1;pg once and for all to a
bihomogeneous basis B for gM Œ1�. Then the set of nonzero monomials in elements
of B form a bihomogeneous basis for CE.gM /, and, under the resulting identification
of this vector space with its dual, � is identified with the dual functional to p . Since
p is closed of degree 0 and weight 1, we conclude the following:

Proposition 5.6 �_ .�/ is a chain map of degree 0 and weight �1.

There is a simple formula describing this map. Here and throughout, when we speak of
divisibility, multiplication and differentiation in the Chevalley–Eilenberg complex, we
refer only to the formal manipulation of bigraded polynomials; in particular, CE.gM /

is not in general a differential graded algebra.

Proposition 5.7 The formula

�_ x D
dx

dp

holds for all x 2 CE.gM /.

Proof Both sides are linear, so the claim is equivalent to the equality

�_ pr y D rpr�1y

whenever r � 0 and y is a monomial in elements of Bnfpg. There are now two cases.

The first case is when y is a scalar, in which case we may assume by linearity that yD1,
so that x D pr , and

 .x/D  .p/r

D .p˝ 1C 1˝p/r

D

rX
iD0

�r

i

�
pi
˝pr�i ;

so that

�_ x D

rX
iD0

� r

i

�
h�;pi

ipr�i
D rpr�1:
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The second is when y is a monomial in B nf1;pg, in which case we may write

 .y/D y˝ 1C 1˝yC
X

j

yj ˝y0j

with yj and y0j monomials in B nf1;pg. Then we have

 .pr y/D  .p/r .y/

D .p˝ 1C 1˝p/r
�
y˝ 1C 1˝yC

X
j

yj ˝y0j

�
D

rX
iD0

�r

i

��
piy˝pr�i

Cpi
˝pr�iyC

X
j

piyj ˝pr�iy0j

�
;

whence

�_pr yD

rX
iD0

� r

i

��
h�;piyipr�i

Ch�;pi
ipr�iyC

X
j

h�;piyj ip
r�iy0j

�
Drpr�1y;

since piy is not a scalar multiple of p for any i , nor is piyj a scalar multiple of p

for any .i; j /.

Corollary 5.8 The chain map �_ .�/ is surjective.

Proof It suffices to show that a general monomial in elements of B lies in the image.
Such a monomial may be written as pr y with r � 0 and y a monomial in elements
of B nfpg. We than have

d

dp

�
1

rC1
prC1y

�
D pr y:

The central observation behind our approach to stability is the following.

Proposition 5.9 Let x be a nonzero monomial in CE.gM /. Then x is divisible by p

provided either

� wt.x/ > jxjC 1 and M is an orientable surface, or

� wt.x/ > jxj and M is not an orientable surface.

Proof Suppose wt.x/> jxj, and write xDx1 � � �xr with xi 2B. Then wt.xj /> jxj j

for some j . Since xj 2 gM Œ1�, the weight of this element is either 1 or 2.

In the first case, xj 2H��c .M IQw/Œn�, and we have

jxj j< wt.xj /D 1 implies jxj j D 0;
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since H��c .M IQw/Œn� is concentrated in degrees 0 � � � n. But H n
c .M IQ

w/ is
one-dimensional on the class p , so xj is a scalar multiple of p .

In the second case, xj 2 H��c .M IQ/Œ2n � 1�, and we have jxj j < 2. Because
H��c .M IQ/Œ2n� 1� is concentrated in degrees n� 1� � � 2n� 1, we conclude that
xj D 0 provided n ¤ 2 (recall that we have already assumed n > 1). Thus x D 0,
which is a contradiction. This proves the claim when M is not a surface.

If M is a nonorientable surface, then H 2
c .M IQ/ŠH0.M IQ

w/D 0, and therefore
H��c .M IQ/Œ2n� 1� is concentrated in degrees 2 and 3. Thus, in this case as well, we
have a contradiction.

Assume now that M is an orientable surface and wt.x/> jxjC1. As before, write xD

x1 � � �xr and choose xj with wt.xj /> jxj j, and assume that xj is not a scalar multiple
of p . Then by the argument above, wt.xj /D 2, so jxj j D 1, since H��c .M IQ/Œ3� is
concentrated in degrees 1� � � 3.

Now, the monomial x0 D x1 � � � Oxj � � �xr has the property that

wt.x0/D wt.x/� 2> jxj � 1D jx0j;

so there is some xi with i ¤ j and wt.xi/ > jxi j. If xi is a scalar multiple of p , we
are finished; otherwise, repeating the same argument shows that xi has degree 1. But
H 2

c .M IQ/ Š H0.M IQ/ is one-dimensional, so that xi is a scalar multiple of xj ,
and x is divisible by x2

j . Since xj is of odd degree, this implies that x D 0, which is
a contradiction.

We are now equipped to prove Theorem 1.3. Denote by C.k/ the subcomplex of the
Chevalley–Eilenberg complex spanned by the weight-k monomials. Taking the cap
product with 1 restricts to a map ˆk W C.kC1/! C.k/, and we aim to show that this
map induces an isomorphism in homology in the specified range.

Recall that the r th brutal truncation of a chain complex V is the chain complex ��r V

whose underlying graded vector space is

.��r V /i D

�
Vi if i � r;

0 otherwise.

and whose differential is the restriction of the differential of V . Truncation is a functor
on chain complexes in the obvious way.

We make use of the following elementary fact.

Proposition 5.10 Let f W V !W be a surjective chain map such that ��rf is a chain
isomorphism. Then f is a homology isomorphism through degree r and a homology
surjection in degree r C 1.
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Proof From the definition of the brutal truncation, it is immediate that f is a homology
isomorphism through degree r � 1. Moreover, f induces a bijection on r –cycles and
an injection on r –boundaries.

To show that f is a homology isomorphism in degree r , it suffices to show that
f �1.w/ is a boundary if w 2Wr is a boundary. Write w D du; then, by surjectivity,
there is some Qu 2 Vr such that f . Qu/D u, and

f .d Qu/D df . Qu/D duD w implies f �1.w/D d Qu;

as desired.

To show that f is a homology surjection in degree rC1, let v 2WrC1 be a cycle. By
surjectivity, v D f . Qv/, and it will suffice to show that Qv is a cycle, for which we have

f .d Qv/D df . Qv/D dv D 0 implies d Qv D f �1.0/D 0:

Proof of Theorem 1.3 Assume first that M is not an orientable surface. By the
previous proposition and Corollary 5.8, we are reduced to showing that ��kˆk is a
chain isomorphism. To see this, let x 2 ��kC.kC1/ be a monomial. Then wt.x/> jxj,
so that x D pr y with r > 0 and y a monomial in B nfpg by Proposition 5.9. By
Proposition 5.7, ˆk.x/D rpr�1y , so ��kˆk maps distinct elements of our preferred
basis for C.kC 1/ to nonzero scalar multiples of distinct elements of our preferred
basis for C.k/, which implies that ��kˆk is injective. But ˆ and hence ˆk are
surjective by Corollary 5.8, so ��kˆk is as well.

Assume now that M is an orientable surface. For the same reason, we are reduced
to showing that �k�1ˆk is a chain isomorphism, which is accomplished by the same
argument, using the other half of Proposition 5.9.

Remark 5.11 Let K denote the Klein bottle. As shown in Section 6,

dim H�.Bk.K/IQ/D

8<:
1 i 2 f0; 1; 2; kC 1g;

2 3� i � k;

0 else.

In particular, HkC1.BkC1.K/IQ/©HkC1.Bk.K/IQ/, so our bound is sharp in the
sense that no better stable range holds for all manifolds that are not orientable surfaces.

Remark 5.12 If M is orientable and H�.M IQ/ D 0 for 1 � � � r � 1, then
H��c .M IQ/ D 0 for n� r C 1 � �� � n� 1, and the argument of Proposition 5.9
shows that a monomial x is divisible by p provided its weight is greater than jxj

r
C 1.

This improved estimate leads to an improved stable range, as in [14, Proposition 4.1].
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Remark 5.13 In [37], factorization homology is used to obtain homological stability
results for various constructions on open manifolds. The approach there is through
certain “partial algebras” and appears unrelated to ours.

6 Examples

We now present a selection of computations illustrating the following general procedure
for determining the rational homology of the configuration space of k points in an
n–manifold M :

(1) compute the compactly supported cohomology of M , twisted if necessary;

(2) compute the Lie algebra homology of H��c .M IL.Qw Œn� 1�//;

(3) count basis elements of weight k .

It is worth noting that the Chevalley–Eilenberg complex allows one to obtain answers
simultaneously for all k , reducing an infinite sequence of computations to one.

The computations of this section are all relatively elementary, and one can do better with
more effort. In [19], this approach is used to determine the Betti numbers of Bk.†/

for every surface †.

Convention In the following examples, a variable decorated with a tilde has weight 2,
while an unadorned variable has weight 1.

6.1 Punctured euclidean space

As a warm-up and base case, we recover the classical computation of H�.Bk.R
n/IQ/.

Since there are no cup products in the compactly supported cohomology of Rn ,
there are no differentials in the corresponding Chevalley–Eilenberg complex. Thus
H�.Bk.R

n/IQ/ is identified with the subspace of QŒx� spanned by xk when n is
odd, while for n even, the identification is with the subspace of

QŒx�˝ƒŒ Qx�; jxj D 0; j Qxj D n� 1;

spanned by elements of weight k , a basis for which is given by fxk ;xk�2 Qxg. We
conclude, for all k > 1, that

H�.Bk.R
n/IQ/Š

�
Q for n odd,
Q˚QŒn� 1� for n even.

Now, choose Np D fp1; : : : ;pmg 2Rn . There is a homotopy equivalence .Rn n Np/C '

Sn_.S1/_m , so that H��c .Rnn NpIQ/ŠQmŒ�1�˚QŒ�n�. There are no cup products,
so there can be no differentials.
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If n is odd, Theorem 1.1 identifies H�.Rn n NpIQ/ with the weight-k part of

QŒx;y1; : : : ;ym�; jxj D 0; jyi j D n� 1;

and an easy induction now shows that

dim H�.Bk.R
n
n Np/IQ/D

��mCi�1
i

�
for � D i.n� 1/; 0� i � k;

0 otherwise.

(It is helpful to recall that
�
mCi�1

i

�
is the number of ways to choose i not-necessarily-

distinct elements from a set of m elements.)

If n is even, then the corresponding vector space is the weight-k part of

QŒx; Qy1; : : : ; Qym�˝ƒŒ Qx;y1; : : : ;ym�; jxj D 0; jyi j D j Qxj D n� 1; j Qyi j D 2n� 2:

Counting inductively in terms of less punctured Euclidean spaces, one finds that

H�.Bk.R
n
n Np/IQ/Š

kM
lD0

M
j1C���CjmDl

H��l.n�1/.Bk�l.R
n/IQ/;

from which it follows easily that

dim H�.Bk.R
n
n Np/IQ/D

8̂<̂
:
�
mCi�1

m�1

�
C
�
mCi�2

m�1

�
for � D i.n� 1/; 0� i < k;�

mCk�1
m�1

�
for � D k.n� 1/;

0 otherwise.

(It is helpful to recall that
�
mCi�1

m�1

�
is the number of ways to write i as the sum of m

nonnegative integers.)

It should be clear from this example that Theorem 1.1 reduces calculations to counting
problems whenever n is odd or the relevant compactly supported cohomology has no
cup products.

6.2 Punctured torus

Since H��c .T 2 n ptIQ/Š zH��.T 2IQ/, the relevant Lie algebra is isomorphic to

h˚Qh Qa; Qb; ci;

where hDQha; b; Qci as a vector space,

jaj D jbj D j Qcj D 0; j Qaj D j Qbj D 1; jcj D �1;

and the bracket is defined by the equation

Œa; b�D Qc:
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The Lie homology of h is calculated by the complex

.ƒŒx;y; Qz�; d.xy/D Qz/;

(where for ease of notation we have set x D �a and so on), a basis for the ho-
mology of which is easily seen to be given by the image in homology of the set
f1;x;y;x Qz;y Qz;xy Qzg. Thus we have an identification of H�.Bk.T

2 n pt/IQ/ with
the weight-k part of

Qh1;x;y;x Qz;y Qz;xy Qzi˝QŒ Qx; Qy; z�; jzj D 0; jxj D jyj D jQzj D 1; j Qxj D j Qyj D 2:

Counting, we find that

dim H�.Bk.T
2
n pt/IQ/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

3i�1
2
C 1 for � D 2i C 1< k;

3i
2
C 1 for � D 2i < k;

kC 1 for � D k odd,
k
2
C 1 for � D k even,

0 otherwise.

An amusing comparison can be seen by taking k D 2 in the above formula, which
yields

H�.B2.T
2
n pt/IQ/ŠQ˚Q2Œ1�˚Q2Œ2�:

On the other hand, from the preceding example, one calculates that

H�.B2.R
2
nfp1;p2g/IQ/ŠQ˚Q3Œ1�˚Q3Œ2�:

Thus, despite the fact that the punctured torus and the twice-punctured plane are homo-
topy equivalent, having S1 _S1 as a common deformation retract, their configuration
spaces are not homotopy equivalent.

6.3 Real projective space

Let n be even, so that RPn is nonorientable. Then, as a ring, H��c .RPnIQ/ Š Q,
and the Lie homology of interest is HL.L.QŒn�1�//ŠQ˚QŒn�, whence, for k > 1,

H�.Bk.RPn/IQw/D 0:

As for the untwisted homology, we note that H��c .RPnIQw/ŠQŒ�n� by Poincaré
duality, so that the cup product map H��c .RPnIQw/˝2!H��c .RPnIQ/ is trivial
for degree reasons. Thus

H��c .RPn
IL.Qw Œn� 1�//ŠQŒ�1�˚QŒ2n� 2�
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is abelian, so that H�.Bk.RPn/IQ/ is isomorphic to the weight-k part of

QŒx�˝ƒŒ Qy�; jxj D 0; j Qyj D 2n� 1:

Hence for all k > 1,

H�.Bk.RPn/IQ/ŠQ˚QŒ2n� 1�:

See [55] for an alternate method of computation in the case nD 2.

6.4 Klein bottle, twisted

Let K denote the Klein bottle. Then H��c .KIQ/ŠQ˚QŒ�1�, with the generator in
degree zero acting as a unit for the multiplication. As a vector space, the Lie algebra
in question is g WDQha; Qa; b; Qbi, where jbj D 0, jaj D j Qbj D 1 and j Qaj D 2, and the
bracket is defined by the equations

Œa; a�D Qa; Œa; b�D�Qb:

The subspace spanned by fb; Qbg is an ideal realizing g as an extension

0!Qhb; Qbi ! g! L.Qhai/! 0;

so that we may avail ourselves of the Lyndon–Hochschild–Serre spectral sequence

E2
p;q ŠHL

p

�
L.Qhai/IHL

q .Qhb; Qbi/
�
H) HL

pCq.g/:

There are no differentials for degree reasons, and the E2 page is computed as the
homology of the complex

0!QhaiŒ1�˝Sym.Qhb; QbiŒ1�/! Sym.Qhb; QbiŒ1�/! 0;

where the differential is the action of a. It follows that a basis for HL.g/ is given by
f�a˝ .� Qb/i ; �b˝ .� Qb/j j i; j � 0g. Counting monomials of weight k , we find that

H�.Bk.K/IQ
w/Š

�
QŒk�˚QŒkC 1� for k odd,
0 for k even.

6.5 Nonorientable surfaces

Let Nh D .RP2/#h . Using the method of the previous example, one could proceed to
obtain a general formula for the twisted homology of Bk.Nh/. Here we will determine
the corresponding untwisted homology. We have

H��c .NhIQ/ŠQ˚QŒ�1�h�1; H��c .NhIQ
w/ŠQŒ�1�h�1

˚QŒ�2�;
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so that there can be no cup products. Thus H�.Bk.Nh/IQ/ is the weight-k part of

QŒx; Qy1; : : : ; Qyh�1�˝ƒŒQz; w1; : : : ; wh�1�; jxj D 0; jwi j D 1; j Qyi j D 2; jQzj D 3:

Counting inductively as in the example of punctured Euclidean space, we find that

H�.Bk.Nh/IQ/Š
kM

lD0

M
j1C���Cjh�1Dl

H��l.Bk�l.RP2/IQ/;

from which it follows that

dim H�.Bk.Nh/IQ/D

8̂<̂
:
�
hC��2

h�2

�
C
�
hC��5

h�2

�
for � � k;�

hC��5
h�2

�
for � D kC 1;

0 otherwise.

6.6 Open and closed Möbius band

Let M denote the closed Möbius band. Then since M has the same compactly
supported cohomology ring as the Klein bottle, our earlier calculation shows that

zH�.Bk.M; @M/IQw/Š

�
QŒk�˚QŒkC 1� for k odd,
0 for k even.

On the other hand, by Poincaré duality, we have H��c .MIQw/ D 0, and hence
H��c .MIL.Qw Œ1�// Š H��.MIQ/Œ2� is abelian, and zH�.Bk.M; @M/IQ/ is the
weight-k part of

QŒ Qx�˝ƒŒ Qy�; j Qxj D 2; j Qyj D 3;

so
zH�.Bk.M; @M/IQ/Š

�
0 for k odd,
QŒk�˚QŒkC 1� for k even.

The situation with the corresponding open manifold is quite different. We have
H��c . VMIQ/D 0 since . VM/C ŠRP2 , so

H�.Bk. VM/IQw/D 0

for all k > 1. On the other hand, H��c . VMIQw/ŠQŒ�1�˚QŒ�2� by Poincaré duality,
so that H�.Bk. VM/IQ/ is the weight-k part of

QŒx�˝ƒŒy�; jxj D 0; jyj D 1;

whence
H�.Bk. VM/IQ/ŠQŒ0�˚QŒ1�

for all k � 1.
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7 Two formality results

In this final section, we supply the remaining two ingredients in the proof of Theorem 1.1.
Although unrelated to each other, these formality statements may be of independent
interest.

7.1 The O.n/–equivariant sphere

Since the reduced homology of Sn is one-dimensional, any choice of representative of
a homology generator defines a quasi-isomorphism

C�.S
n/' Z˚ZŒn�:

The goal of this section is to prove that, rationally, this equivalence can be made
O.n/–equivariant.

Theorem 7.1 There is an equivalence of O.n/–modules

C�.S
n
IQ/'Q˚QdetŒn�:

The proof has three main ingredients, the first of which is rational homotopy theory.
We consider the Borel construction

O�W ESO.n/�SO.n/ Sn
! BSO.n/

where SO.n/ acts on SnŠ .Rn/C by extension of its canonical action on Rn . In other
words, O� is the fiberwise one-point compactification of the universal oriented n–plane
bundle � . We denote by E. O�/ the total space of this sphere bundle.

Sphere bundles over simply connected spaces admit particularly simple rational de-
scriptions. According to [22, Sections 15(a)–(b)], we have the following commutative
diagram, whose terms we will explain presently:

.Sym.Wn/; d1/
�

// APL.S
n/

�
// C��.SnIQ/

.S ˝Sym.Wn/; d1C d2/

OO

�
//

OO

APL.E. O�//
�

//

OO

C��.E. O�/IQ/

OO

S
�

//

OO

APL.BSO.n//

OO

�
// C��.BSO.n/IQ/

OO

In this diagram,
(1) S WDH��.BSO.n/IQ/ is a polynomial algebra,
(2) APL denotes the functor of PL de Rham forms,
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(3) the horizontal arrows in the right-hand column are components of the natural
quasi-isomorphism

H
W APL! C�� given by integrating forms over simplices,

(4) each term appearing in the leftmost column is a Sullivan model for the corre-
sponding space, and

(5) Wn denotes the graded vector space

Wn D

�
Qhx�ni for n odd,
Qhx�n;y�2nC1i for n even,

the differential d1 is defined by the equation d1.y/D x2 and the differential d2

is specified by its value on y , which is an element of P determined by the
bundle O� .

We direct the reader to [11] for more on (1), and to [22, Sections 10(c), 10(e), 12, 15(b)],
respectively, for more on (2)–(5). The reader is advised that, although we have main-
tained our convention of homological grading, the prevailing convention in rational
homotopy theory is cohomological.

The second ingredient is the theory of A1–algebras and their modules, for which we
refer the reader to [34]. The relevance here is that, according to [12, Section 3.1], the
integration map

H
extends to a map of A1–algebras (referred to in [12] as “strongly

homotopic differential algebras”), so that C��.E. O�/IQ/ becomes an A1 -S –module
via the bottom composite in the above diagram.

Proposition 7.2 There is a quasi-isomorphism of A1 -S –modules

S ˚S Œ�n�
�
�! C��.E. O�/IQ/:

Proof The fiberwise basepoint furnishes O� with a section, and the Gysin sequence
now implies that the top map in the commuting diagram

S ˚S Œ�n� // .S ˝Sym.Wn/; d1C d2/

S

OO

S

OO

is a quasi-isomorphism. Combining this diagram with the previous yields the result.

The third ingredient is the Koszul duality between modules for the symmetric algebra S

and modules for the exterior algebra ƒ on the same generators with degrees shifted
by 1. According to [11], there is a Hopf algebra isomorphism ƒ Š H�.SO.n/IQ/,
where the latter carries the Pontryagin product induced by the group structure of SO.n/.
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Koszul duality is the algebraic avatar of the correspondence between SO.n/–spaces
and spaces fibered over BSO.n/ witnessed by the Borel construction. There are many
variations on this theme; the relevant facts for our purposes are the following, which
are extracted from [26, Theorem 1.2 and Proposition 3.1]; see also [30]. Our notation
differs slightly from that in [26], and we maintain the terminology of A1–modules
rather than “weak modules”.

Theorem 7.3 (Franz; Goresky, Kottwitz and MacPherson) There is a functor h from
A1 -S –modules to A1 -ƒ–modules with the following properties:

(1) Let � W X ! BSO.n/ be a space over BSO.n/. Then the A1-ƒ–modules
h.C��.X // and C��.hofiber.�// are connected by a zig-zag of natural quasi-
isomorphisms.

(2) Let V be a graded vector space. Then h.S ˝V /Š V , where V is regarded as
a trivial A1 -ƒ–module.

Proposition 7.4 There is an equivalence of SO.n/–modules

C�.S
n
IQ/'Q˚QŒn�;

where the latter is regarded as a trivial SO.n/–module.

Proof Both of the SO.n/–modules in question are dualizable objects of ChQ , so it
suffices to exhibit an SO.n/–equivalence C��.SO.n/IQ/'Q˚QŒ�n� between the
duals. By [42, Theorem 4.3.3.17], the homotopy category of the1–category of SO.n/–
modules coincides with the homotopy category obtained from the model category of
C�.SO.n/IQ/–modules equipped with the usual model structure on modules over
a differential graded algebra. By [34, Section 4.3], this homotopy category in turn
coincides with the full subcategory of the homotopy category of A1 -C�.SO.n/IQ/–
modules spanned by the “homologically unital modules”, so that, since the modules in
question are homologically unital, it will suffice to produce to an isomorphism in the
homotopy category of A1–modules. By [34, Section 6.2], it suffices to produce an
isomorphism in the homotopy category of A1 -ƒ–modules after restricting along the
A1–quasi-isomorphism ƒ! C�.SO.n/IQ/ of [26]. For this, we apply the Koszul
duality of Theorem 7.3 to the A1–quasi-isomorphism of Proposition 7.2, yielding the
zig-zag of A1–quasi-isomorphisms

Q˚QŒ�n�' h.S ˚S Œ�n�/! h
�
C��.E. O�/IQ/

�
' C��.Sn

IQ/:

Proof of Theorem 7.1 We explain the following diagram of O.n/–modules:

Q˚QdetŒn�!QŒC2�˚QŒC2�Œn�'QŒC2�˝C�.S
n
IQ/! C�.S

n
IQ/:
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(1) Let e and � denote the basis elements of QŒC2� corresponding to the identity and
generator, respectively. The left-hand map sends 1 2Q to eC�

2
and 1 2Qdet to e��

2
.

This is a map of C2 –modules and therefore of O.n/–modules, since O.n/ acts on
both domain and codomain by restriction along the determinant.

(2) Fixing a choice of isomorphism O.n/Š C2 Ë SO.n/, we obtain an isomorphism
C�.O.n/IQ/ŠQŒC2�˝C�.SO.n/IQ/ of O.n/–modules. The middle equivalence
is now obtained by applying the functor of induction from SO.n/ to O.n/ to the
equivalence of Proposition 7.4.

(3) The right-hand arrow is the counit of the induction-restriction adjunction.

Applying homology yields an isomorphism, completing the proof.

7.2 Two-step nilpotent Lie algebras

In this section, we prove that the Lie algebras of interest to us are formal.

Proposition 7.5 Let K be either Q or Qsgn . For any r 2Z and any manifold M , the
Lie algebra MapC2. zMC;L.KŒr �// is formal.

The proof will rely on the following technical result.

Proposition 7.6 Let
0! h! e! g! 0

be an exact sequence of Lie algebras in ChQ with g and h abelian. Assume that g acts
trivially on h and that the underlying sequence of chain complexes splits. Then e is
formal.

Proof The hypotheses imply that the bracket on eŠ g˚ h is given by

Œ.g1; h1/; .g2; h2/�D f .g1;g2/

for some (not uniquely defined) map f W Sym2.gŒ1�/Œ�2� ! h, and the bracket on
H.e/ŠH.g/˚H.h/ is determined in the same way by f� .

Choose quasi-isomorphisms 'W g!H.g/ and  W h!H.h/. Without loss of gen-
erality, we may assume that both maps induce the identity on homology. Let  be a
quasi-inverse to  . Then . ıf� ı'^2/� D f� , so

 ıf� ı'
^2
�f D dhGCGdSym

for some homotopy operator GW Sym2.gŒ1�/Œ�2�! hŒ�1�.
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Now, since g is abelian and acts trivially, this equation may be written as

D.G/D  ıf� ı'
^2
�f;

where D denotes the differential in the Chevalley–Eilenberg cochain complex com-
puting H�L .g; h/. Since extensions of g by the module h are classified by H 2

L.g; h/,
it follows that f and  ıf� ı'^2 determine isomorphic extensions, so that we may
take f D ıf� ı'^2 after choosing a different splitting. But then  ıf D f� ı'^2 ,
so that the composite

e
Š
�! g˚ h

.'; /
����!H.g/˚ .h/

Š
�!H.e/

is a map of Lie algebras. Since it is also a quasi-isomorphism of chain complexes, the
proof is complete.

Proof of Proposition 7.5 The exact sequence

0! h! L.KŒr �/!KŒr �! 0

satisfies the hypotheses of Proposition 7.6, where

hD

�
K˝2Œ2r � for r odd,
0 for r even.

By Proposition 3.18, we have

MapC2. zMC;L.KŒr �/' .APL. zM
C/˝L.KŒr �//C2 :

Since the operations of tensoring with the commutative algebra APL. zM
C/ and taking

C2 fixed points preserve the hypotheses of Proposition 7.6, the claim follows.

Remark 7.7 Proposition 7.5 asserts that APL.M /˝L.QŒr �/ is formal whenever M

is compact and orientable. When r is odd, this fact may be surprising at first glance,
since M is not assumed to be formal.

A conceptual understanding of this phenomenon is afforded by the homotopy transfer
theorem; see [38, Section 10.3], for example. Indeed, let A be any nonunital differential
graded commutative algebra and g any two-step nilpotent graded Lie algebra. Fixing
an additive homotopy equivalence between A and H.A/, we obtain a transferred
L1–algebra structure on H.A/˝ g. The higher brackets of the transferred structure
combine information about the Massey products of A and the Lie bracket of g.

In our case, using the fact that g has no nontrivial iterated brackets, the explicit formulas
of the homotopy transfer theorem show that these higher brackets all vanish, which
implies that A˝ g is formal. In other words, although the Massey products in H.A/

may be nontrivial, they are damped out by the nilpotence of g.
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Presentably symmetric monoidal 1–categories are
represented by symmetric monoidal model categories

THOMAS NIKOLAUS

STEFFEN SAGAVE

We prove the theorem stated in the title. More precisely, we show the stronger
statement that every symmetric monoidal left adjoint functor between presentably
symmetric monoidal 1-categories is represented by a strong symmetric monoidal
left Quillen functor between simplicial, combinatorial and left proper symmetric
monoidal model categories.

55U35; 18D10, 18G55

1 Introduction

The theory of 1–categories has in recent years become a powerful tool for studying
questions in homotopy theory and other branches of mathematics. It complements
the older theory of Quillen model categories, and in many applications the interplay
between the two concepts turns out to be crucial. In an important class of examples, the
relation between 1–categories and model categories is by now completely understood,
thanks to work of Lurie [8, Appendix A.3] and Joyal [6], based on earlier results by
Dugger [2]: On the one hand, every combinatorial simplicial model category M has an
underlying 1–category M1 . This 1–category M1 is presentable, ie it satisfies the
set-theoretic smallness condition of being accessible and has all1–categorical colimits
and limits. On the other hand, every presentable 1–category is equivalent to the 1–
category associated with a combinatorial simplicial model category [8, Proposition
A.3.7.6]. The presentability assumption is essential here since a sub-1–category of
a presentable 1–category is in general not presentable, and does not come from a
model category.

In many applications one studies combinatorial model categories M equipped with
a symmetric monoidal product that is compatible with the model structure. The
underlying 1–category M1 of such a symmetric monoidal model category inherits
the extra structure of a symmetric monoidal1–category; see Lurie [9, Example 4.1.3.6
and Proposition 4.1.3.10]. Since the monoidal product of M is a Quillen bifunctor,
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M1 is an example of a presentably symmetric monoidal 1–category, ie a symmetric
monoidal 1–category C which is presentable and whose associated tensor bifunctor
˝W C � C ! C preserves colimits separately in each variable. In view of the above
discussion, it is an obvious question whether every presentably symmetric monoidal
1–category arises from a combinatorial symmetric monoidal model category. This
was asked for example by Lurie [9, Remark 4.5.4.9]. The main result of the present
paper is an affirmative answer to this question:

Theorem 1.1 For every presentably symmetric monoidal 1–category C , there is
a simplicial, combinatorial and left proper symmetric monoidal model category M
whose underlying symmetric monoidal 1–category is equivalent to C .

One can view this as a rectification result: the a priori weaker and more flexible notion
of a symmetric monoidal 1–category, which can encompass coherence data on all
layers, can be rectified to a symmetric monoidal category where only coherence data
up to degree 2 is allowed. An analogous result in the monoidal (but not symmetric
monoidal) case is outlined in [9, Remark 4.1.4.9]. The symmetric result is significantly
more complicated, as it is generally harder to rectify to a commutative structure than
to an associative one. As we will see in Section 2.6 below, the theorem can actually
be strengthened to a functorial version stating that symmetric monoidal left adjoint
functors are represented by strong symmetric monoidal left Quillen functors.

The strategy of proof for Theorem 1.1 is as follows. Using localization techniques, we
reduce the statement to the case of presheaf categories. By a result appearing in work
of Pavlov and Scholbach [10], we can represent a symmetric monoidal 1–category by
an E1–algebra M in simplicial sets with the Joyal model structure. The main result of
Kodjabachev and Sagave [7] implies that this E1–algebra can be rigidified to a strictly
commutative monoid in the category of diagrams of simplicial sets indexed by finite sets
and injections. We construct a chain of Quillen equivalences relating the contravariant
model structure on sSet=M with a suitable contravariant model structure on objects
over the commutative rigidification of M . The last step provides a symmetric monoidal
model category, and employing a result by Gepner, Groth and Nikolaus [4] we show
that it models the symmetric monoidal 1–category of presheaves on M .

It is also worth noting that our proof of Theorem 1.1 does in fact provide a symmet-
ric monoidal model category M with favorable properties: operad algebras in M
inherit a model structure from M, and weak equivalences of operads induces Quillen
equivalences between the categories of operad algebras; see Theorem 2.5 below. In
particular, there is a model structure on the category of commutative monoid objects
in M which is Quillen equivalent to the lifted model structure on E1–objects in M

Algebraic & Geometric Topology, Volume 17 (2017)
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and moreover models the 1–category of commutative algebras in the 1–category
represented by M. Hence, formally M behaves very much like symmetric spectra
with the positive model structure.

1.2 Applications

Our main result allows one to abstractly deduce the existence of symmetric monoidal
model categories that represent homotopy theories with only homotopy coherent sym-
metric monoidal structures. For example, it was unknown for a long time if there is
a good point set level model for the smash product on the stable homotopy category.
Since a presentably symmetric monoidal 1–category that models the stable homotopy
category can be established without referring to such a point set level model for the
smash product, the existence of a model category of spectra with good smash product
follows from our result. (Explicit constructions of such model categories of course
predate the notion of presentably symmetric monoidal 1–categories.)

But there are also examples where the question about the existence of symmetric
monoidal models is open. One such example is the category of topological operads.
It admits a tensor product, called the Boardman–Vogt tensor product, which controls
the interchange of algebraic structures. The known symmetric monoidal point set level
models for this tensor product cannot be derived, ie they do not give rise to a symmetric
monoidal model category. However, for the underlying 1–category of 1–operads a
presentably symmetric monoidal product is constructed by Lurie [9, Chapter 2.2.5]. In
this case, our result allows to abstractly deduce the existence of a symmetric monoidal
model category modeling operads with the Boardman–Vogt tensor product.

1.3 Organization

In Section 2 we show that Theorem 1.1 and its functorial enhancement can be reduced
to the case of presheaf categories. In Section 3 we develop variants of the contravariant
model structure that are compatible with the rigidification for E1–quasicategories
recently developed by Kodjabachev and Sagave [7]. In the final Section 4 we prove
that an instance of the contravariant model structure provides the desired result about
presheaf categories.

Acknowledgments We would like to thank Gijs Heuts, Dmitri Pavlov and Markus
Spitzweck for helpful discussions. Moreover, we would like to thank the referee for
useful comments.
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2 Reduction to presheaf categories

In this section we explain how Theorem 1.1 follows from a statement about presheaf
categories that will be established in Section 3.

As defined by Lurie [9, Definition 2.0.0.7], a symmetric monoidal 1–category is a
cocartesian fibration of simplicial sets C˝!N.Fin�/ satisfying a certain condition.
We explain in Proposition 4.1 below that a symmetric monoidal 1–category can be
represented by an E1–algebra in simplicial sets with the Joyal model structure. We
also note that by [9, Example 4.1.3.6], every symmetric monoidal model category gives
rise to a symmetric monoidal 1–category, and every symmetric monoidal left Quillen
functor induces a left adjoint symmetric monoidal functor between the respective
1–categories.

Recall that an1–category C is called presentable if it is �–accessible for some regular
cardinal � and admits all small colimits. In that case we can write C as an accessible
localization of the category of presheaves P.C�/ on the full subcategory C� � C of
�–compact objects. Here we denote the category of presheaves on an 1–category D
as P.D/D Fun.Dop;S/, where S DN.Kan�/ is the 1–category of spaces obtained
as the homotopy coherent nerve of the simplicially enriched category of Kan complexes.
Moreover C� is essentially small. Replacing C� by a small 1–category D we see
that every presentable 1–category is equivalent to an accessible localization of the
category of presheaves P.D/ on some small 1–category D . For a detailed discussion
of presentable 1–categories and accessible localizations we refer the reader to [8,
Chapter 5.5].

To study a symmetric monoidal analogue of this statement, we recall the following
terminology from the introduction.

Definition 2.1 A symmetric monoidal 1–category C is presentably symmetric mon-
oidal if C is presentable and the associated tensor bifunctor ˝W C � C! C preserves
colimits separately in each variable.

For every symmetric monoidal structure on an 1–category D , the 1–category P.D/
inherits a symmetric monoidal structure which by [9, Corollary 4.8.1.12] is uniquely
determined by the following two properties:

� The tensor product makes P.D/ into a presentably symmetric monoidal 1–
category.

� The Yoneda embedding j W D!P.D/ can be extended to a symmetric monoidal
functor.

Algebraic & Geometric Topology, Volume 17 (2017)
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We call this structure the Day convolution symmetric monoidal structure. It follows
from [9, 4.8.1.10(4)] that it has the following universal property: for every presentably
symmetric monoidal 1–category E , the Yoneda embedding j W D! P.D/ induces
an equivalence

FunL;˝.P.D/; E/! Fun˝.D; E/:

Here Fun˝ denotes the 1–category of symmetric monoidal functors and FunL;˝

denotes the 1–category of functors which are symmetric monoidal and in addition
preserve all small colimits (or, equivalently, which are left adjoint).

In order to state our first structure result for presentably symmetric monoidal 1–
categories, let us recall the notion of a symmetric monoidal localization of a symmetric
monoidal 1–category C . An accessible localization LW C! C is called symmetric
monoidal if the full subcategory of local objects C0� C admits a presentably symmetric
monoidal structure such that the induced localization functor LW C ! C0 admits a
symmetric monoidal structure. In that case these symmetric monoidal structures
are essentially unique. By [9, Proposition 2.2.1.9], the localization L is symmetric
monoidal precisely if for every local equivalence X ! Y in C and every object Z 2 C
the induced morphism X ˝Z ! Y ˝Z is also a local equivalence. Note that this
condition can be completely checked on the level of homotopy categories. See also [4,
Section 3] for a discussion of symmetric monoidal localizations.

Proposition 2.2 Every presentably symmetric monoidal 1–category is an accessible,
symmetric monoidal localization of the category of presheaves P.D/ on some small,
symmetric monoidal 1–category D .

Proof Let C be a presentably symmetric monoidal 1–category. Choose a regular
cardinal � such that C is � accessible. By enlarging � we can assume that the �–
compact objects C� � C form a full symmetric monoidal subcategory. We can replace
C� up to equivalence by a small, symmetric monoidal 1–category D since it is
essentially small. Then we find that C is an accessible localization of P.D/. The
inclusion D ' C� ! P.D/ is by construction symmetric monoidal. We conclude
that the localization functor P.D/! C can be endowed with a symmetric monoidal
structure with respect to the Day convolution symmetric monoidal structure, using the
universal property of the Day convolution. By the description of symmetric monoidal
localizations given above this finishes the proof.

Following [1, Definition 1.21] (or rather [1, Corollary 2.7]), we say that a combinatorial
model category is tractable if it admits a set of generating cofibrations with cofibrant
domains.

Algebraic & Geometric Topology, Volume 17 (2017)
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Now assume that M is a simplicial, combinatorial, tractable and left proper symmetric
monoidal model category. Denote the underlying symmetric monoidal 1–category
by M1 . Let LWM1!M1 be an accessible and symmetric monoidal localization.
We say that a morphism f W A! B in M is

� a local cofibration if it is a cofibration in the original model structure on M,

� a local weak equivalence if L.�f / is an equivalence in M1 , where �f denotes
the corresponding morphism in M1 , and

� a local fibration if it has the right lifting property with respect to all morphisms
in M which are simultaneously a cofibration and a weak equivalence.

Proposition 2.3 The above choices of local cofibrations, local fibrations and local
weak equivalences define a simplicial, combinatorial, tractable and left proper sym-
metric monoidal model structure. The underlying 1–category of this model category
Mloc and the 1–category of local objects LM1 �M1 are equivalent as symmetric
monoidal 1–categories.

Proof We use [8, Proposition A.3.7.3] to conclude that Mloc exists and that it is
a simplicial, combinatorial and left proper model category. By construction, it is a
left Bousfield localization of M. It remains to verify that the local model structure
is symmetric monoidal. Since M is tractable, so is Mloc , and it follows from [1,
Corollary 2.8] that we may assume that both the generating cofibrations of Mloc and
the generating acyclic cofibrations of Mloc have cofibrant domains. To verify the
pushout-product axiom, it therefore suffices to show that on the level of homotopy
categories for an object Z 2 Ho.M/ and a local equivalence X ! Y in Ho.M/ the
morphism of X ˝Z! Y ˝Z is a local equivalence as well (here the tensor is the
tensor on the homotopy category, ie the derived tensor product). But this is true since
the corresponding fact is true in the 1–category M1 as discussed above.

By construction the 1–category LM1 of local objects is modeled by the localized
model structure Mloc . It remains to show that the two are equivalent as symmetric
monoidal 1–categories. To this end we just observe that the identity is a symmetric
monoidal left Quillen functor M!Mloc . Thus the localized model structure endows
LM1 with a symmetric monoidal structure such that the localization M!Mloc is
symmetric monoidal. But this was our defining property of the symmetric monoidal
structure on LM1 .

The next proposition is the technical backbone of this paper and will be proven at the
end of Section 3.
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Proposition 2.4 Let D be a small symmetric monoidal1–category. Then there exists
a simplicial, combinatorial, tractable and left proper symmetric monoidal model cate-
gory M whose underlying presentably symmetric monoidal 1–category is symmetric
monoidally equivalent to P.D/ equipped with the Day convolution structure.

We can now prove the main theorem from the introduction:

Proof of Theorem 1.1 Propositions 2.2 and 2.3 reduce the claim to the statement of
Proposition 2.4.

The following theorem establishes more properties of the symmetric monoidal model
categories that are provided by our proof of Theorem 1.1.

Theorem 2.5 Let C be a presentably symmetric monoidal 1–category. Then the
symmetric monoidal model category M of Theorem 1.1 can be chosen such that the
following holds:

(i) For any operad O in sSet, the forgetful functor MŒO�!M from the category
of O–algebras in M creates a model structure on MŒO�.

(ii) If P ! O is a weak equivalence of operads, then the induced adjunction
MŒP�� MŒO� is a Quillen equivalence. In particular, the categories of E1–
objects and strictly commutative monoid objects in M are Quillen equivalent.

(iii) The 1–category associated with the lifted model structure on commutative
monoid objects in M is equivalent to the 1–category of commutative algebra
objects in the 1–category C .

Proof Parts (i) and (ii) follow from our construction and Proposition 3.20 below. Part
(iii) follows from [10, Theorem 7.10]. The symmetric flatness hypothesis needed for
the latter theorem is verified in the proof of Proposition 3.20 below.

2.6 Functoriality

We now provide a strengthening of our main result for functors. The methods and
ideas are precisely the same as before, we only have to carefully keep track of the
functoriality.

We first prove a slight generalization of Proposition 2.2. For the formulation, we say that
a symmetric monoidal left adjoint functor F W C! C0 between presentably symmetric
monoidal 1–categories is a localization of a symmetric monoidal left adjoint functor
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GW E ! E 0 if there is a commutative diagram of presentably symmetric monoidal
1–categories

E G
//

L
��

E

L0

��

C F
// C0

in which the vertical functors L and L0 are symmetric monoidal localizations. It is
easy to see that once G and the localizations L and L0 are given, G descends to a
functor F if and only if it sends local equivalences to local equivalences. Moreover,
F is determined up to equivalence by G in that case.

Lemma 2.7 Let F W C! C0 be a symmetric monoidal left adjoint functor between pre-
sentably symmetric monoidal 1–categories. Then there exists a symmetric monoidal
functor f W D! D0 between small symmetric monoidal 1–categories such that F is
a localization of the left Kan extension fŠW P.D/! P.D0/.

Proof First note that by [8, Proposition 5.4.7.7], every left adjoint functor C! C0

preserves �–compact objects for some � , ie it restricts to a functor F jC� W C�! .C0/� .
Since F is left adjoint, it is the left Kan extension of F jC� . This in turn implies that it
is a localization of

.F jC� /ŠW P.C�/! P.C0�/:

Replacing the essentially small 1–categories C� and .C0/� by small categories proves
the claim.

In the proof of the next theorem we will use Proposition 4.3, which we state and prove
in Section 4.

Theorem 2.8 Let F W C! C0 be a symmetric monoidal left adjoint functor between
presentably symmetric monoidal 1–categories. Then there exists a simplicial symmet-
ric monoidal left adjoint functor S WM!M0 between simplicial, combinatorial and
left proper symmetric monoidal model categories M and M0 such that the underlying
functor S1WM1!M01 is equivalent to F .

Proof We first use Lemma 2.7 to conclude that there is a symmetric monoidal func-
tor f W D! D0 between small symmetric monoidal 1–categories such that F is a
localization of fŠ . Using Proposition 4.3 below, we can realize fŠ as a left Quillen
functor S WM!M0 between symmetric monoidal model categories which model
P.D/ and P.D0/. We now equip the categories M and M0 with the local model
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structures which, by Proposition 2.3, correspond to the localization that give C and C0 .
Since the functor fŠ descents to a local functor, it preserves local equivalences. Thus
the functor S is also left Quillen with respect to the local model structures and the
underlying functor of 1–categories represents the functor F .

3 The contravariant I–model structure

In this section we set up the model structures that will be used in the proof of
Proposition 2.4 and its functorial refinement Proposition 4.3.

3.1 The contravariant model structure

Let S be a simplicial set and let sSet=S be the category of objects over S . We recall
from [8, Chapter 2.1.4] or [6, Section 8] that sSet=S admits a contravariant model
structure where the cofibrations are the monomorphisms and the fibrant objects X! S

are the right fibrations, ie the maps with the right lifting property with respect to the
set of horn inclusions ƒni ��

n for 0 < i � n. As we will explain in Section 4, the
contravariant model structure is relevant for our work because of its connection to
presheaf categories coming from the straightening and unstraightening constructions [8,
Chapter 2.2.1].

We will frequently use the following feature of the contravariant model structure:

Lemma 3.2 [8, Remark 2.1.4.12] A morphism of simplicial sets S ! T induces a
Quillen adjunction sSet=S � sSet=T with respect to the contravariant model structures.
If S ! T is a Joyal equivalence of simplicial sets, then this adjunction is a Quillen
equivalence.

For simplicial sets K and T , we consider the functor

(3-1) K �� W sSet=T ! sSet=K �T

sending objects and morphisms in sSet=T to their product with idK .

Lemma 3.3 If f W X!Y is an acyclic cofibration in the contravariant model structure
on sSet=T , then K � f is an acyclic cofibration in the contravariant model structure
on sSet=K �T .

We note that since we do not view K �� as an endofunctor of sSet=T by projecting
away from K , this lemma is not implied by the fact that the contravariant model
structure is simplicial.
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Proof of Lemma 3.3 By [6, Lemma 8.16], the acyclic cofibrations in the contravariant
model structure are characterized by the left lifting property with respect to the right
fibrations between objects that are right fibrations relative to the base. Hence we have
to prove that for every acyclic cofibration U ! V in the contravariant model structure
on sSet=T and for every commutative diagram

K �U //

��

X

��

K �V //

��

Y

��

K �T
D
// K �T

in sSet where the right-hand vertical maps are right fibrations, the upper square admits
a lift K �V !X . Using the tensor/cotensor adjunction .K ��; .�/K/ on sSet, this
is equivalent to finding a lift in the upper left-hand square in

U //

��

T �.K�T /K X
K //

��

XK

��

V //

��

T �.K�T /K Y
K //

��

Y K

��

T
D

// T // .K �T /K

Since base change preserves right fibrations and the cotensor preserves right fibrations
(by the dual of [8, Corollary 2.1.2.9]), the upper vertical map in the middle is a right
fibration between right fibrations relative to T .

Since K�� preserves contravariant cofibrations and all objects in sSet=T are cofibrant,
Ken Brown’s lemma and the preceding statement imply:

Corollary 3.4 The functor K ��W sSet=T ! sSet=K � T preserves contravariant
weak equivalences.

3.5 The Joyal I–model structure

Let I be the category with the finite sets mD f1; : : : ; mg for m � 0 as objects and
the injective maps as morphisms. An object m of I is positive if jmj � 1, and IC
denotes the full subcategory of I spanned by the positive objects.

In the following, we briefly summarize the main results about the Joyal I–model
structures on the functor category sSetI D Fun.I; sSet/ of I–diagrams of simplicial
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sets from [7]. These results are motivated by (and largely derived from) the construction
of the corresponding Kan model structures on sSetI in [12].

We say that a morphism f in sSetI is a Joyal I–equivalence if hocolimI f is a Joyal
equivalence in sSet. It is shown in [7, Proposition 2.3] that sSetI admits an absolute and
a positive Joyal I–model structure. In both cases, the weak equivalences are the Joyal
I–equivalences. An object X is fibrant in the absolute (resp. positive) model structure
if each ˛W m! n in I (resp. in IC ) induces a weak equivalence of fibrant objects
˛�W X.m/! X.n/ in sSetJoyal . In both cases, the I–model structures arise as left
Bousfield localizations of absolute or positive Joyal level model structures. Particularly,
we will use that a Joyal I–equivalence between positive I–fibrant objects X ! Y is
a positive Joyal level equivalence, ie X.m/! Y.m/ is a Joyal equivalence for all m

in IC . Finally, we note that by [7, Corollary 2.4], there are Quillen equivalences

(3-2) sSetIpos
id
// sSetIabsid

oo
colimI

// sSetJoyal:
constI
oo

Concatenation of finite ordered sets induces a permutative monoidal structure on I
with monoidal unit 0 and symmetry isomorphism the obvious block permutation.
The functor category sSetI inherits a symmetric monoidal Day type convolution
product � with monoidal unit I.0;�/ from the cartesian product in sSet and the
concatenation in I . Since sSetI is tensored over sSet, any operad D in sSet gives rise
to a category sSetI ŒD� of D–algebras in sSetI. The central feature of the positive model
structure on sSetI is that without additional assumptions on D , the forgetful functor
sSetI ŒD�! sSetIpos creates a positive model structure on sSetI ŒD�, where a map is
weak equivalence or fibration if the underlying map in sSetIpos is [7, Theorem 3.1].

We say that an operad E in sSet is an E1–operad in sSetJoyal if †n acts freely on
the nth space E.n/ and E.n/ ! � is a Joyal equivalence. If E is an E1–operad
in sSetJoyal , then the Joyal model structure on sSet lifts to a Joyal model structure on
sSetŒE � by an argument analogous to the absolute case of [7, Theorem 3.1].

Theorem 3.6 [7, Theorem 1.2] Let E be an E1–operad in sSetJoyal . Then the canon-
ical morphism ˆW E ! C to the commutativity operad and the composite adjunction
in (3-2) induce a chain of Quillen equivalences

sSetIposŒC�
ˆ�

// sSetIposŒE �
colimI

//
ˆ�
oo sSetJoyalŒE�:

constI
oo

The theorem leads to the following rigidification of E1–objects in sSetJoyal to C–
algebras in sSetI, that is, to commutative monoids in .sSetI ;�/.
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Corollary 3.7 Let M be an E –algebra in sSetJoyal . There exists a rigidification functor
.�/rigW sSetI ŒE�! sSetI ŒC� and a natural chain of positive Joyal level equivalences
between positive fibrant objects ˆ�.M rig/ M c! constIM in sSetI ŒE �.

Proof This is analogous to the result about E1–spaces in [12, Corollary 3.7]: We
let M c ��� constIM be a cofibrant replacement in sSetIposŒE �. Moreover, we let
ˆ�.M

c/! ˆ�.M
c/fib be a fibrant replacement in sSetIposŒC�. Then the adjunction

unit induces an I–equivalence M c!ˆ�.ˆ�.M
c/fib/. Since both objects are positive

I–fibrant, it is even a positive Joyal level equivalence. Hence M rig Dˆ�.M
c/fib has

the desired property.

3.8 The contravariant level and I–model structures

Let ZW I ! sSet be an I–diagram of simplicial sets. We are interested in various
model structures on the comma category sSetI=Z of objects over Z that are induced
from the contravariant model structure. For this purpose, it is important to note that the
category sSetI=Z can be obtained by assembling the comma categories sSet=Z.m/
for varying m. Indeed, every morphism ˛W m! n in I induces an adjunction

(3-3) ˛ŠW sSet=Z.m/� sSet=Z.n/ W˛�

via composition with and base change along ˛�W Z.m/!Z.n/, and the adjunctions
are compatible with the composition in I . We also note that for every object m of I ,
there is an adjunction

(3-4) FmW sSet=Z.m/� sSetI=Z WEvm

with right adjoint Evm.X !Z/DX.m/!Z.m/ and left adjoint

Fm.K!Z.m//D

�
n 7!

a
.˛Wm!n/2I

˛Š.K!Z.m//

�
:

A morphism X ! Y in sSetI=Z is defined to be

� an absolute (resp. positive) contravariant level equivalence if for each object (resp.
each positive object) m of I , the morphism X.m/! Y.m/ is a contravariant
weak equivalence in sSet=Z.m/,

� an absolute (resp. positive) contravariant level fibration if for each object (resp.
each positive object) m of I , the morphism X.m/! Y.m/ is a fibration in the
contravariant model structure on sSet=Z.m/, and
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� an absolute (resp. positive) contravariant cofibration if it has the left lifting prop-
erty with respect to all morphisms that are absolute (resp. positive) contravariant
level fibrations and equivalences.

Lemma 3.9 These classes of maps define an absolute (resp. a positive) contravariant
level model structure on sSetI=Z which is simplicial, combinatorial, tractable and left
proper.

Proof The key observation is that by Lemma 3.2, the adjunction (3-3) is a Quillen
adjunction with respect to the contravariant model structures. With this observation,
the existence of the absolute contravariant level model structure follows by a standard
lifting argument using the adjunctionY

m2I

sSet=Z.m/� sSetI=Z

induced by the adjunctions .Fm;Evm/ from (3-4) and the product model structure on
the codomain; compare [1, Theorem 2.28]. If IZ.m/ is a set of generating cofibrations
for sSet=Z.m/, then fFm.i/ j m 2 I; i 2 IZ.m/g is a set of generating cofibrations
for the absolute contravariant level model structure, and similarly for the generating
acyclic cofibrations. The model structure is obviously tractable, and it is simplicial and
left proper since sSet=Z.m/ is.

In the positive case, we index the above product by the objects of IC instead.

The contravariant model structure on sSet=Z.m/ is cofibrantly generated and left
proper. Since its cofibrations are the monomorphisms, we may use

IZ.m/ D
˚
.K!Z.m//! .L!Z.m// j .K! L/D .@�n ,!�n/

	
as a set of generating cofibrations of sSet=Z.m/. Let WZ.m/ be the set of objects in
sSet=Z.m/ given by the domains and codomains of IZ.m/ . By [3, Proposition A.5], a
map U ! V of fibrant objects in the contravariant model structure on sSet=Z.m/ is
a contravariant weak equivalence if and only if the induced morphism of simplicial
mapping spaces MapZ.m/.K;U /!MapZ.m/.K; V / is a weak homotopy equivalence
of simplicial sets for every object K!Z.m/ in WZ.m/. For an object K!Z.m/

in WZ.m/ and a morphism ˛W m! n in I , we let

Fn.˛Š.K//! Fm.K/

be the morphism in sSetI=Z that is adjoint to the inclusion

˛Š.K/ ,!
a

.ˇ Wm!n/2I

ˇŠ.K/D Evn.Fm.K//
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of the summand indexed by ˛ . We write

(3-5) SZ D
˚
Fn.˛Š.A//! Fm.A/ j .˛W m! n/ 2 I and .A!Z.m// 2WZ.m/

	
for the set of all such maps and let SZ

C
be the subset of SZ consisting those maps that

come from ˛ 2 IC .

Proposition 3.10 The left Bousfield localization of the absolute (resp. positive) con-
travariant level model structure on sSetI=Z with respect to SZ (resp. SZ

C
) exists. It is

a simplicial, combinatorial, tractable and left proper model structure.

We refer to this model structure as the absolute (resp. positive) contravariant I–model
structure. The weak equivalences in these model structures are called absolute (resp.
positive) I–equivalences. The cofibrations are the same as in the respective level model
structures. An object X ! Z is absolute (resp. positive) contravariant I–fibrant if
is absolute (resp. positive) contravariant level fibrant an each ˛W m! n in I (resp.
in IC ) induces a contravariant weak equivalence X.m/! ˛�.X.n// in sSet=Z.m/.

The contravariant I–model structures are homotopy invariant in level equivalences of
the base:

Lemma 3.11 Let Z ! Z0 be a morphism in sSetI. Then the induced adjunction
sSetI=Z � sSetI=Z0 is a Quillen adjunction with respect to the absolute and positive
contravariant I–model structures. If Z! Z0 is an absolute (resp. a positive) Joyal
level equivalence, then it is a Quillen equivalence with respect to the absolute (resp.
positive) contravariant I–model structures.

Proof We treat the absolute case; the positive case is similar. It is clear that the
adjunction in question is a Quillen adjunction with respect to the absolute level model
structure. Since .Z ! Z0/Š.SZ/ is a subset of SZ0 , there is an induced Quillen
adjunction on the localizations. Using Lemma 3.2, it is also clear that an absolute
Joyal level equivalence induces a Quillen equivalence with respect to the absolute
contravariant level model structures. To see that it is a Quillen equivalence, we note
that by adjunction, the .Z ! Z0/Š.SZ/–local objects coincide with the SZ0 –local
objects.

We write .�/I D colimI for the colimit over I and note that the adjunction

.�/I W sSetI � sSet W constI

induces adjunctions of overcategories

(3-6) sSetI=Z � sSetI= constI.ZI/� sSet=ZI :
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Lemma 3.12 Let Z be cofibrant and fibrant in the absolute Joyal I–model structure
on sSetI. Then the composite adjunction sSetI=Z � sSet=ZI is a Quillen equivalence
with respect to the absolute contravariant I–model structure on sSetI=Z and the
contravariant model structure on sSet=ZI .

Proof Since Z is cofibrant and fibrant, the Quillen equivalence (3-2) shows that
the adjunction unit Z ! constI.ZI/ is an absolute Joyal level equivalence. Hence
the first adjunction in (3-6) is a Quillen equivalence by Lemma 3.11. It follows
from the definitions that the second adjunction is a Quillen adjunction whose right
adjoint detects weak equivalences between fibrant objects. Hence it is sufficient to
show that the derived adjunction unit is an absolute contravariant I–equivalence. Let
X! constI.ZI/ be a cofibrant object in the absolute contravariant I–model structure.
A fibrant replacement X!X 0 and the adjunction counit of .F0;Ev0/ provide a chain
of absolute contravariant I–equivalences between cofibrant objects

X //
�
// X 0 F0Ev0.X

0/:
�
oo

Since 0 is initial in I , there is an isomorphism F0Ev0.X
0/Š constI X 0.0/. The claim

follows because the evaluation of the adjunction unit of ..�/I ; constI/ on constI X 0.0/
is even an isomorphism and constI preserves weak equivalence between all objects.

Proposition 3.13 For every absolute Joyal I–fibrant Z in sSetI, the identity functors
form a Quillen equivalence .sSetI=Z/pos � .sSetI=Z/abs with respect to the positive
and absolute contravariant I–model structures.

Proof Let Zc!Z be a cofibrant replacement in the absolute Joyal I–model structure
and let Zc! constI.ZcI/ be the adjunction unit. Since these two maps are absolute
Joyal level equivalences, Lemma 3.11 and the two out of three property for Quillen
equivalences reduce the claim to the case where Z D constI T for a simplicial set T .

The category sSetI= constI T is equivalent to the category .sSet=T /I of I–diagrams
in sSet=T . Under this equivalence, the absolute contravariant I–model structure
corresponds to the homotopy colimit model structure on .sSet=T /I provided by [3,
Theorem 5.1]. The cited theorem implies that the weak equivalences in the absolute con-
travariant I–model structure are the maps that induce contravariant weak equivalences
under hocolimI W .sSet=T /I ! sSet=T .

The argument for comparing the model structures now works as in [7, Proposition 2.3]:
The inclusion IC! I is homotopy cofinal [12, Proof of Corollary 5.9], and hence
every positive contravariant level equivalence is an hocolimI –equivalence. Together
with S constI T

C
� S constI T , this shows that every positive contravariant I–equivalence
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is an absolute contravariant I–equivalence. For the converse, it suffices to show
that a hocolimI –equivalence of positive contravariant I–fibrant objects is a positive
contravariant I–equivalence. Using again that IC ! I is homotopy cofinal, this
follows by restricting along IC! I and applying [3, Theorem 5.1(a)] in .sSet=T /IC .

Corollary 3.14 If Z is absolute Joyal cofibrant and positive Joyal I–fibrant, then
sSetI=Z � sSet=ZI is a Quillen equivalence with respect to the positive contravariant
I–model structure on sSetI=Z and the contravariant model structure on sSet=ZI .

Proof Since the derived adjunction unit Z! constI..ZI/
Joyal-fib/DZ0 is a positive

level equivalence, the adjunction sSetI=Z � sSetI=Z0 is a Quillen equivalence with
respect to the positive contravariant I–model structure by Lemma 3.11. Because Z0

is cofibrant and fibrant in the absolute Joyal I–model structure, Proposition 3.13 and
Lemma 3.12 show the claim.

Let N be a commutative monoid object in .sSetI ;�/. Then the overcategory sSetI=N
inherits a symmetric monoidal product

.X !N/� .Y !N/D .X �Y !N �N !N/

from the symmetric monoidal structure of N and the multiplication of N .

The following result is a key step in the proof of our main result:

Theorem 3.15 Let E be an E1–operad in sSetJoyal and let M be an E –algebra. Then
there is a chain of Quillen equivalences of simplicial, combinatorial and left proper
model categories

sSetI=M rig � sSetI=M c � sSetI=constIM � sSet=M

relating sSet=M with the contravariant model structure and the symmetric monoidal
model category sSetI=M rig with the positive contravariant I–model structure. The
chain is natural with respect to M .

Proof Using the chain of positive level equivalences M rig M c! constIM from
Corollary 3.7 and the fact that constIM Š F0M is absolute Joyal I–cofibrant, the
chain of Quillen equivalences is a consequence of Lemma 3.11 and Corollary 3.14. It
is shown in Corollary 3.19 that sSetI=M rig satisfies the pushout product axiom.

We need one more observation about the tensor product on sSetI=M rig . We call an
object in Ho.sSetI=M rig/ representable if it corresponds to an object of the form
�0!M under the equivalence Ho.sSetI=M rig/'Ho.sSet=M/ induced by the chain
of Quillen equivalences from Theorem 3.15. Note that these are precisely the objects
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which correspond to representable presheaves under the equivalence to presheaves on
the 1–category M .

Lemma 3.16 The tensor product of two representables in Ho.sSetI=M rig/ is again
representable.

Proof It follows from the construction of M rig and the chain of Quillen equivalences
that the representables in Ho.sSetI=M rig/ are represented by the cofibrant objects of
the form F I

k
.�0/!M with k an positive object of I . Since F I

k
.K/�F I

l
.L/ Š

F I
ktl

.K �L/, this set of objects is closed under the monoidal product.

3.17 Monoidal properties of the contravariant I -model structure

The following proposition is the key tool for the homotopical analysis of the �–product
on sSetI=N for a commutative N . Both its statement and proof are analogous to [12,
Proposition 8.2; 7, Proposition 2.6]:

Proposition 3.18 Let N be a commutative monoid object in sSetI. If X ! N is
absolute contravariant cofibrant, then X �� W sSetI=N ! sSetI=N preserves positive
contravariant I–equivalences between arbitrary objects.

Proof We begin by showing that if Y1 ! Y2 is an absolute contravariant level
equivalence in sSetI=N , then so is X�Y1!X�Y2 . For this, we use a cell induction
argument and first consider the case X D Fm.K/.

By [12, Lemma 5.6], the map .Fm.K/� .Y1! Y2//.n/ is isomorphic to

(3-7) K �
�
colimmtk!n.Y1.k/! Y2.k//

�
where the colimit is taken over the comma category .mt�# n/. Since each connected
component of this comma category has a terminal object, we can choose a set A of
morphisms ˛W mtk! n such that (3-7) is isomorphic toa

.˛Wmtk!n/2A

K � .Y1.k/! Y2.k//:

Using Corollary 3.4, it follows that each summand is a contravariant weak equivalence
in sSet=.K �N.k//. Composing with the map

K �N.k/!N.m/�N.k/!N.n/

induced by the morphism ˛W k t m ! n indexing the summand, it follows that
each summand is a contravariant weak equivalence in sSet=N.n/. Hence (3-7) is a
contravariant weak equivalence in sSet=N.n/.
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Next we assume that Fm.K/! Fm.L/ is a generating cofibration in sSetI=N , that
X˛C1 is the pushout of Fm.L/  Fm.K/ ! X˛ in sSetI=N and that X˛ � �
preserves absolute contravariant level equivalences. By the above decomposition,
Fm.K! L/�Yi is a cofibration when evaluated at n, and the gluing lemma in the
left proper model category sSet=N.n/ shows that X˛C1� .Y1! Y2/ is an absolute
contravariant level equivalence in sSet=N . Since a general absolute contravariant
cofibrant object X is a retract of a colimit of a sequence of maps of this form, it follows
that X �� preserves absolute contravariant level equivalences.

We now turn to the statement of the proposition and assume that Y1! Y2 is a pos-
itive contravariant I–equivalence. By applying the previous argument to cofibrant
replacements of the Yi , we may assume that the Yi are absolute contravariant cofibrant.
Let Y2 � N c ���N be a factorization in the absolute Joyal model structure. By
Lemma 3.11, Y1! Y2 is a positive contravariant I–equivalence in sSetI=N c . Since
the induced map of colimits is a contravariant equivalence in sSet=.XI � N

c
I / by

Corollaries 3.4 and 3.14, another application of Corollary 3.14 shows that the induced
map X �Y1!X �Y2 is a positive contravariant I–equivalence in sSetI=.X �N c/.
Composing with X�N c!N �N !N shows that X�Y1!X�Y2 is a positive
contravariant I–equivalence in sSetI=N .

Corollary 3.19 Let N be a commutative monoid object in sSetI. The positive con-
travariant I–model structure on sSetI=N satisfies the pushout product axiom and the
monoid axiom as defined in [13].

Proof The cofibration part of the pushout product axiom follows from Proposition 8.4
of [12]. As explained there, Proposition 3.18 implies the statement about the generating
acyclic cofibrations.

For the monoid axiom, we have to show that transfinite composition of cobase changes of
maps of the form X�.Y1!Y2/ with Y1!Y2 an acyclic cofibration are contravariant
I–equivalences. Since sSetI=N is tractable, we may assume that also the generating
acyclic cofibrations of the positive contravariant I–model structure have cofibrant
domains and codomains [1, Corollary 2.8]. Using Proposition 3.18 and a cofibrant
replacement of X , it follows that X � .Y1! Y2/ is a contravariant I–equivalence. It
is also an injective level cofibration, ie a cofibration when evaluated at any object n

of I . Using a cofibrant replacement in the absolute contravariant level model structure,
it follows that cobase changes and transfinite compositions preserve morphisms that
are both contravariant I–equivalences and injective level cofibrations.

The next proposition states that (any monoidal left Bousfield localization of) the positive
contravariant I–model structure on sSetI=N lifts to operad algebras in the best possible
way.
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Proposition 3.20 Let N be a commutative monoid object in sSetI, let M be a left
Bousfield localization of the positive contravariant I–model structure on sSetI=N , and
assume that M satisfies the pushout product axiom with respect to �.

(i) For any operad O in sSet, the forgetful functor MŒO�!M from the category
of O–algebras in M creates a model structure on MŒO�.

(ii) If P ! O is a weak equivalence of operads, then the induced adjunction
MŒP�� MŒO� is a Quillen equivalence.

Proof The criteria given in [10, Theorems 5.10 and 7.5] reduce this to showing that
M is symmetric h–monoidal and symmetric flat in the sense of [11, Definitions 4.2.4
and 4.2.7].

As a first step, we show that the levelwise cofibrations in M are h–cofibrations in
the sense of [11, Definition 2.0.4], ie that cobase change along levelwise cofibrations
preserves weak equivalences. For this it is sufficient that pushouts along levelwise
cofibrations are homotopy pushouts in M. Let V  U !X be a diagram in M with
U ! V a levelwise cofibration. Let U ! V 0! V be a factorization of U ! V into
a positive I–cofibration U ! V 0 and a positive level equivalence V 0! V . Then the
induced map of pushouts V 0qU X ! V qU X is a positive level equivalence by a
levelwise application of the left properness of the contravariant model structure. Hence
V qU X is a homotopy pushout.

By [11, Theorem 4.3.9(iii)], it is sufficient to verify symmetric h–monoidality on the
generating (acyclic) cofibrations. For this we let

(3-8) vi D F
I
ki
.@�mi !�mi / for 1� i � e

be a family of generating cofibrations of M. (We drop the augmentation to N from
the notation.) Let .ni /1�i�e be a family of natural numbers. Then the iterated pushout
product map

(3-9) v D v
�n1
1 � � � �� v�ne

e

is a †.ni /D†n1 �� � ��†ne –equivariant map. For every †.ni /–object Y in M, there
is an isomorphism

Y � v Š .Y �F I
k .�//� �;

where kD k
tn1
1
t � � � tk

tne
e and

�D .@�m1 !�m1/�n1 � � � �� .@�me !�me /�ne
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is the iterated pushout product map in spaces. Hence Y �v is a levelwise cofibration of
simplicial sets, and so is its quotient by the †.ni /–action. This verifies the cofibration
part of the symmetric h–monoidality.

Next let .vi W Vi ! Wi /1�i�e be a family of generating acyclic cofibrations for M.
We may assume that the Vi and Wi are positive cofibrant since sSetI=N and hence
M is tractable. Let vW V ! W be defined as in (3-9) and let Y be a †.ni /–object
in M. For the acyclic cofibration part of the symmetric h–monoidality, we have to
show that .Y � v/†.ni /

is a weak equivalence in M. Let f W X ! Y be a cofibrant
replacement in M and consider the diagram

X �V
f�V

//

X�v

��

Y �V

Y�v

��

.Y �V /cof

g

��

�

pV
oooo

X �W
f�W

// Y �W .Y �W /cof
�

pW
oooo

where g is a replacement of Y �v by a map of cofibrant objects in the projective model
structure on M†.ni / . The map X � v is a weak equivalence in M by the pushout
product axiom in M, and the maps f �V and f �W are positive I–equivalences by
Proposition 3.18. Hence Y �v and g are weak equivalences in M. To see that Y �v

becomes a weak equivalence after taking †.ni /–orbits, we first note that g induces a
weak equivalence of †.ni /–orbits because it is a map of cofibrant objects. Hence it is
sufficient to show that pV and pW induce a weak equivalence of †.ni /–orbits. Since
these are actually positive contravariant level equivalences, it is sufficient to show that
the †.ni /–action on Y �W is free in positive levels. The group †ni –acts freely on
W

�ni
i .m/ because Wi is positive cofibrant [7, Lemma 2.9]. The fact that there is a

morphism of †.ni /–spaces

.Y �W /.m/!W.m/! .W
�n1
1 � � � ��W �ne

e /.m/!W
�n1
1 .m/�� � ��W �ne

e .m/

thus implies that †.ni / act freely on Y �W .m/. This completes the acyclic cofibration
part of the symmetric h–monoidality.

For symmetric flatness, it is by [11, Theorem 4.3.9(ii)] sufficient to show that for a
weak equivalence yW Y !Z in the projective model structure on M†.ni / and for v
as in (3-8) and (3-9), the map .y� v/†.ni /

is a weak equivalence in M. Here y� v

is the pushout product map in the square

Y �V
y�V

//

Y�v
��

Z�V

Z�v
��

Y �W
y�W

// Z�W
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Replacing y by a weak equivalence of cofibrant objects in M†.ni / and using Proposition
3.18 and the pushout product axiom in M shows that the vertical maps are weak
equivalences in M. Since X�v is a levelwise cofibration by [12, Proposition 7.1(vi)],
it is an h–cofibration by the argument at the beginning of the proof. Hence y � v

is a weak equivalence in M by two out of three. Arguing as in the previous step of
the proof, the fact that †.ni / acts freely on the positive levels of Y �W implies that
.y� v/†.ni /

is a weak equivalence in M.

Remark 3.21 The argument given in the previous proof actually shows the stronger
statement that the two assertions in the proposition hold for colored operads and for
operads internal to C .

4 E1 objects and symmetric monoidal 1–categories

The goal of this section is to prove Proposition 2.4 and its functorial refinement
Proposition 4.3.

The 1–category SymMonCat1 of small symmetric monoidal 1–categories is
equivalent to the 1–category CAlg.Cat1/ of commutative algebra objects in 1–
categories [9, Remark 2.4.2.6]. Now let E be an E1–operad in sSetJoyal in the above
sense (for example, the Barratt–Eccles operad). We will use the following result about
the rectification of commutative algebras in the1–categorical sense to operad algebras
in the model category.

Proposition 4.1 There is an equivalence of 1–categories

(4-1) .sSetJoyalŒE�/1 ' CAlg.Cat1/

relating the 1–category associated with the model category of E –algebras in sSetJoyal

and CAlg.Cat1/. For an object M in sSetJoyalŒE �, the 1–category represented by M
is naturally equivalent to the underlying 1–category of the associated commutative
algebra in Cat1 .

Proof This is essentially a consequence of [10, Theorem 7.10] (which is in turn based
on [9, Theorem 4.5.3.7]). However, [10, Theorem 7.10] is not directly applicable since
it is formulated in terms of simplicial model categories and simplicial operads, while
E is an operad in sSetJoyal . As explained in [10, Remark 7.12], this context requires
a different argument for identifying the free E –algebra E.X/ on a cofibrant object
X with its derived counterpart in CAlg.Cat1/. To circumvent this problem, we note
that under the chain of Quillen equivalences in Theorem 3.6, E.X/ corresponds to the
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free commutative algebra on a positive cofibrant replacement of constI.X/. Using [7,
Lemma 2.9] in place of [9, Lemma 4.5.4.11(3)], the claim about E.X/ follows as in
part (e) of the proof of [9, Theorem 4.5.3.7].

We are now ready to give the proof of the key proposition from Section 2:

Proof of Proposition 2.4 Using the above discussion, we choose an E –algebra M in
sSet representing the given small symmetric monoidal 1–category D and consider
the model category sSetI=M rig arising from Theorem 3.15. By Proposition 3.10 and
Corollary 3.19, this is a simplicial, combinatorial, tractable and left proper symmetric
monoidal model category. Let C D .sSetI=M rig/1 be the presentably symmetric
monoidal 1–category associated with sSetI=M rig . We will show that C and P.D/
are equivalent as symmetric monoidal 1–categories.

It is immediate from Theorem 3.15 that after forgetting the monoidal structure, C
is equivalent to the underlying 1–category of the contravariant model structure on
sSet=M . The underlying 1–category of sSet=M is equivalent to the 1–category
P.D/ by means of the 1–categorical Grothendieck construction [8, Theorem 2.2.1.2]
and the fact that the underlying 1–category of M is equivalent to the underlying
1–category of D . Note that all the involved equivalences, ie the equivalences coming
from Theorem 3.15 as well as the Grothendieck construction, are pseudonatural in M ,
that is, natural in a 2–categorical sense. Thus, invoking [5, Appendix A], we conclude
that the induced equivalence of 1–categories

ˆW P.D/! C

is natural in D in the 1–categorical sense. Note however that this equivalence does
not necessarily need to respect the symmetric monoidal structures.

We need to show that ˆ is compatible with the symmetric monoidal structures on
P.D/ and C . By the universal property of the Day convolution symmetric monoidal
structure on D reviewed in Section 2, it suffices to equip the functor

‰ Dˆ ı j W D! C

given by composition with the Yoneda embedding j W D! P.D/ with a symmetric
monoidal structure. The functor ‰ is also natural in D in the 1–categorical sense. We
denote the essential image of ‰ by ‰.D/. By construction ‰.D/ is a full subcategory
of C . It follows from Lemma 3.16 that ‰.D/ is closed under tensor products in C .
Thus it inherits a symmetric monoidal structure from C such that the inclusion functor
‰.D/! C is a symmetric monoidal functor.
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To complete the proof, it is sufficient to show that the corestriction D ! ‰.D/ of
‰ is a symmetric monoidal functor. For this we use the equivalence (4-1) and the
functoriality of the involved constructions to view the construction D 7! ‰.D/ as a
functor

GW SymMonCat1! SymMonCat1

This functor G comes with a natural equivalence UG ' U given by ‰ , where
U W SymMonCat1! Cat1 is the canonical forgetful functor. The next lemma implies
that G is canonically equivalent to the identity functor on SymMonCat1 and that
the equivalence refines ‰ . We conclude that for each D , the functor ‰ refines to an
equivalence D'‰.D/ of symmetric monoidal 1–categories.

Lemma 4.2 Let GW SymMonCat1 ! SymMonCat1 be a functor together with
an equivalence UG ' U . Then the equivalence admits a canonical refinement to an
equivalence G ' id.

Proof We first observe that G preserves limits and filtered colimits, since these are
generated by the functor U . Together with the fact that SymMonCat1 is presentable
and the adjoint functor theorem, this shows that G is right adjoint. Denote the left
adjoint of G by F . The equivalence UG ' U implies that the diagram

Cat1
Fr
((

Fr
vv

SymMonCat1
F

// SymMonCat1

commutes, where Fr is the free symmetric monoidal category functor. Now we use that
the functor Fr exhibits SymMonCat1 as the free presentable, preadditive category
on Cat1 [4, Theorem 4.6]. Since F is left adjoint this implies that it has to be
canonically equivalent to the identity. Thus also the right adjoint G is canonically
equivalent to the identity.

The proof of Proposition 2.4 in fact provides the following stronger statement:

Proposition 4.3 For every symmetric monoidal functor f W D! D0 between small
1–categories there exists a symmetric monoidal, left Quillen functor between model
categories F WM!M0 such that fŠW P.D/! P.D0/ is symmetric monoidally equiv-
alent to the underlying functor of F .

Proof We use Proposition 4.1 to represent f by a map of E –algebras. Then we get
the induced functor between model categories and our proof of Proposition 2.4 shows
that this models the 1–functor fŠ .
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