Volume 17, issue 5 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The surgery exact triangle in $\mathrm{Pin}(2)\mskip-1.5mu$–monopole Floer homology

Francesco Lin

Algebraic & Geometric Topology 17 (2017) 2915–2960
Abstract

We prove the existence of an exact triangle for the Pin(2)–monopole Floer homology groups of three-manifolds related by specific Dehn surgeries on a given knot. Unlike the counterpart in usual monopole Floer homology, only two of the three maps are those induced by the corresponding elementary cobordism. We use this triangle to describe the Manolescu correction terms of the manifolds obtained by (±1)–surgery on alternating knots with Arf invariant 1.

Keywords
Seiberg–Witten, monopoles, surgery, correction terms
Mathematical Subject Classification 2010
Primary: 57M27
References
Publication
Received: 29 September 2016
Revised: 20 January 2017
Accepted: 7 February 2017
Published: 19 September 2017
Authors
Francesco Lin
Department of Mathematics
Princeton University
Princeton, NJ
United States