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Algebraic & Geometric Topology 17 (2017) 3213–3257

3–manifolds built from injective handlebodies

JAMES COFFEY

HYAM RUBINSTEIN

This paper studies a class of closed orientable 3–manifolds constructed from a
gluing of three handlebodies, such that the inclusion of each handlebody is �1–
injective. This construction is the generalisation to handlebodies of the construction
for gluing three solid tori to produce non-Haken Seifert fibred 3–manifolds with
infinite fundamental group. It is shown that there is an efficient algorithm to decide
if a gluing of handlebodies satisfies the disk-condition. Also, an outline for the
construction of the characteristic variety (JSJ decomposition) in such manifolds is
given. Some non-Haken and atoroidal examples are given.

57N10, 57M10, 57M50

1 Introduction

This paper is concerned with the class of 3–manifolds that meet the disk-condition.
These are closed orientable 3–manifolds constructed from the gluing of three handle-
bodies, such that the induced map on the fundamental group of each of the handlebodies
is injective. Thus all manifolds that meet the disk-condition have infinite fundamental
group. The disk-condition is an extension to handlebodies of conditions for the gluing of
three solid tori to produce non-Haken Seifert fibred manifolds with infinite fundamental
group. These manifolds appear to have many nice properties. In this paper, some tools
for understanding manifolds that meet the disk-condition are investigated. A number
of constructions are given for this class, including some manifolds that are non-Haken
and some that are atoroidal. The characteristic variety of manifolds that meet the
disk-condition is also investigated. It is shown that the handlebody structure carries all
the information for building the characteristic variety.

In Section 2, standard definitions that are used throughout this paper are given. Also, the
“disk-condition” is defined and discussed. In particular, it is shown how this condition is
a generalisation of the construction of non-Haken Seifert fibred manifolds with infinite
fundamental group. We also discuss how, on an intuitive level, the class of manifolds
that meet the disk-condition contains many other non-Haken examples.
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3214 James Coffey and Hyam Rubinstein

Section 3 is divided into three subsections. The first develops some basic tools and
also shows that all 3–manifolds that meet the disk-condition have infinite fundamental
group and are irreducible. In the second subsection, a sufficient condition is given for
gluings of handlebodies to meet the disk-condition. This condition is easily checked
and useful for constructing examples. We then give a necessary and sufficient condition
and an algorithm that can be checked in bounded time. The final part gives some
constructions of manifolds that meet the disk-condition, using Dehn fillings along knots
in S3 and n–fold cyclic branched covers of knots in S3 . Some non-Haken examples
are produced.

Section 4 is concerned with the construction of the characteristic variety † in a
manifold M that satisfies the disk-condition. The main theorem proved in Section 4 is:

Theorem 1.1 Let M be a closed orientable 3–manifold that satisfies the disk-condition,
and let T be a torus. If f W T !M is a �1–injective map, then there is † �M a
Seifert fibred submanifold with essential boundary and a map gW T !M homotopic
to f such that g.T /�†.

If the characteristic variety † has nonempty boundary, then the boundary components
are essential embedded tori. Therefore, a direct corollary of the above theorem is:

Corollary 1.2 If M is a closed orientable 3–manifold that satisfies the disk-condition
and there is a �1–injective map of the torus into M , then either there is a �1–injective
embedding of a torus in M , or M is a non-Haken Seifert fibred manifold.

These are not new results. However, the aim is to examine how the characteristic variety
behaves in manifolds that meet the disk-condition. The proof of the torus theorem
(Theorem 1.1) is constructive and gives an algorithm for finding the characteristic
variety of manifolds that meet the disk-condition. In the construction of the charac-
teristic variety, the components come in two “flavours”. The intersection of all three
handlebodies in the manifold is a set of injective simple closed curves, called the triple
curves. The first flavour is a component which is disjoint from the triple curves. These
components are similar to the constructions used by W Jaco and P Shalen to prove the
torus theorem for Haken manifolds; see Jaco [6]. The intersections of the components
of the characteristic variety with each handlebody are either essential Seifert fibred
submanifolds or I–bundles. If we remove an open neighbourhood of the triple curves,
we get a manifold with incompressible boundary, which is therefore Haken. What
remains of the boundaries of the handlebodies after the triple curves are removed is a set
of disjoint spanning surfaces. Therefore, the fact that these carry all the information for
the characteristic variety components disjoint from the triple curves is not surprising.

Algebraic & Geometric Topology, Volume 17 (2017)



3–manifolds built from injective handlebodies 3215

We will refer to the second flavour of characteristic variety as the disk components.
The intersections of these disk components with the handlebodies are regular neigh-
bourhoods of intersecting meridian disks. For this flavour of characteristic variety
components to occur, the manifold must meet a minimal disk-condition, as described
in Section 2. The two flavours of characteristic variety components are not necessarily
disjoint. If two such components intersect, their fibrings can always be made to agree.
In fact, when they intersect, the disk components are thickened compressing annuli of
the characteristic variety components disjoint from the triple curves.

Acknowledgements The authors would like to thank Ian Agol for a very helpful
comment on this project. We would also like to thank the referee for extremely diligent
work, which has greatly improved this paper. This research was partially supported by
the Australian Research Council.

2 Definitions and preliminaries

Throughout this paper, we will assume that, unless stated otherwise, we are working in
the PL category of manifolds and maps. We will use standard PL constructions, such
as regular neighbourhoods and transversality, defined by C Rourke and B Sanderson
in [12]. Other definitions relating to 3–manifolds are given by J Hempel in [5] or Jaco
in [6].

A manifold M is closed if it is compact and @M D ∅. Also, M is irreducible if
every embedded S2 bounds a ball. We will assume, unless otherwise stated, that all
3–manifolds are orientable. The reason for this is that all closed nonorientable P2–
irreducible 3–manifolds are Haken. (A manifold is P2–irreducible if it is irreducible
and does not contain any embedded 2–sided projective planes.) A main motivation for
our approach is to find constructions of non-Haken 3–manifolds.

A map f W S ! M is proper if f �1.@M/ D @S . If F W S � I ! M is a homo-
topy/isotopy such that F jS�0 is a proper map, then it is assumed, unless other-
wise stated, that F jS�t is a proper map for all t 2 I . To simplify notation, an
isotopy/homotopy of a surface S �M is used without defining the map. Here we are
assuming that there is a map f W S!M , and we are referring to an isotopy/homotopy
of f . If M is a 3–manifold and S is a compact surface which is not a sphere, disk or
projective plane, the proper map f W S !M is called �1–injective if the induced map
f�W �1.S/! �1.M/ is injective. If a �1–injective map f is not homotopic as a map
of pairs .S; @S/! .M; @M/ into @M , then the map is called essential.

Algebraic & Geometric Topology, Volume 17 (2017)



3216 James Coffey and Hyam Rubinstein

If H is a handlebody and D is a properly embedded disk in H such that @D is
essential in @H , then D is a meridian disk of H . If D is a proper singular disk in H
such that @D is essential in @H , then it is called a singular meridian disk.

In this paper, normal curve theory, as defined by S Matveev in [9], is used to list finite
classes of curves in surfaces. A triangulation of the surface is required to define normal
curves. The surfaces may have polygonal faces. However, a barycentric subdivision
will produce the required triangulation.

2.1 The disk-condition

Before we discuss the disk-condition in closed 3–manifolds, we define some useful
objects and the disk-condition in handlebodies.

Definition 2.1 Let H be a handlebody, T a set of curves in @H and D a meridian disk.
Assuming that @D and T are transverse, jDj will denote the number of intersection
points of @D and T .

Definition 2.2 If H is a handlebody and T is a set of essential disjoint simple closed
curves in @H , then T satisfies the n disk-condition in H if jDj � n for every meridian
disk D .

This seems a difficult condition to verify, for if H has genus two or higher, there are
an infinite number of meridian disks to check. However, later we give some sufficient
conditions that are easily checked and an algorithm that determines if the disk-condition
is satisfied.

Next we give a construction of 3–manifolds that meet the disk-condition. Please note
that even though this description is technically correct, it is not enlightening, so later
we discuss different ways of describing these manifolds that are much more useful.

Let H1 , H2 and H3 be three handlebodies. Let Si;j , for i 6D j , be a subsurface of
@Hi such that:

(1) @Si;j 6D∅.

(2) The induced map of �1.Si;j / into �1.Hi / is injective.

(3) Si;j [Si;k D @Hi for j 6D k .

(4) Ti D Si;j \ Si;k D @Si;j D @Si;k is a set of disjoint essential simple closed
curves that meet the ni disk-condition in Hi .

(5) Si;j � @Hi is homeomorphic to Sj;i � @Hj .

Algebraic & Geometric Topology, Volume 17 (2017)
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H1

H2 H3

‰1;2 ‰1;3

‰2;3

S1;2 S1;3

S2;1 S2;3 S3;2 S3;1

T1

T2 T3

Figure 1: Homeomorphisms between boundaries of handlebodies

Note that Si;j need not be connected. Given that the boundary of each handlebody is cut
up into �1–injective regions, we glue the handlebodies together by homeomorphisms
‰i;j W Si;j ! Sj;i that agree along the Ti ; see Figure 1. The result is a closed 3–
manifold M for which the image of each handlebody is embedded.

Definition 2.3 If M is a manifold constructed from three handlebodies as above such
that Ti satisfies the ni disk-condition in Hi and

(1)
X

iD1;2;3

1

ni
�
1

2
;

then M satisfies the .n1; n2; n3/ disk-condition. M is simply said to meet the disk-
condition if the specific .n1; n2; n3/ is understood from the context.

As said previously, the above definition is not very enlightening. Thus, from now on, we
view 3–manifolds that meet the disk-condition in the following way. Assume that M is
a manifold that satisfies the disk-condition and H1 , H2 and H3 are the images of the
handlebodies in M . Then M D

S
iD1;2;3Hi , and each Hi is embedded in M . Then

X D
S
iD1;2;3 @Hi cuts M up into handlebodies. X can be viewed as a 2–complex

by splitting up each of the surfaces forming X into cells. Also, T D
T
iD1;2;3Hi is a

set of essential disjoint simple closed curves in M that satisfies the ni disk-condition
in Hi where

P
iD1;2;3 1=ni �

1
2

.

It may seem confusing that we are using the same name for the conditions for the
construction of 3–manifolds and the curves in the boundary of handlebodies. However,
the curve condition is the restriction of the condition on closed 3–manifolds to each of
its component handlebodies. When we have an equality in (1), the result is the three
“minimal” cases for the disk-condition. These are: .6; 6; 6/, .4; 8; 8/ or .4; 6; 12/.
These three cases are of special interest since if a manifold satisfies the disk-condition,

Algebraic & Geometric Topology, Volume 17 (2017)



3218 James Coffey and Hyam Rubinstein

S2

H1
H2

H3

p1

p2

p3

‚

Figure 2: Base space of non-Haken Seifert fibred space with infinite �1

then it meets at least one of these three conditions. Therefore, these are the key cases
to consider. It is also worth noting that unlike Heegaard splittings, we don’t require the
three handlebodies to have the same genera.

Another way of viewing a 3–manifold M that satisfies the disk-condition is that
X D

S
@Hi is a 2–complex such that the triple curves T consist of essential curves

in X . Therefore, we obtain a manifold M that satisfies the disk condition by gluing
handlebodies to X such that each meridian disk of the handlebodies intersects T
enough times. In fact, the disk-condition is an extension of the construction of non-
Haken Seifert fibred 3–manifolds with infinite fundamental group. In the latter case,
if a Seifert fibred space is non-Haken with infinite fundamental group, then it has a
fibring with base space a 2–sphere, and it has three exceptional fibres of multiplicity pi ,
where

P
1=pi � 1 (*), as in Figure 2. For more details, see P Scott in [13]. If the

inequality (*) is made an equality, the exceptional fibres have indices .3; 3; 3/, .2; 4; 4/
or .2; 3; 6/. Another way of viewing this construction is if ‚ is the graph in S2 shown
in Figure 2, then ‚�S1 is a 2–complex X consisting of three annuli glued together
along two triple curves T . Then glue three solid tori Hi to X so that the boundaries
of the meridian disks meet each triple curve pi times. As there are two triple curves
in T , each meridian disk has 2pi intersections with T . Thus, as

P
1=.2pi /�

1
2

, all
non-Haken Seifert fibred manifolds with infinite �1 are in the class of manifolds that
meet the disk-condition.

Yet another way of viewing 3–manifolds that meet the disk-condition is if we glue two
handlebodies together to form a 3–manifold with a single incompressible boundary
component. Then glue a handlebody to this boundary component. A very short hierarchy
in a closed Haken manifold, as defined by I Aitchison and H Rubinstein in [1], can
be built from a set of handlebodies, gluing each handlebody to itself so that each of
the resulting manifolds has incompressible boundary. Then glue these incompressible
boundaries together to produce the closed manifold. So the incompressible boundaries

Algebraic & Geometric Topology, Volume 17 (2017)



3–manifolds built from injective handlebodies 3219

become incompressible surfaces in the Haken manifold. This suggests that the disk-
condition is a weaker condition than the manifold being Haken. In fact, we already know
that the class of manifolds satisfying the disk-condition contains all non-Haken Seifert
fibred manifolds with infinite �1 , but it also contains examples of other non-Haken
manifolds.

The disk-condition can be easily extended to gluings of four or more handlebodies such
that all the statements in this paper follow. Construct a closed manifold M by gluing
together r � 3 handlebodies H1; : : : ;Hr such that, for i , j , k and l different,

� Hi is embedded,
� Hi \Hj � @Hi \ @Hj is a subsurface,
� Hi \Hj \Hk is a possibly empty set of pairwise disjoint curves, and
� Hi \Hj \Hk \Hl D∅.

Then X D
S
1�i<j�r Hi \Hj is a 2–complex which cuts M up into the Hi , and

T D
S
1�i<j<k�r Hi \Hj \Hk is a union of pairwise disjoint simple closed curves.

Suppose ˛ is a component of T . Let H˛1
, H˛2

and H˛3
be the three handlebodies

around ˛ and suppose that T satisfies the n˛i
disk-condition in H˛i

. Then M satisfies
the generalised disk-condition if

P
iD1;2;3 1=n˛i

�
1
2

for each ˛ 2 T . For the purposes
of this paper, we will not consider such manifolds for r � 4 as they are all Haken. To
see this, if r � 4, then we can choose Hi and Hj such that Hi \Hj ¤∅ and there
is a component M 0 of M � .Hi [Hj / that contains at least two of the handlebodies.
Let S be the boundary surface between Hi[Hj and M 0 . Then the proof of Lemma 3.2
can be modified to show that no essential simple closed curve in S bounds a disk,
and thus S is an embedded incompressible surface. Therefore, the manifold is Haken
as claimed.

3 Conditions and examples

For later use, we state a special case of Dehn’s lemma and the loop theorem:

Lemma 3.1 Let H be a handlebody and T a collection of essential curves in @H . If
there is a singular meridian disk D of H such that D has n intersections with T , then
there exists an embedded meridian disk of H that intersects T at most n times.

Let H be a handlebody and T be a set of disjoint essential simple closed curves in @H
that satisfies the n disk-condition. A direct result of this lemma is that if ˛ is a possibly
singular loop in @H that intersects T less than n times and ˛ contracts in H , then by
Lemma 3.1 it follows that ˛ is inessential in @H .

Algebraic & Geometric Topology, Volume 17 (2017)



3220 James Coffey and Hyam Rubinstein

Lemma 3.2 Let M be a manifold that satisfies the disk-condition. If f W D!M is a
map of a disk D such that f .@D/ � int.Hi / for some i , then f can be homotoped
to g , keeping the boundary fixed, so that g.D/� int.Hi /.

Proof We can assume that f .D/ is transverse to X , where X is the union of the
boundaries of the three handlebodies making up M and f is the disk map as in the
lemma. Thus � D f �1.X/ is a set of trivalent graphs and simple closed curves �j ,
1 � j � m, in D . Note that @D \ � D ∅. An innermost component of � is a
component �j such that there is a subdisk D��D where @D���j and D�\�D�j .
An easy argument shows that if � is nonempty, then it must have at least one innermost
component. The reason is that the closure of a component of the complement of �j
which does not contain @D is a subdisk D0 . Clearly we can define a partial order on
the components of � by �r < �j if �j has a complementary component which does
not meet @D and contains �r . A smallest component is then innermost.

If �j is a simple loop, then �j D @D0 and f .D0/ � Hk for k D 1; 2 or 3. By the
disk-condition, we know that f .@D0/ must be nonessential in @Hk as f .@D0/ doesn’t
intersect T and thus f .D0/ is homotopic into @Hk . We can thus homotope f so that
f .D0/� @Hk and then push f .D0/ through to remove the component �j altogether.

If �j is a graph, then as it is innermost, there is a disk D� with @D� � �j and
�j D � \D

� . Thus any face F bounded by a subset of �j in D� is an .m; n/–gon,
where F has m vertices in its boundary and is mapped by f to a handlebody Hk
such that T satisfies the n disk-condition in Hk . We can put a PL metric on D� by
assuming that all the edges are geodesic arcs of unit length, that the internal angle at
each vertex of an .m; n/–gon F is �.1� 2=n/ and all the curvature of F is at a cone
point in int.F /. For example, if Hk satisfies the 6 disk-condition, the angle at each
corner of an .m; 6/–gon will be 2�

3
. Note that as each vertex of �j in the interior

of D� is adjacent to three faces, each of these faces is mapped to a different handlebody.
Assuming that M satisfies the .6; 6; 6/, .4; 6; 12/ or .4; 8; 8/ disk-conditions, then
the total angle around each such interior vertex is 2� . If F is an .m; n/–gon, then
�.F / D 1 and the exterior angle sum is m.2�=n/. If K .F / is the curvature of the
cone point in int.F /, then by the Gauss–Bonnet theorem,

K .F /D 2� �m.2�=n/D 2�.1�m=n/:

Thus if F is an .m; n/–gon and m<n, then K .F /> 0, and if m� n, then K .F /� 0.
Let F be the set of faces of D� and v be the vertices in @D� . For v 2 v , there are two
faces F1; F2 2 F adjacent to v . Let Fi be an .mi ; ni /–gon. Let the jump angle at v
be �v D � �

P
iD1;2 �.1� 2=ni /. By the disk-condition, ni D 4; 6; 8 or 12, and it is

Algebraic & Geometric Topology, Volume 17 (2017)



3–manifolds built from injective handlebodies 3221

� 0 � 0

mD a

mD 4

mD c

mD d mD b mD d � 2 mD b� 2

mD .aC b/� 4

Figure 3: Removing a .4; n/–gon from � 0 by homotopy

not possible to have n1 D n2 D 4. Thus �v ���6 . Then once again by Gauss–Bonnet
we know that X

F 2F

K .F /D 2� �
X
v2v

�v > 2�:

This implies that D� must always have some .m; n/–gon faces such that m< n. For
example, if the manifold satisfies the .6; 6; 6/ disk-condition, then D� would have
some .2; 6/–gons and/or some .4; 6/–gons, since m is even. If F is an .m; n/–gon
of D� such that m< n and f .F /�Hk , then by the disk-condition and Lemma 3.1,
we know that f .@F / is not essential in @Hk . Thus we can homotope f so that f .F /
lies in @Hk . We can then homotope f so f .F / is pushed off @Hk . This decreases
the total number of faces of D� , as shown in Figure 3. Thus in a finite number of
steps, �j will become a simple closed curve, and we can then homotope f to remove
the component �j entirely.

As � always contains an innermost component, we can continue this process until all
of � has been removed, and thus f .D/� int.Hi /.

This lemma yields important corollaries about 3–manifolds that meet the disk-condition.

Corollary 3.3 Let M be a 3–manifold that satisfies the disk-condition. Then, for any
1� i � 3, the induced map of �1.Hi / into �1.M/ is injective.

Remark 3.4 Note that �1.Hi / is the free group on g generators, where g > 0 is the
genus of Hi . This corollary implies that if a 3–manifold satisfies the disk-condition,
then its fundamental group is infinite.

Proof Let D be a disk and  be a simple closed curve in Hi that represents a
nontrivial element of �1.Hi /. If the element is trivial in �1.M/, then there is a map
f W D ! M such that f .@D/ D  . By Lemma 3.2, we can homotope f so that
f .D/� int.Hi /, giving us a contradiction.

Algebraic & Geometric Topology, Volume 17 (2017)



3222 James Coffey and Hyam Rubinstein

Corollary 3.5 If M is a 3–manifold that satisfies the disk-condition, it is irreducible.

Proof Let S be a 2–sphere and f W S !M be an embedding. Note that f is an
embedding and all the moves in the proof of Lemma 3.2 can be performed as isotopies.
Thus we can isotope f so that f .S/\X D∅; that is, for some i , f .S/�Hi . Then,
as handlebodies are irreducible, f .S/ must bound a 3–ball.

3.1 Test for the n disk-condition in handlebodies

It is not necessary to check every meridian disk of a handlebody H to find out if a set
of curves T in @H satisfies the n disk-condition. Let D be a set made up of a single
representative from each isotopy class of meridian disk of H .

The first test is that T must separate @H into subsurfaces that can be 2–coloured.
Therefore, all meridian disks must intersect T an even number of times. From this
point on we will assume that T is separating in @H .

Put a Riemannian metric on @H . We will assume that the loops in T are length
minimizing geodesics. Note that if T contains parallel curves, the neighbourhood
of the corresponding length minimizing geodesic can be “flattened”, so we can have
parallel length minimizing geodesics. We will also assume the boundaries of the disks
in D are length minimizing geodesics. Both of these can be done simultaneously.
From M Freedman, J Hass and Scott [2], we know that this implies that the number
of intersections between the boundary of a disk in D and T is minimal, as is the
intersection between the boundaries of any two disks in D , after possibly a small
perturbation to make these intersections transverse. For any disk D 2 D , let jDj
be the number of intersections of @D with T and for any set of meridian disks
D D fDig �D , let jDj D

P
i jDi j. From this point on, unless otherwise stated, when

discussing meridian disks, we will assume that the number of intersections between
their boundaries is minimal.

Lemma 3.6 Any two disks of D can be isotoped, leaving their boundaries fixed, so
that any curves of intersection are properly embedded arcs.

Proof This proof uses the standard innermost argument and the fact that handlebodies
are irreducible to remove all the components of intersection between two disks that are
simple closed curves.

Definition 3.7 Let H be a genus-g handlebody. We shall call D � D a system of
meridian disks if all the disks are disjoint, nonparallel and cut H up into a set of
3–balls. If @D cuts @H up into 2g � 2 pairs of pants (thrice punctured 2–spheres),
then it is a basis for H .
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bigon

bigon

bigon
�

A

Figure 4: Meridian disk cut up by arcs of intersection

If H has genus g , then a minimal system of meridian disks for H consists of g
disjoint meridian disks which cut H up into a single ball.

Definition 3.8 Let P be a punctured sphere and  be a properly embedded arc in P .
If both ends of  are in one component of @P and the arc is not isotopic into @P , then
it is called a wave.

Let H be a handlebody, T a set of essential disjoint simple closed curves in @H ,
D a system of meridian disks for H and fP1; : : : ; Plg the resulting set of punctured
spheres produced when we cut @H along @D . Also, let Ti D Pi \T . Thus Ti is a set
of properly embedded disjoint arcs in Pi .

Definition 3.9 If each Ti contains no waves, then D is said to be a waveless system
of meridian disks for H .

Definition 3.10 Let D be a waveless system of disks. If every wave in each Pi
intersects Ti at least 1

2
n times, then D is called an n–waveless system of meridian disks.

If D is an n–waveless basis, then each Ti has at least 1
2
n parallel arcs running between

each pair of boundaries in Pi .

Lemma 3.11 Let H be a handlebody, T � @H a separating set of essential simple
closed curves and D a basis for H . If D is an n–waveless basis, then T satisfies the
n disk-condition in H .

Proof From the definition of the n–waveless condition we know that T intersects each
disk in D at least 3

2
n times. If C 2D is a meridian disk not in D , then C\D 6D∅. By

Lemma 3.6, we can isotope C so that C\D is a set of disjoint properly embedded arcs.
Therefore, if we cut C along C \D the faces produced must all be disks and contain
at least two bigons, as shown in Figure 4. Therefore, the set fPi \ @C g must contain
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Pi

Ti
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Figure 5: Bigon in a pair of pants

H H

D

E ˛

Figure 6: Boundary compressing a meridian disk

at least two waves, coming from bigons. As D satisfies the n–waveless condition, any
wave must intersect T at least 1

2
n times; see Figure 5. Therefore, @C must intersect T

at least n times.

If T intersects each disk in D exactly n times, then it must be an n–waveless basis.
The reason is that the only pattern of arcs in a pair of pants, where there are the same
number n of endpoints on each boundary curve, consists of 1

2
n arcs joining each pair

of boundary loops. This gives us the following corollary.

Corollary 3.12 Let H be a handlebody, T � @H a separating set of simple closed
curves and D a basis for H . If T intersects each disk in D exactly n times, then T
satisfies the n disk-condition in H .

This test for the n disk-condition is a significant restriction. However, it is an easy
enough condition to verify when constructing examples.

Next we describe a specific type of surgery of meridian disks. Let D be a meridian
disk of H and let E be an embedded disk in H such that @E �D[@H , @E\@D is
two points, a1 and a2 in @H , ˛ DE \ @H is an arc in @H which is not homotopic
through @H into @D and D \E is an arc properly embedded in D , as shown in
Figure 6. If we then surger D along E , we produce two disks. As ˛ is an arc which
is not homotopic through @H into @D , both resulting disks are meridian disks isotopic
to disks in D . We shall call this surgery a boundary compression of a meridian disk.
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Figure 7: Disk-swap move

H

Di

E

Figure 8: Boundary compressing a disk from a system of meridian disks

Let D be a system of disks for the handlebody H . Let D� 2 D be a meridian disk
disjoint from D such that .DnD/[D� is a system of meridian disks for some D 2D .
Then if we remove D from D and replace it with D� , this is called a disk-swap move
on D as shown in Figure 7.

Lemma 3.13 For a minimal system of meridian disks D D fD1; : : : ;Dng, if we
perform a boundary compression on any Di along a disk disjoint from D n fDig, then
one of the resulting disks can be used for a disk-swap move on D removing Di .

Remark 3.14 Note that an essential wave in @H �D defines a disk-swap move on D .

Proof Let D� be the set of all meridian disks disjoint from D . Then if a disk Di 2D

is boundary compressed along a disk E disjoint from D�Di , one of the resulting disks
will be isotopic to a disk in D[D� . If we cut H along fD1; : : : ;Di�1;DiC1; : : : ;Dng
the result is a solid torus T . Then Di is a meridian disk of T . Thus a boundary
compression on Di along E will produce two disks, one of which is a meridian disk
of T and the other is boundary parallel, as shown in Figure 8.

Let D � D be a minimal system of meridian disks for the handlebody H . That is, D

cuts H up into a single ball. Let D� � D be the set of disks disjoint from D .

Lemma 3.15 T satisfies the n disk-condition if and only if there is a minimal system
of meridian disks D such that jDj � n for all disks D 2 D [D� and there are no
disk-swap moves between D and D� that reduce jDj.
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Figure 9: Boundary compression to remove a wave

Proof In the “only if” direction, T satisfying the n disk-condition in H implies that
jDj � n for any meridian disk. Given any initial D[D� such that there are disk-swap
moves to reduce jDj, we can construct a sequence of disk-swaps that reduce jDj with
each move. If T satisfies the n disk-condition, then such a sequence must terminate,
thus giving the required basis.

For the proof in the “if” direction, the first thing to note is that if there are no disk-swap
moves to reduce jDj, then every essential wave in @H �D must intersect T at least 1

2
n

times. Let D 2 D be a meridian disk such that D 62D [D� . Then � DD\D 6D∅.
We are assuming that the intersection between the boundaries of disks is minimal. Thus
by Lemma 3.6 we can assume that � is a set of pairwise disjoint properly embedded
arcs in D , as shown in Figure 4. Thus all the faces of the meridian D , when D is
cut along � , are disks. Also, there must be at least two bigons, D1 and D2 in this
meridian disk. Di \ @H �D are essential waves in @H �D and thus intersect T at
least 1

2
n times.

Next we want to use Lemma 3.15 to produce an algorithm to determine whether a
boundary pattern satisfies the n disk-condition. Here by a boundary pattern, we mean
a family of disjoint essential closed curves in the boundary of a handlebody.

Lemma 3.16 Assume we are given a handlebody H and a set T of essential curves
in @H . There is an algorithm to find, in finite time, a waveless minimal system of
meridian disks.

Proof Suppose we start with an arbitrary minimal system of meridian disks D for H .
If T has a wave when H is cut along D , then there is a subarc  � T with both
ends in some disk D 2D and int./\D D∅. Then D has a boundary compression
disk E such that the arc E \ @H D  . Let D1 and D2 be the disks produced by
compressing D along E . Then †i jDi j � jDj�2, as shown in Figure 9. Thus when a
disk-swap move is done swapping D for one of the Di , we see that jDj will decrease
by at least two. Note also that the number of waves does not go up. If there is another
wave we can always do another boundary disk compression and a disk-swap move to
reduce jDj, thus this process must terminate in a finite number of moves.
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Figure 10: Boundary of meridian disk to add to D
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Figure 11: � and � 0

Given that it is possible to find a waveless minimal system of meridian disks D , to
show that we can find a waveless basis, we proceed as follows. Suppose we have
already found a waveless system of disks and want to add new waveless disks, until we
get a basis. We can use our initial set of boundary curves of disks to cut @H to obtain
a punctured sphere S D @H �D . Suppose that there is at least one pair of boundary
curves of S such that all the arcs of � D T \ S running between them are parallel.
Then there is a simple closed curve ˇ which is essential in S , is not boundary parallel
and each curve in � intersects ˇ at most once, as shown in Figure 10. Then we can
add a disk with boundary ˇ to enlarge our system of waveless disks.

To simplify this problem, collapse each boundary component of S to a vertex and
identify parallel copies of edges of � . This produces a graph � 0 embedded in a
2–sphere S 0 such that � 0 is connected, no two edges are parallel and no edge has both
ends at one vertex. This means that if we cut S 0 along � 0 all the resulting faces will
be disks and will have degree at least 3.

Definition 3.17 A 2–cycle in a graph is a simple closed curve that is the union of
two edges.

The problem of finding a waveless basis is now to show that we can always find two
vertices of � 0 that are joined by exactly one edge. This means finding a vertex not
contained in a 2–cycle. Let c be a 2–cycle in � 0 , thus c cuts S 0 into two disks and as
� 0 does not contain any parallel edges, the interior of both disks must contain at least
one vertex of � 0 . We now want to show that there is a vertex of � 0 that is not part of a
2–cycle. Let c and c0 be two 2–cycles in � 0 . If c\c0 is empty, a single vertex or edge,
then the interior of one of the disks produced when we cut S 0 along c must be disjoint
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from c0 . If c \ c0 is two vertices, then we can construct a third 2–cycle c00 such that
when we cut S 0 along c00 , the interior of one of the disks produced is disjoint from
both c and c0 . (We obtain c00 by taking one edge from each of c; c0 .) By induction on
the number of 2–cycles in C , the set of all 2–cycles in � 0 , it follows that there must
be a 2–cycle c 2 C such that when S 0 is cut along c we get a disk D for which there
are no 2–cycles intersecting int.D/. As there are no parallel edges in � 0 , we have
� 0\ int.D/¤∅. Therefore, � 0 has to have a vertex in int.D/ that is not in a 2–cycle.
This gives us the following lemma.

Lemma 3.18 Assume we are given a handlebody H and a set T of essential curves
in @H . There is an algorithm to find, in finite time, a waveless basis.

Note that this means that once a minimal waveless system of meridian disks has been
found, most of the work has been done and that to produce a waveless basis, suitable
meridian disks are added to the system. This lemma is not expressly used in the rest
of this paper, but waveless bases are used in Section 4 in a condition for manifolds
to be atoroidal. Thus it is nice to know that given a 3–manifold that satisfies the
disk-condition, we can always find a waveless basis for each of its handlebodies.

Lemma 3.19 Let H be a handlebody and T a set of essential curves in @H . Then
there is an algorithm to determine, in finite time, if T satisfies the n disk-condition.

Proof Once again let D be a minimal system of disks and N.D/ be a regular
neighbourhood of D . Let S D @H �N.D/ and � D T \ S . Then S is a 2g–
punctured sphere, where g is the genus of H . Also, � is a set of arcs properly
embedded in S . By Lemma 3.16, we can assume that � does not contain any waves.
Therefore, � cuts S up into polygonal disks of degree at least four. As above let
D� �D be the set of meridian disks disjoint from D . For any D� 2D� , we have that
D�\S D ˛ is a simple closed curve in int.S/. Let j˛j be the number of times that ˛
intersects � . Note that j˛j D jD�j. We have therefore reduced the question of looking
for meridian disks disjoint from D to studying essential simple closed curves in S . For
D 2D , we have that N.D/\S is two boundary curves, @D1 and @D2 , of S . Then
if  is an essential simple closed curve in S that separates @D1 from @D2 , the disk
bounded by  can be used for a disk-swap move on D . Let N DmaxfjDj WD 2Dg

and L be the set of essential simple closed curves in S of length at most N . Thus as L
is a finite set of curves and as each face of S is a polygon, we can list all the elements
of L using normal curve theory, using the polygonal disk structure or a triangular
subdivision. Therefore, to test whether D satisfies Lemma 3.15 we need to check that;
all disks in D intersect T at least n times, all the curves in L have length at least n,
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and j j � jDj for  2L and D 2D such that  separates the two curves D\S in S .
If a disk-swap move is found, then we perform the move and then test the new system.
As jDj decreases by at least two with each move, the algorithm will terminate in finite
time, either when a suitable system is found, meaning T satisfies the n disk-condition
or when a meridian disk is found that intersects T less than n times.

Note that this algorithm can be continued until a system is found which has a “locally
minimal” intersection. If nDminfjDj WD2Dg, then n is the supremum disk-condition
satisfied by T . For if there is a meridian disk that intersects T less than n times that is
not in D , then the algorithm would not have terminated. An equivalent statement is that
D is an n–waveless system of disks. Clearly if there is an essential wave in @H �D

that intersects T less than 1
2
n times, then there is a disk-swap move to reduce jDj. In

the other direction, if D is an n–waveless system and there is a meridian disk D 2 D
such that jDj< n, then clearly D\D ¤∅. Thus D gives a boundary compressing
disk for some disk in D and thus a wave in @H �D , that intersects T at less than 1

2
n

points. Therefore, there is an alternative algorithm to test the disk-condition, giving
the corollary:

Corollary 3.20 If H is a handlebody and T � @H is a set of essential curves that
meet the n disk-condition, then there is an algorithm to find an n–waveless minimal
system of meridian disks.

3.2 Examples

To construct manifolds that meet the disk-condition, we use Dehn surgery or branched
covers to build a manifold M which contains a 2–complex that cuts M up into three
injective handlebodies.

3.2.1 Dehn filling examples The first class of examples of manifolds that meet the
disk-condition are constructed by performing Dehn surgery along suitable knots in S3 .
Let K � S3 be the .3; 3; 3/–pretzel knot and F the free spanning surface shown in
Figure 12. For A� S3 , let N.A/ be a regular neighbourhood of A. Let H3 DN.K/
and H1 D N.F /�H3 , as shown in Figure 13. Then H1 is a genus-2 handlebody,
and T D @.H1 \H3/ is two copies of K . Furthermore, H1 is homeomorphic to
an I–bundle over F and T to the boundary curves of the vertical boundary of the
I–bundle structure. Given the arcs ˇ1; ˇ2; ˇ3 in Figure 12,

S
i .ˇi � I / is a basis

for H1 . Each wave in the pairs of pants produced when @H1 is cut along the basis
intersects T at least twice. Therefore, the basis is 4–waveless, and by Lemma 3.11,
T satisfies the 4 disk-condition in H1 . Also, H2 D S3� .H1[H3/ is a genus-2
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Figure 12: .3; 3; 3/–pretzel knot
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Figure 13: Handlebodies in Dehn filling construction

handlebody, and the curves 1; 2; 3 in Figure 12 bound meridian disks of a basis D

for H2 . As T is two copies of K each wave in the two pairs of pants, produced by
cutting @H2 along the i , intersects T six times. Thus D is a 12–waveless basis
for H2 , and by Lemma 3.11, T satisfies the 12 disk-condition in H2 . Therefore, if
a Dehn surgery along K is performed such that the meridian disk of the solid torus
glued back in intersects T at least six times, a manifold that satisfies the .4; 6; 12/
disk-condition is produced. U Oertel showed in [10] that all but finitely many Dehn
surgeries on such pretzel knots produce non-Haken 3–manifolds.

This construction can be generalised to any knot K � S3 , that has a free spanning
surface F , such that K satisfies the 6 disk-condition in S3�F . Then any Dehn surgery
of type .p; q/ with jpj � 6 will produce a manifold meeting the disk-condition.

3.2.2 Branched cover examples The next method for constructing manifolds which
meet the disk-condition is taking cyclic branched covers over knots in S3 . We look
at two conditions on knots that are sufficient for the resulting manifolds to meet the
disk-condition.

Let Bi , for i D 1; 2 or 3, be 3–balls and i D f1i ; : : : ; 
k
i g, for k � 2, be a set of

properly unknotted pairwise disjoint embedded arcs in Bi . Unknotted means that there
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Figure 14: Bubble construction

is a set of pairwise disjoint embedded disks, Di D fD1i ; : : : ;D
k
i g, such that


j
i � @D

j
i and @D

j
i � 

j
i DD

j
i \ @B:

Therefore, if we take the p–fold cyclic branched cover of Bi , with i as the branch set,
then the result will be a genus-.p�1/.k�1/ handlebody Hi . Let ri W Hi ! Bi be the
branched covering map and ˛i � @Bi be a simple closed curve disjoint from i such
that Ti D r�1.˛i / satisfies the ni disk-condition in Hi . Note that ˛i can be thought
of as cutting @Di up into two hemispheres.

Now glue the three balls by homeomorphisms between their hemispheres, as shown in
Figure 14, so that the resulting manifold is S3 and the endpoints of the i match up.
Thus K D

S
i is a link and C D

S
@Bi is a 2–complex of three disks glued along a

triple curve ˛ , which is the image of the ˛i . Let M be the p–fold cyclic branched
cover of S3 with K as the branch set. Let r W M ! S3 be the branched covering map.
Then X D r�1.C / is a 2–complex that cuts M up into handlebodies and T D r�1.˛/
is a set of triple curves that satisfies the ni disk-condition in Hi . Thus if

P
1=ni �

1
2

,
then M satisfies the disk-condition.

If k D 2 or 3 and the intersection of ˛i with Di is minimal under isotopy in @Bi �i ,
then a sufficient condition for the lift of i to the p–fold cyclic branched cover of Bi to
meet the n disk-condition is that any essential wave in @Bi �Di intersects \@Bi�Di
at least 1

2
n times. Note that this is a slight variation of Lemma 3.11 and the proof is

essentially the same. Given the 2–complex shown in Figure 15, it can be seen that
any p–fold cyclic branched cover over an .a1; a2; a3/–pretzel knot in S3 such that
jai j � 2 will produce a manifold that satisfies the disk-condition.
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K

F

Figure 15: .3; 3; 5/–pretzel knot

Let M be a manifold that satisfies the disk-condition and can be constructed from
the gluing of three genus-2 injective handlebodies. Then a simple Euler characteristic
argument shows that all the faces of the 2–complex X must either be once punctured
tori or twice punctured disks. If all the faces are once punctured tori, then the set of
triple curves, T , is a single curve. Thus a free involution of T can be canonically
extended, up to isotopy, to an involution on each of the faces of X with three fixed
points. Using a waveless basis for each handlebody, the involution on X can be
extended to the whole of M . This means that any such manifold has a Z2 symmetry
and is the 2–fold cyclic branched cover of S3 over some knot or link. In fact, the
quotient of M by the involution is three balls glued together along hemispheres as
in Figure 14. If all the faces of X are pairs of pants, then there is no corresponding
involution of M .

The second construction involves the 3–fold cyclic branched cover of a knot that meets
essentially the same condition as in the Dehn filling construction, so that the lift of
the Seifert surface gives the 2–complex X . Let K be a knot in S3 and F be a free
Seifert surface for K . This means that S3�F is a handlebody. We construct the
3–fold cyclic branched cover over the knot K in S3 given by D Rolfsen in [11]. Let
N.K/ be a regular neighbourhood of K , ˛ � @N.K/ the meridian curve of N.K/
and N D S3�N.K/. Let zN be the 3–fold cyclic cover of N and pW zN ! N the
covering projection. That is, let G � �1.N / be the kernel of the homomorphism
mapping �1.N / onto Z3 , where the meridian of N.K/ is sent to a generator of Z3 .
Then zN is the cover corresponding to G . So zN has a single torus boundary and
z̨ D p�1.˛/ is a single curve that covers ˛ three times. Therefore, zF D p�1.F / is
a set of three properly embedded spanning surfaces in zN . As F is free, zN� zF is
three handlebodies. Let M be the 3–fold cyclic branched cover of S3 with K as the
branch set. Then M can be constructed by gluing a solid torus T to @ zN so that its
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meridian matches z̨ . Next extend each surface in zF along an annulus to the spine T
of T to produce a 2–complex X . Thus X is a 2–complex that cuts M into three
handlebodies. Thus for M to meet the disk-condition it is sufficient for K to meet the
6 disk-condition in S3�F . An obvious example of such a knot is the .3; 3; 3/ pretzel
knot in Figure 12.

The 3–fold cyclic branched cover of the .3; 3; 5/ pretzel knot K gives an example of
a manifold with two distinct splitting 2–complexes that meet the disk-condition. Let
M be the 3–fold cyclic branched cover of S3 with K as the branch set. Let X be the
2–complex produced by lifting the Seifert surface F to M and let X 0 be the 2–complex
produced by lifting the “bubble” 2–complex shown in Figure 15. X and X 0 are distinct
2–complexes meeting the disk-condition. That is there is no homeomorphism of M
that sends X to X 0 , for if there was, M would have a Z3�Z3 symmetry and thus K
would have a Z3 symmetry, which is clearly not the case. Note that if each twisted
band in K has the same number of crossings, for example the .3; 3; 3/ pretzel knot,
then the 3–fold cyclic branched cover does have a Z3 �Z3 symmetry.

4 Characteristic variety

In this section we prove the torus theorem and construct the characteristic variety
in 3–manifolds that meet the disk-condition. The first step is to look at how, in the
component handlebodies, properly embedded essential annuli disjoint from the triple
curves intersect and how meridian disks that intersect T exactly ni times intersect.
This allows us to build a picture of the characteristic variety in each of the handlebodies,
which we then use to construct the characteristic variety of the manifold.

4.1 Handlebodies, embedded annuli and meridian disks

Throughout this section, let H be a handlebody and T be a set of disjoint essential
simple closed curves in @H that meet the n disk-condition in H . We will assume that
all intersections between surfaces are transverse. Before we look at the components of
the characteristic variety in each handlebody, we need to look at some properties of
embedded essential annuli that are disjoint from T .

4.2 Essential annuli

In this section we investigate intersections between embedded essential proper annuli.

Definition 4.1 An intersection curve between two annuli is said to be vertical if it
is a properly embedded arc which is not boundary parallel in either annulus. The
intersection curve is horizontal if it is an essential simple closed curve in both annuli.
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Figure 16: Intersecting embedded annuli: horizontal (left) and vertical (right)

If there is a proper isotopy in H � T of two annuli which removes their intersections,
then the annuli will be said to have trivial intersection and if the intersection cannot
be removed, the annuli have nontrivial intersection. This means that if two embedded
annuli have nontrivial intersection they cannot be isotopically parallel. The disk-
condition restricts how properly embedded annuli can intersect.

Lemma 4.2 Let A1 and A2 be two essential properly embedded annuli in H � T .
Then there is a proper isotopy of them in H � T such that all their intersections are
either vertical or horizontal.

Remark 4.3 This means that nontrivial intersections between embedded annuli must
either be all horizontal or all vertical.

Proof This uses standard innermost curve arguments and the following observations.
Let A1 and A2 be essential properly embedded annuli in H �T and let � DA1\A2 .
First note that as the Ai are embedded they cannot have both horizontal and vertical
intersections. As H is irreducible there is an isotopy of A1 to remove components of �
that are simple closed curves and inessential in both Ai . Also, by irreducibility of H
and the disk-condition, there is an isotopy of A1 to remove components of � which are
properly embedded arcs and boundary parallel in both Ai . Let  be a component of �
which is a simple closed curve and is essential in A1 and not essential in A2 . Then the
disk in A2 bounded by  implies that A1 is not �1–injective, which is a contradiction.
Now let  be a component of � which is a properly embedded arc which has both
ends in the same boundary curve of A1 and runs between the boundary curves of A2 .
Then the disk bounded by  in A1 is a boundary compression disk for A2 and the disk
produced by compressing A2 is disjoint from T , thus implying that A2 is boundary
parallel in H � T .

Lemma 4.4 Let H be a handlebody and T a set of curves in @H that meet the n disk-
condition. Assume a properly embedded essential annulus in H�T intersects two other
properly embedded essential annuli in H � T , one vertically and the other horizontally.
Then if there is a nontrivial horizontal intersection, the vertical intersections can be
removed by an isotopy.
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A2
A2\A3
A1\A2

Figure 17: Curves of intersection in A2

Remark 4.5 This indicates there are three types of essential embedded annuli in
H � T : those that have nontrivial horizontal intersections with other annuli, those that
have nontrivial vertical intersections with other annuli and those that have no nontrivial
intersections with other annuli. Later in this section, we will see that these types of
annuli correspond to the flavours of characteristic variety in H � T .

We could follow a least-area argument using a suitable Riemannian metric on the
handlebody but use instead a more elementary direct cut-and-paste approach.

Proof Let A1 , A2 be two properly embedded essential annuli in H � T that have
nontrivial horizontal intersection. Let A3 be a third embedded essential annulus in
H � T that intersects A1 vertically. If the vertical intersection between A1 and A3 is
nonempty, then .A1 \A2/\A3 6D ∅ and thus the intersection between A2 and A3
is nonempty. By Lemma 4.2, we can isotope A3 so that its intersection with A2 is
either vertical or horizontal and its intersection with A1 is vertical. We will assume
that the vertical intersection between A1 and A3 is still nonempty. If the intersection
between A2 and A3 is horizontal, then @A3 is disjoint from @A2 , as both A2\A1 and
A2\A3 are essential simple closed curves in A2 . There is an innermost bigon on A2
bounded by one arc from each of A2 \A1 and A2 \A3 with common endpoints;
see Figure 17. This is clear because each arc of A1 \ A3 has to have at least one
corresponding vertex of .A2\A1/\ .A2\A3/. If we assume there is a single vertical
arc of A1 \A3 which contains both vertices of the bigon, then by the irreducibility
of H there is an isotopy of A2 over a ball in H bounded by the bigon and disks in A1
and A3 to remove the bigon. It is then straightforward to see that A2 can be isotoped
so for any bigon bounded by an arc of A2\A1 and A2\A3 there are two vertical arcs
of intersection of A1\A3 which contain the two vertices of this bigon; see Figure 18.
We can then isotope A3 across this bigon to convert these two vertical arcs into two
boundary parallel arcs of A1\A3 which can be removed by a further isotopy. In this
way, eventually all the vertical arcs of A1\A3 can be removed. Thus we can assume
that A3 intersects both A1 and A2 vertically.
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A3 A3

A1\A2 A1\A2

A1 \ A3 A1 \ A3

Figure 18: Curves of intersection in A3

A3

D

�1[�2
boundary 3–gons

Figure 19: Component of the pullback graph �1[�2

Let �i D A3\Ai for i 6D 3. Then �i is a set of properly embedded pairwise disjoint
spanning arcs in A3 , where each arc from �1 intersects at least one arc from �2 . The
faces produced when A3 is cut up along �1 [ �2 are all disks. As each connected
component of �1[�2 contains at least two arcs, each component will have a boundary
3–gon, D , as shown in Figure 19, such that subarcs of @A3 , �1 and �2 make up its
three edges. Then the disk D gives an isotopy of A1 that converts the corresponding
essential closed curve of A1\A2 into a boundary parallel arc. Thus there is a further
isotopy to remove the intersection altogether. This process can be repeated to remove
all the intersections of A1\A2 , giving a contradiction.

Therefore, if a proper essential annulus in H � T has a nontrivial horizontal/vertical
intersection with one annulus, then we can arrange that all its nontrivial intersections
with all other essential annuli must be horizontal/vertical.

4.3 Meridian disks

Next we want to examine intersecting meridian disks. In particular, if T satisfies the n
disk-condition in H , then there may be meridian disks that intersect T exactly n times.
These disks are important when we are considering the disk flavour of characteristic
variety.

Definition 4.6 If F is an n–gon and  is a properly embedded arc in F such that
if F is cut along  , the result is two disks that have 1

2
n intersections with T , then 

is said to be a bisecting arc of F .
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D1
D2

D0

T

Figure 20: Two trivially intersecting 6–gons

Lemma 4.7 Let H be a handlebody and T a set of curves in @H that satisfies the n
disk-condition. If D1 and D2 are meridian disks that have n intersections with T , then
there is an isotopy of the disks such that � DD1\D2 is a set of properly embedded
disjoint bisecting arcs in both Di or the intersection � can be removed.

Proof This proof uses the usual innermost curve arguments and the following ob-
servations, to construct an isotopy to remove arcs of � that are not bisecting in both
disks. By Lemma 3.6, we can assume that all components of � are properly embedded
arcs. If such an arc is not bisecting in D1 , it is easy to see there is an arc  of �
which bounds an innermost subdisk D in D1 which intersects T less than 1

2
n times.

Then one of the disks D0 produced by surgering D2 along D must intersect T in less
than n points, as shown in Figure 20, and thus is boundary parallel in H . So there is
an isotopy of D1 to remove  .

Lemma 4.8 Let H be a handlebody, T a set of curves in @H that meet the n disk-
condition and D1 , D2 and D3 a set of meridian disks that all have n intersections
with T . Then there is an isotopy of the Di such that

T
Di D∅.

Proof By the previous lemma, we can isotope D1 and D2 so that their intersection is
a set of parallel arcs in both disks. Assume that D1 and D2 have been isotoped so that
their intersection has the least possible number of components and that D1\D2 6D∅.
Let A be a regular neighbourhood of D1[D2 and B be the frontier of A in H . As
no annulus component of B intersects T , B consists of meridian disks that intersect T
exactly n times and essential annuli whose boundary compressing disks intersect T at
least 1

2
n times.

Let D be a disk and f W D!H be an embedding such that f .D/DD3 . Then f can
be isotoped so that � D f �1.B/ is a set of properly embedded pairwise disjoint curves.
As usual there is an isotopy of f to remove components of � that are simple closed
curves. If D3 intersects an annulus of B , then from above, either the intersections are
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parallel arcs or there is an isotopy of f to remove them. Similarly from Lemma 4.7
if D3 intersects a disk of B , then either the intersections are bisecting parallel arcs
or there is an isotopy of f to remove them. Therefore, there is an isotopy of f such
that � is a set of parallel bisecting arcs. Thus f �1.A/ is a set of 4–gons. Let D0 be a
4–gon in f �1.A/. Then using the same arguments as in the final step of the proof of
Lemma 4.4, there is an isotopy of f such that D0\f �1.D2[D1/ is a set of parallel
bisecting arcs. Moreover f .D0/\D1 \D2 D ∅. This process can be repeated for
each component of f �1.A/ and thus D1\D2\D3 D∅.

4.4 Flavours of characteristic variety in the handlebodies

4.4.1 I–bundle regions Let H be a handlebody and T a set of essential simple
closed curves in @H , that meet the n disk-condition in H . Let N be a maximal, up to
isotopy, I–bundle in H disjoint from T , with its horizontal boundaries embedded in
@H �T , each component of N has nontrivial fundamental group and the induced map
on the fundamental group is injective. Thus N is an I–bundle with a base space which
is an embedded surface in H . Let S be a component of this embedded surface. If S
is orientable, then the corresponding component of N has a product structure and its
horizontal surface consists of two copies of S embedded in @H�T . Alternatively, if S
is nonorientable, then the corresponding component of N has a horizontal boundary
which is a double cover of S embedded in @H �T . In both cases the vertical boundary
is a set of essential properly embedded annuli. From this point on these surfaces will be
called frontier annuli. Also note that none of the base surfaces can be disks. This means
that N is a set of embedded handlebodies in H with genus � 1. N is not unique,
for if H contains two embedded annuli that intersect horizontally, in a nontrivial way,
then N can contain the regular neighbourhood of one or the other annulus but not both.

Definition 4.9 Let the I–bundle region, NI , be the set of all components Ni from N

which have base spaces that are not annuli or Möbius bands.

Later the I–bundle region is shown to be unique up to isotopy.

Lemma 4.10 If A is a properly embedded essential annulus in H � T that has a
nontrivial vertical intersection with another properly embedded essential annulus, then
it is isotopic into NI .

Proof Let the map fi W A!H �T , for i D 1 or 2, be an essential proper embedding
of an annulus A such that f1.A/ D A1 and f2.A/ D A2 have nontrivial vertical
intersections. Let B be the set of frontier annuli of NI . If A1 \NI ¤ ∅, then by
Lemmas 4.2 and 4.4 we know that there is an isotopy of f1 such that the intersection
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between A1 and the annuli in B is vertical. Thus the pullback �1 D f �11 .B/ is a set
of properly embedded nonboundary parallel arcs in A and, as B is separating in H ,
there must be an even number of them. Thus �1 cuts A up into quadrilaterals and every
alternate one is mapped by f1 into .H �NI /. Let A0 �A be a quadrilateral such that
f .A0/� .H �NI /. Also, let N.f1.A0// be the regular neighbourhood of f1.A0/ in
.H �NI / disjoint from T . Note that N.f1.A0// can be fibred as an I–bundle over
a quadrilateral. Then there must be an isotopy of f1 to remove the curves �1 \A0

otherwise N.f1.A0//[NI would be larger than NI , contradicting maximality. We
can repeat this process until �1 D∅, thus A1\B D∅. This process can be repeated
for A2 so that it is disjoint from B . If A1 \A2 is disjoint from NI and the annuli
have been isotoped so that their intersection is a minimal set of essential arcs, then
N.A1[A2/ can be fibred as an I–bundle and added to NI , contradicting maximality.
Thus A1[A2 �NI .

Note that in distinction to the above lemma, if an annulus A meets another annulus
horizontally, it may not be possible to isotope A into NI .

Now let MH be a regular finite-sheeted cover of H and MT be the lift of T . Thus MH
also is a handlebody with MT satisfying the n disk-condition. Now let NI � MH be the
I–bundle region, as described above. Also, let G be the group of covering translations
of MH , so MH=G DH . Let Ni , for 1� i � n, be the connected subhandlebodies of NI
and Si be the base-surface corresponding to Ni .

Lemma 4.11 If Ni is a component of NI , then g.Ni / is isotopic to a component
of NI for any g 2G .

Proof Let A be the set of frontier annuli of g.Ni / and B the set of frontier annuli
of NI . If g.Ni / and NI have a nontrivial intersection, then by Lemma 4.2 there is
an isotopy of g such that if any annuli in A and any annuli in B intersect, then the
intersection curves are all either vertical or horizontal. Now isotope g to remove all
trivial intersections between annuli in A and B .

Let B 2B be an annulus such that it intersects at least one annulus in A horizontally.
By Lemma 4.4, it can only intersect the other annuli in A horizontally. Thus B\g.Ni /
is a set of annuli properly embedded in g.Ni /. Let B 0 � B be one such annulus.

Isotope B 0 so that it is transverse to the I–bundle structure. As intersections of B with
annuli in A are minimal, B 0 either projects one-to-one onto the base space or double
covers it. This depends on whether the two boundary curves of B 0 are in different
annuli in A or in the same annulus, respectively. Therefore, the base space of g.Ni /
and thus Ni is either an annulus or a Möbius band, giving us a contradiction. This
means that all horizontal intersections between annuli in A and B can be removed.
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Therefore, all intersections between annuli in A and B that are nontrivial are vertical.
But by Lemma 4.10 we can isotope all such annuli in A into NI . Therefore, there is
an isotopy of g such that g.Ni /\NI ¤∅ and A\B D∅. Thus we know that we
can isotope g so that g.Ni / lies inside NI , otherwise g.Ni /[NI would be a larger
I–bundle than NI , contradicting maximality.

As g.Ni / is connected we know that it lies in a single component, Nk , of NI . If
g.Ni / is not isotopic to Nk , then g�1.Nk �g.Ni //[NI is a larger I–bundle region,
contradicting maximality.

From the previous lemma we get the following corollary.

Corollary 4.12 The regions NI and g.NI / are isotopic for any g 2G .

This corollary can be used to show that NI can be isotoped so that it is preserved by G .
Put a Riemannian metric on H , lift it to MH and then isotope NI so that the frontier
annuli of the NI are least area. Let g 2G and A be a frontier annulus of NI . By the
arguments used by Freedman, Hass and Scott in [3], g.A/ is either a frontier annulus
of NI or disjoint from all frontier annuli of NI . Let N 0I and N 00I be components
of NI such that g.N 0I / is isotopic to N 00I . If N 0I 6D N

00
I , then replace N 00I by g.N 0I /.

Now assume that N 0I DN
00
I . We need to look at what happens to the frontier annuli

under g . Let A and A0 be frontier annuli of N 0I such that g.A/ is isotopic to A0 .
If A 6D A0 , then replace A0 by g.A/. Now assume that AD A0 and g.A/ 6D A. As
each element of G is a periodic homeomorphism, g.N 0I / 6� int.N 0I /. Then by this
observation and maximality of NI , either g.N 0I /\N

0
I is empty or it is isotopic to N 0I .

Another way of saying this is that g.N 0I /�N
0
I and N 0I �g.N

0
I / are sets of thickened

annuli. We can then assume that g.A/ is disjoint from N 0I . Let Ui , for i 2N , be the
thickened annulus component of gi .N 0I /�g

i�1.N 0I /, where g0 is the identity. As MH
is a finite-sheeted normal cover, there is some m 2 N such that gm is the identity.
Therefore, U1 [ � � � [ Um is an annulus bundle over S1 properly embedded in MH ,
which cannot happen, thus g.A/D A. This gives us the following corollary.

Corollary 4.13 There is an isotopy of NI � MH such that it is preserved by all the
covering transformations.

Lemma 4.10 implies that if H contains two embedded annuli that have nontrivial
vertical intersection, then NI is not empty. Note this is a sufficient condition not a
necessary one. For example, if NI is an I–bundle over a twice punctured disk, then
any two embedded annuli contained in NI are parallel to frontier annuli and thus their
intersections can be removed isotopically.
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Figure 21: Extending boundary compression disk through an I–bundle component

Lemma 4.14 NI is unique up to ambient isotopy of H .

We will not give the proof for this lemma as the method is the same as Lemma 4.11,
the idea being that if we assume that we have two I–bundle regions NI and N 0I that
are not isotopic, then we get a contradiction to their maximality. Another property
of NI we need later is this lemma:

Lemma 4.15 Let H be a handlebody, T a set of pairwise disjoint essential simple
closed curves in @H that meet the n disk-condition and NI the I–bundle region in H .
Then if A is a frontier annulus of NI and D is a boundary compression disk for A,
then jDj � 1

2
n.

Proof Assume that NI has a frontier annulus A with a boundary compressing disk D
such that jDj < 1

2
n. Also, let Ni be the component of NI that has A as a frontier

annulus. If we compress A along D to get a disk E , then jEj<n. Therefore, A must
be boundary parallel, meaning there is a proper isotopy of A into @H . Note that this
does not mean there is a proper isotopy of A into @H � T . First assume that Ni has
more than one frontier annulus. Let A0 be another frontier annulus of Ni . As Ni is an
I–bundle there is a 4–gon B , properly embedded in Ni , such that B \ADD \A
and A0\B is a properly embedded arc in A0 that is not boundary parallel, as shown
in Figure 21, for suitable choice of D . Let D0 DD[B . Then jD0j< 1

2
n, and if we

compress A0 along D0 , we get a disk E 0 with jE 0j < n. Therefore, A0 is boundary
parallel through a region containing A. So A and A0 must be parallel and Ni is the
regular neighbourhood of a properly embedded annulus and thus can not be contained
in NI . If Ni has a single frontier annulus A, then similarly by the I–bundle structure,
there is a properly embedded 4–gon B � NI such that it is not boundary parallel
and A\ B is two arcs that are not parallel into @A. Then there are two boundary
compression disks for A that can be glued to B along A\B . This produces a meridian
disk that intersects T less than n times, contradicting the disk-condition.
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Figure 22: An example of an Aq

4.4.2 Tree regions Now let N D fNig be a maximal set, up to isotopy, of fibred
solid tori embedded in H � T such that Ni \Nj D ∅ for i ¤ j and @H \Ni is a
nonempty set of annuli that are �1–injective in both @Ni and @H �T , and the frontier
of Ni in H is a nonempty set of annuli essential in H � T for each i . Then N is a
maximal tree region of H �T . The reason for this name will become clearer when we
describe it further. Note that by Haken–Kneser finiteness arguments, we can see that
N has a finite number of components.

Definition 4.16 Let a simple q–tree be a tree that is the cone on q� 2 points. A vertex
of valency one is called an end vertex.

Let Q be a simple q–tree. Embed Q in R2 � R3 . Let PQ be a 2q polygon
embedded in R2 such that every alternate edge intersects Q at an end vertex. Colour
the edges of PQ containing an end vertex of Q thick and all the others thin. Then let
Aq D P

Q � Œ0; 1� and at D PQ � ftg, for t D 0 or 1. Let p̂ be a homeomorphism
between a0 and a1 that twists by 2�=p , such that it maps thick edges to thick edges
and thin to thin. This means that p D q=n for n 2 Z. Let A.p;q/ be Aq with the
faces a0 and a1 glued according to p̂ . Therefore, A.p;q/ is a solid torus fibred by S1

with an exceptional fibre of order .p; q/. For each Ni 2N , there is a unique .pi ; qi /
such that there is a fibre-preserving homeomorphism from A.pi ;qi / to Ni where the
fibring agrees with the boundary curves of the frontier annuli.

Let A1 and A2 be two properly embedded essential annuli in H � T that intersect
horizontally and N.A1[A2/ be a regular neighbourhood disjoint from T . Then the
frontier of N.A1 [A2/ in H is a set of properly embedded annuli and tori. Let T
be such a torus. The induced map on �1.T / has nontrivial image and �1.H/ does
not contain any free abelian subgroups of rank 2. Therefore, T bounds a solid torus
whose intersection with N.A1[A2/ is T . Glue solid tori to each torus in the frontier
of N.A1 [A2/ in H to produce a submanifold P . Now the frontier of P in H is
a set of properly embedded essential annuli and P is a solid torus. Note there is a
homeomorphism from P to some A.p;q/ that sends the boundary curves of P \ @H
to fibres of A.p;q/ .

Algebraic & Geometric Topology, Volume 17 (2017)



3–manifolds built from injective handlebodies 3243

Definition 4.17 Let the tree region NT be the union of all components Ni 2N such
that pi > 2.

As with the I–bundle region, we are removing the components of N that are home-
omorphic to A.1;2/ or A.2;2/ , that is, regular neighbourhoods of properly embedded
annuli or Möbius bands, to get NT . This is because if there are two annuli in H � T
that have a nontrivial vertical intersection, then a maximal tree region can contain the
regular neighbourhood of only one of the annuli. Therefore, H �T may have a number
of maximal tree regions. Later it is shown that the tree region is unique up to isotopy.

Lemma 4.18 If A is a properly embedded annulus in H � T that has at least one
nontrivial horizontal intersection with another properly embedded annulus in H � T ,
then there is an isotopy of A into NT .

This proof is similar to Lemma 4.10.

Proof Let the map fi W A! H , for i D 1 or 2, be an essential proper embedding
of an annulus A such that fi .A/D Ai is disjoint from T for each i and A1 and A2
have nontrivial horizontal intersections. Let B be the set of frontier annuli of NT . If
A1\NT ¤∅, then by Lemmas 4.2 and 4.4, we know that there is an isotopy of f1
such that the intersection curves between A1 and the annuli in B are horizontal. Thus
the pullback �1 D f �11 .B/ is a set of essential simple closed curves in A. Therefore,
�1 cuts A up into essential annuli. Let A0 � A be one of these annuli such that
f1.A

0/�H �NT and let N.f1.A0// be a regular neighbourhood of f .A0/ disjoint
from T . Then N.f1.A0// can be fibred as an A.1;2/ fibred torus. Thus there must be
an isotopy of f1 to remove the curves A0\�1 (there may be just one if @A\@A0¤∅)
otherwise NT [N.f1.A0// would be larger than NT , contradicting maximality. So
by repeating this process, there is an isotopy of f1 such that A1\B D∅. This same
process produces an isotopy of f2 so that A2\BD∅. If A1[A2 is disjoint from NT ,
then as above, the torus boundaries of N.A1[A2/ can be filled in with solid tori so
the resulting manifold P is a solid torus. Then NT [P will be a larger tree region
contradicting maximality, thus A1[A2 �NT .

Once again let MH be a finite-sheeted normal cover of H , MT the lift of T and G the
group of covering translations of MH such that MH=G DH . Also, let NT be the tree
region in MH . We then get the following lemma.

Lemma 4.19 Let Ni be a component of NT . For any g 2G , we have that g.Ni / is
isotopic to an element of NT .

Proof Assume that Ni is a component of NT and, for some g 2 G , that g.Ni / is
not isotopic to an element of NT . Let A be the set of frontier annuli of g.Ni / and B
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be the set of frontier annuli of NT . By Lemma 4.2, we know that there is an isotopy
of g such that any annuli from A and B intersect vertically or horizontally. Also, all
trivial intersections are then removed.

Let B be an annulus in B that intersects some annuli from A vertically. Then
B\g.Ni / is a set of properly embedded squares in g.Ni /. Let B 0 be one such square.
As the number of intersections between B and A has been minimized @B 0 is essential
in @g.Ni /. Therefore, g.Ni /, and thus Ni , is the regular neighbourhood of an annulus
or Möbius band. This implies that pi D 2, contradicting that Ni is a component of NT .
Then any intersections between annuli from A and B must be nontrivial and horizontal.
By Lemma 4.18, we can isotope all such annuli from A into NT .

We have now isotoped g so that A\B D ∅. We can thus isotope g so that g.Ni /
lies inside a single component of NT , otherwise g.Ni /[NT would be a larger tree
region, contradicting maximality of NT . Let g.Ni / lie in Nk 2NT . If g.Ni / is not
isotopic to Nk , then g�1.Nk �g.Ni //[NT is a larger tree region.

From the previous lemma we get the following corollary.

Corollary 4.20 For any g 2G , we have that g.NT / is isotopic to NT .

From the above corollary and using the same least area arguments as we did with
I–bundle regions we get the following corollary.

Corollary 4.21 There is an isotopy of NT in MH that is preserved by the covering
transformations.

This means that NT will project down to a nontrivial tree region in H . If H contains
two embedded annuli that have a nontrivial horizontal intersection, then H has a
nonempty tree region. Note this is a sufficient condition but not a necessary one.

Lemma 4.22 NT is unique up to ambient isotopy of H .

We will not give the proof for this lemma as the argument is the same as Lemma 4.11.
The idea is that if we assume that there are two tree regions NT and N 0T that are not
isotopic, then we get a contradiction to their maximality.

4.4.3 Annulus regions It is clear from the definitions of NI and NT that:

Lemma 4.23 If H is a handlebody and T is a set of curves in @H that meet the n
disk-condition, then there is an isotopy of NI and NT such that NI \NT D∅.
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Let AI be the set of I–bundles in a maximal I–bundle region but not in NI . That
is, they have base spaces that are either annuli or Möbius bands. Let AT be the set of
fibred solid tori that are in a maximal tree region but not in NT . That is, they are all the
components of the maximal tree region whose associated trees have two end vertices.
Let NA be those components of AT which are ambient isotopic to components of AI .
Components of NA are regular neighbourhoods of properly embedded annuli or Möbius
bands and they can be fibred by intervals or circles. The components of AI �NA
(AT �NA ) are the components of the maximal I–bundle (maximal tree region) that
cause the maximal I–bundle (maximal tree region) to be not unique and, in fact, the
components of AI �NA (AT �NA ) can be isotoped into NT (NI ).

Clearly by the definition, NA can be isotoped to be disjoint from NI and NT . Therefore,
it is contained in the set of handlebodies H 0 D H � .NI [NT /. Any annulus that
can be made to intersect another nonparallel annulus either vertically or horizontally
is isotopic into NI [NT . Thus any nonparallel annuli in H 0 cannot be isotoped to
intersect either vertically or horizontally. Therefore, by the maximality of the maximal
I–bundle region and the maximal tree region we know that NA is isotopic to the regular
neighbourhood of the maximal set of disjoint and nonparallel properly embedded annuli
in H 0 . Thus we get the following lemma.

Lemma 4.24 NA is unique up to ambient isotopy of H and can be isotoped to be
disjoint from NI [NT .

Definition 4.25 If H is a handlebody and T is a set of essential disjoint simple curves
in its boundary that satisfies the n disk-condition, then for the pair fH; T g, let the maxi-
mal annulus region be N DNI[NT[NA , where NI , NT and NA are as defined above.

4.4.4 Disk regions In this section, we want to define the building blocks for the
flavour of characteristic variety that intersects the triple curves. In each handlebody Hi ,
these blocks look like the regular neighbourhood of meridian disks that intersect the
triple curves exactly ni times, where

P
1=ni D

1
2

. Hence we will refer to them as
disk regions. Let H be a handlebody and T a set of essential curves in its boundary
that meet the n disk-condition in H . Let D be a set made up of a single representative
from each isotopy class of meridian disks that intersect T exactly n times. Let S be
the resulting punctured sphere when @H is cut along a waveless basis for T . Then
� D T \S is a set of pairwise disjoint properly embedded arcs that cut S into n–gons.
Therefore, by normal curve theory up to isotopy there is a finite number of simple
closed curves in the interior of S that have n intersections with � and waves that
have 1

2
n intersections with � . Thus D contains a finite number of disks.
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Figure 23: A component of the disk region

Assume that the disks in D have been isotoped so that the intersection between any pair
of disks is a set of bisecting arcs and the intersection between any three disks is empty.
Let N.D/ be the regular neighbourhood of D . Then the frontier of N.D/ in H is a set
of properly embedded disks that have n intersections with T and annuli that are disjoint
from T . For any of the boundary components that are either nonmeridian disks or
nonessential annuli, add the appropriate 3–cell to N.D/. The resulting submanifold P
is the disk region.

By Lemma 4.8, we can isotope the disks in D so that the intersection between any
pair of disks is a set of parallel bisecting arcs and the intersection between any three is
empty. Therefore, for any disk Di 2D , the intersection �i DDi \ .DnDi / is a set
of parallel bisecting arcs.

Then there are two innermost bisecting arcs in Di . Therefore, when Di is cut along the
innermost bisecting arcs the result is three disks: two bigons and a third quadrilateral.
Let D0i be the third disk. Let D0 be the set of disks produced when this is done to all
disks in D . Then

S
D0i is an I–bundle over a graph. This fibring can then be extended

to the “core” of each component of P . The unfibred parts of each component are the
regular neighbourhoods of disks that have 1

2
n intersections with T and which boundary

compress the frontier annuli of the core. We will call these fingers; see Figure 23.
Note that each component has at least one finger. Unlike the I–bundle regions defined
earlier, the core may have a disk as its base space. The fibring of each component is
unique, up to isotopy, except if the component is the regular neighbourhood of a single
meridian disk. In the latter case we do not fibre the core until later.

Lemma 4.26 All possibly singular meridian disks which have n intersections with T
can be homotoped into P .

Algebraic & Geometric Topology, Volume 17 (2017)



3–manifolds built from injective handlebodies 3247

Proof Let D be a disk and f W D!H be a possibly singular map such that ADf .D/
is a meridian disk, ie has essential boundary. Let P be the maximal disk region, as
defined above and f �1.T / be n vertices in @D . Then B , the frontier of P in H , is
a set of meridian disks and annuli essential in H � T . Then � D f �1.B/ is a set of
properly embedded arcs and simple closed curves in D . As H is irreducible there
is a homotopy of f to remove all simple closed curves from � . Thus � is a set of
properly embedded disjoint simple arcs in D .

By maximality of P , any boundary compressing disks of a component of B , as
described in Section 3.1, must intersect T more than 1

2
n times. There must be an

innermost disk D1 � D such that f .D1/ intersects T at most 1
2
n times. Thus by

Dehn’s lemma and the loop theorem — see Lemma 3.1 — we can remove any arc
from � which is in the image of @D1 . We can repeat this process until A is disjoint
from B . Thus either A is contained in P or disjoint from P . If it is disjoint, then
there must be a homotopy of f such that A� P . Otherwise, using Dehn’s lemma and
the loop theorem, we get a contradiction to the maximality of P .

4.5 Handlebodies and singular annuli

In Jaco and Shalen’s [7] and K Johannson’s [8] proofs of the torus theorem, an essential
step is the annulus theorem. In fact, the torus theorem is a consequence of the annulus
theorem. Similarly, a lemma that is a slight variation of the annulus theorem is required
here. Our annulus theorem is simpler as it is restricted to handlebodies. Namely,
suppose a handlebody H has a set of curves in its boundary, T , that satisfies the n
disk-condition. Assume also there is a proper essential (possibly singular) map f
of an annulus into H � T . Then f is properly homotopic to an essential (possibly
singular) map of an annulus into the maximal annulus region. There are two main steps
to prove this lemma. The first is to show that if there is a proper singular essential map
of an annulus into H � T , then there is a similar embedded one. Next we show any
proper essential embedding of an annulus in H � T is properly isotopic into one of its
maximal annulus regions.

Lemma 4.27 Let H be a handlebody and T a set of simple closed curves in @H
that meet the n disk-condition. Let A be an annulus and f W A! H � T a proper
immersion. If f is not properly homotopic into @H � T and the curves f .@A/ are
essential in @H , then there is a properly embedded essential annulus in @H � T .

Remark 4.28 The proof for this lemma uses a simplified version of the covering space
argument used by Freedman, Hass and Scott [3]. The argument is easier, since we are
operating in a handlebody.
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Proof The first step is to find another f such that all the lifts of f .A/ in the universal
cover are embedded. We then use subgroup separability to produce a finite-sheeted
cover of H which contains a lift of f .A/ that is embedded and does not intersect any
of its translates. From this cover we find a regular cover, in which all the lifts of f .A/
are embedded. This then implies that the finite regular cover has a nontrivial annulus
region and thus so does the original handlebody.

We will assume that the map f is transverse at all times. Let G D �1.H/, f� be the
induced map on �1.A/ and f�.�1.A//D B �G . Therefore, B is a cyclic subgroup
generated by some z 2G .

Let xH be the cover of H with the projection xpW xH !H such that xp�.�1. xH//D B .
This means there is a lift, xf of f , which is an immersed annulus such that �1. xH/Š
xf��1.A/. Let xT D xp�1.T /. As f is not properly homotopic into @H � T , we have

that xf is not properly homotopic into @ xH � xT .

We now want to find an embedded annulus in xH which is �1–injective and not properly
homotopic into @ xH � xT . Let N. xf .A// be a regular neighbourhood of xf .A/ such that
N. xf .A//\ xT D∅. Then the frontier of N. xf .A// in xH is a set of embedded surfaces.
As �1. xA/Š �1. xH/, we can find two of these embedded surfaces in xH both of which
have (at least) two essential boundary curves in xH � xT . (Note that xH is a missing
boundary solid torus, ie has interior which is an open solid torus and compactifies to a
solid torus.) Let one of these surfaces be xA0 . The boundary curves of xf .A/ are not
homotopic in @ xH � xT , that is, xf is not homotopic into @ xH � xT ; thus the two essential
boundary curves of xA0 can be chosen to be not homotopic in @ xH � xT .

By Dehn’s lemma and the loop theorem, since �1. xH/ is infinite cyclic, we know that
any handles in xA0 can be compressed until xA0 is an essential embedded annulus in
x@H � xT . Now let A0 D xp. xA0/. We can assume that xp restricted to xA0 is transverse.

Let xAi , for 1 � i � n, be the lifts of A0 in xH that intersect xA0 and x̨i D xA0 \ xAi .
Thus each x̨i is a set of singular curves in xA0 .

Let zH be the universal cover of H and therefore also the universal cover of xH with
the projections pW zH!H and zpW zH! xH , such that pD xp zp . As H is a handlebody,
zH is a missing boundary ball, that is, a ball with a compact set removed from its

boundary. As A0 is �1–injective in H , each pullback to zH is a universal cover of A0 ,
an infinite strip. As xA0 is embedded in xH , each pullback to zH is embedded. Then
by applying the covering transformation group to zH we know that all the lifts of A0

in zH are infinite strips.

Let zA be a lift of xA0 in zH . Then any lift of A0 in zH , that intersects zA must be a lift
of one of the xAi in xH . Let zAi be some lift of xAi that intersects zA and z̨i D zA\ zAi .
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Note this means that zp.z̨i /D x̨i . Also, let zG be the group of deck transformations
on zH and zB � zG the stabilizer of zA. Therefore, zG ŠG and zB is the cyclic subgroup
of translations along zA. Also, let gi 2 zG where gi . zA/D zAi . This means that gi … zB
and that zBi D gi zB is the set of transformations taking zA to zAi . So for all b 2 zB ,
zp.b.z̨i //D x̨i .

By Hall [4], we know there is a finite index subgroup zLi � zG such that zB � zLi but
gi … zLi . This property is called subgroup separability. For all b 2 zB , we have that
bgi zA is a translate that intersects zA and bgi … zLi . This means for any l 2 zLi that
l. zA/¤ b. zAi /D bgi . zA/ for all b 2 zB . In other words none of the deck transformations
in zLi map zA to the lift of xAi that intersects zA. Let yHi D zH=zLi be the cover of H
with the fundamental group corresponding to zLi such that ypi W zH ! yHi . Therefore,
ypi . zA/ is an embedded annulus in yHi . Also, ypi .b zAi /\ ypi . zA/ D ∅ for any b 2 B ,
and as zLi has finite index in G , we have that zHi is a finite-sheeted cover of H .

Therefore, L D zL1 \ � � � \ zLn is a finite index subgroup of zG such that for l 2 L,
either zAD l. zA/ or zA\ l. zA/D ∅. Let zH=LD yH be the finite-sheeted cover of H
with the projection ypW zH ! yH . Then yp. zA/D yA is an embedded annulus in yH that
does not intersect any other lifts of A0 .

As L has finite index, it must have a finite number of right cosets, fLx1; : : : ; Lxng,
for x1; : : : ; xn 2G . Assume that Lx1 D L. Thus if Sn is the group of permutations
of n elements, there is a map �W G ! Sn , where �.g/, for g 2 G , is the element
of Sn that sends fLxig to fLxigg. Both �.g1/�.g2/ and �.g1g2/ send fLxig to
fLxig1g2g, so � is a homomorphism. Let K �G be the kernel of � . If g 2K , then
Lxi DLxigDLgxi , thus K �L. As Sn has a finite number of elements, the kernel
K is a finite index normal subgroup. Therefore, MH D zH=K is a finite-sheeted normal
cover of H . Let MpW MH !H be the covering projection. Then MH is a handlebody and
MT D Mp�1.T / is a set of curves in @ MH that meet the n disk-condition in MH . Also, MH is
a cover of yH ; thus all the lifts of A0 are properly embedded essential annuli in @ MH � MT .

Then by Freedman, Hass and Scott [3], if we put a Riemannian metric on H and
properly homotope A0 to be of least area, then all trivial self intersections between
lifts of A0 will be removed, and thus by Lemmas 4.2 and 4.4 all the lifts of A0 in MH
are either pairwise disjoint or intersect each other vertically or horizontally. If the
lifts of A0 are pairwise disjoint, A0 must be a properly embedded essential annulus in
@H �T . Otherwise, by Lemmas 4.10 and 4.18, we know that MH must have a nontrivial
region NI [NT . By Lemmas 4.11 and 4.19, we know that NI [NT can be isotoped
so that its frontier annuli are preserved under K and thus project to properly embedded
essential annuli in @H � T .
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Lemma 4.29 If H is a handlebody, T is a set of triple curves in its boundary that
satisfies the n disk-condition and f W A!H is a properly embedded annulus, then f
is properly isotopic into the maximal annulus region N .

Proof Let f W A ! H be a properly embedded annulus that cannot be properly
isotoped into N . By Lemmas 4.18 and 4.10, we know that if f .A/ has a nontrivial
intersection with another embedded annulus, then f can be isotoped into NI or NT .
Therefore, we can isotope f so that its image is disjoint from all the frontier annuli
of N . This contradicts maximality of N , thus we must be able to properly isotope
f .A/ into N .

Lemma 4.30 Let H be a handlebody, T a set of curves in its boundary that satisfies
the n disk-condition and N the annulus region in H . If A is an annulus and f W A!
H � T is a proper singular essential map, then there is a proper homotopy of f such
that f .A/ is in N .

Proof To save on notation, we will refer to f .A/ by A as well. Let B be the set of
frontier annuli of N and T 0 D T [ @B . Then H 0 DH �N is a set of handlebodies
such that for any component H 0j , the set of essential simple closed curves T 0 \H 0j
satisfies the 4 disk-condition in H 0j . Also, there is a proper homotopy of f such that
f �1.N / is either a set of 4–gons (case 1) or essential embedded annuli (case 2).

Case 1 All the components of N that A intersects are either in NI or NA . Assume
the singular 4–gons H 0\A are essential in H 0 . Then by Dehn’s lemma and the loop
theorem, we know that there is an embedded essential 4–gon with two boundary arcs
in the frontier annuli of N . This contradicts maximality of N .

Case 2 Here, all the components of N that A intersects are either in NT or NA .
Then by Lemma 4.27 we know that H 0 must contain an essential properly embedded
annulus, contradicting maximality of N .

Thus there must be a proper homotopy of f such that A is disjoint from B . If A is
not contained in N , then once again by Lemma 4.27, H 0 contains essential embedded
annuli, contradicting maximality of N .

4.6 Torus theorem

Let M be a 3–manifold that satisfies the .n1; n2; n3/ disk-condition. That is, Hi �M
is an embedded handlebody for 1 � i � 3 such that

S
Hi DM ,

S
@Hi D X is a

2–complex that cuts M up into the Hi , and
T
Hi D T is a set of essential simple

closed curves that meet the ni disk-condition in Hi . We will assume that .n1; n2; n3/
is either .6; 6; 6/, .4; 6; 12/ or .4; 8; 8/, for if the gluing of the three handlebodies
meets some disk-condition, it meets one of these three.
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Lemma 4.31 Let M be a closed 3–manifold that satisfies the disk-condition as de-
scribed above. Suppose T is a torus and f W T !M is an essential possibly singular
map. Then there is a homotopy of f such that either f .T / is disjoint from T and
Hi \ f .T / is a set of essential annuli for each i , or Hi \ f .T / is a set of singular
disks for each i with essential boundaries that each intersect T exactly ni times.

Proof Assume that f is transverse to X . Thus � D f �1.X/ is a set of simple closed
curves and trivalent embedded graphs which separates T . Define an .m; n/–gon to be
a face of T that is a disk, has m vertices in its boundary and is mapped by f into the
handlebody in which T satisfies the n disk-condition. Let the �j be the components
of � . Then �i is a nonessential component if there is a disk D � T such that �i �D .
So by Lemma 3.2, we know that there is a homotopy of f to remove �i and hence all
nonessential components of � .

Consequently, there are two cases. Either all faces of � are disks or � has faces which
are essential annuli. Note that f .T /\X 6D∅ as f is �1–injective and �1.Hi / doesn’t
have a free abelian subgroup of rank 2.

If � is connected, then all the faces must be .m; n/–gons and all the vertices have order
three. Let F be the set of faces of T . We can then put a metric on T , as we did in the
proof of Lemma 3.2. So all the edges are geodesics of unit length, and if F 2 F is an
.m; n/–gon, then the angle at each vertex is �.1� 2=n/ and there is a cone point in
int.F /. Once again this means that the curvature around each vertex is 2� . Let K .F /

be the curvature at the cone point in F . By the Gauss–Bonnet theorem, we know that

K .F /D 2�.1�m=n/:

Therefore, if m > n then K .F / < 0, if m D n then K .F / D 0 and if m < n then
K .F / > 0. Also, by the Gauss–Bonnet theorem, we know thatX

F 2F

K .F /D 0:

Therefore, if F contains an .m; n/–gon such that m> n, then it must also contain a
face F such that m<n. Thus by the disk-condition we know that f .@F / is not essential
in @Hk . So there is a homotopy of f such that f .F /� @Hk . We can then push F
off @Hk removing the face F from F . Note that when we do this, the order of the faces
adjacent to F either decreases by two or an .m; n/–gon and an .m0; n/–gon merge
to become an .mCm0�4; n/–gon, as shown in Figure 3. We can repeat this process
as long as F contains faces with positive curvature. Each time we do this move, we
reduce the number of faces in F by at least one. Therefore, this process must terminate
after a finite number of moves, when all the faces are .m; n/–gons such that mD n.
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Now let’s look at the case where � contains more than one component. Let �i be a
component of � . Then �i cuts T up into faces that are a single annulus and a number
of disks. Let A be the union of �i and the faces which are disks. Now we know that
the Euler characteristic of A is 0. Put a metric on A as we did above. �i must have
boundary vertices, that is vertices adjacent to less than three faces of A. Thus using
the same arguments using the Gauss–Bonnet theorem we know that A must have some
face with positive curvature. This means that such faces are boundary parallel in the
handlebody and there is a homotopy of f to remove them. As before this process can
be repeated until all the components are simple closed essential loops.

We are now ready to prove the torus theorem.

Proof of Theorem 1.1 Let Ni be the maximal annulus region for Hi and Pi be the
maximal disk region for Hi . The idea of this proof is to find submanifolds of either
the Ni or the Pi such that when glued together, the resulting embedded submanifold
can be fibred by S1 and either has essential tori boundary or the fibring can be extended
to the whole of M . In the interest of reducing notation, the image of f .T / in M
will be denoted as T . Thus when we talk about a homotopy of T , we are implying a
homotopy of f .

By Lemma 4.31, there is a homotopy such that either T is disjoint from T and for each i,
Hi \T is a set of essential singular annuli not properly homotopic into @H �T or, for
each i , Hi \T is a set of singular meridian disks that intersect T exactly ni times.

The first case is therefore that T is disjoint from the triple curves and Hi \T is a set of
singular essential annuli. We can also assume that no components of Hi\T are properly
homotopic into @Hi�T . By Lemma 4.30, we can isotope each Ni so that Hi\T �Ni .

Let Ai DX \Ni , where X D
S
@Hj . Then Ai is a set of essential surfaces in @Hi

and the boundary of the maximal annulus region Ni . Note that T \@Hi �Ai and thus
T \X �

S
i 6Dj .Ai \Aj /. We will first shrink N1 . Let Si D Ai \ .Aj [Ak/, where

i , j and k are different. Let N 01 be the maximal subset of N1 such that N 01\X � S1
and each component of the frontier of N 01 in H1 is an essential annulus parallel to
the fibring of N1 . There are three cases to discuss corresponding to components of
NI , NT and NA .

Let B be a component of N1 such that B is an I–bundle region and F is its base
space. Then let F 0 � F be the maximal subsurface such that B 0\ @H1 � S1 , where
B 0 is the I–bundle over F 0 . Then B 0 is a component of N 01 . Note that components
that do not intersect S1 are removed.

If B is a tree region, then it is a fibred solid torus and B\@H1 is a set of essential annuli.
Then there is an isotopy of B such that each annulus in B \ @H1 is either contained
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in S1 or in int.H1/. Note that some annuli in @H1 may get pushed into int.H1/. Let B 0

be the resulting fibred torus. Note that when the number of annuli in B\@H is reduced
to produce B 0 , the fibring of the torus is still parallel to the boundary curves of the
frontier annuli. Then B 0 is a component of N 01 . If B 0\H1D∅ we remove it from N 01 .

If B is a component of NA , as defined in Section 4.4.3, then either it can be isotoped
so that B \H1 � S1 or it is removed. As T \X �

S
i 6Dj .Ai \Aj / we know that

N 01 6D∅. We now let N1 DN 01 .

We now repeat this process for each Ni in turn until the process stabilises. That is, for
i 6D j , i 6D k and k 6D j , we have Ai D @Hi \ .Aj [Ak/. We know that it stabilises
before

S
Ni D∅ because T �

S
Ni .

Next we want to change the fibrings of the Ni so that all components that are regular
neighbourhoods of embedded annuli or Möbius bands are fibred by S1 . This means that
for any component B of Ni such that B\@Hi is a set of annuli, then B is a fibred solid
torus, or an I–bundle. Now when we let N D

S
Ni and all the fibrings of components

match, then N is a Seifert fibred submanifold of M and @N is a set of embedded tori.

By Lemma 4.15, if Nj is a component of N such that Hi \Nj is an I–bundle with
a base space that is not an annulus or a Möbius band, then the boundary tori of Nj are
essential in M . The final step in this case is to either make all the boundary tori of N

essential or expand N so that N DM . If Nj is a component of N and F �M is an
embedded solid torus such that @F �Nj , then either F \Nj D @F or F \Nj DNj .
If F \Nj D @F , we then add F to N and extend the fibring to it. This can always be
done as the fibres of the component are essential in M . Therefore, the meridian disk of
the solid torus being added cannot be parallel to the fibring of Nj . If Nj is contained
in F we remove Nj from N . This process is repeated until either all boundary tori
are essential or N DM . We know the process will terminate before all of N has been
removed because T �N and T is essential. Thus the component containing T cannot
be contained in a solid torus.

The next case is when Hi \T is a set of singular ni–gons. Let Pi be the disk region
in the handlebody Hi . Next we want to define a process for shrinking components
of Pi until all their boundaries coincide in X and then show that we can expand the
“core” fibring to the whole submanifold. Let Ai DX \Pi . By Lemma 4.26, we know
that we can isotope each Pi so that Hi \g.T /�Pi . Thus T \@Hi �Pi \ .Pj [Pk/,
for i 6D j , j 6D k and k 6D i .

Reduce P1 so that P1 � P2[P3 . By reducing, we mean chop off fingers that don’t
match up, reduce base spaces of the cores and possible remove entire components of P1 .
This process finishes before P1 is entirely removed as T \ @Hi � Pi \ .Pj [Pk/.
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Note that if a component of P1 is reduced to the regular neighbourhood of a single
meridian disk we forget the fibring of its core. As we reduce P1 , the frontier of P1
in H remains a set of essential annuli and meridian disks.

This process is repeated in turn for each Pi . Once again we know that the process
stabilises before all the Pi are removed as T\@Hi�Pi\.Pj[Pk/. All the components
with fibred cores obviously match up to be fibred tori in P D

S
Pi . Clearly these

do not intersect so the fibring can be extended across P . Also, P is a Seifert fibred
submanifold of M and each of the boundary tori of P is tiled by either meridian disks
or essential annuli that are essential in T . As before if any of the torus boundaries
of P are not essential, they are either filled in with a solid torus or removed.

4.7 Characteristic variety

Finally we show that both flavours of characteristic variety fit together nicely. That
is, if the flavours intersect, their S1 fibrings can always be made to agree. If either
component is a T 2 � I , this is easy. Thus we want to study the case where each
component has a unique fibring.

Let N be the maximal annulus region in M and P be the maximal disk region. By the
usual arguments, we can see that both are unique up to isotopy. We can also assume that
N is disjoint from T and that both flavours have nonempty boundary. Thus @N [ @P
is a set of essential embedded tori. If N \P D∅, then there is no problem. Therefore,
we can assume that N \P 6D∅. Let N 0 be a component of N and P 0 be a component
of P such that N 0\P 0 6D∅. It is not possible for P 0 �N 0 and if N 0 � P 0 there is
no problem. Therefore, we can assume that there is a boundary torus B � @P 0 such
that B \N 0 6D∅. As @N 0 is a set of essential tori, B \N 0 is a set of essential annuli
in N 0 . Thus Hi \ .B \N 0/, for any i , is a set of quadrilaterals. Therefore, if the
components of Hi \N 0 are fibred by S1 , then N 0 Š T 2 � I . Thus we can assume
that N 0 is fibred such that N 0\Hi is a set of I–bundles. Therefore, it just remains to
show that Hi \ .N 0\P 0/ is an I–bundle.

Let F and F 0 be two meridian disks in Hi that have ni intersections with T and have
a nontrivial intersection and A be an essential properly embedded annulus in Hi � T .
We can assume that A has been isotoped so that F \A is a set of disjoint properly
embedded arcs in F . If any of the arcs in F \A are not bisecting, then A is boundary
parallel. In this case F 0\A cannot contain any properly embedded arcs, for if it did,
this would provide an isotopy of F to remove that intersection between F and F 0 .
Thus F \A must be a set of bisecting arcs in F , similarly F 0\A is a set of properly
embedded bisecting arcs in F 0 and A is not boundary parallel. If we then let Q be the
regular neighbourhood of F [F 0 , then B , the frontier of Q in H , is a set of properly
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embedded annuli and meridian disks that intersect T exactly ni times. As in the proof
of Lemma 4.8, there is an isotopy of A such that A\B is a set of properly embedded
parallel arcs that are not boundary parallel in A. Thus there is an isotopy to remove
any triple points.

The components of P 0 \Hi can be thought of as regular neighbourhoods of a set
of meridian disks that intersect T exactly ni times. From above, if there are two
meridian disks in Hi that have a nontrivial intersection and that have ni intersections
with T , then any essential annulus can be isotoped so that it is disjoint from their
intersection. Lemma 4.15 says any boundary compressing disk of the annuli N 0\Hi
has order at least 1

2
ni . Therefore, the intersection between frontier annuli of N 0\Hi

and a meridian disk of order ni must be bisecting in the meridian disk. By these two
observations, we can see that Hi \ .N 0\P 0/ is an I–bundle.

4.8 Atoroidal manifolds

An interesting question asked us by Cameron Gordon, is to find an additional condition
that would result in manifolds satisfying the n disk-condition being atoroidal. By
Lemma 4.31, a sufficient condition for a manifold M that satisfies the disk-condition
to not contain any essential tori that intersect the triple curves, is the manifold meets
a stronger disk-condition with

P
1=ni <

1
2

. A sufficient condition that M does not
contain any essential tori disjoint from the triple curves is that in at least two of the
handlebodies, any essential annuli disjoint from T are boundary parallel.

Let H be a handlebody and T an essential set of disjoint simple closed curves in @H
that meet the n disk-condition. Let A be a properly embedded essential annulus in H
disjoint from T . Then by Lemma 3.16, H has a waveless minimal system of disks, D ;
see Definition 3.9. Let B be the 3–ball produced when H is cut along D , let S � @B
be the punctured sphere produced when @H is cut along D and let � D T \S . As in
the proof for Lemma 3.18, let � 0 � S2 be the graph produced by letting components
of @S correspond to vertices and parallel components of � correspond to single edges;
see Figure 11.

As A is a properly embedded essential annulus, B \A D fA1; : : : ; Akg is a set of
properly embedded quadrilaterals in B such that Ai \S is two properly embedded
arcs in S for any i . An equivalent statement to A being boundary parallel is that the
curves @A are parallel in @H or that for each i , the arcs Ai \S are parallel in S .

Lemma 4.32 If � 0 is maximal and contains no 2–cycles (Definition 3.17), then all
properly embedded annuli in H disjoint from T are boundary parallel.
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Proof By maximality of � 0 , the arcs of Ai \S , for all i , must be parallel to some arc
of � and as � 0 contains no 2–cycles, both arcs of Ai \S must be parallel to the same
arc of � and thus parallel. Therefore, from above, any properly embedded essential
annulus in H � T must be boundary parallel.

Let K � S3 be an .a1; a2; a3/ pretzel link such that, for each i , ai � 4 and the
spanning surface F shown in Figure 12 is orientable. As in Section 3.2.1, let M be the
manifold produced by taking the 3–fold branched cover of S3 with K as the branch
set and X be the 2–complex produced by gluing the lifts F in M . Then M satisfies
the disk-condition and X is a 2–complex that cuts it up into injective handlebodies.
As ai � 4, the basis bounded by the curves shown in Figure 12 is an 8–waveless basis
(Definition 3.10) for K in the handlebody S3�S . Therefore, all meridian disks in
the handlebody S3�S intersect K at least eight times. We can produce a waveless
minimal system of meridian disks for the handlebody S3�f by removing any one
of the disks from the basis. The associated graph � 0 , as constructed above satisfies
the conditions of Lemma 4.32. Thus the 3–fold branched cover of such a pretzel link
satisfies the disk-condition and is atoroidal.
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Equivariant iterated loop space theory
and permutative G–categories

BERTRAND J GUILLOU

J PETER MAY

We set up operadic foundations for equivariant iterated loop space theory. We start by
building up from a discussion of the approximation theorem and recognition principle
for V–fold loop G–spaces to several avatars of a recognition principle for infinite
loop G–spaces. We then explain what genuine permutative G–categories are and,
more generally, what E1–G–categories are, giving examples showing how they arise.
As an application, we prove the equivariant Barratt–Priddy–Quillen theorem as a
statement about genuine G–spectra and use it to give a new, categorical proof of the
tom Dieck splitting theorem for suspension G–spectra. Other examples are geared
towards equivariant algebraic K–theory.

55P42, 55P47, 55P48, 55P91; 18D10, 18D50

Introduction

Let G be a finite group. We will develop equivariant infinite loop space theory in a
series of papers. In this introductory one, we focus on the operadic equivariant infinite
loop space machine. This is the most topologically grounded machine, as we illustrate
by first focusing on its relationship to V –fold deloopings for G–representations V .
Genuine permutative G–categories and, more generally, E1–G–categories are also
defined operadically. They provide the simplest categorical input needed to construct
genuine G–spectra from categorical input.

For background, naive G–spectra are just spectra with actions by G. They have
their uses, but they are not adequate for serious work in equivariant stable homotopy
theory. The naive suspension G–spectra of spheres Sn with trivial G–action are
invertible in the naive equivariant stable homotopy category. In contrast, for all real
orthogonal G–representations V , the genuine suspension G–spectra of G–spheres SV

are invertible in the genuine equivariant stable homotopy category, where SV is the
one-point compactification of V . Naive G–spectra represent Z–graded cohomology
theories, whereas genuine G–spectra represent cohomology theories graded on the real

Published: 4 October 2017 DOI: 10.2140/agt.2017.17.3259

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P42, 55P47, 55P48, 55P91, 18D10, 18D50
http://dx.doi.org/10.2140/agt.2017.17.3259


3260 Bertrand J Guillou and J Peter May

representation ring RO.G/. The RO.G/–grading is essential for Poincaré duality and,
surprisingly, for many nonequivariant applications.

The zeroth space E0 D�
1E of a naive �–G–spectrum is an infinite loop G–space

in the sense that it is equivalent to an n–fold loop G–space �nEn for each n � 0.
The zeroth space E0 of a genuine �–G–spectrum E is an infinite loop G–space
in the sense that it is equivalent to a V –fold loop G–space �V E.V / for all real
representations V . The essential point of equivariant infinite loop space theory is
to construct G–spectra from space or category level data. Such a result is called a
recognition principle since it allows us to recognize infinite loop G–spaces when we
see them. A functor that constructs G–spectra from G–space or G–category level
input is called an equivariant infinite loop space machine.

As we shall see, a recognition principle for naive G–spectra is obtained simply by
letting G act in the obvious way on the input data familiar from the nonequivariant
theory. One of our main interests is to construct and apply an equivariant infinite loop
space machine that constructs genuine G–spectra from categorical input.

A permutative category is a symmetric strictly associative and unital monoidal category,
and any symmetric monoidal category is equivalent to a permutative category. The
classifying space of a permutative category A is rarely an infinite loop space, but
infinite loop space theory constructs an �–spectrum KA whose zeroth space is a
group completion of the classifying space BA . A naive permutative G–category
is a permutative category that is a G–category with equivariant structure data. It
is a straightforward adaptation of the nonequivariant theory to construct naive G–
spectra KA from naive permutative G–categories A in such a way that K0A is a
group completion of BA , meaning that .K0A /H is a nonequivariant group completion
of B.A H / for all subgroups H of G.

In this paper, we explain what genuine permutative G–categories are and what E1–G–
categories are, and we explain how to construct a genuine G–spectrum KGA from a
genuine permutative G–category A or, more generally, from an E1–G–category A .
A genuine G–spectrum has an underlying naive G–spectrum, and the underlying
naive G–spectrum of KGA will be KA . Therefore, we still have the crucial group
completion property relating BA to the zeroth G–space of KGA .

We use this theory to show how to construct suspension G–spectra from categorical
data, giving a new equivariant version of the classical Barratt–Priddy–Quillen (BPQ)
theorem for the construction of the sphere spectrum from symmetric groups. In Guillou,
May, Merling and Osorno [13], we shall use this version of the BPQ theorem as input
to a proof of the results from equivariant infinite loop space theory that were promised
in Guillou and May [10], where we described the category of G–spectra as an easily
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understood category of spectral presheaves. Here we use this version of the BPQ
theorem to give a new categorical proof of the tom Dieck splitting theorem for the
fixed-point spectra of suspension G–spectra. The new proof is simpler and gives more
precise information than the classical proof by induction up orbit types.

A complementary interest is to understand the geometry of V –fold loop G–spaces.
As we shall explain in this paper, these interests lead to quite different perspectives.
They are manifested in point-set level distinctions that would be invisible to a more
abstract approach. One way of pinpointing these differences is to emphasize the
distinction between the role played by EV –operads for representations V , which
are the equivariant generalizations of En–operads, and the role played by (genuine)
E1–operads of G–spaces.

An EV –space is a G–space with an action by an EV –operad. We here develop a
machine that constructs V –fold loop G–spaces from EV –spaces. For future perspective,
we envision the possibility of an equivariant version of factorization homology in which
EV –operads will govern local structure of G–manifolds in analogy with the role played
by En–operads in the existing nonequivariant theory. For such a theory, E1–operads
would be essentially irrelevant.

In contrast, for infinite loop space theory, EV –operads serve merely as scaffolding
used to build a machine that constructs genuine G–spectra from E1–G–spaces, which
are spaces with an action by some E1–operad. The classifying G–spaces of genuine
permutative G–categories are examples of E1–G–spaces with actions by a particular
E1–operad PG , but E1–G–spaces with actions by quite different E1–operads
abound. We concentrate on such an operadic machine in this paper. The machine we
concentrate on in the sequels (with Merling and Osorno [31; 12; 13]) makes no use
of EV –operads and does not recognize V –fold loop G–spaces, but it allows a level
of categorical power and multiplicative control that is unobtainable with the machine
built here.

This paper offers a number of variant perspectives on the topics it studies. We give
recognition principles for V –fold loop spaces (Theorem 1.14), for orthogonal G–spectra
(Theorem 1.25 and Definition 2.7) and, preserving space level structure invisible in
orthogonal G–spectra, for Lewis–May G–spectra (Definition 2.11 and Theorem 2.13).
The geometric input data for Theorem 1.14 consists of algebras over the little disks or
Steiner operad, DV or KV . For Theorem 1.25, it consists of compatible algebras over
the KV for all finite-dimensional V .

In both Definitions 2.7 and 2.11, the input data consists of algebras over an E1–operad
of G–spaces. These algebras may come by applying the classifying-space functor B

to algebras over an E1–operad of G–categories. The orthogonal spectrum machine
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and the Lewis–May spectrum machine are shown to be equivalent by comparing them
both to a machine landing in the SG–modules of Elmendorf, Kriz, Mandell and May
(EKMM) [7] and Mandell and May [19]. In effect, the machines landing in Lewis–May
G–spectra and in SG–modules provide highly structured fibrant approximations of the
machine landing in orthogonal G–spectra. In retrospect, such fibrant approximation is
central to nonequivariant calculational understanding, and one can hope that the same
will eventually prove true equivariantly.

The variants have alternative and contradictory good features, which become particularly
apparent and relevant when specialized to free E1–algebras, where they are all viewed
as giving variants of the equivariant BPQ theorem. Thinking unstably and geometrically,
Theorem 1.21 shows how the machine recognizes V –fold suspensions †V X and shows
that the recognition is precisely compatible with the evident G–homeomorphisms
†V X ^†W Y Š†V˚W Y . Thinking stably and geometrically, Theorems 1.31 and 2.18
show how the machine recognizes orthogonal or Lewis–May suspension G–spectra
†1

G
X . In both cases, the recognition is precisely compatible with the standard G–

isomorphisms †1
G

X ^†1
G

Y Š†1
G
.X ^Y /. However, the meaning of †1

G
is quite

different in the two cases. For orthogonal G–spectra, †1
G

X is cofibrant if G is
cofibrant as a G–space, but it is never fibrant. For Lewis–May or EKMM G–spectra,
†1

G
X is always fibrant and often bifibrant.

Theorems 6.1 and 9.9 show how the machine recognizes suspension G–spectra from
two variant categorical inputs. Here we do not have precise compatibility with smash
products, a failure that will be rectified with a hefty dose of 2–category theory in the
sequel [13], but instead we have structure that allows our new proof of the tom Dieck
splitting theorem.

As already mentioned, there are three sequels to this paper. The first [31] develops a
new version of the Segal–Shimakawa infinite loop space machine and proves among
other things that it is equivalent both to the original Segal–Shimakawa machine and to
the machine landing in orthogonal G–spectra that we develop here. That requires a
generalization of the present machine from operads to categories of operators, about
which we say nothing here. The second [12] gives a multiplicative elaboration of the
Segal–Shimakawa machine, starting from space level input. The third [13] gives a
more categorically sophisticated machine. It starts with more general categorical input
than we deal with here, and it gives new information even nonequivariantly.

Outline We begin with a machine for recognizing iterated equivariant loop spaces
in Section 1. All versions of our iterated loop space machine are based on use of
the Steiner operads, whose equivariant versions have not previously appeared. We
define them and compare them to the little disks operads in Section 1.1. All versions
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are also based on an approximation theorem, which is explained in Section 1.2. We
use a strengthened version due to Rourke and Sanderson [37], and that allows us to
obtain slightly stronger versions of the recognition principle than might be expected.
The compatibility with smash products of the geometric versions of the recognition
principle is based on pairings between Steiner operads that are defined in Section 1.4;
the relevant definition of a pairing is recalled in Appendix A. The promised variants of
the recognition principle starting from space level input data are given in Sections 1.3,
1.5, 2.2, and 2.3.

Section 2 gives our machines for recognizing infinite loop G–spaces. After recalling
the notion of E1–G–operad and giving some examples in Section 2.1, the orthogonal
and Lewis–May machines are defined and compared in Sections 2.2–2.4. Examples
of E1–G–spaces are given in Section 2.5. General properties that must hold for any
equivariant infinite loop space machine are described in Section 2.6. A recognition
principle for naive G–spectra, with G not necessarily finite, is given in Section 2.7.
An interesting detail there shows how to use the recognition principle to construct
change of universe functors on the space level. The proof uses a double bar construction
described in Appendix B.

The recognition principle starting from categorical input is given in Section 4.5. It is
preceded by preliminaries about equivariant universal bundles and equivariant E1–
operads in Section 3 and by a discussion of operadic definitions of naive and genuine
permutative G–categories in Section 4. In the brief and parenthetical Section 4.4, we
point out how these ideas and our prequel [11] with Merling specialize to give a starting
point for equivariant algebraic K–theory; see also Dress and Kuku [6], Fiedorowicz,
Hauschild and May [9], Kuku [17] and Merling [33]. We give an alternative and
equivalent starting point in the case of G–rings R in Section 8.2.

We give a precise description of the G–fixed E1–categories of free PG–categories
in Section 5. This is a precursor of our first categorical version of the BPQ theorem,
which we prove in Section 6.1, and of the tom Dieck splitting theorem for suspension
G–spectra, which we reprove in Section 6.2.

Changing focus, in Sections 7 and 8 we give three interrelated examples of E1–G–
operads, denoted by VG , V �

G
, and WG , and give examples of their algebras. This

approach to examples is more intuitive than the approach based on genuine permutative
G–categories, and it has some technical advantages. It is new and illuminating even
nonequivariantly. It gives a more intuitive categorical hold on the BPQ theorem than
does the treatment starting from genuine permutative G–categories, as we explain in
Section 9.3. It also gives a new starting point for multiplicative infinite loop space
theory, both equivariantly and nonequivariantly, but that is work in progress.
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Notational preliminaries A dichotomy between Hom objects with G–actions and
Hom objects of equivariant morphisms, often denoted using a G in front, is omnipresent.
We start with an underlying category V . A G–object X in V can be defined to be
a group homomorphism G! Aut X. We have the category VG of G–objects in V

and all morphisms in V between them, with G acting by conjugation. We denote
the morphism objects of VG simply by V .X;Y /.1 We also have the category GV of
G–objects in V and G–maps in V . Since objects are fixed by G, we see that GV is in
fact the G–fixed category .VG/

G, although we shall not use that notation. Thus the
Hom object GV .X;Y / in V of G–morphisms between G–objects X and Y is the
fixed-point object V .X;Y /G.

One frequently used choice of V is U , the category of unbased (compactly generated)
spaces. We let T denote the category of based spaces. We assume once and for all
that the basepoints � of all given based G–spaces X (or spaces X when G D e ) are
nondegenerate. This means that � ! X is a G–cofibration (satisfies the G–HEP).
It follows that �!X H is a cofibration for all H �G.

By an equivalence f W X ! Y of G–spaces, we understand a G–map whose fixed-
point maps f H W X H ! Y H are weak homotopy equivalences for all subgroups H

of G. When X and Y have the homotopy types of G–CW complexes, such an f is a
G–homotopy equivalence.

By a topological category C, we understand a category internal to U ; thus it has an
object space and a morphism space such that the structural maps I, S, T , and C are
continuous. This is more structure than a topologically enriched category, which would
have a discrete space of objects. We also have the based variant of categories internal
to T , but U will be the default.

We let Cat denote the category of (small) topological categories. As above, starting
from Cat , we obtain the concomitant categories GCat and CatG of G–categories.
A G–category is a topological category equipped with an action of G through natural
isomorphisms. This is the same structure as a category internal to GU . Similarly,
a based G–category is a category internal to GT . That is, an action of G on a
topological category C is given by actions of G on both the object space and the
morphism space such that I, S, T , and C are G–maps. In particular, G can and often
will act nontrivially on the space of objects. That may be unfamiliar (as the referee
noted), but in many of our examples it is essential for proper behavior on passage to
H–fixed subcategories for H �G.

1In [19] and elsewhere, we used the notation VG.X;Y / instead of V .X;Y / , but some readers found
that misleadingly analogous to HomG.X;Y / .
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For brevity of notation, we shall often but not always write j � j for the composite
classifying-space functor B D jN � j from topological categories through simplicial
spaces to spaces. It works equally well to construct G–spaces from topological G–
categories. We assume that the reader is familiar with operads (as originally defined in
May [21]) and especially with the fact that operads can be defined in any symmetric
monoidal category V . Brief modernized expositions are given in May [27; 28]. Since
it is product preserving, the functor j � j takes operads in Cat or in GCat to operads
in U or in GU , and it takes algebras over an operad C in Cat or in GCat to algebras
over the operad jC j in U or in GU .

To avoid proliferation of letters, we shall write OG for the monad on based G–categories
constructed from an operad OG of G–categories. We shall write OG for the monad
on based G–spaces constructed from the operad jOG j of G–spaces. More generally,
for an operad CG of unbased G–spaces, we write CG for the associated monad on
based G–spaces.

Acknowledgements Guillou thanks Nat Stapleton for very helpful discussions leading
to the rediscovery of the operad PG , which was in fact first defined, but not used, by
Shimakawa [43, Remark, page 255]. May thanks Mona Merling for many conversations
and questions that helped clarify ideas. We both thank the referee for helpful suggestions.
We also thank Anna Marie Bohmann and Angélica Osorno for pointing out a mistake
in the original version. That led to a reworking of this paper and to much of the work
in the sequels [31; 12; 13]. It also led to the long delay in the publication of this paper,
which is entirely due to the authors and not at all to the referee or editors. We thank
them for their patience. Guillou was supported by Simons Collaboration Grant 282316.

1 EV –operads and V –fold loop G–spaces

In this geometrically focused chapter, we first define EV –operads and give two ex-
amples. We then relate EV –spaces to V –fold loop G–spaces via the equivariant
approximation theorem and recognition principle. The approximation theorem shows
how to approximate “free” V –fold loop G–spaces �V†V X in terms of free algebras
DV X or KV X over the EV –operad DV or KV . The recognition principle shows
how to construct V –fold loop spaces from EV –algebras. We elaborate multiplicatively
by showing how machine-built pairings relate to evident pairings between iterated loop
G–spaces. We then give a geometric version of a concrete spacewise infinite loop
G–space machine that does not use E1–operads and is new even nonequivariantly.
This gives a geometric precursor of the BPQ theorem that relates well to smash products.
As already noted, we envision that the theory here can provide the local data for an as
yet undeveloped equivariant factorization homology theory.
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1.1 The little disks and Steiner operads

Definition 1.1 Let D.V / be the open unit disk in V . A little V –disk is a map
d W D.V /!D.V / of the form d.v/D rvC v0 for some r 2 Œ0; 1/ and some v0 2 V ;
c.d/ D v0 is the center point of d and r is the radius. For g 2 G, we have
.gd/.v/ D rv C gv0 . Define DV .j / to be the G–space of (ordered) j –tuples of
little V –disks whose images have empty pairwise intersections. With the evident
structure maps determined by disjoint union and composites of little disks, the DV .j /

form an operad DV , called the little disks operad.

For a G–space V , let F.V; j /� V j be the configuration space of (ordered) j –tuples
of distinct points of V , with G acting by restriction of the diagonal action on V j. By
convention, F.V; 0/ is a point, the empty 0–tuple of points in V . We are interested
in the special case when V is a real representation of G, by which we understand an
orthogonal action of G on a real inner product space. In contrast to the nonequivariant
case, very little is known about the (Bredon) homology and cohomology of the G–
spaces F.V; j /, but we have the following result.

Lemma 1.2 There is a .G�†j /–homotopy equivalence DV .j /! F.V; j / for each
j � 0.

Proof Choose a decreasing rescaling homeomorphism �W Œ0;1/! Œ0; 1/ and also
denote by � the rescaling homeomorphism V !D.V / that sends v to �.jvj=jvj/v ,
where D.V / is the open unit disc in V . Then � induces a rescaling homeomorphism
�W F.V; j /! F.D.V /; j /. Define a map cW DV .j /! F.D.V /; j / by sending little
disks to their center points. For a point v D .v1; : : : ; vj / in F.D.V /; j /, define

ı.v/D 1
2

min
˚
jvi � vj j

ˇ̌
i ¤ j

	
:

Define sW F.D.V /; j /! DV .j / by s.v/D .d1; : : : ; dj /, where dj .v/D ı.v/vC vi .
Then s and c are .G�†j /–maps, c ı s D id, and there is a .G�†j /–homotopy
hW s ı c' id. If d D .d1; : : : ; dj / 2D.j /, where di.v/D rivCvi , then c.d/D v and
h.d ; t/ has i th little V –disk di.t/ given by di.t/.v/D ..1� t/ı.v/C t ri/vC vi .

The following definition is the equivariant generalization of the usual definition of an
En–operad. We say that a map of operads of G–spaces is a weak equivalence if its j th

map is a weak .G�†j /–equivalence.

Definition 1.3 An operad CG of G–spaces is an EV –operad if there is a chain of
weak equivalences of operads connecting CG to DV .

Algebraic & Geometric Topology, Volume 17 (2017)



Equivariant iterated loop space theory and permutative G–categories 3267

Of course, we could use any operad weakly equivalent to DV as a reference operad in
the definition. As explained in [30, Section 3], for inclusions V �W of inner product
spaces, there is no map of operads DV ! DW that is compatible with suspension, so
that use of the little disks operads is inappropriate for iterated loop space theory. The
Steiner operads remedy the defect and will be used in [31] to compare the operadic and
Segalic equivariant infinite loop space machines. Their equivariant definition is little
different from their nonequivariant definition given in [30], following Steiner [46].

Definition 1.4 Let EV be the space of embeddings V ! V , with G acting by
conjugation, and let EmbV .j / � E

j
V

be the G–subspace of (ordered) j –tuples of
embeddings with pairwise disjoint images. Regard such a j –tuple as an embedding
jV ! V , where jV denotes the disjoint union of j copies of V (where 0V is empty).
The element id in EmbV .1/ is the identity embedding, the group †j acts on EmbV .j /

by permuting embeddings, and the structure maps

 W EmbV .k/�EmbV .j1/� � � � �EmbV .jk/! EmbV .j1C � � �C jk/

are defined by composition and disjoint union in the evident way [30, Section 3]. This
gives an operad EmbV of G–spaces.

Define RV �EV D EmbV .1/ to be the G–subspace of distance-reducing embeddings
f W V ! V . This means that jf .v/ � f .w/j � jv � wj for all v;w 2 V . Define a
Steiner path to be a map hW I !RV such that h.1/D id and let PV be the G–space
of Steiner paths, with action of G induced by the action on RV . Define � W PV !RV

by evaluation at 0; that is, �.h/D h.0/.

Define KV .j / to be the G–space of (ordered) j –tuples .h1; : : : ; hj / of Steiner paths
such that the �.hi/ have disjoint images. The element id in KV .1/ is the constant
path at the identity embedding, the group †j acts on KV .j / by permutations, and
the structure maps  are defined pointwise in the same way as those of EmbV . This
gives an operad of G–spaces, and application of � to Steiner paths gives a map of
operads � W KV ! EmbV . Evaluation of embeddings at 0 2 V gives center point
.G�†j /–maps cW EmbV .j /! F.V; j /.

The Steiner operads KV are reduced, meaning that KV .0/ is a point, and K0 is the
trivial operad with K0.1/ D id and K0.j / D ∅ for j > 1. By pullback along � ,
any space with an action by EmbV inherits an action by KV . As in [21, Section 5],
[24, Section VII.2], or [30, Section 3], EmbV acts naturally on �V X for based
G–spaces X.

Proposition 1.5 [46] There is a weak equivalence of operads �W DV !KV .
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Proof For each j , we have a composite .G�†j /–map

c ı� W KV .j /! EmbV .j /! F.V; j /:

Steiner’s nonequivariant proof that cı� is a †j –homotopy equivalence applies to prove
that it is a .G�†j /–homotopy equivalence. The argument is a clever and nontrivial
variant on the proof above for DV , but for us the essential point is that it uses the
metric on V and the contractibility of I and V in such a way that the construction is
clearly G–equivariant.

For a little disk d.v/D rvCv0 , define a path of little disks from d to the identity map
of D.V / by sending s 2 I to the little disk

d.s/.v/D .s� rsC r/vC .1� s/v0:

Conjugating d by the rescaling � of Lemma 1.2 gives a distance-reducing embedding
��1d�W V ! V , and conjugating paths pointwise gives an embedding � of DV as a
suboperad of KV . Composing the inverse .G�†j /–homotopy equivalence F.V; j /!

DV .j / with �W DV .j /!KV .j / gives an inverse .G�†j /–homotopy equivalence to
c ı� , by Steiner’s proof, and it follows that � is a .G�†j /–homotopy equivalence.

Again, one key advantage of the Steiner operads over the little disks operads is that,
for an inclusion V � W of G–inner product spaces, there is an induced inclusion
KV !KW of G–operads such that the map

�V�W �V X !�V�W �V†W �V X Š�W †W �V X

is a map of KV –spaces for any G–space X. Here W �V is the orthogonal complement
of V in W . If f W V !V is a distance-reducing embedding, then f˚idW �V W W !W

is also distance reducing, and this construction induces the inclusion.

1.2 The approximation theorem

Write KV for the monad on based G–spaces associated to the operad KV . For a
G–space X, we have KV X D

F
KV .j /�†j

X j=.�/. If �i W KV .j /!KV .j � 1/

deletes the i th Steiner path and si W X
j�1!X j inserts the basepoint in the i th position,

then .� ik;y/� .k; siy/ for k 2KV .j / and y 2X j�1 . The monad DV arising from
the operad DV is defined the same way.

The unit �W Id! �V†V of the monad �V†V and the action � of KV on the G–
spaces �V†V X induce a composite natural map

˛V W KV X
KV �
����!KV�

V†V X
�
�!�V†V X;
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and ˛V W KV !�V†V is a map of monads whose adjoint defines a right action of KV

on the functor †V , just as in [21]. The restriction to DV gives the corresponding map
˛V W DV X !�V†V X.

The heart of the operadic recognition principle is the approximation theorem that
says that ˛V is a group completion. However, already nonequivariantly, we have two
variants of what it means for a map X ! Y to be a group completion. Recall that
Hopf spaces are spaces with a product with a two-sided unit element up to homotopy.

Definition 1.6 A Hopf space Y is grouplike if �0.Y / is a group. Let X and Y be
homotopy associative and commutative Hopf spaces, where Y is grouplike, and let
f W X ! Y be a Hopf map. Then f is a group completion if f�W �0.X /! �0.Y /

is the Grothendieck construction converting a commutative monoid to an abelian
group and if, for any field of coefficients k , the map of commutative k–algebras
H�.X /Œ�0.X /

�1�!H�.Y / induced by f� is an isomorphism.

The second version of group completion drops the commutativity assumption and lives
in the setting of A1–spaces. For us, an A1–space will mean a space with an action
of the Steiner operad KR . An A1–map will mean either a map homotopic to a map
of KR–spaces or the homotopy inverse of a map of KR–spaces that is an underlying
homotopy equivalence.

Definition 1.7 An A1–map f W X ! Y of KR–spaces is a weak group completion
if it is equivalent under a chain of A1–maps to the natural map �W M !�BM for
some topological monoid M.

The following classical result has several proofs; see [23, Section 15] for discussion in
slightly greater generality.

Theorem 1.8 If a topological monoid M is homotopy commutative, then the natural
map �W M !�BM is a group completion.

Returning to our equivariant context, we have the following definition.

Definition 1.9 A Hopf G–space Y is grouplike if each �0.Y
H / is a group. Let X

and Y be homotopy associative and commutative Hopf G–spaces, where Y is group-
like, and let f W X ! Y be a Hopf G–map. Then f is a group completion if
f H W X H ! Y H is a group completion for all subgroups H of G.

For the equivariant notion of weak group completion, note that if X is a KR–G–space
and H �G is a subgroup, then X H inherits an action of KR .
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Definition 1.10 A map f W X ! Y of KR–G–spaces is a weak group completion
if f H is a weak group completion for all H. By Theorem 1.8, f is then a group
completion if X and Y are homotopy commutative.

In the weak case we require no compatibility between the monoids M.H /'X H as H

varies. Recall that we understand equivalences of G–spaces to mean maps that induce
(weak) equivalences on passage to fixed points and observe that a group completion is
an equivalence if X is grouplike, for example if X is G–connected in the sense that
each X H is (path) connected.

Theorem 1.11 (the approximation theorem) Let V be a representation of G. If X is
G–connected, then ˛V W KV X ! �V†V X is an equivalence. If V contains a copy
of the trivial representation R, then ˛V is a weak group completion. Therefore, if V

contains a copy of R2, then ˛V is a group completion.

We shall not give a proof, only a commentary on the existing proofs. The group comple-
tion version was first proven by Hauschild in his unpublished Habilitationschrift [14],
but the shorter published version [15] restricts to the case X D S0, remarking that the
proof in the general case is essentially the same. Assuming that V contains R1 and
not just R2, Caruso and Waner [3, Theorem 1.18] gave a shorter proof in a paper that
concentrated on compact Lie groups G, rather than just finite groups.

Nonequivariantly, there is a proof by direct calculation due to Fred Cohen [18] and a
geometric proof due to Segal [42]. Starting from Segal’s proof, Rourke and Sanderson
[38; 39; 40] gave an elegant proof using their “compression theorem”. Following up a
suggestion of May, they generalized that proof to give the stated version of the theorem in
[37]. However, their notation is quite different from ours. They never work equivariantly
and focus instead on G–fixed-point spaces. They use the notation �V†V X for the
G–fixed-point space .�V†V X /G. One can replace G by a subgroup H in their proof,
and it works just as well.

All known proofs are manifold-theoretic in nature and start with the G–space FV X of
(unordered) configurations of points in V with labels in X. More precisely, FV X DF

F.V; j / �†j
X j=.�/ is defined in the same way as KV X. In the notation of

[37], their CV X is our .FV X /G. They work with little disks, and their C o
V

X is our
.DV X /G. Their map jV is the restriction to FV .X /

G of our map ˛G
V

.

Translated to our notation, [37, Theorem 1] proves the first statement of Theorem 1.11,
taking X to be G–connected; here there are no Hopf G–space structures in sight. When
W D V ˚R, Rourke and Sanderson observe that .DW X /G is equivalent to a monoid,
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and their [37, Theorem 2] proves that its classifying space is weak homotopy equivalent
to .�V†W X /G. The approximation theorem as stated follows by applying � as in
[37, Corollary 1].

1.3 The recognition principle for V –fold loop spaces

We explain how KV –spaces, which are based spaces with an action of KV , give rise to
V –fold loop spaces. For fixed V , we can work equally well with DV . For compatibility
as V varies, KV is required. The two-sided monadic bar construction is described in
[21; 30] and works exactly the same way equivariantly as nonequivariantly.2 The adjoint
of ˛V gives a right action z̨V W †V KV !†V of the monad KV on the functor †V .

Definition 1.12 Let Y be a KV –space. We define

EV Y D B.†V;KV ;Y /:

We have the diagram of KV –spaces and KV –maps

(1.13) Y
"
 � B.KV ;KV ;Y /

x̨V
��! B.�V†V;KV ;Y /

�
�!�V B.†V;KV ;Y /;

where x̨V D B.˛V ; id; id/ and � will be defined in the following sketch proof, which
is based on arguments in [4; 21; 22].

Theorem 1.14 (from KV –spaces to V –fold loop spaces) The following statements
hold relating a KV –space Y to its V–fold delooping EV Y :

(i) The map " is a G–homotopy equivalence with a natural homotopy inverse � .

(ii) The map x̨V is an equivalence when Y is G–connected and is a weak group
completion when V �R.

(iii) The map � is an equivalence.

Therefore, the composite

(1.15) � D � ı x̨V ı �W Y !�V EV Y

is an equivalence if Y is G–connected, a weak group completion if V � R, and a
group completion if V �R2.

Proof The proof of (i) uses an “extra-degeneracy argument” explained in [21, Proposi-
tion 9.8]; note that the homotopy equivalence � is not a KV –map. For (ii), it is shown
nonequivariantly in [22, Theorem 2.3], that x̨V is an equivalence when Y is connected

2In particular, Reedy cofibrancy (or properness) works the same way; see [31].
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and is a group completion when V DRn with n� 2. We use Theorem 1.11 to improve
on that equivariantly. Geometric realization of simplicial G–spaces commutes with
passage to H–fixed points, so we can work nonequivariantly, one fixed-point space at a
time. If Y is G–connected, each .Kq

V
Y /H is connected, hence x̨H is the realization

of a levelwise equivalence of simplicial spaces and hence an equivalence.

Now assume V �R and let K DKR , with associated monad K . We then have an
inclusion of the nonequivariant A1–operad K in KV and can regard Y and each
.Kq

V
Y /H as a K –space. From here we combine arguments from [21, Section 13] and

the proof of [22, Theorem 2.3] with the Rourke–Sanderson proof of the approximation
theorem. Let M be the associativity operad that defines monoids; we have a weak
equivalence of (G–fixed) operads ıW K !M. For a K –space X, we define a topo-
logical monoid ƒ.X / D B.M ;K ;X /, where the monad M is a K–functor via ı .
We have a zigzag

X
"
 � B.K ;K ;X /

xı
�! B.M ;K ;X /DƒX

in which " is a K –map and a G–homotopy equivalence and xı D B.ı; id; id/ is an
equivalence. Define �.X / D �Bƒ.X / and  D � ı xıW B.K ;K ;X / ! �X. We
view  as a natural choice of a weak group completion. Moreover,  is an equivalence
if X is grouplike. If f W X ! Y is a weak group completion between K –spaces, then
�f is an equivalence. To see this, note that by the definition of weak group completion,
we may assume without loss of generality that f is the map �W M !�BM for some
topological monoid M. It suffices to show that Bƒ.�/W BƒM ! Bƒ.�BM / is an
equivalence. This follows from [47, Proposition 3.9 and Theorem 3.11].

Now consider the following commutative diagram:

Y B.KV ;KV ;Y /
"

oo
x̨V

// B.�V†V;KV ;Y /

B.K ;K ;Y /



��

"

OO

B.B.K ;K ;KV /;KV ;Y /
"
oo

x̨V
//

x

��

"

OO

B.B.K ;K ; �V†V /;KV ;Y /

"

OO

x
��

�Y B.�KV ;KV ;Y /
"

oo
�˛V

// B.��V†V;KV ;Y /

The maps " are G–homotopy equivalences, hence the middle map x D B.; id; id/ is
a weak group completion since  is so. The right map x and the bottom map �˛V

are equivalences since realization preserves levelwise equivalences. Therefore, x̨V is a
weak group completion.
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In (iii), � is an instance of the natural G–map �W j�V Kj ! �V jKj for simplicial
based G–spaces K ; suspensions commute with realization, and the adjoint of � is the
evident evaluation G–map †V j�V Kj Š j†V�V Kj ! jKj. The proof of (iii) is due
to Hauschild [14] and appears in [4, pages 495–496]. We will not repeat the argument,
which reduces the proof to the nonequivariant case treated in [21, Section 12]. The main
equivariant input that allows the reduction is the fact if S.V / is the unit sphere in V ,
then the space MapH .S.V /;Kn/ of H–maps is connected, where Kn D†

V Kn
V

Y is
the G–space of n–simplices of the simplicial G–space B�.†

V;KV ;Y /. This holds
since KJ

n is .dim.V J /�1/–connected for each subgroup J �G, while S.V / regarded
as an H–CW complex only has cells of type H=J � en where n< dim.V J /.

Remark 1.16 Equivariant homotopy theory often admits varying generalizations of
nonequivariant theorems. A very different and very interesting equivariant recognition
principle was proven by Salvatore and Wahl [41].

1.4 The pairing .KV ; KW /!KV˚W and the recognition principle

The general notion of a pairing of operads is recalled in Appendix A. In [21, Proposi-
tion 8.3], a pairing

�W CmX ^CnY !CmCn.X ^Y /

is defined for based spaces X and Y , where Cn denotes the monad on based spaces
induced from the little n–cubes operad Cn . Implicitly, it comes from a pairing of
operads �W .Cm;Cn/!CmCn . The Steiner operad analogue appears in [25, page 337],
and we recall it here.

Proposition 1.17 For finite-dimensional real inner product G–spaces V and W , there
is a unital, associative, and commutative system of pairings

�W .KV ;KW /!KV˚W

of Steiner operads of G–spaces.

Proof The required maps

�W KV .j /�KW .k/!KV˚W .j k/

are given by .c ˝ d/ D e , where, writing c D .f1; : : : ; fj / and d D .g1; : : : ;gk/,
e is the j k–tuple of Steiner paths

.fq;gr /W I !RV �RW �RV˚W
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for 1 � q � j and 1 � r � k , ordered lexicographically. The formulas required in
Definition A.1 are easily verified, as we illustrate in Example A.4.

The pairing is unital in the sense that �W KV .j /ŠK0.1/�KV .j /!KV .j / is the
identity map. It is associative in the sense that the following diagram commutes for a
triple .V;W;Z/ of inner product G–spaces and a triple .i; j ; k/:

KV .i/�KW .j /�KZ .k/
��id

//

id��
��

KV˚W .ij /�KZ .k/

�

��

KV .i/�KW˚Z .j k/
�

// KV˚W˚Z .ij k/

It is commutative in the sense that the following diagram commutes:

KV .j /�KW .k/

t

��

�
// KV˚W .j k/

�.j ;k/

��

KW .k/�KV .j /
�

// KW˚V .kj /

Here t is the interchange map and �.j ; k/ is determined in an evident way by the
interchange map for V and W and the permutation �.j ; k/ of j k–letters.

Passing to monads as in Proposition A.3 below, we obtain a unital, associative, and
commutative system of pairings

(1.18) �W KV X ^KW Y !KV˚W .X ^Y /:

For the unit property, when V D 0 the map �W X ^KW Y !K .X ^Y / is induced
by the maps X �Y j ! .X �Y /j obtained from the diagonal map on X and shuffling.
We have the following key observation. Its analogue for the little cubes operads is [21,
Proposition 8.3].

Lemma 1.19 The following diagram commutes:

KV X ^KW Y
�

//

˛V ^˛W

��

KV˚W .X ^Y /

˛V˚W

��

�V†V X ^�W †W Y
^
// �V˚W †V˚W .X ^Y /

The notion of a pairing of a KV –space X and a KW –space Y to a KV˚W –space Z is
defined in Definition A.2, and we have the following recognition principle for pairings.
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Note that smashing maps out of spheres gives a natural map

�V X ^�W Y !�V˚W .X ^Y /:

Proposition 1.20 A pairing f W X ^Y !Z of a KV –space X and a KW –space Y

to a KV˚W –space Z induces a G–map

Ef W EV X ^EW Y ! EV˚W Z

such that the following diagram commutes:

X ^Y
�^�
//

f

��

�V EV X ^�W EW Y // �V˚W .EV X ^EW Y /

Ef
��

Z
�

// �V˚W EV˚W Z

Proof By convention, K0
V
D Id for any V . Starting at qD 0 with the identity map on

X ^Y , the map � inductively determines a pairing �q for all q , namely the composite

K
q
V

X ^K
q
W

Y
�
�!KV˚W .K

q�1
V

X ^K
q�1
W

Y /
KV˚W �

q�1

���������!K
q
V˚W

.X ^Y /:

The map Ef is the geometric realization of a map of simplicial topological spaces that
is given on q–simplices by

†VK
q
V

X ^†WK
q
W

Y Š†V˚W.K
q
V

X ^K
q
W

Y /
†V˚W�q

�������!†V˚W K
q
V˚W

.X ^Y /:

Commutation with face and degeneracy operators follows from Proposition A.3. The di-
agram in the statement commutes by a diagram chase from Lemma 1.19, Definition A.2,
and the description of � given in (1.15).

We have an unstable precursor of the BPQ theorem.

Theorem 1.21 (the BPQ theorem for V –fold suspensions) For based G–spaces X,
there is a natural G–homotopy equivalence

!W †V X ! EV KV X

such that the following diagram commutes for based G–spaces X and Y :

†V X ^†W Y
!^!

//

Š

��

EV KV X ^EW KW Y

E.�/
��

†V˚W .X ^Y /
!
// EV˚W KV˚W .X ^Y /

Therefore, E.�/ is an equivalence.
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Proof Since EV KV X D B.†V;KV ;KV X /, another extra-degeneracy argument
explained in [21, Proposition 9.8] gives the natural homotopy equivalence ! . For the
diagram, it suffices to prove commutativity of the adjoint diagram, which features two ad-
joint maps X ^Y !�V˚W .�/. These maps are equal by inspection of definitions.

1.5 The geometric recognition principle for orthogonal G –spectra

As in [10], we let GS denote the category of orthogonal G–spectra. Briefly, these
start with IG–spaces E, which are continuous functors EW IG ! TG , where IG

is the category of finite-dimensional G–inner product spaces and linear isometric
isomorphisms, with G acting by conjugation on morphism spaces IG.V;V

0/. The
continuous G–maps EW IG.V;V

0/! TG.E.V /;E.V
0// can be specified via adjoint

evaluation G–maps IG.V;V
0/C ^E.V /!E.V 0/.

An IG–space E is an orthogonal G–spectrum if there exist structure G–maps
†W E.V / ! E.V ˚ W / that give a natural transformation E Z SG ! E ı ˚

of functors IG �IG! TG , where SG D fS
V g is the sphere G–spectrum, Z is the

external smash product specified by .DZE/.V;W /DD.V /^E.W / for IG–spaces
D and E, and ˚W IG�IG!IG is the direct sum of G–inner product spaces functor.
See [19, Section II.2] for details.

Definition 1.22 We define a continuous G–functor K� from IG to G–operads.
It takes a G–inner product space V to the Steiner operad KV . Linear isometric
isomorphisms i W V ! V 0 act by conjugation of embeddings to send RV to RV 0 . The
action extends pointwise to Steiner paths and then applies one at a time to j –tuples
of Steiner paths to give G–maps KV .j / to KV 0.j /. Compatibility with the operad
structure is immediate. Composing with the functor that sends the operad KV to the
associated monad KV on based G–spaces gives a functor K from IG to the category
of monads in the category of IG–spaces. In more detail, for an IG–space X with
V th space X .V /, we have based evaluation G–maps

I .V;V 0/C ^KV X .V /!KV 0X .V 0/:

Using the diagonal action of IG.V;V
0/, we obtain G–maps

IG.V;V
0/�KV .k/�KV .j1/� � � � �KV .jk/�X .V /

��

KV 0.k/�KV 0.j1/� � � � �KV 0.jk/�X .V 0/;

and these give evaluation G–maps

IG.V;V
0/C ^KV KV X .V /!KV 0KV 0X .V 0/:
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The product and unit maps are compatible with these maps in the sense that the following
diagrams commute, where the unlabeled arrows are evaluation G–maps:

(1.23)

IG.V;V
0/C ^X .V /

id^�
��

�
// X .V 0/

�

��

IG.V;V
0/C ^KV X .V / // KV 0X .V 0/

IG.V;V
0/C ^KV KV X .V / //

id^�
��

KV 0KV 0X .V /

�

��

IG.V;V
0/C ^KV X // KV 0X .V 0/

Note that we can regard based G–spaces X as constant IG–spaces, X.V /DX ; the
evaluation G–maps IG.V;V

0/C ^X !X are then the projections.

Definition 1.24 Define a K�–G–space Y to be an IG–space Y with a structure of
KV –algebra on Y .V / for each V together with G–maps i W Y .V /! Y .V ˚W /

such that the following diagrams commute, where the � are monad action maps:

IG.V;V
0/C ^KV Y .V / //

id^�
��

KV 0Y .V
0/

�
��

IG.V;V
0/C ^Y .V / // Y .V 0/

In the second diagram, we identify SV ^SW with SV˚W :

.IG.V;V
0/�IG.W;W 0//C ^Y .V /^SV ^SW //

˚^i^id
��

Y .V 0/^SV 0 ^SW 0

i^id
��

.IG.V ˚W;V 0˚W 0//C ^Y .V ˚W /^SV˚W // Y .V 0˚W 0/^SV 0˚W 0

The first diagram says that � is a map of IG–spaces and, ignoring the sphere coordi-
nates, the second diagram says that i W Y ı�1) Y ı˚ is a natural transformation of
functors IG �IG! TG .

Theorem 1.25 (from K�–G–spaces to orthogonal G–spectra) For a K�–G–space Y ,
the based G–spaces EV Y .V / and the based G–maps

†W EV Y .V /! EV˚W Y .V ˚W /

determined by i W Y ı�1) Y ı˚ specify an orthogonal G–spectrum Egeo
G

Y .
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Proof Regarding the IG.V;V
0/ as constant simplicial G–spaces, we see by diagram

chases from the definitions that the data of the previous definitions determine G–maps

IG.V;V
0/C ^†

V K
q
V

Y .V /!†V 0K
q
V 0

Y .V 0/

and
†W †V K

q
V

Y .V /!†V˚W K
q
V˚W

Y .V ˚W /:

On passage to geometric realization, these give the required IG–space Egeo
G

Y and the
required natural transformation Egeo

G
Y ZSG! Egeo

G
Y ı˚.

Of course, the recognition principle of (1.13) and Theorem 1.14 applies to describe
the relationship between the G–spaces Y .V / and �V .Egeo

G
Y /.V /. The recognition

principle for pairings also adapts directly.

Definition 1.26 Let X , Y , and Z be K�–G–spaces. A pairing

f W X ZY !Z ı˚

is a natural transformation of continuous functors IG �IG ! TG such that each
f W X .V /^Y .W /!Z .V ˚W / is a pairing as in Definition A.2 and the following
diagram commutes for all U;V;W :

(1.27)

X .U /^Y .V /
id^i

//

i^id

��

f

))

X .U /^Y .V ˚W /

f

��

Z .U ˚V /

i

))

X .U ˚W /^Y .V /
f

// Z .U ˚W ˚V /
Z .id˚t/

// Z .U ˚V ˚W /

This diagram expresses that the three composite natural transformations of functors
I 3

G
! TG in sight agree.

The smash product of orthogonal G–spectra is obtained by first applying Day convolu-
tion to the external smash product Z and then coequalizing the action of the sphere
G–spectrum on the two variables. See [19, Section II.3] for details.

Proposition 1.28 A pairing f W X ZY !Z ı˚ of K�–G–spaces induces a map

Egeo
G
f W Egeo

G
X ^Egeo

G
Y ! Egeo

G
Z

of orthogonal G–spectra that is given levelwise by specialization of Proposition 1.20.
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Proof The definition of a pairing immediately implies that f induces an external
pairing

Egeo
G

X ZEgeo
G

Y ! Egeo
G

Z ı˚;

and the diagram (1.27) ensures that the resulting map from the Day convolution to
Egeo

G
Z factors through the coequalizer defining Egeo

G
X ^Egeo

G
Y .

The suspension G–spectrum †1
G

X of a based G–space X is given by the G–spaces
†V X ; its structure maps are the evident identifications †W †V X Š†V˚W X. The
unstable BPQ theorem of Theorem 1.21 leads to the following “geometric” version of
the BPQ theorem.

Definition 1.29 For a based G–space X, define K�X to be the K�–G–space given
by the KV –spaces KV X and the maps i W KV X !KV˚W X induced by the map of
operads KV !KV˚W obtained by sending embeddings eW V !V to e�idW V �W !

V �W .

It is easily verified that K�X is a K�–G–space and the pairings � of (1.18) prescribe
pairings

(1.30) �W K�X ZK�Y !K�.X ^Y / ı˚:

Theorem 1.31 (the geometric BPQ theorem for orthogonal suspension G–spectra)
For based G–spaces X, there is a natural equivalence

!W †1G X ! Egeo
G

K�X

such that the following diagram commutes for based G–spaces X and Y :

†1
G

X ^†1
G

Y

Š

��

!^!
// Egeo

G
K�X ^Egeo

G
K�Y

E
geo
G
.�/

��

†1
G
.X ^Y /

!
// Egeo

G
K�.X ^Y /

Proof The levelwise equivalence follows from Theorem 1.21. For the diagram, the
functor †1

G
is left adjoint to the 0th G–space functor, and inspection of definitions

shows that the adjoint diagram starting with X ^Y commutes.
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1.6 A configuration space model for free KV –spaces

The free KV –spaces KV X can be modeled more geometrically by configuration spaces.
To explain this, we first record the nonequivariant analogue in terms of the little cubes
operads, since that is relevant folklore which is not in the literature.

Consider the little n–cubes operads Cn and their associated monads Cn . Let J D .0; 1/

be the interior of I. We have the configuration spaces F.J n; j / of j –tuples of distinct
points in J n. Sending little n–cubes cW J n! J n to their center points c

�
1
2
; : : : ; 1

2

�
gives a †n–homotopy equivalence f W Cn.j /! F.J n; j /.

For based spaces X, we construct spaces FnX by replacing Cn.j / by F.J n; j / in the
construction of CnX as the quotient of

F
Cn.j /�†j

X j by basepoint identifications;
we now use the evident omit a point projections F.j ; n/!F.j ; n�1/ rather than the
analogous maps Cn.j /! Cn.j � 1/. The maps f induce a homotopy equivalence

f W CnX ! FnX:

That much has been known since [21].

The folklore observation is that although the F.J n; j / do not form an operad, Cn acts
on FnX in such a way that f is a map of Cn–spaces. Indeed, we can evaluate little
n–cubes J n! J n on points of J n to obtain maps

Cn.j /�F.J n; j /! F.J n; j /;

and any reader of [21] will see how to proceed from there. Moreover, we have pairings

�W FmX ^FnY ! FmCn.X ^Y /

defined as in Definition A.2 and Proposition A.3, starting from the maps

F.J n; j /�F.J n; k/! F.J n; j k/

that send .x;y/, where x D .x1; : : : ;xj / and y D .y1; : : : ;yk/, to the set of pairs
.xq;yr /, for 1� q � j and 1� r � k , ordered lexicographically.

Nonequivariantly, we put this together to obtain an analogue of Theorem 1.31, using
the evident variant of the geometric recognition principle that is obtained from the
operads Cn as n varies. Here it is more natural to use symmetric spectra rather than
orthogonal spectra, since it is natural to deal with sequences rather than inner product
spaces. The relationship between the little cubes operads and symmetric spectra is
explained in [19, Section I.8], and we leave details of the relevant retooling of the
previous subsections to the interested reader.

Algebraic & Geometric Topology, Volume 17 (2017)



Equivariant iterated loop space theory and permutative G–categories 3281

Theorem 1.32 (the configuration space BPQ theorem for symmetric spectra) For
based spaces X, there is a natural equivalence

!W †1X ! Egeo F�X

such that the following diagram commutes for based spaces X and Y :

†1X ^†1Y

Š

��

!^!
// Egeo F�X ^Egeo F�Y

E
geo
G
.�/

��

†1.X ^Y /
!

// Egeo F�.X ^Y /

For fixed V , the discussion generalizes equivariantly to relate DV X or KV X to FV X

for based G–spaces X. In the case of KV X, we use the time-0 projections from Steiner
paths to embeddings V ! V and the centerpoint map from EmbV .j / to F.V; j /.
Letting V vary, we obtain the following equivariant version of Theorem 1.32.

Theorem 1.33 (the configuration space BPQ theorem for orthogonal G–spectra) For
based G–spaces X, there is a natural equivalence

!W †1G X ! Egeo
G

F�X

such that the following diagram commutes for based G–spaces X and Y :

†1
G

X ^†1
G

Y

Š

��

!^!
// Egeo

G
F�X ^Egeo

G
F�Y

E
geo
G
.�/

��

†1
G
.X ^Y /

!
// Egeo

G
F�.X ^Y /

2 The recognition principle for infinite loop G–spaces

The equivariant recognition principle shows how to recognize (genuine) G–spectra in
terms of category or space level information. It comes in various versions. We shall
give two modernized variants of the machine from [21], differing in their choice of
the output category of G–spectra. In contrast with the previous section, we are now
concerned with infinite loop space machines with input given by E1–G–spaces (or
G–categories) defined over any (genuine) E1–operad. A G–spectrum E is connective
if the negative homotopy groups of each of its fixed point spectra EH are zero, and all
infinite loop space machines take values in connective G–spectra.

As in [10], we let S , Sp , and Z denote the categories of orthogonal spectra [20],
Lewis–May spectra [18], and EKMM S–modules [7]. Similarly, we let GS , GSp
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and GZ denote the corresponding categories of genuine G–spectra from [19], [18],
and again [19]. We start with a machine that lands in GS . It is related to but different
from the geometric machine of the previous section, and it is the choice preferred
in [10] and in the sequels [31; 12; 13]. The sphere G–spectrum SG in GS is cofibrant,
and so are the suspension G–spectra †GX of cofibrant based G–spaces X. We then
give the variant machine that lands in GSp or GZ , where every object is fibrant, and
give a comparison that illuminates homotopical properties of the first machine via its
comparison with the second.

2.1 Equivariant E1–operads

Since operads make sense in any symmetric monoidal category, we have operads of
categories, spaces, G–categories, and G–spaces. Operads in GU were first used in
[18, Chapter VII]. Although we are only interested in finite groups G in this paper, the
following definition makes sense for any topological group G and is of interest in at
least the generality of compact Lie groups.

Definition 2.1 An E1–operad CG of G–spaces is an operad in the cartesian monoidal
category GU such that CG.0/ is a contractible G–space and the .G�†j /–space CG.j /

is a universal principal .G; †j /–bundle for each j � 1. Equivalently, for a subgroup ƒ
of G �†j , the ƒ–fixed-point space CG.j /

ƒ is contractible if ƒ\†j D feg and is
empty otherwise. We say that CG is reduced if CG.0/ is a point.

As is usual in equivariant bundle theory, we think of G as acting from the left and †j

as acting from the right on the spaces CG.j /. These actions must commute and so
define an action of G � †j . We shall say nothing more about equivariant bundle
theory except to note the following parallel. In [21], an operad C of spaces was
defined to be an E1–operad if C .j / is a free contractible †j –space. Effectively,
C .j / is then a universal principal †j –bundle. If we regard each C .j / as a G–trivial
G–space, such an operad is called a naive E1–operad of G–spaces. Analogously, we
have defined genuine E1–operads by requiring the CG.j / to be universal principal
.G; †j /–bundles. That dictates the appropriate homotopical properties of the CG.j /,
and it is only those homotopical properties and not their bundle-theoretic consequences
that concern us in the theory of operads. The bundle theory implicitly tells us which
homotopical properties are relevant to equivariant infinite loop space theory. Our default
is that E1–operads are understood to be genuine unless otherwise specified.

We give two well-known examples. Recall that a complete G–universe U is a G–inner
product space that contains countably many copies of each irreducible representa-
tion of G ; a canonical choice is the sum of countably many copies of the regular
representation �G .
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Example 2.2 (the Steiner operad KU ) Inclusions V �W induce inclusions of operads
KV ! KW . Let KU be the union over V � U of the operads KV , where U is a
complete G–universe.3 This is the infinite Steiner operad of G–spaces. It is an E1–
operad since †j –acts freely on KU .j / and KU .j /

ƒ is contractible if ƒ�G�†j and
ƒ\†j D e . Indeed, such a ƒ is isomorphic to a subgroup H of G via the projection
G�†j!G, and if we let H act on U through the isomorphism, then U is a complete
H–universe and U H is isomorphic to R1 . Therefore, by the proof of Proposition 1.5,
KU .j /

ƒ is equivalent to the configuration space F.R1; j /, which is contractible.

Example 2.3 (linear isometries operad) The equivariant linear isometries operad LU

was first used in [18, Section VII.1] and is defined just as nonequivariantly (eg [30,
Section 2]). The .G�†j /–space LU .j / is the space of linear isometries U j ! U,
with G acting by conjugation, and LU is an E1–operad of G–spaces if U is a
complete G–universe. Indeed, †j acts freely on LU .j / and LU .j /

ƒ is contractible
if ƒ�G�†j and ƒ\†j D e . If ƒŠH and H acts on U through the isomorphism,
then U is a complete H–universe and LU .j /

H is isomorphic to the space of H–
linear isometries U j ! U. The usual argument that L .j / is contractible (eg [24,
Lemma I.1.3]) adapts to prove that this space is contractible.

We define E1–operads in G–categories in Section 3.3 and give examples in Section 4.2
and Section 7.

Remark 2.4 We will encounter one naturally occurring operad that is not reduced.
When an operad C acts on a space X via maps �i and we choose points ci 2 C .i/,
we have a map �0W C .0/!X and the relation

�2.c2I �0.c0/; �1.c1;x//D �1. .c2I c0; c1/;x/

for x 2X. When the C .i/ are connected, this says that �0.c0/ is a unit element for the
product determined by c2 . Reduced operads give a single unit element. The original
definition [21, 1.1] required operads to be reduced.

Lemma 2.5 Let CG be an E1–operad of G–spaces and define C D .CG/
G. Then C

is an E1–operad of spaces. If Y is a CG–space, then Y G is a C –space.

Proof .CG/
G is an operad since the fixed-point functor commutes with products, and

it is an E1–operad since the space CG.j /
G is contractible and †j –free.

3We denoted the nonequivariant version as C in [30], but we prefer the notation KU here.
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2.2 The infinite loop space machine: orthogonal G –spectrum version

In brief, we have a functor EG D ES
G

that assigns an orthogonal G–spectrum EGY

to a G–space Y with an action by some chosen E1–operad CG of G–spaces. We
want to start with CG–algebras and still exploit the Steiner operads, and we use the
product of operads trick recalled in Section 2.3 to allow this; compare [30, Section 9].
For simplicity of notation, define CV D CG �KV . We use the following observation.

Lemma 2.6 If CG is an E1–operad of G–spaces, then the projection

CV .j /D CG.j /�KV .j /!KV .j /

is a .G�†j /–equivalence for each j .

Proof We must show that for each subgroup ƒ � G � †j , the induced map on
fixed points

CG.j /
ƒ
�KV .j /

ƒ
!KV .j /

ƒ

is an equivalence. If ƒ\ feg �†j D feg, then C .j /ƒ ' �, so the projection is an
equivalence. If ƒ contains a nonidentity permutation, then the fixed points on both
sides are empty. Both sides are trivial if j D 0.

We view CG–spaces as CV –spaces for all V via the projections CV ! CG , and CV

acts on V –fold loop spaces via its projection to KV . Write CV for the monad on based
G–spaces associated to the operad CV . The categories of CV –spaces and CV –algebras
are isomorphic. As in the V –fold delooping argument, the unit �W Id!�V†V of the
monad �V†V and the action � of CV on the G–spaces �V†V X induce a composite
natural map

˛V W CV X
CV �
���!CV�

V†V X
�
�!�V†V X;

and ˛V W CV !�V†V is a map of monads whose adjoint defines a right action of CV

on the functor †V .

Definition 2.7 (from CG–spaces to orthogonal G–spectra) Let Y be a CG–space.
We define an orthogonal G–spectrum EGY , which we denote by ES

G
Y when necessary

for clarity. Let
EGY .V /D B.†V;CV ;Y /:

Using the action of isometric isomorphisms on the KV and †V , as in the previous
section but starting with Y regarded as a constant IG–functor, as we can since its
action by CG is independent of V , this defines an IG–space. The structure G–map

� W †W EGY .V /! EGY .V ˚W /
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is the composite

†W B.†V;CV ;Y /Š B.†V˚W;CV ;Y /! B.†V˚W;CV˚W ;Y /:

obtained by commuting †W with geometric realization and using the map of monads
CV !CV˚W induced by the inclusion i W KV !KV˚W .

Just as in (1.13), we have the diagram of CV –spaces and CV –maps

(2.8) Y
"
 � B.CV ;CV ;Y /

x̨
�! B.�V†V;CV ;Y /

�
�!�V B.†V;CV ;Y /;

where x̨ D B.˛; id; id/. Theorem 1.14 applies verbatim, with the same proof. We let
�V D � ı x̨ ı � , where � is the canonical homotopy inverse to ". Then the following
diagram commutes, where z� is adjoint to � :

Y
�V

yy

�V˚W

''

�V EGY .V /
�V z�

// �V˚W EGY .V ˚W /

Therefore, �V z� is a weak equivalence if V � R. If we replace EGY by a fibrant
approximation REGY , there results a group completion �W Y ! .REGY /0 . We shall
shortly use the category Sp to give an explicit way to think about this.

Remark 2.9 Since K0.0/D f�g, K0.1/D fidg, and K0.j /D∅ for j > 1, we have
that C0 is the identity functor if CG.0/D f�g and CG.1/D fidg. In that case,

EGY .0/D B.†0;C0;Y /D B.Id; Id;Y /Š Y:

We comment on an alternative point of view not taken above but relevant below. We can
use the product of operads trick from [21] to replace a CG–space Y by the equivalent
KU –space B.KU ;CU ;Y /, where CU is the monad associated to the E1–operad
CU D CG �KU and from there only use Steiner operads. However, there is a catch.
A KU –algebra Y is a KV –algebra by restriction, but the constant IG–space Y is not
a K�–G–space in the sense of Definition 1.24 since conjugation by isometries is not
compatible with the inclusions used to define KU . Therefore, the B.†V;KV ;Y / do
not define an IG–space. However, ignoring isometries, they do define a coordinate
free G–prespectrum, as defined in [19, II.1.2]. That can be viewed as the starting point
for the alternative machine we construct next.
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2.3 The infinite loop space machine: Lewis–May G –spectrum version

A Lewis–May (henceforward LM) G–spectrum E consists of G–spaces EV for each
finite-dimensional G–inner product subspace V in a complete G–universe U together
with G–homeomorphisms EV ! �W �V EW whenever V � W . For a based G–
space X we define QGX D colim�V†V X. The suspension LM G–spectrum †1

G
X

has V th G–space QG†
V X, and the functor †1

G
is left adjoint to the zeroth space

functor �1
G

. We sometimes change notation to †1
U

and �1
U

, allowing change of
universe. While GSp is not symmetric monoidal, that is rectified by passage to the
SG–modules of [7], at the inevitable price of losing the adjunction; see [30, Section 11].

The operad KU acts on �1
U

E for any LM G–spectrum E. One could not expect such
precise structure when working with orthogonal G–spectra. Nonequivariantly, such
highly structured infinite loop spaces are central to calculations, and it is to be hoped that
the equivariant theory will eventually reach a comparable state. Therefore, it is natural to
want an infinite loop space machine that lands in the category GSp of LM G–spectra.

The operad KU plays a privileged role. As noted above, if CG is an E1–G–operad, we
can convert CG–spaces to equivalent KU –spaces, so that it suffices to build a machine
for KU –spaces. On the other hand, CG spaces inherit actions of CU D CG �KU ,
so that it suffices to build a machine for CU –spaces. To encompass both of these
approaches in a single machine, we suppose given a map (necessarily an equivalence)
of E1–G–operads OG!KU . We can take OG D CU or OG DKU , but both here
and in [12; 13; 31], our primary interest is in CU . Formally, the equivariant theory now
works in the same way as the nonequivariant theory, and we follow the summary in [30,
Section 9]. An early version of this machine is in the paper [4] of Costenoble and Waner.

Scholium 2.10 We must use the Steiner operads KV and KU rather than the little
disks operads DV and DU , which was the choice in [4], and our notion of an E1–
operad of G–spaces should replace the notion of a complete operad used there.

Definition 2.11 (from OG–spaces to Lewis–May G–spectra) Let Y be an OG–space.
We define a LM G–spectrum EGY , which we denote by ESp

G
when necessary for

clarity, by
EGY D B.†1G ;OG ;Y /:

Here OG acts on †1
G

through its projection to KU .

We have the diagram of OG–spaces and OG–maps

(2.12) Y
"
 � B.OG ;OG ;Y /

x̨U
��! B.QG ;OG ;Y /

�
�!�1G B.†1G ;OG ;Y /D�

1
G EGY;

where x̨U D B.˛U ; id; id/. As explained nonequivariantly in [30, Section 9], the
following analogue of Theorem 1.14 holds.
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Theorem 2.13 Let OG be an E1–G–operad with a map of operads OG!KU . The
following statements hold for an OG–space Y :

(i) The map " is a G–homotopy equivalence with a natural homotopy inverse � .

(ii) The map x̨U is an equivalence when Y is connected and is a group completion
otherwise.

(iii) The map � is an equivalence.

Therefore, the composite

� D � ı x̨U ı �W Y !�1G EGY

is an equivalence if Y is grouplike and is a group completion otherwise.

We shall not pursue this variant of the recognition principle in further detail, but we
reemphasize that its much tighter relationship with space level data may eventually aid
equivariant calculation. However, it is worth stating the alternative geometric version
of the stable BPQ theorem to which it leads. Here we specialize to the case OG DKU .
This allows us to use the pairings of Steiner operads described in Section 1.4, which are
not available for other E1–operads. By passage to colimits, we obtain the following
analogue of Proposition 1.17.

Proposition 2.14 For G–universes U and U 0 , there is a unital, associative, and
commutative pairing

�W .KU ;KU 0/!KU˚U 0

of Steiner operads of G–spaces.

Passing to monads, we obtain a unital, associative, and commutative system of pairings

(2.15) �W KU X ^KU 0Y !KU˚U 0.X ^Y /:

Passage to colimits from Lemma 1.19 gives the following analogue of that result.

Lemma 2.16 The following diagram commutes:

KU X ^KU Y
�

//

˛U^˛U

��

KU˚U .X ^Y /

˛U˚U

��

�1
U
†1

U
X ^�1

U
†1

U
Y

^
// �1

U˚U
†1

U˚U
.X ^Y /

The following recognition principle for pairings can by derived from Proposition 1.20
by passage to colimits or can be proven by the same argument as there. We note that
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our definition of the machine EG depends on a choice of complete G–universe U, and
we sometimes write EU to indicate that choice.

Proposition 2.17 A pairing f W X ^Y !Z of a KU –space X and a KU –space Y

to a KU˚U –space Z induces a map

Ef W EU X ZEU Y ! EU˚U Z

of LM G–spectra indexed on U ˚U such that the following diagram commutes:

X ^Y
�^�
//

f

��

�1
U

EU X ^�1
U

EU Y // �1
U˚U

.EU X ZEU Y /

�1
U˚U

Ef

��

Z
�

// �1
U˚U

EU˚U Z

We can internalize the external smash product, as in [18], by choosing a linear isometry
�W U ˚U ! U. Then � induces a change of universe functor �� which allows us to
replace the right arrow by �1

U
��Ef . In the following result we can either stick with

Lewis–May G–spectra or pass to the SG–modules of [7; 19]. We interpret the smash
product according to choice.

Theorem 2.18 (the KU –space BPQ theorem for Lewis–May G–spectra) For based
G–spaces X, there is a natural equivalence

!W †1U X ! EU KU X

such that the following diagram commutes for based G–spaces X and Y :

†1
U

X ^†1
U

Y

Š

��

!^!
// EU KU X ^EU KU Y

E.�/
��

†1
U
.X ^Y /

!
// EU KU .X ^Y /

Sketch proof The first statement is the usual extra-degeneracy argument [21, Proposi-
tion 9.8]. We comment on the diagram. In either GSp or GZ , it is an internalization
of a diagram of G–spectra indexed on U ˚U:

†1
U

X Z†1
U

Y

Š

��

!Z!
// EU KU X ZEU KU Y

E.�/
��

†1
U˚U

.X ^Y /
!
// EU˚U KU˚U .X ^Y /
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The isomorphism on the left is trivial on the prespectrum level (indexing on inner
product G–spaces of the form V ˚W ) and follows on the spectrum level. After
passage to adjoints, to check commutativity it suffices to check starting from X ^Y on
the bottom left, where an inspection of definitions gives the conclusion. If in GSp , this
is internalized by use of a linear isometry �W U˚U !U. If in GZ , this is internalized
by use of the definition of the smash product in terms of the linear isometries operad LU ,
as in [7; 19].

In fact, with the model-theoretic modernization of the original version of the theory
that is given nonequivariantly in [1], one can redefine the restriction of EU to cofibrant
KU –spaces Y to be

EU Y D†1G ˝KU
Y;

where ˝KU
is the evident coequalizer. With that reinterpretation and taking X to be a

G–CW complex, EU KU X is actually isomorphic to †1
G

X .

The nonequivariant statement is often restricted to the case Y DS0. Then KU S0 is the
disjoint union of operadic models for the classifying spaces B†j . Similarly, KU S0 is
the disjoint union of operadic models for the classifying G–spaces B.G; †j /.

2.4 A comparison of infinite loop space machines

We compare the S and Sp machines ES
G

and ESp
G

by transporting both of them to
the category GZ of SG–modules, following [19]. As discussed in [19, Section IV.4]
with slightly different notation, there is a diagram of Quillen equivalences:

GP
L

//

P

��

GSp
`

oo

F

��

GS

U

OO

N
//
GZ

N#
oo

V

OO

Here GP is the category of coordinate-free G–prespectra. The left adjoint N is strong
symmetric monoidal, and the unit map �W X !N#NX is a weak equivalence for all
cofibrant orthogonal G–spectra X. It can be viewed as a fibrant approximation in the
stable model structure on GS . The pair .N;N#/ is a Quillen equivalence with the
positive stable model structure on GS ; see [19, Sections III.4–5].

We can compare machines using the diagram. In fact, by a direct inspection of defini-
tions, we see the following result, which is essentially a reinterpretation of the original
construction of [21] that becomes visible as soon as one introduces orthogonal spectra.
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Lemma 2.19 The functor ESp
G

from CG–spaces to the category GSp of Lewis–May
G–spectra is naturally isomorphic to the composite functor L ıU ıES

G
.

As explained in [19, Section IV.5], there is a monad L on GSp and a category GSpŒL�
of L–algebras. The left adjoint F in the diagram is the composite of left adjoints

LW GSp!GSpŒL� and J W GSpŒL�!GZ :

The functor L ıU W GS !GSp lands naturally in GSpŒL�, so that we can define

MD J ıL ıU W GS !GZ :

By [19, Lemma IV.5.2 and Theorem IV.5.4], M is lax symmetric monoidal and there
is a natural lax symmetric monoidal map ˛W NX !MX that is a weak equivalence
when X is cofibrant. Effectively, we have two infinite loop space machines landing
in GZ , namely N ıES

G
and J ıESp

G
. In view of the lemma, the latter is isomorphic to

M ıES
G

; hence
˛W N ıES

G !M ıES
G Š J ıESp

G

compares the two machines, showing that they are equivalent for all practical purposes.
Homotopically, these categorical distinctions are irrelevant, and we can use whichever
machine we prefer, deducing properties of one from the other.

2.5 Examples of E1–spaces and E1–ring spaces

Many of the examples from the nonequivariant theory generalize directly to the equi-
variant setting. To illustrate the point of using varying E1–operads and their natural
actions on spaces of interest, rather than just using KU , we focus on actions of the
linear isometries operad LU .

Nonequivariantly, taking U Š R1 , a systematic account of naturally occurring ex-
amples of LU –spaces was already given in [24, Section I.1]. It was revisited briefly
in more modern language [30, Section 2]. It includes the infinite classical groups O,
SO, Spin, U, SU, Sp, their classifying spaces, constructed either using Grassmannian
manifolds or the standard classifying-space functor B, and all of their associated infinite
homogeneous spaces. All of these examples are grouplike, and all of them are given
infinite loop spaces by application of the nonequivariant infinite loop space machine.
The discussion in [24; 30] was in terms of inner-product subspaces V of a universe U.
The point to make here is that the entire exposition works verbatim equivariantly, with
the V being G–inner-product subspaces of our complete G–universe U. We give a
brief account to show the idea.
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As explained in [30, Section 2], an IG–FCP (functor with cartesian product) is a
lax symmetric monoidal functor IG ! TG . We say that an IG–FCP is monoid
valued if it factors through the category of equivariant topological monoids and monoid
homomorphisms. The classical groups all give group-valued IG–FCPs:

V 7!O.V /; V 7! SO.V /; V 7! U.C˝R V /; V 7! SU.C˝R V /; etc:

Any IG–FCP X extends to a functor on all isometries (not just isometric isomorphisms)
as follows: an isometry ˛W V ! W yields an identification W Š ˛.V /˚ ˛.V /? .
Then X.˛/ is the composite

X.V /
X .˛/�0
������!X.˛.V //�X.˛.V /?/!X.˛.V /˚˛.V /?/:

Then the colimit X.U / D colimV X.V / inherits an action of LU . The classifying
space BF of a monoid-valued IG–FCP F is an IG–space, and the cited sources
show that F is equivalent to �BF as an LU –space when F is group valued.

The formal structure of the operad pair .KU ;LU / works the same way equivariantly
as nonequivariantly. It is an E1–operad pair in the sense originally defined in [24,
VI.1.2] and reviewed in [30, Section 1] and, in more detail, [29, 4.2]. See Section 7.2
below for an example of an operad pair in G–categories. The action of LU on KU is
defined nonequivariantly in [30, Section 3], and it works the same way equivariantly.

From here, multiplicative infinite loop space theory works equivariantly to construct
E1–ring G–spectra from .KU ;LU /–spaces, alias E1–ring G–spaces, in exactly the
same way as nonequivariantly [24; 30; 29]. In particular, for any LU –algebra X, the
free KU –algebra KU XC is an E1–ring G–space, where XC is obtained from X

by adjoining an additive G–fixed basepoint 0. The group completion ˛U W KU XC!

QGXC is a map of E1–ring G–spaces, and EGKU XC is equivalent to †1
G

XC as
E1–ring G–spectra.

As we intend to show elsewhere, the passage from category level data to E1–ring
G–spaces, in analogy with [26; 29], generalizes to equivariant multicategories.

We remark that the usual construction of Thom G–spectra, such as MOG and MUG ,
already presents them as E1–ring G–spectra, without use of infinite loop space theory,
as was explained and generalized in [18, Chapter X].

2.6 Some properties of equivariant infinite loop space machines

Many properties of the infinite loop space machine EG follow directly from the
group completion property, independent of how the machine is constructed, but it
is notationally convenient to work with the machine ESp

G
, for which � is a natural
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group completion without any bother with fibrant approximation. The results apply
equally well to ES

G
. It is plausible to hope that the group completion property actually

characterizes the machine up to homotopy, as in [32], but the proof there fails equiv-
ariantly. A direct point-set level comparison of our machine with a new version of
the Segal–Shimakawa machine will be given in [31]. We illustrate with the following
two results, some version of which must hold for any equivariant infinite loop space
machine EG . The first says that it commutes with passage to fixed points and the
second says that it commutes with products, both up to weak equivalence.

Theorem 2.20 For CG–spaces Y , there is a natural map of spectra

�W E.Y G/! .EGY /G

that induces a natural map of spaces under Y G

Y G

�

zz

�G

%%

�1E.Y G/ // .�1
G

EGY /G

in which the diagonal arrows are both group completions. Therefore, the horizontal
arrow is a weak equivalence of spaces, and � is a weak equivalence of spectra.

Proof For based G–spaces X, we have natural inclusions CU G .X G/! .CU X /G and
†1.X G/! .†1

G
X /G. For G–spectra E, we have a natural isomorphism �1.EG/Š

.�1
G

E/G. This gives the required natural map of spectra

E.Y G/D B.†1;CU G ;Y G/
�
�! .B.†1G ;CU ;Y //

G
D .EGY /G

and the induced natural map of spaces under Y G. Since the diagonal arrows in the
diagram are group completions, the horizontal arrow must be a homology isomorphism
and hence a weak equivalence. Since our spectra are connective, � must also be a
weak equivalence.

Theorem 2.21 Let X and Y be CG–spaces. Then the map

EG.X �Y /! EGX �EGY

induced by the projections is a weak equivalence of G–spectra.

Proof We are using that the product of CG–spaces is a CG–space, the proof of
which uses that the category of operads is cartesian monoidal. Working in GSp , the
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functor �1
G

commutes with products and passage to fixed points, and we have the
commutative diagram:

.X �Y /H ŠX H �Y H

�H

uu

�H��H

**

.�1
G

EG.X �Y //H // .�1
G

EGX /H � .�1
G

EGY /H

Since the product of group completions is a group completion, the diagonal arrows are
both group completions. Therefore, the horizontal arrow is a weak equivalence. Since
our spectra are connective, the conclusion follows.

2.7 The recognition principle for naive G –spectra

We elaborate on Theorem 2.20. The functor EDEe in that result is the nonequivariant
infinite loop space machine, which is defined using the product of the nonequivariant
Steiner operad K DKU G and the fixed-point operad C D .CG/

G. We may think of U G

as R1 , without reference to U, and start with any (naive) E1–operad C to obtain
a recognition principle for naive G–spectra, which are just spectra with G–actions.
Again we can use either the category S of orthogonal spectra or the category Sp

of Lewis–May spectra, comparing the two by mapping to the category Z of EKMM
S–modules, but letting G act on objects in all three. We continue to write E for this
construction since it is exactly the same construction as the nonequivariant one, but
applied to G–spaces with an action by the G–trivial E1–operad C.

It is worth emphasizing that when working with naive G–spectra, there is no need to
restrict to finite groups. We can just as well work with general topological groups G. The
machine E still enjoys the same properties, including the group completion property.
Working with Lewis–May spectra, the adjunction .†1; �1/ relating spaces and
spectra applies just as well to give an adjunction relating based G–spaces and naive G–
spectra. For based G–spaces X, the map ˛W C X !�1†1X is a group completion
of Hopf G–spaces by the nonequivariant special case since .C X /H DC .X H / and
.�1†1X /H D�1†1.X H /.

Returning to finite groups, we work with Lewis–May spectra and G–spectra in the rest
of this section in order to exploit the more precise relationship between spaces and
spectra that holds in that context. However, the conclusions can easily be transported
to orthogonal spectra. We index genuine G–spectra on a complete G–universe U and
we index naive G–spectra on the trivial G–universe U G Š R1 . The inclusion of
universes i W U G!U induces a forgetful functor i�W GSpU !GSpU G

from genuine
G–spectra to naive G–spectra. It represents the forgetful functor from RO.G/–graded
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cohomology theories to Z–graded cohomology theories. The functor i� has a left
adjoint i� . The following observations are trivial but important.

Lemma 2.22 The functors i�†
1 and †1

G
from based G–spaces to genuine G–

spectra are isomorphic.

Proof Clearly �1�� D �1
G

, since both are evaluation at V D 0, hence their left
adjoints are isomorphic.

Remark 2.23 For G–spaces X, the unit of the .i�; i�/ adjunction gives a natural
map †1X ! i�i�†

1X Š ��†1
G

of naive G–spectra. It is very far from being an
equivalence, as the tom Dieck splitting theorem shows; see Theorem 6.5.

The inclusion of universes i W U G ! U induces an inclusion of operads of G–spaces
�W KU G !KU , where G acts trivially on KU G . The product of this inclusion and the
inclusion �W C D .CG/

G! CG is an inclusion

�W CU G � C �KU G ! CG �KU � CU :

Pulling actions back along � gives a functor �� from CU –spaces to CU G –spaces. The
following consistency statement is important since, by definition, the H–fixed-point
spectrum EH of a genuine G–spectrum E is .i�E/H and the homotopy groups of E

are �H
� .E/� ��.E

H /.

Theorem 2.24 Let Y be a CG–space. Then there is a natural weak equivalence of
naive G–spectra E��Y ! i�EGY .

Proof Again, although we work with ESp
G

, the conclusion carries over to ES
G

. It is
easy to check from the definitions that, for G–spaces X, we have a natural commutative
diagram of G–spaces:

CU G X
˛
//

��

�1†1X

��

CU X
˛
// �1

G
†1

G
X

The vertical arrows both restrict colimits over representations to colimits over trivial
representations. Passing to adjoints, we obtain a natural commutative diagram:

†1
G

CU G X //

��

†1X

��

†1
G

CU X // †1
G

X
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The composite gives a right action of CU G on †1
G

that is compatible with the right
action of CU . Using the natural map †1! i�†1

G
of Remark 2.23, there results a

natural map

�W E��Y D B.†1;CU G ; ��Y /! B.i�†1G ;CU ;Y /Š i�EGY

of naive G–spectra. The following diagram commutes by a check of definitions:

Y

D

��

B.CU G ;CU G ; ��Y /
"
oo

B.˛;id;id/
//

��

B.Q;CU G ;Y /
�
//

��

�1B.†1;CU G ;Y /

�1�

��

Y B.CG ;CG ;Y /
"

oo
B.˛;id;id/

// B.QG ;CU ;Y /
�
// �1

G
B.†1

G
;CU ;Y /

Here the right vertical map is the map of zeroth spaces given by �. Replacing the maps "
with their homotopy inverses, the horizontal composites become group completions.
Therefore, �1� is a weak equivalence, hence so is �.

We also have the corresponding statement for the left adjoint i� of i� . In effect, it
gives a space level construction of the change of universe functor i� on connective
G–spectra. We need a homotopically well-behaved version of the left adjoint of the
functor �� from C –spaces to CG–spaces, and we define it by �!X D B.CG ;C ;X /.

Theorem 2.25 Let X be a C –space. Then there is a natural weak equivalence of
genuine G–spectra EG.i!X /' i�E.X /.

We give the proof in Appendix B, using a construction that is of independent interest.

3 Categorical preliminaries on classifying G–spaces
and G–operads

We recall an elementary functor Cat.EG;�/ from G–categories to G–categories from
our paper [11] with Mona Merling. We explored this functor in detail in the context of
equivariant bundle theory in [11], and we refer the reader there for proofs. In Section 4,
we shall use it to define a certain operad PG of G–categories. The PG–algebras will
be the genuine permutative G–categories.

3.1 Chaotic topological categories and equivariant classifying spaces

For (small) categories A and B, we let Cat.A ;B/ denote the category whose objects
are the functors A !B and whose morphisms are the natural transformations between
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them. When B has a right action by some group …, then Cat.A ;B/ inherits a right
…–action. When a group G acts from the left on A and B, Cat.A ;B/ inherits
a left G–action by conjugation on objects and morphisms. Then GCat.A ;B/ is
alternative notation for the G–fixed category Cat.A ;B/G of G–functors and G–
natural transformations. We have the G–equivariant version of the standard adjunction

(3.1) Cat.A �B;C /Š Cat.A ;Cat.B;C //:

Definition 3.2 For a space X, the chaotic (topological) category EX has object
space X, morphism space X � X, and structure maps I, S, T , and C given by
I.x/ D .x;x/, S.y;x/ D x , T .y;x/ D y , and C..z;y/; .y;x// D .z;x/. For any
point � 2 X, the map �W X ! X �X specified by �.x/ D .�;x/ is a continuous
natural isomorphism from the identity functor to the trivial functor EX !�! EX ,
hence EX is equivalent to �. When X DG is a topological group, EG is isomorphic
to the translation category of G, but the isomorphism encodes information about the
group action and should not be viewed as an identification; see [11, Remark 1.7]. We
say that a topological category with object space X is chaotic if it is isomorphic to EX .

Definition 3.3 Without changing notation, we regard a topological group … as a
topological category with a single object � and morphism space …, with composition
given by multiplication. Then … is isomorphic to the orbit category E…=…, where
… acts from the right on E… via right multiplication on objects and diagonal right
multiplication on morphisms. The resulting functor pW E…!… is given by the trivial
map …!� of object spaces and the map pW …�…!…�…=…Š… on morphism
spaces specified by p.�; �/D ���1 .

Theorem 3.4 [11, Theorem 2.7] For a G–space X and a topological group …,
regarded as a G–trivial G–space, the functor pW E…!… induces an isomorphism of
topological G–categories

�W Cat.EX; E…/=…! CatG.EX;…/:

Therefore, passing to G–fixed-point categories,

.Cat.EX; E…/=…/G Š Cat.EX;…/G Š Cat.EX=G;…/:

The last isomorphism is clear since G acts trivially on …. Situations where G is allowed
to act nontrivially on … are of considerable interest, as we shall see in Section 4.4,
but otherwise they will only appear peripherally in this paper. The paper [11] works
throughout in that more general context. The previous result will not be used directly,
but it is the key underpinning for the results of the next section.

Algebraic & Geometric Topology, Volume 17 (2017)



Equivariant iterated loop space theory and permutative G–categories 3297

3.2 The functor Cat.EG;�/

The functor Cat.EG;�/ from G–categories to G–categories is a right adjoint (3.1),
hence it preserves limits and in particular products. The projection EG ! � to the
trivial G–category induces a natural map

(3.5) �W A D Cat.�;A /! Cat.EG;A /:

The map � is not an equivalence of G–categories in general [11, Proposition 4.19], but
the functor Cat.EG;�/ is idempotent in the sense that the following result holds.

Lemma 3.6 For any G–category A ,

�W Cat.EG;A /! Cat.EG;Cat.EG;A //

is an equivalence of G–categories.

Proof This follows from the adjunction (3.1) using that the diagonal EG! EG�EG

is an equivalence with inverse given by either projection and that the specialization of �
here is induced by the first projection.

Lemma 3.7 [11, Lemma 3.7] Let ƒ be a subgroup of G�…. The ƒ–fixed category
Cat.EG; E…/ƒ is empty if ƒ\…¤ e and is nonempty and chaotic if ƒ\…D e .

With G acting trivially on …, let H 1.GI…/ denote the set of isomorphism classes
of homomorphisms ˛W G!…. Equivalently, it is the set of …–conjugacy classes of
subgroups ƒD f.g; ˛.g// j g 2Gg of G �…. Define …˛ �… to be the subgroup of
elements � that commute with ˛.g/ for all g 2G.

Theorem 3.8 [11, Theorems 4.14 and 4.18] For H � G, the H–fixed category
Cat.EG;…/H is equivalent to the coproduct of the groups …˛ (regarded as categories),
where the coproduct runs over Œ˛� 2H 1.H I…/.

Definition 3.9 Define E.G;…/DjCat.EG; E…/j and B.G;…/DjCat.EG;…/j. Let

pW E.G;…/! B.G;…/

be induced by the passage to orbits functor E…!….

Theorem 3.10 [11, Theorems 3.11, 4.23, 4.24] Let … be a discrete or compact Lie
group and let G be a discrete group. Then pW E.G;…/! B.G;…/ is a universal
principal .G;…/–bundle. For a subgroup H of G,

B.G;…/H '
G

B.…˛/;

where the union runs over Œ˛� 2H 1.H I…/.
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3.3 E1–operads of G –categories

The definition of an E1–operad of G–spaces given in Section 2.1 has the following
categorical analogue.

Definition 3.11 An E1–operad OG of (topological) G–categories is an operad in
the cartesian monoidal category GCat such that jOG j is an E1–operad of G–spaces.
We say that OG is reduced if OG.0/ is the trivial category. In practice, the OG.j / are
groupoids.

The proof of Lemma 2.5 works just as well to give the following analogue.

Lemma 3.12 Let OG be an E1–operad of G–categories. Then O D .OG/
G is an

E1–operad of categories. If A is an OG–category, then A G is an O–category.

4 Categorical philosophy: what is a permutative
G–category?

4.1 Naive permutative G –categories

We have a notion of a monoidal category A internal to a cartesian monoidal category V .
It is a category internal to V together with a coherently associative and unital product
A �A ! A . It is strict monoidal if the product is strictly associative and unital. It is
symmetric monoidal if it has an equivariant symmetry isomorphism satisfying the usual
coherence properties. A functor F W A !B between symmetric monoidal categories
is strict monoidal if F.A˝A0/ D FA˝FA0 for A,A0 2 A and FI D J, where I

and J are the unit objects of A and B.

A permutative category is a symmetric strict monoidal category.4 Taking V to be U ,
these are the topological permutative categories. Taking V to be GU , these are the
naive topological permutative G–categories.

Nonequivariantly, there is a standard E1–operad of spaces that is obtained by applying
the classifying-space functor to an E1–operad P of categories. The following
definition goes back to Barratt and Eccles, thought of simplicially [2], and to [22],
thought of categorically.

4In interesting examples, the product cannot be strictly commutative.
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Definition 4.1 We define an E1–operad P of categories. Let P.j /D E†j . Since
†j acts freely and E†j is chaotic, the classifying space jP.j /j is †j –free and
contractible, as required of an E1–operad. The structure maps

 W E†k � E†j1
� � � � � E†jk

! E†j ;

where j D j1C � � �C jk , are dictated on objects by the definition of an operad. If we
view the object sets of the P.j / as discrete categories (identity morphisms only), then
they form the associativity operad M.

We can define M–algebras and P–algebras in Cat or in GCat . In the latter case, we
regard M and P as operads with trivial G–action. The following result characterizes
naive permutative G–categories operadically. The proof is easy [22].

Proposition 4.2 The category of strict monoidal G–categories and strict monoidal G–
functors is isomorphic to the category of M–algebras in GCat . The category of naive
permutative G–categories and strict symmetric monoidal G–functors is isomorphic to
the category of P–algebras in GCat .

The term “naive” is appropriate since naive permutative G–categories give rise to
naive G–spectra on application of an infinite loop space machine. Genuine permutative
G–categories need more structure, especially precursors of transfer maps, to give rise
to genuine G–spectra. Nonequivariantly, there is no distinction.

4.2 Genuine permutative G –categories

The following observation will play a helpful role in our work. Recall the natural map
�W A ! Cat.EG;A / of (3.5).

Lemma 4.3 For any space X regarded as a G–trivial G–space, �W EX!Cat.EG; EX /

is the inclusion of the G–fixed category GCat.EG; EX /.

Proof Since EX is chaotic, functors EG! EX are determined by their object map
G!X and are G–fixed if and only if the object map factors through G=G D �.

Definition 4.4 Let PG be the (reduced) operad of G–categories whose j th G–
category is PG.j /DCat.EG;P.j //, where P.j /D E†j is viewed as a G–category
with trivial G–action and is given its usual right †j –action. The unit in PG.1/ is the
unique functor from EG to the trivial category P.1/DPG.1/. The structure maps 
of PG are induced from those of P, using that the functor Cat.EG;�/ preserves
products. By Theorem 3.10, PG is an E1–operad of G–categories. The natural map �
of (3.5) induces an inclusion �W P D .PG/

G!PG of operads of G–categories.
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Definition 4.5 A genuine permutative G–category is a PG–algebra in GCat . A map
of genuine permutative G–categories is a map of PG–algebras.

We usually call these PG–categories. We have an immediate source of examples.
Let �� be the functor from genuine permutative G–categories to naive permutative
G–categories that is obtained by restricting actions by PG to its suboperad P.

Proposition 4.6 The action of P on a naive permutative G–category A induces an
action of PG on Cat.EG;A /. Therefore, Cat.EG;�/ restricts to a functor from naive
permutative G–categories to genuine permutative G–categories.

Proof This holds since the functor Cat.EG;�/ preserves products.

Proposition 4.7 The map � of (3.5) restricts to a natural map A ! ��Cat.EG;A / of
naive permutative G–categories, and � is an equivalence when A D ��Cat.EG;B/ for
a naive permutative G–category B.

Proof Since � is induced by the projection EG! Efeg D �, the first claim is clear,
and the second holds by Lemma 3.6.

As noted before, the map �W A ! ��Cat.EG;A / is not an equivalence in general
[11, Proposition 4.19]. The PG–categories of interest in this paper are of the form
Cat.EG;A / for a naive permutative G–category A . In fact, we do not yet know how
to construct other examples, although we believe that they exist.

Remark 4.8 Shimakawa [43, page 256] introduced the E1–operad PG under the
name D and demonstrated the first part of Proposition 4.6.

Remark 4.9 One might hope that .Cat.EG;�/; ��/ is an adjoint pair. However,
regarding �� monadically as the forgetful functor from PG–algebras to P–algebras,
its left adjoint is the coend that sends a naive permutative G–category A to the
genuine permutative G–category PG ˝P A , which is the coequalizer in GCat of
the maps PGPA � PGA induced by the action map PA ! A and by the map
PGP ! PGPG! PG induced by the inclusion P ! PG and the product on PG . The
universal property of the coequalizer gives a natural map

z�W PG ˝P A ! Cat.EG;A /

of genuine permutative G–categories that restricts to � on A , but z� is not an isomorphism.
We shall say a bit more about this in Remark 4.20.
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4.3 E1–G –categories

We can generalize the notion of a genuine permutative G–category by allowing the use
of E1–operads other than PG . In fact, thinking as algebraic topologists rather than cat-
egory theorists, there is no need to give the particular E1–operad PG a privileged role.

Definition 4.10 An E1–G–category A is a G–category together with an action of
some E1–operad OG of G–categories. The classifying space BA D jA j is then an
jOG j–space and thus an E1–G–space.

We may think of E1–G–categories as generalized kinds of genuine permutative G–
categories. The point of the generalization is that we have interesting examples of
E1–operads of G–categories with easily recognizable algebras. We shall later define
E1–operads VG , V �

G
, and WG that are interrelated in a way that illuminates the study

of multiplicative structures.

Observe that PG–algebras, like nonequivariant permutative categories, have a canonical
product, whereas E1–G–categories over other operads do not. The general philosophy
of operad theory is that algebras over an operad C in any suitable category V have j –
fold operations parametrized by the objects C .j /. Homotopical properties of C relate
these operations. In general, in an E1 space, there is no preferred choice of a product
on its underlying H–space, and none is relevant to the applications; E1–G–categories
work similarly.

Remark 4.11 Symmetric monoidal categories occur more often “in nature” than
permutative categories. We have not specified a notion of a genuine symmetric monoidal
G–category in this paper. One approach is to apply the construction Cat.EG;�/ to
the tree operad that defines symmetric monoidal categories. Another approach, which
we find more useful, is to define a genuine symmetric monoidal G–category to be a
pseudoalgebra over PG . That approach is developed and applied in the categorical
sequels [12; 13]. We shall not pursue the topic further here. A first comparison
between symmetric monoidal G–categories and (genuine) G–symmetric monoidal
categories, whose definition is a priori quite different, is given in Hill and Hopkins
[16, Section 3.2], but work in progress shows that there is a good deal more to be said
about that comparison and about the comparison between these notions and Tambara
functors that is given in [16, Section 5.1].

Up to homotopy, any two choices of E1–operads give rise to equivalent categories
of E1–G–spaces. To see that, we apply the trick from [21] of using products of
operads to transport operadic algebras from one E1–operad to another. The product
of operads C and D in any cartesian monoidal category V is given by

.C �D/.j /D C .j /�D.j /;
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with the evident permutations and structure maps. With the choices of V of interest to
us, the product of E1–operads is an E1–operad. The projections

C  C �D! D

allow us to construct .C�D/–algebras in V from either C –algebras or D–algebras
in V , by pullback of action maps along the projections.

More generally, for any map �W C !D of operads in V , the pullback functor �� from
D–algebras to C –algebras has a left adjoint pushforward functor �! from C –algebras
to D–algebras. One can work out a homotopical comparison model categorically.
Pragmatically, use of the two-sided bar construction as in [21; 30] gives all that is
needed. One redefines �!X D B.D;C;X /, where C and D are the monads whose
algebras are the C –algebras and D–algebras.5 In spaces, or equally well G–spaces,
�� and �! give inverse equivalences of homotopy categories between C –algebras and
D–algebras when C and D are E1–operads.

Starting with operads in Cat or in GCat we can first apply the classifying-space
functor and then apply this trick. The conclusion is that all E1–categories and E1–
G–categories give equivalent inputs for infinite loop space machines. In particular,
for example, letting OG , PG , and OG �PG denote the monads in the category of
G–spaces whose algebras are jOG j–algebras, jPG j–algebras, and jOG�PG j–algebras,
we see that after passage to classifying spaces, every PG–algebra Y determines an
OG–algebra X D B.OG ;OG �PG ;Y / such that X and Y are weakly equivalent as
.OG�PG/–algebras (and conversely). This says that for purposes of equivariant infinite
loop space theory, PG and any other E1–operad OG can be used interchangeably,
regardless of how their algebras compare categorically.

4.4 Equivariant algebraic K–theory

The most interesting nonequivariant permutative categories are given by categories
A D

F
…n , where f…n j n� 0g is a sequence of groups (regarded as categories with a

single object) and where the permutative structure is given by an associative and unital
system of pairings …m �…n!…mCn . Then the pairings give the classifying space
BA D

F
B…n a structure of topological monoid, and one definition of the algebraic

K–groups of A is the homotopy groups of the space �B.BA /.

Equivariantly, it is sensible to replace the spaces B…n by the classifying G–spaces
B.G;…n/ and proceed by analogy. This definition of equivariant algebraic K–groups
was introduced and studied calculationally in [9]. It is the equivariant analogue of

5Of course, this is an abuse of notation, since �! here is really a derived functor.
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Quillen’s original definition in terms of the plus construction. With essentially the same
level of generality, the analogue of Quillen’s definition in terms of the Q–construction
has been studied by Dress and Kuku [6; 17]. Shimada [44] has given an equivariant
version of Quillen’s “plus D Q” theorem in this context.

Regarding A as a G–trivial naive permutative G–category, we see that the classifying
G–space of the genuine permutative G–category Cat.EG;A / is the disjoint union of
classifying spaces B.G;…n/. Just as nonequivariantly, the functor �B can be replaced
by the zeroth space functor �1

G
EG of an infinite loop G–space machine EG . The

underlying equivariant homotopy type is unchanged. Therefore, we may redefine the
algebraic K–groups to be the homotopy groups of the genuine G–spectrum KGA �

EGBCat.EG;A /. Essentially the same definition is implicit in Shimakawa [43], who
focused on an equivariant version of Segal’s infinite loop space machine. A different
equivariant version of Segal’s machine is developed and compared to Shimakawa’s
in [31]. It is generalized categorically in [12; 13].

Applying the functor Cat.EG;�/ to naive permutative G–categories A with nontrivial
G–actions gives more general input for equivariant algebraic K–theory than has been
studied in the literature. This allows for G–actions on the groups …n , and we then
replace B.G;…n/ by classifying G–spaces B.G; .…n/G/ for the .G; .…n/G/–bundles
associated to the split extensions …n ÌG. Such classifying spaces are studied in [11].
Alternative but equivalent constructions of the associated G–spectra KG.A / are given
in Section 4.5 and Section 8.2 below. The resulting generalization of equivariant
algebraic K–theory is studied in [33].

4.5 The recognition principle for permutative G –categories

We may start with any E1–operad OG of G–categories and apply the classifying-
space functor to obtain an E1–operad jOG j of G–spaces. If OG acts on a category A ,
then jOG j acts on jA j D BA . We can replace jOG j by its product with the Steiner
operads KV or with the Steiner operad KU and apply the functor ES

G
or ESp

G
to obtain

a (genuine) associated G–spectrum, which we denote ambiguously by EG.BA /.

Definition 4.12 Define the (genuine) algebraic K–theory G–spectrum of an OG–
category A by KG.A /D EG.BA /.

We might also start with an operad O of categories such that jOj is an E1–operad of
spaces and regard these as G–objects with trivial action. Following up the previous
section, we then have the following related but less interesting notion.

Definition 4.13 The (naive) algebraic K–theory G–spectrum of an O–category A is
defined by K.A /D E.BA /.
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Until Section 7, we restrict attention to the cases OG DPG and O DP, recalling that
the PG–categories are the genuine permutative G–categories, the P–categories are
the naive permutative G–categories, and the inclusion �W P!PG induces a forgetful
functor �� from genuine to naive permutative G–categories. Since the classifying-
space functor commutes with products, passage to fixed points, and the functors ��,
Theorems 2.20, 2.21, and 2.24 have the following immediate corollaries. The first was
promised in [10, Theorem 2.2].

Theorem 4.14 For PG–categories A , there is a natural weak equivalence of spectra

K.A G/! .KGA /G :

Theorem 4.15 Let A and B be PG–categories. Then the map

KG.A �B/!KGA �KGB

induced by the projections is a weak equivalence of G–spectra.

Theorem 4.16 For PG–categories A , there is a natural weak equivalence of naive
G–spectra K��A ! i�KGA .

The algebraic K–groups of A are defined to be the groups

(4.17) KH
� A D �H

� .K�
�A /Š �H

� .KGA /:

We are particularly interested in examples of the form Cat.EG;A /, where A is a
naive permutative G–category. As noted in Proposition 4.6, we then have a natural map
�W A ! ��Cat.EG;A / of naive permutative G–categories. We can pass to classifying
spaces and apply the functor E to obtain a natural map

(4.18) KA
K�
��!K��Cat.EG;A /

�
��!
'

i�KGCat.EG;A /:

This map is a weak equivalence when �H W A H ! .��Cat.EG;A //H is an equivalence
of categories for all H �G. The following example where this holds is important in
equivariant algebraic K–theory.

Example 4.19 Let E be a Galois extension of F with Galois group G and let G

act entrywise on GL.n;E/ for n� 0. The disjoint union of the GL.n;E/ is a naive
permutative G–category that we denote by GL.EG/. Its product is given by the block
sum of matrices. Write GL.R/ for the nonequivariant permutative general linear
category of a ring R. As we proved in [11, Example 4.20], Serre’s version of Hilbert’s
Theorem 90 implies that

�H W GL.EH /Š GL.EG/
H
! .��Cat.EG;GL.EG//

H
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is an equivalence of categories for H � G. This identifies the equivariant algebraic
K–groups of E with the nonequivariant algebraic K–groups of its fixed fields EH .

Remark 4.20 In the list above of theorems about permutative categories, a conse-
quence of Theorem 2.25 is conspicuous by its absence. Letting �!A � PG ˝P A

denote the left adjoint of �� , as defined in Remark 4.9, one might hope that B�!A is
equivalent as an jPG j–space to �!BA for a naive permutative G–category A . We do
not know whether or not that is true.

5 The free jPG j–space generated by a G–space X

The goal of this section is to obtain a decomposition of the fixed point categories of
free permutative G–categories. This decomposition will be the crux of the proof of the
tom Dieck splitting theorem given in Section 5.2.

5.1 The monads PG and PG associated to PG

Recall that PG is reduced. In fact, both PG.0/ and PG.1/ are trivial categories. As
discussed for spaces in [30, Section 4], there are two monads on G–categories whose
algebras are the genuine permutative G–categories. The unit object of an PG–category
can be preassigned, resulting in a monad PG on based G–categories, or it can be
viewed as part of the PG–algebra structure, resulting in a monad PGC on unbased
G–categories. Just as in [30], these monads are related by

PG.AC/Š PGCA ;

where ACDA t� is obtained from an unbased G–category A by adjoining a disjoint
copy of the trivial G–category �. Explicitly,

(5.1) PG.AC/D
G
j�0

PG.j /�†j
A j :

The term with j D 0 is � and accounts for the copy of � on the left. The unit �W A !
PG.AC/ identifies A with the term with j D 1. The product �W PGPGAC! PGAC
is induced by the operad structure maps  . We are only concerned with based G–
categories that can be written in the form AC .

Since we are concerned with the precise point-set relationship between an infinite loop
space machine defined on G–categories and suspension G–spectra, it is useful to think
of (unbased) G–spaces X as categories. Thus we also let X denote the topological
G–category with object and morphism G–space X and with I, S, T , and C all given
by the identity map X !X ; this makes sense for C since we can identify X �X X

with X. We can also identify the classifying G–space jX j with X.
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By specialization of (5.1), we have an identification of (topological) G–categories

(5.2) PG.XC/D
G
j�0

PG.j /�†j
X j :

The following illuminating result gives another description of PG.XC/.

Proposition 5.3 For G–spaces X, there is a natural isomorphism of genuine permuta-
tive G–categories

PG.XC/D
G
j

Cat.EG;E†j /�†j
Xj
!

G
j

Cat.EG; E†j�†j
Xj /DCat.EG;P .XC//:

Proof For each j and for .G�†j /–spaces Y , such as Y DX j, we construct a natural
isomorphism of .G�†j /–categories

Cat.EG; E†j /�Y ! Cat.EG; E†j �Y /:

Here Y is viewed as the constant .G�†j /–category at Y . The target is

Cat.EG; E†j /�Cat.EG;Y /:

Since there is a map between any two objects of EG but the only maps in Y are
identity maps iy W y ! y for y 2 Y , the only functors EG ! Y are the constant
functors cy at y 2Y and the only natural transformations between them are the identity
transformations idy W cy! cy . Sending y to cy on objects and iy to idy on morphisms
specifies an identification of .G�†j /–categories Y ! Cat.EG;Y /. The product of
the identity functor on Cat.EG; E†j / and this identification gives the desired natural
equivalence. With Y DX j, passage to orbits over †j gives the j th component of the
claimed isomorphism of G–categories. It is an isomorphism of PG–categories since
on both sides the action maps are induced by the structure maps of the operad P.

Recall that we write PG for the monad on based G–spaces associated to the operad jPGj.
Thus PG.XC/ is the free jPG j–space generated by the G–space X.

Proposition 5.4 For G–spaces X, there is a natural isomorphism

PG.XC/D
G
j�0

jPG.j /j �†j
X j
Š jPGXCj:

Proof For a .G�†j /–space Y viewed as a G–category, the nerve N Y can be
identified with the constant simplicial space Y� with Yq D Y . The nerve functor N
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does not commute with passage to orbits in general, but arguing as in [11, Section 2.3] we
see that

N.PG.j /�†j
Y /Š .N PG.j //�†j

Y� DN.PG.j /�†j
N Y /:

Therefore, the classifying-space functor commutes with coproducts, products, and the
passage to orbits that we see here.

5.2 The identification of .PG XC/G

The functor j � j commutes with passage to G–fixed points, and we shall prove the
following identification. Let P denote the monad on nonequivariant based categories
associated to the operad P that defines permutative categories.

Theorem 5.5 For G–spaces X, there is a natural equivalence of P–categories

PG.XC/
G
'

Y
.H /

P .EWH �WH X H /C;

where .H / runs over the conjugacy classes of subgroups of G and WH DNH=H.

We are regarding P as the suboperad .PG/
G of PG , and the identification of cate-

gories will make clear that the identification preserves the action by P. Of course,

(5.6) PG.XC/
G
D

G
j�0

.PG.j /�†j
X j /G

and

(5.7) P .EWH �WH X H /C D
G
k�0

E†k �†k
.EWH �WH X H /k :

We shall prove Theorem 5.5 by identifying both (5.6) and (5.7) with a small (but
not skeletal) model FG.X /

G for the category of finite G–sets over X and their
isomorphisms over X. We give the relevant definitions and describe these identifications
here, and we fill in the easy proofs in Sections 5.3 and 5.4.

A homomorphism ˛W G ! †j is equivalent to the left action of G on the set j D

f1; : : : ; j g specified by g � i D ˛.g/.i/ for i 2 j . Similarly, an antihomomorphism
˛W G! †j is equivalent to the right action of G on j specified by i � g D ˛.g/.i/

or, equivalently, the left action specified by g � i D ˛.g�1/.i/; of course, if we set
˛�1.g/D ˛.g/�1 , then ˛�1 is a homomorphism. We focus on homomorphisms and
left actions, and we denote such G–spaces by .j ; ˛/. When we say that A is a finite
G–set, we agree to mean that AD .j ; ˛/ for a given homomorphism ˛W G!†j . That
convention has the effect of fixing a small groupoid GF equivalent to the groupoid of
all finite G–sets and isomorphisms of finite G–sets. By a j –pointed G–set, we mean
a G–set with j elements.

Algebraic & Geometric Topology, Volume 17 (2017)



3308 Bertrand J Guillou and J Peter May

Definition 5.8 Let X be a G–space and j � 0.

(i) Let FG.j / be the G–groupoid whose objects are the j –pointed G–sets A and
whose morphisms � W A! B are the bijections, with G acting by conjugation.
Then FG.j /

G is the category with the same objects and with morphisms the
isomorphisms of G–sets � W A! B.

(ii) Let FG.j ;X / be the G–groupoid whose objects are the maps (not G–maps)
pW A!X and whose morphisms f W p! q , for qW B!X, are the bijections
f W A! B such that q ıf D p ; the action of G is by conjugation on all maps
p , q , and f . We view FG.j ;X /

G as the category of j –pointed G–sets over X

and isomorphisms of j –pointed G–sets over X.

(iii) Let FG D
F

j�0 FG.j / and FG.X /D
F

j�0 FG.j ;X /.

(iv) Let FP
G
.j / be the full G–subcategory of G–fixed objects of PG.j /=†j and let

FP
G
.j;X / be the full G–subcategory of G–fixed objects of PG.j /�†j

X j. Then

FP
G .j /

G
D .PG.j /=†j /

G and FP
G .j ;X /

G
D .PG.j /�†j

X j /G :

In Section 5.3, we prove that the right side of (5.6) can be identified with FG.X /
G.

Theorem 5.9 There is a natural isomorphism of permutative categories

.PG.XC//
G
D

G
j�0

FP
G .j ;X /

G
Š

G
j�0

FG.j ;X /
G
DFG.X /

G :

We will prove an equivariant variant of this result, before passage to fixed points, in
Theorem 9.6. In Section 5.4, we prove that the right side of (5.7) can also be identified
with FG.X /

G. At least implicitly, this identification of fixed-point categories has been
known since the 1970s; see for example Nishida [36, Appendix A].

Theorem 5.10 There is a natural equivalence of categoriesY
.H /

G
k�0

E†k �†k
.EWH �WH X H /k !

G
j�0

FG.j ;X /
G
DFG.X /

G :

These two results prove Theorem 5.5.

Remark 5.11 With our specification of finite G–sets as AD .j ; ˛/, the disjoint union
of A and B D .k; ˇ/ is obtained via the obvious identification of j tk with j Ck.
The disjoint union of finite G–sets over a G–space X gives FG.X / a structure of
naive permutative G–category. By Theorem 5.9, its fixed-point category FG.X /

G is
a P–category equivalent to .PG.XC//

G. One might think that FG.X / is a genuine
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permutative G–category equivalent to the free PG–category PG.XC/. However, its
H–fixed subcategory for H ¤G is not equivalent to FH .X /

H , and one cannot expect
an action of PG (or any other E1–G–operad) on FG.X /. To see the point, let G

be the quaternion group of order 8: G D f˙1;˙i;˙j ;˙kg, and let X D �. Every
nontrivial subgroup of G contains the center H DZ D˙1. Therefore, the H–set H

cannot be obtained by starting with a G–set (a disjoint union of orbits G=K ) and
restricting along the inclusion H !G.

To compare with our paper [10], we offer some alternative notation.

Definition 5.12 For an unbased G–space X, let EG.X /D E P
G
.X /D PG.XC/. It is a

genuine permutative G–category, and its H–fixed subcategory EG.X /
H is equivalent

to EH .X /
H and therefore to FH .X /

H .

Remark 5.13 In [10], we gave a more intuitive definition of a G–category EG.X /. It
will reappear in Section 9, where it will be given the alternative notation E U

G
.X /. It is

acted on by an E1–operad VG of G–categories, and, again, its fixed-point category
E U

G
.X /H is equivalent to E U

H
.X /H and therefore to FH .X /

H .

5.3 The proof of Theorem 5.9

We first use Theorem 3.8 to identify (5.6) when X is a point. The proof of Theorem 3.8
compares several equivalent categories, and antihomomorphisms appear naturally. To
control details of equivariance, it is helpful to describe the relevant categories implicit
in our operad PG in their simplest forms up to isomorphism. Details are in [11,
Sections 2.1, 2.2, 4.1, 4.2].

Lemma 5.14 The objects of the chaotic .G�†j /–category PG.j / are the functions
�W G ! †j . The (left) action of G on PG.j / is given by .g�/.h/ D �.g�1h/ on
objects and the diagonal action on morphisms. The (right) action of †j is given by
.��/.h/D �.h/� on objects and the diagonal action on morphisms.

Lemma 5.15 The objects of the G–category PG.j /=†j are the functions ˛W G!†j

such that ˛.e/D e . The morphisms � W ˛! ˇ are the elements � 2†j , thought of as
the functions G!†j specified by �.h/D ˇ.h/�˛.h/�1 . The composite of � with
� W ˇ!  is �� W ˛!  . The action of G is given on objects by

.g˛/.h/D ˛.g�1h/˛.g�1/�1:

In particular, .g˛/.e/D e . The action on morphisms is given by

g.� W ˛! ˇ/D � W g˛! gˇ:
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Lemma 5.16 For ƒ�G �†j , the subcategory PG.j /
ƒ is empty if ƒ\†j ¤ e . It

is a nonempty and hence chaotic subcategory of PG.j / if ƒ\†j D e .

Lemma 5.17 The objects of .PG.j /=†j /
G are the antihomomorphisms ˛W G!†j .

Its morphisms � W ˛! ˇ are the conjugacy relations ˇ D �˛��1 , where � 2†j . For
H �G, restriction of functions gives an equivalence of categories

.PG.j /=†j /
H
! .PH .j /=†j /

H :

Now return to a general G–space X. To prove Theorem 5.9, it suffices to prove that
.PG.j / �†j

X j /G is isomorphic to FG.j ;X /
G for all j . Passage to orbits here

means that for � 2PG.j /, y 2X j, and � 2†j (thought of as acting on the left on j

and therefore on j –tuples of elements of X ), .��;y/D .�; �y/ in PG.j /�†j
X j.

Observe that an object .�; z1; : : : ; zj / 2PG.j /�†j
X j has a unique representative

in the same orbit under †j of the form .˛;x1; : : : ;xj / where ˛.e/D e . It is obtained
by replacing � by �� , where � D �.e/�1 , and replacing zi by xi D z�.i/ .

Lemma 5.18 An object .˛;y/ 2 PG.j / �†j
X j, where ˛.e/ D e and y 2 X j, is

G–fixed if and only if ˛W G! †j is an antihomomorphism and ˛.g�1/y D gy for
all g 2G.

Proof Assume that .˛;y/D .g˛;gy/ for all g 2 G. Then each g˛ must be in the
same †j –orbit as ˛ , where ˛ is regarded as an object of PG.j / and not PG.j /=†j ,
so that .g˛/.h/D ˛.g�1h/. Then .g˛/.h/D ˛.h/� for all h 2G and some � 2….
Taking hD e shows that � D ˛.g�1/. The resulting formula ˛.g�1h/D ˛.h/˛.g�1/

implies that ˛ is an antihomomorphism. Now

.˛;y/D .g˛;gy/D .˛˛.g�1/;gy/D .˛; ˛.g/gy/;

which means that ˛.g/gy D y and thus gy D ˛.g�1/y .

Use ˛�1 to define a left action of G on j and define pW j !X by p.i/D xi . Then
the lemma shows that the G–fixed elements .˛;y/ are in bijective correspondence with
the maps of G–sets pW A!X, where A is a j –pointed G–set. Using Lemma 5.17, we
see similarly that maps f W A!B of j –pointed G–sets over X correspond bijectively
to morphisms in .PG.j /�†j

X j /G. These bijections specify the required isomorphism
between FG.j ;X /

G and .PG.j /�†j
X j /G.

5.4 The proof of Theorem 5.10

This decomposition is best proven by a simple thought exercise. Every finite G–set A

decomposes nonuniquely as a disjoint union of orbits G=H, and orbits G=H and G=J
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are isomorphic if and only if H and J are conjugate. Choose one H in each conjugacy
class. Then A decomposes uniquely as the disjoint union of the G–sets AH , where
AH is the set of elements of A with isotropy group conjugate to H. This decomposes
the category GF � .FG/

G as the product over H of the categories GF .H / of finite
G–sets all of whose isotropy groups are conjugate to H.

In turn, GF .H / decomposes uniquely as the coproduct over k � 0 of the categories
GF .H; k/ whose objects are isomorphic to the disjoint union, denoted by kG=H, of k

copies of G=H. Up to isomorphism, kG=H is the only object of GF .H; k/. The auto-
morphism group of the G–set G=H is WH , hence the automorphism group of kG=H

is the wreath product †k

R
WH . Viewed as a category with a single object, we may

identify this group with the category E†k�†k
.WH /k. This proves the following result.

Proposition 5.19 The category GF is equivalent to the categoryY
.H /

G
k�0

E†k �†k
.WH /k :

The displayed category is a skeleton of GF . As written, its objects are sets of num-
bers fkH g, one for each .H /, but they are thought of as the finite G–sets

F
H kH G=H.

Its morphism groups specify the automorphisms of these objects. On objects, the
equivalence sends a finite G–set A to the unique finite G–set of the form

F
.H / kG=H

in the same isomorphism class as A. Via chosen isomorphisms, this specifies the inverse
equivalence to the inclusion of the chosen skeleton in GF .

We parametrize this equivalence to obtain a description of the category GF .X / of
finite G–sets over X. Given any H and k , a k–tuple of elements fx1; : : : ;xkg of X H

determines the G–map pW kG=H !X that sends eH in the i th copy of G=H to xi ,
and it is clear that every finite G–set A over X is isomorphic to one of this form.
Similarly, for a finite G–set qW B!X over X and an isomorphism f W A! B, we
have that f is an isomorphism over X from q to p D q ıf , and every isomorphism
over X can be constructed in this fashion. Since we may as well choose A and B to
be in our chosen skeleton of GF , this argument proves Theorem 5.10.

6 The Barratt–Priddy–Quillen and tom Dieck
splitting theorems

6.1 The Barratt–Priddy–Quillen theorem revisited

The BPQ theorem shows how to model suspension G–spectra in terms of free E1–
G–categories and G–spaces. It is built tautologically into the equivariant infinite loop
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space machine in the same way as it is nonequivariantly [22, Theorem 2.3(vii)] or
[30, Section 10]. The following result works for either EG D ESp

G
or EG D ES

G
, but

note that the interpretation of both the source and target are different in the two cases.
The proof shows consistency with the versions of the BPQ theorem in Theorems 1.31
and 2.18.

Theorem 6.1 (the E1–operad BPQ theorem) For an E1–operad CG of G–spaces
and based G–spaces X, there is a natural weak equivalence of G–spectra

†1G X ! EGCGX:

Proof For ESp
G

, recall that CU D KU � CG . The same formal argument as for
Theorem 2.18 and use of the projections to CG and to KU give equivalences of LM
G–spectra:

†1
G

X //

''

B.†1
G
;CU ;CU X /

��

// B.†1
G
;CU ;CGX /

B.†1
G
;KU ;KU X /

For ES
G

, recall that CV D KV � CG . Analogously to Theorem 1.31, there is an
orthogonal G–spectrum with V th space B.†V;CV ;CV X /. The usual formal argument
and the projections to CG and KV give diagrams

†V X //

''

B.†V;CV ;CV X /

��

// B.†V;CV ;CGX /

B.†V;KV ;KV X /

for all V in which the left horizontal arrow and the vertical arrow are level equivalences
of orthogonal G–spectra, and the right horizontal arrow is a weak equivalence (��–
isomorphism) of orthogonal G–spectra, as we see by forgetting to G–prespectra and
passing to colimits over V � U, where U is a complete G–universe.

Taking Y DXC for an unbased G–space X and using (5.2), we can rewrite this version
of the BPQ theorem using the infinite loop space machine defined on permutative G–
categories.

Theorem 6.2 (the categorical BPQ theorem: first version) For unbased G–spaces X,
there is a natural weak equivalence of G–spectra

†1G XC!KGPG.XC/:
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Remark 6.3 Diagrams showing compatibility with smash products, like those in
Theorems 1.31 and 2.18 are conspicuous by their absence from Theorems 6.1 and 6.2.
A previous version of this article erroneously claimed that the operad P has a self
pairing .P;P/!P induced by the homomorphisms

(6.4) ˝W †j �†k !†jk ;

which are made precise in Appendix A by use of lexicographic ordering. However,
these do not satisfy the condition in Definition A.1(iii); see Counterexample A.5. For
a conceptual understanding of why P cannot have a self-pairing, consider the free
P–algebra P .S0/. This is a model for the groupoid of finite sets. As explained in
[26, Appendix A], a self-pairing on P would give strict distributivity on both sides
in P .S0/. But the lexicographic ordering on j � .k tm/ does not agree with the
lexicographic ordering on .j �k/t .j �m/.

As we explain in [13], the homomorphisms ˝ exhibit a product that exists in any operad.
The categorical operads P and PG are pseudocommutative, meaning that certain
diagrams of functors defined using these products commute up to natural isomorphism.
Putting together Theorem 6.2, the comparison of operadic and Segalic machines
in [31], and 2–category machinery developed in [12], we will obtain multicategorical
generalizations of the missing diagrams in [13], where we complete the proofs from
equivariant infinite loop space theory promised in [10].

6.2 The tom Dieck splitting theorem

The G–fixed-point spectra of suspension G–spectra have a well-known splitting. It is
due to tom Dieck [5] on the level of homotopy groups and was lifted to the spectrum
level in [18, Section V.11]. The tom Dieck splitting actually works for all compact
Lie groups G, but we have nothing helpful to add in that generality. Our group G is
always finite. In that case, we have already given the ingredients for a new categorical
proof, as we now explain.

Theorem 6.5 For a based G–space Y ,

.†1G Y /G '
W
.H /†

1.EWHC ^WH Y H /:

The wedge runs over the conjugacy classes of subgroups H of G, and WH DNH=H.

Theorem 6.5 and the evident natural identifications

(6.6) EWHC ^WH X H
C Š .EWH �WH X H /C

imply the following version for unbased G–spaces X.
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Theorem 6.7 For an unbased G–space X,

.†1G XC/
G
'
W
.H /†

1.EWH �WH X H /C:

Conversely, we can easily deduce Theorem 6.5 from Theorem 6.7. Viewing S0 as f1gC
with trivial G action, our standing assumption that basepoints are nondegenerate gives
a based G–cofibration S0! YC that sends 1 to the basepoint of Y , and Y D YC=S

0 .
The functors appearing in Theorem 6.7 preserve cofiber sequences, and the identifica-
tions (6.6) imply identifications

(6.8) .EWH �WH Y H /C=.EWH �WH f1g/C ŠEWHC ^WH Y H :

Therefore, Theorem 6.7 implies Theorem 6.5.

We explain these splittings in terms of the categorical BPQ theorem. We begin in
the based setting. The nonequivariant case G D e of the BPQ theorem relates to the
equivariant case through Theorem 2.20. Explicitly, Theorems 2.20 and 6.1 give a pair
of weak equivalences

(6.9) .†1G Y /G! .EGCGY /G E..CGY /G/:

Since the functor †1 commutes with wedges, the nonequivariant BPQ theorem gives
a weak equivalence

(6.10)
W
.H /†

1.EWHC ^WH Y H /! EC
�W

.H /.EWHC ^WH Y H /
�
:

If we could prove that there is a natural weak equivalence of C –spaces

.CGY /G 'C
�W

.H /.EWHC ^WH Y H /
�
;

that would imply a natural weak equivalence

(6.11) E..CGY /G/' EC
�W

.H /.EWHC ^WH Y H /
�

and complete the proof of Theorem 6.5. However, the combinatorial study of the
behavior of C on wedges is complicated by the obvious fact that wedges of based
spaces do not commute with products.

We use the following consequence of Theorem 5.5 and the relationship between wedges
and products of spectra to get around this. Recall that PG is the monad on based
G–spaces obtained from the operad jPG j of G–spaces.

Theorem 6.12 For unbased G–spaces X, there is a natural equivalence of jPj–spaces

.PGXC/
G
'

Y
.H /

P .EWH �WH X H /C;

where .H / runs over the conjugacy classes of subgroups of G and WH DNH=H.
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Proof Remembering that jEGjDEG , we see that the classifying space of the category
EWH �WH X H can be identified with EWH �WH X H . The commutation relations
between j � j and the constituent functors used to construct the monads PG on G–
spaces and PG on G–categories make the identification clear.

Remark 6.13 Of course, we can and must replace PG and P by their products with
the equivariant and nonequivariant Steiner operad to fit into the infinite loop space
machine. There is no harm in doing so since if we denote the product operads by OG

and O, as before, the projections OG!PG and O!P induce weak equivalences
of monads that fit into the following commutative diagram:

.OGXC/
G '

//

'

��

Q
.H /O.EWH �WH X H /C

'

��

.PGXC/
G '

//
Q
.H /P .EWH �WH X H /C

The functor †1
G

commutes with wedges, and the natural map of G–spectra

E _F !E �F

is a weak equivalence. Theorems 2.21 and 6.1 have the following implication. We state
it equivariantly, but we shall apply its nonequivariant special case.

Proposition 6.14 For based G–spaces X and Y , the natural map

EGOG.X _Y /! EG.OGX �OGY /

is a weak equivalence of G–spectra.

Proof The following diagram commutes by the universal property of products:

†1
G
.X _Y /

Š

��

// EGOG.X _Y /

��

†1
G

X _†1
G

Y

��

EG.OGX �OGY /

��

†1
G

X �†1
G

Y // EGOGX �EGOGY

All arrows except the upper right vertical one are weak equivalences, hence that arrow
is also a weak equivalence.
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For any nonequivariant E1–operad C, we therefore have a weak equivalence

(6.15) EC
�W

.H /.EWHC ^WH Y H /
�
! E

Y
.H /

C .EWHC ^WH Y H /:

Together with (6.15), Theorem 6.12 and Remark 6.13 give a weak equivalence (6.11)
in the case Y D XC . Together with (6.9) and (6.10), this completes the proof of
Theorem 6.7, and Theorem 6.5 follows.

7 The E1–operads VG , V �
G

, and WG

The operad PG has a privileged conceptual role, but there are other categorical E1–
G–operads with different good properties. We define three interrelated examples. The
objects of the chaotic category PG.j / are functions G ! †j . We give analogous
chaotic G–categories in which the objects are suitable functions between well chosen
infinite G–sets, with G again acting by conjugation. Their main advantage over PG

is that it is easier to recognize G–categories on which they act.

7.1 The definitions of VG and V �
G

We start with what we would like to take as a particularly natural choice for the j th

category of an E1–G–operad. It is described in more detail in [11, Section 6.1].

Definition 7.1 Let U be a countable ambient G–set that contains countably many
copies of each orbit G=H. Let U j be the product of j copies of U with diagonal
action by G, and let jU be the disjoint union of j copies of the G–set U. Here U 0 is
a one-point set, sometimes denoted by 1, and 0U is the empty set, sometimes denoted
by ∅ and sometimes denoted by 0.

Let j D f1; : : : ; j g with its natural left action by †j , written � W j ! j .

Definition 7.2 For j � 0, let zE U
G
.j / be the chaotic .G�†j /–category whose objects

are the pairs .A; �/, where A is a j –element subset of U and �W j !A is a bijection.
The group G acts on objects by g.A; �/ D .gA;g�/, where .g�/.i/ D g � �.i/. The
group †j acts on objects by .A; �/� D .A; � ı�/ for � 2†j . Since zE U

G
.j / is chaotic,

this determines the actions on morphisms.

Proposition 7.3 [11, Proposition 6.3] For each j , the classifying space j zE U
G
.j /j is a

universal principal .G; †j /–bundle.
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Therefore, zE U
G
.j / satisfies the properties required of the j th category of an E1–G–

operad. However, these categories as j varies do not form an operad. The problem is a
familiar one. These categories can be thought of as analogous to configuration spaces.
Just as we fattened up the configuration space models of Section 1.6 to the little discs
operads of Section 1.1, we must fatten up these categories to provide enough room for
an operad structure.

Definition 7.4 We define a reduced operad VG of G–categories. Let VG.j / be the
chaotic G–category whose set of objects is the set of injective functions jU ! U.
Let G act by conjugation and let †j have the right action induced by its left action
on jU. Let id 2 VG.1/ be the identity function U ! U. Define

 W VG.k/�VG.j1/� � � � �VG.jk/! VG.j /;

where j D j1C � � �C jk , to be the composite

VG.k/�VG.j1/� � � � �VG.jk/! VG.k/�VG.
jU; kU /! VG.j /

obtained by first taking coproducts of maps and then composing. Here V .jU; kU /

is the set of injections jU ! kU. The operad axioms [21, Definition 1.1] are easily
verified.

Remembering that taking sets to the free R–modules they generate gives a coproduct-
preserving functor from sets to R–modules, we see that VG is a categorical analogue
of the linear isometries operad LU .

There is a parallel definition that uses products instead of coproducts.

Definition 7.5 We define an unreduced operad xV �
G

of G–categories. Let xV �
G
.j / be

the chaotic G–category whose set of objects is the set of injective functions U j ! U.
Let G act by conjugation and let †j have the right action induced by its left action
on U j. Let id 2 xV �

G
.1/ be the identity function. Define

 W xV �G .k/�
xV �G .j1/� � � � � xV

�
G .jk/! xV �G .j /;

where j D j1C � � �C jk , to be the composite

xV �G .k/�
xV �G .j1/� � � � � xV

�
G .jk/! xV �G .k/�

xV �G .U
j;U k/! xV �G .j /

obtained by first taking products of maps and then composing. Here xV �
G
.U j;U k/ is

the set of injections U j ! U k. Again, the operad axioms are easily verified.
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Observe that the objects of xV �
G
.0/ are the injections from the point U 0 into U and

can be identified with the set U, whereas VG.0/ is the trivial category given by the
injection of the empty set 0U into U. As in Remark 2.4, the objects of the zeroth
category give unit objects for operad actions, and it is convenient to restrict attention to
a reduced variant of xV �

G
.

Definition 7.6 Choose a G–fixed point 1 2 U (or, equivalently, adjoin a G–fixed
basepoint 1 to U ) and also write 1 for the single point in U 0. Give U j, j � 0, the
basepoint whose coordinates are all 1. The reduced variant of xV �

G
is the operad V �

G

of G–categories that is obtained by restricting the objects of the xV �
G
.j / to consist only

of the basepoint-preserving injections U j ! U for all j � 0.

Remark 7.7 If xV �
G

acts on a category A , then V �
G

acts on A by restriction of the
action. However, V �

G
can act even though xV �

G
does not. This happens when the

structure of A encodes a particular unit object and the operad action conditions fail
for other choices of objects in A .

Proposition 7.8 The classifying spaces jVG.j /j, j xV �G .j /j, and jV �
G
.j /j are universal

principal .G; †j /–bundles; hence VG , xV �
G

, and V �
G

are E1–operads.

Proof Since the objects of our categories are given by injective functions, †j acts
freely on the objects of VG.j / and V �

G
.j /. Since our categories are chaotic, it suffices

to show that if ƒ \ †j D feg, where ƒ � G � †j , then the object sets VG.j /
ƒ

and V �
G
.j /ƒ are nonempty. This means that there are ƒ–equivariant injections

jU ! U and U j ! U, and in fact, there are ƒ–equivariant bijections. We have
ƒD f.h; ˛.h// j h 2H g for a subgroup H of G and a homomorphism ˛W H !†j ,
and we may regard U as an H–set via the canonical isomorphism H Š ƒ. Since
countably many copies of every orbit of H embed in U, jU, and U j for j � 1, these
sets are all isomorphic as H–sets and therefore as ƒ–sets.

7.2 The definition of WG and its action on VG

This section is parenthetical, aimed towards work in progress on a new version of
multiplicative infinite loop space theory. The notion of an action of a multiplicative
operad G on an additive operad C was defined in [24, VI.1.6], and .C ;G / was then said
to be an operad pair. This notion was redefined and discussed in [30; 29]. Expressed
in terms of diagrams rather than elements, it makes sense for operads in any cartesian
monoidal category, such as the categories of G–categories and of G–spaces. As is
emphasized in the cited papers, although this notion is the essential starting point for
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the theory of E1–ring spaces, the only interesting nonequivariant example we know is
.K ;L /, where K is the Steiner operad. As pointed out in Section 2.5, this example
works equally well equivariantly.

The pair of operads .VG ;V
�

G
/ very nearly gives another example, but we must

shrink V �
G

and drop its unit object to obtain this.

Definition 7.9 Define WG � V �
G

to be the suboperad such that WG.j / is the full
subcategory of V �

G
.j / whose objects are the based bijections U j ! U. In particular,

WG.0/ is the empty category, so that the operad WG does not encode unit object
information. By the proof of Proposition 7.8, WG.j / for j � 1 is again a universal
principal .G; †j /–bundle. We view WG as a restricted E1–operad, namely one
without unit objects.

Proposition 7.10 The restricted operad WG acts on the operad VG .

Proof We must specify action maps

�W WG.k/�VG.j1/� � � � �VG.jk/! VG.j /;

where j D j1 � � � jk and k � 1. To define them, consider the set of sequences I D

fi1; : : : ; ikg, ordered lexicographically, where 1 � ir � jr and 1 � r � k . For an
injection �r W

jrU ! U, let �ir
W U ! U denote the restriction of �r to the i th

r copy
of U in jrU. Then let

�I D �i1
� � � � ��ik

W U k
! U k :

For a bijection  W U k ! U, define

�. I�1; : : : ; �k/W
jU ! U

to be the injection which restricts on the I th copy of U to the composite

U
 �1

���! U k �I
��! U k  

�! U:

It is tedious but straightforward to verify that all conditions specified in [24, Defini-
tion VI.1.6], [29, Definition 4.2] that make sense are satisfied.6

Remark 7.11 When all ji D 1, so that there is only one sequence I, we can define �
more generally, with V �

G
.k/ replacing WG.k/, by letting

�. I�1; : : : ; �k/W U ! U

6In fact, with the details of [29, Definition 4.2], the only condition that does not make sense would
require �.1/D id 2 VG.1/ , where f1g D W .0/ , and that condition lacks force since it does not interact
with the remaining conditions.
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be the identity on the complement of the image of the injection  W U k ! U and

 .U /
 �1

���! U k �I
��! U k  

�!  .U /

on the image of  . Clearly we can replace VG.1/ by V �
G
.1/ here.

This allows us to give the following speculative analogue of Definition 4.10. An E1–
ring space is defined to be a .C ;G /–space, where .C ;G / is an operad pair such that
C and G are E1–operads of spaces. Briefly, a .C ;G /–space X is a C –space and
a G –space with respective basepoints 0 and 1 such that 0 is a zero element for the
G –action and the action C X !X is a map of G –spaces with zero, where C denotes
the monad associated to the operad C. Here the action of G on C induces an action
of G on the free C –spaces C X, so that C restricts to a monad in the category of G –
spaces. These notions are redefined in the more recent papers [30; 29]. The definitions
are formal and apply equally well to spaces, G–spaces, categories, and G–categories.

Definition 7.12 An E1–ring G–category A is a G–category together with an action
by the E1–operad pair .VG ;WG/ such that the multiplicative action extends from the
restricted E1–operad WG to an action of the E1–operad V �

G
.

The notion of a bipermutative category, or symmetric strict bimonoidal category, was
specified in [24, Definition VI.3.3]. With the standard skeletal model, the direct
sum and tensor product on the category of finite-dimensional free modules over a
commutative ring R gives a typical example. Without any categorical justification,
we allow ourselves to think of E1–ring G–categories as an E1 version of genuine
operadic bipermutative G–categories. A less concrete but more general version of this
notion is defined and developed in [13].

Our notion of an E1–G–category A implies that BA is an E1–G–space. We
would like to say that our notion of an E1–ring G–category A implies that BA is
an E1–ring G–space, but that is not quite true. However, we believe there is a way to
prove the following conjecture that avoids the categorical work of [8; 12; 13; 26; 29].
However, that proof is work in progress.

Conjecture 7.13 There is an infinite loop space machine that carries E1–ring G–
categories to E1–ring G–spectra.

8 Examples of E1 and E1–ring G–categories

We have several interesting examples. We emphasize that these particular constructions
are new even when G D e . In that case, we may take U to be the set of positive
integers, with 1 as basepoint.
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We have the notion of a genuine permutative G–category, which comes with a preferred
product, and the notion of a VG–category, which does not. It seems plausible that
the latter notion is more general, but to verify that we would have to show how to
regard a permutative category as a VG–algebra. One natural way to do so would be to
construct a map of operads VG!PG , but we do not know how to do that. Of course,
the equivalence of VG–categories and PG–categories shows that genuine permutative
categories give a plethora of examples of VG–algebras up to homotopy. However,
the most important examples can easily be displayed directly, without recourse to the
theory of permutative categories.

8.1 The G –category E U
G
D E V

G
of finite sets

Recall Remark 5.13. Intuitively, we would like to have a genuine permutative G–
category whose product is given by disjoint unions of finite sets, with G relating finite
sets (not G–sets) by translations. Even nonequivariantly, this is imprecise due to both
size issues and the fact that categorical coproducts are not strictly associative. We make
it precise by taking coproducts of finite subsets of our ambient G–set U, but we must
do so without assuming that our given finite subsets are disjoint. We achieve this by
using injections jU ! U to separate them. We do not have canonical choices for the
injections, hence we have assembled them into our categorical E1–operad VG . Recall
Definition 7.2 and Proposition 7.3.

Definition 8.1 The G–category zE U
G

of finite ordered sets is the coproduct over n�0 of
the G–categories zE U

G
.n/. The G–category E U

G
DE V

G
of finite sets is the coproduct over

n� 0 of the orbit categories zE U
G
.n/=†n . By Proposition 7.3, BE U

G
is the coproduct

over n� 0 of classifying spaces B.G; †n/. Explicitly, by [11, Lemma 6.5], the objects
of E U

G
are the finite subsets (not G–subsets) A of U. Its morphisms are the bijections

�W A! B ; if A has n points, the morphisms A!A give a copy of the set †n . The
group G acts by translation on objects, so that gAD fga j a 2Ag, and by conjugation
on morphisms, so that g�W gA! gB is given by .g�/.g � a/D g � �.a/.

Proposition 8.2 The G–categories zE U
G

and E U
G

are VG–categories, and passage to
orbits over symmetric groups defines a map zE U

G
! E U

G
of VG–categories.

Proof Define a G–functor
�j W VG.j /� .E

U
G /

j
! E U

G

as follows. On objects, for � 2 VG.j / and Ai 2 Ob E U
G

, 1� i � j , define

�j .�IA1; : : : ;Aj /D �.A1 t � � � tAj /;
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where Ai is viewed as a subset of the i th copy of U in jU. For a morphism

.�I �1; : : : ; �j /W .�IA1; : : : ;Aj /! . IB1; : : : ;Bj /;

where �W � !  is the unique morphism, define �j .�I �1; : : : ; �j / to be the unique
bijection that makes the following diagram commute:

A1 t � � � tAj

�1t���t�j

��

�
// �.A1 t � � � tAj /

�j .�I�1;:::;�j /

��

B1 t � � � tBj
 

//  .B1 t � � � tBj /

Then the �j specify an action of VG on E U
G

.

Since the zE U
G
.n/ are chaotic, to define an action of VG on zE U

G
we need only specify

the required G–functors
z�j W VG.j /� . zE

U
G /

j
! zE U

G

on objects. A typical object has the form .�I .A1; �1/; : : : ; .Aj ; �j // for �i W ni ! Ai .
We have the canonical isomorphism n1 t � � � tnj Š n, where nD n1C � � �C nj , and
z�j sends our typical object to

.�.A1 t � � � tAj /; � ı .�1 t � � � t �j //:

Again, the z�j specify an action. The compatibility with passage to orbits is verified by
use of canonical orbit representatives for objects A that are obtained by choosing fixed
reference maps �AW n!A for each n–point set A�U ; compare [11, Proposition 6.3
and Lemma 6.5].

Remark 8.3 If we restrict to the full G–subcategory of E U
G

of G–fixed sets A of
cardinality n, we obtain an equivalent analogue of the category FG.n/ of Definition 5.8:
these are two small models of the G–category of all G–sets with n elements and
the bijections between them, and they have isomorphic skeleta. Thus the restriction
of E U

G
to its full G–subcategory of G–fixed sets A is an equivalent analogue of FG .

Remember from Remark 5.11 that no E1–operad can be expected to act on FG . The
VG–category E U

G
gives a convenient substitute.

8.2 The G –category GLG .R/ for a G –ring R

Let R be a G–ring, that is a ring with an action of G through automorphisms of R.
We have analogues of Definitions 7.2 and 8.1 that can be used in equivariant algebraic
K–theory. For a set A, let RŒA� denote the free R–module on the basis A. Let G act
entrywise on the matrix group GL.n;R/ and diagonally on Rn. Our conventions on
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semidirect products and their universal principal .G;GL.n;R/G/–bundles are in [11],
and [11, Section 6.3] gives more details on the following definitions.

Definition 8.4 We define the chaotic general linear category eGLG.n;R/. Its objects
are the monomorphisms of (left) R–modules �W Rn!RŒU �. The group G acts on ob-
jects by g�Dgı�ıg�1 . The group GL.n;R/ acts on objects by �� D � ı � W Rn!RŒU �.
Since eGLG.n;R/ is chaotic, this determines the actions on morphisms.

Proposition 8.5 [11, Proposition 6.18] The actions of G and GL.n;R/ on eGLG.n;R/

determine an action of GL.n;R/ Ì G, and the classifying space jeGLG.n;R/j is a
universal principal .G;GL.n;R/G/–bundle.

Definition 8.6 The general linear G–category GLG.R/ of finite-dimensional free
R–modules is the coproduct over n� 0 of the orbit categories eGLG.n;R/=GL.n;R/.
By Proposition 8.5, BGLG.R/ is the coproduct over n � 0 of classifying spaces
B.G;GL.n;R/G/. Explicitly, by [11, Lemma 6.20], the objects of GLG.R/ are the
finite-dimensional free R–submodules M of RŒU �. The morphisms �W M !N are
the isomorphisms of R–modules. The group G acts by translation on objects, so that
gM D fgm jm 2M g, and by conjugation on morphisms, so that .g�/.gm/D �.m/

for m 2M and g 2G.

Proposition 8.7 The G–categories eGLG.R/ and GLG.R/ are VG–categories and
passage to orbits over general linear groups defines a map eGLG.R/! GLG.R/ of
VG–categories.

Proof Define a functor

�j W VG.j /�GLG.R/
j
! GLG.R/

as follows. On objects, for � 2 VG.j / and Mi 2 Ob GLG.R/, 1� i � j , define

�j .�IM1; : : : ;Mj /DRŒ��.M1˚ � � �˚Mj /;

where RŒ��W RŒjU �! RŒU � is induced by �W jU ! U and Mi is viewed as a sub-
module of the i th copy of RŒU � in RŒjU �D

L
j RŒU �. For a morphism

.�I �1; : : : ; �j /W .�IM1; : : : ;Mj /! . IN1; : : : ;Nj /;

define �j .�I �1; : : : ; �j / to be the unique isomorphism of R–modules that makes the
following diagram commute:

M1˚ � � �˚Mj

�1˚���˚�j

��

RŒ��
// RŒ��.M1˚ � � �˚Mj /

�j .�I�1;:::;�j /
��

N1˚ � � �˚Nj
RŒ �

// RŒ �.N1˚ � � �˚Nj /
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Then the �j specify an action of VG on GLG.R/. Since the eGLG.R; n/ are chaotic,
to define an action of VG on eGLG.R/, we need only specify the required G–functors

z�j W VG.j /�eGLG.R/
j
!eGLG.R/

on objects. A typical object has the form .�I �1; : : : ; �j / for �i W Rni !RŒU �, and with
nD n1C � � �C nj , we have that z�j sends it to

RŒ�� ı .�1˚ � � �˚ �j /W R
n
!RŒU �:

Again, the z�j specify an action. The compatibility with passage to orbits is verified
by use of canonical orbit representatives for objects that are obtained by choosing
reference maps �M W R

n!M for each M –dimensional free R–module M �RŒU �;
compare [11, Proposition 6.18, Lemma 6.20].

On passage to classifying spaces and then to G–spectra via our infinite loop space
machine EG , we obtain a model EGBGLG.R/ for the K–theory spectrum KG.R/

of R. The following result compares the two evident models in sight.

Definition 8.8 Define the naive permutative G–category GLG.R/ to be the G–
groupoid whose objects are the n� 0 and whose set of morphisms m! n is empty
if m ¤ n and is the G–group GL.n;R/ if m D n, where G acts entrywise. The
product is given by block sum of matrices. Applying the chaotic groupoid functor
to the groups GL.n;R/ we obtain another naive permutative G–category EGLG.R/

and a map EGLG.R/! GLG.R/ of naive permutative G–categories. Applying the
functor Cat.EG;�/ from Proposition 4.6, we obtain a map of genuine permutative
G–categories Cat.EG; .EGLG.R///! Cat.EG; .GLG.R///.

It is convenient to write GL P
G
.R/ for the PG–category Cat.EG; .GLG.R/// and

GL V
G
.R/ for the VG–category GLG.R/, and similarly for their total space variants

Cat.EG; .EGLG.R/// and eGLG.R/. We have the following comparison theorem.

Theorem 8.9 The G–spectra KGGL P
G
.R/ and KGGL V

G
.R/ are weakly equivalent,

functorially in G–rings R.

Proof We again use the product of operads trick from [21]. Projections and quotient
maps give the following commutative diagram of .PG�VG/–categories:

eGL
P

G .R/

��

eGL
P

G .R/�eGL
V

G .R/

��

oo // eGL
V

G .R/

��

GL P
G
.R/ GL P�V

G
.R/oo // GL V

G
.R/
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The middle term at the top denotes the diagonal product, namelyG
n

eGL
P

G .n;R/�eGL
V

G .n;R/:

The middle term on the bottom is the coproduct over n of the orbits of these products
under the diagonal action of GL.n;R/. The product of total spaces of universal
principal .G;GL.R; n/G/–bundles is the total space of another universal principal
.G;GL.R; n/G/–bundle. Therefore, after application of the classifying-space func-
tor, the horizontal projections display two equivalences between universal principal
.G;GL.R; n/G/–bundles. The conclusion follows by hitting the resulting diagram
with the functor KG defined with respect to .PG�VG/–categories and using evident
equivalences to the functors KG defined with respect to PG–categories and VG–
categories when the input is given by PG or VG–categories.

8.3 Multiplicative actions on E U
G

and GLG .R/

We agree to think of V �
G

–categories as multiplicative, whereas we think of VG–
categories as additive.

Proposition 8.10 The G–category E U
G

is a V �
G

–category.

Proof Define a G–functor

�j W V
�

G .j /� .E
U
G /

j
! E U

G

as follows. On objects, for � 2 V �
G
.j / and Ai 2 EG , 1� i � j , define

�j .�IA1; : : : ;Aj /D �.A1 � � � � �Aj /:

For a morphism

.�I �1; : : : ; �j /W .�IA1; : : : ;Aj /! . IB1; : : : ;Bj /;

define �j .�I �1; : : : ; �j / to be the unique bijection that makes the following diagram
commute:

A1 � � � � �Aj

�1������j

��

�
// �.A1 � � � � �Aj /

�j .�I�1;:::;�j /

��

B1 � � � � �Bj
 

//  .B1 � � � � �Bj /

Then the �j specify an action of V �
G

on E U
G

.

Proposition 8.11 If R is a commutative G–ring, then GLG.R/ is a V �
G

–category.
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Proof Define a functor

�j W V
�

G .j /�GL .R/
j
G
! GLG.R/

as follows. Identify RŒU j � with
N

j RŒU �, where ˝D˝R . On objects, for � 2VG.j /

and R–modules Mi �RŒU �, 1� i � j , define

�j .�IM1; : : : ;Mj /DRŒ��.M1 � � � � �Mj /:

For a morphism

.�I �1; : : : ; �j /W .�IM1; : : : ;Mj /! . IN1; : : : ;Nj /;

define �j .�I �1; : : : ; �j / to be the unique isomorphism of R–modules that makes the
following diagram commute:

M1˝ � � �˝Mj

�1˝���˝�j

��

RŒ��
// �.M1˝ � � �˝Mj /�

�j .�I�1;:::;�j /

��

N1˝ � � �˝Nj
RŒ �

//  .N1˝ � � �˝Nj /

Then the �j specify an action of V �
G

on GLG.R/.

Restricting the action from V �
G

to WG , the examples above and easy diagram chases
prove that the operad pair .VG ;WG/ acts on the categories EG and GLG.R/. This
proves the following result.

Theorem 8.12 The categories E U
G

and GLG.R/ for a commutative G–ring R are
E1–ring G–categories in the sense of Definition 7.12.

Although we have a definition of a genuine permutative G–category, we do not have a
comparably simple definition of a genuine bipermutative G–category. The previous
examples show that we do have examples of E1–ring G–categories. In [13], we
will show how to construct E1–ring G–categories from general naive bipermutative
G–categories, in particular nonequivariant bipermutative categories, and we will show
how to construct genuine commutative ring G–spectra from them.

9 The VG –category E U
G

.X/ and the BPQ theorem

We now return to the categorical BPQ theorem, but thinking in terms of VG–categories
rather than PG–categories. This gives a more intuitive approach to the G–category of
finite sets over a G–space X.
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9.1 The G –category E U
G

.X/ of finite sets over X

Definition 9.1 Let X be a G–space. We define the G–groupoid E U
G
.X /D E V

G
.X / of

finite sets over X. Its objects are the functions pW A!X, where A is a finite subset of
our ambient G–set U. For a second function qW B!X, a map �W p! q is a bijection
�W A! B such that q ı � D p . Composition is given by composition of functions
over X. The group G acts by translation of G–sets and conjugation on all maps in sight.
Thus, for an object pW A!X, we have gpW gA!X given by .gp/.ga/D g.p.a//.
For a map �W p! q , we have g�W gA! gB given by .g�/.ga/D g.�.a//.

To topologize E U
G
.X /, give U and X disjoint basepoints �.7 View the set Ob of

objects of E U
G
.X / as the set of based functions pW UC!XC such that p�1.�/ is the

complement of a finite set A� U. Topologize Ob as a subspace of X UC
C . View the

set Mor of morphisms of E U
G
.X / as a subset of the set of functions �W UC! UC

that send the complement of some finite set A � U to � and map A bijectively
to some finite set B � U. Topologize Mor as the subspace of points .p; �; q/ in
Ob �U UC

C �Ob , where U UC
C is discrete. When X is a finite set and thus a discrete

space (since points are closed in spaces in the category U ), E U
G
.X / is discrete.

Let E U
G
.n;X / denote the full subcategory of E U

G
.X / of maps pW A!X such that A

has n elements. Then E U
G
.X / is the coproduct of the groupoids E U

G
.n;X /.

Proposition 9.2 The operad VG acts naturally on the categories E U
G
.X /.

Proof For j � 0, we must define functors

�j W VG.j /� E U
G .X /

j
! E U

G .X /:

To define �j on objects, let �W jU ! U be an injective function and pi W Ai !X be
a function, 1� i � j , where Ai is a finite subset of U. We define �j .�Ip1; : : : ;pj /

to be the composite

�.A1 t � � � tAj /
��1

���!A1 t � � � tAj
tpi
���!

jX
r
�!X;

where r is the fold map, the identity on each of the j copies of X. To define � on
morphisms, let  W jU ! U be another injective function, and let �W �!  be the
unique map in VG.j /. For functions qi W Bi ! X and bijections �i W Ai ! Bi such
that qi�i D pi , define �j .�I �1; : : : ; �j / to be the unique dotted arrow bijection that

7These basepoints are just a convenience for specifying the topology; they play no other role.
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makes the following diagram commute:

�.A1 t � � � tAj /
��1

//

�.�I�1;:::;�j /

��

A1 t � � � tAj
tpi

))
t�i

��

jX
r
// X

 .B1 t � � � tBj /
 �1

// B1 t � � � tBj

tqi

55

Then the maps �j specify an action of VG on the category E U
G
.X /.

We have a multiplicative elaboration, which is similar to [24, Proposition VI.1.9] but
curiously restricted. Regarding a G–space X as a constant G–category with object
and morphism space both X, it makes sense to speak of an action of the operad V �

G

on the G–category X. For example, V �
G

acts on X if X is a commutative topological
G–monoid. The following result is closely related to Proposition 7.10. It has the minor
advantage that restriction from V �

G
to WG is unnecessary but the major limitation that

it only applies to commutative G–monoids, not to general V �
G

–algebras.

Proposition 9.3 If X is a commutative topological G–monoid, then E U
G
.X / is an

E1–ring G–category.

Proof By analogy with the previous proof, for k � 0, we have functors

�W V �G .k/� E U
G .X /

k
! E U

G .X
k/:

With notation as in the previous proof, on objects .�Ip1; : : : ;pk/ for pr W Ar ! X,
we define �.�Ip1; : : : ;pk/ to be the composite

�.A1 � � � � �Ak/
��1

���!A1 � � � � �Ak

�pk
���!X k �

�!X;

where � is the k–fold product on X. On morphisms .�I �1; : : : ; �k/, where the
�r W pr ! qr are understood to be order preserving, �.�I �1; : : : ; �k/ is defined to be
the unique dotted arrow that makes the following diagram commute:

�.A1 � � � � �Ak/
��1

//

�.�I�1;:::;�k/

��

A1 � � � � �Ak
�pi

))
��i

��

X k �
// X

 .B1 � � � � �Bk/
 �1

// B1 � � � � �Bk

�qi

55

Further details are similar to those in the proof of [24, Proposition VI.1.9] or [30,
Proposition 4.9].
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9.2 Free VG–categories and the VG–categories E U
G

.X/

The categories E U
G
.X / are conceptually simple, and they allow us to give the promised

genuinely equivariant variant of Theorem 5.9. To see that, we give a reinterpretation of
E U

G
.X /. Regarding X as a topological G–category as before, we have the topological

G–category zE U
G
.j /�†j

X j.

Lemma 9.4 The topological G–categories E U
G
.j ;X / and zE U

G
.j /�†j

X j are natu-
rally isomorphic.

Proof For an ordered set AD .a1; : : : ; aj / of points of U, let a point .AIx1; : : : ;xj /

of Ob. zEG.j /�†j
X j / correspond to the function pW A! X given by p.ai/D xi .

Similarly, let a point .�W A! BIx1; : : : ;xj / of Mor. zEG.j /�†j
X j / correspond to

the bijection �W p! q over X, where q�.ai/D p.ai/D xi . Since we have passed
to orbits over †j , our specifications are independent of the ordering of A. These
correspondences identify the two categories.

Recall that we write VG for the monad on based G–categories associated to the
operad VG , we write jVG j for the operad of G–spaces obtained by applying the
classifying-space functor B to VG , and we write VG for the monad on based G–spaces
associated to jVG j. Recall too that XC denotes the union of the G–category X with a
disjoint trivial basepoint category � and that

(9.5) VG.XC/D
G
j�0

VG.j /�†j
X j :

Theorem 9.6 There is a natural map

!W VG.XC/! E U
G .X /

of VG–categories, and it induces a weak equivalence

B!W VG.XC/! BE U
G .X /

of jVG j–spaces on passage to classifying spaces.

Proof Pick any G–fixed point 1 2 U.8 Define an inclusion i W XC ! E U
G
.X / of

based G–categories by identifying � with E U
G
.0;X / and mapping X to E U

G
.1;X / by

sending x to the map 1! x from the 1–point subset 1 of U to X. Since VG.XC/ is

8This must not be confused with the convenience basepoint � used to define the topology.
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the free (based) VG–category generated by XC , the inclusion i induces the required
natural map ! . Explicitly, it is the composite

VG.XC/
VG i
���! VGE U

G .X //
�
�! E U

G .X /:

More explicitly still, let 1� jU be the j –point subset consisting of the elements 1 in
the j summands. Then ! is the coproduct of the maps

!j D ij �†j
idW VG.j /�†j

X j
! zE U

G .j /�†j
X j ;

where ij W VG.j /! zE
U
G
.j / is the .G�†j /–functor that sends an object �W jU ! U

to the set �.1/� U and sends the morphism �W �!  to the bijection

�.1/
��1

���! 1
 
�!  .1/:

Passing to classifying spaces, jij j is a map between universal principal .G; †j /–bundles,
both of which are .G�†j /–CW complexes. Therefore, jij j is a .G�†j /–equivariant
homotopy equivalence. The conclusion follows.

9.3 The categorical BPQ theorem: second version

We begin by comparing Theorem 9.6, which is about G–categories, with Theorems 5.5,
5.9 and 5.10, which are about G–fixed categories. Clearly EG.X /

G is a V –category,
where V D .VG/

G. By Theorem 9.6, it is weakly equivalent (in the homotopical
sense) to the V –category .VGXC/

G. We also have the P–category FG.X /
G, which

by Theorem 5.9 and Remark 5.11 is equivalent (in the categorical sense) to the P–
category .PGXC/

G. Elaborating Remark 8.3, E U
G
.X /G and FG.X /

G are two small
models for the category of all finite G–sets and G–isomorphisms over X and are
therefore equivalent. To take the operad actions into account, recall the discussion in
Section 4.3. We say that a map of topological G–categories is a weak equivalence if
its induced map of classifying G–spaces is a weak equivalence.

Lemma 9.7 The PG–category PGXC and the VG–category VGXC are weakly
equivalent as .PG�VG/–categories. Therefore, the P–category .PGXC/

G and the
V –category .VGXC/

G–categories are weakly equivalent.

Proof The projections

PGXC .PG �VG/.XC/! VGXC

are maps of .PG�VG/–categories that induce weak equivalences of jPG�VG j–spaces
on passage to classifying spaces.

Theorem 9.8 The classifying spaces of the P–category FG.X /
G and the V –

category E U
G
.X /G are weakly equivalent as jP �V j–spaces.
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The conclusion is that, on the G–fixed level, the categories E U
G
.X /G and FG.X /

G can
be used interchangeably as operadically structured versions of the category of finite G–
sets over X. On the equivariant level, E U

G
.X / but not FG.X / is operadically structured.

It is considerably more convenient than the categories PG.XC/ or VG.XC/. With the
notation KGVG.XC/DEGBVG.XC/DEGVG.XC/ and KGE U

G
.X /DEGBE U

G
.X /,

we have the following immediate consequence of Theorems 6.2 and 9.6. It is our
preferred version of the categorical BPQ theorem, since it uses the most intuitive
categorical input.

Theorem 9.9 (categorical Barratt–Priddy–Quillen theorem) For G–spaces X, there
is a composite natural weak equivalence

˛W †1G XC!KGVGXC!KGE U
G .X /:

Remark 9.10 It is not known how the tom Dieck splitting theorem behaves with
respect to the Mackey functor structure on homotopy groups. It seems likely to us that
this could be analyzed using this version of the BPQ theorem and our categorical proof
of the splitting.

Appendix A: Pairings of operads

We recall the following definition from [25, 1.4]. It applies equally well equivariantly.
We write it elementwise, but written diagrammatically it applies to operads in any
symmetric monoidal category V . Write j D f1; : : : ; j g and let

˝W †j �†k !†jk

be the homomorphism obtained by identifying j �k with jk by ordering the set of
j k elements .q; r/, 1� q � j and 1� r � k , lexicographically. More precisely, let
�j ;k W jk! j �k be the lexicographic ordering. Then, given � 2 †j and � 2 †k ,
�˝ � is defined by

jk
�j ;k

���! j �k
���
���! j �k

��1
j ;k

���! jk:

For nonnegative integers hq and ir , let

ıW
G
.q;r/

.hq � ir /!

�G
q

hq

�
�

�G
r

ir

�
be the distributivity isomorphism viewed as a permutation via block and lexicographic
identifications of the source and target sets with the appropriate set n. A little more
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precisely, we define the permutation ı to be the compositeX
q;r

hqir
Š
�! h1i1 th1i2 t � � � thj ik

�t���t�
�����! h1 � i1 t � � � thj � ik

dist
��! .h1 t � � � thj /� .i1 t � � � t ik/

Š
�! h� i

��1
h;i

��! hi :

Definition A.1 Let C, D, and E be operads in a symmetric monoidal category V

(with product denoted by ˝). A pairing of operads

�W .C ;D/! E

consists of maps
�W C .j /˝D.k/! E .j k/

in V for j � 0 and k � 0 such that the diagrammatic versions of the following
properties hold, where c 2 C .j / and d 2 D.k/:

(i) If � 2†j and � 2†k , then

c�� d� D .c� d/.�˝ �/:

(ii) With j D k D 1, we have id� idD id.

(iii) If cq 2 C .hq/ for 1� q � j and dr 2 D.ir / for 1� r � k , then9

 .c� d I �.q;r/cq� dr /D Œ .cI �qcq/�  .d I �r dr /�ı:

When specialized to spaces, the following definition (which is a variant of [25, 1.2])
gives one possible starting point for multiplicative infinite loop space theory.

Definition A.2 Let �W .C ;D/! E be a pairing of operads in V . A pairing of a
C –algebra X and a D–algebra Y to an E –algebra Z is a map f W X ˝Y !Z such
that the following diagram commutes for all j and k , where X j denotes the j th tensor
power in V and we write � generically for action maps:

C .j /˝X j ˝D.k/˝Y k

�
��

�˝�
// X ˝Y

f

��

E .j k/˝ .X ˝Y /jk

id˝f j k

// E .j k/˝Zjk

�

// Z

On the left, � denotes the composite

C .j /˝X j
˝D.k/˝Y k id˝t˝id

������! C .j /˝D.k/˝X j
˝Y k �˝�

����! E .j k/˝Zjk :

9The original definition in [25] had ı on the other side in this condition.
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Here, in elementwise notation,

�..x1˝ � � �˝xj /˝ .y1˝ � � �˝yk//D ..x1˝y1/˝ � � �˝ .xj ˝yk//;

where we order the pairs .xq˝yr /, 1� q � j and 1� r � k , lexicographically.

Letting V be the category of unbased G–spaces, with ˝ D �, but then passing to
monads on based G–spaces, we obtain the following observations.

Proposition A.3 For based G–spaces X and Y , a pairing �W .CG ;DG/ ! EG of
operads of G–spaces induces a natural pairing

�W CGX^DGY !EG.X ^Y /

such that the following diagrams commute:

X ^Y
�^�
//

�
&&

CGX ^DGY

�

��

EG.X ^Y /

CGCGX ^DGDGY
�^�

//

�

��

CGX ^DGY

�

��

EG.CGX ^DGY /
EG�

// EGEG.X ^Y /
�

// EG.X ^Y /

The following diagram commutes for any pairing f W X ˝Y !Z of a CG–algebra X

and a DG–algebra Y to an EG–algebra Z:

CGX ^DGY
�^�

//

�

��

X ^Y

f

��

EG.X ^Y /
EGf

// EGZ
�

// Z

Proof The map � is induced from the map � of the previous definition and the
commutativity of the first two diagrams is checked by chases from Definition A.1. The
commutativity of the second implies that � is a pairing in the sense of Definition A.2.
The commutativity of the third follows from Definition A.2.
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Example A.4 The following commutative diagram, in which we ignore the path space
variable for simplicity, shows that condition (iii) is satisfied by the pairing .KV ;KW /!

KV˚W defined in Proposition 1.17; this completes the proof of that result:

hi�V �W //

ı�id

��

�F
q;r

hqir

�
�V �W

dist
//

t��id

��

F
q;r

.hqir�V �W /

t�

��

tcq˝dr
// j�k�V �W

twist

��

hi�V �W

��id

��

�F
q;r

hq�ir

�
�V �W

dist
//

xı�id

��

F
q;r

.hq�ir�V �W /

t twist

��

j�V �k�W

c�d

��

h�i�V �W //

twist

��

�F
q

hq

�
�

�F
r

ir

�
�V �W

twist

��

F
q;r

.hq�V �ir�W /

xı

��

t.cq�dr /

@@

V �W

h�V �i�W //

�F
q

hq

�
�V �

�F
r

ir

�
�W

dist
//

�F
q

hq�V
�
�

�F
r

ir�W
�tcq

�tdr
//

�F
q

V
�
�

�F
r

W
�c�d

OO
id

>>

The following counterexample was pointed out to us by Anna Marie Bohmann and
Angelica Osorno. Using a more sophisticated categorical framework, we shall explain
how to get around the difficulty in [12; 13].

Counterexample A.5 We show that the pairing (6.4) is not a self-pairing of P. Letting
� 2P.2/ be the transposition � D .12/, we calculate

 .� ˝ � I id2˝ id1; id2˝ id1; id1˝ id1; id1˝ id1/D .1526/.3/.4/

whereas
Œ .� I id2; id1/˝  .� I id1; id1/�ı D .14526/.3/:

In this case ı is the transposition .23/. Thus condition (iii) fails.

Appendix B: The double bar construction and the proof of
Theorem 2.25

The proof of Theorem 2.25 is based on a construction that the senior author has
used for decades in unpublished work and whose algebraic analogue has also long
been used. Heretofore he has always found alternative arguments that avoid its use
in published work, and the topological version seems not to have appeared in print.
The construction works in great generality with different kinds of bar constructions,
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as described in [34; 35; 45], for example. We restrict attention to the monadic bar
construction used in this paper. We shall be informal, since it is routine to fill in the
missing details.

We assume given two monads C and D in some reasonable category U , and we assume
given a morphism of monads �W C !D . We also assume given a right D–functor
†W U ! V for some other reasonable category V . Then † is a right D –functor with
the pullback action

†C !†D!†:

Let X be a C –algebra in U . Reasonable means in particular that we can form “geo-
metric realizations” of simplicial objects X as usual, tensoring X over the category �
with a canonical (covariant) simplex functor from � to U or V .

We assume that the functor D commutes with geometric realization, so that the
realization of a simplicial D –algebra is a D –algebra. Then the bar construction

�!X D B.D;C ;X /

in U specifies an “extension of scalars” functor that converts C –algebras X to D–
algebras in a homotopically well-behaved fashion. Since D acts on †, we have the
bar construction B.†;D; �!X /, and we also have the bar construction B.†;C ;X /,
both with values in V . Under these assumptions, we have the following result.

Theorem B.1 There is a natural equivalence B.†;D; �!X /' B.†;C ;X /.

Proof of Theorem 2.25 We replace U by GU and V by GSp . We take C to be
the monad associated to the operad CU G D .CG/

G �KU G and D to be the monad
associated to CU DCG�KU . We take † to be †1

G
, and we recall that †1

G
D i�†

1 by
Lemma 2.22. By inspection or a commutation of left adjoints argument, the functor i�
commutes with geometric realization. Therefore,

EG.�!X /� B.†1G ;CU ; �!X /' B.†1G ;CU G ;X /Š i�B.†
1;CU G ;X /� i�EX;

where Theorem B.1 gives the equivalence.

Proof of Theorem B.1 We construct the double bar construction

B.†;D;D;C ;X /

as the geometric realization of the bisimplicial object B�;�.†;D;D;C ;X / in V

whose .p; q/–simplex object is †DpDC qX . The horizontal face and degeneracy
operations are those obtained by applying the simplicial bar construction B�.†;D;Y /

to the D –algebras Y DDC qX . The vertical face and degeneracy operations are those
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obtained by applying the simplicial bar construction B�.‡;C ;X / to the C –functors
‡D†DpD . The geometric realization of a bisimplicial object is obtained equivalently
as the realization of the diagonal simplicial object, the horizontal realization of its
vertical realization, and the vertical realization of its horizontal realization. Realizing
first vertically and then horizontally, we obtain

B.†;D;B.D;C ;X //D B.†;D; i!X /:

Realizing first horizontally and then vertically, we obtain the bar construction

B.B.†;D;D/;C ;X /' B.†;C ;X /:

Here B.†;D;D/ is the right C –functor whose value on a C –algebra Y is B.†;D;DY /

with right C –action induced by the C –action C Y ! Y . The equivalence is induced
by the standard natural equivalence B.†;D;DY /!†Y .

Remark B.2 The double bar construction can be defined more generally and symmet-
rically. Dropping the assumption that there is a map of monads C !D , we have that
B.†;D;F ;C ;X / is defined if F is a left D –functor and a right C –functor U!U
such that the following diagram commutes:

DFC //

��

DF

��

FC // F

This can even work when the domain and target categories of F differ but agree with
the categories on which C and D are defined.
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The localized skein algebra is Frobenius

NEL ABDIEL

CHARLES FROHMAN

When A in the Kauffman bracket skein relation is set equal to a primitive nth root
of unity � with n not divisible by 4 , the Kauffman bracket skein algebra K�.F /

of a finite-type surface F is a ring extension of the SL2C–character ring of the
fundamental group of F. We localize by inverting the nonzero characters to get an
algebra S�1K�.F / over the function field of the corresponding character variety.
We prove that if F is noncompact, the algebra S�1K�.F / is a symmetric Frobenius
algebra. Along the way we prove K.F / is finitely generated, K�.F / is a finite-rank
module over the coordinate ring of the corresponding character variety, and learn to
compute the trace that makes the algebra Frobenius.

57M27

1 Introduction

This paper is a step in a program to build a 4–dimensional extended field theory that
assigns invariants to manifolds equipped with a homomorphism of their fundamental
group into SL2C . A symmetric Frobenius algebra A over a field k is a k –algebra
equipped with a k –linear map TrW A!k that is cyclic in the sense that for all ˛; ˇ 2A,
Tr.˛ˇ/ D Tr.ˇ˛/, and for all nonzero ˛ 2 A, there exists ˇ 2 A with Tr.˛ˇ/ ¤ 0.
Frobenius algebras are central to the construction of field theories.

We show that the Kauffman bracket skein algebra of a compact surface with nonempty
boundary can be localized to give a symmetric Frobenius algebra over the function field
a character variety of the fundamental group of the surface. The trace that makes the
localized skein algebra Frobenius is a potent tool for explicating the algebraic structure
of K�.F /, as seen in Frohman and Kania-Bartoszynska [10].

A surface F is of finite type if there is a closed oriented surface yF and a finite set of
points fpig 2

yF such that F D yF �fpig. In this paper all surfaces are either compact
oriented (possibly with boundary) or of finite type. If F is a compact, connected,
oriented surface, a punctured disk can be glued into each boundary component to obtain
a finite-type surface. There is a one-to-one correspondence between disjoint families
of simple closed curves in the two surfaces, so the theorems we prove working with
finite-type surfaces apply to surfaces having finitely many boundary components.

Published: 4 October 2017 DOI: 10.2140/agt.2017.17.3341

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M27
http://dx.doi.org/10.2140/agt.2017.17.3341


3342 Nel Abdiel and Charles Frohman

A central result of this paper is:

Theorem 3.7 The Kauffman bracket skein algebra K.F / of a finite-type surface with
coefficients in ZŒA;A�1� is finitely generated as an algebra by a finite family of simple
closed curves Si . In fact,

(1-1) fS
k1

�.1/
�S

k2

�.2/
� � � � �S

kn

�.n/
g;

where ki 2 Z�0 , spans K.F / for any permutation � W f1; : : : ; ng ! f1; : : : ; ng.

This is an extension of a theorem of Bullock [3]. Key to the proof is a well ordering
of the simple diagrams on the surface. Given an ideal triangulation with edges E of
the surface F, there is an embedding of the isotopy classes of simple diagrams on F

into ZE
�0

. Letting S denote the simple diagrams on F, there is an injective map,

(1-2) �W S! ZE
�0;

which assigns the tuple
Q

c i.S; c/ to the simple diagram S , where i.S; c/ is the
geometric intersection number of S with the edge c . Choosing an order on E gives
rise to the lexicographic ordering of ZE

�0
which in turn induces a well ordering of S .

The geometric sum of two simple diagrams S and S 0 is the simple diagram S CS 0

such that �.S CS 0/D �.S/C �.S 0/.

Any skein has a unique expression as a linear combination of simple diagrams with
nonzero coefficients. The lead term of a skein is the term in that expression involving
the largest simple diagram. Suppose that we have defined the Kauffman bracket skein
algebra KD.F / over an integral domain D, so that the variable � in the Kauffman
bracket skein relation is a unit in D. The central tool for proving the theorems in this
paper is:

Theorem 3.4 Let F be a finite-type surface with at least one puncture and negative
Euler characteristic. Choose an ideal triangulation with edges E, and order E in order
to define the lead term of a skein. The lead term of the product of two simple diagrams
S and S 0 in KD.F / is � raised to a power times the geometric sum of S and S 0.

If A is set equal to �1 in K.F /, the corresponding skein algebra is canonically
isomorphic to the coordinate ring of the SL2C–character variety of the fundamental
group of F ; see Bullock [4] and Przytycki and Sikora [15]. If A is set equal to 1,
then the corresponding skein algebra is still isomorphic to the SL2C–character variety
of �1.F /, just not canonically; see Barrett [1].

Let � be an nth root of unity, and let mD n=gcd.n; 4/. For reasons that will become
clear, we call m the index of threading. Let �D �m2

. Throughout this paper we assume

Algebraic & Geometric Topology, Volume 17 (2017)



The localized skein algebra is Frobenius 3343

n¤ 0 mod 4. In the case that n is odd, �D 1. If nD 2 mod 4 then �D�1. There is a
theorem of Bonahon and Wong that, when n¤ 0 mod 4, there is a natural embedding

(1-3) ChW K�.F /!K�.F /:

We denote the image of Ch with its coefficients extended to Z
�

1
2
; �
�

by �.F /. This
is to remind us that it is canonically isomorphic to the coordinate ring of a character
variety. We use the finite generation of K.F / to prove that K�.F / is a finitely
generated module over K�.F /. Localizing at S D �.F /�f0g, the algebra S�1K�.F /

is finite-dimensional over S�1�.F /.

Theorem 3.9 Suppose that � is an nth root of unity with n¤ 0 mod 4, and let m be
the index of threading. Let F be a finite-type surface. If Si is any system of simple
diagrams corresponding to an integral basis of the cone of admissible colorings, then
the skeins

Q
i Tki

.Si/, where the ki 2 f0; 1; : : : ;m� 1g span K�.F / over �.F /. In
particular, K�.F / is a finite ring extension of �.F /.

Frohman and Kania-Bartoszynska [10] prove that S�1K�.F / is a vector space of
dimension m�3e.F / over S�1�.F /, where e.F / is the Euler characteristic of F and
m is the index of threading. Next we prove:

Theorem 3.10 If F is closed and � is a primitive nth root of unity with n¤ 0 mod 4,
then K�.F / is a finite-rank module over �.F /.

This means that all irreducible representations of K�.F / over the complex numbers
are of bounded dimension.

Each ˛ 2 S�1K�.F / induces an S�1�.F /–linear endomorphism

(1-4) L˛W S
�1K�.F /! S�1K�.F /

by left multiplication. The normalized trace Tr.˛/ of ˛ is the trace of L˛ as a linear
endomorphism divided by the dimension of the vector space S�1K�.F / over the
field S�1�.F /. The normalized trace has the properties:

� Tr.1/D 1.

� Tr.˛ �ˇ/D Tr.ˇ �˛/.

� Tr is S�1�.F /–linear.

Hence, if Tr is nondegenerate then S�1K�.F / equipped with the normalized trace is
a symmetric Frobenius algebra over the function field of the character variety of the
fundamental group of the surface F.
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Along the way we learn to compute TrW S�1K�.F /! S�1�.F / with respect to a
special basis. A primitive diagram on F is a system of disjoint simple closed curves Si

such that no Si bounds a disk and no two curves in the system cobound an annulus.
The skein

Q
i Tki

.Si/ is the product over all i of the result of threading Si with the
k th

i Chebyshev polynomial of the first kind. These span S�1K�.F / over S�1�.F /.

Theorem 4.13 Suppose that s D
P

i ˇiPi , where the ˇi are in S�1�.F / and the
Pi are primitive diagrams whose components have been threaded with Chebyshev
polynomials of the first kind. Let J be those indices i such that the components of Pi

have only been threaded with Chebyshev polynomials whose index is divisible by the
index of threading. Then

(1-5) Tr.s/D
X
i2J

ˇiPi :

The derivation of the formula for the trace depends on the following surprising fact. LetS
i Si be a simple diagram, made up of the simple closed curves Si . The extension

S�1�.F /ŒS1; : : : ;Sn� of S�1�.F / obtained by adjoining the Si is a field. This
extends a result of Muller [14], which says that simple closed curves are not zero
divisors.

Since the value of the formula for the trace doesn’t have any denominators that didn’t
appear in the input, the trace is actually defined as a �.F /–linear map

(1-6) TrW K�.F /! �.F /:

Next, the formula for the trace is used to prove that there are no nontrivial principal
ideals in the kernel of TrW K�.F /! �.F /, completing the proof that S�1K�.F / is a
symmetric Frobenius algebra. Essential to the proof is the fact that, given a primitive
diagram

S
Si , the skeins

Q
i Tki

.Si/ with 0� ki �m� 1 generate a field extension
of S�1�.F / in S�1K�.F /.

Acknowledgements The authors would like to thank Pat Gilmer, Thang Lê and Joanna
Kania-Bartoszynska for helpful input.

2 Preliminaries

2.1 Kauffman bracket skein module

Let M be an orientable 3–manifold. A framed link in M is an embedding of a disjoint
union of annuli into M . Throughout this paper M D F � Œ0; 1� for an orientable
surface F. Diagrammatically we depict framed links by showing the core of the annuli
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lying parallel to F. Two framed links in M are equivalent if they are isotopic. Let L
denote the set of equivalence classes of framed links in M , including the empty link.
By ZŒA;A�1� we mean Laurent polynomials with integral coefficients in the formal
variable A. Consider the free module over ZŒA;A�1�,

(2-1) ZŒA;A�1�L;

with basis L. Let S be the submodule spanned by the Kauffman bracket skein relations,

(2-2) �A �A�1

and
[LC .A2

CA�2/L:

The framed links in each expression are identical outside the balls pictured in the
diagrams, and when both arcs in a diagram lie in the same component of the link, the
same side of the annulus is up. The Kauffman bracket skein module K.M / is the
quotient

(2-3) ZŒA;A�1�L=S.M /:

A skein is an element of K.M /. Let F be a compact orientable surface and let
I D Œ0; 1�. There is an algebra structure on K.F � I/ that comes from laying one
framed link over the other. The resulting algebra is denoted by K.F / to emphasize
that it comes from the particular structure as a cylinder over F. Denote the stacking
product with a �, so ˛ � ˇ means ˛ stacked over ˇ . If it is known the two skeins
commute, the � will be omitted.

A simple diagram D on the surface F is a system of disjoint simple closed curves
such that none of the curves bounds a disk. A simple diagram D is primitive if no
two curves in the diagram cobound an annulus. A simple diagram can be made into
a framed link by choosing a system of disjoint annuli in F so that each annulus has
a single curve in the diagram as its core. This is sometimes called the blackboard
framing. The set of isotopy classes of blackboard framed simple diagrams form a basis
for K.F / [5; 12; 16].

2.2 Specializing A

If R is a commutative ring and � 2R is a unit, then R is a ZŒA;A�1�–module, where
the action

(2-4) ZŒA;A�1�˝R!R
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is given by letting p 2 ZŒA;A�1� act by multiplication by the result of evaluating p

at � . The skein module specialized at � 2R is

(2-5) KR.M /DK.M /˝ZŒA;A�1�R:

You can think of the specialization as setting A equal to � in the Kauffman bracket
skein relations.

This is much too general a setting to get nice structure theorems for KR.M /, so we
restrict our attention to when the ring R is an integral domain. To emphasize that we
are working with an integral domain we denote the ring by D. Since ZŒA;A�1� is an
integral domain and A is a unit, our results hold for K.A/ as a special case. For that
reason the theorems in this paper are all stated in terms of KD.M /, the skein module
specialized at a unit � in an integral domain D.

We are most interested in the case when � is a primitive nth root of unity, where
n ¤ 0 mod 4. The integral domain is Z

�
1
2
; �
�
. We need 2 to be a unit so that a

collection of skeins that are adapted to the computation of the trace will be a basis.

2.3 Threading

The Chebyshev polynomials of the first type Tk are defined recursively by

� T0.x/D 2,

� T1.x/D x , and

� TnC1.x/D T1.x/ �Tn.x/�Tn�1.x/.

They satisfy some nice properties.

Proposition 2.1 For m; n> 0, Tm.Tn.x//D Tmn.x/. Furthermore, for all m; n� 0,
Tm.x/Tn.x/D TmCn.x/CTjm�nj.x/.

For a proof see [8].

We denote the oriented surface of genus g with p punctures by †g;p . It is easy to see
that KD.†0;2/ is isomorphic to DŒx�, where x is the framed link coming from the
blackboard framing of the core of the annulus. Hence 1;x;x2; : : : ;xn; : : : is a basis
for KD.†0;2/. Since T0.x/D 2, in order to use the Tk.x/ as a basis for D, 2 must
be a unit in D. If 2 2D is a unit then fTk.x/ j k 2 Z�0g is a basis for KD.†0;2/.

If the components of the primitive diagram on a finite-type surface F are the simple
closed curves Si and ki 2 Z�0 has been chosen for each component, the result of
threading each of the curves Si with the Tki

is
Q

i Tki
.Si/. Since the Si are disjoint
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from one another, they commute, so order doesn’t matter in the product. For any
compact or finite-type surface F, the primitive diagrams on F up to isotopy, with their
components threaded with all possible choices of Chebyshev polynomials, form a basis
for KD.F / so long as 2 2D is a unit. This basis is becoming more commonly used in
the study of skein algebras [9; 17; 13].

The following theorem of Bonahon and Wong is the starting point for this investigation.
The convention for defining K�.M / means that it is a module over Z

�
1
2
; �
�
. This

means that K�.M / is a module over Z
�

1
2

�
. For the sake of the following theorem,

after choosing an mth root of unity � we interpret K�.M / to have its coefficients
extended to include Z

�
1
2
; �
�
; that way we don’t have to mess around with extending

coefficients in the range. More formally, let

(2-6) K�.M /DK�.M /˝ZŒ 1
2
�Z
�

1
2
; �
�

Theorem 2.2 (Bonahon and Wong [2; 13]) If M is a compact oriented three-
manifold and we specialize at an nth root of unity � such that n ¤ 0 mod 4, there
is a Z

�
1
2
; �
�
–linear map

ChW K�.M /!K�.M /

given by threading framed links with Tm , where m D n=gcd .n; 4/ is the index of
threading. Any framed link in the image of Ch is central in the sense that if L0 [K

differs from L[K by a crossing change of L and L0 with K , then Tm.L/[K D

Tm.L
0/[K . In the case that M D F � Œ0; 1�, the map

ChW K�.F /!K�.F /

is an injective homomorphism of algebras such that the image of Ch lies in the center
of K�.F /.

The skein module K�.M / is a ring under disjoint union. At AD˙1, the Kauffman
bracket skein relation

(2-7) ˙ C C˙

can be rotated 90 degrees and then subtracted from itself to yield

(2-8) � :

This means that, in K˙1.M /, changing crossings does not change the skein. To take
the product of two equivalence classes of framed links, choose representatives that
are disjoint from one another and take their union. The product is independent of the
representatives chosen, since the results differ by isotopy and changing crossings. The
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product can be extended distributively to give a product on K˙1.M /. Let
p

0 denote
the nilradical of K�1.M /. It is a theorem of Bullock [3], proved independently in [15],
that, for any oriented compact 3–manifold, K�1.M /=

p
0 is canonically isomorphic

to the coordinate ring of the SL2C–character variety of the fundamental group of M .
In the case that M D F � Œ0; 1�, the disjoint union product coincides with the stacking
product, as stacking is one way to perturb the components of the two links so that they
are disjoint. For any oriented finite-type surface F, the ring �.F / has basis the isotopy
classes of primitive diagrams threaded with Tki m for all choices ki 2 Z�0 .

In Sections 2.4–2.6, some algebraic background is presented that will be applied to
K�.F / in Section 4.

2.4 Specializing at a place

A place of �.F / is a homomorphism �W �.F / ! C . The places correspond to
evaluation at a point on the character variety. A place defines a �.F /–module structure
on C , where the action

(2-9) �.F /˝C!C

is defined by letting s 2 �.F / act as multiplication by �.s/ on C . We define the
specialization of K�.F / at � to be

(2-10) K�.F /� DK�.F /˝�.F /C:

The specialization at a place is an algebra over the complex numbers.

2.5 Localization

Let R � J be a ring extension, where R is an integral domain, J is an associative
ring with unit and R is a subring of the center of J . Since R has no zero divisors,
S D R � f0g is multiplicatively closed. Start with the set of ordered pairs J � S ,
and place an equivalence relation on J � S by saying .a; s/ is equivalent to .b; t/
if at D bs . Denote the equivalence class of .a; s/ under this relation by Œa; s�. The
set of equivalence classes is denoted by S�1J , and called the localization of J

with respect to S . Denote the set of equivalence classes Œa; s� for a 2 R by S�1R.
Define multiplication of equivalence classes by Œa; s�Œb; t �D Œab; st � and addition by
Œa; s�C Œb; t �D Œat C bs; st �. Under these operations, S�1R is a field, and S�1J is
an algebra over that field.

In this paper, J is a subalgebra of K�.F / and R is �.F /. This means that S�1R is
the function field of the character variety associated to K�.F /.
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2.6 Trace and extension of scalars

Let f be a field and suppose that V is a finite-dimensional vector space over f . If
L 2 Endf .V /, we use tr.L/ to denote the unnormalized trace of L. The linear map
L can be represented with respect to a basis fvj g by a matrix .lj

i /. The trace of L is
given by

(2-11) tr.L/D
X

i

l i
i :

If W is also a finite-dimensional vector space over f and M W W !W is an f –linear
map, then

(2-12) tr.L f̋ M /D tr.L/ tr.M / and tr.L˚M /D tr.L/C tr.M /:

Suppose that f � a is a field extension and V is a vector space of dimension n over f ;
then

(2-13) V f̋ a

is a vector space of dimension n over a. In fact, if fvj g is a basis for V then fvj ˝ 1g

is a basis for V f̋ a over a.

Under extension of scalars, LW V ! V gets sent to L f̋ 1a . The matrix of L f̋ 1a

with respect to the basis fvj ˝ 1g is the same as the matrix of L with respect to fvj g,
so

(2-14) tr.L f̋ 1a/D tr.L/;

where the trace on the left is taken as an a–linear map, and the trace on the right is
taken as an f –linear map, and we are using f � a to make the identification.

The next proposition gives the method by which we will be computing the trace.

Proposition 2.3 Suppose that K � P � J , where K and P are fields, J is an
algebra over K and J is a finite-dimensional vector space over k . Thus J is a finite-
dimensional vector space over P, and P is a finite field extension of K . If s 2 P, then
it defines a K–linear maps lsW P ! P, and LsW J ! J by left multiplication. If d is
the dimension of J over P, then

(2-15) tr.Ls/D d tr.ls/;

where the traces are both taken as linear maps over K .
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Proof Since K � P is finite-dimensional it has basis p1; : : :pn over K . Since J is
a finite-dimensional vector space of dimension d over P it has basis j1; : : : jd over P.
This implies that pajc is a basis of J over K . Expressing ls with respect to the
basis pa , we get

(2-16) ls.pa/D
X

b

la
b pb:

Since s acts as scalar multiplication on J ,

(2-17) Ls.pajc/D
X

b

la
b pbjc :

Hence the matrix for Ls decomposes into d blocks that are all copies of the matrix
for ls . Therefore the trace of Ls is equal to d times the trace of ls .

2.7 Geometric intersection numbers

Suppose that X and Z are properly embedded 1–manifolds in the finite-type surface F,
where X is compact. We say that X 0 is a transverse representative of X if X 0 is
ambiently isotopic to X via a compactly supported isotopy and X 0 t Z . Define the
geometric intersection number of X and Z , denoted by i.X;Z/, to be the minimum
cardinality of X 0\Z over all transverse representatives of X. We could have instead
worked with Z up to compactly supported ambient isotopy and taken the minimum
over all Z0 isotopic to Z and transverse to X and gotten the same number, so
i.X;Z/D i.Z;X /.

It is a theorem that a transverse representative of X realizes the geometric intersection
number i.X;Z/ if and only if there are no bigons. A bigon is a disk D embedded
in F so that the boundary of D consists of the union of two arcs a�X and b�Z [7].
If there is a bigon, there is always an innermost bigon, whose interior is disjoint
from X [Z .

3 KD.F / is finitely generated

3.1 Parametrizing the simple diagrams

An ideal triangle is a triangle with its vertices removed. An ideal triangulation of
a finite-type surface F consists of finitely many ideal triangles �i with their edges
identified pairwise, along with a homeomorphism from the resulting quotient space to F.
Alternatively an ideal triangulation is defined by a family E of properly embedded
lines that cuts F into finitely many ideal triangles. The surface F needs to have at least
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Figure 1: A folded triangle

one puncture, and negative Euler characteristic or it doesn’t admit an ideal triangulation.
If the Euler characteristic of the surface F is �e.F / then any ideal triangulation of F

consists of 2e.F / ideal triangles. The cardinality of a set of lines E defining an ideal
triangulation is 3e.F /.

If � is an ideal triangle in an ideal triangulation then @�Dfa; b; cg, where a, b and c

are homeomorphic to R. The lines a, b , and c are the sides of �. There is a map of
� to the closure of a component D of the complement of E into F. If this map is an
embedding, then � is an embedded ideal triangle. It could be that two sides c1 and c2

of the ideal triangle � get mapped to the same line c ; in this case � is a folded ideal
triangle. Figure 1 is a picture of a folded ideal triangle. There are two punctures in the
picture, and the mapping is 2� 1 along the vertical line joining them. The edge that is
covered twice by the mapping has multiplicity 2.

Let E denote a disjoint family of properly embedded lines that defines an ideal
triangulation of F, and suppose the triangles are the set f�j g. An admissible coloring
f W E! Z�0 is an assignment of a nonnegative integer f .c/ to each c 2E such that
the following conditions hold:

� If fa; b; cg form the boundary of an embedded ideal triangle �j then the sum
f .a/ C f .b/ C f .c/ is even and the triple ff .a/; f .b/; f .c/g satisfies the
triangle inequality

(3-1) f .a/� f .b/Cf .c/; f .b/� f .a/Cf .c/ and f .c/� f .a/Cf .b/:

� If fa; bg are the image of the boundary of a folded ideal triangle �j , where b

has multiplicity 2, we require that f .a/C 2f .b/ be even and f .a/� 2f .b/.

If S � F is a simple diagram then fS W E ! Z�0 given by fS .c/ D i.S; c/ is an
admissible coloring. Conversely, for each admissible coloring f W E! Z�0 there is
an isotopy class of simple diagrams having geometric intersection numbers with the
edges given by f . We denote a representative of this isotopy class by Œf �. In particular,
Œfs �D S . We use A to denote the set of all admissible colorings f W E! Z�0 .
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Proposition 3.1 The admissible colorings of the edges of an ideal triangulation of F

are in one-to-one correspondence with isotopy classes of simple diagrams on F.

A pointed integral polyhedral cone is a subset A of some Zk that is defined by finitely
many equations and inequalities with E0 2A.

Proposition 3.2 The admissible colorings of an ideal triangulation of F form a pointed
integral polyhedral cone.

Proof If E is the set of edges of the ideal triangulation then there is a map

(3-2) AD ff W E! Z�0 j f is admissibleg ! ZE

that sends each f to its tuple of values. We still denote the image of this map by A.

The only part of recognizing A as an integral cone that is tricky is the condition that
the sum of colors over the sides of a triangle needs to be even. This can be avoided by
using a linearly equivalent description of the admissible colorings via corner numbers.
An ideal triangle has three corners, determined by a choice of two of the three sides.
For instance, if a triangle has three sides a, b and c , then the corners correspond to
fa; bg, fb; cg and fa; cg. If f W E! Z�0 is an admissible coloring, the three corner
numbers of this triangle are

(3-3) 1
2
.f .a/Cf .b/�f .c//; 1

2
.f .b/Cf .c/�f .a//; 1

2
.f .a/Cf .c/�f .b//:

It is easy to see that the corner numbers determine the admissible coloring and vice
versa. An assignment of corner numbers corresponds to an admissible coloring of the
edges if and only if all the corner numbers are nonnegative and if, for each edge, the
sum of the two corner numbers on one side of the edge is equal to the sum of the corner
numbers on the other side of that edge. The description in terms of corner numbers
allows us to conclude that the admissible colorings are a pointed integral cone.

An integral basis of a pointed integral polyhedral cone is a subset of the cone that has
minimal cardinality among all subsets that span the cone additively. It is a classical
result [11] that any pointed integral polyhedral cone admits a finite integral basis. The
integral basis is unique. If P is a pointed integral polyhedral cone, p 2P is indivisible
if s D 0 or p D 0 whenever s; t 2 P and sC t D p . The set of indivisible elements
of P is the integral basis [18]. In the case of the cone of admissible colorings, the
diagrams corresponding to indivisible colorings are simple closed curves.

Forgetting positivity, and the triangle inequality, the admissible colorings generate a
free module over Z. It makes sense to ask whether a collection fSi

W E! Z�0 are
linearly independent. Oddly, the integral basis need not be linearly independent.
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Figure 2: An ideal triangulation of †1;1

Remark 3.3 Decompose the punctured torus †1;1 into two ideal triangles. This
requires three edges, which form the boundary of both triangles. In the diagram below
we identify the left- and right-hand sides of the rectangle, and the top and bottom of the
rectangle with the vertices deleted to obtain a once-punctured torus. The lines defining
the triangulation come from the sides of the rectangle and the diagonal, as shown in
Figure 2.

The admissible colorings can be seen as triples of counting numbers .m; n;p/ whose
sum is even that satisfy the triangle inequality. The nonzero indecomposable admissible
colorings are .1; 1; 0/, .1; 0; 1/ and .0; 1; 1/. This set is an integral basis. Notice that
if .a; b; c/ is an admissible coloring and one of the triangle inequalities is strict, say
a< bC c , we can subtract the corresponding indecomposable .0; 1; 1/ to get a triple
.a; b � 1; c � 1/ that still satisfies the triangle inequality and the sum of the colors
aC bC c � 2 < aC bC c . If all three triangle inequalities are equalities aD bC c ,
b D aC c and c D aC b , then .a; b; c/D .0; 0; 0/. The three curves corresponding
to .1; 1; 0/, .1; 0; 1/ and .0; 1; 1/ are the generators that Bullock and Przytycki [6]
obtained for K.†1;1/. There are infinitely many ideal triangulations of †1;1 but Euler
characteristic forces them all to be two triangles that share all their edges. The argument
above goes through, even though the curves on the torus will be different. Since the
integral basis is unique, any set of skeins that generates KD.†1;1/ must have at least
three elements.

Choose an ordering of E. Use this to order ZE
�0

lexicographically. Notice that ZE
�0

in the lexicographic ordering is a well-ordered monoid. By that we mean ZE
�0

is
well-ordered and, if a; b 2Z�0 have a< b , then aCc < bCc for any c 2Z�0 . Since
A is a submonoid of ZE

�0
, we have that A is a well-ordered monoid.

If ˛ 2K�.F / then we can write ˛ as a finite linear combination of simple diagrams
with complex coefficients,

(3-4) ˛ D
X

S

zSS;
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where the S are simple diagrams and the zS are nonzero elements of D. The lead
term of ˛ is zSS , where S is the largest diagram appearing in the sum. We denote
the lead term of the skein ˛ as ld.˛/.

3.2 The algebra KD.F / is finitely generated over D

If fS and fS 0 are admissible colorings, choose simple diagrams S and S 0 that realize
the colorings as the cardinality of their intersections with the ci 2 E and such that
S and S 0 realize their geometric intersection number and S \ S 0 is disjoint from
all ci . Up to isotopy there is a unique simple diagram whose associated coloring is
fSCfS 0 , called the geometric sum of S and S 0. Since addition of admissible colorings
is associative, so is the geometric sum. It is worth noting, the geometric sum of two
diagrams depends on the choice of ideal triangulation.

Suppose that S and S 0 transversely represent i.S;S 0/. Furthermore assume that
S \S 0\E D∅. If there are n points of intersection in S \S 0, there are 2n ways of
smoothing all the crossings of S and S 0 to get a system of simple closed curves. We
call a system of simple closed curves obtained by smoothing all crossings s a state. A
state might not be a simple diagram as it may contain some trivial simple closed curves.
There is a process for writing the product S �S 0 as a linear combination of simple
diagrams. First expand the product as a sum of states using the Kauffman bracket
skein relation for crossings, then delete the trivial components of each state, and for
each trivial component deleted from a state multiply the coefficient of the state by
��2� ��2 . Order the crossings of S �S 0. Based on the ordering there is a rooted tree,
where the root is the diagram S �S 0, the vertices are partial smoothings (resolvents) of
the diagram, and the directed edges correspond to smoothing the crossings in order.
The states are the leaves of this tree. If the shortest path from the root to a state s

passes through a resolvent r , we say that s is a descendent of r .

Theorem 3.4 Let S and S 0 be simple diagrams associated to admissible colorings
fS ; fS 0 W E ! Z�0 . Assume the product S � S 0 2 KD.F / has been written asP

D zDD , where the D are simple diagrams that are distinct up to isotopy and the
zD 2 D are nonzero. There exists a unique simple diagram E in this sum, so that
fE D fS C f

0
S

, and all the other simple diagrams appearing with nonzero coefficient
in the sum are strictly smaller in the well ordering of diagrams. Furthermore, the
coefficient zE is a power of � .

Lemma 3.5 Let G be a four-valent graph with at least one vertex, embedded in a
disk D2. Assume that G is the union of two families of properly embedded arcs
A1[A2 and that there are three special points p , q and r in @D2 such that
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� the endpoints of the A1 and A2 are disjoint from one another and fp; q; rg
in @D2,

� if a1 2A1 and a2 2A2 , then a1 and a2 intersect transversely, and realize their
geometric intersection number relative to their boundaries,

� if a; b 2Ai then a\ b D∅, and
� for any arc a 2A1[A2 , the endpoints of a are separated by fp; q; rg,

If A1\A2 is nonempty, then there is an embedded triangle � whose sides consist of
an arc of @D2 that is disjoint from fp; q; rg, an arc contained in some a 2A1 that only
intersects A2 in a single point which is one of its endpoints, and an arc in some b 2A2

that only intersects A1 in a single point which is one of its endpoints.

(We call this an outermost triangle.)

Proof The graph dissects the disk into vertices, edges and faces. The alternating sum
of the numbers of vertices, edges and faces is 1, as that is the Euler characteristic of
the disk. A face f has two kinds of sides, sides in @D2 and sides in the interior of D2.
Let e@.f / denote the number of sides of f lying in @D2 and ei.f / the number of
sides of f in the interior. Similarly, let v@.f / be the number of vertices of the face
that lie in @D2, and vi.f / be the number of vertices of f that lie in the interior of D2.
The contribution of the face f to the Euler characteristic of the disk is

(3-5) c.f /D 1� 1
2
ei.f /� e@.f /C

1
4
vi.f /C

1
2
v@.f /:

We have that
P
f c.f / D 1. The faces that are contained in the interior of the disk

have an even number of sides, as their edges are partitioned into arcs of A1 and arcs
of A2 . Since the arcs of A1 and A2 realize their geometric intersection number, the
interior faces have at least four sides. Hence the largest contribution of an interior face
is 0. A face touching the boundary can have two sides, but these faces are cut off by
a single component of A1 or A2 , and contain a point of fp; q; rg in their boundary
face by the last condition. They contribute 1

2
to the Euler characteristic of the disk.

However, the edges involved in these pieces can be removed from the families A1 and
A2 and the remaining curves still satisfy the hypotheses, so do this. Now, the only
faces that contribute positively to the Euler characteristic of the disk are triangles with
one edge on the boundary. These contribute 1

4
to the Euler characteristic. There must

be at least 4 such triangles. That means if the intersection of A1 and A2 is nonempty,
then one of those triangles does not contain a point from fp; q; rg, so it is an outermost
triangle.

Proof of Theorem 3.4 Let S and S 0 be two simple diagrams, with associated col-
orings fS ; fS 0 W E! Z�0 , where E is the system of proper lines defining an ideal
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Figure 3: Resolving at an outermost triangle

triangulation with ideal triangles �j . We do not need to distinguish between embedded
and folded triangles for this proof, because the combinatorial lemma above is applied
in the completed components of the complement of E. Isotope S and S 0 so that they
are transverse to one another, and the lines in E, and realize all geometric intersection
numbers i.S;S 0/, i.S; c/ and i.S 0; c/ for c 2E. Also make sure that S\S 0\ED∅.
We resolve S �S 0 one ideal triangle at a time. The four-valent graph .S [S 0/\�j

for each �j satisfies the hypotheses of the lemma. To start with, A1 is made up of the
components of S \�j and A2 is made up of the components of S 0\�j . Therefore
we can find an outermost triangle ���j . If we resolve the crossing of S �S 0 at the
apex of the triangle there are two resolvents. One resolvent forms a bigon with the
edge of the triangle, and hence any simple diagram descendent from this resolvent is
strictly smaller in the ordering of diagrams than ŒfS CfS 0 �. This is shown in Figure 3

The other resolvent doesn’t have a bigon. Any state resulting in a simple diagram
whose coloring is fS C fS 0 is a descendent of this resolvent. The triangle � has a
face p � S and a face q � S 0. Assume that p lies in the component a of the family
A1 and q lies in the component b of A2 . We smooth by forming arcs a � p [ q

and b � q [ p and then perturb them slightly so that they are disjoint. To continue
on inductively, we declare that the perturbed version of a� p [ q is in A1 , whilst
removing a, and the perturbation of b� q[p is in A2 and discard b . This operation
does not produce any components of A1 or A2 that are simple closed curves inside
the triangle �, because every component of the new families A1 and A2 still have
two endpoints. Notice that the assignment of A1 and A2 is now just local to the ideal
triangle instead of corresponding to the diagrams S and S 0. However, we work ideal
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triangle by ideal triangle, so this isn’t a problem. If the new graph has a crossing, it still
satisfies the hypotheses of the lemma, so we can continue resolving crossings at the
apex of an outermost triangle. There is a unique resolvent that can have a descendent
with coloring fS CfS 0 . Continue until there are no crossings in �j . There is a single
resolvent with no bigons in �j , so all the crossings in �j have been resolved. All the
other resolvents with no crossings in �j have bigons in �j and will lead to simple
diagrams that are strictly smaller in the ordering of diagrams. Do this for each triangle.
In the end, there is a single state with no bigons. The state must be a simple diagram.
The construction did not produce any simple closed curves contained in a triangle. A
simple closed curve that bounds a disk and has nonempty intersection with the edges
of the triangulation must have a bigon, since a proper arc in a disk always separates
the disk into two subdisks. Since there are no bigons between E and the edges of
the triangulation, the admissible coloring associated to E is fS C fS 0 , so E is the
geometric sum of S and S 0. The coefficient of E is �p.E/�n.E/, where p.E/ is the
number of positive smoothings and n.E/ is the number of negative smoothings that
gave rise to the state E. The rest of the expansion is a linear combination of simple
diagrams that are strictly smaller.

Remark 3.6 A collection of skeins ˇ 2 B spans KD.F / over D if and only if the
lead terms of the elements in ˇ consist of units in D times simple diagrams, and each
isotopy class of simple diagrams appears at least once in the lead term of some ˇ 2 B .

Theorem 3.7 Suppose that D is an integral domain and � 2D is a unit and 2 2D is
a unit. Let Si be a family of simple diagrams corresponding to the integral basis of the
admissible colorings of an ideal triangulation. The skeins

˚Q
i Tki

.Si/
	

, where the ki

range over all nonnegative integers, spans KD.F / over D.

Proof The lead term of Tk1
.S1/ � Tk2

.S2/ � � � � � Tkn
.Sn/ is a power of � times

a simple diagram corresponding to the admissible coloring
P

i kifSi
, where fSi

is
the admissible coloring corresponding to Si . Since the lead terms of these skeins
correspond to all simple diagrams, we can inductively rewrite any skein as a linear
combination of these by starting at the terms of highest weight.

This extends a theorem of Bullock [4]. In that paper it is proved that the arbitrary
products of a finite collection of curves Si spans. Our theorem is stronger because we
can specify the order of the product of the Si , as no matter what order we work in,
the leading terms are the same, though maybe with different powers of � as the lead
coefficient. It could be that the integral basis of the space of admissible colorings is
not linearly independent over Z, so we don’t have that the products form a basis.
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3.3 The case when � is a primitive nth root of unity

Now we go on to study K�.F /, meaning the coefficients are Z
�

1
2
; �
�
, where � is a

primitive nth root of unity, n¤ 0 mod 4, and A is set equal to � . Recall �.F / is the
image of the threading map

(3-6) ChW K�.F /!K�.F /:

Recall the overline is to indicate that we have extended the scalars of K�.F / to include
1
2

and � . The map Ch threads every component of a framed link corresponding to a
simple diagram with Tm.x/, where mD n=gcd.n; 4/, the index of threading. Since

(3-7) Tk.x/D

bk=2cX
iD0

.�1/i
k

k�i

� k�i

i

�
xk�2i ;

the lead term of Ch.S/ where the simple diagram has admissible coloring fS W E!Z�0

of weight i is ŒmfS �.

Let S be a simple diagram with associated coloring fS W E! Z�0 . Assume that fS

is not identically zero. The integers ffS .c/gc2C generate a subgroup of Z, which,
being cyclic, has a smallest positive generator, denoted by gcd.fS /.

Proposition 3.8 If n>0 is odd and njgcd.fS / then 1
n
fS W E!Z�0 is an admissible

coloring with associated simple diagram S 0 and .S 0/n D S 2K�.F /.

Proof Since F is orientable, the diagram S 0 is two-sided, meaning that we can push
it completely off of itself to take the product. This means that the admissible coloring of
.S 0/n is nfS 0 W E!Z�0 . If fS W E!Z�0 is an admissible coloring, and for all c 2C ,
the odd integer njf .c/, then, for any fa; b; cg D @� of an embedded ideal triangle in
the triangulation,

˚
1
n
fS .a/;

1
n
fS .b/;

1
n
fS .c/

	
satisfy all three triangle inequalities as

the triangle inequality is linear. The sum 1
n
.fS .a/C fS .b/C fS .c// is even, as an

even number divided by an odd number is even. Similarly, 1
n
fS W E! Z�0 satisfies

the conditions to be admissible for folded triangles.

The restriction to n¤ 0 mod 4 means that m is always odd, so Proposition 3.8 applies.
If S is a simple diagram associated to the admissible coloring

(3-8) fS W E! Z�0

then, as noted above, the lead term of Ch.S/ is ŒmfS �, and m divides gcd.mfS /.
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Theorem 3.9 Let F be a finite-type surface with at least one puncture, that has been
ideally triangulated. If Si is any system of simple diagrams corresponding to an
integral basis of the cone of admissible colorings of the triangulation, then the skeinsQ

i Tki
.Si/, where the ki 2 f0; 1; : : : ;m� 1g, span K�.F / over �.F /. In particular,

K�.F / is a finite ring extension of �.F /.

Proof The proof is by induction on largest diagram appearing with nonzero coefficient
in a skein. Start with a skein written in terms of the basis over Z

�
1
2
; �
�

of simple
diagrams,

(3-9)
X

j

j̨

Y
i

Tki;j
.Si;j /;

with j̨ 2 Z
�

1
2
; �
�
. Suppose the lead term of the skein is indexed by j . Since

(3-10) TmCk.x/D Tm.x/�Tk.x/�Tjm�kj.x/

if some ki;j �m, then, as �.F / is central, we can factor out an element of �.F / from
the term to get a simple diagram of lower weight. Continue on inductively till the skein
is written as

(3-11)
X

j

ǰ

Y
i

Tki;j
.Si;j /;

where all ki;j 2 f0; 1; : : : ;m� 1g and ǰ 2 �.F /.

Theorem 3.10 If F is closed, and � is a primitive nth root of unity, where n¤0 mod 4,
then K�.F / is a finite-rank module over �.F /.

Proof If F is closed and p 2 F, then the inclusions K�.F � fpg/! K�.F / and
�.F �fpg/! �.F / are surjective homomorphisms that fit into a commutative square

(3-12)

K�.F �fpg/ // K�.F /

�.F �fpg/

OO

// �.F /

OO

After choosing an ideal triangulation for F � fpg, if the admissible colorings as-
sociated with Si form an integral basis then Tk1

.S1/ � � � � � Tkn
.Sn/, where the

ki 2 f0; : : : ;m� 1g, span K�.F / over �.F /.

In [8] we prove that K�.†1;0/ is not free over �.†1;0/, so there are definitely linear
dependencies between the elements of the spanning set produced this way.
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Theorem 3.11 For every �W �.F /!C , K�.F /� is a finite-dimensional algebra over
the complex numbers.

Proof This follows from the definition of specialization.

Let F be a finite-type surface of negative Euler characteristic and at least one puncture.
Let E be the edges of an ideal triangulation of F. Recall that A denotes the admissible
colorings of E. After ordering the set E, you can view A � ZE

�0
. This allows us to

define a map

(3-13) resW A! ZE
m;

by sending each admissible coloring to the tuple of residues of its values modulo m.
This is used to define

(3-14) resW K�.F /�f0g ! ZE
m:

Every nonzero skein ˛ can be written
P

S zSS where the zS are nonzero complex
numbers and the S are simple diagrams, and the sum is nonempty. Let fS W E!Z be
the admissible coloring of the diagram appearing in the lead term of ˛ . Define res.˛/
to be res.fS /.

Lemma 3.12 If ˛; ˇ 2K�.F /�f0g then res.˛ �ˇ/D res.˛/C res.ˇ/.

Proof Suppose that the lead term of ˛ is zSS and the lead term of ˇ is wT T .
If the admissible colorings corresponding to S and T are fS and fT , then, by
Theorem 3.4, the diagram underlying the lead term of ˛ � ˇ has coloring fS C fT .
Hence res.˛ �ˇ/D res.fS CfT /D res.fS /C res.fT /.

Theorem 3.13 Suppose that f˛ig is a collection of nonzero skeins and the restriction
of resW K�.F /� f0g ! ZE

m to f˛ig is one-to-one. The collection of skeins f˛ig is
linearly independent over �.F /.

Proof Suppose that
P

i ˇi˛iD 0 with the ˇi 2�.F /. This means that the lead term ofP
i ˇi˛i is equal to zero. However if ˇi 2 �.F /�f0g the coloring corresponding to its

lead term is divisible by m by Proposition 3.8. Hence res.ˇi�˛i/D res.ˇi/Cres.˛i/D

res.˛i/. Since the res.˛i/ are all distinct, there can be no cancellation among the leading
terms of the sum, and in fact all the ˇi D 0.

4 Computing the trace

Recall if ˛ 2K�.F /, there is a S�1�.F /–linear map,

(4-1) L˛W S
�1K�.F /! S�1K�.F /;
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given by left multiplication. If d is the dimension of S�1K�.F / as a vector space
over S�1K�.F / then, by definition, the normalized trace of L˛ is 1

d
tr.L˛/, where tr

denotes the standard trace. The goal of this section is to compute Tr.L˛/. The correct
basis for K�.F / over D is the primitive diagrams P whose components Si have been
threaded by Tki

.x/. If ˛ has been written as a linear combination of such P, then the
normalized trace of L˛ is the result of crossing out all terms where some component
of the diagram has been threaded with a ki that is not divisible by m.

Since the trace is linear, we only need to compute the trace of skeins of the formQ
i Tki

.Si/, where the fSig for iD1; : : : ; n are the components of a primitive diagram.
The strategy is to prove that the subalgebra of K�.F / obtained by adjoining the
curves Si to �.F /, denoted by �.F /ŒS1; : : : ;Sn�, is isomorphic to the tensor product
of n copies of the skein algebra of the annulus †0;2 with its coefficients extended
to �.F /. The trace of the tensor product of linear endomorphisms is the product of the
traces of the endomorphisms. Therefore the trace of

Q
i Tki

.Si/ is the product of the
traces of its individual factors. Once we localize at S D �.F /� f0g, the subalgebra
S�1�.F /ŒS1; : : : ;Sn� is a commutative ring that is a finite extension of the field
S�1�.F /, having no zero divisors. This means that S�1�.F /ŒS1; : : : ;Sn� is a field.
Hence S�1K�.F / is a finite-dimensional vector space over S�1�.F /ŒS1; : : : ;Sn�,
which in turn is a finite-dimensional vector space over S�1�.F /. This is exactly the
computational setting for Proposition 2.3.

Since m is not necessarily prime, Zm might have zero divisors. Hence, linear indepen-
dence in a module over Zm is subtle. Since ZE

m is a free module over Zm , there are
linearly independent subsets. Let Eec 2ZE

m be the vector whose entries are all 0 except
for a 1 in the cth entry. The vectors Eec form a basis for Zm .

Lemma 4.1 Choose an ordering of E. Let V D fEvig 2 ZE
m be a collection of vectors

indexed by an initial segment of the counting numbers. There is a map I W V !E the
sends each Evi to the index of its first nonzero entry. If I is increasing and the first
nonzero entry of each Evi is a unit in Zm , then V is linearly independent over Zm .

Proof Adjoin those Eec to V that don’t appear as a first nonzero entry. The determinant
of the n � n matrix you get this way is a unit. Therefore it is a basis of ZE

m . The
original fEvig is independent as any subset of a basis is independent.

Proposition 4.2 Suppose that Si is an ordered collection of disjoint simple closed
curves on the finite-type surface F. Suppose further that there is an ideal triangulation
of F with ordered set of edges E such that the map I W fSig ! E that sends each
curve Si to the smallest edge in E that it has nonzero geometric intersection number
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Figure 4: A monogon

with is increasing, and the geometric intersection number of Si with I.Si/ is always 1

or 2. The set of skeins
˚Q

i Tki
.Si/

	
, where the ki range from 0 to m�1, are linearly

independent in K�.F /.

Proof By Lemma 4.1, the vectors fres.Si/g are linearly independent in ZE
m . This

implies that the vectors
˚P

i ki res.Si/
	

, where the ki range over 0 to m� 1, are
all distinct. However, the residue of

Q
i Tki

.Si/ is equal to
P

i ki res.Si/, hence the
residues of the

˚Q
i Tki

.Si/
	

are distinct. By Theorem 3.13, the set
˚Q

i Tki
.Si/

	
is

independent in K�.F /.

The next several paragraphs are to prove that if the fSig are the components of simple
diagram, then we can find a triangulation E such that the hypotheses of the last
proposition hold true for a choice of orderings for fSig and E.

Suppose that E is a properly embedded system of disjoint lines in the finite-type
surface F. A monogon is a component of the complement of E that completes to a
closed disk with a single point removed from its boundary. We show a monogon in
Figure 4.

A bigon is a component of the complement of E that completes to a closed disk with
two points removed from its boundary. We show a bigon in Figure 5.

Proposition 4.3 Suppose that E is a properly embedded system of disjoint lines in
the finite-type surface F whose complement has no monogons or bigons. There exists a
collection D of properly embedded lines such that C [D defines an ideal triangulation
of F.

Figure 5: A bigon
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Figure 6: A filling diagram and its dual graph

Suppose that P � F is a primitive diagram. We say that P fills F if the components
of F �P consist of once-punctured disks about the punctures of F and planar surfaces
of Euler characteristic �1.

Theorem 4.4 Suppose that F is a finite-type surface of negative Euler characteristic
with at least one puncture and P fills F. There is an ordering of the disjoint curves Si

that make up P and a collection of disjoint embedded lines ci such that if i < j then
i.Sj ; ci/D 0, and i.Si ; ci/ is 1 or 2. Since no two of the ci are parallel and all of the
ci are essential, the collection ci can be built up to be an ideal triangulation of F.

If P fills F, there is a dual 1–dimensional CW–complex, with a 0–cell for every
component of the complement of P and a 1–cell for every component of P. The
trivalent 0–cells of the CW–complex correspond to components of the complement
that complete to pants. The monovalent 0–cells correspond to components of the
complement that complete to a punctured disk. If a 1–cell has both its endpoints
at the same 0–cell, the corresponding simple closed curve is a nonseparating curve
lying in the closure of a component of the complement of P that is homeomorphic
to †1;1 . The CW–complex minus its valence-one vertices can be properly embedded
in the surface F, where each edge intersects the corresponding simple closed curve
once in a transverse point of intersection and the trivalent vertices embedded in the
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Figure 7: A maximal rooted tree

corresponding components of the complement of P, and the ends of the deleted CW–
complex mapped to the ends of the corresponding disk with a point deleted. The edges
of the CW–complex are in one-to-one correspondence with the components of P .
If the edge e and the component S intersect one another, we say that they are dual.
The intersection is necessarily a single point of transverse intersection.

In Figure 6 we show a twice-punctured surface of genus three. The filling diagram is
in blue and the embedded dual graph is red.

Choose a maximal tree of the CW–complex and a valence-one 0–cell. Orient the tree
so that it is rooted at the chosen 0–cell. That is, every edge is oriented so that it points
towards the root. The monovalent 0–cells of the tree that are sources are the leaves of
the tree. The rooted tree is in red.

We will build a train track from this tree as shown in Figure 7.

Figure 8 is color-coded so that each of the following steps is visible. First smooth the
vertices of the tree so that the two edges pointing into each interior 0–cell have the
same outward-pointing tangent vector. Next, for each component of the diagram that
doesn’t bound a punctured disk and is dual to an edge of the tree, push it off itself
towards the root, and then put a kink in it where it intersects the edge dual to it and
smooth the kink to get a switch where both outward normals of the curve at the kink
point towards the root. These are in magenta. Next, add the remaining edges of the
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����

Figure 8: The train track

CW–complex, so that their outward normals, at the switches created, point towards the
root. These are in green. If both endpoints of the edge are attached at the same 0–cell,
that edge e lies in the closure of a component of the complement of P that is a torus.
If S is the dual edge, push it off of itself and add a kink where it intersects e so that
the outward tangent vectors point towards the vertex in the torus component. This is in
brown. Suppose now that the 0–cells of the tree that e is attached at are distinct. For
each one of those 0–cells that is a leaf, add a branch to the track, which is a pushoff
of the dual component of P, with a kink in it that makes a switch in the train track
pointing at that 0–cell. These are in yellow.

We produce a family of disjoint properly embedded lines by splitting the tree at the
switches and cutting open all the way to the root. The switches in the tree point towards
the roots, and the switches in the additional edges point towards the tree, so the process
of cutting open along switches terminates at the root, and we have produced a family
of disjoint properly embedded lines. The train track does not carry any simple closed
curves.

Order the components of P so that S and T are dual to edges in the tree then their
relative order is consistent with their distance from the root of the tree, and if they
aren’t dual to edges of the tree then they come after all the components that are dual to
edges of the tree. Working in order we prove that, given a component S of P, there is
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Figure 9: An edge that is simultaneously initial and a leaf

a line cS in our family such that i.X; cS / is 1 or 2, and if T > S then cS \T D∅,
or we exchange order so that we can do so.

Since the lines cS are indexed by S , the condition on intersections implies that no line
is homotopically trivial (bounds a monogon) and no two lines are parallel (cobound
a bigon), so the family cS can be built up to a triangulation. The complication of
the construction is that to construct the line for a given edge in the tree we need to
understand what immediately follows the edge in the ordering.

We start at the root. If an edge leaving the root is a leaf in the tree, there are three
possible cases. The surface could be a once-punctured torus, or a thrice-punctured
sphere, or the terminal points of the edge are at punctures, and the punctured disks
containing those punctures abut the same pair of pants. The construction for the
punctured torus, and thrice-punctured pair of pants can be done by inspection. We
focus on the last case, shown in Figure 9.

According to our rules either the edge of the tree dual to the blue curve parallel to the
outer boundary or the line joining to the two punctures could come first. You really
want the edge dual to the curve parallel to the outer boundary component to be first.
If S1 is the component of P that bounds the punctured disk at the root, let cS1

be
the line built from the branch of the track that follows the outer boundary component
before heading to the puncture. Notice i.cS1

;S1/D 2. The circle S2 surrounding the
other puncture has geometric intersection number 1 with the line cS2

having one end
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Figure 10: The case when the edge leaving the root is not a leaf

at each puncture. Since the line cS1
is completely inside the diagram we have that it

has geometric intersection number 0 with all later curves.

Now suppose that the edge leaving the root is not a leaf. In Figure 10 we show the
situation. The line cS1

coming from the branch of the track that runs around the outer
boundary component has geometric intersection number 2 with S1 and misses all the
other components of the filling diagram, and for all later components it has geometric
intersection number 0.

An edge dual to Si of the tree is intermediate if there is an edge dual to Si�1 before
it and an edge dual to SiC1 after it in the tree from the ordering. Let cSi

be the
line coming from the branch of the track that was built by perturbing SiC1 . Notice
i.cSi

;Si/D 2. Do all intermediate edges before doing the leaves.

If an edge is a leaf, then it could end at a puncture, it could have both ends of an edge
not part of the tree attached at its terminal 0–cell, or it could have two different edges
not in the tree attached at its terminal end. These both occur in Figure 7. The highest
leaf in the diagram is of the first type, and the lower leaf is of the second kind.

In the first case, the component S of P bounds a punctured disk. The line cS of
the train track that emanates from that puncture and ends at the root has geometric
intersection number 1 with S .

In the second case, the vertex of the edge lies in a torus that is the closure of a component
of F �P. Call the curve dual to the edge with both its ends attached at that 0–cell S 0.
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The pushoff of S 0 gives rise to the line cS that has geometric intersection 2 number
with S that is dual to the edge.

In the third case, let S 0 be the component of P that is dual to one of the edges attached
at the leaf. The pushoff of S 0 towards the leaf gives rise to an embedded line that has
geometric intersection number 2 with the curve S dual to the edge.

Throw out any curves that weren’t used. Augment to form an ideal triangulation.

Given a primitive diagram P D fS1; : : : ;Sng, we can form the subalgebra of K�.F /,

(4-2) P D �.F /ŒS1; : : : ;Sn�:

This means we are taking the smallest subalgebra of K�.F / that contains all �.F /–
linear combinations of the Si . Notice that P is a commutative ring, since the Si are
disjoint from one another. Also,

Form the ring

(4-3)
nO

iD1

�.F /ŒSi �;

where the tensor product is as �.F /–modules. There is a ring homomorphism

(4-4) ‰W

nO
iD1

�.F /ŒSi �! �.F /ŒS1; : : : ;Sn�

given by

(4-5) ‰.˛1˝ � � �˝˛n/D ˛1 �˛2 � � � � �˛n:

Proof This is an immediate consequence of Proposition 4.2.

Theorem 4.5 If Si for i 2 f1; : : : ; ng is a system of simple closed curves on F

that forms a primitive diagram then �.F /ŒS1; : : : ;Sn� is a field extension of �.F / of
dimension mn, then

(4-6) ‰W
O
�.F /

�.F /ŒSi �! �.F /ŒS1; : : : ;Sn�

is an isomorphism

Proof We can complete fSig to a filling diagram. We apply Theorem 4.4 to get a
system of curves of fSig that satisfies the hypotheses of Proposition 4.2.

Corollary 4.6 The ring S�1�.F /ŒS1; : : : ;Sn�, is a field extension of degree mn over
S�1�.F /.
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Proof By Theorem 4.5, the ring S�1�.F /ŒS1; : : : ;Sn� is a commutative algebra over
S�1�.F / that has dimension mn as a vector space. Since K�.F / has no zero divisors,
neither does S�1�.F /ŒS1; : : : ;Sn�. A finite commutative extension of a field is a
field.

If S � F is a nontrivial simple closed curve, let †0;2.S/ be an annular neighborhood
of S in F. There is a left action of K�.†0;2.S//˝K�.F /!K�.F / by gluing a copy
of †0;2.S/� Œ0; 1� onto the top of F � Œ0; 1�. Notice that it restricts to give an action
�.†0;2.S// on �.F / making S�1�.†0;2.S//� S�1�.F / a field extension.

Remark 4.7 It is worth mentioning that

(4-7) S�1�.†0;2.S//ŒS �D S�1K�.†0;2.S//:

Theorem 4.8 S�1�.F /ŒS � is the result of extending the coefficients of the ring
S�1�.†0;2.S//ŒS � as a vector space over S�1�.†0;2.S// to a vector space over
S�1�.F /.

Proof The dimension of S�1�.†0;2.S//ŒS � over S�1�.†0;2.S// is equal to the
dimension of S�1�.F /ŒS � over S�1�.F /, so the map

(4-8) S�1�.†0;2.S//ŒS �˝S�1�.†0;2/
S�1�.F /! �.F /ŒS �

that sends S ˝ 1 to S is a linear isomorphism.

From our last paper:

Proposition 4.9 [8] If †0;2 is an annulus and x is the skein at its core and

(4-9) trW K�.†0;2/! �.†0;2/

is the unnormalized trace, tr.LTk.x//D 0 unless mjk , at which point tr.LTk.x//D

mTk.x/.

This implies the same result for Tk.S/W S
�1K�.†0;2.S//! S�1K�.†0;2.S//.

Proposition 4.10 Let S � F be a nontrivial simple closed curve. Define the map
LTk.S/W S

�1�.F /ŒS � ! S�1�.F /ŒS � by left multiplication; then tr.LTk.S// D 0

unless mjk , at which point tr.LTk.S/
/DmTk.S/.

Proof The map LTk.S/W S
�1�.F /ŒS �! S�1�.F /ŒS � comes from

(4-10) LTk.S/W S
�1�.†0;2.S//ŒS �! S�1�.†0;2.S//ŒS �

by extension of scalars and the fact that �.†0;2.S//ŒS �DK�.†0;2.S//.
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Proposition 4.11 Let
Q

i Tki
.Si/ act on S�1�.F /ŒS1; : : : ;Sn� by multiplication,

(4-11) LQ
i Tki

.Si /W S
�1�.F /ŒS1; : : : ;Sn�! S�1�.F /ŒS1; : : : ;Sn�:

Then the unnormalized trace of Lk1;:::;kn
is zero unless mjki for all i , in which case it

is mn
Q

i Tki
.Si/.

Proof The diagram

(4-12)

N
�.F / �.†0;2.Si//ŒSi �˝�.†0;2.Si // �.F /

 
//

˝LTki
.Si /

��

�.F /ŒS1; : : : ;Sn�

LQ
i Tki

.Si /

��N
�.F / �.†0;2.Si//ŒSi �˝�.†0;2.Si // �.F /

 
// �.F /ŒS1; : : : ;Sn�

where  is the natural isomorphism, commutes. This means that the trace of LQ
i Tki

.Si /

is the product of the traces of the

(4-13) LTki
.Si /W �.†0;2.Si//ŒSi �˝�.†0;2.Si // �.F /

! �.†0;2.Si//ŒSi �˝�.†0;2.Si // �.F /

which are obtained by extension of scalars from

LTki
.Si /W K�.†0;2.Si//!K�.†0;2.Si//:

Theorem 4.12 Suppose that d D ŒS�1�.F /ŒS1; : : : ;Sn� W S�1K�.F /�. The un-
normalized trace of

(4-14) Lk1;:::;kn
W S�1K�.F /! S�1K�.F /

is zero unless mjki for all i , in which case it is dmn
Q

i Tki
.Si/.

Proof By Theorem 3.9, S�1K�.F / is a finite-dimensional vector space over

(4-15) S�1�.F /� S�1�.F /ŒS1; : : : ;Sn�;

so Proposition 2.3 applies.

We define the normalized trace

(4-16) TrW S�1K�.F /! S�1�.F /

to be the trace divided by dmn . The map Tr is S�1�.F /–linear, cyclic, and Tr.1/D 1.
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Theorem 4.13 Suppose that s D
P

i ˇiPi where the ˇ 2 S�1�.F / and the Pi are
primitive diagrams whose components have been threaded with Tk . Let J be those
indices i such that the components of Pi have only been threaded with Tk for mjk ;
then

(4-17) Tr.s/D
X
i2J

ˇiPi :

Theorem 4.14 The restriction of TrW S�1K�.F /! S�1�.F / to K�.F /, embedded
in S�1K�.F / as fractions having denominator 1, yields

(4-18) TrW K�.F /! �.F /;

which is a �.F /–linear map, so that Tr.1/D 1 and, for every ˛; ˇ 2K�.F /,

(4-19) Tr.˛ �ˇ/D Tr.ˇ �˛/:

Proof From the formula for Tr, the only fractions that appear in the coefficients in
the trace come from fractions that are in the coefficients of the skein.

5 The trace is nondegenerate

Lemma 5.1 Let F be a finite-type surface with an ideal triangulation cut out by E.
Suppose that

P
i ziSi 2K�.F /, where the zi 2Z

�
1
2
; �
�

and the Si are distinct simple
diagrams. If some ŒfS � appearing in the symbol of

P
i ziSi with nonzero coefficient z

has mjgcd.fS /, then

(5-1) Tr
�X

i

ziSi

�
¤ 0:

Proof Suppose that the primitive diagram P underlying S is made up of simple
closed curves S 0j . The threaded diagram having lead coefficient S is

Q
j Tmkj

.S 0j /

for some kj 2 Z�0 . Rewriting
P

i ziSi in terms of threaded diagrams, the threaded
diagrams appearing in the symbol appear with the same coefficients and are distinct
from one another in the sum. Hence

Q
j Tmkj

.S 0j / appears in the trace with coefficient
z ¤ 0. This term can’t cancel with other highest-weight terms in the trace, as the
Si were distinct, nor can it cancel with lower-weight terms, as that would violate the
filtration of �.F /, so Tr

�P
i ziSi

�
¤ 0.

Theorem 5.2 Let F be a noncompact, finite-type surface. There are no nontrivial
principal ideals in the kernel of

(5-2) TrW K�.F /! �.F /:
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Proof Let ˛ 2K�.F / be nonzero. Choosing an ideal triangulation and an ordering
of edges, we can write ˛ D

P
i ziPi where the zi are nonzero complex numbers and

the Pi are threaded primitive diagrams. Suppose that the lead term of ˛ is z�P� . Let
P 0 be a threaded primitive diagram such that the residue of P 0 in ZE

m is the additive
inverse of the residue of P� . If I is the principal ideal generated by ˛ , then P 0 �˛ is
in the principal ideal generated by ˛ , and the residue of its lead term is zero. Since
˛ was an arbitrary nonzero skein, there does not exist a nontrivial principal ideal of
K�.F / contained in the kernel of Tr.

Corollary 5.3 S�1K�.F / is a symmetric Frobenius algebra over S�1�.F /.

Corollary 5.4 There is a proper subvariety of the character variety of �1.F / away
from which K�.F /� is a symmetric Frobenius algebra over C .
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Generalized augmented alternating links
and hyperbolic volumes

COLIN ADAMS

Augmented alternating links are links obtained by adding trivial components that
bound twice-punctured disks to nonsplit reduced non-2–braid prime alternating
projections. These links are known to be hyperbolic. Here, we extend to show that
generalized augmented alternating links, which allow for new trivial components
that bound n–punctured disks, are also hyperbolic. As an application we consider
generalized belted sums of links and compute their volumes.

57M50; 57M25

1 Introduction

By the work of W Thurston [15], a nonsplit link in S3 is known to be either hyperbolic
or to contain an essential torus or annulus in its complement. When the link is hyperbolic,
its complement admits a hyperbolic metric that is uniquely determined and, hence,
the hyperbolic volume of its complement becomes an invariant that can be used to
distinguish it from other links.

Menasco [9] proved that prime alternating non-2–braid links are hyperbolic. In
Adams [2], it was further proven that augmented alternating links are hyperbolic.
These links are obtained from a prime non-2–braid alternating link projection by
adding trivial “vertical” components perpendicular to the projection plane that bound
a disk punctured twice by the alternating link. These augmented alternating links
have proved useful in a variety of contexts. In particular, they appear as the geometric
limits of alternating links that correspond to twisting the two strands around which
the augmenting components wrap. As such, together with the alternating links, they
form the closure of the collection of alternating links in the geometric topology (see
Corollaries 2 and 3 of Lackenby [8]). In particular, the volumes of the links in such a
sequence must approach the volume of the augmented link from below.

If a link is not alternating, one can augment it at a subset of the crossings that would
need to be changed to make it alternating, and then the result has the same complement
as an augmented alternating link, since a full twist along one of the twice-punctured
disks can reverse that crossing.
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Augmented alternating links are useful in a variety of settings. See for instance Blair,
Futer and Tomova [4], Dasbach and Tsvietkova [5], Futer, Kalfagianni and Purcell [6],
Lackenby [8] and Purcell [10; 13]. In some papers, the links considered are fully
augmented. That is to say, every crossing in the original knot is in a twist sequence
around which a vertical component has been added. In that case, one can use Andreev’s
theorem to prove hyperbolicity (see [13]).

In this paper, we extend the results of [2] to allow the vertical components to bound
disks that are punctured more than twice by the alternating link in the projection plane.
These new links are called generalized augmented alternating links. A precise definition
appears in Section 2. Our main theorem is to prove that, indeed, their complements are
always hyperbolic.

In particular, since .1; q/–Dehn filling of a vertical component corresponds to adding
q full twists to the strands of the original link, Thurston’s hyperbolic Dehn surgery
theorem and the fact the augmented link is hyperbolic imply that the resulting links are
always hyperbolic for high enough values of q .

Note that in several papers, authors have considered generalized augmented links
that were also obtained by adding vertical components to a projection, but in this
case, a not necessarily alternating projection such that the projection breaks up into
generalized twist regions as in Figure 1. But here again, each twist region has to receive
a crossing circle. These links have a variety of interesting properties, as discussed in
Futer, Kalfagianni and Purcell [6] and Purcell [11; 12; 13].

Figure 1: A traditional twist region and a generalized twist region

The presence of twice-punctured disks in link complements and the fact that twice-
punctured disks are totally geodesic with a unique hyperbolic structure (see Adams [1])
implies that one can take belted sums of the links, which is the operation depicted
in Figure 2, top row. The resulting link L1 #b L2 has volume equal to the sum of
the volumes of the two links L1 and L2 that are summed. Note that a belt is any
component bounding a twice-punctured disk in a hyperbolic link complement.

In Section 3, we generalize the notion of belted sum, and find an explicit formula
between the volumes of the two links and their summand. Specifically, we show
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T1 T2 T1 T2

L1 L2 L1 #b L2

T1 T2 T1

T2L0
1

L0
2

L0
1

#b L0
2

T1 T2
T1

T2L00
1

L00
2

L00
1

#b L00
2

Figure 2: Generalized belted sums of links

that if a hyperbolic link denoted by L0
1

#b L0
2

is constructed from two links L0
1

and
L0

2
as in Figure 2, center, then vol.L0

1
#b L0

2
/D vol.L0

1
/C vol.L0

2
/� 4.3:6638 : : : /.

Similarly, if L00
1

#b L00
2

is a link constructed as in Figure 2, bottom, then vol.L00
1

#b L00
2
/D

vol.L00
1
/C vol.L00

2
/� 8.3:6638 : : : /. In this case, there are two distinct options for the

central belt, wrapping either lower left to upper right or lower right to upper left.

More generally, let L1 and L2 be two links, each with a 2n–string tangle at center,
with n belts around adjacent pairs of the exiting strings and n� 3 belts around the
central tangle in the same pattern, as for instance appears in Figure 3 in the case nD 5.
Then vol.L1 #b L2/ D vol.L1/C voll.L2/� 4.n� 2/3:6638 : : : . This construction

T

Figure 3: A potential generalized belted sum factor link
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answers a question asked by Oliver Dasbach about the behavior of the volumes in
Figure 2, center row, and was motivated by that question.

Of course, given a specific link, we would like to add vertical components to obtain
either a link that can be decomposed via belted sum into simpler links or composed via
belted sum into more complicated links. But we need to know that the resulting link is
hyperbolic. This is what the main theorem provides when the initial link is alternating.

In the case of augmented alternating links, twisting a half-twist on the twice-punctured
disk bounded by a vertical component, which adds or subtracts a crossing, will yield
a new link complement that is hyperbolic with the same volume as the original link.
This follows because the links are hyperbolic and the twice-punctured disks are totally
geodesic with a unique hyperbolic structure (see Adams [1]). However, in the case of
generalized augmented alternating links, if we twist a half-twist on an n–punctured
disk bounded by a vertical component for n� 3, the result need not be hyperbolic, and
even if it is, the volume is generally not preserved. As an example, adding one vertical
component bounding a thrice-punctured disk in the figure-eight knot complement
and then twisting a half-twist yields a Seifert fibered space. Further applications of
generalized augmented alternating links to volume bounds for links appear in Adams [3].

2 Hyperbolicity

Given an alternating link J in a reduced alternating projection P , we will often consider
it as a 4–regular graph on the projection sphere. That graph cuts the sphere up into
complementary regions.

Let J be a prime nonsplit non-2–braid alternating link. Let P be a reduced alternating
projection of J . Note that by results of Menasco [9], the projection is connected
and there are no simple closed curves in the plane that intersect the projection trans-
versely twice such that there are crossings to either side of the curve. Choose two
complementary regions in the projection plane that do not share an edge. Take a trivial
component C that intersects the projection sphere in precisely one point in each of
the complementary regions. Then we say that J 0 D J [ C is a generalized singly
augmented alternating link. We call the additional component a vertical component.

In the projection plane, we keep track of the vertical component as a gray arc  . While
fixing endpoints, we can isotope  to minimize the number of intersections with the
link J . This corresponds to an isotopy of the vertical component in the complement
of J . We will assume that such an isotopy has already taken place, and call the
corresponding vertical component a minimal representative of the isotopy class.
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For any other pair of nonadjacent complementary regions, we allow the introduction
of additional vertical components, as long as there are minimal representations of
all the individual vertical components that are disjoint as arcs in the plane. We call
the resulting link a generalized augmented alternating link. Note that for any pair
of nonadjacent regions there can be at most one corresponding vertical component.
There can be quite a few vertical components, as for instance occurs in the generalized
augmented figure-eight knot in Figure 4. This link is maximally augmented in the sense
that every pair of possible nonadjacent regions corresponds to a vertical component.
Note that for the figure-eight knot, there is more than one option for the maximally
augmented link that results.

Figure 4: A generalized augmented projection of the figure-eight knot with
the maximum possible number of vertical components

It should be noted that there are reduced alternating projections such that not all of the
possible vertical components can be added since minimal representations overlap, as in
Figure 5.

Figure 5: These two vertical components on this alternating grid cannot be
made to avoid intersecting while in minimal representations.

Theorem 2.1 Let J be a prime non-2–braid nonsplit alternating link. Then any
generalized augmented alternating link J 0 constructed from a reduced alternating
projection of J is hyperbolic.

In fact, even in the case of a 2–braid link in a reduced alternating projection, if we add
a vertical component that does not correspond to the axis around which the knot is
braided, the result is hyperbolic. However, we will not include that case here.
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It was proved in [9] that J is hyperbolic. Here, we are proving that the addition of
these new vertical component preserves hyperbolicity. We use the machinery developed
in [9], as described below.

We consider the projection plane P as a subspace of the projection sphere obtained
by the 1–point compactification. We will move from the plane to the sphere without
comment.

Let L be a link in a projection. At each crossing of the projection, a bubble is inserted,
with the overstrand going over the top of the bubble and the understrand going under
the bubble. We let SC be the sphere obtained by replacing each equatorial disk of a
bubble in the projection sphere with the top hemisphere of the corresponding bubble.
We define BC to be the ball bounded by SC . Similarly, we define S� and B� , using
the bottom hemispheres. In Lemma 1 of [9], Menasco showed that for any projection,
and any closed surface that is incompressible and not boundary parallel, the surface can
be isotoped so that it intersects bubbles in saddles and each intersection curve with S˙
intersects each bubble at most once and intersects at least one bubble. We will use a
version of this that applies to surfaces with boundary, as appears below. We begin with
the following lemma.

Lemma 2.2 If C is a vertical component in a generalized augmented alternating
link J 0 such that C is a minimal representative of its isotopy class, then the vertical
punctured disk D that is bounded by C is incompressible.

Proof We can treat D as a surface in either S3� .J [C / or S3�J 0. If there are no
compression disks for D in S3 � .J [C /, then there are certainly no compression
disks in S3�J 0. Hence we can drop all the vertical components except for C , since
incompressibility of D in S3� .J [C / implies incompressibility in S3�J 0. Let 
denote the arc in the projection plane that is the projection of C .

Suppose that D compresses. Let E be a compressing disk, in general position with
respect to the projection of J , chosen to have the minimum possible number of saddles
for such a compressing disk. We will show, as Menasco did with closed and punctured
surfaces in alternating knot and link complements, that the disk E behaves appropriately
with respect to the bubbles inserted at each crossing.

As in [9], we isotope E to be transverse to a vertical edge in each bubble, and then
push E out from that edge so that E only intersects each bubble in a possibly empty
collection of saddle disks. We assume that E has the minimum number of saddles
for a compressing disk of D . If the intersection of E with either BC or B� , say BC
for the argument, contains a subsurface W of E0 other than a disk, then there is a
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nontrivial curve in E0 (take an innermost boundary component of W ) that bounds
a disk in BC . We can perform surgery on E using this disk to lower the number of
saddles in E , contradicting our assumption that E has a minimal number of saddles.
Thus, we can assume that the intersections of E with the bubbles and spheres SC and
S� decomposes E into saddle disks corresponding to where it intersects bubbles, and
over-disks which have interior above SC and boundary on SC and under-disks, which
have interior below S� and boundary on S� . We call the resultant graph on E , where
saddles are treated as vertices, the intersection graph.

We can immediately eliminate any simple closed curves that do not intersect a bubble.
Such a curve must bound a disk in either BC or B� and again we can perform surgery
on E to eliminate all such curves.

As in Lemma 1 of [9], we show that no intersection arc intersects a bubble more
than once. For, if an intersection curve hits both sides of a bubble, we can choose an
innermost such intersection curve ˛ on that bubble, which must hit both sides of a
single saddle. By taking an arc crossing the saddle and an arc on the disk bounded
by the intersection curve, we obtain a closed curve ı on E bounding a disk E0 on
E , whose boundary can be isotoped to a meridian of J as in Figure 6, left. But this
creates a once-punctured sphere in the complement of J , a contradiction.

If an intersection curve hits the same side of a bubble twice, we can again take an
innermost such curve ˛ and then perform an isotopy to eliminate the two saddles that
touch the curve in this bubble as in Figure 6, right, pulling the blue band through the
bubble, again contradicting the minimality of the number of saddles in E . Thus, no
intersection curve hits a bubble more than once.

ı

˛

Figure 6: Intersection curves intersecting a bubble more than once

Suppose now that there is a simple closed intersection curve ˛ on E . By this we
mean a simple closed curve in the intersection graph that avoids @E and that forms a
component of the boundary of a region containing no other intersection curves on E .
Then it is also a simple closed curve on either SC or S� ; for convenience, assume SC .
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Note that all intersection arcs that begin and end on @E must begin and end on the
same side of  in the projection plane since the boundary of E must occur on only one
of the two sides of D . Since a simple closed intersection curve does not intersect  ,
in SC all the intersection arcs lie to the side of ˛ containing  . Take an innermost
intersection curve ˛0 to the other side of ˛ . If there are none, take ˛ itself considered
innermost to the outside. Since the projection is alternating, each intersection curve
must intersect bubbles such that the overstrand of the bubble is alternately on the left
and right of the curve. As in [9], this forces ˛0 to hit a bubble twice, a contradiction.
Thus, any such simple closed curve must avoid all bubbles. But then we could replace
the disk it bounds on E with the disk it bounds on SC , and push off to lower the
number of intersection curves.

Hence, there are no simple closed intersection curves on E . All intersection curves are
arcs that begin and end on @E . Note that when viewed in the plane, no such intersection
arc crosses  but all intersection arcs start and end on  , all coming out one side of it.
See Figure 7 for the picture.

A fork of the intersection graph is a vertex with at least three edges ending on @E ,
keeping in mind that all interior vertices are 4–valent. We show that every intersection
graph has at least one fork. Since every complementary region must intersect @E in
its boundary, the graph obtained by throwing away all edges with an endpoint on the
boundary of E is a collection of trees. Every tree of two or more vertices always has
at least two leaves, and those leaves will have three edges that must all end on the
boundary. So in this case, there are at least two forks. The one exception is if there
is only one vertex to one tree, which coincides with the case of there being only one
saddle in E . However, then we still have a fork.

We consider what a fork tells us about the projection P . See Figure 7. The two disks
bounded by the one saddle and the three curves ending on the boundary of E cause
there to be exactly two arcs of the knot that come out of the crossing in question
and then pass through E as punctures, without crossing any other arcs of the knot in
between. By Theorem 1(b) of [9], which shows that an alternating knot is prime if and
only if it is obviously so in any alternating projection, these arcs cannot contain any
crossings between when they puncture E and when they pass through the crossing in
question.

Fixing its endpoints, we can isotope  past the resultant crossing. There is a corre-
sponding isotopy of C , D and E , changing the pattern of intersections on E and
eliminating at least one saddle on E . We repeat this process until either all saddles are
eliminated from E , leaving only simple arcs of intersection, or there is only one saddle
remaining. In the first case, taking an outermost arc ˛00 on E , we cut off a disk E00
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A

B

E



D A

B

Figure 7: A fork in the compression disk allows us to isotope  past a crossing.

which intersects the projection plane in an arc that does not intersect a bubble. Hence
we can either isotope an arc on  to this arc, and lower the number of intersections in
 \J , a contradiction to  corresponding to a minimal representative of C , or if no
part of J lies in the region in the projection plane cut off by  [˛00, we can isotope
E to lower the number of intersection arcs. In either case, repeating the process if
necessary, we obtain a contradiction.

In the second case, if only one saddle remains, then, as in Figure 8, the arc  can be
isotoped with endpoints fixed to lower its number of punctures, and it is therefore not a
minimal representative.

E



D

Figure 8: A single saddle in the compression disk implies  is not a minimal representative.

The following results will put us in position to prove Theorem 2.1. Throughout the
rest of this section, J is a prime non-2–braid nonsplit alternating link, and J 0 is a
generalized augmented alternating link complement obtained from J .

Lemma 2.3 The link complement S3�J 0 is irreducible.

Proof Proving irreducibility is equivalent to showing that S3 � J 0 is not splittable.
Since the alternating projection of J is connected, Theorem 1(a) from [9] shows that
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J is nonsplittable. Hence, if J 0 is splittable, there must be a sphere with J to one
side and at least one vertical component C to the other side. Let D be the vertical
punctured disk bounded by C . Discarding the other vertical components, we work with
just this one vertical component. But if C is contained in a sphere, it bounds a disk
in the sphere. We can use this disk to obtain a compression disk for D , contradicting
Lemma 2.2. Hence, J 0 is nonsplittable.

Lemma 2.4 Any essential torus T in S3�J 0 is meridionally compressible.

Proof By definition, T is incompressible and not boundary-parallel. To prove merid-
ional compressibility, we must show there is a nontrivial simple closed curve on T

that bounds a disk punctured once by the link J 0. So suppose T is meridionally
incompressible.

We again apply the techniques of [9], which Menasco utilized to prove a similar result
for alternating links. First, we flatten each vertical component into the projection plane
as in Figure 9.

Figure 9: Projecting the vertical components

Since T is incompressible and meridionally incompressible, Lemma 1 of [9] tells us
there exists a realization of T such that the intersection curves with SC and S� do
not intersect the same crossing bubble more than once. Moreover, every curve must
intersect at least one bubble.

We now eliminate the vertical components, without isotoping the surface T . Saddles
that appeared in crossing bubbles involving the vertical components disappear and
the intersection curves that entered a dotted region as in Figure 9 now connect to one
another.

There are two fundamental changes in the system of intersection curves. First of all,
each intersection curve need no longer bound a disk above SC in the case of BC and
below S� in the case of B� . Instead, a collection of intersection curves can bound a
subsurface of T above SC or below S� . Second, for each of the resulting intersection
curves on SC and S� , it can either be the case that the curve does or does not intersect
a bubble more than once.
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We add the vertical components back in, but now they are once again vertical, perpen-
dicular to the projection plane, each puncturing the projection plane in two points. For
convenience, we consider intersection curves on SC , but everything works just as well
for intersection curves on S� . We assume that T is chosen to minimize the resultant
number of saddles.

The collection of intersection curves and saddles decompose T into squares on its
surface corresponding to the saddles, and the components of intersections with BC
and B� . We first show that, with the possible exception of a single n–punctured torus,
all of these components are either disks or annuli.

Let R be a planar component of T \BC . Suppose an intersection curve ˛ that forms
one of the boundaries of R on SC bounds a disk F on T . We show that then R is a
disk. Let D0 be the disk bounded by ˛ on SC . It may or may not contain additional
intersection curves. If there are no vertical components with endpoints in D0, then
we can isotope the disk F bounded by ˛ on T to D0, pushing any other parts of T

out of the way in the process. After this isotopy, we have either eliminated ˛ as an
intersection curve, simplifying the intersection graph, or R was a disk in T \SC . If
D0 is punctured by some vertical component once, then that vertical component will
be nontrivially linked with ˛ , contradicting the fact that ˛ bounds F . Hence, any
vertical component C that intersects D0 must do so with both of its endpoints. No
other vertical components can be linked with this one above the projection plane, as in
Figure 10, since if they were, they would also have to be similarly linked below the
projection plane, which the existence of F prevents.

R

C C 0

F

SC

Figure 10: Vertical components cannot be linked above the projection plane
when an intersection curve bounds a disk on T .

We can then take a disk D00 that is horizontal and has boundary in R that is a curve
parallel to ˛ and slightly above it. Then we can isotope F to D0, eliminating the
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intersection curve ˛ and any saddles that it touches, a contradiction to minimality.
Note we are using the fact J 0 is nonsplittable here. So, the only planar components of
T \SC are disks and annuli, with all boundary components of the annuli appearing as
parallel nontrivial curves on the torus, as in Figure 11, right.

Figure 11: Islands as on the left can only occur on T if there is a component
in T \B˙ that is an n–punctured torus. Annular regions appear as on the
right.

We first show that there are no innermost curves on SC that bound disks in BC . An
innermost curve is one that bounds a disk R in SC that contains no other intersection
curves. A bubble that intersects an innermost curve is called an inner (outer) bubble if
its overstrand lies inside (outside) of R.

Such an innermost curve ˛ bounding a disk G in T \BC must intersect bubbles more
than once, as J is alternating, so the bubbles must alternate between bubbles with their
overstrand to the right and bubbles with their overstrand to the left as we travel around
the curve. Since there are no other curves inside ˛ , the other side of each inner bubble
must be hit by ˛ , as in Figure 12.

Figure 12: Inner bubbles must be intersected on both sides by ˛ .

There are three types of bubble intersections with ˛ . A bubble of type I intersects ˛
on both sides of the bubble and the overstrand lies to the inside of ˛ . A type II bubble
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is one that is intersected by ˛ at least twice on one side and the overstrand lies to
the outside of ˛ . A bubble of type III intersects ˛ once and has its overstrand to the
outside of ˛ . If a bubble is of type II or III, we consider only multiple intersections
of that bubble occurring to the inside of the curve. We do not care if distinct bubbles
appearing inside ˛ are in fact the same bubble when also considered outside ˛ .

Choosing an innermost pair of intersections of ˛ with a bubble of type I, one on each
side of the bubble, we can form a loop ı out of an arc on the corresponding saddle and
an arc on G that forms the boundary for a meridional compression to the overstrand of
the bubble. Since there are no meridional compressions, it must be the case that one or
more vertical components C block this meridional compression, as in Figure 13, left.

G

C

ı

˛

G

C

˛

Figure 13: A vertical component blocking meridional compressions and
saddle-reducing isotopies

Similarly, for a bubble of type II, we can isotope a band on the disk bounded by
˛ to eliminate two saddles unless the isotopy is blocked by one or more vertical
components C , as in Figure 13, right.

Relative to the vertical components, the intersection curve ˛ can wind around the
curves, as in Figure 14, so when ˛ is drawn uncomplicated, it could be the case that
the vertical components are tangled with one another, as if in a plat.

Figure 14: The intersection curve ˛ can wind around the vertical components.

We note the following pairing property: Consider all intersection curves on SC that
intersect a vertical disk D bounded by vertical component C , which is not necessarily
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in a minimal representation. In BC , they must form the boundaries of surfaces in
T \BC . Then T \BC\D is a collection of arcs that pair the points in ˛\D , some
potentially nested. However, there must be an innermost arc such that it cuts a disk from
D\BC that contains no other such arcs. Hence two adjacent intersection curves are
connected by an innermost arc on D . We consider those two curves an innermost pair.

We now utilize the pairing property. Suppose C is a vertical component bounding a
vertical punctured disk D that blocks one or more meridional compressions or saddle-
reducing isotopies caused by bubbles to the inside of the innermost curve ˛ bounding
the disk G in T \SC .

Choose any vertical component C with endpoints in ˛ that blocks crossings from
generating either a meridional compression or an isotopy lowering the number of
saddles. Regions between bubbles inside ˛ fall into six types, denoted by H , K , L,
M , N and P in Figure 15. A region of type H has two bubbles on its boundary, one
of type I and one of type III. A region of type K has two bubbles of type I and two
bubbles of type III, appearing alternately around its boundary. A region of type L has
a bubble of type I, a bubble of type II and a bubble of type III around its boundary. A
region of type M has only one bubble of type II on its boundary. A region of type N

has two bubbles of type II on its boundary. A region of type P, which we call a juncture,
has three or more type II bubbles on its boundary (four in the case of Figure 15).

Notice that regions H and M must each have at least one vertical component that
has exactly one endpoint in the region, since only two adjacent complementary regions
of the projection intersect a region H and only one complementary region of the
projection intersects a region of type M. Isotope C so that the arc that represents its
projection follows ˛ as closely as possible, as in Figure 15, and let D be the punctured
disk that it bounds. Note that we may have to carry along other vertical components
with which it is entangled.

Shifting from the intersection curves on SC to the corresponding intersection curves
on S� . we find that each pair of adjacent intersection curves passing through D share
a bubble. See Figure 16. In every such diagram, each of the six types of regions will
have exactly the same pattern of intersection curves shown here, with only a juncture
region that could look different, depending on the number of type II crossing around
its boundary. If we had left our arc representing the vertical component going straight
across a juncture, there would have been a pair of adjacent curves passing under the
vertical component that would not have shared a bubble. But, instead, we have C

follow ˛ around the outside. This ensures that all pairs of adjacent curves passing
through D share a bubble.
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H K L P

N

M

Figure 15: A vertical component blocking a meridional compression

So there exists an innermost pair of adjacent curves passing through D . They must share
a bubble. That bubble cannot be blocked by a vertical component because the disk G pre-
vents any such vertical component. Thus, we obtain either a meridional compression if

H K L P

N

M

Figure 16: The view from S� , where all adjacent curves passing under the
vertical component share a bubble.
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the bubble is a type I or type III bubble, or a saddle reducing isotopy if the bubble is a type
II bubble. Hence, there can be no innermost intersection curve bounding a disk in BC .

Figure 17: Two intersection curves share both a bubble and a surface, yielding
a meridional compression.

We now prove there are no annular components in T \BC . Suppose there were such
an annulus A. Note that the existence of A precludes the possibility of a punctured
torus component in either T \BC or T \B� . Each of its boundary components
bounds a disjoint disk in SC and those disks, together with A bound a ball in BC .
Choose an annulus that is innermost in the sense that its ball contains no other ball
corresponding to such an annulus. Note that T then bounds a solid torus V to the
ball side of A. Because T is incompressible and meridionally incompressible, there
must be a set C of at least two vertical components that together prevent A from
being compressible or meridionally compressible in V . One possibility is that one or
more of these components intersect the projection plane in the distinct disks bounded
by @A. But it could also be the case that two or more vertical components are linked
together above the projection plane inside the ball bounded by A. In this case, the
same vertical components must be similarly linked beneath the projection plane, since
ultimately these vertical components form an unlink when considered as a whole. In
either case, the solid torus V must be unknotted, as C intersects every meridional disk
in V and, if V were knotted, this would make C a nontrivial link by itself, when all
other components are dropped, which is a contradiction to how we constructed J 0.

Again, in either case, there is a compression disk for A that intersects only vertical
components. Dropping all vertical components momentarily, that compression yields
a sphere and, since J is nonsplittable, it must lie to one or the other side of that sphere.
Hence, J lies to one or the other side of T . If J is in V , then to avoid compressions
and meridional compressions, there must be vertical components to the other side.
However, then again, we find that by dropping J temporarily, the collection of vertical
components forms a nontrivial link, a contradiction.
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Hence, it must be the case that J lies to the outside of V . Let A0 be any other annulus
in T \BC . Then its ball must also intersect C , since C is the only collection of vertical
components that together wrap all the way around V . Hence the curves @A0 must be
parallel to the curves in @A. This implies that there are no disk components in T \BC ,
as, if there were such, there would need to be an annular component to each side of
its boundary on SC to not be innermost, which the existence of C prevents.

Hence, we have only annular components remaining in either T \BC or T \B� .
However, as in Figure 11, right, if any intersection curve bounding an annulus intersects
a bubble, there must be disk components, since each vertex is 4–valent, so an annular
boundary hitting a saddle cannot also be an annular boundary of a second annulus.
Hence, all intersection curves avoid bubbles. But then the boundaries of the annuli
separate the projection of J . We could isotope any annuli away that are not parallel to A,
so it must be the case that all annuli are parallel to A. Similarly in B� , all annuli must
be parallel. Hence, there can be only one annulus to either side for T to be connected.
Since J is to the outside of V , each disjoint disk on SC bounded by @A lies in a single
complementary region of J . But, since the endpoints of the vertical components in C
lie in these two disks, each such component either has both of its endpoints in the same
complementary region or its two endpoints share the same complementary regions as
another vertical component. In either case, this contradicts our construction of J 0.

The last case to consider is when there is a component of T \BC that is an n–punctured
torus. In this case, all other components of T\BC and T\B� must be disks. However,
then all components to the B� side are disks, a possibility we have eliminated.

Thus, we have shown that an essential torus T is meridionally compressible.

Lemma 2.5 The link J 0 is prime.

Proof That is to say, we show that there are no essential annuli with both boundaries
appearing as meridional curves for link components.

We first suppose that the boundary components of A are meridians on @N.J /. So we
think of A as a twice-punctured sphere. Then A demonstrates that J 0 is a composite
link. Since J 0 is not composite, it must be that the addition of the vertical components
prevents A from being boundary-parallel. We assume that A is not meridionally
compressible by doing any compressions first and taking only one of the resultant
annuli to consider. As we did with T , we use the results of [9] to put the punctured
sphere in standard position relative to SC and S� so that no intersection curve intersects
a bubble more than once and every curve either has a puncture or a bubble on it. We
assume that A has been chosen to minimize the number of saddles in crossing bubbles
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only involving J . We again throw away the vertical components and obtain intersection
curves that no longer need to bound disks in SC and S� , and that can intersect a
given bubble more than once. As in .�/ preceding the proof of Theorem 2 in [9], since
J is alternating, a curve that crosses a bubble with its overstrand to one side of the
curve must pass through an odd number of punctures (there are only two total) if it
subsequently passes through another bubble with its overstrand to the same side.

The same proof we used in the case of an essential meridionally incompressible torus
shows that no components of A\B˙ can be other than disks and also annuli with
nontrivial boundaries on A. In fact, no component of A\B˙ can be such an annulus,
as any compression disk for such an annulus would intersect only vertical components,
but every compression disk for an essential annulus in A must intersect J , since J

punctures the sphere corresponding to A twice.

We could have up to four disks in A\B˙ with punctures on their boundaries, which,
in addition to the types of regions depicted in Figure 15, also allow for regions Q, R

and S , depicted in Figure 18, where the intersection curve (in red) crosses the link
at a puncture, and a shaded disk represents a tangle. But again, the argument given
previously applies to show that there are no disks innermost on S˙ in A\B˙ that
intersect bubbles, either with or without punctures on their boundary.

Q

R
S

Figure 18: Additional possible regions for an innermost disk with a puncture
on its boundary

But then A intersects SC and S� in the same pair of arcs from the first puncture to
the second puncture, each of which does not intersect the projection of J . So, to one
side, the projection of J is a trivial arc. There can be no vertical components to this
side of A since there are only two adjacent regions of the projection plane to this side.
This shows that A cannot be an essential annulus with both boundaries meridional
on N.J /.

We now consider an essential annulus A with both boundary components meridians on
boundaries of neighborhoods of the vertical components. It is appropriate to consider
A as a twice-punctured sphere. But then both punctures must be from one vertical
component C , and J must lie to one side. To the other side is a trivial arc of C
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and additional vertical components that prevent A from being boundary-parallel. But
individual vertical components inside this twice-punctured sphere bound disks there,
contradicting the fact that the n–punctured disks they bound are incompressible.

Note that there can be no annulus with one boundary a meridian on J and another
boundary a meridian on a vertical component, as a sphere in S3 cannot be punctured
once by a simple closed curve. Thus, there can be no essential annuli with meridional
boundary components in S3�J 0 and J 0 is prime.

Corollary 2.6 There are no essential tori in S3�J 0.

Proof If an essential torus T exists, Lemma 2.4 implies we can meridionally compress
it to obtain a twice-punctured sphere. Since T is not boundary-parallel, this twice-
punctured sphere shows that the link J 0 is composite, contradicting Lemma 2.5.

Lemma 2.7 There are no essential annuli in S3�J 0.

Proof Although we have eliminated essential annuli with both boundaries meridians,
we now consider the possibility of other essential annuli. Lemma 1.16 of [7] implies
that if there is an essential annulus at all, then S3 � J 0 is Seifert fibered, with the
boundaries of the annulus as fibers. Moreover, there are either a total of one, two
or three torus boundary components in S3 � N.J 0/. If one boundary of A is a
meridian on a vertical component C , and the other is not, then if we fill C in, the
annulus becomes a compressing disk on the boundary of the resulting link. If the other
boundary component lies on the boundary of a neighborhood of J , this contradicts
the hyperbolicity of J . If the other boundary is on a boundary of a neighborhood of a
different vertical component, we have that a nontrivial curve on its boundary is trivial
in the complement of J . However, this can never occur for a trivial link component
unless the curve is a longitude, but then we are contradicting the incompressibility of
the vertical disk bounded by the component.

If a boundary component of A is a nonmeridian on a vertical component C , then
we can fill in C and extend the Seifert fibration to the solid torus that we filled in,
making the result Seifert fibered, which is a contradiction to the hyperbolicity of S3�J

unless there is a second vertical component. If there is a second vertical component
and the other boundary of A is a nonmeridian upon it (as it must be by our previous
considerations), then we can fill it in also, and we obtain a Seifert fibration for S3�J ,
a contradiction to its hyperbolicity.

The only possibility left is that the boundaries of A is a nonmeridian upon both C1 and
a component K of J , which is all of J , and there is a second vertical component C2 .
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Then S3 � J 0 is a twice-punctured disk crossed with a circle obtained by taking a
regular neighborhood of A[ @N.K/. This is embedded in S3 so that each boundary
torus bounds a solid torus to the exterior, which is a neighborhood of the corresponding
link component. But then the component corresponding to the outer boundary of the
disk, which is one of the vertical components, links both of the other components,
one of which is also vertical. However, then two vertical components are linked, a
contradiction to the construction of J 0.

We now consider an essential annulus A with both boundary components on N.J /

but not meridians. Then they must both be on the same component or else A would
be essential in the complement of J , a contradiction. In this case, each boundary of
A is a .p; q/–curve on the boundary of a neighborhood of the link component K ,
with jqj � 1. Hence, C is a .p; q/–cable of K . But then there is an essential annulus
with one boundary on @N.C / and a second boundary on N.K/, a possibility we have
already eliminated.

Proof of Theorem 2.1 By work of Thurston [15], in order to prove that S3�J 0 is
hyperbolic, it is enough to show that S3�J 0 is irreducible, and to show there are no
essential tori or annuli in S3�J 0. This is the content of Lemma 2.3, Corollary 2.6 and
Lemma 2.7.

3 Generalized belted sums

In this section, we consider generalized belted sums as in Figure 2. We show that if
L1 #b L2 is constructed from two links with a 2n–string tangle at center, with n belts
around adjacent pairs of the exiting strings and n�3 belts around the central tangle, no
two of which are parallel, then vol.L1#bL2/Dvol.L1/Cvol.L2/�4.n�2/3:6638 : : : .
To see this, we utilize the thrice-punctured spheres that appear in the link complement.
Thrice-punctured spheres are known to be totally geodesic with a rigid structure in
a hyperbolic 3–manifold (see for instance [1]). In particular, any two are isometric.
In the case of a 2n–string tangle T1 as in Figure 3, there is a collection of thrice-
punctured spheres that shield the part of the manifold corresponding to the 2n–string
tangle from the rest of the manifold. Cutting the manifold open along this collection
of thrice-punctured spheres and then for each resulting piece, doubling across the
thrice-punctured spheres yields two link complements, one with the 2n–string tangle
appearing twice, once reflected, and the other an untwisted daisy chain with additional
components, as appear in Figure 19. Further examples of the untwisted daisy chain with
additional components appear in Figure 20. The two halves of the original manifold
must have volume exactly half of these, since reflecting across totally geodesic surfaces
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(the thrice-punctured spheres; see [1]) doubles the volume. So the original manifold has
volume exactly half the sum of these two volumes. The same is true for the link with
2n–string tangle T2 . Now, when we take the two link complements, cut them both
open along the collection of thrice-punctured spheres, and throw away the two halves of
the untwisted daisy chain, we obtain the volume of the first link plus the volume of the
second link minus the volume of the untwisted daisy chain with additional components.

T1

T1 T1

Figure 19: Cutting and doubling

In the case n D 3, the volume of the untwisted daisy chain is 4.3:6638 : : : /, where
3:6638 : : : is the volume of an ideal regular octahedron. The manifold is commensurable
with the Whitehead link. (See Example 6.8.7 of [14].) For n> 3, we can cut the link
complement open along the twice-punctured disks bounded by components that are not
in the untwisted daisy chain to obtain n� 2 pieces, each of volume 1

2
.4.3:6638 : : : //,

as in Figure 20. When we take the belted sum of the two links, we discard all of these
pieces from both link complements, meaning we lose a volume of 4.n� 2/3:6638 : : : .

nD 3 nD 4 nD 5

: : :

Figure 20: Links of volume 4.n� 2/3:6638 : : :
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We can further start with any link and add components to decompose it into pieces,
each of which has a volume we can determine as in the case of a generalized belted
sum, to obtain the volume of the augmented link, which will bound the volume of the
original link since hyperbolic Dehn filling always decreases volume. In the case of
an alternating link, Theorem 2.1 tells us that the generalized augmented link that we
produce will be hyperbolic, which we need to know for the procedure to apply. As an
example, consider the link appearing in Figure 21. We denote the link obtained from a
2n–tangle Ti by completing it as in Figure 3 by Li .

T1 T2 T3 T4

T5

Figure 21: Finding the volume of this link

We can cut along the various thrice-punctured spheres, and realize each of the result-
ing pieces as a link of the appropriate type, where we have thrown away a volume
.n�2/3:6638 : : : . In this case, we decompose the link complement into three 8–tangles,
one 6–tangle and one 10–tangle. There is also another piece remaining which is a
copy of the Borromean rings. Hence the volume is vol.L1/C vol.L2/C vol.L3/C

vol.L4/C vol.L5/� 20.3:6638 : : : /C 7:32772 : : : .
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Representations of the Kauffman bracket skein algebra
II: Punctured surfaces

FRANCIS BONAHON

HELEN WONG

In part I, we constructed invariants of irreducible finite-dimensional representations
of the Kauffman bracket skein algebra of a surface. We introduce here an inverse con-
struction, which to a set of possible invariants associates an irreducible representation
that realizes these invariants. The current article is restricted to surfaces with at least
one puncture, a condition that is lifted in subsequent work relying on this one. A step
in the proof is of independent interest, and describes the arithmetic structure of the
Thurston intersection form on the space of integer weight systems for a train track.

57M27, 57R56; 57M27

This article is a continuation of [9] and is part of the program described in Bonahon and
Wong [6], devoted to the analysis and construction of finite-dimensional representations
of the Kauffman bracket skein algebra of a surface.

Let S be an oriented surface of finite topological type without boundary. The Kauffman
bracket skein algebra SA.S/ depends on a parameter A D e� i„ 2 C � f0g, and is
defined as follows: One first considers the vector space freely generated by all isotopy
classes of framed links in the thickened surface S � Œ0; 1�, and then one takes the
quotient of this space by two relations. The first and main relation is the skein relation,
which states that

ŒK1�DA�1ŒK0�CAŒK1�

whenever the three links K1 , K0 and K1 � S � Œ0; 1� differ only in a little ball where
they are as represented in Figure 1. The second relation is the trivial knot relation,
which asserts that

ŒK[O �D�.A2
CA�2/ŒK�

whenever O is the boundary of a disk D �K� Œ0; 1� disjoint from K , and is endowed
with a framing transverse to D . The algebra multiplication is provided by the operation
of superposition, for which the product ŒK� � ŒL� is represented by the union ŒK0[L0�

where K0 � S �
�
0; 1

2

�
and L0 � S �

�
1
2
; 1
�

are respectively obtained by rescaling the
framed links K � S � Œ0; 1� and L0 � S � Œ0; 1� in the Œ0; 1� direction.
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K0K1 K1

Figure 1: A Kauffman triple

Turaev [33], Bullock, Frohman and Kania-Bartoszyńska [14; 15] and Przytycki and
Sikora [29] showed that the skein algebra SA.S/ provides a quantization of the
character variety

RSL2.C/.S/D fgroup homomorphisms r W �1.S/! SL2.C/g� SL2.C/;

where SL2.C/ acts on homomorphisms by conjugation, and where the double bar
indicates that the quotient is to be taken in the sense of geometric invariant theory; see
Mumford, Fogarty and Kirwan [27]. In fact, if one follows the physical tradition that a
quantization of a space X replaces the commutative algebra of functions on X by a
noncommutative algebra of operators on a Hilbert space, an element of the quantization
should be a representation of the skein algebra.

When A is a root of unity, a classical example of a finite-dimensional representation
of the skein algebra SA.S/ arises from the Witten–Reshetikhin–Turaev topological
quantum field theory associated to the fundamental representation of the quantum group
Uq.sl2/; see Blanchet, Habegger, Masbaum and Vogel [3], Bonahon and Wong [8],
Reshetikhin and Turaev [30], Turaev [34] and Witten [35]. The main purpose of the
current article is to provide a wider family of such representations when the surface S

has at least one puncture. The case of closed surfaces is considered in our subsequent
article [10], which builds on this one.

In part I [9], we identified invariants for irreducible finite-dimensional representations
�W SA.S/! End.E/ in the case where A2 is a primitive N th root of unity with N

odd. These invariants are a little easier to describe when AN D�1, and most of the
current article will be devoted to this case. We indicate in Section 6 how the other
possible case when AN DC1 can be deduced from this one. Because N is odd, the
property that A2 is a primitive N th root of unity with AN D�1 is equivalent to the
property that A is a primitive N th root of �1.

When AN D�1, our main invariant is a point of the character variety RSL2.C/.S/. Its
definition involves the nth normalized Chebyshev polynomial Tn.x/ of the first kind,
determined by the trigonometric identity that 2 cos n� D Tn.2 cos �/. Equivalently,
Tr M n D Tn.Tr M / for every matrix M 2 SL2.C/.

A character r 2RSL2.C/.S/ associates a trace Tr r.K/ 2 C to each closed curve K

on the surface S . This trace is independent of the homomorphism �1.S/! SL2.C/
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used to represent r , and of the representative chosen in the conjugacy class of �1.S/

representing K . In fact, the character variety RSL2.C/.S/ is defined in such a way
that two homomorphisms r W �1.S/! SL2.C/ correspond to the same character if
and only if they induce the same trace function K 7! Tr r.K/.

Theorem 1 (Bonahon and Wong [9]) Suppose that A is a primitive N th root of �1

with N odd, and let �W SA.S/! End.E/ be an irreducible finite-dimensional repre-
sentation of the Kauffman bracket skein algebra. Let TN .x/ be the N th normalized
Chebyshev polynomial of the first kind.

(1) There exists a unique character r� 2RSL2.C/.S/ such that

TN .�.ŒK�//D�.Tr r�.K// IdE

for every framed knot K � S � Œ0; 1� whose projection to S has no crossing and
whose framing is vertical.

(2) Let Pk be a small simple loop going around the k th puncture of S , and consider
it as a knot in S� Œ0; 1� with vertical framing. Then there exists a number pk 2C
such that �.ŒPk �/D pk IdE .

(3) The number pk of (2) is related to the character r� 2RSL2.C/.S/ of (1) by the
property that TN .pk/D�Tr r�.Pk/.

The character r�2RSL2.C/.S/ associated to the irreducible representation �W SA.S/!

End.E/ by part (1) of Theorem 1 is the classical shadow of � . The numbers pk defined
by part (2) are the puncture invariants of the representation � . Part (3) shows that,
once the classical shadow r� is known, there are at most N possible values for each
of the puncture invariants pk .

The classical shadow provides one more example of a situation where a quantum object
determines one of the classical objects that are being quantized. See also Lê [25] for
another approach to the key results underlying Theorem 1.

The main result of this article is the following converse statement.

Theorem 2 Assume that the surface S has at least one puncture, that its Euler charac-
teristic is negative, that A is a primitive N th root of �1 with N odd, and that we have

(1) a character r 2RSL2.C/.S/ which realizes some ideal triangulation of S in the
sense discussed in Section 3;

(2) for each puncture of S , a number pk 2 C such that TN .pk/ D �Tr r.Pk/,
where as in Theorem 1, Pk is a small loop going around the puncture.

Then there exists an irreducible finite-dimensional representation �W SA.S/! End.E/
whose classical shadow is equal to r and whose puncture invariants are the pk .
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The requirement that r realizes some ideal representation is fairly mild. It can be shown
to be satisfied by all points outside of an algebraic subset of complex codimension
2j�.S/j � 1 in the character variety RSL2.C/.S/.

The sequel [10; 11] to this paper greatly improves Theorem 2. In particular, it removes
the requirements that r realizes an ideal triangulation, and that S has at least one
puncture. It also shows that the representation provided by our construction is inde-
pendent of the many choices made during the argument, so that its output is natural,
in particular with respect to the action of the mapping class group �0Diff.S/ of the
surface. The constructions and results of the current article are a key ingredient in the
proofs of [10; 11].

The proof of Theorem 2 uses as a fundamental tool the quantum trace homomorphism
Tr!
�
W SA.S/ ! T !.�/, constructed in Bonahon and Wong [7], which embeds the

skein algebra in the quantum Teichmüller space. The quantum Teichmüller space is
here incarnated as the Chekhov–Fock algebra T !.�/ of an ideal triangulation � of
the surface, and is a quantization of an object that is closely related to the character
variety RSL2.C/.S/. It is not as natural as the Kauffman bracket skein algebra, but its
algebraic structure is very simple. In particular, its representation theory is relatively
easy to analyze; see Bonahon and Liu [5]. The same holds for a smaller algebra
Z!.�/ � T !.�/ containing the image of the quantum trace homomorphism Tr!

�
.

Composing representations of Z!.�/ with the homomorphism Tr!
�
W SA.S/! Z!.�/

provides an extensive family of representations of the skein algebra SA.S/, which can
then be used to prove Theorem 2.

The main technical challenge in this strategy is to compute the classical shadow of
the representations of SA.S/ so obtained, in terms of the parameters controlling the
original representations of Z!.�/. This is provided by the miraculous cancellations
discovered in [9]. These properties show that the quantum trace homomorphism
Tr!
�
W SA.S/! Z!.�/ is well behaved with respect to the Chebyshev homomorphism

S�1.S/! SA.S/ used to define the classical shadow of a representation of SA.S/,
and with respect to the Frobenius homomorphism Z �.�/! Z!.�/ which computes
the invariants of representations of Z!.�/.

One of the steps in the proof, used to determine the algebraic structure of the algebra
Z!.�/, may be of interest by itself. This statement describes the structure of the
Thurston intersection form on the set W.� IZ/ of integer-valued edge weight systems
for a train track � . The result is well known for real-valued weights. However, the
integer-valued case has subtler number-theoretic properties, resulting in the unexpected
simultaneous occurrence of blocks

�
0 1
�1 0

�
and

�
0 2
�2 0

�
in the block diagonalization of

the Thurston form. See Theorem 26 in the appendix. Because of the ubiquity of the
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Thurston intersection form in many geometric problems (for instance, the relationship
between complex lengths and the shear-bend cocycle ˇ 2W.� IC=2� iZ/ of a pleated
surface; see Bonahon [4]), this statement is probably of interest beyond the quantum
topology scope of the current article.

Recent works of Abdiel and Frohman [1; 20], Frohman and Kania-Bartoszyńska [21],
and Frohman, Kania-Bartoszyńska and Lê [22] develop another construction of represen-
tations of SA.S/ with a given classical shadow r 2RSL2.C/.S/, valid for r in a Zariski
dense open subset of RSL2.C/.S/. In particular, the recent preprint [22] abstractly
shows that these representations are isomorphic to ours. It would be interesting to
compare the two approaches, as the construction pioneered by Abdiel and Frohman in
[1; 20] is simple and elegant while ours is more explicit. See also Takenov [31] for an
earlier viewpoint on the case of small surfaces.

Acknowledgements This research was partially supported by grants DMS-1105402,
DMS-1105692, and DMS-1406559 from the US National Science Foundation. In
addition, the article was extensively rewritten and reorganized while Bonahon was a
Simons Fellow (grant 301050 from the Simons Foundation) in 2014–15, as well as a
Simons Visiting Professor at the Mathematical Sciences Research Institute in Berkeley,
California, (NSF grant 09032078000) in the Spring 2015 semester.

1 The Chekhov–Fock algebra and the quantum trace
homomorphism

1.1 The Chekhov–Fock algebra

The Chekhov–Fock algebra (introduced in [5] as a reinterpretation of key insights from
[19; 17; 18]) is the avatar of the quantum Teichmüller space associated to an ideal
triangulation of the surface S . See also [24] for a related construction, and [5; 26] for
more discussion.

If S is obtained from a compact surface xS by removing finitely many points v1; : : : ; vs ,
an ideal triangulation of S is a triangulation � of xS whose vertex set is exactly
fv1; v2; : : : ; vsg. The surface S admits an ideal triangulation if and only if it is
noncompact and if its Euler characteristic is negative; we will consequently assume that
these properties are satisfied throughout the article. If the surface has genus g and s

punctures, an ideal triangulation then has nD 6gC3s�6 edges and 4gC2s�4 faces.
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Let e1; e2; : : : ; en denote the edges of �. Let ai 2 f0; 1; 2g be the number of times an
end of the edge ej immediately succeeds an end of ei when going counterclockwise
around a puncture of S , and set �ij D aij � aji 2 f�2;�1; 0; 1; 2g. The Chekhov–
Fock algebra T !.�/ of � is the algebra defined by generators Z˙1

1
;Z˙1

2
; : : : ;Z˙1

n

associated to the edges e1; e2; : : : ; en of �, and by the relations

ZiZj D !
2�ijZj Zi :

Remark 3 The actual Chekhov–Fock algebra T q.�/ that is at the basis of the quantum
Teichmüller space uses the constant qD!4 instead of ! . The generators Zi of T !.�/
appearing here are designed to model square roots of the original generators of T q.�/.

An element of the Chekhov–Fock algebra T !.�/ is a linear combination of monomials
Zn1

i1
Zn2

i2
� � �Znl

il
in the generators Zi , with n1; n2; : : : ; nl 2 Z. Because of the skew-

commutativity relation ZiZj D !2�ijZj Zi , the order of the variables in such a
monomial does matter. It is convenient to use the following symmetrization trick. The
Weyl quantum ordering for Zn1

i1
Zn2

i2
� � �Znl

il
is the monomial

ŒZn1
i1

Zn2
i2
� � �Znl

il
�D !�

P
u<v nunv�iuivZn1

i1
Zn2

i2
� � �Znl

il
:

The formula is specially designed so that ŒZn1
i1

Zn2
i2
� � �Znl

il
� is invariant under any

permutation of the Znu
iu

. Note that the algebraic structure of the Chekhov–Fock algebra
T !.�/ depends only on the square !2, but that the Weyl quantum ordering depends
on the choice of ! .

1.2 The quantum trace homomorphism

Theorem 4 [7] For AD !�2 , there exists an injective algebra homomorphism

Tr!� W S
A.S/! T !.�/:

The specific homomorphism Tr!
�

constructed in [7] is the quantum trace homomor-
phism. It is uniquely determined by certain properties stated in that article, but for now
we need only use that it exists and satisfies the properties given in Section 1.3 below.

1.3 The Chebyshev and Frobenius homomorphisms

We now assume that A is a primitive N th root of �1 with N odd. Recall that
TN denotes the N th normalized Chebyshev polynomial, defined by the property that
cos N� D 1

2
TN .2 cos �/ for every � .
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Theorem 5 [9] When A is a primitive N th root of �1 with N odd, there is a unique
algebra homomorphism TAW S�1.S/! SA.S/ such that

TA.ŒK�/D TN .ŒK�/

for every framed knot K � S � Œ0; 1� whose projection to S has no crossing and whose
framing is vertical. In addition, the image of TA is central in SA.S/.

For a framed link K � S � Œ0; 1� whose projection to S is allowed to have crossings,
the image TA.ŒK�/ is equal to the element ŒKTN � 2 SA.S/ defined by threading the
Chebyshev polynomial TN along all components of K ; see [9] for a precise definition.

The homomorphism TA provided by Theorem 5 is the Chebyshev homomorphism. It
is a key ingredient in the definition of the invariants of Theorem 1.

There is an analogous and much simpler homomorphism at the level of the Chekhov–
Fock algebra, namely the following Frobenius homomorphism.

Proposition 6 If �D !N 2

, there is an algebra homomorphism

F!
W T �.�/! T !.�/

which maps each generator Zi 2 T �.�/ to ZN
i 2 T !.�/, where in the first instance

Zi 2T �.�/ denotes the generator associated to the i th edge ei of �, whereas the second
time Zi2T !.�/ denotes the generator of T !.�/ associated to the same edge ei .

Note that �2 D !2N 2

DA�N 2

D .�1/N D�1, so �D˙i.

The following compatibility statement, which connects the Chebyshev homomorphism
to the Frobenius homomorphism through appropriate quantum trace homomorphisms,
is fundamental for our arguments. This result encapsulates the miraculous cancellations
of [9].

Theorem 7 [9] The diagram

SA.S/
Tr!
�
// T !.�/

S�1.S/
Tr�
�
//

TA

OO

T �.�/

F!

OO

is commutative. Namely, for every skein ŒK�2S�1.S/, the quantum trace Tr!
�
.TA.ŒK�//

of TA.ŒK�/ is obtained from the classical trace polynomial Tr�
�
.ŒK�/ by replacing each

generator Zi 2 T �.�/ by ZN
i 2 T

!.�/.
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2 The balanced Chekhov–Fock algebra

2.1 Definition of the balanced Chekhov–Fock algebra

The quantum trace homomorphism Tr!
�

of Theorem 4 (and [7]) is far from being
surjective. Indeed, for a skein ŒK� 2 SA.S/ represented by a framed link K �

S�Œ0; 1�, the exponents of the monomials Zk1
1 Zk2

2 � � �Z
kn
n appearing in the expression

of Tr!
�
.ŒK�/ are balanced, in the sense that they satisfy the following parity condition:

for every triangle Tj of the ideal triangulation �, the sum ki1
C ki2

C ki3
of the

exponents of the generators Zi1
;Zi2

;Zi3
associated to the sides of Tj is even.

Let Z!.�/ denote the subalgebra of T !.�/ generated by all monomials satisfying this
exponent parity condition. By definition, Z!.�/ is the balanced Chekhov–Fock algebra
of the ideal triangulation �. It is designed so that the quantum trace homomorphism
restricts to a homomorphism Tr!

�
W SA.S/! Z!.�/.

To keep track of the exponent parity condition defining the monomials of Z!.�/,
it is convenient to consider a train track �� which, on each triangle Tj of the ideal
triangulation �, looks as in Figure 2. In particular, �� has one switch for each edge
of �, and three edges for each triangle of �. Let W.��IZ/ be the set of integer edge
weight systems ˛ for �� , assigning a number ˛.e/ 2Z to each edge e of �� in such a
way that, at each switch, the weights of the edges incoming on one side add up to the
sum of the weights of the edges outgoing on the other side.

There is a natural map W.��IZ/!Zn which, given an edge weight system, associates
to each of the n switches of �� the sum of the weights of the edges incoming on any side
of the switch. Then an element .k1; k2; : : : ; kn/2Zn is in the image of this map if and
only if it satisfies the parity condition defining the monomials of Z!.�/, namely if and
only if the sum of the coordinates associated to the sides of each triangle of � is even.
Also, the map W.��IZ/! Zn is easily seen to be injective. Since the image of this
map has finite index, it follows that W.��IZ/ is isomorphic to Zn as an abelian group.

Tj

��

Figure 2

Algebraic & Geometric Topology, Volume 17 (2017)



Representations of the Kauffman bracket skein algebra, II 3407

This enables us to give a different description of Z!.�/. For a weight system ˛ 2

W.��IZ/, which assigns a weight ˛i 2 Z to the i th edge ei of � (D the i th switch
of �� ), define

Z˛ D ŒZ
˛1

1
Z
˛2

2
� � �Z˛n

n � 2 Z!.�/;

where the bracket Œ � denotes the Weyl quantum ordering defined in Section 1.1.

The above discussion proves the following fact.

Lemma 8 As ˛ 2W.��IZ/ ranges over all weight systems for the train track �� , the
associated monomials Z˛ form a basis for the vector space Z!.�/.

We can elaborate a little on the structure of the group W.��IZ/. By definition of
the parity condition, W.��IZ/ � Zn contains the subset .2Z/n consisting of all
switch weight systems .˛1; ˛2; : : : ; ˛n/ 2 Zn where the ˛i are even. Also, given
˛ 2W.��IZ/, we can define a chain with coefficients in Z2 by endowing each edge e

of the train track �� with the modulo 2 reduction of the weight ˛.e/ 2 Z. The switch
relations guarantee that this chain is closed, and this defines a natural homomorphism
W.��IZ/!H1.S IZ2/.

Lemma 9 The inclusion map and homomorphism above define an exact sequence

0! .2Z/n!W.��IZ/!H1.S IZ2/! 0:

Proof The homomorphism W.��IZ/!H1.S IZ2/ can also be expressed in terms
of the dual graph �� of the triangulation �. Indeed, the class Œ˛� 2H1.S IZ2/ induced
by ˛ 2W.��IZ/ is also realized by endowing each edge fi of �� with the modulo 2

reduction of the switch weight ˛i associated by ˛ to the edge ei of � that is dual
to fi ; the parity condition guarantees that this chain is really closed. The result then
immediately follows from the definitions, and from the isomorphism H1.��IZ2/Š

H1.S IZ2/ coming from the fact that the surface S deformation retracts to the dual
graph �� .

Note that the exact sequence of Lemma 9 admits no partial splitting.

2.2 The algebraic structure of the balanced Chekhov–Fock algebra

We first describe the multiplicative structure of the balanced Chekhov–Fock algebra
Z!.�/ in the context of Lemma 8.

The weight system space W.��IZ/ of the train track �� carries a very natural antisym-
metric bilinear form

�W W.��IZ/�W.��IZ/! Z;
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the Thurston intersection form defined by the property that, for ˛; ˇ 2W.��IZ/,

�.˛; ˇ/D
1

2

X
e right of e0

.˛.e/ˇ.e0/�˛.e0/ˇ.e//;

where the sum is over all pairs .e; e0/ of edges of �� such that e and e0 come out of
the same side of some switch of �� , with e to the right of e0 . See Lemma 28 in the
appendix for a more conceptual interpretation of �, and for a proof that �.˛; ˇ/ is
really an integer.

Lemma 10 For every ˛; ˇ 2W.��IZ/,

Z˛Zˇ D !
2�.˛;ˇ/Z˛Cˇ:

In particular, Z˛Zˇ D !
4�.˛;ˇ/ZˇZ˛ .

Proof The second statement, that Z˛Zˇ D !
4�.˛;ˇ/ZˇZ˛ , is a simple computation.

After observing that this property holds for any ! (not just roots of unity), the first
statement, that Z˛Zˇ D !

2�.˛;ˇ/Z˛Cˇ , then follows by definition of the Weyl quan-
tum ordering.

This is particularly simple if we replace ! by � D !N 2

, with the assumption that
A2N D 1 so that �4 D !4N 2

DA�2N 2

D 1.

Corollary 11 If �4 D 1, the algebra Z �.�/ is commutative.

In general, the key to understanding the algebraic structure of Z!.�/ is Lemma 12.

For k D 1; : : : ; s , the k th puncture of S specifies an element �k 2W.��IZ/ defined
as follows: for every edge e of the train track �� , the edge weight �k.e/ is equal to 1

if e is adjacent to the annulus component of S � �� that surrounds this puncture, and
is equal to 0 otherwise.

Recall that the surface S has genus g and s punctures.

Lemma 12 The lattice W.��IZ/ Š Zn admits a basis in which the matrix of the
Thurston intersection form � is block diagonal with g blocks

�
0 1
�1 0

�
, 2gC s � 3

blocks
�

0 2
�2 0

�
and s blocks .0/. In addition, the kernel of � is freely generated by

the elements �1; �2; : : : ; �s 2W.��IZ/ associated to the punctures of S as above.

Proof This is a special case of a result given by Theorem 26 in the appendix, which
determines the algebraic structure of the Thurston intersection form for a general train
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track � . When applying this result to the train track �� , the numbers h, neven and
nodd of Theorem 26 are respectively equal to the genus g of the surface S , to the
number s of punctures of S , and to the number 4gC 2s� 4 of triangles of the ideal
triangulation �.

The combination of Lemmas 8, 10 and 12 now provides the complete algebraic structure
of the balanced Chekhov–Fock algebra Z!.�/. Let W q denote the algebra, known as
the quantum torus, defined by generators X˙1 , Y ˙1 and by the relation XY D qYX .

Corollary 13 For qD!4, the balanced Chekhov–Fock algebra Z!.�/ is isomorphic to

W q
1
˝W q

2
˝� � �˝W q

g˝W
q2

gC1
˝W q2

gC2
˝� � �˝W q2

3gCs�3
˝CŒH1�˝CŒH2�˝� � �˝CŒHs �;

where each W q
i is a copy of the quantum torus W q , each W q2

j is a copy of W q2

, and
each CŒHk � is a polynomial algebra in the variable Hk .

In addition, the s central generators Hk DZ�k
2Z!.�/ are naturally associated to the

punctures of S , and are defined by the edge weight systems �k 2W.��IZ/ generating
the kernel of the Thurston intersection form � as in Lemma 12.

2.3 Representations of the balanced Chekhov–Fock algebra

The algebraic structure of the balanced Chekhov–Fock algebra Z!.�/ determined
in Corollary 13 is relatively simple. This makes it easy to classify its irreducible
finite-dimensional representations.

As usual, we assume that AD !�2 is a primitive N th root of �1, with N odd.

Proposition 14 Let �W Z!.�/! End.E/ be an irreducible finite-dimensional repre-
sentation of Z!.�/. There exists a map ��W W.��IZ/! C� and numbers hk 2 C�,
with k D 1; : : : ; s , associated to the punctures of the surface S such that

(1) �.ZN
˛ /D��.˛/ IdE for every edge weight system ˛2W.��IZ/ with associated

monomial Z˛ 2 Z!.�/;

(2) ��.˛Cˇ/D .�1/�.˛;ˇ/��.˛/��.ˇ/ for every ˛; ˇ 2W.��IZ/, where � is the
Thurston intersection form;

(3) �.Hk/D hk IdE for the central element Hk DZ�k
2 Z!.�/ associated to the

k th puncture of S as in Corollary 13;

(4) ��.�k/D hN
k

for the weight system �k 2W.��IZ/ associated to the k th punc-
ture of S as in Lemma 12.
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Proof For every ˛ 2W.��IZ/, Lemma 10 shows that the element ZN
˛ DZN˛ is cen-

tral in Z!.�/. In particular, if �W Z!.�/!End.E/ is an irreducible finite-dimensional
representation of Z!.�/, there is a number ��.˛/2C� such that �.ZN

˛ /D ��.˛/ IdE .
In addition, Lemma 10 shows that

ZN
˛ ZN

ˇ D !
2N 2�.˛;ˇ/ZN

˛Cˇ D .�1/�.˛;ˇ/ZN
˛Cˇ;

so the map ��W W.��IZ/!C� satisfies property (2).

Similarly, Corollary 13 shows that each Hk is central in Z!.�/, so �.Hk/D hk Id for
some hk 2 C�. Then hN

k
IdE D �.H

N
k
/D �.ZN

�k
/D ��.�k/ IdE since Hk DZ�k

,
so ��.�k/D hN

k
.

A map �W W.��IZ/! C� that satisfies condition (2) of Proposition 14 is a twisted
homomorphism twisted by the Thurston form �, or more precisely twisted by the
symmetric map .˛; ˇ/ 7! .�1/�.˛;ˇ/ . This notion will probably look less intimidating
once one realizes that a twisted homomorphism is completely determined by the
assignment of a nonzero complex number to each of the n generators of the group
W.��IZ/Š Zn .

Proposition 15 Suppose that we are given a twisted homomorphism �WW.��IZ/!C�

twisted by the Thurston form � and, for each of the punctures of S , a number hk 2C�

such that hN
k
D �.�k/. Then, up to isomorphism, there exists a unique irreducible

finite-dimensional representation �W Z!.�/! End.E/ such that

(1) �� D � , namely �.ZN
˛ /D �.˛/ IdE for every ˛ 2W.��IZ/;

(2) �.Hk/D hk IdE for k D 1; : : : ; s .

In addition, for such a representation, the vector space E has dimension N 3gCs�3 .

Proof Using elementary linear algebra, this follows immediately from Corollary 13.
More precisely, consider the isomorphism

Z!.�/ŠW q
1
˝ � � �˝W q

g ˝W q2

gC1
˝ � � �˝W q2

3gCs�3
˝CŒH1�˝ � � �˝CŒHs �

provided by Corollary 13.

For 1 6 i 6 3gC s � 3, let X˙1
i and Y ˙1

i denote the generators of W q
i or W q2

i

(satisfying the relation XiYi D qYiXi if 1 6 i 6 g and XiYi D q2YiXi if g < i 6
3gC s� 3 ). The proof of Corollary 13 shows that these generators are of the form
Xi D Z˛i

, Yi D Zˇi
and Hk D Z�k

for some edge weight systems ˛i ; ˇi ; �k 2

W.��IZ/. In addition, the ˛i , ˇi and �k form a basis for W.��IZ/Š Zn .
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Because N is odd, qD!4 and q2 are both primitive N th roots of unity. Arbitrarily pick
N th roots �.˛i/

1=N and �.ˇi/
1=N , and define �i W W

q
i ! End.Ei/ by the property

that, if v1; v2; : : : ; vN form a basis for Ei ŠCN ,

�i.Xi/.vj /D

�
��.˛i/

1=N qjvj if 1� i � g;

�.˛i/
1=N q2jvj if g < i 6 3gC s� 3;

�i.Yi/.vj /D �.ˇi/
1=N vjC1:

Then for EDE1˝E2˝� � �˝E3gCs�3 , define �W Z!.�/!End.E/ by the property
that � coincides with �1˝�2˝� � �˝�3gCs�3 on W q

1
˝W q

2
˝� � �˝W q

3gCs�3
, and

�.Hk/D hk IdE for every k D 1; : : : ; s .

It is immediate that � satisfies the required properties. The fact that � is irreducible, and
that every irreducible representation is isomorphic to �, is easily proved by elementary
linear algebra; see for instance [5, Section 4] for details.

3 Pleated surfaces and homomorphisms to SL2.C/

Let us consider the special case of Proposition 15 when N D 1. In particular, AD�1

and � D ! D ˙i. Since the Chebyshev polynomial T1.x/ is equal to x , the choice
of puncture invariants hk is irrelevant and Proposition 15 associates to any twisted
homomorphism �W W.��IZ/!C� a representation �� W Z �.�/! End.C/. By com-
position with the quantum trace homomorphism Tr�

�
W S�1.S/! Z �.�/ of Theorem 4,

we now have a homomorphism

�� D �� ıTr��W S
�1.S/! End.C/DC:

We can then apply the case N D 1 of Theorem 1 (which actually is an observation
of Doug Bullock, Charlie Frohman, Joanna Kania-Bartoszyńska, Jozef Przytycki and
Adam Sikora [12; 13; 14; 15; 29] and plays a crucial rôle in the proof of Theorem 1 in
its full generality). It provides a character r� 2RSL2.C/.S/ such that

��.ŒK�/D�Tr r�.K/

for every framed knot K � S � Œ0; 1�. The property is valid for all knots, not just those
whose projection to S has no double point [12; 13; 14; 15; 29].

It is natural to ask which elements of RSL2.C/.S/ are obtained in this way. The answer
involves the following geometric definition.

Let zS be the universal cover of S , and let z� be the ideal triangulation of zS obtained
by lifting the edges and faces of �. Identify PSL2.C/ to the isometry group of the
hyperbolic 3–space H3. A pleated surface with pleating locus � is the data . zf ; xr/ of
a map zf W zS !H3 and a group homomorphism xr W �1.S/! PSL2.C/ such that
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(1) zf homeomorphically sends each edge of z� to a complete geodesic of the
hyperbolic space H3, and every face of z� to a totally geodesic ideal triangle
of H3, with vertices on the sphere at infinity @1H3 ;

(2) zf is xr–equivariant, in the sense that zf . zx/Dxr. /. zf .zx// for every  2 �1.S/

and every zx 2 zS .

Following the terminology introduced in [32], we say that the group homomorphism
xr W �1.S/! PSL2.C/ realizes the ideal triangulation � if there exists a pleated surface
. zf ; xr/ with pleating locus �. By extension, a point in the character variety RPSL2.C/.S/

realizes � if it can be represented by a homomorphism xr W �1.S/! PSL2.C/ real-
izing �. Finally, a character in RSL2.C/.S/ realizes � if it is sent to a point of
RPSL2.C/.S/ realizing � by the canonical projection RSL2.C/.S/!RPSL2.C/.S/.

We are now ready to state the result promised. At the beginning of this section, we asso-
ciated a character r� 2RSL2.C/.S/ to each twisted homomorphism �W W.��IZ/!C�.

Proposition 16 A character r 2RSL2.C/.S/ is associated to a twisted homomorphism
�W W.��IZ/!C� as above if and only it realizes the ideal triangulation �.

Proof Suppose that r 2RSL2.C/.S/ realizes the ideal triangulation �. By definition,
there exists a pleated surface . zf ; xr/ with pleating locus �, where the homomorphism
xr W �1.S/! PSL2.C/ represents the image of r under the projection RSL2.C/.S/!

RPSL2.C/.S/.

The pleated surface . zf ; xr/ determines, for each edge zei of the ideal triangulation z�
of zS , a complex weight zxi 2 C� defined as follows: If zQi �

zS is the quadrilateral
formed by the two faces of z� meeting along the edge zei , then �zxi is the cross-ratio
of the four vertices of zf . zQi/ in the sphere at infinity C [ f1g of H3. These edge
weights zxi are equivariant under the action of �1.S/, and therefore descend to a system
of weights xi for the edges ei of �. The edge weights xi 2 C� are the shear-bend
parameters of the pleated surface . zf ; xr/.

Choose square roots zi D
p

xi . Then for every closed curve K in S , there is an
explicit formula that expresses the trace Tr xr.K/ as a Laurent polynomial in the zi ;
see for instance [7, Sections 1.3–1.4]. Note that there necessarily is a sign ambiguity in
this formula, as the trace of an element of PSL2.C/ is only defined up to sign. Another
sign ambiguity occurs in the choice of the square roots zi D

p
xi .

We will use these edge weights zi 2 C� to construct representations of Z �.�/ and
S�1.S/. Recall that a twisted homomorphism �W W.��IZ/!C� is equivalent to the
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data of its value on a set of generators of W.��IZ/ŠZn . We can therefore find such
a twisted homomorphism such that

�.˛/D˙z
˛1

1
z
˛2

2
� � � z˛n

n

for every edge weight system ˛ 2W.��IZ/ assigning weight ˛i 2 Z to the edge ei

of �. The ˙ signs are here required by the twisting. In addition, a simple manipulation
of the formula for the Thurston intersection form (or a use of Lemma 10) show that
�.˛; ˇ/ is even whenever ˛ 2 .2Z/n �W.��IZ/ assigns even weights ˛i 2 Z to all
edges of �; in particular, there is no twisting on .2Z/n �W.��IZ/. Using Lemma 9,
we can therefore arrange that, for every ˛ 2 .2Z/n,

�.˛/DCz
˛1

1
z
˛2

2
� � � z˛n

n :

Note that there are several possible choices for � , coming from the signs ˙. In fact,
Lemma 9 shows that there are exactly 2d possibilities for � , where d is the dimension
of H1.S IZ2/. We will later adjust the choice of � so that it fits our purposes.

Let �� W Z �.�/!End.C/DC be the representation of Z �.�/ associated to the twisted
homomorphism � by Proposition 15. Namely, �.Z˛/D �.˛/ for every ˛ 2W.��IZ/.

The definition of the quantum trace homomorphism Tr�
�
W S�1.S/ ! Z �.�/ in [7]

was specially designed to copy the formula expressing the trace Tr xr.K/ as a Laurent
polynomial in the square roots zi D

p
xi of the shear-bend parameters of the pleated

surface . zf ; xr/. In particular, because of the key property that ��.Z2
i /DCz2

i ,

�� ıTr��.ŒK�/D˙Tr r.K/

for every framed knot K � S � Œ0; 1�, where the sign ˙ depends on K and on the
choice of the square roots zi D

p
xi ; see the discussion in [7, Sections 1.3–1.4].

As discussed at the beginning of this section, the homomorphism ��ıTr�
�
W S�1.S/!C

also defines a character r� 2RSL2.C/.S/ such that

�� ıTr��.ŒK�/D�Tr r�.K/

for every framed knot K � S � Œ0; 1�. As a consequence, Tr r�.K/D˙Tr r.K/ for
every knot K .

At this point, there is no reason for the two characters r and r� 2 RSL2.C/.S/ to
coincide. However, by construction, they project to the same PSL2.C/–valued character
in RPSL2.C/.S/. Their difference can therefore be encoded by a cohomology class
" 2H 1.S IZ2/ such that, for every knot K � S � Œ0; 1�,

Tr r.K/D .�1/".K / Tr r�.K/:
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Each edge ei of the ideal triangulation � is Poincaré dual to a cohomology class
"i 2 H 1.S IZ2/. Replacing the square root zi D

p
xi by the other square root �zi

has the effect of replacing r� with "ir� . Since the "i generate H 1.S IZ2/, we can
therefore adjust the choice of the square roots zi D

p
xi so that the characters r and

r� 2RSL2.C/.S/ are now equal.

This proves that, if the character r 2 RSL2.C/.S/ realizes the ideal triangulation �,
there exists a twisted homomorphism �W W.��IZ/!C� whose associated character
r� 2RSL2.C/.S/ is equal to r .

Conversely, suppose that rD r� 2RSL2.C/.S/ is associated to a twisted homomorphism
�W W.��IZ/!C� as above. More precisely, consider the corresponding representation
�� W Z �.�/! End.C/ D C , defined by the property that ��.Z˛/ D �.˛/ for every
˛ 2W.��IZ/. Then for every framed knot K � S � Œ0; 1�,

�� ıTr��.ŒK�/D�Tr r.K/:

The generator Zi 2 T �.�/ associated to the edge ei of � does not satisfy the exponent
parity condition defining the balanced Chekhov–Fock algebra Z �.�/, but its square
does. We can therefore consider xi D��.Z

2
i /2C , which is different from 0 since Z2

i

is invertible.

We can then construct a pleated surface . zf ; xr/ whose pleating locus is equal to �
and whose shear-bend parameters are equal to the edge weights xi . In particular, this
pleated surface is equivariant with respect to a homomorphism xr W �1.S/! PSL2.C/,
which defines a character xr 2RPSL2.C/.S/.

By our discussion of the geometric interpretation of the trace homomorphism Tr�
�

,
the character xr 2 RPSL2.C/.S/ is the projection of r 2 RSL2.C/.S/. In particular, r

realizes the ideal triangulation �. This concludes the proof of Proposition 16.

4 Representations of the skein algebra

We are now ready to prove Theorem 2. We begin with an elementary lemma about
the Chebyshev polynomials Tn . Remember that the polynomial Tn is defined by the
property that Tr M n D Tn.Tr M / for every M 2 SL2.C/. Applying this to a rotation
matrix gives the trigonometric interpretation that cos n� D 1

2
Tn.2 cos �/.

Lemma 17 (1) If x D aC a�1 , then Tn.x/D anC a�n .

(2) If y D bC b�1 , the set of solutions to the equation Tn.x/D y consists of the
numbers x D aC a�1 as a ranges over all nth roots of b .
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Proof For a matrix M 2 SL2.C/, the data of its trace x is equivalent to the data of
its spectrum fa; a�1g. The first property is then a straightforward consequence of the
fact that Tr M n D Tn.Tr M /. The second property immediately follows.

We will also need the following quantum trace computation, which connects the skein
ŒPk � 2 SA.S/ and the central element Hk 2Z!.�/ that are associated to the same k th

puncture of S .

Lemma 18 For the quantum trace homomorphism Tr!
�
W SA.S/! Z!.�/,

Tr!� .ŒPk �/DHk CH�1
k :

Proof Let ei1
; ei2

; : : : ; eiu
be the edges of � that lead to the k th puncture, indexed in

counterclockwise order around the puncture; in particular, the eij are not necessarily
distinct.

The construction of Tr!
�
.ŒPk �/ in [7] requires a careful control of elevations (namely

Œ0; 1�–coordinates) along the knot Pk � S � Œ0; 1�. Choose this knot so that it steadily
goes up from ei1

to eiu
, and then sharply goes down to return to its starting point

in ei1
. In this setup, the formula of [7] yields

Tr!� .ŒPk �/D !
�uC2Zi1

Zi2
� � �Ziu

C!�uC2Z�1
i1

Z�1
i2
� � �Z�1

iu
:

This is relatively straightforward when only one end of the edge ei1
leads to the k th

puncture, namely when the projection of Pk to S crosses ei1
only once, but otherwise

requires the consideration of correction terms in a bigon neighborhood of ei1
, of the

type given by [7, Lemma 22]. Fortunately, these correction terms turn out to be trivial
in this case.

We need to connect this formula to Hk D ŒZi1
Zi2
� � �Ziu

�. Computing the Weyl
quantum ordering is again straightforward when each edge eij has only one end leading
to the k th puncture. For the general case, we could use a brute force computation as
in [10, Lemma 12]. We prefer to give here a more indirect argument, based on the
invariance of Tr!

�
.ŒPk �/ under isotopy of Pk .

For this, choose the elevation of Pk so that it now goes down from ei1
to eiu

, and then
goes up near ei1

to return to its starting point. In this setup, the formulas of [7] give

Tr!� .ŒPk �/D !
u�2Ziu

Ziu�1
� � �Zi1

C!u�2Z�1
iu

Z�1
iu�1
� � �Z�1

i1
:

Comparing the two expressions for Tr!
�
.ŒPk �/ 2 Z!.�/ shows in particular that

!�uC2Zi1
Zi2
� � �Ziu

D !u�2Ziu
Ziu�1

� � �Zi1
:

By definition of the Weyl quantum ordering, there exists an integer a 2 Z such that

Hk D !
aZi1

Zi2
� � �Ziu

D !�aZiu
Ziu�1

� � �Zi1
:
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We can then rephrase the above equality as !�a�uC2Hk D !
aCu�2Hk . Although

the current article usually focuses on the case where ! is a root of unity, these
computations are valid for all ! . It follows that a D �u C 2. This proves that
Hk D !

�uC2Zi1
Zi2
� � �Ziu

, and our first computation then shows that Tr!
�
.ŒPk �/D

Hk CH�1
k

.

We are now ready to prove Theorem 2, which we repeat here for convenience. Recall
that a character r 2 RSL2.C/.S/ associates a number Tr r.Pk/ to the k th puncture
of S , where Pk is a small loop going around the puncture.

Theorem 19 Assume that the surface S has at least one puncture, that its Euler
characteristic is negative, that A is a primitive N th root of �1 with N odd, and that
we are given

(1) a character r 2RSL2.C/.S/ realizing some ideal triangulation � of S ;

(2) a number pk 2C such that TN .pk/D�Tr r.Pk/ for each puncture of S .

Then there exists an irreducible finite-dimensional representation �W SA.S/! End.E/
whose classical shadow is equal to r and whose puncture invariants are the pk .

Proof Since r 2RSL2.C/.S/ realizes the ideal triangulation �, Proposition 16 pro-
vides a twisted homomorphism �W W.��IZ/!C� and an associated representation
�� W Z �.�/! End.C/DC , such that

�� ıTr��.ŒK�/D�Tr r.K/

for every framed knot K � S � Œ0; 1�

By Lemma 18, the image of ŒPk � 2 SA.S/ under the quantum trace homomorphism
Tr!
�
W SA.S/ ! Z!.�/ is equal to Tr!

�
.ŒPk �/ D Hk C H�1

k
in Z!.�/. Similarly,

Tr�
�
.ŒPk �/ D Hk C H�1

k
in Z �.�/. (Beware that we are using the same symbols

to denote the skeins ŒPk � 2 SA.S/ and ŒPk � 2 S�1.S/, and the central elements
Hk 2 Z!.�/ and Hk 2 Z �.�/.) Then for ŒPk � 2 S�1.S/,

Tr r.Pk/D��� ıTr��.ŒPk �/D���.Hk CH�1
k /D�gk �g�1

k

if we set gk D ��.Hk/ 2 End.C/DC .

For each k , we are given a number pk 2C such that TN .pk/D�Tr r.Pk/DgkCg�1
k

.
Lemma 17 then provides an N th root hk D

N
p

gk of such that pk D hk C h�1
k

.

Proposition 15 associates to the homomorphism �W W.��IZ/! C� and to the N th

roots hk D ��.Hk/
1=N an irreducible representation �W Z!.�/! End.E/ such that
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(1) �.ZN
˛ /D �.˛/ IdE for every ˛ 2W.��IZ/;

(2) �.Hk/D hk IdE for every k D 1; : : : ; s .

Composing with the quantum trace map Tr!
�
W SA.S/ ! Z!.�/, we now define a

representation
�D � ıTr!� W S

A.S/! End.E/:

To determine the classical shadow of � , let K be a framed knot whose projection
to S has no crossing and whose framing is vertical. Then for the associated skein
ŒK� 2 SA.S/,

TN .�.ŒK�//D�.TN .ŒK�//D�ıTr!� .TN .ŒK�//D�ıTr!� ıT
A.ŒK�/D�ıF!

ıTr��.ŒK�/

by using the fact that � is an algebra homomorphism for the first equality, by definition
of the Chebyshev homomorphism TAW S�1.S/! SA.S/ in Section 1.3 for the third
equality, and by the miraculous cancellations of Theorem 7 for the last relation. In terms
of the Frobenius homomorphism F! W T �.�/!T !.�/ introduced in Section 1.3 and of
the representation �� W Z �.�/! End.C/DC , the property that �.ZN

˛ /D �.˛/ IdE D

��.Z˛/ for every ˛ 2W.��IZ/ can be rephrased as � ıF! D �� . Therefore,

TN .�.ŒK�//D � ıF!
ıTr��.ŒK�/D �� ıTr��.ŒK�/ IdE D�Tr r.K/ IdE :

Also, for the k th puncture of S , the corresponding puncture invariant is determined by
the property that

�.ŒPk �/D � ıTr!� .ŒPk �/D �.Hk CH�1
k /D .hk C h�1

k / IdE D pk IdE :

If we knew that � was irreducible, we would be done with the proof of Theorem 19.
At this point, there is no reason for this property to hold. However, if � is not
irreducible, it suffices to consider an irreducible component �0W SA.S/! End.F /
with F �E . Restricting the above computations to F shows that the classical shadow
of the representation �0 is equal to the character r 2RSL2.C/.S/, and that its puncture
invariants are equal to the numbers pk .

Remark 20 We conjecture that, when r is sufficiently generic in RSL2.C/.S/, the
representation � D � ı Tr!

�
used in the proof of Theorem 19 is already irreducible,

and that there is no need to restrict to an irreducible factor. In earlier versions of
this article we also conjectured that, for generic r 2 RSL2.C/.S/, there is a unique
representation � satisfying the conclusions of Theorem 19 up to isomorphism. This
second conjecture was recently proved by Frohman, Kania-Bartoszyńska and Lê [22].
See also Takenov [31] for an earlier proof of this second conjecture in the cases of the
one-puncture torus and the four-puncture sphere (building on earlier work of Bullock
and Przytycki [16] and Havlíček and Pošta [23] for the one-puncture torus).
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Remark 21 In the very nongeneric case where r.Pk/ is the identity and where
pk D �!

4 � !�4 for some punctures, the representation � D � ı Tr!
�

is definitely
reducible. This is a key ingredient of the “puncture filling” process developed in [10].

5 A uniqueness property

We made choices in the proof of Theorem 19, and more precisely in its intermediate
step the proof of Proposition 16. Indeed, when proving Proposition 16, we first took
arbitrary square roots zi D

p
xi for the shear-bend parameters xi 2C� of a pleated

surface, and then adjusted these square roots in order to get the desired classical shadow
for the representation �W SA.S/! End.E/.

The goal of this section is to show that the output of the construction does not depend
on these choices, provided we carefully specify our data and our conclusions. The
resulting uniqueness statement will be used in the subsequent article [10]. Indeed, [10]
heavily relies on Theorem 19 to construct representations of the skein algebra of a
closed surface, by applying this statement to suitably chosen punctured surfaces.

5.1 Pleated surfaces and representations of Z�.�/

The proof of Theorem 19 hinges on Proposition 16 which, given a character r 2

RSL2.C/.S/, provides a twisted homomorphism �W W.��IZ/!C� and its associated
representation �� W Z �.�/!C such that

�� ıTr��.ŒK�/D�Tr r.K/

for every framed knot K � S � Œ0; 1�. Recall that �� and � are related by the property
that ��.Z˛/D �.˛/ 2C� for every basis element Z˛ 2 Z �.�/ associated to an edge
weight system ˛ 2W.��IZ/.

For most characters r 2RSL2.C/.S/, the homomorphism �� W Z �.�/!C is uniquely
determined by r and by the pleated surface . zf ; xr/. However this uniqueness fails, in a
very specific way, when the character r 2RSL2.C/.S/ admits a very special type of
internal symmetry which we now describe.

The cohomology group H 1.S IZ2/ acts on the character variety RSL2.C/.S/ by the
property that, for every homomorphism r W �1.S/! SL2.C/ and cohomology class
" 2H 1.S IZ2/, the homomorphism "r is defined by

"r. /D .�1/". /r. / 2 SL2.C/
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for every  2 �1.S/. We say that " 2H 1.S IZ2/ is a sign-reversal symmetry for the
character r 2RSL2.C/.S/ if the action of " on RSL2.C/.S/ fixes r . This is equivalent
to the property that the trace Tr r. / is equal to 0 for every  2 �1.S/ with ". /¤ 0.

The group H 1.S IZ2/ also acts on the balanced Chekhov–Fock algebra Z!.�/ by the
property that "Z˛ D .�1/".Œ˛�/Z˛ for every " 2H 1.S IZ2/ and every ˛ 2W.��IZ/,
where Œ˛� 2H1.S IZ2/ is the homology class associated to the edge weight system ˛

as in Lemma 9.

Proposition 22 Suppose the pleated surface . zf ; xr/ has pleating locus the ideal tri-
angulation �, and let r 2 RSL2.C/.S/ be represented by a group homomorphism
r W �1.S/! SL2.C/ lifting the monodromy xr W �1.S/! PSL2.C/ of . zf ; xr/. Then
there exists an algebra homomorphism �� W Z �.�/!C , associated to a twisted homo-
morphism �W W.��IZ/!C�, such that

(1) for each edge ei of �, we have that ��.Z2
i / is equal to the shear-bend parameter

xi 2C� of ei in the pleated surface . zf ; xr/;

(2) �� ıTr�
�
.ŒK�/D�Tr r.K/ for every framed knot K � S � Œ0; 1�.

In addition, �� is unique up to the action on Z �.�/ of a sign-reversal symmetry
" 2H 1.S IZ2/ of the character r 2RSL2.C/.S/.

We say that a homomorphism �� W Z �.�/! C satisfying the above conclusions is
compatible with the pleated surface . zf ; xr/ and the character r 2RSL2.C/.S/.

Proof of Proposition 22 The existence is provided by Proposition 16, or more pre-
cisely by its proof to guarantee that ��.Z2

i /D xi for every edge ei of �.

To prove the uniqueness, suppose that we are given another algebra homomorphism
��0 W Z �.�/ ! C satisfying the same conclusions, and that this homomorphism is
associated to a twisted homomorphism �0W W.��IZ/! C�. From the property that
��.Z

2
i / D ��0.Z

2
i / D xi , we conclude that ��.Z˛/

2 D ��0.Z˛/
2 and therefore

��.Z˛/ D ˙��0.Z˛/ for every ˛ 2W.��IZ/. Since �� and ��0 are both algebra
homomorphisms, there consequently exists a group homomorphism "W W.��IZ/!Z2

such that ��.Z˛/D .�1/".˛/��0.Z˛/ for every ˛ 2W.��IZ/. Another application
of the property that ��.Z2

i / D ��0.Z
2
i / shows that " is trivial on the subgroup

.2Z/n � W.��IZ/ of Lemma 9. This statement then shows that " comes from a
homomorphism H1.S IZ2/! Z2 , and can therefore be interpreted as a cohomology
class " 2H 1.S IZ2/.

In this cohomological interpretation of " 2 H 1.S IZ2/, we have that ��.Z˛/ D

.�1/".Œ˛�/��0.Z˛/ for every ˛ 2 W.��IZ/. Namely, the homomorphisms �� and
��0 W Z �.�/!C differ by the action of " 2H 1.S IZ2/ on Z �.�/.
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Given a framed link K � S � Œ0; 1�, the construction of the quantum trace Tr�
�

in [7]
shows that Tr�

�
.ŒK�/2Z �.�/ is a linear combination of monomials Z˛ whose associated

homology class Œ˛� 2H1.S IZ2/, in the sense of Lemma 9, is the same as the class
ŒK� 2H1.S IZ2/ defined by K . As a consequence,

Tr r.K/D���0 ıTr��.ŒK�/D�.�1/".K /�� ıTr��.ŒK�/D .�1/".K / Tr r.K/

for every framed link K�S� Œ0; 1�. This proves that "2H 1.S IZ2/ is a sign-reversal
symmetry for the character r 2RSL2.C/.S/.

As a consequence, the homomorphisms �� ; ��0 W Z �.�/! C differ by the action on
Z �.�/ of a sign-reversal symmetry " 2H 1.S IZ2/ of r 2RSL2.C/.S/.

Characters with nontrivial sign-reversal symmetries exist, but are rare. In fact, the
characters that have no (nontrivial) sign-reversal symmetries form a Zariski dense closed
subset in RSL2.C/.S/. (Hint: Choose a family of simple closed curves 1; 2; : : : ; k

in S that generate H1.S IZ2/, and consider the set of r 2 RSL2.C/.S/ such that
Tr r.i/ ¤ 0 for some i .) This subset of RSL2.C/.S/ includes all injective homo-
morphisms �1.S/! SL2.C/, since their images contain no matrix with trace 0. In
particular all “geometric” characters, corresponding to fuchsian or quasifuchsian groups,
admit no sign-reversal symmetries.

More precisely, a simple algebraic manipulation shows that every character r 2

RSL2.C/.S/ with a nontrivial sign-reversal symmetry " 2H 1.S IZ2/ is represented
by a homomorphism r W �1.S/! SL2.C/ of the following type: Considering " as a
group homomorphism "W �1.S/!Z2 and for an arbitrary 0 2�1.S/ with ".0/¤ 0,
there exists a group homomorphism � W ker "!C=2� iZ such that

r.0/D

�
i 0

0 �i

�
and r. /D

�
cosh �. / sinh �. /
sinh �. / cosh �. /

�
for every  2 ker ":

In particular, noting the constraints that �. 2
0
/ D �i and �.0

�1
0
/ D ��. / for

every  2 ker ", the space of such characters has complex dimension 2gC s�2 in the
.6gC3s�6/–dimensional character variety RSL2.C/.S/ (where g is the genus of the
surface S and s is its number of punctures).

5.2 A strengthening of Theorem 19

Recall that, if the k th puncture of S is adjacent to the edges ei1
; ei2

; : : : ; eiu
of the

ideal triangulation �, it determines an element Hk D ŒZi1
Zi2
� � �Ziu

� 2 Z �.�/.

Proposition 23 Assume that the surface S has at least one puncture, that its Euler
characteristic is negative, that A is a primitive N th root of �1 with N odd, and that
we are given
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(i) a pleated surface . zf ; xr/ with pleating locus �, a character r 2RSL2.C/.S/ lifting
xr 2RPSL2.C/.S/, and an algebra homomorphism �� W Z �.�/! C compatible
with . zf ; xr/ and r as in Proposition 22;

(ii) for each puncture of S , an N th root hk of ��.Hk/ 2C�.

Then, up to isomorphism, there exists a unique representation �W Z!.�/! End.E/ of
the balanced Chekhov–Fock algebra Z!.�/ with the following properties:

(1) the dimension of the vector space E is equal to N 3gCs�3 , where g is the genus
of the surface S and s its number of punctures;

(2) �.ZN
˛ /D ��.Z˛/ for every edge weight system ˛ 2W.��IZ/, where we use

the same symbol to represent the associated base elements Z˛ 2 Z!.�/ and
Z˛ 2 Z �.�/;

(3) �.Hk/ D hk IdE for the central element Hk 2 Z!.�/ associated to the k th

puncture of S .

Also, the representation � is irreducible and the representation �D�ıTr!
�
W SA.S/!

End.E/ has classical shadow r 2RSL2.C/.S/, in the sense that

TN .�.ŒK�//D�Tr r.K/ IdE

for every knot K�S� Œ0; 1� whose projection to S has no crossing and whose framing
is vertical (where TN .x/ is the N th Chebyshev polynomial of the first type).

Proof The existence and uniqueness part is essentially a restatement of the classifi-
cation of irreducible representations of Z!.�/ in Proposition 15. The fact that � has
classical shadow r follows from the proof of Theorem 19.

Although the representation �W Z!.�/! End.E/ of Proposition 23 is irreducible,
the representation �D � ıTr!

�
W SA.S/! End.E/ is not necessarily irreducible; see

Remark 21.

6 The case where AN D C1

The case where AN D C1 can be deduced from the case where AN D �1 by the
Barrett isomorphism B� W SA.S/! S�A.S/ associated to a spin structure � on the
surface S . This isomorphism is defined by the property that, for every framed link
K � S � Œ0; 1� with k components,

B� .ŒK�/D .�1/kC�.K /ŒK� 2 S�A;
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where �.K/ 2 Z2 is the monodromy of the framing of K with respect to � . See [2]
and [29, Section 2] for a proof that B� W SA.S/! S�A.S/ is an algebra isomorphism.

If AN DC1, an irreducible finite-dimensional representation �W SA.S/! End.E/
defines an irreducible representation �0 D � ıB� W S�A.S/! End.E/, to which we
can apply Theorems 1 and 2 since .�A/N D �1 as N is assumed to be odd. This
process depends on the choice of a spin structure � , but we can make it more canonical
by the following construction.

Let Spin.S/ denote the set of isotopy classes of spin structures on S . Any two
spin structures differ by an obstruction in H 1.S IZ2/, which defines an action of
H 1.S IZ2/ on Spin.S/. The cohomology group H 1.S IZ2/ also acts on the character
variety RSL2.C/.S/ by the property that, if r 2RSL2.C/.S/ and " 2H 1.S IZ2/, then
"r 2RSL2.C/.S/ is defined by

"r. /D .�1/". /r. / 2 SL2.C/

for every  2 �1.S/.

The twisted character variety RSpin.S/
PSL2.C/

is then defined as the quotient

RSpin.S/
PSL2.C/

D .RSL2.C/.S/�Spin.S//=H 1.S IZ2/:

If the twisted character yr 2RSpin.S/
PSL2.C/

is represented by .r; �/ 2RSL2.C/.S/�Spin.S/
and if K is a framed knot in S � Œ0; 1�, the definition is designed so that the trace

Tr yr.K/D�.�1/�.K / Tr r.K/

depends only on the twisted character yr 2 RSpin.S/
PSL2.C/

, and not on its representative
.r; �/ 2RSL2.C/.S/�Spin.S/.

The correspondence �$ � ıB� is used in [9] to establish the following result.

Theorem 24 [9] Suppose that A is a primitive N th root of C1 with N odd, and let
�W SA.S/! End.E/ be an irreducible finite-dimensional representation of the Kauff-
man bracket skein algebra. Let TN .x/ be the N th normalized Chebyshev polynomial
of the first kind.

(1) There exists a unique twisted character yr� 2R
Spin.S/
PSL2.C/

such that

TN .�.ŒK�//D�.Tr yr�.K// IdE

for every framed knot K � S � Œ0; 1� whose projection to S has no crossing and
whose framing is vertical.
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(2) Let Pk be a small simple loop going around the k th puncture of S , and consider
it as a knot in S� Œ0; 1� with vertical framing. Then there exists a number pk 2C
such that �.ŒPk �/D pk IdE .

(3) The number pk of (2) is related to the twisted character yr� 2RSpin.S/
PSL2.C/

of (1)
by the property that TN .pk/D�Tr yr�.Pk/.

The same correspondence �$ � ıB� can be used to prove the following analogue
of Theorem 2. We say that the twisted character yr 2 RSpin.S/

PSL2.C/
realizes the ideal

triangulation � of S if the image xr 2RPSL2.C/.S/ of yr under the natural projection
RSpin.S/

PSL2.C/
!RPSL2.C/.S/ realizes � in the sense of Section 3.

Theorem 25 Assume that the surface S has at least one puncture, that its Euler
characteristic is negative, that A is a primitive N th root of C1 with N odd, and that
we are given

(1) a twisted character yr 2RSpin.S/
PSL2.C/

which realizes some ideal triangulation � of S ;

(2) a number pk 2C such that TN .pk/D�Tr yr.Pk/ for each of the punctures of S .

Then there exists an irreducible finite-dimensional representation �W SA.S/! End.E/
whose classical shadow is equal to yr and whose puncture invariants are the pk .

Proof Represent yr 2RSpin.S/
PSL2.C/

by a pair .r; �/ 2RSL2.C/.S/�Spin.S/. Theorem 2
provides an irreducible representation �0W S�A.S/! End.E/ with classical shadow
r 2RSL2.C/.S/ and puncture invariants equal to the pk . Then �D �0 ıB� W SA.S/!

End.E/ satisfies the required properties.

Appendix: The Thurston intersection form of a train track

Let � be a train track in an oriented surface S , and let W.� IZ/ be the space of
integer-valued edge weights for � . Namely, an element ˛ 2W.� IZ/ assigns a weight
˛.e/ 2 Z to each edge e of � in such a way that, at each switch s of � , the sum of
the weights of the edges of � coming in on one side of s is equal to the sum of the
weights of the edges going out on the other side. This abelian group comes with an
additional structure provided by the Thurston intersection form

�W W.� IZ/�W.� IZ/! Z

defined as in Section 2.2. Namely,

�.˛; ˇ/D
1

2

X
e right of e0

.˛.e/ˇ.e0/�˛.e0/ˇ.e//;
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where the sum is over all pairs .e; e0/ such that e and e0 are two “germs of edges”
emerging on the same side of a switch of � with e to the right of e0 (note e and e0 are
not necessarily adjacent at that switch) for the orientation of S . At this point, �.˛; ˇ/
is only a half-integer, but Theorem 26 below will prove that it is indeed an integer.

We want to determine the algebraic structure of W.� IZ/ endowed with �. This
is a classical property in the case of real-valued edge weights (see for instance [28,
Section 3.2] or [4, Section 3]), but the subtleties of the integer-valued case seem less
well known. The result is of independent interest because, beyond the scope of this
article, integer-valued edge weight do occur in geometric situations where the Thurston
intersection form is also relevant. One such instance arises for general pleated surfaces
where the pleating locus is allowed to have uncountably many leaves, as opposed to the
simpler pleated surfaces considered in Section 3. The bending of such a pleated surface
is measured by an edge weight system valued in R=2�Z for a train track carrying
the pleating locus, and this edge weight system is related to rotation numbers by the
Thurston intersection form [4].

The complement S � � of the train track � admits a certain number of “spikes”, each
locally delimited by two edges of � that approach the same side of a switch of � .
Thicken � to a subsurface U � S that deformation retracts to � . Each component
of U � � is then an annulus that contains one component of @U and a certain number
of spikes of S � � . We can then consider the genus h of U , and the number neven

(resp. nodd ) of components of U � � that contain an even (resp. odd) number of spikes.

A component U1 of U � � that contains an even number n1 > 0 of spikes of S � �

determines, up to sign, an element of W.� IZ/ as follows. The core of U1 is homotopic
to a closed curve 1 in � that is made up of arcs k1; k2; : : : ; kn1

; kn1C1 D k1 , in this
order, such that each arc k1 is immersed in � and such that two consecutive arcs ki

and kiC1 locally bound a spike of U1 at their common end point. For each edge e

of � , we can then consider

˛.e/D

n1X
iD1

.�1/i˛i.e/ 2 Z;

where ˛i.e/ 2 f0; 1; 2g is the number of times the arc ki passes over the edge e .
Because the signs .�1/i alternate at the spikes of U1 (using the fact that n1 is even
for i D n1 ), one easily sees that these edge weights ˛.e/ satisfy the switch conditions,
and therefore define an edge weight system ˛ 2W.� IZ/.

A component U1 of U � � that contains no spike similarly determines an edge weight
system ˛ 2W.� IZ/. The core of U1 is now homotopic to a closed curve 1 immersed
in � , and ˛ associates to each edge e the number ˛.e/ of times 1 passes over e .
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Also, recall that the train track � is orientable if its edges can be oriented in such a
way that the orientations match at the switches of � .

Theorem 26 For a connected train track � in the surface S , let the numbers h, neven

and nodd be defined as above. Then the lattice W.� IZ/ of integer-valued edge weight
systems for � admits a basis in which the Thurston intersection form � is block
diagonal with

� h blocks
�

0 1
�1 0

�
, 1

2
nodd� 1 blocks

�
0 2
�2 0

�
, and neven blocks .0/ if nodd > 0;

� h blocks
�

0 1
�1 0

�
and neven blocks .0/ if nodd D 0 and � is nonorientable;

� h blocks
�

0 1
�1 0

�
and neven� 1 blocks .0/ if nodd D 0 and � is orientable.

In addition, in all cases, we can choose the base elements corresponding to the blocks .0/
to be the edge weight systems associated as above to the components of U � � that
contain an even number of spikes.

In particular, nodd is always even.

Proof We will subdivide the proof into several lemmas. The reader may recognize
many analogies with the arguments used in the proof of [5, Proposition 5].

We first discuss a classical homological interpretation of the elements of W.� IZ/ and
of the Thurston intersection form �.

Because the edges of � are not oriented, an edge weight system does not directly define
a homology class in H1.� IZ/. Instead consider the 2–fold orientation covering y� of � ,
consisting of all pairs .x; o/ where x 2 � and o is a local orientation of the train track �
at x . Note that y� is a canonically oriented train track, and that the covering involution
� W y� ! y� that exchanges the two sheets of the covering reverses the orientation of y� .

An edge weight system ˛ 2W.� IZ/ lifts to a weight system y̨ 2W.y� IZ/. Endowing
each (oriented) edge of y� with the weight assigned by y̨ defines a chain, which
is closed because of the switch condition and therefore defines a homology class
Œy̨� 2H1.y� IZ/. Note that ��.Œy̨�/D�Œy̨� since the covering involution � reverses the
canonical orientation of y� .

Conversely, each homology class Œy̨� 2 H1.y� IZ/ is represented by a unique linear
combination of the edges of y� , and therefore determines an edge weight system
y̨ 2 W.y� IZ/. Assuming in addition that ��.Œy̨�/ D �Œy̨�, this edge weight system
is invariant under the action of � , and therefore comes from an edge weight system
˛ 2W.� IZ/. This proves:
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Lemma 27 The above correspondence identifies the space W.� IZ/ of edge weight
systems to the eigenspace

H1.y� IZ/
�
D
˚
Œy̨� 2H1.y� IZ/ W ��.Œy̨�/D�Œy̨�

	
�H1.y� IZ/

of the homomorphism ��W H1.y� IZ/ ! H1.y� IZ/ that is induced by the covering
involution � .

To describe the Thurston intersection form in this homological framework, consider the
subsurface U deformation retracting to � . The covering y� ! � uniquely extends to a
2–fold covering yU ! U , whose covering involution � W yU ! yU extends our previous
involution � . The orientation of U � S lifts to an orientation of yU .

Lemma 28 If Œy̨�; Œ y̌� 2 H1.y�/
� are associated to the edge weight systems ˛; ˇ 2

W.��IZ/,
�.˛; ˇ/D 1

2
Œy̨� � Œ y̌�;

where � denotes the algebraic intersection number of classes of H1. yU IZ/ŠH1.y� IZ/.
In addition, Œy̨� � Œ y̌� is even, and �.˛; ˇ/ is an integer.

Proof To prove the first statement push the oriented train track y� to its left to obtain a
train track y� 0 � yU that is transverse to y� , realize the homology class Œy̨� by y� endowed
with the edge multiplicities coming from ˛ , realize Œ y̌� by y� 0 endowed with the edge
multiplicities coming from ˇ , and use this setup to compute the algebraic intersection
number Œy̨� � Œ y̌�. Evaluating the contribution to Œy̨� � Œ y̌� of each point of y� \ y� 0 then
shows that this algebraic intersection number is equal to 2�.˛; ˇ/.

The second statement is obtained by a similar but different computation of Œy̨� � Œ y̌�.
Perturb � to a train track � 00 that is transverse to � , and let y� 00 be the preimage of � 00

in yU . Now compute Œy̨� � Œ y̌� by realizing the homology class Œ y̌� by y� 00 endowed with
the edge multiplicities coming from ˇ , while still realizing Œy̨� by y� endowed with the
edge multiplicities coming from ˛ . The intersection y� \ y� 00 splits into pairs of points
interchanged by the covering involution � , and the two points in each pair have the
same contribution to Œy̨� � Œ y̌�. It follows that Œy̨� � Œ y̌� is even.

We now need to better understand the action of �� on the homology group H1. yU IZ/.

It will be convenient to systematically use a notation which already appeared in
Lemma 27. If V is a space where some restriction of the covering involution �

induces a homomorphism �� , then

V � D f˛ 2 V W ��.˛/D�˛g:

For instance, Lemma 27 provides a natural isomorphism W.� IZ/ŠH1. yU IZ/
� .
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Let @evenU be the union of the neven components of @U that are adjacent to an even
number of spikes of S � � , and set @oddU D @U � @evenU .

Lemma 29 Let 1 be a component of @evenU, and let y1 be its preimage in yU . Then
H1.y1IZ/

� is isomorphic to Z. In addition, the image in H1. yU IZ/
� Š W.� IZ/

of one of the generators of H1.y1IZ/
� coincides up to sign with the edge weight

system that, right before Theorem 26, we associated to the component U1 of U � �

that contains 1 .

Proof As right above Theorem 26, the curve 1 is homotopic to a closed curve  0
1

in � that is made up of n1 arcs k1; k2; : : : ; kn1
; kn1C1 D k1 , in this order, such that

each arc k1 is immersed in � and such that two consecutive arcs ki and kiC1 locally
bound a spike of U1 at their common end point. Because n1 is even, there are two
possible ways to orient these arcs in such a way that consecutive arcs have opposite
orientations. This shows that  0

1
has two distinct lifts to y� , and therefore that the

preimage y1 of 1 in yU consists of two components of @ yU that are exchanged by
the covering involution. This provides an isomorphism H1.y1IZ/Š Z˚Z where ��
exchanges the two factors. It immediately follows that H1.y1IZ/

� Š Z.

If y 0
1
� y� denotes one of the two lifts of  0

1
to y� , the image of H1.y1IZ/

� in
H1. yU IZ/

� Š H1.y� IZ/
� Š W.� IZ/ is generated by Œy 0

1
� � ��.Œy

0
1
�/. The second

statement easily follows.

To prove Theorem 26, we will first restrict attention to the case where nodd > 0. This
is equivalent to the property that @oddU is nonempty.

We just saw that the restriction of the covering yU!U above @evenU is trivial; similarly,
its restriction above each component of @oddU is nontrivial. Therefore, the covering
yU ! U is classified by a cohomology class in H 1.U IZ2/ which evaluates to 0 on
the elements of @evenU and to 1 on the components of @oddU .

Since the subset @oddU is nonempty, and can therefore realize the cohomology class
classifying the covering yU ! U as the Poincaré dual of a family K � U of disjoint
arcs whose boundary @KDK\@U consists of one point in each component of @oddU .

Split U along a separating simple closed curve  to isolate K inside of a planar surface
U1�S with boundary @U1D  [@oddU , while the closure U2 of U �U1 has genus h

and boundary @U2 D  [ @evenU . Let yU1 and yU2 be the respective preimages of U1

and U2 in yU .

Since K is disjoint from U2 , the covering yU2! U2 is trivial, and yU2 consists of two
disjoint copies of the surface U2 which are exchanged by � .
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The covering yU1 ! U1 is nontrivial above each component of @oddU and trivial
above  . Since the surface U1 is planar, an Euler characteristic computation shows
that yU1 has genus 1

2
nodd� 1 and has noddC 2 boundary components.

Consider the Mayer–Vietoris exact sequence

0!H1.y IZ/!H1. yU1IZ/˚H1. yU2IZ/!H1. yU IZ/! 0;

where y denotes the preimage of  in yU . (To explain the 0 on the right, note that the
map H0.y IZ/!H0. yU2IZ/ is injective.)

Lemma 30 Remembering that V � denotes the .�1/–eigenspace of the action of ��
over a space V , the above exact sequence induces another exact sequence

0!H1.y IZ/
�
!H1. yU1IZ/

�
˚H1. yU2IZ/

�
!H1. yU IZ/

�
! 0:

Proof The only point that requires some thought is the fact that the third homomor-
phism is surjective.

Given u 2H1. yU IZ/
� , the first exact sequence provides u1 2H1. yU1IZ/ and u2 2

H1. yU 2IZ/ such that uD u1Cu2 in H1. yU IZ/. Since ��.u/D�u, we conclude that
there exists v 2H1.y IZ/ such that ��.u1/D�u1C v in H1. yU1IZ/ and ��.u2/D

�u2 � v in H1. yU2IZ/. Note that v 2 H1.y IZ/ is invariant under �� . Therefore,
for the isomorphism H1.y IZ/ Š H1. IZ/˚H1. IZ/ coming from the fact that
each of the two components of y is naturally identified to ; v D .w;w/ for some
w 2H1. IZ/. If we replace u1 by u0

1
D u1�.w; 0/ and u2 by u0

2
D u2C.w; 0/, we

now have that uD u0
1
Cu0

2
with ��.u01/D�u0

1
and ��.u02/D�u0

2
, as requested.

We now analyze the terms of the exact sequence of Lemma 30.

The space H1. yU2IZ/
� is easy to understand, because yU2 is made up of two dis-

joint copies of U2 , which are exchanged by the covering involution � . Therefore,
H1. yU2IZ/ŠH1.U2IZ/˚H1.U2IZ/ and, for this isomorphism, H1. yU2IZ/

� corre-
sponds to f.˛;�˛/ W ˛ 2 H1.U2IZ/g. This defines an isomorphism H1. yU2IZ/

� Š

H1.U2IZ/, for which the intersection form of H1. yU2IZ/
� corresponds to twice the

intersection form of H1.U2IZ/.

Lemma 31 There exists a basis for H1. yU2IZ/
� in which the intersection form is

block diagonal with h blocks
�

0 �2
2 0

�
and neven blocks .0/.

In addition, we can arrange that the basis elements corresponding to the blocks .0/ are
the images of generators of H.y̨IZ/� Š Z as y̨ � yU2 ranges over all preimages of
components ˛ of @evenU , and that a generator of H1.y IZ/

� Š Z is sent to the sum of
these elements.
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Proof The surface U2 has genus h and has nevenC 1 boundary components, and 
is one of these boundary components. We can therefore find a basis for H1.U2IZ/
in which the intersection form is block diagonal with h blocks

�
0 �1
1 0

�
and neven

blocks .0/. In addition, since @U2 D  [ @evenU , we can arrange that the basis
elements corresponding to the blocks .0/ are the images of generators of H1.˛IZ/
as ˛ ranges over all components of @evenU , while the image of a generator of H1. IZ/
is sent to the sum of these elements.

The result then follows by considering the isomorphism H1. yU2IZ/
� Š H1.U2IZ/

mentioned above.

We now consider H1. yU1IZ/
� .

Lemma 32 There exists a basis for H1. yU1IZ/
� in which the intersection form is

block diagonal with 1
2
nodd� 1 blocks

�
0 4
�4 0

�
and with one block .0/. In addition, the

block .0/ corresponds to the image of the homomorphism H1.y IZ/
�!H1. yU1IZ/

�

induced by the inclusion map.

Proof We will use an explicit description of the covering yU1! U1 , with a specific
basis for H1. yU1IZ/.

Recall that this covering is classified by a cohomology class in H 1.U1IZ2/ that is dual
to a family K�U1 of 1

2
nodd disjoint arcs, with one boundary point in each component

of @oddU . Index the components of @oddU as ˛1; ˛2; : : : ; ˛nodd and the components
of K as k1; k3; k5; : : : ; knodd�1 in such a way that k2i�1 joins ˛2i�1 to ˛2i . Add
to K a family of disjoint arcs k2; k4; : : : ; knodd�2 , disjoint from the k2i�1 , such that
each k2i joins ˛2i to ˛2iC1 . See Figure 3.

For i D 1; 2; : : : ; nodd � 1, consider a small regular neighborhood of ki [ ˛i [ ˛iC1

in U1 and let ˇi be the boundary component of this neighborhood which is neither ˛i

nor ˛iC1 ; endow ˇi by the corresponding boundary orientation. Orient each curve ˛i

by the boundary orientation of @oddU .

The preimage of each curve ˛i is a single curve y̨i , which we orient by the orientation
of ˛i . The preimage of ǰ in yU1 consists of two disjoint curves. Arbitrarily choose one
of these curves y̌j and orient it by the orientation of ǰ . Then the Œy̨i � and Œ y̌j � form
a basis for H1. yU1IZ/. See Figure 3.

Consider an element u 2H1. yU1IZ/, uniquely expressed in this basis as

uD

noddX
iD1

ai Œy̨i �C

nodd�1X
jD1

bj Œ y̌j �
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y



y̨1 y̨2 y̨3 y̨4 y̨nodd

y̌
1

y̌
2

y̌
3

y̌
4

y̌
nodd�2

y̌
nodd�1

˛1 ˛2 ˛3 ˛4

ˇ1 ˇ2 ˇ3 ˇ4

#

: : :

Figure 3

with all ai ; bj 2 Z. By construction of the curves y̨i and y̌j ,

��.Œy̨i �/D Œy̨i � and ��.Œ y̌j �/D�Œ y̌j �� Œy̨j �� Œy̨jC1�:

If u belongs to H1. yU1IZ/
� , namely if ��.u/D�u, it follows from these observations

and from the consideration of the coefficients of each Œy̨i � that we necessarily have

b1 D 2a1;

bi C bi�1 D 2ai for every i with 2 6 i 6 nodd� 1;

bnodd�1 D 2anodd :

In particular, the coefficients bj are all even, and

uD 1
2
.u� ��.u//D

nodd�1X
jD1

1
2
bj .Œ y̌j �� ��.Œ y̌j �//:
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Therefore, the elements Œ y̌j �� ��.Œ y̌j �/ generate H1. yU1IZ/
� . Since these elements

Œ y̌j �� ��.Œ y̌j �/D 2Œ y̌j �C Œy̨j �C Œy̨jC1� are linearly independent, they form a basis for
H1. yU1IZ/

� .

Note that Œ y̌j � � Œ y̌j 0 �D 0 if jj � j 0j> 1, and Œ y̌j � � Œ y̌jC1�D "j D˙1, where the sign
depends on which lift of ǰ we chose for y̌j . Also,

��.Œ y̌j �/ � Œ y̌j 0 �D Œ y̌j � � ��.Œ y̌j 0 �/D���.Œ y̌j �/ � ��.Œ y̌j 0 �/D�Œ y̌j � � Œ y̌j 0 �:

It follows that, in the basis of H1. yU1IZ/
� formed by the Œ y̌j �� ��.Œ y̌j �/, the matrix

of the intersection form is0BBBBBBBBB@

0 4"1 0 0 � � � 0 0

�4"1 0 4"2 0 � � � 0 0

0 �4"2 0 4"3 � � � 0 0

0 0 �4"3 0 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 � � � 0 4"nodd�2

0 0 0 0 � � � �4"nodd�2 0

1CCCCCCCCCA
By block diagonalizing this matrix, a final modification of the basis provides a new
basis for H1. yU1IZ/

� in which the intersection form is block diagonal with 1
2
nodd� 1

blocks
�

0 4
�4 0

�
and with one block .0/.

There remains to show that the block .0/ corresponds to the image of H1.y IZ/
� . This

could be seen by explicitly analyzing the block diagonalization process of the above
matrix. However, it is easier to note that H1.y IZ/

� Š Z is generated by Œy1�� Œy2�,
where y1 and y2 are the two components of the preimage y of  and are oriented by
the boundary orientation of @ yU1 . Then Œy1�� Œy2� is in the kernel of the intersection
form of H1. yU1IZ/

� , since y1 and y2 are in the boundary of yU1 , and generate this
kernel since it is isomorphic to Z and since Œy1�� Œy2� is indivisible in H1. yU1IZ/.

We now only need to combine the computations of Lemmas 30, 31 and 32 to obtain a
basis of H1. yU IZ/

� in which the intersection form is block diagonal with h blocks�
0 �2
2 0

�
, 1

2
nodd� 1 blocks

�
0 �4
4 0

�
, and neven blocks .0/.

Applying Lemmas 27 and 28 to connect this to the Thurston intersection form on the
edge weight space W.� IZ/, we conclude that W.� IZ/ admits a basis in which the
intersection form is block diagonal with h blocks

�
0 �1
1 0

�
, 1

2
nodd� 1 blocks

�
0 �2
2 0

�
,

and neven blocks .0/. In addition, by the second half of Lemma 31 and using Lemma 29,
the generators corresponding to the blocks .0/ can be assumed to correspond to the
elements of W.� IZ/ associated to the components of @evenU .

This proves Theorem 26, under our assumption that nodd > 0.
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We now consider the case where nodd D 0, namely where @oddU D ¿, and where
the train track � is nonorientable. This second property is equivalent to the property
that the covering yU ! U is nontrivial. We can then realize the cohomology class of
H 1.U IZ2/ classifying the covering yU ! U as the Poincaré dual of a nonseparating
simple closed curve K . Let U1 � U be a surface of genus 1 containing K and
bounded by a simple closed curve  , and let U2 be the closure of U �U1 . As before,
let yU1 , yU2 and y denote the respective preimages of U1 , U2 and  in yU .

The computation of Lemma 31 applies to this case as well, and provides a basis for
H1. yU2IZ/

� in which the intersection form is block diagonal with h blocks
�

0 �2
2 0

�
and neven blocks .0/.

The surface yU1 is a twice-punctured torus. A simple analysis of the covering yU1!U1

shows that H1. yU1IZ/
� Š Z is equal to the image of H1.y IZ/

� . The intersection
form of H1. yU1IZ/

� is then 0.

Again, combining these computations with the exact sequence

0!H1.y IZ/
�
!H1. yU1IZ/

�
˚H1. yU2IZ/

�
!H1. yU IZ/

�
! 0

provides in this case a basis for H1. yU IZ/
� in which the intersection form is block

diagonal with h blocks
�

0 �2
2 0

�
and neven blocks .0/. Using Lemmas 27 and 28, this

provides the result promised in Theorem 26 in this case as well. The fact that the
generators corresponding to the blocks .0/ can be chosen to be the elements associated
to the components of @evenU is a byproduct of the proof as in the previous case.

Finally, we need to consider the case where noddD 0 and the train track � is orientable.
Then the covering yU ! U is trivial, so H1. yU IZ/

� ŠH1.U IZ/ in such a way that
the intersection form of H1. yU IZ/

� corresponds to twice the intersection form of
H1.U IZ/. By Lemma 28, the last case of Theorem 26 immediately follows.
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algebra of observables, Proc. Amer. Math. Soc. 130 (2002) 2479–2485 MR

[16] D Bullock, J H Przytycki, Multiplicative structure of Kauffman bracket skein module
quantizations, Proc. Amer. Math. Soc. 128 (2000) 923–931 MR

[17] L O Chekhov, V V Fock, Observables in 3D gravity and geodesic algebras, Czechoslo-
vak J. Phys. 50 (2000) 1201–1208 MR

[18] V V Fock, Dual Teichmüller spaces, unpublished preprint (1997) arXiv

[19] V V Fok, L O Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999)
511–528 MR In Russian; translated in Theor. Math. Phys. 120 (1999), 1245–1259

[20] C Frohman, N Abdiel, Frobenius algebras derived from the Kauffman bracket skein
algebra, J. Knot Theory Ramifications 25 (2016) art. id. 1650016, 1–25 MR
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The unstabilized canonical Heegaard splitting
of a mapping torus

YANQING ZOU

Let S be a closed orientable surface of genus at least 2 . The action of an auto-
morphism f on the curve complex of S is an isometry. Via this isometric action
on the curve complex, a translation length is defined on f . The geometry of the
mapping torus Mf depends on f . As it turns out, the structure of the minimal-genus
Heegaard splitting also depends on f : the canonical Heegaard splitting of Mf ,
constructed from two parallel copies of S , is sometimes stabilized and sometimes
unstabilized. We give an example of an infinite family of automorphisms for which
the canonical Heegaard splitting of the mapping torus is stabilized. Interestingly,
complexity bounds on f provide insight into the stability of the canonical Heegaard
splitting of Mf . Using combinatorial techniques developed on 3–manifolds, we
prove that if the translation length of f is at least 8 , then the canonical Heegaard
splitting of Mf is unstabilized.

57M27; 57M50

1 Introduction

Let S be a closed orientable surface of genus at least 2. Then there is a curve com-
plex C.S/ defined by Harvey [5]. Later, Masur and Minsky [6; 7] assigned a metric d

on it and then proved that under this metric, the curve complex is ı–hyperbolic. Assume
that f is an automorphism of S . Then f is extended to be an isomorphism of C.S/
and hence an isometry on .C.S/; dC.S//. For simplicity, this isometry is still denoted
by f . Then there is a translation length d.f /D minfdC.S/.C; f .C // j C 2 C0.S/g

defined on f . If f is either reducible or periodic, there is an universal upper bound on
the translation length of f n for any n 2N . But if f is a pseudo-Anosov map, d.f n/

goes to infinity as n goes to infinity; see [7, Proposition 7.6]. Conversely, if there is an
universal upper bound on the translation length of f n for any n, then by Thurston’s
result (see Casson and Bleiler [3]), f is either reducible or periodic. Otherwise, f
is a pseudo-Anosov map.

Let M DS�I be an I–bundle of S . It is known that there are two standard Heegaard
splittings for M ; see Scharlemann and Thompson [8]. One, called the trivial Heegaard
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3436 Yanqing Zou

splitting, is S � Œ0; 0:5�[S�f0:5g S � Œ0:5; 1�. The other one is as follows. Assume that
there are a point p 2 S and an arc aD p�I in S �I . Let N.a/ be the closed regular
neighborhood of a in S � I , V1 D S � Œ0:3; 0:6��N.a/ and V2 D S � I �V1 . Then
both V1 and V2 are compression bodies. Hence V1[@CV1

V2 is a Heegaard splitting
of M .

For the 3–manifold M DS�I , its boundary components consist of two homeomorphic
surfaces, S�f0g and S�f1g. Thus, gluing these two components by a homeomorphism
f W S � f1g ! S � f0g produces a closed 3–manifold Mf , called a mapping torus.
Here there is a small change in the definition of the translation length of f in Mf ,
which is d.f /DminfdC.S�f0g/.C �f0g; f .C �f1g//g, where C �f0g is an essential
simple closed curve in S � f0g.

B1

N.˛/

Figure 1: A core disk

It is not hard to see that there is a canonical Heegaard splitting for Mf , as follows. Let
V
f

2
D V2=f and let B1 be the core disk of N.a/, as shown in Figure 1. Then V

f
2

is homeomorphic to S � Œ0:5; 1�[f B1 � Œ0; 0:5�, where f maps a disk in S � f1g to
B1�f0g. Let b�V

f
2

be a properly embedded and unknotted arc connecting S�f0:5g

and S � f1g and B2 be the core disk of N.b/. Then

H2 D V
f

2
�N.b/

is a handlebody. Equivalently,

H2 D S �B2 � Œ0:5; 1�[f B1 � Œ0; 0:5�:

Moreover, H1 , the complement of H2 in Mf , is given by

H1 D S �B1 � Œ0; 0:5�[f B2 � Œ0:5; 1�:

So it is also a handlebody. Since @H1 D†D @H2 , H1[† H2 is a Heegaard splitting
of Mf , called the canonical Heegaard splitting.

A Heegaard splitting is stabilized if there is a pair of essential disks in two compression
bodies such that their boundaries intersect in one point. If a Heegaard splitting is
stabilized, then there is a move called a destabilization on it, which produces a smaller-
genus Heegaard splitting. Thus, to study a Heegaard splitting of a 3–manifold, it is

Algebraic & Geometric Topology, Volume 17 (2017)
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sufficient to study the destabilized one. Furthermore, there are some problems related
to a Heegaard splitting, which all require that the Heegaard splitting is unstabilized. For
example, the rank-versus-genus problem of a 3–manifold, ie when is r.M /D g.M /?
Hence, for a given Heegaard splitting, it is a priority to determine its stability.

If f is periodic, then S � S1 is a finite covering of Mf , so Mf has the geometry
of H 2 �R; if f is reducible, then Mf contains at least one essential torus; if f
is a pseudo-Anosov map, then Thurston [11, Theorem 0.1] proved that Mf is a
hyperbolic 3–manifold. From this point of view, the geometry of Mf is determined
by f . Moreover, the stability of its canonical Heegaard splitting is also influenced
by f . For example, Schultens [9, Theorem 5.7] proved that if f is isotopic to an
identity map, then the canonical Heegaard splitting of Mf is unstabilized; Souto and
Biringer [10, Theorem 1.1; 2, Theorem 1.1] proved that if the pseudo-Anosov map f
is complicated enough, the canonical Heegaard splitting is unstabilized; Bachmann
and Schleimer [1, Corollary 3.2] proved that if the d.f /� 2g.S/, then the canonical
Heegaard splitting is unstabilized and minimal.

With all these supporting results, it seems that the canonical Heegaard splitting of every
mapping torus is unstabilized. However, this is not true in general; see Example 1.1.

Example 1.1 Let ˛ and ˇ be two essential simple closed curves in S , where ˛\ˇ is
a point p . It is known that �˛ ı�ˇ , the concatenation of the two Dehn twists �˛ and �ˇ ,
maps ˛ to ˇ . Let Sˇ D S �ˇ . By Thurston’s classification [3] of automorphisms of
a surface, there is a pseudo-Anosov map g on Sˇ fixing its boundary pointwise such
that the translation length satisfies d.g/jSˇ

� 6. Naturally g induces an automorphism
on S , still denoted by g . Then f D g ı .�˛ ı �ˇ/.

Since ˛ � Œ0; 0:5� intersects ˇ � Œ0:5; 1� in one point p on S � f0:5g, there are two
points p1;p2 2 ˛ � f0:5g disjoint from p such that f .p2 � f1g/ ¤ p1 � f0g. Let
aD p1 � Œ0; 0:5� and b D p2 � Œ0:5; 1�. Then both

H1 D S � f0; 0:5g�N.a/[f N.b/ and H2 D S � f0:5; 1g�N.b/[f N.a/

are handlebodies. Moreover,

˛� Œ0; 0:5��N.a/ and ˇ� Œ0:5; 1��N.b/

are essential disks in H1 and H2 , respectively, where they intersect in one point p .
This means that the Heegaard splitting H1[† H2 is stabilized.

Remark 1.2 In Example 1.1, the translation length of g in Sˇ is at least 6. It is
known that for any n 2 N , there is an automorphism g of Sˇ whose translation
length restricted to Sˇ is larger than n. So there are infinitely many choices of g in
Example 1.1. Hence there are infinitely many choices of f on S .

Algebraic & Geometric Topology, Volume 17 (2017)
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So there is a question:

Question 1.3 What is the least value of d.f / such that the canonical Heegaard
splitting of Mf is unstabilized?

With tools developed in the curve complex, we give a partial answer to this question.

Theorem 1.4 If the translation length satisfies d.f /� 8, then the canonical Heegaard
splitting of Mf is unstabilized.

This paper is organized as follows. We introduce some lemmas in Section 2, and prove
the main theorem in Section 3.

2 Some lemmas

Let C.S/ be the curve complex of S . Masur and Minsky proved:

Lemma 2.1 [6, Proposition 4.6] .C.S/; d/ is connected and the diameter is infinite.

Let F � S be a subsurface. Then F is essential if there is no incompressible simple
closed curve in F bounding a disk in S . If the subsurface F is essential, then Masur
and Minsky [7, Section 2.2] introduced the subsurface projection on F for all of those
vertices in the curve complex, as follows. For any vertex ˛ � C0.S/, by the bigon
criterion [4, Proposition 1.7], there is a representative curve in its isotopy class that
intersects @F essentially, ie there is no bigon capped by them in S . So the subsurface
projection �F .˛/ is defined to be one essential component of @N.˛ [ @F / in F

depending on choice.

An essential simple closed curve ˛ cuts F if �F .˛/¤∅. For any two given disjoint
essential simple closed curves ˛ and ˇ , if they both cut F , then

dC.F /.�F .˛/; �F .ˇ//� 2:

In general, Masur and Minsky proved:

Lemma 2.2 [7, Lemma 2.2] Let F and S be as above, and let G D f˛0; : : : ; ˛kg be
a geodesic in C.S/ such that ˛i cuts F for each 0� i � k . Then dC.F /.˛0; ˛k/� 2k .

It is known that when @F is connected, no component of �F .˛/ cuts out a planar
surface in F . But if @F is not connected, it is possible that some element of �F .˛/

does cut out a planar subsurface of F . In this case, we introduce the definition of a
strongly essential curve in F , which is defined in [12].

Algebraic & Geometric Topology, Volume 17 (2017)
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Definition 2.3 An essential simple arc or simple closed curve c � F is strongly
essential if no component of �F .c/ cuts out a planar subsurface in F .

Let F be a compact orientable surface of genus at least 1 with connected boundary.
For the handlebody F � Œ0; 1�, each essential disk intersects @F nontrivially. Moreover:

Lemma 2.4 For any essential disk D � F � Œ0; 1�, there is an essential disk D1 such
that:

(1) @D1\F � f1g is connected and isotopic to a component of @D\F � f1g;

(2) D1 D .@D1\F � f1g/� Œ0; 1�;

(3) @D1\F � f0g is disjoint from some component of @D\F � f0g.

Proof Without loss of generality, for any two essential disks in H , it is assumed that
their intersection consists of arcs. Since @D intersects F � f1g nontrivially, there is an
arc a� @D\F � f1g such that the number of components of .a� I/\D is minimal
among all arcs in @D\F � f1g.

Let DaD a�I . An essential arc ˛ �F �f0g is called a 0–arc. Similarly, an essential
arc ˇ � .@H � F � f0g/ is called an 1–arc. It is not hard to see that the boundary
curve of D consists of alternating 1–arcs and 0–arcs while the boundary curve of Da

consists of one 1–arc and one 0–arc.

If Da\D D∅, then the proof is finished. So suppose that Da\D ¤∅. Then there
is an outermost disk B in D where B \Da is an arc. Since a�D\F � f1g, all of
those intersecting arcs between Da and D have ends in @Da \F � f0g. Therefore
there is a 0–arc of @B \F � f0g in @D\F � f0g disjoint from @Da\F � f0g, for if
not, then @B contains only one 1–arc and no 0–arc. Doing a boundary compression
on Da along B , Da is changed into two disks Da;1 and Da;2 . Since D intersects Da

essentially, these two disks are both essential. As one of Da;1 and Da;2 intersects
F �f0g in one arc, one of these two disks is an I–bundle of the 1–arc of @B\F �f1g.
Without loss of generality, let Da;1 be this disk. By the boundary compression surgery,
the 1–arc of @B \F � f1g lies in @B and therefore in @D \F � f1g. So Da;1 is an
I–bundle of some component of @D\F � f1g. Moreover,

j@Da;1\ @Dj � j@Da\ @Dj � 2:

But this contradicts the choice of Da . Then ˛�f0g is disjoint from some 0–arc of @B
and hence some 0–arc of @D .

Similarly, there is also an essential disk D2 � F � Œ0; 1� such that:

Algebraic & Geometric Topology, Volume 17 (2017)
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(1) @D2\F � f0g is connected and isotopic to a component of @D\F � f0g;

(2) D2 D .@D2\F � f0g/� Œ0; 1�;

(3) @D2\F � f1g is disjoint from some component of @D\F � f1g.

3 Proof of Theorem 1.4

Let f , d , S , Mf , a, b , †, H1 , H2 , H1 [† H2 , B1 and B2 be as in Section 1.
Then the main theorem is written as follows:

Proposition 3.1 If the translation length satisfies d.f /� 8, then H1[† H2 is unsta-
bilized.

Before proving Proposition 3.1, we need the following lemma:

Lemma 3.2 For any essential simple closed curve C bounding two essential disks in
H1 and H2 simultaneously, both C \ @B1 ¤∅ and C \ @B2 ¤∅.

Proof Since S � I is irreducible and its boundary components are incompressible,
Mf is irreducible and not homeomorphic to S3 .

The construction of H1[† H2 in Section 1 says that

H1 D S �B1 � Œ0; 0:5�[B2 � Œ0:5; 1�

and
H2 D S �B2 � Œ0:5; 1�[B1 � Œ0; 0:5�:

Assume that C bounds an essential disk D (resp. E ) in H1 (resp. H2 ). If we consider
the intersection between E and B1 in H2 , then:

Fact 3.3 C \ @B1 ¤∅:

Proof Suppose the conclusion is false. Then C is either isotopic to @B1 or disjoint
from @B1 . Since @B1 bounds no disk in H1 , C is not isotopic to @B1 . Thus C is
disjoint from @B1 . Moreover, C is strongly essential in †B1

D†� @B1 , for if not,
then C cuts out a pair of pants P in †B1

such that @P consists of two copies of @B1

and C . Since C bounds an essential disk E in H2 , E cuts out a solid torus ST �H2

containing B1 . Similarly, the essential disk D also cuts out a solid torus in H1 . Then
the Heegaard splitting H1[† H2 is a connected sum of a genus-1 Heegaard splitting
and a smaller-genus Heegaard splitting. Because Mf is irreducible, one of these two
Heegaard splittings is of S3 , which implies that the genus-1 Heegaard splitting is not
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of S3 . The reason is that since the longitude l of the solid torus ST intersects @B1 in
one point, l intersects S �ftg in one point for some t 2 .0; 0:5/. So the representative
of l in �1Mf is nontrivial. Then the Heegaard splittings of genus .g.†/�1/ belongs
to S3 . Hence, under this circumstance, Mf is a lens space. Moreover, it contains a
closed embedded genus at least 1 incompressible surface. But it contradicts the fact
that there is no positive genus closed incompressible surface in a lens space.

After removing N.a/ from H2 , H2 is changed into

H
B1

2
D S � Œ0:5; 1��N.b/:

Let
H�1 DMf �H

B1

2
:

Equivalently, H�
1
D S � Œ0; 0:5�[N.b/. Since C is strongly essential in †B1

and
C \ @B1 D∅, C is essential in @H B1

2
. So E is also an essential disk in H

B1

2
. The

I–bundle structure of H
B1

2
implies that C D @E intersects @B2 nontrivially. Since C

(resp. @B2 ) bounds an essential disk D (resp. B2 ) in H�
1

, by the standard outermost
disk argument, there is an outermost disk of D in S � Œ0; 0:5� D H�

1
�B2 . By the

proof of Lemma 2.6 in [12], this outermost disk is a properly embedded essential disk
of S � Œ0; 0:5�. But this contradicts the fact that @.S � Œ0; 0:5�/ is incompressible in
S � Œ0; 0:5�.

Similarly, C \ @B2 ¤∅. This completes the proof of Lemma 3.2.

Then the proof of the Proposition 3.1 is written as follows:

Proof of Proposition 3.1 Since S �I is irreducible and its boundary components are
incompressible, Mf is irreducible and not homeomorphic to S3 .

Suppose that the conclusion is false. Then H1 [† H2 is stabilized. It is known that
each stabilized Heegaard splitting is either reducible or a genus-1 Heegaard splitting
of S3 . Since Mf is not homeomorphic to the S3 , the canonical Heegaard splitting
H1 [† H2 is reducible. Therefore, there is an essential simple closed curve C �†

such that C bounds an essential disk D (resp. E ) in H1 (resp. H2 ).

It is not hard to see that there is an isotopy on D such that @D\@E D∅ (just pushing
@D away from @E ). Without loss of generality, it is assumed that @D intersects
@B1 t @B2 essentially, ie there is no bigon capped by any two of them in †. By
Lemma 3.2, neither @B1 nor @B2 is disjoint from C . Then D\B2¤∅. Furthermore,
we assume that D intersects B2 minimally. So D \ B2 consists of arcs and no
closed circle. By the standard outermost disk argument, there is an outermost disk
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B1 B2

˛

Figure 2: A one-hole bigon

B1 B2

˛

ˇ

Figure 3: The case where @B1 , @B2 and ˇ bound a rectangle

in D bounded by a component ˛ � @D and an arc of D\B2 . Similarly, there is an
outermost disk in E bounded by a component ˇ � @E and an arc of E \B1 .

Let †B1
D†� @B1 and †B2

D†� @B2 . Then:

Claim 3.4 The arc ˛ (resp. ˇ ) is strongly essential in †B2
(resp. †B1

).

Proof We prove this claim for ˛ only; the other case is similar.

Since @B2 is nonseparating in †, †B2
has two boundary curves C1 and C2 . Suppose

˛ is not strongly essential in †B2
. Then ˛ cuts out an annulus in †B2

which contains
one boundary component of †B2

, for example, C2 . So

jC \C2j � jC \C1j � 2:

But it contradicts the fact that C1 and C2 are isotopic in †.

Let H
B2

1
DH1�B2 and H

B1

2
DH2�B1 . Since C intersects both @B1 and @B2 es-

sentially, there is no bigon capped by ˛ and @B1 (resp. ˇ and @B2 ) in †B2
(resp. †B1

).
Furthermore:

Claim 3.5 There is no one-hole bigon capped by ˛ and @B1 in †B2
.

Note 3.6 A one-hole bigon is shown in Figure 2.

Proof of Claim 3.5 Suppose that the conclusion is false. Then there is a one-hole bigon
capped by ˛ and @B1 in †B2

. Since ˇ\˛D∅ and @ˇ� @B1 , either ˇ\@B2D∅ or
ˇ intersects @B2 in at most two points. In the latter case, there is a rectangle bounded
by @B1 , @B2 and ˇ ; see Figure 3. For both of these two cases, it is not hard to see that
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�†B1
.ˇ/ is disjoint from @B1[ @B2 up to isotopy. But since ˇ is in the boundary of

the outermost disk in E and strongly essential in †B1
, �†B1

.ˇ/ bounds an essential
disk in H

B1

2
. So �†B1

.ˇ/\ @B1 ¤∅ up to isotopy. This is a contradiction.

Similarly, there is no one-hole bigon capped by ˇ and @B2 in †B1
.

Although @D intersects @B1 and @B2 minimally, it is possible there is a rectangle
bounded by @B1 , @B2 and ˛ in †B2

; see Figure 4.

B1 B2
ƒ

Figure 4: A rectangle

Let
S1 D S1 � f0:5g D S � f0:5g�B1;

S3 D S3 � f0:5g D S � f0:5g�B2;

S2 D S1\S3:

Then H
B2

1
D S1 � Œ0; 0:5� and H

B1

2
D S3 � Œ0:5; 1�.

Claim 3.7 There is no rectangle bounded by @B1 , @B2 and ˛ in †B2
.

Proof Without loss of generality, we assume that both @˛ and @ˇ are in S2 . The
other cases are similar, so we omit them here.

Suppose the conclusion is false. Then there is a rectangle ƒ bounded by @B1 , @B2

and ˛ in †. Although the proof is similar to the proof of Lemma 3.9 in [13], for
integrity, it is written here. If ˇ\ƒ¤∅, then ƒ\ˇ is one or two arcs connecting
@B1 and @B2 . Otherwise there is at least one point in ˛\ˇ . Since ˇ\@B1 D @ˇ and
˛\@B2D @˛ , there is an isotopy on ˇ such that ˇ is pushed away from ƒ. Moreover,
˛\ˇ D∅. Therefore we may assume that ˇ is disjoint from ƒ.

For simplicity, �†B2
.˛/, disjoint from ˇ , is abbreviated by ˛ . It is not hard to see that

there is a bigon capped by ˛ and @B1 . Then there is an isotopy on ˛ such that there is
no bigon capped by ˛ and @B1 anymore. As a result of this process, by the proof of
Claim 3.5, there is no one-hole bigon bounded by ˛ and @B1 in †B2

. At the end, there
is no bigon or one-hole bigon capped by ˛ and @B1 in †B2

. So ˛ intersects @B1 in
@H

B2

1
essentially (for if not, then there is a bigon capped by them, which corresponds

to a one-hole bigon or a bigon in †B2
). On one hand, since H

B2

1
D S1 � Œ0; 0:5�,
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by Lemma 2.4, there is one essential arc a � ˛ \ S1 � f0:5g such that a � f0g is
disjoint from some component c � ˛\S1�f0g. On the other hand, for the subsurface
S2 � †B2

, since S1 D S2 [B2 , we have ˛ \ S1 D ˛ \ S2 . Then a � S2 . Since
ˇ intersects no bigon bounded by ˛ and @B1 in this isotopy, ˛ \ ˇ D ∅. Hence
a\ˇ D∅.

If the union of ˇ , @B1 and @B2 bound a rectangle in †B1
, then �†B1

.ˇ/, still denoted
by ˇ , misses ˛ . Otherwise ˛\ˇ ¤∅. By the same argument as above, there is also
an isotopy on ˇ such that there is no bigon bounded by ˇ and @B2 anymore. As a
result of this process, by the proof of Claim 3.5, there is no one-hole bigon bounded
by ˇ and @B2 in †B1

. Therefore there is no bigon or one-hole bigon capped by ˇ
and @B2 in @H B1

2
. So ˇ intersects @B2 in @H B1

2
essentially. On one hand, since

H
B1

2
D S3� Œ0:5; 1�, by Lemma 2.4, there is one essential arc b � ˇ\S1�f0:5g such

that b � f1g is disjoint from some component d � ˇ\S3 � f1g. On the other hand,
for the subsurface S2 �†B1

, since S3 D S2[B1 , we have ˇ\S3 D ˇ\S2 . Then
b �S2 . Since ˛ intersects no bigon bounded by ˇ and @B2 in the isotopy, ˛\ˇD∅.
Hence a\ b D∅.

Since ˛\ˇ D∅, c \f .d/D∅. Hence

�S2
.a/\�S2

.b/D∅I

�S1�f0g.c/\f .�S3�f1g.d//D∅I

dC.S3�f1g/.�S3�f1g.b � f1g/; �S3�f1g.d//� 2I

dC.S1�f0g/.�S1�f0g.a� f0g/; �S1�f0g.c//� 2:

For simplicity, �S2
.a/ (resp. �S2

.b/) is abbreviated by a (resp. b ). Since a� f1g �

S3 � f1g intersects b � f1g trivially, the above equations and inequalities are changed
as follows:

dC.S1�f0g/.a� f0g; �S1�f0g.c//� 2I

dC.S1�f0g/.�S1�f0g.c/; f .�S3�f1g.d///� 1I

dC.S3�f1g/.�S3�f1g.d/; b � f1g//� 2I

dC.S3�f1g/.b � f1g; a� f1g/� 1:

It is known that every essential simple closed curve of S1 D S �B1 is essential in S ,
and similarly for S3 D S �B2 . Then by the triangle inequality,
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dC.S�f0g/.a� f0g; f .a� f1g//� dC.S�f0g/.a� f0g; �S1�f0g.c//

C dC.S�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .a� f1g//

� dC.S1�f0g/.a� f0g; �S1�f0g.c//

C dC.S1�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .a� f1g//

� 2C 1C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f .a� f1g//

� 3C dC.S�f1g/.�S3�f1g.d/; b � f1g/

C dC.S�f1g/.b � f1g; a� f1g/

� 3C dC.S3�f1g/.�S3�f1g.d/; b � f1g/

C dC.S3�f1g/.b � f1g; a� f1g/

� 6:

But this contradicts the choice of f .

So there is no rectangle bounded by ˇ , @B1 and @B2 in †B1
. Moreover, there

is no one-hole bigon or bigon capped by �†B1
.ˇ/ and @B2 in †B1

. Otherwise,
there is either a rectangle bounded by ˇ , @B1 and @B2 in †B1

or a one-hole bigon
bounded by ˇ and @B1 , which is prohibited by Claim 3.5. Then each component of
�†B1

.ˇ/ intersects @B2 essentially in @H B1

2
. On one hand, since H

B1

2
DS3� Œ0:5; 1�,

by Lemma 2.4, there is one component b � �†B1
.ˇ/ \ S3 such that b � f1g is

disjoint from one component d of �†B1
.ˇ/ \ S3 � f1g. On the other hand, since

�†B1
.ˇ/\S3 D �†B1

.ˇ/\S2 , we have b � �†B1
.ˇ/\S2 .

Since ˛\ˇD∅, a\b consists of at most two points, where the worst scenario is that
@a is not separated by ˇ in @B1 . Since @a � @B1 and @b � @B2 , �S2

.a/\�S2
.b/

consists of at most two points. For simplicity, �S2
.a/ (resp. �S2

.b/) is abbreviated by
a (resp. b ). Then

dC.S3�f1g/.b � f1g; a� f1g/� 2:

By the same argument as above, d.f /� 7.

Similarly, there is no rectangle bounded by @B1 , @B2 and ˇ in †.

By Claims 3.5 and 3.7, there is neither a one-hole bigon nor a bigon capped by �†B2
.˛/

and @B1 in †B2
. Otherwise there is a rectangle bounded by the union of ˛ , @B1

Algebraic & Geometric Topology, Volume 17 (2017)



3446 Yanqing Zou

and @B2 . This means that �†B2
.˛/ intersects @B1 in @H B2

1
essentially without doing

any further isotopy. Similarly, �†B1
.ˇ/ intersects @B2 in @H B1

2
essentially without

doing any further isotopy too.

Then it is not hard to see that:

Fact 3.8 Each component of �†B2
˛\S2 intersects every component of �†B1

ˇ\S2

in at most two points.

Proof It is sufficient to prove that there are at most two points in �†B2
˛\�†B1

ˇ .
Since ˛ is disjoint from ˇ , the worst scenario is that ˛\@B1 is separated by @ˇ while
ˇ \ @B2 is separated by @˛ . Then there are two points in �†B2

˛ \�†B1
ˇ . So the

conclusion holds.

For simplicity, �†B2
.˛/ (resp. �†B1

.ˇ/) is abbreviated by ˛ (resp. ˇ ). Then:

Claim 3.9 There is an essential simple closed curve  in S such that

dC.S�f0g/.f . � f1g/;  � f0g/� 7:

Proof Since ˛ bounds an essential disk in S1 � Œ0; 0:5�, by Lemma 2.4, there is a
component a of ˛ \ S1 � f0:5g such that a� f0g � S1 � f0g is disjoint from some
component c � ˛\S1�f0g. Similarly, there are two such components b and d for ˇ .

By Fact 3.8, a intersects b in at most two points. Since @a � @B1 and @b � @B2 ,
�S2

.a/ intersects �S2
.b/ in at most two points. Then since g.S/�2, there is a strongly

essential simple closed curve  in S2 disjoint from both ˛ and ˇ and hence from
both �S2

.a/ and �S2
.b/. Let  � Œ0; 5; 1� and  � Œ0; 0:5� be the product I–bundles

in S � Œ0:5; 1� and S � Œ0; 0:5�, respectively. Then

 � f1g\�S3
.b � f1g/D∅ and  � f0g\�S1

.a� f0g/D∅:

For simplicity, �S2
.a/ (resp. �S2

.b/) is abbreviated by a (resp. b ). Therefore
�S3

b � f1g (resp. �S1
a � f0g) is isotopic to b � f1g (resp. a � f0g). Then by the

proof of Claim 3.7,

dC.S�f0g/. � f0g; f . � f1g//� dC.S�f0g/. � f0g; a� f0g/

C dC.S�f0g/.a� f0g; �S1�f0g.c//

C dC.S�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f . � f1g//
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� 1C dC.S1�f0g/.a� f0g; �S1�f0g.c//

C dC.S1�f0g/.�S1�f0g.c/; f .�S3�f1g.d///

C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f . � f1g//

� 1C 2C 1C dC.S�f0g/.f .�S3�f1g.d//; f .b � f1g//

C dC.S�f0g/.f .b � f1g/; f . � f1g//

� 4C dC.S�f1g/.�S3�f1g.d/; b � f1g/

C dC.S�f1g/.b � f1g;  � f1g/

� 4C dC.S3�f1g/.�S3�f1g.d/; b � f1g/

C dC.S3�f1g/.b � f1g;  � f1g/

� 7:

This completes the proof of Claim 3.9.

By Claim 3.9, the translation length of f is at most 7. This contradicts the assumption
on f and completes the proof of Proposition 3.1.

Acknowledgements We would like to thank the referee for helpful comments and
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References
[1] D Bachman, S Schleimer, Surface bundles versus Heegaard splittings, Comm. Anal.

Geom. 13 (2005) 903–928 MR

[2] I Biringer, J Souto, Ranks of mapping tori via the curve complex, J. Reine Angew.
Math. (online publication August 2016) 20 pages

[3] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, Lon-
don Math. Soc. Student Texts 9, Cambridge Univ. Press (1988) MR

[4] B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Ser. 49,
Princeton Univ. Press (2012) MR

[5] W J Harvey, Boundary structure of the modular group, from “Riemann surfaces and
related topics: Proceedings of the 1978 Stony Brook Conference” (I Kra, B Maskit,
editors), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245–251 MR

[6] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent.
Math. 138 (1999) 103–149 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.4310/CAG.2005.v13.n5.a3
http://msp.org/idx/mr/2216145
http://dx.doi.org/10.1515/crelle-2016-0031
http://dx.doi.org/10.1017/CBO9780511623912
http://msp.org/idx/mr/964685
http://msp.org/idx/mr/2850125
http://msp.org/idx/mr/624817
http://dx.doi.org/10.1007/s002220050343
http://msp.org/idx/mr/1714338


3448 Yanqing Zou

[7] H A Masur, Y N Minsky, Geometry of the complex of curves, II: Hierarchical structure,
Geom. Funct. Anal. 10 (2000) 902–974 MR

[8] M Scharlemann, A Thompson, Heegaard splittings of .surface/ � I are standard,
Math. Ann. 295 (1993) 549–564 MR

[9] J Schultens, The classification of Heegaard splittings for (compact orientable
surface) �S1 , Proc. London Math. Soc. 67 (1993) 425–448 MR

[10] J Souto, The rank of the fundamental group of certain hyperbolic 3–manifolds fibering
over the circle, from “The Zieschang Gedenkschrift” (M Boileau, M Scharlemann, R
Weidmann, editors), Geom. Topol. Monogr. 14, Geom. Topol. Publ., Coventry (2008)
505–518 MR

[11] W P Thurston, Hyperbolic structures on 3–manifolds, II: Surface groups and 3–
manifolds which fiber over the circle, preprint (1998) arXiv

[12] Y Zou, K Du, Q Guo, R Qiu, Unstabilized self-amalgamation of a Heegaard splitting,
Topology Appl. 160 (2013) 406–411 MR

[13] Y Zou, X Liu, Bilateral self-amalgamation of a Heegaard splitting and Hempel dis-
tance, Sci. China Math. 58 (2015) 1499–1510 MR

Department of Mathematics, Dalian Minzu University
Dalian, China

yanqing@dlnu.edu.cn

Received: 23 April 2016 Revised: 14 May 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/PL00001643
http://msp.org/idx/mr/1791145
http://dx.doi.org/10.1007/BF01444902
http://msp.org/idx/mr/1204837
http://dx.doi.org/10.1112/plms/s3-67.2.425
http://dx.doi.org/10.1112/plms/s3-67.2.425
http://msp.org/idx/mr/1226608
http://dx.doi.org/10.2140/gtm.2008.14.505
http://dx.doi.org/10.2140/gtm.2008.14.505
http://msp.org/idx/mr/2484715
http://msp.org/idx/arx/math/9801045
http://dx.doi.org/10.1016/j.topol.2012.11.020
http://msp.org/idx/mr/3003339
http://dx.doi.org/10.1007/s11425-014-4849-4
http://dx.doi.org/10.1007/s11425-014-4849-4
http://msp.org/idx/mr/3353986
mailto:yanqing@dlnu.edu.cn
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 17 (2017) 3449–3460

Nine generators of the skein space of the 3–torus

ALESSIO CARREGA

We show that the skein vector space of the 3–torus is finitely generated. We show
that it is generated by nine elements: the empty set, some simple closed curves
representing the nonzero elements of the first homology group with coefficients in Z2 ,
and a link consisting of two parallel copies of one of the previous nonempty knots.

57MXX

1 Introduction

An alternative approach to representation theory for quantum invariants is provided by
skein theory. The word “skein” and the notion were introduced by Conway in 1970 for
his model of the Alexander polynomial. This idea became quite useful after the work of
Kauffman [10] which redefined the Jones polynomial in a very simple and combinatorial
way passing through the Kauffman bracket. These combinatorial techniques allow us to
reproduce all quantum invariants arising from the representations of Uq.sl2/ without
any reference to representation theory. This also leads to many interesting and quite
easy computations. This skein method was used by Blanchet, Habegger, Masbaum and
Vogel [1], Kauffman and Lins [11] and Lickorish [12; 13; 15; 14] to reinterpret and
extend some of the methods of representation theory.

The first notion in skein theory is that of a “skein vector space” (or skein module). These
are vector spaces (R–modules) associated to oriented 3–manifolds, where the base field
is equipped with a fixed invertible element A. These were introduced independently
in 1988 by Turaev [24] and in 1991 by Przytycki [20]. We can think of them as an
attempt to get an algebraic topology for knots: they can be seen as homology spaces
obtained using isotopy classes instead of homotopy or homology classes. In fact, they
are defined taking a vector space generated by subobjects (framed links) and then
quotienting them by some relations. In this framework, the following questions arise
naturally and are still open in general:

Question 1.1 � Are skein spaces (modules) computable?

� How powerful are they to distinguish 3–manifolds and links?
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� Do the vector spaces (modules) reflect the topology/geometry of the 3–manifolds
(eg surfaces, geometric decomposition)?

� Does this theory have a functorial aspect? Can it be extended to a functor
from a category of cobordisms to the category of vector spaces (modules) and
linear maps?

Skein spaces (modules) can also be seen as deformations of the ring of the SL2.C/–
character variety of the 3–manifold; see Bullock [3]. Moreover, they are useful to
generalize the Kauffman bracket, hence the Jones polynomial, to manifolds other
than S3 . Thanks to Hoste and Przytycki [9], Przytycki [22] and (with different
techniques) Costantino [4], now we can define the Kauffman bracket also in the
connected sum #g.S

1 �S2/ of g � 0 copies of S1 �S2 .

Currently, there are only few 3–manifolds whose skein space (module) is known; see for
instance Bullock [2], Hoste and Przytycki [7; 8; 9], Marché [16], Mroczkowski [18; 17],
Mroczkowski and Dabkowski [19] and Przytycki [21; 22; 23]. Another natural ques-
tion is:

Question 1.2 Is the skein vector space of a closed oriented 3–manifold always finitely
generated?

In this paper, we take as base field the set Q.A/ of all rational functions with rational
coefficients and abstract variable A, and we note that every result in this work holds
also for the field C of complex numbers with A 2 C a nonzero number such that
A2n ¤ 1 for every n> 0.

Theorem 1.3 The skein space K.T 3/ of the 3–torus T 3 D S1 �S1 �S1 is finitely
generated.

A set of nine generators is given by the empty set ¿, some simple closed curves
representing the nonzero elements of the first homology group H1.T

3IZ2/Š .Z2/
3

with coefficients in Z2 , and a skein element ˛ that is equal to the link consisting of
two parallel copies of any previous nonempty knots.

Our main tool is the algebraic work of Frohman and Gelca [5]. The skein space
(module) of a (thickened) surface has a natural algebra structure obtained by overlap of
framed links. In their work, Frohman and Gelca gave a nice formula that describes the
product in the skein space (algebra) K.T 2/ of the 2–torus T 2 D S1�S1 . A standard
embedding of T 2 in T 3 makes this product commutative; hence we can get further
relations from the formula of Frohman and Gelca.

A natural question is the following:

Question 1.4 Is 9 the dimension of the skein vector space K.T 3/ of the 3–torus?
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After this paper was submitted, P Gilmer [6] answered this question positively.

Acknowledgements The author is warmly grateful to Bruno Martelli for his constant
support and encouragement.

2 The result

2.1 Definition of skein module

Let M be an oriented 3–manifold, R a commutative ring with unit and A 2 R an
invertible element of R. Let V be the abstract free R–module generated by all framed
links in M (considered up to isotopies) including the empty set ¿.

Definition 2.1 The .R;A/–Kauffman bracket skein module of M , or the R–skein
module, or simply the KBSM, sometimes indicated with KM.M IR;A/, is the quotient
of V by all the possible skein relations:

DA CA�1 ;

Lt D .�A2
�A�2/D;

D .�A2
�A�2/¿:

These are local relations where the framed links in an equation differ just in the pictured
3–ball that is equipped with a positive trivialization. An element of KM.M IR;A/ is
called a skein or a skein element. If M is the oriented I–bundle over a surface S (that
is, M D S � Œ�1; 1� if S is oriented), we simply write KM.S IR;A/ and call it the
skein module of S .

Let Q.A/ be field of all rational function with rational coefficients and abstract vari-
able A. We set

K.M / WD KM.M IQ.A/;A/;

and we call it the skein vector space, or simply the skein space, of M .

Remark 2.2 It is easy to verify that if we modify the framing of a component of a
framed link, the skein changes by the multiplication of an integer power of �A3 :

D�A3 ; D�A�3 :

2.2 The skein algebra of the 2–torus

Definition 2.3 Let S be a surface; the skein module KM.S IR;A/ has a natural
structure of an R–algebra that is given by the linear extension of the multiplication
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defined on framed links. Given two framed links L1;L2 � S � Œ�1; 1�, the product
L1 �L2�S� Œ�1; 1� is obtained by putting L1 above L2 , so L1 �L2\S� Œ0; 1�DL1

and L1 �L2\S � Œ�1; 0�DL2 .

Consider the 2–torus T 2 as the quotient of R2 modulo the standard lattice of trans-
lations generated by .1; 0/ and .0; 1/; hence for any nonzero pair .p; q/ of integers,
we have the notion of .p; q/–curve: the simple closed curve in the 2–torus that is the
quotient of the line passing trough .0; 0/ and .p; q/.

Definition 2.4 Let p and q be two coprime integers; hence .p; q/ ¤ .0; 0/. We
denote by .p; q/T the .p; q/–curve in the 2–torus T 2 equipped with the blackboard
framing. Given a framed knot  in an oriented 3–manifold M and an integer n� 0,
we denote by Tn. / the skein element defined by induction as follows:

T0. / WD 2 �¿;
T1. / WD ;

TnC1. / WD  �Tn. /�Tn�1. /;

where  �Tn. / is the skein element obtained adding a copy of  to all the framed
links that compose the skein Tn. /. For p; q 2Z such that .p; q/¤ .0; 0/, we denote
by .p; q/T the skein element

.p; q/T WD TMCD.p;q/

��
p

MCD.p; q/
;

q

MCD.p; q/

�
T

�
;

where MCD.p; q/ is the maximum common divisor of p and q . Finally, we set

.0; 0/T WD 2 �¿:

It is easy to show that the set of all the skein elements .p; q/T with p; q 2Z generates
KM.T 2IR;A/ as R–module.

This is not the standard way to color framed links in a skein module. The colorings
JWn. /, n� 0, with the Jones–Wenzl projectors are defined in the same way as Tn. /,
but at the 0–level we have JW0. /D¿.

Theorem 2.5 (Frohman and Gelca [5]) For any p; q; r; s 2Z, the following holds in
the skein module KM.T 2IR;A/ of the 2–torus T 2 :

.p; q/T � .r; s/T DA

ˇ̌
p q
r s

ˇ̌
.pC r; qC s/T CA

�

ˇ̌
p q
r s

ˇ̌
.p� r; q� s/T ;

where
ˇ̌
p q
r s

ˇ̌
is the determinant ps� qr .
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2.3 The abelianization

Definition 2.6 Let B be a R–algebra for a commutative ring with unity R. We denote
by C.B/ the R–module defined as the quotient

C.B/ WD
B

ŒB;B�
;

where ŒB;B� is the submodule of B generated by all the elements of the form ab�ba

for a; b 2 B . We call C.B/ the abelianization of B .

Remark 2.7 Usually in noncommutative algebra, the abelianization is the R–algebra
defined as the quotient of B modulo the subalgebra (submodule and ideal) generated
by all the elements of the form ab � ba. In our definition, the denominator is just a
submodule and we only get an R–module. We use the word “abelianization” anyway.

Now we work with C.K.T 2//, and we still use .p; q/T and .p; q/T �.r; s/T to denote
the class of .p; q/T 2K.T 2/ and .p; q/T � .r; s/T 2K.T 2/ in C.K.T 2//.

Lemma 2.8 Let .p; q/ be a pair of integers different from .0; 0/. Then in the abelian-
ization C.K.T 2// of the skein algebra K.T 2/ of the 2–torus T 2 , we have

.p; q/T D

8̂̂̂<̂
ˆ̂:
.1; 0/T if p 2 2ZC 1 and q 2 2Z;

.0; 1/T if p 2 2Z and q 2 2ZC 1;

.1; 1/T if p; q 2 2ZC 1;

.2; 0/T if p; q 2 2Z:

Hence C.K.T 2// is generated as a Q.A/–vector space by the empty set ¿, the framed
knots .1; 0/T , .0; 1/T , .1; 1/T , and a framed link consisting of two parallel copies
of .1; 0/T .

Proof By Theorem 2.5, for every p; q 2 Z, we have

A�q.pC 2; q/T CAq.p; q/T D .pC 1; q/T � .1; 0/T

D .1; 0/T � .pC 1; q/T

DAq.pC 2; q/T CA�q.�p;�q/T :

Since .p; q/T D .�p;�q/T , we have .Aq �A�q/.p; q/T D .A
q �A�q/.pC2; q/T .

Hence if q ¤ 0, we get .p; q/T D .pC 2; q/T (here we use the fact that the base ring
is a field and that A2n ¤ 1 for every n> 0). Thus

.p; q/T D

�
.0; q/T if p 2 2Z and q ¤ 0;

.1; q/T if p 2 2ZC 1 and q ¤ 0:
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Analogously, by using .0; 1/T instead of .1; 0/T for p ¤ 0, we get

.p; q/T D

�
.p; 0/T if q 2 2Z and q ¤ 0;

.p; 1/T if q 2 2ZC 1 and q ¤ 0:

Therefore, if p; q 2 2ZC 1, we have .p; q/T D .1; 1/T . If p ¤ 0, we get

.p; 0/T D .p; 2/T D

�
.0; 2/T if p 2 2Z;

.1; 2/T D .1; 0/T if p 2 2ZC 1:

In the same way for q ¤ 0, we get

.0; q/T D .2; q/T D

�
.2; 0/T if p 2 2Z;

.2; 1/T D .0; 1/T if p 2 2ZC 1:

In particular, we have

.2; 0/T D .2; 2/T D .2;�2/T D .0; 2/T D .p; q/T for .p; q/¤ .0; 0/; p; q22Z:

2.4 The .p; q; r/–type curves

As for the 2–torus T 2 , we look at the 3–torus T 3 as the quotient of R3 modulo the
standard lattice of translations generated by .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/.

Definition 2.9 Let .p; q; r/ be a triple of coprime integers; that means we have
MCD.p; q; r/ D 1, where MCD.p; q; r/ is the maximum common divisor of p , q

and r , and in particular, we have .p; q; r/ ¤ .0; 0; 0/. The .p; q; r/–curve is the
simple closed curve in the 3–torus that is the quotient (under the standard lattice) of the
line passing through .0; 0; 0/ and .p; q; r/. We denote by Œp; q; r � the .p; q; r/–curve
equipped with the framing that is the collar of the curve in the quotient of any plane con-
taining .0; 0; 0/ and .p; q; r/. The framing does not depend on the choice of the plane.

Definition 2.10 An embedding eW T 2! T 3 of the 2–torus in the 3–torus is standard
if it is the quotient (under the standard lattice) of a plane in R3 that is the image of
the plane generated by .1; 0; 0/ and .0; 1; 0/ under a linear map defined by a matrix of
SL3.Z/ (a 3� 3 matrix with integer entries and determinant 1).

Remark 2.11 There are infinitely many standard embeddings, even up to isotopies.
A standard embedding of T 2 in T 3 is the quotient under the standard lattice of the
plane generated by two columns of a matrix of SL3.Z/.

Lemma 2.12 Let .p; q; r/ be a triple of coprime integers. Then the skein element
Œp; q; r �2K.T 3/ is equal to Œx;y; z�, where x;y; z 2 f0; 1g and they have respectively
the same parities as p , q and r .
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Proof Every embedding eW T 2! T 3 of the 2–torus defines a linear map between
the skein spaces

e�W K.T
2/!K.T 3/:

The map e� factorizes with the quotient map K.T 2/! C.K.T 2//. In fact, we can
slide the framed links in e.T 2 � Œ�1; 1�/ from above to below, getting e�.L1 �L2/D

e�.L2 � L1/ for every two framed links, L1 and L2 , in T 2 � Œ�1; 1�. As said in
Remark 2.11, a standard embedding eW T 2 ! T 3 corresponds to the plane gener-
ated by two columns .p1; q1; r1/; .p2; q2; r2/ 2 Z3 of a matrix in SL3.Z/. In this
correspondence, e�..a; b/T /D Œap1C bp2; aq1C bq2; ar1C br2� for every coprime
a; b 2 Z. Therefore, by Lemma 2.8, we get

Œa0p1C b0p2; a
0q1C b0q2; a

0r1C b0r2�D e�..a
0; b0/T /

D e�..a; b/T /

D Œap1C bp2; aq1C bq2; ar1C br2�

for every two pairs .a; b/; .a0; b0/2Z2 of coprime integers such that aCa0; bCb0 22Z.

Let .p; q; r/ be a triple of coprime integers. By permuting p , q and r , we get either
.p; q; r/ D .1; 0; 0/ or p; q ¤ 0. Consider the case where p; q ¤ 0. Let d be the
maximum common divisor of p and q , and let �;� 2Z such that �pC�q D d . The
following matrix belongs in SL3.Z/:

M1 WD

0@p=d �� 0
q=d � 0

0 0 1

1A :
Let v .1/

1
and v .1/

3
be the first and the third columns of M1 . We have .p; q; r/ D

dv.1/

1
C rv.1/

3
. Hence

Œp; q; r �D

8̂<̂
:
�p

d
; q

d
; 0
�

if d 2 2ZC 1 and r 2 2Z;

Œ0; 0; 1� if d 2 2Z and r 2 2ZC 1;�p
d
; q

d
; 1
�

if d; r 2 2ZC 1:

The integers p; q; r cannot be all even because they are coprime; hence d and r cannot
be both even. Therefore, we just need to study the cases where r 2 f0; 1g.

If r D 0, we consider the trivial embedding of T 2 in T 3 . The corresponding matrix
of SL3.Z/ is the identity. We have

�p
d
; q

d
; 0
�
D

p
d
.1; 0; 0/C q

d
.0; 1; 0/; hence

Œp; q; 0�D
�p

d
; q

d
; 0
�
D

8̂<̂
:
Œ1; 0; 0� if p

d
2 2ZC 1 and q

d
2 2Z;

Œ0; 1; 0� if p
d
2 2Z and q

d
2 2ZC 1;

Œ1; 1; 0� if p
d
; q

d
2 2ZC 1:
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If r D 1, we take the matrix of SL3.Z/

M2 WD

0@0 0 1

q �1 0

1 0 0

1A :
Let v .2/

1
and v .2/

3
be the first and the third columns of M2 . We have .p; q; 1/ D

pv .2/

3
C v .2/

1
; hence

Œp; q; 1�D

�
Œ1; q; 1� if p 2 2ZC 1;

Œ0; q; 1� if p 2 2Z:

By permuting p , q and r , we reduce the case .p; q; r/D .0; q; 1/ to the case p; q¤ 0,
r D 0 that we studied before.

It remains to consider the case p D r D 1. We consider the matrix of SL3.Z/

M3 WD

0@1 0 0

0 1 0

1 0 1

1A :
Let v .3/

1
and v .3/

2
be the first and the second columns of M3 . We have .1; q; 1/ D

v .3/

1
C qv .3/

2
. Hence

Œ1; q; 1�D

�
Œ1; 0; 1� if q 2 2Z;

Œ1; 1; 1� if q 2 2ZC 1:

Lemma 2.13 The intersection of any two different standardly embedded 2–tori in T 3

contains a .p; q; r/–type curve.

Proof Let T1 and T2 be two standardly embedded tori in the 3–torus, and let �1

and �2 be two planes in R3 whose projections under the standard lattice are respec-
tively T1 and T2 . The intersection T1\T2 contains the projection of �1\�2 . We
just need to prove that in �1 \ �2 , there is a point .p; q; r/ ¤ .0; 0; 0/ with integer
coordinates p; q; r 2Z. Every plane defining a standardly embedded torus is generated
by two vectors with integer coordinates, and hence it is described by an equation
ax C by C cz D 0 with integer coefficients a; b; c 2 Z. Applying a linear map
described by a matrix of SL3.Z/, we can suppose that �1 is the trivial plane fz D 0g.
Let a; b; c 2 Z such that �2 D faxC byC cz D 0g. The vector .�b; a; 0/ is nonzero
and lies on �1\�2 .
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C
�

T

Figure 1: Diagrams of framed links in T 3 . The plane is a part of the stan-
dardly embedded torus T � T 3 where the links project. If we look at the
framed links in T 3 as framed tangles in T � Œ�1; 1� , the two strands that get
out vertically from the plane end in the boundary points .x; 1/ and .x;�1/

for some x 2 T .

2.5 Diagrams

Framed links in T 3 can be represented by diagrams in the 2–torus T 2 . These diagrams
are like the usual link diagrams but with further oriented signs on the edges; see
Figure 1 (left). Fix a standardly embedded 2–torus T in T 3 . After a cut along
a parallel copy T 0 of T , the 3–torus becomes diffeomorphic to T � Œ�1; 1�, and
framed links in T 3 correspond to framed tangles of T � Œ�1; 1�. These diagrams are
generic projections on T of the framed tangles in T � Œ�1; 1� via the natural projection
.x; t/ 7! x . The further signs on the diagrams represent the intersection of the framed
links with the boundary T �f�1; 1g. In other words, they represent the passages of the
links along the .p; q; r/–type curve that, in the Euclidean metric, is orthogonal to T ;
see Figure 1 (right). If T is the trivial torus S1�S1�fxg, the further signs represent the
passages through the third S1–factor. We use the proper notion of blackboard framing.

2.6 Generators for the 3–torus

The following is the main theorem proved in this paper. We use all the previous lemmas
to get a set of nine generators of K.T 3/.

Theorem 2.14 The skein space K.T 3/ of the 3–torus T 3 is generated by the empty
set ¿, Œ1; 0; 0�, Œ0; 1; 0�, Œ0; 0; 1�, Œ1; 1; 0�, Œ1; 0; 1�, Œ0; 1; 1�, Œ1; 1; 1� and a skein ˛ that
is equal to the framed link consisting of two parallel copies of any .p; q; r/–type curve.

Proof Let T be the trivial embedded 2–torus: the one containing the .p; q; r/–type
curves with r D 0. Use T to project the framed links and make diagrams. By using
the first skein relation on these diagrams, we can see that K.T 3/ is generated by
the framed links described by diagrams on T without crossings. These diagrams are
unions of simple closed curves on T equipped with some signs as the one with C
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and � in Figure 1. These simple closed curves are either parallel to a .p; q/–curve
or homotopically trivial. The framed links described by these diagrams lie in the
standardly embedded tori that are the projections (under the standard lattice) of the
planes generated by .0; 0; 1/ and .p; q; 0/ for some p and q . Therefore, K.T 3/ is
generated by the images of K.T 2/ under the linear maps induced by the standard
embeddings of T 2 in T 3 .

As said in the proof of Lemma 2.12, the linear map e� induced by any standard
embedding eW T 2 ! T 3 factorizes with the quotient map K.T 2/ ! C.K.T 2//.
Lemma 2.8 applied to the standard embedding e shows that the image e�.K.T

2// is
generated by ¿, three .p; q; r/–type curves lying on e.T 2/, and the skein ˛e that is
equal to the framed link consisting of two parallel copies of any .p; q; r/–type curve
lying on e.T 2/.

Let e1; e2W T
2! T 3 be two standard embeddings. By Lemma 2.13, e1.T

2/\e2.T
2/

contains a .p; q; r/–type curve  ; hence ˛e1
and ˛e2

coincide with the framed link
that is two parallel copies of  . Therefore, the skein element ˛e does not depend on
the embedding e .

We conclude by using Lemma 2.12, which says that the skein of any .p; q; r/–type
curve is equal to the one of a standard representative of a nonzero element of the first
homology group H1.T

3IZ2/ with coefficient in Z2 , namely a .p; q; r/–type curve
with p; q; r 2 f0; 1g.

Remark 2.15 Theorem 2.14, Lemma 2.8 and Lemma 2.12 work for every base pair
.R;A/ such that A2n� 1 is an invertible element of R for any n > 0. In particular,
they work for .C;A/, where A2n ¤ 1 for any n> 0. Unfortunately, we do not know
what happens with the base pair .C;˙1/, which is the one used for the connection
with the SL2.C/–character variety [3]. In fact, in Lemma 2.8, we would get just trivial
equalities if AD˙1.

2.7 Linear independence

Here we talk about the linear independence of our generators of K.T 2/. The following
proposition shows a direct sum decomposition of K.T 3/.

Proposition 2.16 The skein space K.T 3/ is the direct sum of eight subspaces,

K.T 3/D V0˚V1˚ � � �˚V7;

such that

(1) V0 is generated by the empty set ¿ and the skein ˛ (see Theorem 2.14);
(2) every .p; q; r/–type curve generates a Vj with j > 0, and every Vj with j > 0

is generated by one such curve.
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Proof The skein relations relate framed links in the same Z2–homology class. Hence
for every oriented 3–manifold M , we have a direct sum decomposition

KM.M IR;A/D
M

h2H1.M IZ2/

Vh;

where Vh is generated by the framed links whose Z2–homology class is h. The state-
ment follows by this observation and the fact that if Œp; q; r � and Œp0; q0; r 0� represent
the same Z2–homology class, then Œp; q; r �D Œp0; q0; r 0� 2K.T 3/.

Remark 2.17 Given a triple of integers .x;y; z/¤ .0; 0; 0/ such that x;y; z 2 f0; 1g,
we can easily find an orientation-preserving diffeomorphism of the 3–torus T 3 sending
Œx;y; z� to Œ1; 0; 0�. Hence if the skein of one such curve Œx;y; z� is null, then also all
the other skein elements of such curves are null. Therefore, by Proposition 2.16, the
possible dimensions of the skein space K.T 3/ are 0, 1, 2, 7, 8 and 9.

After the submission of this paper, P Gilmer [6] showed that the skein of the .1; 0; 0/–
curve is not null and that the empty set and the skein ˛ are linear independent. This
answers Question 1.4 in the affirmative by proving that the set of nine generators is
actually a basis for the skein space.
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Quasistabilization and basepoint moving maps
in link Floer homology

IAN ZEMKE

We analyze the effect of adding, removing, and moving basepoints on link Floer
homology. We prove that adding or removing basepoints via a procedure called
quasistabilization is a natural operation on a certain version of link Floer homology,
which we call CFL1U V . We consider the effect on the full link Floer complex of
moving basepoints, and develop a simple calculus for moving basepoints on the
link Floer complexes. We apply it to compute the effect of several diffeomorphisms
corresponding to moving basepoints. Using these techniques we prove a conjecture
of Sarkar about the map on the full link Floer complex induced by a finger move
along a link component.

57M25, 57M27, 57R58

1 Introduction

Introduced by Ozsváth and Szabó, Heegaard Floer homology associates algebraic invari-
ants to closed three-manifolds. To a three-manifold Y with embedded nullhomologous
knot K , there is a refinement of Heegaard Floer homology called knot Floer homology,
introduced by Ozsváth and Szabó [8] and independently by Rasmussen [11]. A similar
invariant was defined by Ozsváth and Szabó for links [10].

To a nullhomologous knot K � Y with two basepoints z and w and a relative
Spinc structure t 2 Spinc.Y;K/, Ozsváth and Szabó [8] define a Z ˚ Z–filtered
chain complex CFK1.Y;K; w; z; t/. The Z˚ Z–filtered chain homotopy type of
CFK1.Y;K; w; z; t/ is an invariant of the data .Y;K; w; z; t/.

One of the nuances of Heegaard Floer homology is the dependence on basepoints. In
the case of closed three-manifolds, if w� Y is a collection of basepoints, w 2w and
 is a curve in �1.Y; w/, then one can consider the diffeomorphism � resulting from
a finger move along  . According to Juhász and Thurston [4], the based mapping class
group MCG.Y; w/ acts on CFı.Y;w; s/ and hence there is an induced map .� /� on
the closed three-manifold invariant CFı.Y;w; s/, which is a Z2ŒU �–equivariant chain
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homotopy type. In [14], the author computes the equivariant chain homotopy type of
.� /� to be

.� /� ' idCŒ � ıˆw;

where Œ � is the ƒ�.H1.Y IZ/=Tors/ action and ˆw is an analogue of a map appearing
also on link Floer homology, which we describe below.

In this paper, we consider the analogous question about basepoint dependence for
link Floer homology. In link Floer homology, the basepoints are constrained to be
on the link component, so the analogous operation is to consider the map on link
Floer homology induced by a finger move & around a link component, in the positive
direction according to the link’s orientation. Using grid diagrams, Sarkar [13] computes
the map associated to the diffeomorphism & on a certain version of link Floer homology
(the associated graded complex) for links in S3 . For links in arbitrary three-manifolds,
and for the induced map on the full link Floer complex, he conjectures the formula.
We prove his formula in full generality (Theorem B), but before we state that theorem
we will provide a brief description of the complexes and maps which appear.

We will work with a slightly different version of CFL1 than the one which most often
appears in the literature. For a multibased link LD .L;w; z/ inside of Y and a Spinc

structure s 2 Spinc.Y /, we construct a chain complex

CFL1U V .Y;L; s/;

which is a module over the polynomial ring Z2ŒUw;Vz �, generated by variables Uw
with w 2 w and Vz with z 2 z . The module CFL1U V .Y;L; s/ has generators of the
form

x �U I
wV J

z D x �U i1
w1
� � �U in

wn
V j1

z1
� � �V jn

zn

for multi-indices I D .i1; : : : ; in/ and J D .j1; : : : ; jn/, though we identify two vari-
ables Vz and Vz0 if z and z0 are on the same link component. Thus, CFL1U V .Y;L; s/
has a filtration by Zjwj˚ZjLj given by filtering over powers of the variables, where
jLj denotes the set of components of L.

As with the free stabilization maps from [14], to define functorial maps corresponding
to adding or removing basepoints in link Floer homology, we must work with colored
complexes. A coloring .�;P/ of a link with basepoints, .L;w; z/, is a set P indexing
a collection of formal variables, together with a map � W w[ z!P which maps all
z–basepoints on a component of L to the same color. Given a coloring .�;P/ of a
link LD .L;w; z/, we create a Z2ŒUP�–chain complex

CFL1U V .Y;L; �;P; s/:

The powers of the UP variables yield a filtration by ZP , which we call the P–filtration.
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In the context of link Floer homology, analogously to adding or removing a free
basepoint in a closed 3–manifold, one can add or remove a pair of adjacent basepoints,
w and z , on a link component. Some authors refer to this operation as a “special stabi-
lization”. Manolescu and Ozsváth [6] consider certain questions about the operation,
calling it “quasistabilization”, which is the phrase we will use. A full description and
proof of naturality of the operation has not been completed, so we do that in this paper:

Theorem A Suppose z and w are new basepoints on a link LD .L;w; z/, ordered
so that w comes after z , which aren’t separated by any basepoints in w or z . If
� W w[ z!P is a coloring which is extended by � 0W w[ z[fw; zg !P, then there
are P–filtered Z2ŒUP�–chain maps

SCw;z W CFL1U V .Y;L;w; z; �;P; s/! CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/

and

S�w;z W CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/! CFL1U V .Y;L;w; z; �;P; s/;

which are well-defined invariants, up to P–filtered, Z2ŒUP�–equivariant chain homo-
topy. If z comes after w , there are maps SCz;w and S�z;w defined analogously.

Following Sarkar [13], we consider endomorphisms ˆw and ‰z of CFL1U V .Y;L; s/
(ˆi;j and ‰i;j in his notation). We can think of the maps ˆw and ‰z as formal
derivatives of the differential @ with respect to the variables Uw and Vz , respectively.
The maps ˆw and ‰z are invariants of CFL1U V .Y;L; �;P; s/ up to P–filtered chain
homotopy.

The maps ‰z can be thought of as analogues of the relative homology maps A� defined
in [14] for the closed three-manifold invariants, since they play the role in the basepoint
moving maps for link Floer homology that the relative homology maps introduced
in [14] played in the basepoint moving maps for the closed three-manifolds invariants.
Indeed the objects CFL1U V .Y;L; s/ and the maps ‰z and S˙w;z fit into the framework
of a “graph TQFT” for surfaces embedded in four-manifolds with some extra decoration,
similar to the TQFT for bHFL constructed using sutured Floer homology by Juhász [2]
and considered further by Juhász and Marengon [3] for concordances. Such a TQFT
construction for CFL1U V will appear in a future paper.

We finally state Sarkar’s conjecture, cast into the framework of CFL1U V .Y;L; �;P; s/:

Theorem B Suppose that L D .L;w; z/ is a multibased link in an arbitrary 3–
manifold Y and K is a component of L. Suppose that the basepoints on K are
z1; w1; : : : ; zn; wn . Letting & denote the diffeomorphism resulting from a finger move
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around a link component K , the induced map &� on CFL1U V .Y;L; �;P; s/ has the
P–filtered equivariant chain homotopy type

&� ' idCˆK‰K ;

where

ˆK D

nX
jD1

ˆwj and ‰K D

nX
jD1

‰zj :

Sarkar’s conjecture for the effect on the filtered link Floer complex, which we will denote
by CFL1.Y;L; t/ for t a relative Spinc.Y;L/ structure, follows by setting .�;P/ to
be the trivial coloring (ie PDw[ jLj and � W .w[ z/! .w[ jLj/ the natural map)
since the complex CFL1.Y;L; t/ becomes a Z2–subcomplex of CFL1U V .Y;L; �;P; s/
which is preserved by &� , where s is the underlying Spinc structure associated to the
relative Spinc structure t.

There are several other formulations of this conjecture for different versions of link Floer
homology. For example, the conjectured formula for &� on CFK1.S3;K/ for K�S3

is useful for computations in the involutive Heegaard Floer homology theory developed
by Hendricks and Manolescu (see [1, Section 6]). In their notation, for a choice of
diagrams, the complex CFK1.S3;K/ for a knot K � S3 is generated by elements of
the form Œx; i; j � where i and j satisfy A.x/D i � j , and A denotes the Alexander
grading. In their notation, the U map takes the form U � Œx; i; j �D Œx; i � 1; j � 1�.
Again, the complex CFK1.S3;K/ is a Z2–subcomplex

CFK1.S3;K/� CFL1U V .S
3;K; w; z; s0/

which is preserved by &� . Recasting Theorem B into this notation and recalling that
we are using coefficients in Z2 , we arrive at the following:

Corollary C For a knot K�S3 , the involution &� on CFK1.S3;K/ takes the form

&� ' 1CU�1

� X
i;j�0
i odd

@ij

�
ı

� X
i;j�0
j odd

@ij

�
;

if we write the differential @D
P

i;j�0 @ij . Here @ij decreases the first filtration by i

and the second filtration by j .

For other flavors, such as bCFL or CFL� , the formula conjectured by Sarkar also
follows, since those cases correspond to setting various variables equal to zero in the
formula for &� .
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In addition, we consider the effect of another diffeomorphism obtained by twisting
a link component. Suppose that K is a component of a link L and suppose that the
basepoints of K are z1; w1; : : : ; zn and wn , appearing in that order. We can consider
the diffeomorphism � W .Y;L/! .Y;L/ which twists .1=n/th of the way around K .
The diffeomorphism � maps zi and wi to ziC1 and wiC1 , respectively, with indices
taken modulo n. If .�;P/ is a coloring of L which sends all of the w–basepoints on
K to the same color, then � naturally induces an automorphism of

CFL1U V .Y;L; �;P; s/:

Using the techniques of this paper, we can compute the following:

Theorem D Suppose that L is an embedded link in Y , and K is a component of L
with basepoints z1; w1; : : : ; zn and wn , appearing in that order. Assume that n> 1. If
� denotes the diffeomorphism induced by twisting .1=n/th of the way around K , then
for a coloring where all w–basepoints on K have the same color, we have

�� ' .‰z1
ˆw1

‰z2
ˆw2
� � �ˆwn�1

‰zn
ˆwn

/C .ˆw1
‰z2

ˆw2
� � �ˆwn�1

‰zn
/:

Organization In Section 2 we define the complexes which will appear in this paper,
as well as their algebraic structures as P–filtered chain complexes over certain modules.
In Section 3 we define the maps ˆw and ‰z which feature prominently in this paper. In
Sections 5–7 we define quasistabilization maps S˙w;z and show that they are independent
of the choice of diagrams and auxiliary data, proving Theorem A. In Sections 8 and
9 we prove useful relations amongst the maps ‰z , ˆw and S˙w;z . In Section 10 we
compute several maps associated with moving basepoints, proving Theorems B and D.

Acknowledgments I would like to thank my advisor, Ciprian Manolescu, for helpful
conversations, especially about quasistabilization. I would also like to thank Faramarz
Vafaee and Robert Lipshitz for helpful conversations.

2 Background, the complexes CFL1UV , and P–filtrations

In this section we provide some background and describe the complexes CFL1U V .Y;L;s/
which will appear.

2.1 Spinc structures and relative Spinc structures

Ozsváth and Szabó [9] define a Spinc structure on Y to be a homology class of
nonvanishing vector fields on Y . For a Heegaard diagram H D .†;˛;ˇ;w/ they
define a map

swW T˛ \Tˇ! Spinc.Y /:
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The vector field sw.x/ is obtained by taking an upward gradient-like vector field
associated to a Morse function yielding H , and modifying it in a neighborhood of
the flowlines passing through the points in w and x to obtain a nonvanishing vector
field. Ozsváth and Szabó [10] provide a notion of relative Spinc structures for a link in
a 3–manifold. These are homology classes of vector fields on Y nN.L/ which are
tangent to the torus @N.L/. They define a map

sw;zW T˛ \Tˇ! Spinc.Y;L/:

We note that in general there are two natural ways to obtain an absolute Spinc structure
from a relative Spinc structure. We take the convention that the filling map covers the
map sw (compare [10, Section 3.7]). In more generality, one has sw.x/� sz.x/ D

PDŒL�, so if we restrict to links whose total homology class vanishes, then there is no
distinction. Since we include the versions of link Floer homology which use relative
Spinc structures only for the sake of comparison, whenever we consider relative Spinc

structures, we will assume that Y is a integer homology sphere. We will primarily be
interested in working with the version CFL1U V , which uses absolute Spinc structures.

2.2 The complex CFL1

U V
.Y;L; s/

Here we describe the uncolored complex CFL1U V .Y;L; s/. We first describe an inter-
mediate object, CFL1U V;0.Y;L; s/.

Let Z2ŒUw;U
�1
w ;Vz;V

�1
z � denote the ring generated by variables Uw;Vz and their

inverses U�1
w ;V �1

z for w 2 w and z 2 z . Given a diagram H D .†;˛;ˇ;w; z/ for
.Y;L;w; z/, we define CFL1U V;0.H; s/ to be the free Z2ŒUw;U

�1
w ;Vz;V

�1
z �–module

generated by x 2 T˛ \Tˇ with sw.x/ D s. We refer the reader to eg [10] for the
definition of a Heegaard diagram for a link, though we emphasize that in light of the
results of [4], we must assume that

w[ z�†� Y

and that the embedding of † in Y is part of the data of a Heegaard splitting.

We now define a map

@W CFL1U V;0.H; s/! CFL1U V;0.H; s/

by
@.x/D

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

# �M.�/U
nw.�/
w V

nz.�/
z �y :

The map @ does not square to zero, but we do have the following:
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Lemma 2.1 The map @W CFL1U V;0.H; s/! CFL1U V;0.H; s/ satisfies

@2
D

X
K2jLj

.UwK;1
VzK;1

CVzK;1
UwK;2

CUwK;2
VzK;2

C � � �CVzK;nK
UwK;1

/;

where wK ;1; zK ;1; : : : ; wK ;nK
; zK ;nK

are the basepoints on the link component K , in
the order that they appear on K .

Proof This follows from the usual proof that the differential squares to zero, now
just counting boundary degenerations carefully. If there are exactly two basepoints,
there are no boundary degenerations by [10, Theorem 5.5], and the above formula is
satisfied. If there are more than two, then each ˛– and ˇ–degeneration has a unique
holomorphic representative by [10, Theorem 5.5] and each crosses over a w–basepoint
and a z–basepoint. The formula follows.

To get a chain complex, we must color CFL1U V;0.Y;L; s/ by setting certain variables
equal. Let CL denote the ideal generated by elements of the form Vzi

�Vzj , where zi

and zj are in the same link component. We let LD Z2ŒUw;U
�1
w ;Vz;V

�1
z �=CL .

We now define

CFL1U V .H; s/D CFL1U V;0.H; s/˝Z2ŒUw;U
�1
w ;Vz;V

�1
z � L:

We have the following:

Lemma 2.2 The map @ defined above is a differential on CFL1U V .H; s/, ie @2 D 0.

Proof This follows from the formula in Lemma 2.1 since the module L simply
identifies all Vz variables for z which lie in the same link component.

Remark 2.3 There are other modules that we could tensor with to make the differential
square to zero. The module L is actually a quite natural choice. As we will see in the
proof of Proposition 5.3, terms of the form Vz C Vz0 appear in the differential after
quasistabilization, and these terms must be zero for S˙w;z to be chain maps.

The Z2ŒUw;Vz �–module CFL1U V .H; s/ has a natural Zjwj˚ZjLj filtration given by
filtering over powers of the variables Uw and Vz .

There are of course many different Heegaard diagrams H for a given multibased link
.L;w; z/. As in the case of closed three-manifolds, using [4], given two diagrams H
and H0 , there is a Zjwj˚ZjLj–filtered map

ˆH!H0 W CFL1U V .H; s/! CFL1U V .H
0; s/

Algebraic & Geometric Topology, Volume 17 (2017)



3468 Ian Zemke

which is a filtered chain homotopy equivalence, and is an invariant up to Zjwj˚ZjLj–
filtered chain homotopy. The maps ˆH!H0 are functorial in the sense that if H;H0

and H00 are three diagrams, then

ˆH0!H00 ıˆH!H0 'ˆH!H00 :

The strongest invariant, which we will occasionally refer to as the coherent filtered
chain homotopy type, is the collection of all of the complexes CFL1U V .H; s/ for all
admissible diagrams H for .Y;L;w; z/, as well as the maps ˆH!H0 . We let

CFL1U V .Y;L; s/

denote this invariant. Note that since we are working with embedded Heegaard surfaces,
the set of Heegaard diagrams for a link is a set, and not a proper class.

Remark 2.4 As we remarked earlier, since CFL1U V .Y;L; s/ is generated by intersec-
tion points with sw.x/D s, there is some asymmetry between the w and z basepoints
in the construction of CFL1U V . We note that sw.x/ � sz.x/ D PDŒL�, so if L is
null-homologous, this doesn’t affect the chain complexes. As a toy example, one can
consider .S1�S2;S1�fptg/ to see how the modules change over different choices of s.

2.3 Other versions of the link Floer complex

Supposing for simplicity that Y is an integer homology sphere, we briefly describe
a complex CFL1.Y;L; t/, for a relative Spinc structure t 2 Spinc.Y;L/. It will not
feature in any of the sections after this, but we describe it as a comparison with CFL1U V .
Let �i be a positive meridian of the i th link component. The complex CFL1.Y;L; t/
is defined as the subcomplex of CFL1U V .H; s/ generated over Z2 by elements of the
form x �U I

wV J
z , where

(1) J �PDŒM �D .t� sw;z.x//C I �PDŒM �;

where PD denotes Poincaré duality. Here, if J D .j1; : : : ; j`/, then J � PDŒM � is
defined to be j1 �PDŒ�1�C � � �C j` �PDŒ�`�, and I �PDŒM � is defined similarly.

In the case that L D .K; w; z/ is a knot with exactly two basepoints, we see that
CFL1.Y;K; w; z; t/ is generated by elements of the form x �U i

wV
j

z with

j �PDŒ��D .t� sw;z.x//C i �PDŒ��;

which is exactly the complex CFK1.K; t/ found in [8]. More often one writes Œx; i; j �
for what we write x � U�i

w V
�j

z . Most authors also write U for the action defined
by U � Œx; i; j � D Œx; i � 1; j � 1�, though in our notation this action corresponds
to multiplication by UwVz . It’s also common to consider an object CFK1.Y;K/,
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generated by monomials U i
wV

j
z �x satisfying A.x/D i�j , where A is the symmetrized

Alexander grading.

Given a relative Spinc structure t 2 Spinc.Y;L/, we write

�tW CFL1.Y;L; t/ ,! CFL1U V .Y;L; s/

for inclusion.

As a direct sum of Z2–modules, we have

CFL1U V .H; s/D
M

t2Spinc.Y;L/

CFL1.H; t/:

Write �tW CFL1U V .H; s/! CFL1.H; t/ for the projection onto CFL1.H; t/.

Finally, we note that in CFL1.Y;L; t/ the multi-index J in a monomial U I
wV J

z �x 2

CFL1.Y;L; t/ is determined by the multi-index I , as well as the choice of t. Thus
the full link Floer complex in [10] is described instead as the module generated by
monomials U I

w �x , but with a filtration by Spinc.Y;L/. Given a t 2 Spinc.Y;L/, it is
straightforward to write down an isomorphism of filtered chain complexes between
these two objects.

2.4 Colorings and P–filtrations

As was the case in [14], to define functorial maps it is important to work in a category
of chain complexes over a fixed ring. As the link Floer complexes are modules over a
ring which depends on the link, we need to formally “color” the complexes to make
them modules over a fixed ring. Different choices of base rings will be useful for
different applications, but for a single computation, a single ring must be fixed.

If P is a finite set, we let Z2ŒUP;U
�1
P � denote the ring generated by the formal

variables Up and their inverses U�1
p for p 2P.

Definition 2.5 If P is a finite set, a P–filtered chain complex is a chain complex
with a filtration of ZP , ie if C is a chain complex, then a P–filtration is a collection
of subcomplexes FI � C ranging over I 2 ZP such that if I � I 0 , then FI 0 � FI .
A P–filtered homomorphism is a homomorphism �W C ! C 0 where C and C 0 are
P–filtered with filtrations FI and F 0

I
such that

�.FI /� F 0I :

Definition 2.6 A coloring of a multibased link LD .L;w; z/ in Y is a pair .�;P/
where P is a finite set and � W w[z!P is a map which sends all of the z basepoints
on a given link component to the same color (this condition ensures that the differential
squares to zero).
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If .�;P/ is a coloring of a link LD .L;w; z/, let C�;P denote the module

Z2ŒUw;U
�1
w ;Vz;V

�1
z ;UP;U

�1
P �=I�;P;

where I�;P is the submodule generated by elements of the form Uw � U�.w/ and
Vz �U�.z/ . The colored complex is then defined as

CFL1U V .H; �;P; s/D CFL1U V;0.H; �/˝Z2ŒUw;U
�1
w ;Vz;V

�1
z � C�;P:

Given a coloring .�;P/ of w[z of a link LD .L;w; z/ in Y , the colored complexes
CFL1U V .Y;L; �;P; s/ naturally obtain a P–filtration by powers of the variables Up .
An element of CFL1U V .Y;L; �;P; s/ is uniquely written as a sum of elements of
the form x �U I

P , and given an I 2 ZP we define FI to be the Z2ŒUP�–submodule
generated by x �U J

P with J � I .

Remark 2.7 Asking that a Z2ŒUP�–equivariant map

F W CFL1U V .H; �;P; s/! CFL1U V .H
0; � 0;P; s0/

be P–filtered is just asking that F can be written as

F.x/D
X
I�0

U I
P �HI .x/;

where the maps HI do not involve the UP variables. Most maps which appear in
Heegaard Floer homology are P–filtered. The differential, the triangle maps, the
quadrilateral maps, and the maps ˆw , ˆz and S˙w;z are all P–filtered.

Given an arbitrary coloring .�;P/ of basepoints w[ z , we may not always be able to
define submodules corresponding to relative Spinc structures t. However, if no two
basepoints from distinct link components are given the same color, then one can use
a modification of (1) to define a P–filtered Z2–submodule CFL1.Y;L; �;P; t/. For
our purposes, we just observe that in the case that .�;P/ is the trivial coloring (ie
PDw[ jLj and � is the map sending w 2w to w and z 2 z to the link component
containing it), then CFL1U V .H; �;P; s/ is equal to just CFL1U V .H; s/ and the maps �t
and �t are still defined. The following lemma is essentially trivial, though it is useful for
relating endomorphisms of CFL1U V .Y;L; s/ to endomorphisms of the subcomplexes
CFL1.Y;L; t/:

Lemma 2.8 Suppose that .L;w; z/ is a link in an integer homology sphere Y and
that .�;P/ is the trivial coloring. Suppose f and g are P–filtered Z2ŒUP�–module
endomorphisms of CFL1U V .Y;L; �;P; s/ such that f and g are chain homotopic via
a chain homotopy which is P–filtered on CFL1U V .Y;L; �;P; s/. Then �t ıf ı �t and
�t ıg ı �t are Zjwj˚ZjLj–filtered Z2Œ xUw�–chain homotopic.
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Proof First note that the filtration on CFL1.H; t/ is just the pullback under �t of the
P–filtration on CFL1U V .H; �;P; s/. If f and g are P–filtered chain homotopic, we
have that

f �g D @H CH@

for a P–filtered map H . Pre- and postcomposing with the P–filtered maps �t and �t
yields a Zjwj˚ZjLj–filtered chain homotopy between �tıf ı �t and �tıgı �t because
�t and �t are P–filtered chain maps. The chain homotopy is Z2Œ xUw�–equivariant since
�t and �t are Z2Œ xUw�–equivariant, as we mentioned above (recall that xUw D UwVz ,
where z is any base point on the link component containing z ).

2.5 Why we use the larger CFL1

U V
.Y;L; s/ instead of other versions

We briefly explain why we use the object CFL1U V .Y;L; s/ to prove formulas for
basepoint moving maps, instead of other versions of link Floer homology. In the next sec-
tions, we will define maps ˆw and ‰z , which are endomorphisms of CFL1U V .Y;L; s/.
However, due to the extra factors of U�1

w or V �1
z in the definitions, these do not

preserve CFL1.Y;L; t/ for a relative Spinc structure. Instead they change the relative
Spinc structure by ˙PDŒ��, where � is the meridian of the component containing w
and z (note, however, that the composition ˆw‰z does actually preserve relative Spinc

structure). Although this is not insurmountable, what’s worse is that the maps SCw;z and
S�w;z are not even endomorphisms of the same complex, and since SCw;zS�w;z 'ˆw ,
we know that they can’t preserve relative Spinc structures. Similarly, one could try to
use the version of link Floer homology described in [10] as a Spinc.Y;L/–filtration on
CF1.Y /, but we have the same problem since the map ˆw is not Spinc.Y;L/–filtered.

The solution is clearly to work with the larger complexes CFL1U V .Y;L; s/.

There are also other algebraic advantages to working with CFL1U V .Y;L; s/. For
instance, we can think of ˆw and ‰z as formal derivatives of the differential. Using
our expression for @2 , we can quickly derive many relations between various ˆw and
‰z maps.

3 The maps ˆw and ‰z

We now define maps ˆw and ‰z , which are endomorphisms of CFL1U V .Y;L; �;P; s/.
These are denoted by ˆi;j and ‰i;j in [13]. We define ˆw W CFL1U V .H; �;P; s/!
CFL1U V .H; �;P; s/ by the formula

ˆw.x/D U�1
w

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nw.�/# �M.�/U
nw.�/
w V

nz.�/
z �y ;
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which we can alternatively think of as .d@=dUw/. Similarly we define

‰z.x/D V �1
z

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nz.�/# �M.�/U
nw.�/
w V

nz.�/
z �y ;

which we can alternatively write as .d@=dVz/, where the derivative is taken on CFL1U V;0

(ie before tensoring with the module L and thus setting all of the Vz on a link component
equal to each other).

We have the following (compare [13, Lemma 4.1]):

Lemma 3.1 On CFL1U V .H; s/, we have ˆw@ C @ˆw D 0. Also ‰z@ C @‰z D

UwCUw0 , where w and w0 are the w basepoints adjacent to z .

Proof One takes the derivative of @ ı @ with respect to either Vz or Uw , before one
tensors CFL1U V;0 with L. The map @2 is computed in Lemma 2.1. After tensoring
with L, one immediately arrives at the equalities described above.

In addition, we have the following (compare [13, Theorem 4.2]):

Lemma 3.2 The maps ˆw and ‰z commute with change of diagram maps ˆH1!H2

up to P–filtered, Z2ŒUP�–chain homotopy.

Proof Consider the complex CFL1U V;0 (ie the complex before we set all of the Vz

variables on each link component equal to each other). The differential doesn’t square
to zero, though we can still consider the maps ˆH1!H2

. These can be written as a
composition of maps associated to changing the almost complex structure, triangle
maps (corresponding to ˛– or ˇ–isotopies or handleslides), .1; 2/–stabilization maps,
and maps corresponding to isotoping the Heegaard surface inside of Y via an isotopy
which fixes L. We claim that the maps ˆH1!H2

satisfy

ˆH1!H2
@C @ˆH1!H2

D 0;

even before tensoring with L. The maps ˆH1!H2
are defined as a composition of maps

which count holomorphic triangles (handleslides or isotopy maps), holomorphic disks
with dynamic almost complex structure (change of almost complex structure maps) or
maps which are defined via simple, explicit formulas (stabilization and diffeomorphism).
The maps which associated to .1; 2/–stabilizations and diffeomorphisms obviously
satisfy @�C �@D 0 before tensoring with L. The maps induced by counting disks
with dynamic almost complex structure also satisfy @� C �@ D 0 before tensoring
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with @, since that follows from a Gromov compactness argument. Maps induced by
handleslides or isotopies of the ˛–curves take the form

x 7! F˛0˛ˇ.‚˝x/;

where ‚ is the top-degree generator of a complex CFL�U V .†;˛
0;˛;w; z/ and F˛0˛ˇ

is the map which counts holomorphic triangles. For this to be a chain map before
tensoring with L, it is sufficient that @‚ D 0 before tensoring with L, since the
triangle map

F˛0˛ˇ W CFL�U V;0.†;˛
0;˛;w; z/˝CFL1U V;0.†;˛;ˇ;w; z/

! CFL1U V;0.†;˛
0;ˇ;w; z/

is a chain map by a Gromov compactness argument. We note now that the diagram
.†;˛0;˛;w; z/ represents an unlink embedded in .S1 �S2/#n for some n, and this
unlink has exactly two basepoints per link component. By the differential computation
in Lemma 2.1, the complex

CFL�U V;0.†;˛
0;˛;w; z/

is a chain complex before tensoring with anything, and in particular the homology
group HFL�U V;0.†;˛

0;˛;w; z/, is well defined even before tensoring with anything.
An easy computation shows that if HFL�U V;0;max denotes the subset of maximal homo-
logical grading (here the homological grading is obtained by ignoring the z–basepoints,
and assigning U variables degree �2, and V variables degree 0), then we have an
isomorphism

HFL�U V;0;max.†;˛
0;˛;w; z/Š Z2ŒVz �;

and in particular HFL�U V;0.†;˛
0;˛;w; z/ admits a “generator” ‚ which is distin-

guished by the property of generating the maximally graded subset as a Z2ŒVz �–module.
In particular, @‚D 0 even before tensoring with L, as we needed.

Hence
ˆH1!H2

@C @ˆH1!H2
D 0;

even before tensoring with L. Differentiating with respect to Uw yields that

ˆ0H1!H2
@CˆH1!H2

ˆwCˆwˆH1!H2
C @ˆ0H1!H2

D 0;

immediately implying that ˆH1!H2
ˆwCˆwˆH1!H2

' 0. The only point to check
is that the chain homotopy H Dˆ0H1!H2

is P–filtered and Z2ŒUP�–equivariant. The
equivariance condition is trivial. The filtration condition is also easy to check, since
whenever F has a decomposition with only nonnegative powers of Uw and Vz , the
map .dF=dUw/ also has a decomposition with nonnegative powers of Uw and Vz .
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Remark 3.3 Using the Leibniz rule, we have that

ˆw D
d

dUw
ı @C @ ı

d

dUw
;

as long as Uw doesn’t share the same color as any other basepoint. Similarly ‰z ' 0 if
z doesn’t share the same color with any other basepoint, though in both cases the chain
homotopy H D d=dUw or H D d=dVz is neither P–filtered nor Z2ŒUP�–equivariant.

4 Cylindrical boundary degenerations

We consider holomorphic curves whose boundary is mapped to only the ˛–curves,
or only the ˇ curves. These will be called cylindrical ˛–boundary degenerations or
cylindrical ˇ–boundary degenerations.

We now define cylindrical ˛–boundary degenerations. Suppose that S is a Riemann
surface with d punctures fp1; : : : ;pdg on its boundary. We consider holomorphic
maps

uW S !†� .�1; 1��R

such that the following hold:

(1) u is smooth;

(2) u.@S/� .˛� f1g �R/;

(3) �D ıu is nonconstant on each component of S ;

(4) u�1.˛i �f1g�R/ consists of exactly one component of @S n fp1; : : : ;pdg, for
each i ;

(5) the energy of u is finite;

(6) u is an embedding;

(7) if zi 2 S is a sequence of points approaching a puncture pj , then .�D ıu/.zi/

approaches �1 in the compactification of .�1; 1��R as the unit complex disk
(with the point at 1 identified with �1).

We organize such curves into moduli spaces N .�/ for � 2 �˛
2
.x/, modding out by

automorphisms of the source, as usual. There is an action of PSL2.R/ on N .�/, which
is just the action on the .�1; 1��R coordinate of a disk u, and we denote the quotient
space yN .�/. One defines cylindrical ˇ–boundary degenerations analogously. We now
discuss transversality. In the original setup (singly pointed diagrams and disks mapped
into Symg.†/), a generic almost complex structure J on Symg.†/ in a neighborhood
of Symg.j/ achieves transversality for Maslov index 2 holomorphic ˛–degenerate
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disks [9, Proposition 3.14]. In the cylindrical setup, if a sequence of holomorphic
strips for the almost complex structures considered in [5] has a cylindrical boundary
degeneration in its limit, the boundary degeneration will be j† � jD–holomorphic.
Thus we need transversality for cylindrical boundary degenerations for split almost
complex structures. For the standard proof that @2 D 0 and for the purposes of this
paper, we only need transversality for Maslov index 2 boundary degenerations. Each
of these domains has multiplicity 1 in one component of † n˛, and zero everywhere
else. If uW S !†� .�1; 1��R is a component of a holomorphic curve representing
an element of N .�/ for a � 2 �˛

2
.x/ such that �† ı u is nonconstant, then by easy

complex analysis ujC is injective, where C � @S is the part of S mapping to @D.�/.
Adapting the strategy of perturbing boundary conditions instead of almost complex
structures, as in [5, Proposition 3.9], [9, Proposition 3.9] or [7], for generic choice of
˛–curves, we can thus achieve transversality for Maslov index 2 cylindrical boundary
degenerations.

An important result for our purposes is a count of Maslov index 2 boundary degenera-
tions produced by Ozsváth and Szabó:

Theorem 4.1 [10, Theorem 5.5] Consider a surface † of genus g equipped with a
set of attaching circles ˛D f˛1; : : : ; ˛gC`�1g which span a g–dimensional lattice in
H1.†IZ/. If D.�/� 0 and �.�/D 2, then D.�/DAi for some i , and indeed

# yN .�/D
�

0 .mod 2/ if `D 1;

1 .mod 2/ if ` > 1:

Here Ai denotes a component of † n˛.

5 Preliminaries on the quasistabilization operation

Suppose that LD .L;w; z/ is an oriented link in Y and that w and z are two points,
both in a single component of Ln.w[z/, such that .L;w[fwg; z[fzg/ has basepoints
which alternate between w and z as one traverses the link. We assume that the point
w comes after z according to the orientation of L. In Section 7 we prove invariance
for quasistabilization maps

SCw;z W CFL1U V .Y;L;w; z; �;P; s/! CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/

and

S�w;z W CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/! CFL1U V .Y;L;w; z; �;P; s/;

which are defined up to P–filtered Z2ŒUP�–chain homotopy. Here � 0 is a coloring
which extends � .
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Though it will take several sections to construct the maps and prove they are well
defined, we now summarize that the maps will be defined by the formulas

SCw;z.x/D x� �C

and
S�w;z.x� �

C/D 0; S�w;z.x� �
�/D x;

for suitable choices of Heegaard diagrams and almost complex structures.

To define the quasistabilization map, we use the special connected sum operation
from [6]. There, Manolescu and Ozsváth describe a way of adding new w and z

basepoints to Heegaard multidiagrams. They prove that for multidiagrams with at
least three sets of attaching curves (eg Heegaard triples or quadruples), there is an
identification of certain moduli spaces of holomorphic curves on the unstabilized
diagram and certain moduli spaces of holomorphic curves on the stabilized diagram.
They conjecture an analogous result for the holomorphic curves on a Heegaard diagram
with two sets of attaching curves (ie for the differentials of quasistabilized diagrams),
but only prove the result for grid diagrams using somewhat ad hoc techniques, since
in general they run into transversality issues. We will soon prove Proposition 5.3,
computing the differential on quasistabilized diagrams for appropriate almost complex
structures, showing how to avoid any transversality issues and using no more gluing
technology than is used in showing that @2 D 0 on multipointed diagrams.

5.1 Topological preliminaries on quasistabilization

Suppose that HD .†;˛;ˇ;w; z/ is a diagram for .Y;L;w; z/. Given new basepoints
w; z in the same component of L n .w [ z/, such that w occurs after z , we now
describe a new diagram xHp;˛s

, which depends on a choice of point p 2† and curve
˛s �† n˛ which passes through the point p . For fixed ˛s and p , the diagram xHp;˛s

will be defined up to an isotopy of Y which fixes w[ z[fw; zg and maps L to L.

Given a diagram HD .†;˛;ˇ;w; z/ as above, let A denote the component of † n˛
which contains the basepoints adjacent to w and z on L. Let p2An.˛[ˇ[w[z/ be a
point. If U˛ denotes the handlebody component of Y n† such that the ˛–curves bound
compressing disks in U˛ , then there is a path � in U˛ from p to a point on L between
w and z . Such a curve � is specified up to an isotopy fixing w[ z[ fw; zg which
maps L to L by requiring that � be isotopic in xU˛ to a segment of L concatenated
with an embedded arc on † n˛.

Let N.�/ denote a regular neighborhood of � inside of U˛ such that @N.�/, the
boundary of N.�/ inside of U˛ , satisfies

@N.�/\LD fw; zg:
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Topologically @N.�/ is just a disk, which we denote by D1 . Also let D2 denote
N.�/\†, which we note is also a disk. We can assume that D2\.˛[ˇ[w[z/D¿.
Define

†p D .† nD2/[D1:

The surface †p is specified up to an isotopy which fixes .˛[ˇ [w[ z/. Figure 1
shows the situation schematically.

z w

L

� p
†

z w

L

†p

Figure 1: The path � and the surfaces † and †p

We wish to extend the arc ˛s nD2 over all of D1 to get a curve x̨s on †p . As is
demonstrated in Figure 2, there is not an isotopically unique way to do this relative to
the new basepoints w and z .

z w z w

Figure 2: Different choices of x̨s curve on D1 interpolating ˛s nD2 . There
is a unique isotopy class of such curves such that the resulting x̨s curve on †p

bounds a compressing disk which doesn’t intersect L .

The set of such curves is easily seen to consist of those generated by the images of the
curve on the left in Figure 2 under finger moves of w around z . Fortunately, the arc
˛s nD2 can be extended over D1 uniquely (up to isotopy) by requiring the resulting
curve x̨s �†p to bound a compressing disk in Ux̨ which doesn’t intersect L, where
here Ux̨ denotes the component of Y n†p in which the ˛–curves bound compressing
disks.

Suppose H D .†;˛;ˇ;w; z/ is a diagram, and p 2 † n ˛ is a chosen point, and
let N.p0/ denote a neighborhood of the connected sum point p0 on S2 , which
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intersects ˛0 in an arc and doesn’t intersect ˇ0 . Given a diffeomorphism  W †!†p

which is the identity outside of D2 and an embedding �W S2 nN.p0/! D1 which
sends ˛0 nN.p0/ to x̨s , we can form a diagram

xHp;˛s
D .†p; x̨; x̌;w[fwg; z[fzg/;

where x̨ D ˛[fx̨sg and x̌ D ˇ [f�.ˇ0/g. Such a choice of  and � will be part of
a larger collection of data J which we will consider in the next section and will call
“gluing data”. If we need to emphasize the distinction, we will write x̨ for ˛[fx̨sg,
the curves on †p , and we will write ˛C for ˛[ f˛sg, the curves on †. By abuse
of notation, we will often write ˛s to denote both ˛s � † and x̨s � †p . Similarly,
when no confusion will arise, we will write ˇ0 for both the curve ˇ0 on S2 and the
curve �.ˇ0/ on †p .

p0

˛0

ˇ0

�C

��

w0 z0

m2

m1

n1 n2

Figure 3: The diagram H0 used for quasistabilization, with multiplicities
labeled. The dashed circle denotes where we will perform the neck stretching
in the special connected sum.

5.2 Gluing data and almost complex structures

In [14] the author describes a systematic way of constructing and proving invariance of
maps corresponding to adding or removing a basepoint from a closed 3–manifold. A
key ingredient was a choice of auxiliary data which we call “gluing data” for patching
two almost complex structures together in a systematic way. Here we introduce the
analogous idea for quasistabilization.

Suppose that HD .†;˛;ˇ;w; z/ is a diagram for LD .L;w; z/ and w; z are two new
consecutive basepoints on L with z following w . Suppose p 2An .w[z[˛[ˇ/ is
a distinguished point, where here A denotes the component of † n˛ containing the
basepoints on L adjacent to w and z . Let †p denote the Heegaard surface described
in the previous subsection.
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Definition 5.1 We define gluing data to be a collection

J D . ;Js;Js;0;B;B0; r; r0;p0; �; �/;

where

(1)  W †! †p is a diffeomorphism which is fixed outside of D2 and maps ˛s

to x̨s ;

(2) B �† is a closed ball containing p which doesn’t intersect .w[ z[˛[ˇ/
and such that ˛s \B is a closed arc;

(3) the point p0 2 ˛0 nˇ0 is the connected sum point;

(4) B0 � S2 is a closed ball containing p0 which doesn’t intersect ˇ0 and such
that B0\˛0 is a closed arc;

(5) Js is an almost complex structure on †� Œ0; 1��R which is split on B ;

(6) Js;0 is an almost complex structure on S2 � Œ0; 1��R which is split on B0 ;

(7) r and r0 are real numbers such that 0< r; r0 < 1;

(8) using the unique (up to rotation) conformal identifications of .B;p/ and .B0;p0/

as .D; 0/, where D denotes the unit complex disk, � is an embedding of
S2 n r0 �B0 into r �B �† such that

�.˛0/� ˛s; . ı �/.z0/D z; . ı �/.w0/D w;

and
.r �B/ n �.S2

n r0 �B0/

is a closed annulus;

(9) letting zA;A and A0 denote the closures of the annuli B n �.S2 nB0/, B n r �B

and B0 n r0 �B0 , respectively,

�W zA! S1
� Œ�a; 1C b�

is a diffeomorphism which sends the annulus A to Œ�a; 0� and �.A0/ to Œ1; 1Cb�

and is conformal on A and A0 .

The space of embeddings � is connected since if a denotes the arc on the left side of
Figure 2, the space of diffeomorphisms f W B!B mapping @B[a to itself and fixing
fz; wg is connected. That the space of diffeomorphisms  W †!†p in the definition
is also connected follows for similar reasons.

Gluing data J and a choice of neck length T determines an almost complex structure
J .T / on †p � Œ0; 1��R.
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5.3 Computing the quasistabilized differential

We now wish to compute the differential after performing quasistabilization. We have
the following Maslov index computation:

Lemma 5.2 If �0 is a homology class of disks on H0 , then using the multiplicities in
Figure 3, we have

�.�0/D .n1C n2Cm1Cm2/.�0/:

Proof The formula is easily verified for the constant disk and respects splicing in any
of the Maslov index 1 strips.

Let J denote gluing data as in the previous section, and let J .T / denote the almost
complex structure on xHp;˛s

determined by J for a choice of neck length T . We have
the following:

Proposition 5.3 Suppose that H is a strongly s–admissible diagram and that J is
gluing data with almost complex structure Js on †� Œ0; 1��R. Then xHp;˛s

is also
strongly s–admissible and for sufficiently large T there is an identification of uncolored
differentials (ie before we tensor with L)

@ xHp;˛s ;J .T / D

�
@H;Js

UwCUw0

VzCVz0 @H;Js

�
;

where the basepoints w and z are placed between w0 and z0 on L.

Proof Suppose that ui is a sequence of Maslov index 1 holomorphic curves on xHp;˛s

in a fixed homology class for the almost complex structure J .Ti/ for a sequence
of Ti with Ti!1. From the sequence ui we can extract a weak limit of curves on
the diagrams .†;˛C;ˇ;w; z/ and H0 . Let U† , and U0 denote these collections of
curves. The curves in U† consist of flowlines on .†;˛C;ˇ;w; z/ as well as ˛– and
ˇ–boundary degenerations on .†;˛C/ and .†;ˇ/, and closed surfaces mapped into †.
The holomorphic curves are now allowed to have a puncture along the ˛–boundary
which is mapped asymptotically to p .

We first note that any flowline in the limit (ie a map uW S ! † � Œ0; 1� �R which
maps @S to .ˇ �f0g[˛C�f1g�R such that each component of S has both ˛C and
ˇ components) on the diagram HC D .†;˛C;ˇ;w; z/ must actually be a legitimate
flow line on .†;˛;ˇ;w; z/. This is because if u is any holomorphic curve which is
part of a weak limit of the curves uTi

, then u cannot have a puncture asymptotic to an
intersection point ˛s \ ǰ for ǰ 2 ˇ . Hence if u is part of the weak limit of ui , and

Algebraic & Geometric Topology, Volume 17 (2017)



Quasistabilization and basepoint moving maps in link Floer homology 3481

if S denotes the source of u, then if @S has any points mapped to ˛s , then S must
have boundary component with a single puncture which is mapped to ˛s . Projecting
to Œ0; 1��R, we note that either uj@S attains a local extremum, or u is asymptotic to
both C1 and �1 as one approaches the puncture. If uj@S attains a local extremum,
then one can use the doubling trick to create an analytic function mapping D into D
(where here D D fz W jzj< 1g) which maps D\fim.z/� 0g to D\fim.z/� 0g but
which satisfies f 0.z/ D 0 for some z 2 R, which is impossible by writing down a
local model. The case that u is asymptotic to both C1 and �1 at the puncture is
impossible since u must extend to a continuous function over the punctures. Hence
any such u must be constant in the Œ0; 1��R component, which implies that u cannot
have any portion of @S mapped onto a ˇ–curve. Hence the curves in the weak limit
can be taken to be holomorphic disks on .†;˛;ˇ;w; z/, ˛C– or ˇ–degenerations, or
closed surfaces.

Though not essential for our argument, to avoid “annoying” curves (ie maps into
†� Œ0; 1��R which are constant in the Œ0; 1��R–component) among the ˇ– or ˛C–
degenerations, we observe that by rescaling the Œ0; 1��R component, we could instead
get curves that map into †� .�1; 1��R or †�S2 such that the .�1; 1��R or S2

components are nonconstant. Maps into †�.�1; 1��R are cylindrical ˛C–boundary
degenerations.

We now wish to compute exactly which of the above degenerations can occur in a
weak limit of the sequence ui of Maslov index 1 J .Ti/–holomorphic curves. Assume
without loss of generality that all of the ui are in the same homology class � .

Suppose that U† consists of a collection U 0
†

of curves on .†;˛;ˇ/ (flowlines, bound-
ary degenerations, closed surfaces) and a collection of curves A in .†;˛C;ˇ/ which
have a boundary component which maps to ˛s . As we’ve already remarked, the
collection A consists exactly of cylindrical ˛C–boundary degenerations. Letting �0

†

denote the underlying homology class of U 0
†

, we define a combinatorial Maslov index
for U† by

�.U†/D �.�
0
†/Cm1.A/Cm2.A/C 2

X
D2C.†n˛/;
˛s\DD¿

nD.A/;

where C.† n ˛/ denotes the connected components of † n ˛. By Lemma 5.2 the
Maslov index of U0 satisfies

�.U0/Dm1.�/Cm2.�/C n1.�/C n2.�/:

The formula for �.U†/ does not necessarily count the expected dimension of anything
since we’ve only defined it combinatorially, though we can compute the Maslov index
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�.�/ using these formulas, as follows:

(2) �.�/D �.U†/C�.U0/�m1.�/�m2.�/

D �.�0†/C n1.�/C n2.�/Cm1.A/Cm2.A/C 2
X

D2C.†n˛/
˛s\DD¿

nD.A/:

Each term in this sum is nonnegative, and by assumption the total sum is equal to 1. If
�.�/D 1, we immediately have that nD.A/D 0 for D 2 C.†n˛/, with ˛s \DD¿.
Now �.�0

†
/ does actually count the expected dimension of the moduli space of �0

†
,

and in particular if �0
†

has a representative as a broken curve, we must have �.�0
†
/� 0

with equality if and only if �0
†

is the constant disk.

As a consequence we see that if �.�/D 1, we have that exactly one of �.�0
†
/, n1.�/,

n2.�/, m1.A/ or m2.A/ is equal to 1, and the rest are zero. The cases where n1.�/D1

or n2.�/D 1 are easy to analyze, and those possibilities contribute summands of�
0 Uw
0 0

�
and

�
0 0

Vz 0

�
;

respectively, to @ xHp;˛s
.

We now consider broken curves in the limit with �.�0
†
/D 1 and the remaining terms

zero. In this case we have that m1.A/Dm2.A/D0 (so AD0) and n1.�/Dn2.�/D0.
In this case, we observe that �0

†
is represented by U† and �.�0

†
/D 1, so the limit

cannot contain any boundary degenerations or closed surfaces. Furthermore, by Maslov
index considerations we have that U† consists of a single Maslov index 1 flowline,
which we denote by u† .

We now consider the curves in U0 . There must be a component of U0 which satisfies
a matching condition with u† . Note also that since U† consists only of a single disk
on .†;˛;ˇ/, there cannot be any curves in U0 which have a point on the boundary
mapped to p0 or have a puncture along their boundary which is asymptotic to p0 .

Let u0 denote the component of U0 which satisfies the matching condition

�p.u†/D �
p0.u0/:

In particular, this forces m1.u0/Dm2.u0/. We also have n1.u0/D n2.u0/D 0. Here,
if uW S !†� Œ0; 1��R is a holomorphic disk, �q.u/ is the divisor

.�D ıu/.�† ıu/�1.q/ 2 Symnq.u/.D/:

Any additional components u0
0

of U0 must also satisfy n1.u
0
0
/ D n2.u

0
0
/ D 0 and

also can’t have an interior point or boundary point mapped to p0 , and hence must be
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constant. Hence U0 consists exactly of a holomorphic strip u0 with m2.u0/Dm1.u0/

which satisfies a matching condition with u† , ie .u†;u0/ are prematched strips.

We thus have shown that if �.�0
†
/ D 1, then the weak limit of the curves ui is a

prematched strip, so following standard gluing arguments (see eg [5, Appendix A]),
the count of �MJ .T /.�/ is equal to the count of prematched strips with total homology
class � , for sufficiently large T . If �0 is a homology class of disks in �2.�

C; �C/ or
�2.�

�; ��/, let M.�0;d/ denote the set of holomorphic strips u representing �0 with
�p0.u/ D d . Note that there is a unique homology class of disks �0 2 �2.�

C; �C/

with m1.�0/Dm2.�0/D jd j and n1.�0/D n2.�0/D 0.

We claim that
M.�0;d/� 1 .mod 2/

if m1.�0/Dm2.�0/D jd j and n1.�0/D n2.�0/D 0. We consider a path dt between
two divisors d0 and d1 and consider the 1–dimensional space

MD
G

t2Œ0;1�

M.�0;dt /:

We count the ends of M. There are ends corresponding to M.�0;d0/ and M.�0;d1/.
On the other hand, there are ends corresponding to strip breaking or other types of
degenerations. No curve in the degeneration can have p0 in its boundary, which
constrains any degeneration to be into disks of the form �2.�

C; �C/ or �2.�
�; ��/.

But if any nontrivial strip breaking occurs, the Maslov index of the matching component
drops, contradicting the formula for the Maslov index. Hence the only ends of M
correspond to M.�0;d0/ and M.�0;d1/, implying that

#M.�0;d0/� #M.�0;d1/ .mod 2/:

We now consider a path of divisors dT consisting of k points in Œ0; 1��R spaced at
least T apart which approach the line f0g�R as T !1. Letting T !1, since p0

is not on ˇ0 , we know that the Gromov limit of the curves in M.�0;dT / consists of
k cylindrical ˇ0–degenerations, and a single constant holomorphic strip. Applying
Theorem 4.1, we get that the total count of the boundary ofG

T

M.�0;dT /

is #M.�0;d1/C 1, implying the claim.

Disks which consist of preglued flowlines .u†;u0/ glued together thus provide a total
contribution of �

@H;Js
0

0 @H;Js

�
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to the differential.

We now consider the last contributions to the differential. These correspond to having
D.�0

1
/ D 0 and n1 D n2 D 0, and m1.A/Cm2.A/ D 1. In this case A is an ˛C–

boundary degeneration on .†;˛C;ˇ/. SinceX
D2C.†n˛/
˛s\DD¿

nD.A/D 0;

we have that D.A/ is constrained to one of two domains. For each of the two possible
domains of D.A/, there is exactly one corresponding choice of domain for �0 , the
homology class of U0 , which is just the domain with exactly one of m1 and m2 equal
to 1, and the other equal to zero, and n1 and n2 also zero.

On xHp;˛s
these correspond to exactly two homology classes of disks. We now describe

two strategies to count such disks. The first would be to perform a gluing argument to
glue holomorphic representatives of the bigon on H0 to Maslov index 2 ˛–boundary
degeneration on .†;˛C/ at punctures along their boundaries. As we remarked, one
could rescale the curves so that they were genuine cylindrical ˛C , and by perturbing
the ˛C curves we could achieve transversality since the domains of such curves are
˛–injective. By a gluing argument, one could prove that the count on xHp;˛s

was
equal to the product of the counts for the two pieces, for a sufficiently stretched neck.
Although the author isn’t aware of any obstruction to do this, we will describe another
approach which uses more established gluing results and a nice trick.

Let x be an intersection point on the unstabilized diagram. By our work up to now, there
are two homology classes we have left to count: a disk �z0 2�2.x��

C;x���/ which
goes over z0 once, and a disk �w0 2 �2.x��

�;x��C/, which goes over w0 once. To
count the number of representatives of �w0 and �z0 , we consider the ends of the moduli
spaces associated to certain Maslov index 2 homology classes in �2.x � �

C;x � �C/.
On xHp;˛s

, we consider the two components of †p n x̨ which have boundary along ˛s .
For an intersection point x on the unstabilized diagram, each of these two domains
yields a homotopy class �2.x� �

C;x� �C/. Let us call these homotopy classes Aw0

and Az0 , depending on whether they go over w0 or z0 . Let us consider the ends of the
1–dimensional space of holomorphic disks �M.Aw0/. The ends correspond to boundary
degenerations and strip breaking. By our work so far, for sufficiently stretched almost
complex structure, there is a single domain which can appear as the domain of a Maslov
index 1 homology class with n1 ¤ 0 and which admits a holomorphic representative,
namely the bigon going over w once. Let us call this bigon bw . Hence if a 1-parameter
family of holomorphic disks in �M.Az0/ breaks into a pair of holomorphic disks, one of
them must be have domain equal to bw . This forces the other to have domain Az0�bw ,
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ie the homology class must be �z0 . As no other homotopy classes can appear in strip
breaking, due to our degenerated almost complex structure, we conclude that

# yN .Az0/C # �M.�z0/# �M.bw/D 0;

as the latter count is the number of ends of �M.Az0/. Since # yN .Az0/D1 by Theorem 4.1,
and the bigon certainly has a unique holomorphic representative, we conclude that�M.�z0/D 1 2 Z2 . By an analogous argument, we conclude that �M.�w0/D 1, as well.

With the above count we see that such curves make contributions of�
0 Uw0

0 0

�
and

�
0 0

Vz0 0

�
:

Summing together all of the contributions, we see that the differential takes the form

@ xHp;˛s ;J .T / D

�
@H;Js

UwCUw0

VzCVz0 @H;Js

�
:

Note that we tensor CFL1U V;0.H; s/ with L so that the differential squares to zero.
When we do this, we set Vz DVz0 , and the bottom left entry of the differential vanishes.

Example 5.4 We now briefly give an example which helps to illustrate the technique
we used to count some of the disks appearing in the off-diagonal entries of the differen-
tial. We consider a nested quasistabilization, shown in Figure 4, where we stretch along
the dashed curve on the inside quasistabilization. We haven’t drawn any basepoints in
the figure. We’ve illustrated a homology class A 2 �2.x � �;x � �/ whose domain
is just a component of † n .x̨/ and the ends of �M.A/. We’ve illustrated how the
homology class can split into either pairs of Maslov index 1 disks, or a boundary
degeneration. When we stretch the neck sufficiently, the weak limits argument from
the previous proposition prohibits the middle pair of homology disks from both having
a representative. Hence the boundary of �M.�/ consists of exactly yN .A/ (which has a
unique representative) and �M.b/� �M.�/, where b is a bigon and � 2�2.x��;x��

0/

is one of the disks we were trying to count at the end of the previous proposition.

5.4 Dependence of quasistabilization on gluing data

In this subsection we prove some initial results about quasistabilization and change
of almost complex structure maps. The reader should compare this to [14, Section 6],
where the analogous arguments are presented for free stabilization.
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˛ ˇ

˛s

ˇ0

# yN .A/
(prohibited by degen.)

# �M.b/ � # �M.�/ 0

�M.A/

C C D 0

�
b

Figure 4: An example of the possible strip breaking which can occur for the
homology class A . By degenerating the almost complex structure, our weak
limits argument in the previous proposition rules out the middle degeneration.
This allows us to count the representatives for the Maslov index 1 homology
class � , appearing on the left, which is otherwise hard to count.

Lemma 5.5 Suppose that J is gluing data. Then there is an N such that if T;T 0>N

and if J .T / and J .T 0/ achieve transversality, then

ˆJ .T /!J .T 0/ '

�
1 0

0 1

�
:

The proof is analogous to the proof of [14, Lemma 6.8], using the techniques of
Proposition 5.3. Note that in [14], the upper right entry appeared as a �. Due to the
Maslov index computation in (2), both off-diagonal entries are forced to be zero in our
case. Philosophically this is because quasistabilization is a stronger degeneration than
free stabilization. As in [14], we make the following definition:

Definition 5.6 We say that N is sufficiently large for gluing data J if ˆJ .T /!J .T 0/
is of the form in the previous lemma for all T;T 0 �N . We say T is large enough to
compute S˙w;z for the gluing data J if T >N for some N which is sufficiently large.

Adapting the proofs of [14, Lemmas 6.10–6.16], we have the following:

Algebraic & Geometric Topology, Volume 17 (2017)



Quasistabilization and basepoint moving maps in link Floer homology 3487

Lemma 5.7 If J and xJ are two choices of gluing data with almost complex structures
Js and xJs on †� Œ0; 1��R, respectively, then there is an N such that if T >N and
if J .T / and xJ .T / achieve transversality, then

ˆJ .T /! xJ .T / '

�
Ĵs! xJs

0

0 Ĵs! xJs

�
:

The previous lemma will be used to show that the quasistabilization maps are indepen-
dent of the choice of gluing data.

6 Quasistabilization and triangle maps

In this section we prove several results about quasistabilizing Heegaard triples, which
we will use to prove invariance of the quasistabilization maps. The results for quasista-
bilization of Heegaard triples along a single ˛s curve are established in [6], so we focus
on quasistabilizing a Heegaard triple along two curves, ˛s and ˇs . To compute the
quasistabilization maps S˙w;z , we pick a curve ˛s in the surface †, but there are many
choices of such an ˛s curve, so in order to address invariance of the quasistabilization
maps, we need to show that the maps S˙w;z commute with the change of diagram map
corresponding to moving ˛s to ˛0s , which can be computed using a Heegaard triple
which has been quasistabilized along two curves. Our main result is Theorem 6.5,
which is an analogue of our computation of the differential after quasistabilizing in
Proposition 5.3, but for certain Heegaard triples which we have quasistabilized along
two curves which are allowed to travel throughout the diagram.

6.1 Quasistabilizing Heegaard triples along a single curve

We now consider Heegaard triples which are quasistabilized along a single ˛s curve
which is allowed to run through the diagram. This was first considered in [6]. We
state a result from that paper, which considers the quasistabilized configuration shown
in Figure 5. The result will be useful in showing that the quasistabilization maps are
invariant under ˇ–handleslides and ˇ–isotopies.

Lemma 6.1 [6, Proposition 5.2] Suppose that T D .†;˛;ˇ;;w; z/ is a strongly
s–admissible triple and suppose that ˛s is a new ˛–curve, passing through the point
p 2†. Let ST˛s ;p denote the Heegaard triple resulting from quasistabilizing along ˛s

at p , as in Figure 5. If J is gluing data, then for sufficiently large T , with the almost
complex structure J .T / we have the following identifications:

FST˛s ;p;xs
.x� � ;y �yC/D

�
FT ;s.x;y/ 0

0 FT ;s.x;y/

�
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where � 2 fxC;x�g D ˛s \ˇ0 and the matrix on the right denotes the expansion into
the upper and lower generator components of ˛s \ˇ0 and ˛s \ 0 .

˛s

w

z

ˇ0 0

Figure 5: The version of quasistabilization discussed in Lemma 6.1

6.2 Strong positivity condition for diagrams of .S 1 �S 2/#k

In this subsection we describe a class of simple diagrams for .S1 �S2/#k which we
will use in a technical condition in Theorem 6.5 for quasistabilizing Heegaard triples
along two curves, ˛s and ˇs , passing through a Heegaard triple.

Suppose that .†;˛;ˇ;w/ is a diagram for .S1 �S2/#k such that

j˛i \ ǰ j D

�
1 or 2 if i D j ;

0 if i ¤ j

and that if ˛i\ˇiDfp
�
i ;p

C
i g, then p�i and pCi differ by Maslov grading 1. We do not

assume that the ˛i curves are small isotopies of the ǰ curves. Let �CDpC
1
�� � ��pC

n�1

denote the top graded (partial) intersection point. Assume that j˛n\ˇnj D 2 and write
p�n and pCn for the two points of ˛n\ˇn .

Definition 6.2 Under the same assumptions as the previous paragraph, we say that
.†;˛;ˇ;w/ is strongly positive with respect to pCn if for every nonnegative disk
� 2 �2.�

C �pCn ;y �pCn / we have that

.�� .m1Cm2//.�/D .�� .n1C n2//.�/� 0;

with equality to zero if and only if � is the constant disk. Here m1 , m2 , n1 , n2 denote
the multiplicities adjacent to the point pCn , appearing in the following counterclockwise
order: n1 , m1 , n2 , then m2 .

Note that m1Cm2 D n1C n2 for any disk � 2 �2.x �pCn ;y �pCn /, by the vertex
relations.

We now describe a class of diagrams which are strongly positive at an intersection
point, which will be sufficient for our purposes:
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˛0 ˇ0

w w0

pC
0

p�
0

m1

n1m2
n2

Figure 6: The diagram H0 D .S2; ˛0; ˇ0; w;w
0/ in Lemma 6.3 which is

strongly positive at pC0 , and the multiplicities m1 , n1 , m2 and n2

Lemma 6.3 The diagram H0 D .S
2; ˛0; ˇ0; w;w

0/ in Figure 6 is strongly positive
with respect to pC

0
, the intersection point of ˛0 and ˇ0 with higher relative grading. If

HD .†;˛;ˇ;w/ is a diagram with a distinguished intersection point pCn 2 ˛n \ˇn

where j˛n \ ˇnj D 2, and H0 D .†0;˛0;ˇ 0;w0/ is the result of any of the following
moves, then H0 is strongly positive with respect to pCn if and only if H is strongly
positive with respect to pCn :

(1) .1; 2/–stabilization1;
(2) taking the disjoint union of H with the standard diagram .T2; ˛0; ˇ0; w/ for

.S3; w/;
(3) performing surgery on an embedded 0–sphere fq1; q2g�†n.˛[ˇ/ by removing

small disks from †, and connecting the resulting boundary components with an
annulus with new ˛0 and ˇ0 curves with j˛0\ˇ0j D 2, and which are isotopic
to each other, and homotopically nontrivial in the annulus.

Proof We first note that H0 is strongly positive with respect to pC
0

, because the
Maslov index of any disk is given by

�.�/D .m1Cm2C n1C n2/.�/;

by Lemma 5.2, where m1 , m2 , n1 , n2 are multiplicities appearing in the counter-
clockwise order m1 , n1 , m2 , n2 around pC

0
, as in Figure 6. Hence for any disk � ,

we have
.�� .n1C n2//.�/D .m1Cm2/.�/;

which is certainly nonnegative. For a disk � 2 �2.p
C

0
;pC

0
/ we also have

.m1Cm2/.�/D .n1C n2/.�/;

so the above quantity is positive if and only if � has positive multiplicities.

1If H D .†;˛;ˇ;w/ is a Heegaard diagram for Y , a .1; 2/–stabilization of H is obtained by
taking an embedded torus T2 inside of a 3–ball in Y n † , together with curves ˛0 and ˇ0 with
j˛0 \ ˇ0j D 1 , which bound compressing disks with boundary on † , and letting H0 be the diagram
.† # T2;˛[f˛0g;ˇ [fˇ0g;w/ , where † # T2 is the internal connected sum.
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We now address moves (1)–(3).

Move (1) If H is a diagram, and H0 is the result of .1; 2/–stabilization, there is an
isomorphism

��W �
H
2 .x�pCn ;y �pCn /! �H0

2 .x� c �pCn ;y � c �pCn /;

where c is the intersection of the new ˛– and ˇ–curves. Furthermore,

.�� .n1C n2//.�/D .�� .n1C n2//.���/;

from which the claim follows easily.

Move (2) Suppose H0 is formed from H by taking the disjoint union of H with a
diagram .T2; ˛0; ˇ0; w/. Homology classes on H0 are of the form �tk � ŒT2�, where
� is a homology disk on H . One has

�.� t k � ŒT2�/D �.�/C 2k;

from which the claim follows easily.

Move (3) This move corresponds to surgering on an embedded 0–sphere fq1; q2g �

†n .˛[ˇ[w/. Write ˛0 and ˇ0 for the new curves on the annulus, and f�C
0
; ��

0
g D

˛0 \ ˇ0 . Suppose that y 2 ˛0 \ ˇ0 is a choice of intersection point. We can define
(noncanonically) an injection

�y W �
H
2 .�

C
�pCn ;y �pCn /! �H0

2 .�C � �C
0
�pCn ;y �y �pCn /:

For y D �C
0

, we define ��C
0
.�/ to be the disk on the surgered diagram which has no

change across the curve ˇ0 , but which agrees with the disk � away from the ˛0 and
ˇ0 curves. For y D ��

0
, a map ���

0
can be defined by defining it to be the map �

�
C

0

,
defined above, composed with the map on disks obtained by splicing in a choice of
one of the bigons from �C

0
to ��

0
. An easy computation shows that

.�� .m1Cm2//.��C
0

.�//D .�� .m1Cm2//.�/;

while
.�� .m1Cm2//.���

0
.�//D .�� .m1Cm2//.�/C 1:

Any disk in �2.�
C � �C

0
� pCn ;y � y � pCn / is equal to one which is in the image

of �y , with n �P spliced in, where P is the periodic domain which is C1 in one of the
small strips between ˛0 and ˇ0 , and �1 in the other. We note that

�.P/Dm1.P/Dm2.P/D 0:

From these observations it follows easily that H is strongly positive with respect to pCn
if and only if H0 is.

Algebraic & Geometric Topology, Volume 17 (2017)



Quasistabilization and basepoint moving maps in link Floer homology 3491

Remark 6.4 Suppose HD .†;˛0;˛;w/ is obtained by taking attaching curves ˛ and
letting ˛0 be small Hamiltonian isotopies of the curves in ˛. Let ˛s be a new curve in
† n˛ which doesn’t intersect any ˛0–curves. If ˛0s is the result of handlesliding ˛s

across a curve in ˛, then .†;˛0[f˛0sg;˛[f˛sg;w[fwg/ is strongly positive at pC ,
the intersection point of ˛0s \ ˛s with higher grading. Here w is a new basepoint in
one of the regions adjacent to pC .

Similarly, if HD .†;˛0;˛;w/ is the result of handlesliding a curve in ˛ across another
curve in ˛, and ˛s and ˛0s are two new curves which are Hamiltonian isotopies of
each other, then .†;˛0[f˛0sg;˛[f˛sg;w[fwg/ is strongly positive with respect to
the intersection point of ˛0s \˛s of higher relative grading.

Note that a diagram .†g;˛
0;˛; w/ where the curves in ˛0 are small isotopies of the

curves in ˛ with g.†g/ D j˛
0j D j˛j D g is not a strongly positive diagram at any

point, since Œ†g� represents a positive homology class in �2.�
C; �C/ with

�.Œ†g�/�m1�m2 D 2� 1� 1D 0:

Strongly positive diagrams always have multiple basepoints. The prototypical example
is the one resulting from handlesliding a quasistabilization curve ˛s across an ˛–curve,
as in Figure 7.

†
pC

˛s ˇs

†
pC˛s ˇs

Figure 7: The diagram on the top is strongly positive with respect to the
point pC . The curves ˛s and ˇs are curves on which one could perform
the quasistabilization operation of triangles in Theorem 6.5. The diagram
on the bottom is not, and the nonzero, nonnegative domain of a disk � with
�.�/� .n1C n2/.�/D 0 is shown.
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A more interesting example of a diagram which doesn’t satisfy the strong positiv-
ity condition would be the pair .†;˛0 [ f˛0sg;˛ [ f˛sg;w/ that arises in a triple
.†;˛0[f˛0sg;˛[f˛sg;ˇ [fˇ0g;w/ for handlesliding an ˛ curve across ˛s . Fortu-
nately, such a move is not required in the proof of invariance of the quasistabilization
maps.

6.3 Quasistabilizing Heegaard triples along two curves

We now consider the effect on the triangle maps of quasistabilizing along two curves.
Our analysis follows a similar spirit to the proof of [6, Proposition 5.2]. Suppose that
.†;˛;ˇ;;w; z/ is a Heegaard triple with a distinguished point

pC 2† n .˛[ˇ [ [w[ z/:

Suppose also that ˛s and ˇs are choices of curves in †n.˛[w[z/ and .†n.ˇ[w[z/,
respectively, which intersect only at pC and another point p� 2†. We can form the
diagram ST˛s ;ˇs ;pC

, obtained by quasistabilizing along both ˛s and ˇs , simultaneously,
at the point pC . This corresponds to removing a small disk containing pC , and
inserting the diagram shown in Figure 8, with a disk centered around p�

0
removed.

˛0 ˇ0

0

pC0

p�
0

z

w

Figure 8: The diagram we insert into a Heegaard triple diagram T along the
curves ˛s and ˇs to form the diagram ST˛s ;ˇs ;pC

. We cut out the solid circle
marked with p�0 and stretch the almost complex structure along the dashed circle.

Theorem 6.5 Suppose that T D .†;˛;ˇ;;w; z/ is a Heegaard triple with curves ˛s

and ˇs , intersecting at two points pC and p� , and let ST˛s ;ˇs ;pC
be the Heegaard triple

resulting from quasistabilization, as described above. If .†;˛[f˛sg;ˇ[fˇsg;w[fwg/

is a strongly positive diagram for .S1�S2/#k with respect to pC (Definition 6.2), and
J is gluing data for stretching along the dashed circle, then for sufficiently large T ,
with respect to the almost complex structure J .T /, there are identifications
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FT C
˛s ;ˇs ;pC

;xs;J .T /.‚
C

˛ˇ
�pC

0
;x� � /D

�
FT ;s;J .‚

C

˛ˇ
;x/ 0

0 FT ;s;J .‚
C

˛ˇ
;x/

�
;

where � denotes x˙ 2 ˇ0\ 0 and the matrix on the right denotes the matrix decompo-
sition of the map based on the decompositions given x˙ and y˙ .

As usual, the argument proceeds by a Maslov index calculation, which we use to put
constraints on the homology classes of holomorphic curves which can appear in a weak
limit as we let the parameter T approach C1. Once we determine which homology
classes of triangles can appear, we can use standard gluing results to explicitly count
holomorphic curves.

˛0 ˇ0

0

m1

m2

n1n2

N1

N2
pC

0

A B

Figure 9: Multiplicities for a triangle on the diagram .S2; ˛0; ˇ0; 0; w; z/

Lemma 6.6 Suppose  2 �2.x;y; z/ is a homology disk on .S2; ˛0; ˇ0; 0; w; z/,
shown in Figure 9. Then

�. /D n1C n2CN1CN2:

Proof The formula is easily checked for any of the Maslov index 0 small triangles,
and respects splicing in any Maslov index 1 strip. Since any two triangles on this
diagram differ by splicing in some number of the Maslov index 1 strips, the formula
follows in full generality.

We can now prove Theorem 6.5.

Proof of Theorem 6.5 Suppose that ui is a sequence of holomorphic triangles of
Maslov index 0 representing a class  2 �2.‚

C

˛ˇ
� pC

0
;x � x;y � y/, for almost

complex structure J .Ti/, where Ti is a sequence of neck lengths approaching C1.
Adapting the proof of Proposition 5.3, the limiting curves which appear can be arranged
into three classes of broken holomorphic curves:

Algebraic & Geometric Topology, Volume 17 (2017)



3494 Ian Zemke

(1) a broken holomorphic triangle u† which represents a homology class  † on
.†;˛;ˇ;/ which has no boundary components on ˛s or ˇs ;

(2) a broken holomorphic disk u˛ˇ on .†;˛[f˛sg;ˇ [fˇsg/ which represents a
class �˛ˇ 2 �2.‚

C

˛ˇ
�pC;y �pC/, for some y 2 T˛ \T ;

(3) a broken holomorphic triangle u0 on .S2; ˛0; ˇ0; 0/ which represents a ho-
mology triangle  0 2 �2.p

C

0
;x;y/.

We now wish to write down the Maslov index of  in terms of the Maslov indices
and multiplicities of  †;  0 and �˛ˇ . Let m1. � /, m2. � /, n1. � / and n2. � / denote
the multiplicities of a homology curve in the regions surrounding pC or p�

0
, as in

Figure 9. In [12], Sarkar derives a formula for the Maslov index of a homology triangle
� 2 �2.x;y ; z/ which can be computed entirely from the domain D.�/. Writing
DD D.�/, the formula reads

�.�/D e.D/C nx.D/C ny.D/C a.D/:c.D/� 1
2
d;

where d D j˛j D jˇj D jj. Here a.D/ is defined to be the intersection @D \ ˛
(viewed as a 1–chain), and c.D/ is defined similarly, using the –curves. The quantity
a.D/:c.D/ is defined as the average of the four algebraic intersection numbers of a0.D/
and c.D/, where a0.D/ is a translate of a.D/ in any of the four “diagonal directions”. If
s 2 ˛i\ ǰ , then ns.D/ is the average of the multiplicities in the regions surrounding s ,
and if s is a set of such intersection points, then ns.D/ is the sum of the ns.D/ ranging
over s 2 s .

For a homology triangle  2 �2.‚
C

˛ˇ
�pC

0
;x �x;y �y/ which can be decomposed

into homology classes  † , �˛ˇ and  0 as above (as any homology class admitting
holomorphic representatives for arbitrarily large neck length can) we observe that
�. / can be computed by adding up �. †/, �.�˛ˇ/ and �. 0/, then subtracting
the quantities which are over-counted. This corresponds to subtracting

1
2
.m1Cm2C n1C n2/. /;

which is the excess of Euler measure resulting from removing balls centered at pC

and at p�
0

�
note that the Euler measure of a quarter disk is 1

4

�
, and subtracting

2npC.�˛ˇ/D
1
2
.n1C n2Cm1Cm2/.�˛ˇ/;

which is the quantity in the expression

�.�˛ˇ/D e.D.�˛ˇ//C n
‚
C

˛ˇ
�pC

.�˛ˇ/C ny�pC.�˛ˇ/

D e.D.�˛ˇ//C n
‚
C

˛ˇ

.�˛ˇ/C ny.�˛ˇ/C
1
2
.n1C n2Cm1Cm2/.�˛ˇ/
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which does not contribute to �. /. Adding these contributions, we get

(3) �. /D �. †/C�. 0/C�.�˛ˇ/

�
1
2
.n1C n2Cm1Cm2/. /�

1
2
.n1C n2Cm1Cm2/.�˛ˇ/:

Writing  0 2 �2.p
C

0
;x;y/, using the vertex multiplicity relations around p�

0
, it is an

easy computation that

.m1Cm2/. /D .n1C n2/. /:

Note also that mi. 0/Dmi. / and similarly for the multiplicities ni , since we are
grouping all holomorphic curves on .S2; ˛0; ˇ0; 0/ appearing in the weak limit into
the homology class  0 . Using the Maslov index formula from Lemma 6.6 for  0 , we
get from (3) that

�. /D �. †/C�.�˛ˇ/C .m1Cm2CN1CN2/. 0/

�
1
2
.m1Cm2C n1C n2/. 0/�

1
2
.n1C n2Cm1Cm2/.�˛ˇ/;

which reduces to

(4) �. /D �. †/C .N1CN2/. 0/C�.�˛ˇ/�
1
2
.n1C n2Cm1Cm2/.�˛ˇ/;

since  0 does not have pC as a vertex, so the vertex relations at pC yield

1
2
.n1C n2Cm1Cm2/. 0/D .n1C n2/. 0/D .m1Cm2/. 0/:

We now use the assumption that .†;˛[f˛sg;ˇ [fˇsg;w/ is strongly positive with
respect to pC , and hence

�.�˛ˇ/�
1
2
.n1C n2Cm1Cm2/.�˛ˇ/� 0;

with equality if and only if �˛ˇ is a constant disk. We note that �. †/ � 0, since
 † admits a broken holomorphic representative. Hence the formula for �. / in (4)
can be written as a sum of nonnegative expressions, and hence each must be zero if
�. /D 0. Thus

0D �. /D �. †/D �.�˛ˇ/DN1 DN2:

Note first that this implies that �˛ˇ is a constant disk, since generically there are no
nonconstant, Maslov index 0 disks which admit broken holomorphic representatives.
From here the argument proceeds in a familiar manner. Note that  † is a Maslov
index 0 broken holomorphic triangle, and hence must be a genuine holomorphic triangle,
as nonconstant holomorphic disks, boundary degenerations, and closed surfaces all
have strictly positive Maslov index. Hence, since  † is represented by a holomorphic
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triangle with no boundary components mapped to ˛s or ˇs , we must have m1. /D

m2. /D n1. /D n2. /.

We now claim that this implies that the off-diagonal entries of the matrix representing
the triangle map in the statement are zero. Writing  0 2 �2.p

C

0
;x;y/, and using the

multiplicities in Figure 9, the vertex relations at pC
0

read

ACB D 1;

and hence exactly one of A and B is 1, and the other is 0, since A;B � 0. Since
n1 D n2 D m1 D m2 , we know that by subtracting some number of copies of the
0–boundary degeneration of Maslov index 2 with N1 DN2 D 0, we get a homology
triangle in �2.p

C

0
;x;y/ with N1 , N2 , m1 , m2 , n1 and n2 all zero. There are only

two homology triangles satisfying that condition. One is in �2.p
C

0
;xC;yC/ and the

other is in �2.p
C

0
;x�;y�/, implying that  0 itself must be in one of those sets. Hence

the off-diagonal entries of the matrix are zero.

Since u† is a genuine Maslov index 0 holomorphic triangle, there must be a curve
in u0

0
in the broken holomorphic triangle u0 which matches, ie which satisfies

�pC.u†/D �
p0.u00/:

Recall that if uW S !†�� is a holomorphic map and q 2† is a point, we define

�q.u/D .�� ıu/.�† ıu/�1.q/ 2 Symnq.u/.�/:

Since this in particular forces npC.u†/D np�
0
.u0

0
/, it is easy to see that there can be no

other curves in the broken curve u0 since there are no multiplicities on .S2; ˛0; ˇ0; 0/

which could be increased without increasing n1 , m1 , n2 , m2 , N1 and N2 while still
preserving the vertex relations. By standard gluing arguments (see eg [5, Appendix A])
the count of prematched triangles2 is equal to the count of holomorphic triangles in
#MJ .T /. † # 0/ for sufficiently large T .

For x and y of the same relative grading (both the top intersection points or both
the lower intersection points), for each k there is a unique homology class  k on
.S2; ˛0; ˇ0; 0/ in �2.p

C

0
;x;y/ with n1 D n2 D m1 D m2 D k . Thus, adapt-

ing the proof of Proposition 5.3, it is sufficient to count holomorphic triangles on
.S2; ˛0; ˇ0; 0/ of homology class  k which match a fixed divisor d 2 Symk.�/.
The count of such holomorphic triangles matching d is generically 1 .mod 2/, as can
be seen from a Gromov compactness argument nearly identical to the one done at the

2Recall that a prematched triangle is a pair .u†;u0/ where u† and u0 are holomorphic triangles
representing  † and  0 on .†;˛;ˇ;/ and .S2; ˛0; ˇ0; 0/ respectively and �pC.u†/D �

p0.u0
0
/ .
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end of Proposition 5.3. Hence the diagonal entries of the triangle map matrix are as
claimed, completing the proof.

Remark 6.7 Without the “strongly positive” condition, the counts of the previous
theorem are false. The bottom of Figure 7 shows a diagram which is not strongly
positive, along with a Maslov index 1 disk which could appear on .†;˛0;˛/ when we
degenerate. Fortunately such pairs .†;˛0;˛/ don’t appear when proving invariance of
the quasistabilization maps, as we don’t need to handleslide other ˛ curves across ˛s .

7 Invariance of the quasistabilization maps

In this section, we combine the results of the previous section to prove invariance of
the quasistabilization maps:

Theorem A Assume that .�;P/ is a coloring of the basepoints w [ z which is
extended by the coloring .� 0;P/ of the basepoints w[z[fw; zg. The quasistabilization
operation induces well-defined maps

SCw;z W CFL1U V .Y;L;w; z; �;P; s/! CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/

and

S�w;z W CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/! CFL1U V .Y;L;w; z; �;P; s/;

which are well-defined invariants up to P–filtered Z2ŒUP�–chain homotopy.

The proof is to construct the maps for choices of Heegaard diagram and auxiliary data,
and show that the maps we describe are independent of that auxiliary data and the
choice of diagram.

If HD .†;˛;ˇ;w; z/ is a diagram for LD .L;w; z/, recall from Section 5.1 that if
A denotes the component of † n ˛ containing the basepoints of .L;w; z/ adjacent
to w and z , then we pick a point p 2A n .˛[ˇ [w[ z/ and a simple closed curve
˛s �A n˛ to form a diagram xHp;˛s

. Let J denote gluing data (see Section 5.2) for
performing the special connected sum operation at p 2 † and p0 2 S2 and gluing
almost complex structures on H and H0 together.

We now define maps

SC
w;z;H;p;˛s ;J ;T W CFL1U V;Js

.H; s/! CFL1U V;J .T /.
xHp;˛s

; s/

and
S�w;z;H;p;˛s ;J ;T W CFL1U V;J .T /.

xHp;˛s
; s/! CFL1U V;Js

.H; s/
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by the formulas
SCw;z;H;p;˛s ;J .x/D x� �C

and
S�w;z;H;p;˛s ;J .x� �

C/D 0; SCw;z;H;p;˛s ;J .x� �
�/D x;

where Js denotes the almost complex structure on † associated to the gluing data J
and T is sufficiently large. Here �C denotes the top-degree intersection point with
respect to the Maslov grading (the grading obtained by using the w–basepoints and
ignoring the z–basepoints).

The maps S˙
w;z;H;p;˛s ;J ;T can be extended to the entire P–filtered chain homotopy-

type invariant by pre- and postcomposing with change of diagram maps and change of
almost complex structure maps. By functoriality of the change of diagrams maps, we get
well-defined maps S˙

w;z;H;p;˛s ;J ;T between the coherent chain homotopy type invari-
ants CFL1U V .Y;L;w; z; �;P; s/ and CFL1U V .Y;L;w[fwg; z[fzg; �

0;P; s/, though
of course we need to show independence from the choices of H , p , ˛s , J and T .

Any diagram xH for .Y;L;w[fwg; z[fzg/ can be connected to one of the form xHp;˛s

for a diagram H and a choice of p and ˛s by a sequence of handleslides and isotopies
of the attaching curves, .1; 2/–stabilizations, and isotopies of Y relative the basepoints
and preserving the link, since we can always find a diagram for the unstabilized link and
quasistabilize it, and any two diagrams for the same multibased link can be connected by
a sequence of Heegaard moves by [4, Proposition 2.37], for example. This is somewhat
unsatisfying since it would be nice to have an actual algorithm for reducing an arbitrary
Heegaard diagram for the quasistabilized link to a quasistabilized diagram, but for our
purposes it is sufficient to know that such a path exists.

We now begin our proof of invariance of the maps S˙w;z . We first address independence
from J and the parameter T . Recalling Lemma 5.5, there is an N such that if
T;T 0 >N we have

ˆJ .T /!J .T 0/ '

�
id 0

0 id

�
:

Hence, as with the free stabilization maps from [14], we define the maps S˙w;z;H;p;˛s ;J
to be between the complexes CFL1Js ;U V .H; s/ and CFL1J .T /;U V .

xHp;˛s
; s/ for any T

greater than any such N .

Lemma 7.1 The maps S˙w;z;H;p;˛s ;J are independent of J and the parameter T .

Proof Lemma 5.5 implies that S˙
w;z;H;p;˛s ;J ;T is independent of T for any T which

is sufficiently large. Let S˙w;z;H;p;˛s ;J denote the common map. Lemma 5.7 implies
that the maps S˙w;z;H;p;˛s ;J are independent of J . We denote the common map from
now on by S˙w;z;H;p;˛s

.
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Lemma 7.2 For a fixed diagram H with fixed p 2 †, the maps S˙w;z;H;p;˛s
are

independent of ˛s .

Proof This follows from the triangle map computation in Theorem 6.5, which allows
one to change the ˛s curve through a sequence of isotopies of the ˛s curve, and
handleslides of the ˛s curve over other ˛–curves, each of which can be realized by
quasistabilizing a Heegaard triple .†;˛0;˛;ˇ;w; z/ along two curves ˛0s and ˛s with
˛0s \˛s D fp

C;p�g, such that .†;˛0[f˛0sg;˛[f˛sg;w/ is strongly positive at pC

(see Remark 6.4). For each of these moves, by Theorem 6.5 the change of diagrams
map can be written as

ˆ
˛[f˛sg!˛

0[f˛0sg

ˇ[fˇsg
D

 
ˆ˛!˛

0

ˇ
0

0 ˆ˛!˛
0

ˇ

!
;

where the curves in ˛0 are small Hamiltonian isotopies of the curves in ˛. Similarly,
by Theorem 6.5 we also have

ˆ
˛[f˛sg!˛

0[f˛sg

ˇ[fˇsg
D

 
ˆ˛!˛

0

ˇ
0

0 ˆ˛!˛
0

ˇ

!
;

completing the proof.

We now let S˙w;z;H;p denote the map S˙w;z;H;p;˛s
for any choice of ˛s . We now prove

independence from the choice of point p 2†.

Lemma 7.3 Given a fixed diagram H , the maps S˙w;z;H;p are independent of the
choice of point p 2†.

Proof Let A denote the component of † n˛ containing the basepoints on L which
are adjacent to w and z . Let p and p0 be two choices of points in A n .ˇ [w[ z/.
Let �t be an isotopy �t W †! † which fixes † nA and maps p to p0 . Recall that
the surfaces †p were well defined up to an isotopy fixing ˛[ˇ [w[ z and mapping
L to L. Extend � D �1 to an isotopy of Y which fixes .† nA/[w[ z[fw; zg and
maps L to L. By definition

.�/�.†p/D†p0 ;

as embedded surfaces. The diffeomorphism � fixes all the curves in ˛, but moves
some of the ˇ–curves which pass through the region A.

Observe the factorizations

(5) ˆ.†;˛;ˇ;Js/!.†;˛;ˇ;��Js/ 'ˆ
˛
��ˇ!ˇ

ı��
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and similarly

ˆ.†p;˛[f˛sg;ˇ[fˇ0g;J .T //!.†p0 ;˛[f��˛sg;ˇ[f��ˇ0g;��J .T //

'ˆ
˛[f��˛sg

.��ˇ/[f��ˇ0g!ˇ[f��ˇ0g
ı��:

Using Theorem 6.5, for sufficiently stretched almost complex structure we can write

ˆ
˛[f��˛sg

.��ˇ/[f��ˇ0g!ˇ[f��ˇ0g
'

 
ˆ˛
��ˇ!ˇ

0

0 ˆ˛
��ˇ!ˇ

!
;

and hence

ˆ
˛[f��˛sg

.��ˇ/[f��ˇ0g!ˇ[f��ˇ0g
ı�� '

 
ˆ˛
��ˇ!ˇ

ı�� 0

0 ˆ˛
��ˇ!ˇ

ı��

!
:

Combining this with (5), we see that for sufficiently large T , we have

ˆ.†p;˛[f˛sg;ˇ[fˇ0g;J .T //!.†p0 ;˛[f��˛sg;ˇ[f��ˇ0g;��J .T //

'

�
ˆ.†;˛;ˇ;Js/!.†;˛;ˇ;��Js/ 0

0 ˆ.†;˛;ˇ;Js/!.†;˛;ˇ;��Js/

�
:

Since this map is upper triangular with diagonal entries equal to the change of diagrams
maps, the change of diagrams maps commute with the maps S˙w;z;H;p and S˙w;z;H;p0
in the appropriate sense. Since any two choices of points p and p0 at which we can
perform quasistabilization are in the region A, we know that the maps on the filtered
chain homotopy invariant CFL1U V induced by S˙w;z;H;p;˛sJ and S˙

w;z;H;p0;��˛s ;��J
are equal. Since we proved invariance from the gluing data J in Lemma 5.7, and we
proved invariance from the curve ˛s in Lemma 7.2, the proof is thus complete.

We let S˙w;z;H denote the map S˙w;z;H;p for any choice of p in the component of †n˛
containing the basepoints of L adjacent to w and z .

Lemma 7.4 If H and H0 are two diagrams for LD .L;w; z/, then the maps S˙w;z;H
and S˙w;z;H0 are filtered chain homotopic.

Proof Suppose that HD .†;˛;ˇ;w; z/ and H0D .†0;˛0;ˇ 0;w; z/ are two diagrams
for .L;w; z/. The diagrams H and H0 are related by a sequence of the following
moves:

(1) ˛– and ˇ–handleslides and isotopies;

(2) (1,2)–stabilizations away from L;

(3) isotopies of † inside of Y which fix w[ z , and map L to L.
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The maps corresponding to ˛– and ˇ–handleslides on the unstabilized diagram H
can be computed using triangle maps. For moves of the ˇ–curves, we simply apply
Lemma 6.1 to see that the maps S˙w;z;H are invariant under ˇ–isotopies and handle-
slides. Theorem 6.5 implies independence under ˛–moves of H for which there are
curves ˛s and ˛0s in †, with top graded intersection point p 2 ˛0s \ ˛s , such that
.†;˛0[f˛0sg;˛[f˛sg;w/ is strongly positive with respect to p . An arbitrary ˛–move
can be realized as a sequence of such moves, along with moves of the point p inside of
the region of † n˛. Since we’ve already shown invariance under each of these smaller
moves, the maps S˙w;z;H are unchanged by handleslides and isotopies of the ˛– and
ˇ–curves.

The maps S˙w;z;H obviously commute with the .1; 2/–stabilization maps.

We now consider isotopies �t W Y ! Y which fix w[ z and map L to L. We note
that tautologically we have that

�� ıS˙w;z;H;p;J D S˙w;z;��H;��p;��J ı��:

Since we already know that S˙w;z;H;p;J is independent from p and J , we thus conclude
that S˙w;z;H and S˙

w;z;��H
agree.

We can now write S˙w;z for the quasistabilization maps, completing the proof of
Theorem A.

Remark 7.5 Given that the triangle map computations in Lemma 6.1 and Theorem 6.5
showed that change of diagrams maps were not only upper triangular, but diagonal,
one may ask why it is natural to define SCw;z by x 7! x � �C and not x 7! x � �� .
We remark that x 7! x� �� is only a chain map when w is given the same color as
the other w–basepoint adjacent to z , and indeed x 7! x��� is equal to ‰zSCw;z . The
map ‰z is only a chain map if the w–basepoints adjacent to z have the same color.

Remark 7.6 We have defined quasistabilization maps S˙w;z in the case that w comes
after z and showed that such maps were invariants, ie that they yielded well-defined
maps S˙w;z on the coherent filtered chain homotopy type invariant. These maps were
only constructed if w came after z on the link component. In the case that z comes
after w , we can define quasistabilization maps S˙z;w analogously, picking a choice
of ˇs . We could call such an operation ˇ quasistabilization. There is no ambiguity
between ˛ quasistabilizations or ˇ quasistabilizations because S˙w;z is always an ˛
quasistabilization and S˙z;w is always a ˇ quasistabilization.
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8 Commutation of quasistabilization maps

In this section we show that if fw; zg\ fw0; z0g D¿, then the maps S˙w;z and S˙w0;z0
all commute. In [14] we showed that the free stabilization maps commute, though
commutation was easier to show in that setting, since we could just pick a diagram and an
almost complex structure where both free stabilization maps could be computed, and by
simply looking at the formulas, one could observe that the maps commuted. In the case
of quasistabilization, we cannot always pick an almost complex structure which can be
used to compute both maps. Nevertheless, we can compute enough components of the
change of almost complex structure map to show that quasistabilization maps commute:

Theorem 8.1 Suppose that .L;w; z/ is a multibased link in Y 3 and that w; z; w0

and z0 are new basepoints such that .w; z/ and .w0; z0/ are each pairs of adjacent
basepoints on .L;w[fw;w0g; z[fz; z0g/. Then

Sı1w;z ıS
ı2
w0;z0 ' S

ı2
w0;z0 ıSı1w;z

for any ı1; ı2 2 fC;�g.

Pick a diagram .†;˛;ˇ;w; z/ for .L;w; z/, and let ˛s and ˛0s be curves in † n ˛
along which we can perform quasistabilization for .w; z/ and .w0; z0/, respectively.
Let ˇ0 and ˇ0

0
denote the new ˇ–curves. Let J denote gluing data for stretching along

circles bounding ˇ0 and ˇ0
0

. There are two distinct cases to consider, corresponding
to whether the pairs .w; z/ and .w0; z0/ are adjacent or not: either ˛s and ˛0s lie in the
same component of † n˛ (this case corresponds to having the pair .w; z/ be adjacent
to the pair .w0; z0/), or ˛s and ˛0s lie in different components of † n ˛ (this case
corresponds to the pair .w; z/ not being adjacent to .w0; z0/).

The first case is the easier to consider. In this case, we now show that we can pick an
almost complex structure which computes both quasistabilization maps. To this end,
we have the following lemma:

Lemma 8.2 Suppose that .†;˛;ˇ;w; z/ is a diagram as in the previous paragraph
with new curves ˛s and ˛0s for quasistabilizing at .w; z/ and .w0; z0/, respectively. If
˛s and ˛0s are not in the same component of † n˛, then for all sufficiently large T1 ,
T 0

1
, T2 , T 0

2
, we have

ˆJ .T1;T
0
1
/!J .T2;T

0
2
/ ' id

with respect to the obvious identification between the two complexes.
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Proof To show this, we will perform a computation similar to the one in Proposition 5.3,
but for Maslov index 0 disks. Let A be the component of † n˛ which contains ˛s

and let A0 denote the component of †n˛ which contains ˛0s . By assumption A¤A0 .
Let A1 and A2 denote the two components of A n ˛s . Let A0

1
and A0

2
denote the

components of A0 n ˛0s . Suppose that � is a Maslov index 0 homology disk on the
doubly quasistabilized diagram

.†;˛[f˛s; ˛
0
sg;ˇ [fˇ0; ˇ

0
0g;w[fw;w

0
g; z[fz; z0g/:

Write � D �† #�0 #�0
0

, where �† is a homology class on .†;˛[f˛s; ˛
0
sg;ˇ;w; z/,

�0 is a homology class on .S2; ˛0; ˇ0; w; z/ and .S2; ˛0
0
; ˇ0

0
; w; z/. Suppose that

T1;n , T 0
1;n

, T2;n and T 0
2;n

are sequences of neck lengths all approaching C1 and
let �Jn denote interpolating almost complex structures between J .T1;n;T

0
1;n
/ and

J .T2;n;T
0
2;n
/. Pick �Jn so that as n!1 the almost complex structures �Jn split into

Js_JS2_JS2 on .†_S2_S2/�Œ0; 1��R. If un is a sequence of Maslov index 0 �Jn–
holomorphic curves representing � , we can extract a weak limit to broken curves U† ,
U0 and U 0

0
on .†;˛[f˛s; ˛

0
sg;ˇ;w; z/, .S

2; ˛0; ˇ0/ and .S2; ˛0
0
; ˇ0

0
/ representing

�†; �0 and �0
0

respectively. As in Proposition 5.3, the curves in U† consist of a broken
holomorphic strip U 0

†
on .†;˛;ˇ/ and a collection A of cylindrical .˛[f˛sg[f˛

0
sg/–

boundary degenerations. Let �0
†

denote the underlying homology class of U 0
†

. Let
m1 , m2 , n1 , n2 , m0

1
, m0

2
, n0

1
and n0

2
be multiplicities as in Figure 10.

˛s ˛0s

ˇ0 ˇ0
0

w z w0 z0

n1 n2 n0
1

n0
2

m1 m2 m0
1

m0
2

Figure 10: Multiplicities of a disk � near new basepoints w; z; w0 and z0 on
a diagram which has been quasistabilized twice

Adapting the Maslov index computation from Proposition 5.3, we see that

�.�/D �.�0†/C n1.�/C n2.�/C n01.�/C n02.�/

Cm1.A/Cm2.A/Cm01.A/Cm02.A/C 2
X

D2C.†n˛/
D¤A

nD.A/;

where C.† n˛/ denotes the connected components of † n˛.
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Since U 0
†

is a broken holomorphic curve for an R–invariant almost complex structure,
we conclude that U 0

†
consists only of constant flowlines. Since all of the other sum-

mands are zero, it’s easy to see that this forces all multiplicities to be zero. Hence only
constant disks are counted by the change of almost complex structures map, concluding
the proof of the lemma.

In the case that ˛s and ˛0s are in the same component, the change of almost complex
structure maps will often be nontrivial. Nevertheless, we have the following:

Lemma 8.3 Suppose .w0; z0/ and .w; z/ are adjacent on .L;w[fw;w0g; z[fz; z0g/
and that .w0; z0/ comes after .w; z/. Let �˙ and .� 0/˙ denote the intersection points
corresponding to quasistabilization. If T1 , T 0

1
, T2 , T 0

2
are all sufficiently large, then,

writing F DˆJ .T1;T
0
1
/!J .T2;T

0
2
/ , we have

F.x� �C � .� 0/C/D x� �C � .� 0/C;

F.x� �C � .� 0/�/D x� �C � .� 0/�CC �x� �� � .� 0/C;

F.x� �� � .� 0/C/D x� �� � .� 0/C;

F.x� �� � .� 0/�/D x� �� � .� 0/�

for some C (which is not independent of Ti and T 0i ).

Proof We proceed similarly to the previous lemma. Now a single component, which
we denote by A, of †n˛ contains both ˛s and ˛0s . Write A1;A2 and A3 for the three
different components of A n .˛s [ ˛

0
s/. Two of the Ai share boundary with exactly

one of the other Aj , and one of the Ai shares boundary with both of the other Ai .
Without loss of generality assume that A1 shares boundary with A2 , and that A2 also
shares boundary with A3 .

As before, as we simultaneously stretch the necks, a sequence of Maslov index 0
disks ui has a weak limit as before. Now, however, the Maslov index computation is
different. Let ai.A/ denote the multiplicity of the .˛[f˛sg[ f˛

0
sg/–degeneration A

in the region Ai . One computes that the Maslov index now satisfies

�.�/D�.�0†/Cn1.�/Cn2.�/Cn01.�/Cn02.�/Ca1.A/Ca3.A/C2
X

D2C.†n˛/
D¤A

nD.A/:

As usual, this implies that all of the terms above are zero. Hence �0
†

, which has a
broken representative for a cylindrical almost complex structure, must be the constant
disk by transversality. The only multiplicities which may be nonzero are a2.A/,
mi.�/ and m0i.�/, none of which appear in the sum above. As is easily observed, this
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constrains the disk � to be in �2.x � �
C � .� 0/�;x � �� � .� 0/C/, completing the

proof. An example of a disk which might appear in the change of almost complex
structure map is shown in Figure 11.

�C

ˇ0

˛s

ˇ00

˛0s
.� 0/C

z0 w0 z00z w

Figure 11: An example of a Maslov index 0 disk which might be counted by
ˆJ .T1;T

0
1
/!J .T2;T

0
2
/ in Lemma 8.3 for arbitrarily large Ti and T 0i

Proof of Theorem 8.1 The proof is easy algebra in all cases using Lemmas 8.2
and 8.3.

9 Further relations between the maps ‰z;ˆw and S˙w;z

In this section we prove several relations between the maps S˙w;z , ‰z and ˆw . We
highlight the convenience of viewing ˆw and ‰z as formal derivatives of the differen-
tial, since basically all of the relations in this section are derived by either formally
differentiating the expression for @ ı @ from Lemma 2.1, or by differentiating our
expression of the quasistabilized differential in Proposition 5.3.

Lemma 9.1 If w and z are not adjacent, or if w and z are the only basepoints on a
link component, then

ˆw‰zC‰zˆw ' 0:

If w and z are adjacent and there are other basepoints on the link component, then

ˆw‰zC‰zˆw ' id :

Proof Take the expression for @2 from Lemma 2.1 and differentiate it with respect
to Uw . We obtain

@ˆwCˆw@D Vz0 CVz00 ;
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where z0 and z00 are the variables adjacent to w on its link component. Suppose first
that z0 ¤ z00 , ie that w and z are not the only basepoints on their link component.

Differentiating the expression above with respect to Vz , we see that

‰zˆwCˆw‰z '

�
id if w is adjacent to z;

0 if w is not adjacent to z;

from which the claim follows as long as w and z are not the only basepoints on their
link component.

If w and z are the only basepoints on their link component, then z D z0 D z00 and the
argument above is easily modified to give the stated result.

Lemma 9.2 We have

‰z‰z0 C‰z0‰z ' 0 and ˆwˆw0 Cˆw0ˆw ' 0

for any choice of z , z0 , w and w0 .

Proof This is proven identically to the previous lemma.

As with the free stabilization maps in [14], we have the following:

Lemma 9.3 The following relation holds:

SCw;zS�w;z Dˆw:

Proof The differential on the uncolored quasistabilized diagram takes the form

@ xH D

�
@H UwCUw0

VzCVz0 @H

�
where @H is the differential on the unstabilized diagram. After taking the Uw derivative
we get

ˆw D

�
0 id
0 0

�
;

which is exactly SCw;zS�w;z .

We now consider commutators of the quasistabilization maps and the maps ˆw and ‰z .

Lemma 9.4 Suppose that w and z are two new basepoints for a link. If w is not
adjacent to z0 , then

S˙w;z‰z0 C‰z0S
˙
w;z ' 0:

With no assumptions on adjacency, we have

S˙w;zˆw0 Cˆw0S
˙
w;z ' 0:
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Proof Suppose that w and z are inserted between basepoints z00 and w00 on the
link L. The quasistabilized differential takes the form

@ xH D

�
@H UwCUw00

VzCVz00 @H

�
;

by Proposition 5.3. By assumption z0 ¤ z00 . Differentiating with respect to Vz0 thus
yields

z‰z0 D

�
‰z0 0

0 ‰z0

�
;

where z‰z0 denotes the map on the stabilized diagram and ‰z0 denotes the map on the
unstabilized diagram. In matrix notation, the maps S˙w;z take the form

(6) SCw;z D

�
id
0

�
and S�w;z D

�
0 id

�
:

The stated equality involving ‰z0 now follows from matrix multiplication.

The equality involving ˆw0 follows similarly.

We also have the following:

Lemma 9.5 Suppose that z0 is adjacent to w and that z0 ¤ z . Then we have

SCw;z‰z0 ' .‰z0 C‰z/S
C
w;z and ‰z0S

�
w;z ' S�w;z.‰z0 C‰z/:

Proof Once again we consider the quasistabilized differential, which is

@ xH D

�
@H UwCUw0

VzCVz0 @H

�
:

Differentiating with respect to z0 yields

z‰z0 D

�
‰z0 0

id ‰z0

�
and z‰z D

�
0 0

id 0

�
:

Here z‰z denotes the map on the complex after quasistabilization, and ‰z denotes the
map on the complex before quasistabilization. Using the matrix notation from (6), the
desired relations follow from matrix multiplication.

The reader can compare the following lemma to [14, Lemma 7.7], the analogous result
for the closed three-manifold invariants.
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Lemma 9.6 Suppose that LD .L;w; z/ is a multibased link in Y 3 and w and z are
two new, consecutive basepoints on L such that w follows z . If z0 is one of the two
z–basepoints adjacent to w , then we have

S�w;z‰z0S
C
w;z ' id :

Proof This follows from our usual strategy. Pick a diagram H for .L;w; z/ and let
xH denote a diagram which has been quasistabilized at w and z . Let z00 and w00 denote
the basepoints adjacent to w and z on L. Using Proposition 5.3, we have that

@ xH D

�
@H UwCUw00

VzCVz00 @H

�
:

By assumption, either z0 D z or z0 D z00 (but not both). In both cases, we have that

‰z0 D

�
d

dVz0
@ xH

�
D

�
� �

id �

�
;

where the � terms are unimportant. Using the matrix notation from (6), we get the
desired equality immediately from matrix multiplication.

The reader should compare the following to [13, Lemma 4.4].

Lemma 9.7 We have ‰2
z ' 0 and ˆ2

w ' 0 as P–filtered maps of Z2ŒUP�–modules.

Proof The proof follows identically to the proof of [14, Lemma 14.19].

10 Basepoint moving maps

In this section, we compute several basepoint moving maps. The procedure for comput-
ing maps induced by moving basepoints is in a similar spirit to the author’s computation
of the �1–action on the Heegaard Floer homology of a closed three-manifold in [14].
We first compute the effect of moving basepoints along a small arc on a link component
via a model computation. We then use this to prove Theorem B, the effect of moving
all of the basepoints on a link component in one full loop. The final computation is
Theorem D, where we compute the effect on certain colored complexes of moving
each w–basepoint to the next w–basepoint, and moving each z–basepoint to the next
z–basepoint.

10.1 Moving basepoints along an arc

Suppose that Y 3 is a three-manifold with embedded multipointed link L0D.L;w0; z0/,
though we allow the case that one of the components of L0 has no basepoints. Suppose
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that z; w; z0; w0 are all points on a single component of L n .w0[ z0/, appearing in
that order according to the orientation of L. Let

wDw0[fwg; zD z0[fzg; w0 Dw0[fw
0
g; z0 D z0[fz

0
g:

Finally, assume that .L;w; z/ has basepoints in each component of L. There is an
isotopically unique diffeomorphism of Y which maps L to itself and fixes w0[z0 and
maps w to w0 and z to z0 , which is isotopic to the identity relative to w0[z0 through
isotopies which map L to itself. Let &0 denote this diffeomorphism. It induces a map

.&0/�W CFL1U V .Y;L;w; z; s/! CFL1U V .Y;L;w
0; z0; s/:

The map .&0/� is defined as a tautology. That is, if HD .†;˛;ˇ;w; z/ is a diagram
for .Y;L;w; z/ with almost complex structure Js , we just apply the map &0 to the
diagram H to get a new diagram

&0.H/D .&0.†/; &0.˛/; &0.ˇ/; &0.w/; &0.z//;

with almost complex structure .&0/�Js . The diffeomorphism &0 tautologically deter-
mines a chain map

.&0/�W CFL1U V;Js
.H; s/! CFL1U V;&0.Js/

.&0.H/; s/

defined by
.&0/�.x/D &0.x/:

By the naturality results of [4], this yields a well-defined morphism on the coherent
chain homotopy type invariants (ie it commutes with change of diagrams maps, in the
appropriate sense).

Note that .&0/� “appears” like the identity map since it just maps an intersection
point x to its image under &0 . With this in mind, we prove the following:

Lemma 10.1 The induced map .&0/� is filtered chain homotopic to

.&0/� ' S�w;z‰z0S
C
w0;z0 :

Proof We first prove the result in the case that the link component containing w
and z has at least one extra pair of basepoints. Let z00 denote the basepoint occurring
immediately after w0 . In this case, we can pick a diagram like the one shown in
Figure 12, where the dashed lines show two circles along which the almost complex
structure will be stretched. In this diagram, we assume that ˛s and ˛0s each bound disks
on † and that ˛s , ˛0s , ˇ0 and ˇ0

0
do not intersect any other ˛– or ˇ–curves. With this

diagram, we can compute all of the maps ‰z0 ;S
�
w;z , and SCw0;z0 explicitly. We must be
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careful, though, since we cannot use the same almost complex structure for all of the
maps. Instead we will need to use the change of almost complex structure computation
from Lemma 8.3. Let Js be an almost complex structure which is sufficiently stretched
along c to compute S˙w;z , and let J 0s be an almost complex structure which is sufficiently
stretched along c0 to compute S˙w0;z0 , and assume that both are stretched sufficiently
so that the change of almost complex structure map ˆJ 0s!Js

takes the form described
in Lemma 8.3. We wish to compute S�w;z ı‰z0 ıˆJ 0s!Js

ıSCw0;z0 .

Let �˙ denote the intersection points of ˛s \ˇ0 and let .� 0/˙ denote the intersection
points of ˛0s and ˇ0

0
.

˛s

˛0s
ˇ0

ˇ0
0

.� 0/C

�C

z w z0 w0 z00

c c0

Figure 12: A diagram for Lemma 10.1 when we have another basepoint z00

on the link component containing w; z; w0 and z0 . The curves ˛s and ˛0s
each bound disks, and ˛s; ˛

0
s; ˇ0; ˇ

0
0

do not intersect any other ˛– or ˇ–
curves.

Using the analysis in Proposition 5.3, we see that for Js there are exactly two domains
which are the domain of Maslov index 1 disks � which support holomorphic represen-
tatives with nz0.�/ > 0. These domains are shown in Figure 13. Also every homology
disk � which has one of these domains has # �MJs

.�/D 1.

We wish to show that S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0 D .&0/� , where &0 is the diffeo-

morphism induced by simply pushing w and z to w0 and z0 , respectively. To this end,
it is sufficient to show that

.S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0/.x� �

˙/D x� .� 0/˙;

since .&0/�.x� �
˙/D x� .� 0/˙ .

Homology disks with the left domain in Figure 13 yield a contribution to ‰z0 of

x� �˙ � .� 0/C �! x� �˙ � .� 0/�:

Homology disks with the right domain in Figure 13 yield a contribution to ‰z0 of

x� �C � .� 0/˙ �! x� �� � .� 0/˙:
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˛s

˛0s
ˇ0

ˇ0
0

.� 0/C
�C

z w z0 w0 z00

c

˛0s

˛s

ˇ0

ˇ00

.� 0/C
�C

z w z0 w0 z00

c

Figure 13: The two domains contributing to ‰z0 in Lemma 10.1 for the
almost complex structure Js stretched first on c0 , and then stretched on c

(possibly much more than on c0 ). Also drawn in are two examples of holo-
morphic disks with those domains.

We first compute .S�w;z ı‰z0 ıˆJ 0s!Js
ı SCw0;z0/.x � �

C/. Using the computation
of ‰z0 above and the computation of ˆJ 0s!Js

from Lemma 8.3, we have that

.S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0/.x� �

C/D .S�w;z ı‰z0 ıˆJ 0s!Js
/.x� �C � .� 0/C/

D .S�w;z ı‰z0/.x� �
C
� .� 0/C/

D S�w;z.x� �
C
� .� 0/�Cx� �� � .� 0/C/

D x� .� 0/C:

We now compute .S�w;z ı ‰z0 ı ˆJ 0s!Js
ı SCw0;z0/.x � �

�/. Once again using our
previous computation of ‰z0 and Lemma 8.3, we have that

.S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0/.x� �

�/D .S�w;z ı‰z0 ıˆJ 0s!Js
/.x� �� � .� 0/C/

D .S�w;z ı‰z0/.x� �
�
� .� 0/C/

D S�w;z.x� �
�
� .� 0/�/

D x� .� 0/�;

completing the proof of the claim if w and z each have at least two basepoints on L.
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We now consider the case that L doesn’t have any basepoints other than w and z . In
this case we just introduce two new basepoints w00; z00 which are on the component of
L n fw;w0; z; z0g which goes from w0 to z . Note that &0 is isotopic relative to fw; zg
to a diffeomorphism which fixes w00 and z00 . Hence .&0/�S

�
w00;z00 D S�w00;z00.&0/� . We

just compute that

.&0/� ' .&0/�.S
�
w00;z00‰z00S

C
w00;z00/ (Lemma 9.6)

' S�w00;z00.&0/�‰z00S
C
w00;z00 (observation above)

' S�w00;z00.S
�
w;z‰z0S

C
w0;z0/‰z00S

C
w00;z00 (previous case)

' .S�w;z‰z0S
C
w0;z0/.S

�
w00;z00‰z00S

C
w00;z00/ (Theorem 8.1, Lemma 9.4)

' S�w;z‰z0S
C
w0;z0 (Lemma 9.6)

as we wanted.

10.2 Sarkar’s formula for moving basepoints in a full twist around
a link component

In this section, we prove Theorem B, which is Sarkar’s conjectured formula for the effect
of moving basepoints on a link component in a full twist around the link component for
the full link Floer complex. The main technical tool is Lemma 10.1, which computes
the effect of moving basepoints on a small arc on a link component. By writing the
diffeomorphism of a full twist as a composition of many smaller moves of the previous
form, we will obtain Sarkar’s formula.

Theorem B Suppose & is the diffeomorphism corresponding to a positive Dehn
twist around a link component K of L. Suppose that the basepoints on K are
w1; z1; : : : ; wn; zn . The induced map &� on CFL1U V .Y;L; �;P; s/ has the P–filtered
Z2ŒUP� chain homotopy type

&� ' idCˆK‰K ;

where

ˆK D

nX
jD1

ˆwj and ‰K D

nX
jD1

‰zj :

To the reader who is not interested in colorings, we note that one can just take PD

w[ jLj, where jLj denotes the components of L.

In this section, we also introduce some new formalism to make the computation easier.
The maps ‰z0 and S˙w;z interact strangely (eg Lemma 9.5), which leads to challenging
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and messy algebra if we are not careful. Suppose that A is an arc on L between two
w–basepoints which share the same color. We define the map

‰A D

X
z2A\z

‰z :

The maps ‰A can be thought of as defining an action of

ƒ�H1.L=.w; �/IZ/

on CFL1U V .Y;L; �;P; s/, where L=.w; �/ denotes the space obtained by identifying
two w–basepoints if they share the same color. This formalism is intriguing, but we
will only have use for maps ‰A for arcs A between w–basepoints of the same color.

Given an arc A between two w–basepoints, we define an endpoint of A to be a
basepoint w such that the sets K nA and xA both contain w (so A has no endpoints if
ADK ).

We now proceed to prove some basic properties of the maps ‰A , all of which are
recastings of previous lemmas proven about the maps ‰z .

Lemma 10.2 We have
S˙w;z‰AC‰AS˙w;z ' 0

as long as w is not an endpoint of A.

Proof This follows immediately from Lemmas 9.4 and 9.5.

Lemma 10.3 If A and A0 are two arcs between w–basepoints, then

‰A‰A0 C‰A0‰A ' 0:

Proof This follows from Lemma 9.2.

Lemma 10.4 If A is an arc on L, then we have

‰2
A ' 0

as filtered equivariant maps.

Proof Simply write ‰A D
P

z2A\z ‰z , multiply out ‰2
A

, then apply Lemmas 9.2
and 9.7.

Lemma 10.5 Suppose A�K is an arc between w–basepoints and let c.A/ denote
the arc K nA. Then

‰K‰A D‰c.A/‰A:
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Proof Write ‰K D‰AC‰c.A/ and then use the previous lemma to compute that

‰K‰A D .‰AC‰c.A//‰A D‰
2
AC‰c.A/‰A D‰c.A/‰A:

Lemma 10.6 If w is an endpoint of A then we have

‰AˆwCˆw‰A ' id :

If w is not an endpoint of A, then we have

‰AˆwCˆw‰A ' 0:

Proof The first claim follows from Lemma 9.1. The second claim follows from
Lemma 10.2 since we can always write ˆwDSCw;zS�w;z for z the basepoint immediately
preceding w on L.

We can now prove Theorem B:

Proof of Theorem B Let w1; z1; : : : wn; zn be the basepoints on K , in the reverse
order that they appear on K according to the orientation of K . Let w0

1
; z0

1
; : : : ; w0n; z

0
n

be new basepoints on K in the interval between zn and w1 . Let Aj be the arc on K

from wj to w0j , as in Figure 14.

K

zn

wn

z2
w2

z1 w1

z0n

w0n

z0
1

w0
1

A1

Figure 14: The basepoints z1; w1; : : : ; zn; wn and z01; w
0
1; : : : z

0
n; w

0
n , and the

arcs Ai

Write

wD fw1; : : : ; wng; zD fz1; : : : ; zng; w0 D fw01; : : : ; w
0
ng; z0 D fz01; : : : ; z

0
ng:

As usual, we write & as a composition of two diffeomorphisms & D &2 ı&1 , where &1

moves the basepoints w and z to w0 and z0 , respectively, and &2 moves the basepoints
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w0 and z0 to w and z , respectively. Let c.Ai/DK nAi . By Lemma 9.6 we have

(7)
nY

jD1

.S�
w0
j
;z0
j

‰AjSC
w0
j
;z0
j

/' id :

Write S˙w;z for
Qn

jD1 S˙wj ;zj , and similarly for S˙w0;z0 . We compute as follows:

&� D .&2/� ı .&1/�

D

� nY
jD1

S�
w0
j
;z0
j

‰c.Aj /S
C
wj ;zj

�� nY
jD1

S�wj ;zj‰AjSC
w0
j
;z0
j

�
(Lemma 10.1)

D S�w0;z0

� nY
jD1

‰c.Aj /

�
SCw;zS

�
w;z

� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 10.2, 8.1)

D S�w0;z0

� nY
jD1

‰c.Aj /

�� nY
jD1

ˆwj

�� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 9.3, 8.1)

D S�w0;z0
X

s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
c.Aj /

�� nY
jD1

‰Aj

�
SCw0;z0 (Lemma 10.6)

D S�w0;z0
X

s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
K

�� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 10.3, 10.5)

D

X
s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
K

�
S�w0;z0

� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 10.2, 9.4)

D

X
s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
K

�
(Equation (7)):

By Lemma 10.4, if s 2 f0; 1gn then� nY
jD1

‰
sj
K

�
' 0

if sj is nonzero for more than one j . Hence the above sum reduces to

&� ' idC
nX

jD1

ˆwi
‰K D idCˆK‰K ;

completing the proof.
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10.3 The map associated to a partial twist around a link component

In this section, we perform an additional basepoint moving map computation and prove
Theorem D. Suppose that L is a multibased link and K is a component with basepoints
z1 , w1 , z2 , w2; : : : ; zn and wn , appearing in that order. Let � be the diffeomorphism
induced by twisting .1=n/th of the way around K , sending zi to ziC1 and wi to wiC1

(with indices taken modulo n). In the case that we pick a coloring .�;P/ where all of
the w–basepoints have the same color, the map � induces a map on the complex

CFL1U V .Y;L; �;P; s/:

We have the following:

Theorem D Suppose that L is an embedded multibased link in Y and K is a compo-
nent of L with basepoints z1; w1; : : : ; zn and wn , appearing in that order. Assume that
n> 1. If � denotes the .1=n/th–twist map, then for a coloring where all w–basepoints
on K have the same color, we have

�� ' .‰z1
ˆw1

‰z2
ˆw2
� � �ˆwn�1

‰zn
ˆwn

/C .ˆw1
‰z2

ˆw2
� � �ˆwn�1

‰zn
/:

Proof Let Ai be the arc from wi to wiC1 , respecting the orientation of K . Let w0

and z0 be new basepoints in the region between zn and w1 . Let A0 denote the arc from
wn to w0 and let A00 denote the arc from w0 to w1 . This is illustrated in Figure 15.

z1
w1

z2

w2

znwn

z0

w0
A1

A0

A00

An

K

Figure 15: The basepoints z1; w1; : : : ; zn; wn; z
0; w0 , and the arcs Ai , A0

and A00 from Theorem D

Using Lemma 10.1 repeatedly, we have that

�� ' .S
�
w0‰A00S

C
w1
/.S�w1

‰A1
SCw2

/ � � � .S�wn�1
‰An�1

SCwn
/.S�wn

‰A0S
C
w0/:
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Using this, we perform the following computation:

�� ' S�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
ˆwn

‰A0S
C
w0 (Lemma 9.3)

' S�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
.‰A0ˆwn

C 1/SCw0 (Lemma 10.6)

' S�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
‰A0ˆwn

SCw0

CS�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
SCw0

' S�w0.‰A00‰A0/ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
ˆwn

SCw0

CS�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
SCw0 (Lemmas 10.6, 10.3)

' S�w0.‰A00‰An
/ˆw1

‰A1
ˆw2
� � �ˆwn�1

‰An�1
ˆwn

SCw0

CS�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
SCw0 (Lemma 10.4)

' .S�w0‰A00S
C
w0/‰An

ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
ˆwn

C .S�w0‰A00S
C
w0/ˆw1

‰A1
ˆw2
� � �ˆwn�1

‰An�1
(Lemma 10.2)

'‰An
ˆw1

‰A1
ˆw2
� � �ˆwn�1

‰An�1
ˆwn

Cˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
(Lemma 9.6);

completing the proof since ‰Ai
D ‰ziC1

on the complex CFL1U V .Y;L; �;P; s/, by
definition.
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Cosimplicial groups and spaces of homomorphisms

BERNARDO VILLARREAL

Let G be a real linear algebraic group and L a finitely generated cosimplicial group.
We prove that the space of homomorphisms Hom.Ln;G/ has a homotopy stable
decomposition for each n � 1 . When G is a compact Lie group, we show that the
decomposition is G –equivariant with respect to the induced action of conjugation by
elements of G . In particular, under these hypotheses on G , we obtain stable decom-
positions for Hom.Fn=�

q
n ;G/ and Rep.Fn=�

q
n ;G/ , respectively, where Fn=�

q
n

are the finitely generated free nilpotent groups of nilpotency class q� 1 .

The spaces Hom.Ln;G/ assemble into a simplicial space Hom.L;G/ . When GDU

we show that its geometric realization B.L;U / , has a nonunital E1–ring space
structure whenever Hom.L0;U.m// is path connected for all m� 1 .

22E15; 55U10, 20G05

1 Introduction

Let G be a topological group and � a finitely generated group. The set of homo-
morphisms Hom.�;G/ can be identified with the ordered tuples .�.a1/; : : : ; �.ar //

in Gr, where �W � ! G is a homomorphism and a1; : : : ; ar is a generating set
for � . Computing the homotopy type of Hom.�;G/ has proven to be rather com-
plicated. Nevertheless, there has been recognition of the stable homotopy type in
several cases. When G � GLn.C/ is a closed subgroup, A Adem and F Cohen [2]
gave a homotopy stable decomposition for Hom.Zn;G/ as wedges of the quotient
spaces Hom.Zk ;G/=S1.Z

k ;G/ with 1 � k � n. Here S1.Z
k ;G/ stands for the

k –tuples with at least one entry equal to the identity matrix I in G . For an arbitrary
finitely generated abelian group � , Adem and J M Gómez [5] gave a similar stable
decomposition for Hom.�;G/, but in this case, G is a finite product of the compact
Lie groups SU.r/;Sp.k/ and U.m/. We show that the homotopy stable decomposition
in [2] (in general, a version of it) still holds if we replace the family fZngn�1 with a
broader object, namely, a finitely generated cosimplicial group L, that is, for every
n � 0, we have a finitely generated group Ln with its coface and codegeneracy
homomorphisms. A specific example of L comes from the finitely generated free
nilpotent groups Fn=�

q
n . Here Fn denotes the free group on n–generators and �q

n

Published: 4 October 2017 DOI: 10.2140/agt.2017.17.3519

http://msp.org
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3520 Bernardo Villarreal

is the qth stage of its descending central series. We work under the assumption
that G is a real linear algebraic group, and with it we can prove that the inclusions
SkC1.Fn=�

q
n ;G/ ,!Sk.Fn=�

q
n ;G/ are closed cofibrations for every 0�k�n, where

Sk.Fn=�
q
n ;G/ denotes the subspace of Hom.Fn=�

q
n ;G/ with at least k entries equal

to the identity element in G . This condition, as stated by Adem, Cohen and E Torres-
Giese [4, page 102], says that real linear algebraic groups have cofibrantly filtered
elements, and they show that this implies Hom.Fn=�

q
n ;G/ splits after one suspension

as wedges of Hom.Fk=�
q

k
;G/=S1.Fk=�

q

k
;G/, where 0�k�n. This decomposition

was known before for some compact and connected Lie groups G (see for example
Cohen and M Stafa [11, Remark 1, page 387 and Theorem 2.13, page 388]).

In a more general setting, let � stand for the category whose objects are the natural
numbers and morphisms are order-preserving maps. If LW � ! Grp is a finitely
generated cosimplicial group and G is a topological group, we get the simplicial
space Hom.L;G/W �op ! Top, where Hom.L;G/n WD Hom.Ln;G/. We give a
homotopy stable decomposition for the n–simplices of Hom.L;G/ as follows. Let
X be a simplicial space. Define S t .Xn/ as the subspace of Xn in which any element
is in the image of the composition of at least t degeneracy maps. We say X is
simplicially NDR when all pairs .S t�1.Xn/;S

t .Xn// are neighborhood deformation
retracts. It was proven by Adem, A Bahri, M Bendersky, Cohen, and S Gitler [1]
that when X is simplicially NDR, each Xn is homotopy stable equivalent to wedges
of S t .Xn/=S

tC1.Xn/ with 0 � t � n. When G is a real linear algebraic group, the
simplicial space X D Hom.L;G/ is simplicially NDR. We prove this by showing that
the subspaces S t .Xn/ are real affine subvarieties of Xn for all 0� t � n and therefore
can be simultaneously triangulated. Define St .Ln;G/ WD S t .Hom.Ln;G//.

Theorem 1.1 Let G be a real linear algebraic group, and L a finitely generated
cosimplicial group. For each n, there are natural homotopy equivalences

‚.n/W †Hom.Ln;G/'
W

0�k�n†.Sk.Ln;G/=SkC1.Ln;G//:

The free groups Fn assemble into a cosimplicial group, which we denote by F . In this
case Hom.F;G/ is NG , the nerve of G seen as a topological category with one object,
which is also the underlying simplicial space of a model of the classifying space BG .
For each n, we take quotients Fn=Kn by normal subgroups Kn that are compatible with
coface and codegeneracy homomorphisms of F to get finitely generated cosimplicial
groups, denoted by F=K . The induced simplicial spaces are more easily described
since there is a simplicial inclusion Hom.F=K;G/�NG . Fixing q > 0, the family of
subgroups �q

n arising from the descending central series of Fn is compatible with F ,
and induces the finitely generated cosimplicial group F=�q . Adem, Cohen and Torres-
Giese [4] conjectured that the closed subgroups of GLn.C/ have cofibrantly filtered
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elements and thus the homotopy stable decomposition holds. Applying Theorem 1.1 to
F=�q allows us to prove the following version of the conjecture.

Corollary 1.2 If G is a Zariski closed subgroup of GLn.C/, then there are homotopy
equivalences for the cosimplicial group F=�q ,

†Hom.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Hom.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
for all n and q .

For any finitely generated cosimplicial group L, conjugation under elements of G gives
Hom.Ln;G/ a G –space structure. Moreover, if G is a real algebraic linear group, then
it has a G –variety structure. The subspaces S t .Hom.Ln;G// are subvarieties that are
invariant under the action of G for all 0 � t � n. Using techniques from D H Park
and D Y Suh [21], when G is a compact Lie group, we show that Hom.Ln;G/ has a
G–CW–complex structure, where each S t .Hom.Ln;G// is a G–subcomplex. This
allows us to prove the equivariant version of the previous theorem. Let Rep.Ln;G/ and
S t .Ln;G/ denote the orbit spaces of Hom.Ln;G/ and S t .Hom.Ln;G//, respectively.

Theorem 1.3 Let G be a compact Lie group. Then, for each n, ‚.n/ in Theorem 1.1
is a G–equivariant homotopy equivalence, and in particular we get homotopy equiva-
lences

†Rep.Ln;G/'
W

1�k�n†.Sk.Ln;G/=SkC1.Ln;G//:

Applying this to the cosimplicial group F=�q as in Corollary 1.2, we obtain

†Rep.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Rep.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
:

In the second part of this paper we study the geometric realization of Hom.L;G/ for
a finitely generated cosimplicial group, which we denote by B.L;G/. We show that
the set of 1–cocycles of L, denoted by Z1.L/, is in one-to-one correspondence with
cosimplicial morphisms F !L. With this we show that any 1–cocycle of L defines
a principal G –bundle over B.L;G/.

When GDU D colimm U.m/ we show that B.L;U / has an I–rig structure, that is, if
I stands for the category of finite sets and injections, the functor B.L;U._//W I!Top
is symmetric monoidal with respect to both symmetric monoidal structures on I . Using
the machinery developed in [7] by Adem, Gómez, J Lind and U Tillman, we prove:

Theorem 1.4 Let L be a finitely generated cosimplicial group and suppose that the
space Hom.L0;U.m// is path connected for all m� 1. Then B.L;U / is a nonunital
E1–ring space.

This theorem is also true if we replace U by SU, Sp, SO or O .

Algebraic & Geometric Topology, Volume 17 (2017)



3522 Bernardo Villarreal

Acknowledgements I would like to thank A Adem for his supervision and advice
throughout this work. O Antolín Camarena for his useful input with the details of
this paper. I would also like to thank M Bergeron, F Cohen and J M Gómez for their
comments on an earlier version. I was supported by a CONACyT fellowship.

2 Homotopy stable decompositions

2.1 Spaces of homomorphisms

Let G be a topological group and � a finitely generated group. Any homomorphism
�W �! G is uniquely determined by .�.1/; : : : ; �.n// 2 Gn when 1; : : : ; n 2 �

is a set of generators. On the other hand, if we fix a presentation of � , then an n–tuple
.g1; : : : ;gn/2Gn will induce an element in Hom.�;G/ whenever fgig

n
iD1

satisfy the
relations in the presentation of � . Thus, there is a one-to-one correspondence between
the subset of such n–tuples in Gn and Hom.�;G/. Topologize Hom.�;G/ with the
subspace topology on Gn .

Lemma 2.1 Let 'W �! � 0 be a homomorphism of finitely generated groups. If G

is a topological group, then '�W Hom.� 0;G/! Hom.�;G/ is continuous.

Proof Suppose � D ha1; : : : ; ar j Ri and � 0 D hb1; : : : ; bm j R
0i. Recall that the

induced map '�W Hom.� 0;G/! Hom.�;G/ is given by

.�.b1/; : : : ; �.bm// 7!
�
�.'.a1//; : : : ; �.'.ar //

�
for �W � 0!G . For any i , '.ai/D b

ni1

i1
� � � b

niqi

iqi

. By fixing one presentation for each
'.ai/ we get that '� is given by

.�.b1/; : : : ; �.bm// 7! .�.b
n11

11
� � � b

n1q1

1q1

/; : : : ; �.b
nr1
r1
� � � b

nrqr
rqr

//

D .�.b11
/n11 � � � �.b1q1

/
n1q1 ; : : : ; �.br1

/nr1 � � � �.brqr
/nrqr /:

Therefore '� is the restriction of the map Gm!Gr given by

.g1; : : : ;gm/ 7! .g
n11

11
� � �g

n1q1

1q1

; : : : ;g
nr1
r1
� � �g

nrqr
rqr

/;

which is continuous.

In particular, this lemma tells us that given any two presentations of � , we get an
isomorphism 'W �! � and hence a homeomorphism '� between the induced spaces
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of homomorphisms. Therefore the topology on the space of homomorphisms does not
depend on the choice of presentations.

Recall that an affine variety is the zero locus in kn of a family of polynomials on
n variables over a field k . Throughout this paper we will focus only on k DR. An
affine variety that has a group structure with group operations given by polynomial
maps, ie maps f D .f1; : : : ; fn/, where each fi is a polynomial, is called a linear
algebraic group. For example, consider any matrix group. It is easy to check that matrix
multiplication is in fact a polynomial map. For the inverse operation of matrices, it is
easier to think of matrix groups as subgroups of SL.n;R/. Any matrix A in SL.n;R/
satisfies A�1 D C t , the transpose of the cofactor matrix C of A. Since the cofactor
matrix is described only in terms of minors of A, the map A 7! C t is a polynomial
map. In fact, this is the general example, since it can be shown that any linear algebraic
group is isomorphic to a group of matrices (see for example [15, page 63]).

Lemma 2.2 Let G be a linear algebraic group; then for any finitely generated group � ,
Hom.�;G/ is an affine variety. Moreover, if ' is a homomorphism of finitely generated
groups, then '� is a polynomial map.

Proof Suppose � is generated by 1; 2; : : : ; r and has a presentation fp˛g˛2ƒ .
Each p˛ is of the form 

n1

k1
� � � 

nq

kq
D e with nj 2 Z and kl

2 f1; : : : ; r g for all
1� j � q . For any homomorphism �W �!G and any such relation p˛ , we have

�.p˛/D �.
n1

i1
� � � 

nq

iq
/D �.i1

/n1 � � � �.iq
/nq D I;

the identity matrix in G . Since products and inverses in G are given in terms of poly-
nomials, this sets up a family of polynomial relations fy˛;i;j g˛;i;j , where each y˛;i;j
is induced by �.p˛/i;j D ıij , the .i; j /–entry of the matrix equality �.p˛/D I . These
relations do not depend on � , only on p˛ , in the sense that any r –tuple .g1; : : : ;gr /2G

satisfying fy˛;i;j g˛;i;j , ie
.g

n1

i1
� � �g

nq

iq
/i;j D ıij

for all ˛ 2ƒ and 1� i; j � n, is an element of Hom.�;G/. Adding the polynomial
relations fy˛;i;j g˛2ƒ to the ones describing Gr defines Hom.�;G/ as an affine variety.

For the second part, recall from the proof of Lemma 2.1, that '� is defined in terms of
products and inverses of matrices and thus is a polynomial map.

Similarly, this lemma tells us that the affine variety structure on Hom.�;G/ does not
depend on the presentation of � . Indeed, any isomorphism of groups will induce an
isomorphism of affine varieties.
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2.2 Triangulation of semialgebraic sets

Definition 2.3 A real semialgebraic set is a finite union of subsets of the form

fx 2Rn
j fi.x/ > 0 and gj .x/D 0 for all i and j g;

where fi.x/ and gj .x/ are a finite number of polynomials with real coefficients.

Using Hilbert’s basis theorem, all affine varieties over R are real semialgebraic sets.
Indeed, the zero locus ideal of an affine variety will be finitely generated and thus the
affine variety can be carved out by finitely many polynomials.

What makes semialgebraic sets more interesting is that images of semialgebraic sets
in Rn under a polynomial map Rn ! Rm are semialgebraic sets in Rm (see [14,
page 167]), as opposed to affine varieties and regular maps.

Let M and N be semialgebraic subsets of Rm and Rn , respectively. A continuous
map f W M ! N is said to be semialgebraic if its graph is a semialgebraic set in
Rm �Rn . The next result is proven in [14, page 170].

Proposition 2.4 Given a finite system of bounded semialgebraic sets Mi in Rn , there
is a simplicial complex K in Rn and a semialgebraic homeomorphism kW jKj!

S
M i ,

where each Mi is a finite union of sets k.int j� j/ with � 2K .

Remark 2.5 Proposition 2.4 can be stated without the boundedness condition and the
details can be found in [21, Theorem 2.12], where they add the hypothesis that

S
Mi

is closed in Rn .

In the next sections, we will be using this last result in its full power, but a first application
is that any affine variety Z can be triangulated, that is, there exists a simplicial complex
K and a homeomorphism jKj ŠZ . With Lemma 2.2 and Proposition 2.4 we prove
the following.

Corollary 2.6 Let � be a finitely generated group and G a real linear algebraic group.
Then Hom.�;G/ is a triangulated space.

2.3 Simplicial spaces and homotopy stable decompositions

Let � be the category of finite sets Œn�Df0; 1; : : : ; ng with morphisms order preserving
maps f W Œn�! Œm�. It can be shown that all morphisms in this category are generated by
composition of maps, denoted by d i W Œn�1�! Œn� and si W ŒnC1�! Œn� for 0� i � n.
These maps are determined by the relations
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dj d i
D d idj�1 if i < j ;

sj si
D si�1sj if i > j ;

sj d i
D

8<:
d isj�1 if i < j ;

Id if i D j or i D j C 1;

d i�1sj if i > j C 1;

which are called cosimplicial identities. For any category C , let C op denote its opposite
category. A functor

X W �op
! Top

is called a simplicial space. Here Top stands for k –spaces, ie topological spaces
where each compactly closed subset is closed. We write Xn WDX.Œn�/ and the maps
di DX.d i/ and si DX.si/ are called face and degeneracy maps, respectively.

Fix n. Define S0.Xn/DXn and, for 0< t � n,

S t .Xn/D
[
Jn;t

si1
ı � � � ı sit

.Xn�t /;

where sij W Xn�j !Xn�jC1 is a degeneracy map, 1� i1 < � � �< it � n is a sequence
of t numbers between 1 and n, and Jn;t stands for all possible sequences. This defines
a decreasing filtration of Xn ,

Sn.Xn/� Sn�1.Xn/� � � � � S0.Xn/DXn:

For each n there is a homotopy decomposition of †Xn in terms of the quotient spaces
Sk.Xn/=S

kC1.Xn/ with k � n. To do this we need the following.

Let A � Z be topological spaces. Recall that .Z;A/ is an NDR pair if there exist
continuous functions

hW Z � Œ0; 1�!Z; uW Z! Œ0; 1�

such that the following conditions are satisfied:

1. AD u�1.0/.

2. h.z; 0/D z for all z 2Z .

3. h.a; t/D a for all a 2A and all t 2 Œ0; 1�.

4. h.z; 1/ 2A for all z 2 u�1.Œ0; 1//.

Examples of NDR pairs are pairs consisting of CW–complexes and subcomplexes.
Indeed, if Z is a CW–complex and A�Z a subcomplex, then the inclusion A ,!Z

is a cofibration, which is equivalent to a retraction X � I to A� I [X � f0g relative
to A� f0g.
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When X is a simplicial space, we call X simplicially NDR if .S t�1.Xn/;S
t .Xn//

is an NDR pair for every n and t � 1. The following result can be found in [1,
Theorem 1.6].

Proposition 2.7 Let X be a simplicial space, and suppose X is simplicially NDR.
Then for every n� 0 there is a natural homotopy equivalence

‚.n/W †Xn '
W

0�k�n†.S
k.Xn/=S

kC1.Xn//:

For each n, the map ‚.n/ is natural with respect to morphisms of simplicial spaces,
that is, natural transformations X ! Y .

2.4 Cosimplicial groups, 1–cocycles and Hom.L; G /

Definition 2.8 Let Grp denote the category of groups. A functor LW �! Grp is
called a cosimplicial group. The homomorphisms d i D L.d i/ and si D L.si/ are
called coface and codegeneracy homomorphisms, respectively. We say that L is a
finitely generated cosimplicial group if each Ln is finitely generated.

There are two canonical finitely generated cosimplicial groups that arise from finitely
generated free groups.

Definition 2.9 Define F W � ! Grp as follows: set F0 D feg and for n � 1 let
Fn D ha1; : : : ; ani, the free group on n generators. The coface homomorphisms
d i W Fn�1! Fn are given on the generators by

d0.aj /D ajC1;

d i.aj /D

8<:
aj if j < i;

aj ajC1 if j D i;

ajC1 if j > i;

for 1� i � n� 1;

dn.aj /D aj I

and the codegeneracy homomorphisms si W FnC1! Fn by

si.aj /D

8<:
aj if j � i;

e if j D i C 1;

aj�1 if j > i C 1;

for 0� i � n.
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Definition 2.10 Define F W �! Grp as Fn WD ha0; : : : ; ani for any n � 0; coface
and codegeneracy homomorphisms xd i W Fn�1!Fn and xsi W FnC1!Fn , respectively,
are given on the generators by

xd i.aj /D

�
aj if j < i;

ajC1 if j � i;
and xsi.aj /D

�
aj if j � i;

aj�1 if j > i;

for all 0� i � n.

Definition 2.11 We will say that a family of normal subgroups Kn�Fn is compatible
with F if d i.Kn�1/ � Kn and si.KnC1/ � Kn for all n and all i . Similarly we
define compatible families of F .

Given fKngn�0 a compatible family with F , we get induced homomorphisms

Fn�1
d i

//

��

Fn

��

Fn�1=Kn�1
d i

// Fn=Kn

FnC1
si

//

��

Fn

��

FnC1=KnC1
si

// Fn=Kn

Define
F=KW �!Grp

as .F=K/nDFn=Kn with coface and codegeneracy maps the quotient homomorphisms
d i and si , respectively. This way F=K is a finitely generated cosimplicial group.
Similarly, with a compatible family fKngn�0 of F , we can define F=KW �!Grp.

Example 2.12 We describe two families of finitely generated cosimplicial groups that
can be constructed using F=K and F=K through the commutator subgroup.

� Let A be a group, define inductively �1.A/DA and �qC1.A/D Œ�q.A/;A� for
q > 1. The descending central series of A is

�q.A/E � � �E �2.A/E �1.A/DA:

Given a homomorphism of groups �W A!B , we have �Œa; a0�D Œ�.a/; �.a0/� for all
a; a0 2A, so that

�.�q.A//� �q.B/:

Taking A D Fn , and writing �
q
n WD �q.Fn/, we have that the family of normal

subgroups f�q
n gn�0 is compatible with di and si . Thus we can define F=�q as

.F=�q/n D Fn=�
q
n for all q and 1 � i � n. In particular, for q D 2, we obtain

Fn=�
2
n D Zn for all n� 0.
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� Another example using the commutator is the derived series of a group A,

A.q/ E � � �E A.1/ E A.0/ DA;

where A.iC1/D ŒA.i/;A.i/�. Again, �.A.q//�B.q/ for any homomorphism �W A!B .
Thus F=F .q/ , where .F=F .q//n D Fn=F

.q/
n defines a finitely generated cosimplicial

group.

Similarly, F
.q/
nC1

; �
q
nC1
�Fn define compatible families of F and we obtain the finitely

generated cosimplicial groups F=�
q
�C1

and F=F
.q/
�C1

.

Example 2.13 Here is one example of a cosimplicial group that does not come from
a compatible family. Let L0 D†2 D h�i and L1 D†3 D h�1; �2i and define coface
homomorphisms

L0
d i

�!L1 for i D 0; 1

by d0.�/D �2 and d1.�/D �1 . The codegeneracy homomorphism s0W L1!L0 is
given by s0.�1/D s0.�2/D � . This defines a 1–truncated cosimplicial group, which
we denote by †2;3 , that is, a functor †2;3W ��1! Grp. Here ��1 stands for the
full subcategory of � with objects Œ0� and Œ1�. We can extend †2;3 to � by using its
left Kan extension.

For our purposes we describe the second stage of this extension: We have that

L2 D ha; b; c j a
2
D b2

D c2; abaD bab; acaD cac; bcb D cbci;

coface homomorphisms
L1

d i

�!L2 for i D 0; 1; 2

are given by
d0.�1/D a; d1.�1/D c; d2.�1/D c;

d0.�2/D b; d1.�2/D b; d2.�2/D a;

and codegeneracy homomorphisms

L1
si

 �L2 for i D 0; 1

by
s0.a/D s0.c/D �1; s1.a/D s1.b/D �2

s0.b/D �2; s1.c/D �1:

Remark 2.14 The symmetric groups †n can not be assembled all together as a
cosimplicial group. This is because there are no surjective homomorphisms †n!†n�1

for n � 5 to use as codegeneracy homomorphisms. Indeed, given a homomorphism
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'W †n!†n�1 , ker' is a normal subgroup of †n , that is, An or †n . Thus the image
of ' is either the identity element or a subgroup of order 2.

We describe another method of constructing new cosimplicial groups that arise from
a given one. To do this, we recall a concept that was originally introduced in [10,
page 284] to define cohomotopy groups (and pointed sets) for a cosimplicial group.

Definition 2.15 Let L be a cosimplicial group. The elements b in L1 satisfying

d2.b/d0.b/D d1.b/(1)

are called 1–cocycles of L. The set of 1–cocycles is denoted by Z1.L/.

If b is a 1–cocycle, then applying s0 to (1), we obtain s0d2.b/D e and, using the
cosimplicial identities, d1s0.b/ D e , which implies b 2 ker s0 . Define inductively
bn 2Ln as bnC1 D dnC1.bn/, where b1 WD b . These elements will satisfy

d2.bn/d
0.bn/D d1.bn/;(2)

bn 2 ker s0(3)

for all n� 1. Given a 1–cocycle b , we build a new cosimplicial group.

Construction of Lb Define LbW �!Grp as follows. For each n�0, Lb
n WDF0�Ln

with codegeneracy homomorphisms si
b
WD Id�si , i�0. The coface homomorphisms are

d i
b
WD Id�d i for i > 0. To define d0

b
consider the homomorphism knW F0!F0�Ln

given by kn.a0/ D a0bn for all n � 0, then d0
b
WD kn � d0 . There is a canonical

inclusion
�bW L ,!Lb

induced by the inclusions Ln ,! F0 �Ln .

Example 2.16 � When b D e , Le D F0 �L, where F0 represents the constant
cosimplicial group with value F0 .

� Consider the finitely generated free cosimplicial group F . The codegeneracy
homomorphism s0W F1! F0 is the constant map and thus ker s0 D F1 D ha1i. Also

d1.a1/D a1a2 D d2.a1/d
0.a1/;

and hence a1 2Z1.F /. Note that any other power of a1 will fail to satisfy the cocycle
condition (1), that is Z1.F / D fe; a1g. Let FC D Fa1 . We denote the canonical
inclusion by �CW F ,! FC . A similar argument shows that Z1.F=�q/D fe; a1g for
q > 2. We also let .F=�q/a1 D F=�qC and �CW F=�q ,! F=�qC .
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� Consider F=�2 . As in the previous example, ker s0Dha1i, but since F2=�
2
2
DZ2

all powers of a1 will satisfy the cocycle condition, that is, Z1.F=�2/ D Z. Thus
for each positive m 2 Z we get nonisomorphic cosimplicial groups .F=�2/m and
inclusions �mW F=�2 ,! .F=�2/m . When mD 1, we write .F=�2/1 D F=�2C .

� Consider †2;3 , defined in Example 2.13. The product �1�2 2 .†2;3/1 satisfies

d2.�1�2/d
0.�1�2/D caab D cb D d1.�1�2/

and thus �1�2 is a 1–cocycle and we get the cosimplicial group †�1�2

2;3
.

Now we turn our attention to spaces of homomorphisms. For any topological group G ,
its underlying group structure defines the functor

HomGrp._;G/W Grpop
! Set:

If L is a cosimplicial group, the composition of functors HomGrp._;G/L, which we
denote by Hom.L;G/, defines a simplicial set. Whenever L is finitely generated, for
each n we can topologize Hom.Ln;G/ in a way that the induced face and degeneracy
maps are continuous. Therefore we get the simplicial space Hom.L;G/W �op! Top.
We list some known simplicial spaces:

� Hom.F;G/DNG , the nerve of G as a category with one object.

� Hom.FC;G/D .EG/� , Steenrod’s model for the total space of the universal
principal G –bundle pW EG! BG , where p is induced by the simplicial map
��CW Hom.FC;G/! Hom.F;G/.

� Hom.F=�q;G/D .B.q;G//� , the underlying simplicial space of the classifying
space B.q;G/ defined in [4], [6] (for q D 2) and [7].

� Hom.F=�qC;G/ D .E.q;G//� , the underlying simplicial space of the total
space of the universal bundle pW E.q;G/!B.q;G/ also defined in [4], [6] (for
qD2) and [7]. Again, p is induced by ��CW Hom.F=�qC;G/!Hom.F=�q;G/.

� Hom.F ;G/DN G , the nerve of the category G that has G as space of objects
and a unique morphism between any two objects.

Remark 2.17 Consider the morphism of cosimplicial groups  W F ! F given on
generators by  n.ai/ D ai�1a�1

i , where  nW Fn ! Fn . Let G be a topological
group. The induced map  W N G!NG is the underlying simplicial map of Segal’s
fat geometric realization model for the universal G –bundle. A detailed version of this
can be seen in [13, page 66].
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2.5 Homotopy stable decomposition of Hom.Ln; G /

Lemma 2.18 Let G be a linear algebraic group and L a finitely generated cosimplicial
group. Let si W LnC1 ! Ln be a codegeneracy map. Then, the image of si WD

.si/�W Hom.Ln;G/! Hom.LnC1;G/ is a subvariety for all 0� i � n.

Proof Suppose LnC1 D ha1; : : : ; ar i. The homomorphism si W LnC1! Ln is sur-
jective, so Ln ŠLnC1= ker si . We can describe ker si D hfb˛g˛2ƒi, where each b˛
is a fixed product of powers of generators ak . Let �W LnC1!G be a homomorphism.
Then .�.a1/; : : : ; �.ar // is in si.Hom.Ln;G// if and only if �.b˛/D I for all ˛ 2ƒ.
That is, these r –tuples in Hom.LnC1;G/ are determined by the polynomial equations
f�.b˛/D Ig˛2ƒ and hence they build up an affine variety.

For a cosimplicial group L, write St .Lk ;G/ WD S t .Hom.Lk ;G//.

Theorem 2.19 Let G be a real algebraic linear group, and L a finitely generated
cosimplicial group. Then for each n we have homotopy equivalences

‚.n/W †Hom.Ln;G/'
W

0�k�n†.Sk.Ln;G/=SkC1.Ln;G//:

Proof Fix n. Using Proposition 2.7, we only need to show that

.St�1.Ln;G/;St .Ln;G//

is a strong NDR pair for all 0� t � n. By Lemma 2.18, each sj .Hom.Lk ;G// is an
affine variety for all 0� j ; k � n. Then, for all t � 1, the finite union

St .Ln;G/D
[
Jn;t

si1
ı � � � ı sit

.Hom.Ln�t ;G//

is also an affine variety. Consider the natural filtration

Sn.Ln;G/� Sn�1.Ln;G/� � � � � S0.Ln;G/D Hom.Ln;G/:

The union
S

t St .Ln;G/DHom.Ln;G/ is an affine variety, and therefore is a closed
subspace of some euclidean space. By Remark 2.5, Hom.Ln;G/ can be triangulated in
a way that each St .Ln;G/ is a finite union of interiors of simplices. Since St .Ln;G/

are closed subspaces, it follows that under the triangulation they are subcomplexes.
This way the inclusions St .Ln;G/� St�1.Ln;G/ are cofibrations and hence NDR
pairs. Therefore Hom.L;G/ is simplicially NDR.

Lemma 2.20 Let G be a topological group and consider the cosimplicial group F=�q .
Then

Sk.Fn=�
q
n ;G/=SkC1.Fn=�

q
n ;G/Š

W.n
k/Hom.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

for all 1� k � n.
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Proof Let 1� i1 < � � �< in�k � n. Consider the projections

Pi1;:::;im
W Gn

!Gn�k

given by .x1; : : : ;xn/ 7!.xi1
; : : : ;xin�k

/. We claim that the image of Hom.Fn=�
q
n ;G/

under this projection lies on Hom.Fn�k=�
q

n�k
;G/. Indeed, each projection Pi1;:::;im

is induced by the homomorphism 'W Fn�k ! Fn given on generators by aj D aij .
Since '.�q

n�k
/ � �

q
n we get the homomorphism x'W Fn�k=�

q

n�k
! Fn=�

q
n which

proves our claim. Assemble the restrictions of Pi1;:::;im
to Hom.Fn=�

q
n ;G/ so that

we build up a continuous map

�nW Hom.Fn=�
q
n ;G/!

Y
Jn;k

Hom.Fn�k=�
q

n�k
;G/

given by
.x1; : : : ;xn/ 7! fPi1;:::;im

.x1; : : : ;xn/g.i1;:::;in�k/2Jn;k
;

where Jn;k runs over all possible sequences 1� i1 < � � �< in�k � n of length n� k .
Since all sequences .i1; : : : ; in�k/ 2 Jn;k are disjoint, the restriction

�njk W Sk.Fn=�
q
n ;G/!

W
Jn;k

Hom.Fn�k=�
q

n�k
;G/=S1.Fk=�

q

k
;G/

has a continuous inverse
W

Jn;k
sj1
ı � � � ı sjk

, where 1 � j1 < � � � < jk � n and
fj1; : : : ; jkg\ fi1; : : : ; in�kg D∅. Therefore �njk is a homeomorphism for every k .
Finally, note that SkC1.Fn=Kn;G/ is mapped to

W
S1.Fn�k=�

q

n�k
;G/. Taking

quotients we get the desired homeomorphism.

The next corollary was first conjectured in [4, page 12] for closed subgroups of GLn.C/.
Since any real linear algebraic group is Zariski closed we have the following version
of the conjecture, which follows from Theorem 2.19 and Lemma 2.20.

Corollary 2.21 If G is a Zariski closed subgroup of GLn.C/, then there are homo-
topy equivalences for the cosimplicial group F=�q ,

‚.n/W †Hom.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Hom.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
for all n and q .

Example 2.22 Let G D SU.2/ and consider F=�q .

� The case q D 2 .Fn=�
2
n D Zn/ has been largely studied (for example [3; 9; 12]).

In this example we follow [3, pages 482–484]. First a few preliminaries. Let T be
the maximal torus of G that consists of all diagonal matrices

�
�
0

0
x�

�
with � 2 S1 and

W DN.T /=T DfŒw�; eg its Weyl group, where wD
�

0
1
�1

0

�
. The group W acts on T
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via Œw��tDwtw�1D t�1 and using left translation on G=T we get a diagonal action on
G=T �T n . Let tŠ iR be the Lie algebra of T with the induced action of W . There is
an equivariant homeomorphism t!T �fIg so that G=T �W .T �fIg/nŠG=T �W tn .
The quotient map G=T ! .G=T /=W ŠRP2 is a principal W –bundle and we can
take the associated vector bundle pnW G=T �W tn!RP2 . Let �2 be the canonical
vector bundle over RP2 ; then we can identify pn with n�2 , the Whitney sum of n

copies of �2 . The pieces in the homotopy stable decomposition before suspending are

Hom.Zn;SU.2//=S1.Z
n;SU.2//Š

�
S3 if nD 1;

.RP2/n�2=sn.RP2/ if n� 2;

where .RP /n�2 is the associated Thom space of n�2 and sn is its zero section. There-
fore,

†Hom.Zn;SU.2//'†
W

nS3
_
W

2�k�n†
�W.n

k/.RP2/k�2=sk.RP2/
�
:

� Let q D 3. An n–tuple .g1; : : : ;gn/ lies in Hom.Fn=�
3
n ;SU.2// if and only if

ŒŒgi ;gj �;gk � D I for all 1 � i; j ; k � n, ie the commutators Œgi ;gj � are central in
the subgroup generated by g1; : : : ;gn . We claim that the center of every nonabelian
subgroup of SU.2/ sits inside f˙Ig. Suppose a and b are two elements in SU.2/
such that Œa; b�¤ I . Then, the cyclic groups hai and hbi are contained in different
tori, say T1 and T2 , respectively. Since the center of ha; bi is abelian it must lie in
the intersection T1\T2 . These two circles can only intersect at f˙Ig, which proves
our claim. Therefore the central elements Œgi ;gj � are in f˙Ig for all 1 � i; j � n.
Consider

Bn.SU.2/; f˙Ig/D
˚
.g1; : : : ;gn/ 2 SU.2/n j Œgi ;gj � 2 f˙Ig

	
;

the space of almost commuting tuples in SU.2/. By the previous observation,

Hom.Fn=�
3
n ;SU.2//D Bn.SU.2/; f˙Ig/:

In [3, pages 485–486], they show that

Bn.SU.2/; f˙Ig/=S1.SU.2/; f˙Ig/

Š Hom.Zn;SU.2//=S1.Z
n;SU.2//_

W
K.n/PU.2/C;

where K.1/ D 0 and K.n/ D 7n

24
�

3n

8
C

1
12

for n � 2. Here S1.SU.2/; f˙Ig/ are
the n–tuples in Bn.SU.2/; f˙Ig/ with at least one coordinate equal to I . Since
PU.2/ŠRP3 and S1.SU.2/; f˙Ig/D S1.Fn=�

3
n ;SU.2// we conclude that

†Hom.Fn=�
3
n ;SU.2//
'†

W
nS3
_
W

2�k�n†
�W.n

k/.RP2/k�2=sk.RP2/_
W

K.k/RP3
C

�
:
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Remark 2.23 For q � 4 we can find nilpotent subgroups of SU.2/ of class q . Indeed,
if �n is a representative in SU.2/ of a primitive nth root of unity, then the subgroup
generated by the set f�2q; wg with w as above, is of nilpotency class q . With this
we can show that the spaces Hom.Fn=�

q
n ;SU.2// for q � 4 have more connected

components than Hom.Fn=�
3
n ;SU.2//. See [8] for more details.

2.6 Equivariant homotopy stable decomposition of Hom.Ln; G /

Let G and H be topological groups and f W G!H a continuous homomorphism. If
L is a finitely generated cosimplicial group then for each n, we have the commutative
diagrams

Hom.Ln;G/
di
//

f�
��

Hom.Ln�1;G/

f�
��

Hom.Ln;H /
di
// Hom.Ln�1;H /

Hom.Ln;G/
si
//

f�
��

Hom.LnC1;G/

f�
��

Hom.Ln;H /
si
// Hom.LnC1;H /

for all n� 0 and all 0� i � n, so that f� is a simplicial map. Conjugation by elements
of G defines a homomorphism G!G , so that Hom.Ln;G/ is a G –space and each
St .Ln;G/ is a G –subspace.

Definition 2.24 Let M be a G–space. We say that M has a G–CW–structure if
there exists a pair .X; �/ such that X is a G–CW–complex and �W X ! M is a
G –equivariant homeomorphism.

We want to show that for all n, Hom.Ln;G/ has a G–CW–complex structure for
which Sn.Ln;G/ � Sn�1.Ln;G/ � � � � � Hom.Ln;G/ are G–subcomplexes. To
show this we slightly generalize some results in [21].

We continue using the techniques of the previous section, so we require G to be a
real linear algebraic group. It is known that any compact Lie group has a unique
algebraic group structure (see [19, page 247]). Assuming G is a compact Lie group,
every representation space of G has finite orbit types (see [20]), so when M is an
algebraic G –variety, the equivariant algebraic embedding theorem [21, Proposition 3.2]
implies that M has finite orbit types. Also, this theorem guarantees the existence of
a G–invariant algebraic map f W M ! Rd for some d such that the induced map
xf W M=G ! f .M / is a homeomorphism and f .M / is a closed semialgebraic set

in Rd [21, Lemma 3.4]. If � W jKj ! M=G is a triangulation, we say that � is
compatible with a family of subsets fDig of M if �.Di/ is a union of some �.int j� j/,
where � 2K and � W M !M=G is the quotient map.
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Proposition 2.25 Let G be a compact Lie group, M0 an algebraic G–variety and
fMj g

n
jD1

a finite system of G –subvarieties of M0 . Then there exists a semialgebraic
triangulation � W jKj !M=G compatible with the collection

fMj .H / jH is a subgroup of GgnjD0;

where Mj .H / D fx 2Mj jGx D gHg�1 for some g 2Gg.

Proof Let H1; : : : ;Hs �G be the orbit types of G on M and f W M !Rd as above.
By [21, Lemma 3.3], all Mj .Hi /

are semialgebraic sets, and therefore all f .Mj .Hi /
/

are also semialgebraic. Since i and j vary on finite sets, we can use Remark 2.5 and
obtain a semialgebraic triangulation

�W jKj ! f .M /D
[
ij

f .Mj .Hi /
/

such that each f .Mj .Hi /
/ is a finite union of some �.int j� j/, where � 2 K . Take

� D xf �1 ı�.

Proposition 2.26 Let G be a compact Lie group. Let M0 be an algebraic G –variety
and fMj g

k
jD1

a finite system of G–subvarieties. Then M0 has a G–CW–complex
structure such that each Mj is a G –subcomplex of M .

Proof Let � W jKj ! M=G be as in Proposition 2.25 and � W M ! M=G the or-
bit map. Let K0 be a barycentric subdivision of K , which guarantees that, for
any simplex �n of K0, ��1.�.�n � �n�1// � Mj .Hn/

for some Hn � G and
0� j � k . Since � jW ��1.�.�n//=G!�n is a homeomorphism and the orbit type of
��1.�.�n��n�1// is constant, by [16, Lemma 4.4] there exists a continuous section
sW �.�n/! Mj such that s ı �.�n ��n�1/ has a constant isotropy subgroup Hn .
Consequently there is an equivariant homeomorphism

��1�.�n
��n�1/ŠG=Hn � .�

n
��n�1/:

Collecting G –cells Gs ı �.�n/ for all simplices of K0 we get a G –CW–structure over
all Mj for 0� j � k .

For a finitely generated cosimplicial group L, let Rep.Ln;G/ WDHom.Ln;G/=G and
S t .Ln;G/ WD St .Ln;G/=G .

Theorem 2.27 Let G be a compact Lie group and L a finitely generated cosimplicial
group. Then, for each n, ‚.n/ from Theorem 2.19 is a G–equivariant homotopy
equivalence, and in particular we get homotopy equivalences

†Rep.Ln;G/'
W

1�k�n†.Sk.Ln;G/=SkC1.Ln;G//:
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Proof Assume G �GLN .R/. Under conjugation by elements of G , Hom.Ln;G/ is
an affine G –variety and by Lemma 2.18 the subspaces Sj .Ln;G/ are G –subvarieties
for all 1� j � n. Hence, by Proposition 2.26, Hom.Ln;G/ can be given a G–CW–
complex structure, where each Sj .Ln;G/ is a G –subcomplex. Similarly, the quotient
Sk.Ln;G/=SkC1.Ln;G/ has a G –CW–complex structure.

To prove that the map ‚.n/ is a G–equivariant homotopy equivalence, first recall
that conjugation by elements of G defines a simplicial action on Hom.L;G/, and by
the naturality of each ‚.n/, the G–equivariance follows. Let H � G be a closed
subgroup. The fixed point spaces Hom.Ln;G/

H and Sk.Ln;G/
H inherit a CW–

complex structure, so that Hom.L;G/H is simplicially NDR. By Proposition 2.7, we
have homotopy equivalences

‚.n;H /W †.Hom.Ln;G/
H /!

W
0�k�n†.Sk.Ln;G/

H =SkC1.Ln;G/
H /

for each n� 1. The fixed points map ‚.n/H agrees by naturality with ‚.n;H / and
thus is a homotopy equivalence. The result now follows from the equivariant Whitehead
theorem.

Corollary 2.28 Let G be a compact Lie group. Then the homotopy equivalences in
Corollary 2.21 are G –equivariant homotopy equivalences, and in particular we get

†Rep.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Rep.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
:

Example 2.29 Let G D SU.2/ and LD F=�q .

� For q D 2, it was proven in [3, page 484] that

Rep.Zn;SU.2//=S1.Z
n;SU.2//' T ^n=W D Sn=†2;

where the action of the generating element on †2 is given by

.x0;x1; : : : ;xn/ 7! .x0;�x1; : : : ;�xn/

for any .x0;x1; : : : ;xn/. Identifying SnD†Sn�1 , we can see the orbit space Sn=†2

as first taking antipodes, and then suspending, that is, Sn=†2 Š†RPn�1 . Thus

†Rep.Zn;SU.2//'
W

1�k�n†
�W.n

k/†RPk�1
�
:

� Let q D 3. We have shown that Rep.Fn=�
3
n ;SU.2//D Bn.SU.2/; f˙Ig/=G and

using the description of these spaces given in [3, p. 486], the stable pieces are

Rep.Fn=�
3
n ;SU.2//=S1.Fn=�

3
n ;SU.2//'

�W
K.n/S

0
�
_†RPn�1;

where K.n/ is as in Example 2.22. Therefore

†Rep.Fn=�
3
n ;SU.2//'

W
1�k�n†

�W.n
k/
�W

K.k/S
0
�
_†RPk�1

�
:
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3 Homotopy properties of B.L; G /

3.1 Geometric realization of Hom.L; G /

Definition 3.1 Let L be a finitely generated cosimplicial group and G a topological
group. Let

B.L;G/ WD jHom.L;G/j:

For the cosimplicial groups F=�q we get that B.F=�q;G/DB.q;G/, the classifying
space for G–bundles of transitional nilpotency class less than q . A natural question
is whether or not the space B.L;G/ is a classifying space for a specific class of
G –bundles.

Lemma 3.2 Let L be a cosimplicial group. The 1–cocycles of L are in one-to-one
correspondence with cosimplicial morphisms F !L.

Proof Suppose b is a 1–cocycle. Any generator aj 2 Fn is in the image of a1 2 F1

under composition of coface homomorphisms, eg aj D .d
0/j�1.d2/n�j .a1/ for all

j � 1. Define hnW Fn ! Ln as hn.aj / D .d
0/j�1.d2/n�j .b/. To show that h is

cosimplicial, consider the diagrams

Fn�1

hn�1

//

d i

��

Ln�1

d i

��

Fn

hn

// Ln

FnC1

hnC1

//

si

��

LnC1

si

��

Fn

hn

// Ln

We prove the case of coface homomorphisms. Let aj 2 Fn�1 . On one side we get

hnd i.aj /D

8<:
.d0/j�1.d2/n�j .b/ if j < i;

.d0/j�1.d2/n�j .b/.d0/j .d2/n�j�1.b/ if j D i;

.d0/j .d2/n�j�1.b/ if j > i;

and applying the cosimplicial identity dkd l D d ldk�1 , where k > l , we obtain

d ihn�1.aj /D

8<:
.d0/j�1.d i�jC1/.d2/n�j�1.b/ if j < i;

.d0/j�1.d1/.d2/n�j�1.b/ if j D i;

.d0/j .d2/n�j�1.b/ if j > i:

We need to analyze two cases:

� j < i implies that i � j C 1� 2, thus d i�jC1.d2/n�j�1 D .d2/n�j .

� j D i . Then the equality follows from (2) applied to .d2/n�j�1.b/D bn�j .
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Commutativity for the codegeneracy homomorphisms is similar, but using the cosimpli-
cial identity skd l D d lsk�1 with k > l and condition (3) above. Hence h is uniquely
determined by b . Given a morphism F !L, the element b is given by the image of
a1 2 F1 .

Proposition 3.3 Let L be a cosimplicial group and hbW F ! L be the morphism
defined on F1!L1 as a1 7! b . Then the diagram

F
� � �C //

hb

��

FC

Id�hb
��

L
� � �b // Lb

is a pushout of cosimplicial groups.

Proof Suppose f W FC!K and gW L!K are morphisms such that f ı �D g ıhb .
Define hW Lb!K on each Lb

nDF0�Ln as hn.a0/D f
n.a0/ (here f n is evaluated

on a0 2 F0 � Fn ) and hn.x/ D gn.x/ for any x 2 Ln . To check that h is in fact
a cosimplicial homomorphism, by construction of Lb and h, we just need to verify
commutativity with coface maps at level i D 0. Consider

Lb
n�1

hn�1

//

d0
b
��

Kn�1

d0

��

Lb
n

hn

// Kn

We only need to see what happens at a0 2Lb
n�1

:

d0hn�1.a0/D d0f n�1.a0/D f
nd0
C.a0/D f

n.a0a1/D f
n.a0/f

n.a1/;

hnd0
C.a0/D hn.a0bn/D f

n.a0/g
n.bn/:

Let b D b1 . By hypothesis, g1.b1/D f
1.a1/. Since

gn.bn/D .d
2/n�1g1.b1/ and f n.a1/D .d

2/n�1f 1.a1/;

the desired equality holds.

Corollary 3.4 Let G be a well-based topological group and L a finitely generated
cosimplicial group. Using the notation above, suppose hbW F!L is a morphism. Then
the inclusion �bW L ,!Lb defines a principal G –bundle j��

b
jW B.Lb;G/! B.L;G/.
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Proof From the pushout diagram in Proposition 3.3, and applying the functors
Hom._;G/ and geometric realization, we obtain the pullback diagram

B.Lb;G/ //

j��
b
j

��

EG

��

B.L;G/
jh�

b
j
// BG

and hence j��
b
j is a principal G –bundle.

Example 3.5 We have seen that there is only one nonconstant homomorphism ha1
D

IdW F ! F . For q > 2 it can be shown that the same is true for L D F=�q ,
where ha1

W F ! F=�q at each n is the quotient homomorphism. The corresponding
B..F=�q/C;G/ is the space E.q;G/ defined in [4, page 94], and jh�a1

jW B.q;G/!

BG is the inclusion. The bundle E.q;G/!B.q;G/ classifies transitionally nilpotent
bundles of class less than q (see [7, Section 5]). The case qD2 is more interesting since
Z1.F=�2/DZ. For mD 1 we obtain B..F=�2/C;G/DE.2;G/ and E.2;G/!

B.2;G/ classifies transitionally commutative bundles (see [6, Section 2]). Since
multiplication by �1 induces a cosimplicial automorphism of F=�2 , all constructions
are equivalent for mD�1. Now let m> 1. The bundle B..F=�2/m;G/! B.2;G/

will classify G –bundles whose transition functions g˛ˇW U˛\Uˇ!G factor through

U˛ \Uˇ
�˛;ˇ

//

g˛ˇ
##

G

m

��

G

where the �˛ˇ are transitionally commutative and m denotes taking the mth power of
elements in G .

3.2 Relation between commutative I–monoids and infinite loop spaces

In this section we recall briefly the notion of I–monoid and how it is related to infinite
loop spaces. This is more widely covered in [7]. Our goal is to use this machinery to
show that, for a finitely generated cosimplicial group L, B.L;U /Dcolimn B.L;U.n//

is a nonunital E1–ring space when Hom.L0;U / is path connected.

Let I stand for the category whose objects are the sets Œ0�D∅ and Œn�Df1; : : : ; ng for
each n� 1, and morphisms are injective functions. Any morphism j W Œn�! Œm� in I
can be factored as a canonical inclusion Œn� ,! Œm� and a permutation � 2†m . This
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category is symmetric monoidal under two different operations. One is concatenation
Œn�t Œm�D ŒnCm� with symmetry morphism the permutation �m;n 2†nCm defined as

�m;n.i/D

�
nC i if i �m;

i �m if i >m;

and identity object Œ0�. The second operation is the Cartesian product Œm�� Œn�D Œmn�

with ��m;n 2†mn given by

��m;n..i � 1/nC j /D .j � 1/mC i;

where 1 � i � m and 1 � j � n. In this case the identity object is Œ1�. Cartesian
product is distributive under concatenation (both left and right).

Definition 3.6 An I–space is a functor X W I! Top. This functor is determined by
the following:

1. A family of spaces fX Œn�gn�0 , where each X Œn� is a †n –space;

2. †n –equivariant structural maps jnW X Œn�!X ŒnC1� (here we consider X ŒnC1�

is a †n –space under the restriction of the †nC1 –action to the canonical inclusion
†n ,!†nC1 ) with the property: for any j W Œn�! Œm� and any �; � 0 2†m whose
restrictions in †n are equal, we have � �x D � 0 �x 2X.j /.X Œn�/.

We say that an I–space X is a commutative I–monoid if it is a symmetric monoidal
functor X W .I;t; Œ0�/! .Top;�; fptg/. Additionally, we say that X is a commutative
I–rig if X is also symmetric monoidal with respect to .I;�; Œ1�/. For the latter
definition we also require X to preserve distributivity.

Definition 3.7 Let C be a small category and Y W C ! Top a functor. Denote by
C Ë Y the category of elements of Y , that is, objects are pairs .c;x/ consisting of an
object c of C and a point x 2 Y .c/. A morphism in C Ë Y from .c;x/ to .c0;x0/ is
a morphism ˛W c! c0 in C satisfying the equation Y .˛/.x/D x0 .

Given Y W C ! Top, with the notation above, if we consider C Ë Y as a topological
category whose space of objects and space of morphisms areG

c2obj.C /

Y .c/ and
G

f 2mor.C /

Y .f /;

respectively, then we have that the homotopy colimit of Y is the classifying space
B.C Ë Y /D hocolimC Y , that is, the realization of the nerve of the category C Ë Y .

Let X denote a commutative I–monoid. The category of elements I Ë X is a permu-
tative category, that is, a symmetric monoidal category where associativity and unit
relations hold strictly. According to [18], the classifying space of a permutative category
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has an E1–space structure, and so we get that hocolimIX has an E1–space structure.
Here we think of an E1–space as a space with an operation that is associative and
commutative up to a system of coherent homotopies. Thus, the group completion
�B.hocolimIX / is an infinite loop space. If X is a commutative I–rig, then I ËX is
a bipermutative category and its classifying space is an E1–ring space (as explained
in [7]), that is, an E1–space with an operation that is associative and commutative (up
to coherent homotopy) and distributive (up to coherent homotopy) over the E1–space
operation.

Consider the subcategory of I consisting of the same set of objects and all isomorphisms.
We denote it by P . The (bi)permutative structure on I Ë X restricts to P Ë X , so
that hocolimP X is also an E1–space (E1–ring space) and its group completion
�B.hocolimP X / is an infinite loop space (E1–ring space). The maps X Œn�! �

induce a map of (bi)permutative categories P Ë X ! P Ë � and therefore a map of
infinite loop spaces (E1–ring spaces)

�X
W �B.hocolimP X /!�B.hocolimP�/:

It follows that the homotopy fiber hofib �X is an infinite loop space (nonunital E1–
ring space). Let X1 WD hocolimNX , where N denotes the subcategory of I with
same set of objects and as arrows the canonical inclusions, and XC1 its Quillen plus
construction applied with respect to the maximal perfect subgroup of �1.X1/. The
following proposition is proved in [7, Theorem 3.1].

Proposition 3.8 Let X W I! Top be a commutative I–monoid. Assume that
� the action of †1 on H�.X1/ is trivial;
� the inclusions induce natural isomorphisms �0.X Œn�/ ' �0.X1/ of finitely

generated abelian groups with multiplication compatible with the Pontrjagin
product and in the center of the homology Pontrjagin ring;

� the commutator subgroup of �1.X1/ is perfect (for each component) and XC1
is abelian.

Then hofib �X 'XC1 , and in particular XC1 is an infinite loop space.

Note that the last two conditions of the previous Proposition are satisfied when each
X Œn� is connected and X1 is abelian. Under these hypothesis X1 has an infinite loop
space structure.

3.3 Nonunital E1–ring space structure of B.L; U /

Our first example and application of the machinery described in the previous section is
showing the classical result

colim
m

U.m/D U
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has an infinite loop space structure. This will allow us to prove nonunital E1–ring
space structures on our spaces of interest.

First, we show that U._/ is a commutative I–rig. Recall that †m �U.m/ as permuta-
tion matrices, so that U.m/ has a †m action. Consider the inclusions

imW U.m/! U.mC 1/; A 7!

�
A 0

0 1

�
;

which are continuous and preserve group structure. The maps im restrict to the canonical
inclusions †m ,!†mC1 , therefore

im.� �A/D im.�/im.A/im.�/
�1
D � � im.A/;

where � 2†m , A 2 U.m/ and on the right-hand side � 2†mC1 . Now let �; � 0 2†r

with m < r and suppose both restrictions to the subset f1; : : : ;mg determine equal
permutations in †m . Let i D ir ı ir�1 ı � � � ı im . Then, for A 2 U.m/,

� � i.A/D

�
.� jm/A.� j

�1
m / 0

0 Ir�m

�
D

�
.� 0jm/A.�

0j�1
m / 0

0 Ir�m

�
D � 0 � i.A/:

Therefore U._/W I!Top is a functor. This I–space has a commutative I–rig structure
as follows. Let ˚m;nW U.m/�U.n/! U.mC n/ denote the block sum of matrices,
which is a group homomorphism. The .m; n/ shuffle map U.nCm/! U.nCm/ is
given by A 7! �m;n �A. We have the commutative diagram

U.m/�U.n/

�

��

˚m;n
// U.mC n/

�m;n

��

U.n/�U.m/
˚n;m

// U.mC n/

where �.A;B/ D .B;A/. Therefore U._/ is a commutative I–monoid. The other
monoidal structure is given by ˝m;nW U.m/�U.n/! U.mn/ the tensor product of
matrices. Indeed, by definition ��m;n � ˝m;n.A;B/D˝n;m�.A;B/, where A 2 U.m/

and B 2 U.n/. Since the image ˚m;n.U.m/�U.n// correspond to direct sum, then
associativity, left and right distributivity over ˝m;n hold.

Now we check the conditions of Proposition 3.8: the action of †m on U.m/ is
homologically trivial since conjugation action on U.m/ is trivial up to homotopy,
U.m/ being path connected. The inclusions im are cellular and hence U._/1 ' U

and since U is an H –space under block sum of matrices, it is abelian. Therefore
U._/1 ' U is an infinite loop space (nonunital E1–ring space).
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Lemma 3.9 Let L be a finitely generated cosimplicial group and G;H real algebraic
linear groups. Let p1W G �H !G and p2W G �H !H be the projections. Then

B.L;p1/�B.L;p2/W B.L;G �H /! B.L;G/�B.L;H /

is a natural homeomorphism.

Proof Since G �H is a direct product, p1 and p2 are continuous homomorphism
and therefore

p D .p1/� � .p2/�W Hom.L;G �H /! Hom.L;G/�Hom.L;H /

is a simplicial map. Its easy to check that in fact p is a simplicial isomorphism.
Both G and H being real algebraic imply that Hom.Ln;G/ and Hom.Ln;H / have
a CW–complex structure, and therefore are k –spaces. By [17, Theorem 11.5], the
composition

B.L;G �H /
jpj
�!Hom.L;G/�Hom.L;H /j

j�1j�j�2j
�����!B.L;G/�B.L;H /

is a natural homeomorphism, where j�1 ıpj � j�2 ıpj D B.L;p1/�B.L;p2/.

Proposition 3.10 Let L be a finitely generated cosimplicial group; then B.L;U._//
is a commutative I–rig.

Proof Consider the I–rig U._/. Both the structural maps im and the action by
elements of †m are continuous group homomorphisms and hence B.L;U._// D
B.L; _/U._/ is an I–space. Also, block sum of matrices and tensor product are
topological group morphisms, so that with Lemma 3.9 we can define

�m;n D B.L;˚m;n/ ı .B.L;p1/�B.L;p2//
�1;

�m;n D B.L;˝m;n/ ı .B.L;p1/�B.L;p2//
�1;

where p1W U.m/�U.n/! U.m/ and p2W U.m/�U.n/! U.n/ are the projections.
Let p0

1
W U.n/�U.m/!U.n/ and p0

2
W U.n/�U.m/!U.m/ also denote projections.

Notice that

� ıB.L;p02/�B.L;p01/D B.L;p1/�B.L;p2/ ıB.L; �/

(where � , as before, is the symmetry morphism in Top). This implies that all properties
satisfied by ˚m;n and ˝m;n will be preserved by �m;n and �m;n .

Theorem 3.11 Let L be a finitely generated cosimplicial group and suppose that the
space Hom.L0;U.m// is path connected for all m� 1. Then B.L;U / is a nonunital
E1–ring space.
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Proof By Proposition 3.10, B.L;U._// is a commutative I–rig. It remains to
check the conditions of Proposition 3.8. Note that the conjugation action of †n

is homologically trivial since it factors through conjugation action on U.m/. Since
all Hom.L0;U.m// are path connected, jHom.L;U.m//j D B.L;U.m// is path
connected for all m� 1. The colimit B.L;U / is also an H –space under block sum
of matrices, and therefore abelian.

Example 3.12 The property �0

�
Hom.L0;U.m//

�
D 0 for all m � 1 is satisfied by

the following cosimplicial groups:

� LD F=�q and LD F=F .q/ since L0 D feg in both cases.

� LD F=�q and LD F=F .q/ since Hom.L0;U.m//D U.m/ in both cases.

� Consider †2;3 , and the cosimplicial morphism h�1�2
W F !†2;3 . The image

h�1�2
.F / defines a cosimplicial subgroup of †2;3 , such that h�1�2

.F /0 D feg.

Remark 3.13 The results in this section also apply to the groups SU and Sp. For
SO and O the proofs are not exactly similar, but still true. The arguments used in [7,
Theorem 4.1] also apply in our case.
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Gorenstein duality for real spectra
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Following Hu and Kriz, we study the C2 –spectra BPRhni and ER.n/ that refine
the usual truncated Brown–Peterson and the Johnson–Wilson spectra. In particular,
we show that they satisfy Gorenstein duality with a representation grading shift and
identify their Anderson duals. We also compute the associated local cohomology
spectral sequence in the cases nD 1 and 2 .
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1 Introduction

1A Background

Philosophy For us, real spectrum is a loose term for a C2 –spectrum built from the
C2 –spectrum M R of real bordism, considered by Araki [2], Araki and Murayama [3],
Landweber [22], and Hu and Kriz [18]. The present article shows that bringing together
real spectra and Gorenstein duality reveals rich and interesting structures.

It is part of our philosophy that theorems about real spectra can often be shown in the
same style as theorems for the underlying complex oriented spectra, although the details
might be more difficult, and groups needed to be graded over the real representation
ring RO.C2/ (indicated by F) rather than over the integers (indicated by �). This
extends a well known phenomenon: complex orientability of equivariant spectra makes
it easy to reduce questions to integer gradings, and we show that even in the absence
of complex orientability, good behaviour of coefficients can be seen by grading with
representations.

Bordism with reality In studying these spectra, the real regular representation �D
RC2 plays a special role. We write � for the sign representation on R, so �D 1C � .
One of the crucial features of M R is that it is strongly even in the sense of Meier and
Hill [27], ie

(1) the restriction functor �C2
k�

M R!�2kMU is an isomorphism for all k 2Z, and

(2) the groups �C2
k��1

M R are zero for all k 2 Z.

We now localize at 2, and (with two exceptions) all spectra and abelian groups will
henceforth be 2–local. The Quillen idempotent has a C2 –equivariant refinement, and
this defines the C2 –spectrum BPR as a summand of M R.2/ . The isomorphism (1)
allows us to lift the usual vi to classes vi 2 �

C2

.2i�1/�
BPR. The real spectra we are

interested in are quotients of BPR by sequences of vi and localizations thereof. For
example, we can follow [18] and Hu [17] and define

BPRhni D BPR=.vnC1; vnC2; : : : / and ER.n/D BPRhniŒv�1
n �:

These spectra are still strongly even, as we will show. Apart from the extensive literature
on K-theory with reality (eg Atiyah [4], Dugger [8] and Bruner and Greenlees [7]), real
spectra have been studied by Hu and Kriz, in a series of papers by Kitchloo and Wilson
(see eg [21] for one of the latest instalments), by Banerjee [5], by Ricka [28] and by
Lorman [24]. A crucial point is that a morphism between strongly even C2 –spectra is
an equivalence if it is an equivalence of underlying spectra [27, Lemma 3.4].
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We are interested in two dualities for real spectra: Anderson duality and Gorenstein
duality. These are closely related (see Greenlees and Stojanoska [13]) but apply to
different classes of spectra.

Anderson duality The Anderson dual ZX of a spectrum X is an integral version of
its Brown–Comenetz dual (in accordance with our general principle, Z denotes the 2–
local integers). The homotopy groups of the Anderson dual lie in a short exact sequence

0! Ext1Z.����1X;Z/! ��.Z
X /! HomZ.���X;Z/! 0:(1.1)

One reason to be interested in the computation of Anderson duals is that they show
up in universal coefficient sequences; see Anderson [1] or Section 3B. The situation
is nicest for spectra that are Anderson self-dual in the sense that ZX is a suspension
of X . Many important spectra like KU , KO, Tmf (see Stojanoska [31]) or Tmf1.3/
are indeed Anderson self-dual. These examples are all unbounded as the sequence (1.1)
nearly forces them to be.

Anderson duality also works C2 –equivariantly as first explored in [28]; the only change
in the above short exact sequence is that equivariant homotopy groups are used. The
C2 –spectra KR (see Heard and Stojanoska [14]) and Tmf1.3/ [27] are also C2 –
equivariantly Anderson self-dual, at least if we allow suspensions by representation
spheres.

One simpler example is essential background: if Z denotes the constant Mackey functor
(ie with restriction being the identity and induction being multiplication by 2) then
the Anderson dual of its Eilenberg–Mac Lane spectrum is the Eilenberg–Mac Lane
spectrum for the dual Mackey functor Z� D HomZ.Z;Z/ (ie with restriction being
multiplication by 2 and induction being the identity). It is then easy to check that in fact
H.Z�/'†2.1��/HZ. (From one point of view this is the fact that RP1DS.2�/=C2

is equivalent to the circle). The dualities we find are in a sense all dependent on this one.

Gorenstein duality By contrast with Anderson self-duality, many connective ring
spectra are Gorenstein in the sense of Dwyer, Greenlees and Iyengar [9]. We sketch
the theory here, explaining it more fully in Sections 6 and 7.

The starting point is a connective commutative ring C2 –spectrum R, whose 0th homo-
topy Mackey functor is constant at Z:

�C2
0 .R/Š Z:

This gives us a map R ! HZ of commutative ring spectra by killing homotopy
groups. We say that R is Gorenstein of shift a 2 RO.C2/ if there is an equivalence of
R–modules

HomR.HZ;R/'†aHZ:
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We are interested in the duality this often entails. Note that the Anderson dual ZR

obviously has the Matlis lifting property

HomR.HZ;ZR/'HZ�;

where Z�DHomZ.Z;Z/ as above. Thus if R is Gorenstein, in view of the equivalence
H.Z�/'†2.1��/HZ, we have equivalences

HomR.HZ;CellH ZR/' HomR.HZ;R/

'†aHZ

'†a�2.1��/H.Z�/

' HomR.HZ; †a�2.1��/ZR/:

Here, CellH Z denotes the HZ-R–cellularization as in Section 2B. We would like to
remove the HomR.HZ; � / from the composite equivalence above.

Definition 1.2 We say that R has Gorenstein duality of shift b if we have an equiva-
lence of R–modules

CellH ZR'†bZR:

As in the nonequivariant setting, the passage from Gorenstein to Gorenstein duality
requires showing that the above composite equivalence is compatible with the right
action of E D HomR.HZ;HZ/. This turns out to be considerably more delicate than
the nonequivariant counterpart because connectivity is harder to control; but if one can
lift the R–equivalence to an E –equivalence, the conclusion is that if R is Gorenstein
of shift a, then it has Gorenstein duality of shift b D a� 2.1� �/.

Local cohomology The duality statement becomes more interesting when the cellu-
larization can be constructed algebraically. For any finitely generated ideal J of the
RO.C2/–graded coefficient ring RC2

? , we may form the stable Koszul complex �J R,
which only depends on the radical of J . In our examples, this applies to the augmenta-
tion ideal J D ker.RC2

? !HZC2
? /, which may be radically generated by finitely many

elements vi in degrees which are multiples of � . Adapting the usual proof to the real
context, Proposition 3.8 shows that �J R!R is an HZ-R–cellularization:

CellH ZR' �J R:

The RO.C2/–graded homotopy groups of �J R can be computed using a spectral
sequence involving local cohomology.

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3551

Conclusion In favourable cases, the Gorenstein condition on a ring spectrum R

implies Gorenstein duality for R; this in turn establishes a strong duality property on
the RO.C2/–graded coefficient ring, expressed using local cohomology.

1B Results

Our main theorems establish Gorenstein duality for a large family of real spectra. We
present in this introduction the particular cases of BPRhni and ER.n/, deferring the
more general theorem to Section 5. Let again � denote the nontrivial representation
of C2 on the real line and �D 1C � the real regular representation. Furthermore, set
Dn D 2nC1�n� 2 so that Dn�D jv1jC � � �C jvnj. Other terms in the statement will
be explained in Section 3.

Theorem 1.3 For each n � 1, the C2 –spectrum BPRhni is Gorenstein of shift
�Dn�� n, and has Gorenstein duality of shift �Dn�� n� 2.1� �/. This means that

ZBPRhni
.2/

'†Dn�CnC2.1��/� xJn
BPRhni;

where xJn D .v1; : : : ; vn/. This induces a local cohomology spectral sequence

H�xJn
.BPRhniC2

? / H) �C2
? .†�Dn��n�2.1��/ZBPRhni

.2/
/:

Theorem 1.4 For each n � 1, the C2 –spectrum ER.n/ has Gorenstein duality of
shift �Dn�� .n� 1/� 2.1� �/. This means that

ZER.n/
.2/

'†Dn�C.n�1/C2.1��/� xJn�1
ER.n/

'†.nC2/.22nC1�2nC2/CnC3�Jn�1
ER.n/

for Jn�1 D
xJn�1 \ �

C2
� ER.n/. This induces likewise a local cohomology spectral

sequence.

We note that this has implications for the C2 –fixed point spectrum .BPRhni/C2 D

BPRhni. The graded ring

��.BPRhni/D �C2
� .BPRhni/

is the integer part of the RO.C2/–graded coefficient ring �C2
? .BPRhni/. However,

since the ideal xJn is not generated in integer degrees, the statement for BPRhni is
usually rather complicated, and one of our main messages is that working with the
equivariant spectra gives more insight. On the other hand, ER.n/ D ER.n/C2 has
integral Gorenstein duality because one can use the additional periodicity to move the
representation suspension and the ideal xJn to integral degrees.
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We will discuss the general result in more detail later, but the two first cases are about
familiar ring spectra.

Example 1.5 (see Sections 6 and 11) For nD1, connective K-theory with reality kR
is 2–locally a form of BPRh1i. For this example, we can work without 2–localization,
so that Z means the integers. Our first theorem states that kR is Gorenstein of shift
���1D�2�� and that it has Gorenstein duality of shift �4C� . This just means that

ZkR
'†4�� fib.kR!KR/:

The local cohomology spectral sequence collapses to a short exact sequence associated
to the fibre sequence just mentioned. We will see in Section 11 that the sequence is
not split, even as abelian groups.

Theorem 1.4 recovers the main result of [14], ie that ZKR ' †4KR, which also
implies ZKO '†4KO. It is a special feature of the case nD 1 that we also get a nice
duality statement for the fixed points in the connective case. Indeed, by considering
the RO.C2/–graded homotopy groups of kR, one sees [7, Corollary 3.4.2] that

.kR˝S�� /C2 '†1ko:

This implies that connective ko has untwisted Gorenstein duality of shift �5, ie that

Zko
'†5 fib.ko! KO/:

This admits a closely related nonequivariant proof, combining the fact that ku is
Gorenstein (clear from coefficients) and the fact that complexification ko ! ku is
relatively Gorenstein (connective version of Wood’s theorem [7, Lemma 4.1.2]).

Example 1.6 (see Examples 4.13 and 5.12 or Lemma 7.1 and Corollary 7.5) The 2–
localization of the C2 –spectrum tmf1.3/ is a form of BPRh2i, and the theorem is closely
related to results in [27]. It states that tmf1.3/ is Gorenstein of shift �4��2D�6�4�

and has Gorenstein duality of shift �8� 2� . We show in Section 13 that there are
nontrivial differentials in the local cohomology spectral sequence.

Passing to fixed points, we obtain the 2–local equivalence

BPRh2i D .BPRh2i/C2 D tmf0.3/:

By contrast with the nD 1 case, as observed in [27], tmf0.3/ does not have untwisted
Gorenstein duality of any integer degree.

A variant of Theorem 1.4 also computes the C2 –equivariant Anderson dual of TMF1.3/,
and the computation of the Anderson dual of Tmf1.3/ from [27] follows as well.
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The results apply to tmf1.3/ and TMF1.3/ themselves (ie with just 3 inverted, and not
all other odd primes).

Our main theorem also recovers the main result of [28] about the Anderson self-duality
of integral real Morava K-theory.

1C Guide to the reader

While the basic structure of this paper is easily visible from the table of contents, we
want to comment on a few features.

The precise statements of our main results can be found in Section 5. We will give
two different proofs of them. One (Part III) might be called “the hands-on approach”
which is elementary and explicit, and one (Part II) uses Gorenstein techniques inspired
by commutative algebra. The intricacy and dependence on specific calculations in the
explicit approach make the conceptual approach valuable. The subtlety of the structural
requirements of the conceptual approach make the reassurance of the explicit approach
valuable. The results from the latter approach are also a bit more general: In Part III,
we prove a version of Gorenstein duality for a quite general class of quotients of BPR,
but we treat only BPRhni itself in Part II.

While the Gorenstein approach only relies on the knowledge of the homotopy groups
of HZ and the reduction theorem Corollary 4.7, we need detailed information about
the homotopy groups of quotients of BPR for the hands-on approach. In the appendix,
we give a streamlined version of the computation of �C2

? BPR (which appeared first
in [18]). In Section 4, we give a rather self-contained account of the homotopy groups
of BPRhni and of other quotients of BPR, which can also be read independently of the
rest of the paper. While some of this is rather technical, most of the time we just have
to use Corollary 4.6 whose statement (though not proof, perhaps) is easy to understand.

We give separate arguments for the computation of the Anderson dual of kR so that
this easier case might illustrate the more complicated arguments of our more general
theorems. Thus, if the reader is only interested in kR, he or she might ignore most of
this paper. More precisely, under this assumption one might proceed as follows: First
one looks at Section 11B for a quick reminder on �C2

? kR, then one skims through
Sections 2 and 3 to pick up the relevant definitions, and then one proceeds directly to
Section 6 or Section 8 to get the proof of the main result in the case of kR. Afterwards,
one may look at the pictures and computations in the rest of Section 11 to see what
happens behind the scenes of Gorenstein duality.

Acknowledgements We are grateful to the Hausdorff Institute of Mathematics in
Bonn for providing us the opportunity in Summer 2015 for the discussions starting this
work. We also thank Vitaly Lorman and Nicolas Ricka for helpful discussions.
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Part I Preliminaries and results

2 Basics and conventions about C2–spectra

2A Basics and conventions

We will work in the homotopy category of genuine G –spectra (ie stable for suspensions
by SV for any finite dimensional representation V ) for G D C2 , the group of order 2.
We will denote by ˝ the derived smash product of spectra.

We may combine the equivariant and nonequivariant homotopy groups of a C2 –
spectrum into a Mackey functor, which we denote by �C2

� X and denote C2 –equivariant
and underlying homotopy groups correspondingly by �C2

� X and �e
�X . For an abelian

group A, we write A for the constant Mackey functor (ie restriction maps are the
identity), and A� for its dual (ie induction maps are the identity). We write HM for
the Eilenberg–Mac Lane spectrum associated to a Mackey functor M .

Another C2 –spectrum of interest to us is kR, the C2 –equivariant connective cover of
Atiyah’s K-theory with reality [4]. The term “real spectra” derives from this example.
The examples of real bordism and the other C2 –spectra derived from it will be discussed
in Section 4.

We will usually grade our homotopy groups by the real representation ring RO.C2/,
and we write M? for RO.C2/–graded groups. In addition to the real sign representa-
tion � and the regular representation � , the virtual representation ı D 1� � is also
significant. Examples of RO.C2/–graded homotopy classes are the geometric Euler
classes aV W S

0! SV ; in particular, aD a� will play a central role. In addition to a,
we will also often have a class uD u2� of degree 2ı .

We often want to be able to discuss gradings by certain subsets of RO.C2/. To start
with, we often want to refer to gradings by multiples of the regular representation
(where we write M�� ), but we also need to discuss gradings of the form k�� 1. For
this, we use the notation

���D fk� j k 2 Zg[ fk�� 1 j k 2 Zg:

Following [27], we call an RO.C2/–graded object M even if Mk��1 D 0 for all k .
An RO.C2/–graded Mackey functor is strongly even if it is even and all the Mackey
functors in gradings k� are constant. We call a C2 –spectrum (strongly) even if its
homotopy groups are (strongly) even.

If X is a strongly even C2 –spectrum and x 2 �2kX , we denote by xx its counterpart
in �C2

k�X . If we want to stress that we consider a certain spectrum as a C2 –spectrum,
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we will also sometimes indicate this by a bar; for example, we may write tmf1.3/ if
we want to stress the C2 –structure of tmf1.3/.

2B Cellularity

In a general triangulated category, it is conventional to say M is K–cellular if M

is in the localizing subcategory generated by K (or equivalently by all integer sus-
pensions of K ). A reference in the case of spectra is [9, Section 4.1]. We say that
a C2 –spectrum M is K-R–cellular (for a C2 –spectrum K ) if it is in the localizing
subcategory generated by the suspensions Sk�˝K for all integers k . We note that
this is the same as the localizing subcategory generated by integer suspensions of K

and .C2/C˝K because of the cofibre sequence

.C2/C! S0
! S� :

We say that a map N !M is a K-R–cellularization if N is K-R–cellular and the
induced map

Hom.K;N /! Hom.K;M /

is an equivalence of C2 –spectra. The K-R–cellularization is clearly unique up to
equivalence.

We note that cellularity and R–cellularity are definitely different. For example, .C2/C
is not S0 –cellular, but it is S0-R–cellular.

In this article, we will only use R–cellularity.

2C The slice filtration

Recall from [16, Section 4.1] or [15] that the slice cells are the C2 –spectra of the form

� Sk� of dimension 2k ,

� Sk��1 of dimension 2k � 1, and

� Sk ˝ .C2/C of dimension k .

A C2 –spectrum X is � k if for every slice cell W of dimension � k C 1, the
mapping space �1HomS.W;X / is equivariantly contractible. As explained in [16,
Section 4.2], this leads to the definition of X !PkX , which is the universal map into
a C2 –spectrum that is � k . The fibre of

X ! PkX
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is denoted by PkC1X . The k -slice Pk
k

X is defined as the fibre of

PkX ! Pk�1X;

or equivalently, as the cofibre of the map PkC1X !PkX . We have the following two
useful propositions:

Proposition 2.1 [15, Corollary 2.12, Theorem 2.18] If X is an even C2 –spectrum,
then P2k�1

2k�1
X D 0 for all k 2 Z.

Proposition 2.2 [15, Corollary 2.16, Theorem 2.18] If X is a C2 –spectrum such
that the restriction map in �C2

k�
is injective, then P2k

2k
X is equivalent to the Eilenberg–

Mac Lane spectrum �C2
k�

X .

This allows us to give a characterization of an Eilenberg–Mac Lane spectrum based on
regular representation degrees.

Corollary 2.3 Any even C2 –spectrum X with

�C2

k�
.X /D

�
A if k D 0;

0 otherwise;

for an abelian group A, is equivalent to HA.

Proof By the last two propositions, we have

Pk
k X '

�
HA if k D 0;

0 otherwise:

By convergence of the slice spectral sequence [16, Theorem 4.42], the result follows.

3 Anderson duality, Koszul complexes and
Gorenstein duality

3A Duality for abelian groups

It is convenient to establish some conventions for abelian groups to start with, so as to
fix notation.

Pontrjagin duality is defined for all graded abelian groups A by

A_ D HomZ.A;Q=Z/:
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Similarly, the rational dual is defined by

A_Q
D HomZ.A;Q/:

Since Q and Q=Z are injective abelian groups these two dualities are homotopy
invariant and pass to the derived category. Finally the Anderson dual A� is defined by
applying HomZ.A; � / to the exact sequence

0! Z!Q!Q=Z! 0;

so we have a triangle
A�!A_Q

!A_:

If M is a free abelian group, then the Anderson dual is simply calculated by

M �
D HomZ.M;Z/

(since M is free, the Hom need not be derived).

If M is a graded abelian group which is an F2 –vector space then up to suspension the
Anderson dual is the vector space dual:

M_
D HomF2

.M;F2/'†
�1M �

(since vector spaces are free, Hom need not be derived).

3B Anderson duality

Anderson duality is the attempt to topologically realize the algebraic duality from
the last subsection. It appears that it was invented by Anderson (only published
in mimeographed notes [1]) and Kainen [19], with similar ideas by Brown and
Comenetz [6]. For brevity and consistency, we will only use the term Anderson
duality instead of Anderson–Kainen duality or Anderson–Brown–Comenetz duality
throughout. We will work in the category of C2 –spectra, where Anderson duality was
first explored by Ricka in [28].

Let I be an injective abelian group. Then we let IS denote the C2 –spectrum repre-
senting the functor

X 7! Hom.�C2
� X; I/:

For an arbitrary C2 –spectrum, we define IX as the function spectrum F.X; IS/. For
a general abelian group A, we choose an injective resolution

A! I ! J
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and define AX as the fibre of the map IX !J X . For example, we get a fibre sequence

ZX
!QX

! .Q=Z/X :

In general, we get a short exact sequence of homotopy groups

0! ExtZ.�C2

�k�1
.X /;A/! �C2

k
.AX /! Hom.�C2

�k
.X /;A/! 0:

The analogous exact sequence is true for RO.C2/–graded Mackey functor valued
homotopy groups by replacing X by .C2=H /C ^†

V X . Our most common choices
will be AD Z and AD Z.2/ .

From time to time we use the following property of Anderson duality: If R is a strictly
commutative C2 –ring spectrum and M an R–module, then HomR.M;AR/'AM

as R–modules as can easily be seen by adjunction.

One of the reasons to consider Anderson duality is that it provides universal coef-
ficient sequences. In the C2 –equivariant world, this takes the following form [28,
Proposition 3.11]:

0! Ext1Z.E
C2

˛�1
.X /;A/! .AE/C2

˛ .X /! HomZ.E
C2
˛ .X /;A/! 0;

where E and X are C2 –spectra, ˛ 2 RO.C2/ and A is an abelian group.

Our first computation is the Anderson dual of the Eilenberg–Mac Lane spectrum of the
constant Mackey functor Z.

Lemma 3.1 The Anderson dual of the Eilenberg–Mac Lane spectrum HZ (as an
S–module) is given by the following, where ı D 1� � :

ZH Z
'HZ� '†2ıHZ:

Proof The first equivalence follows from the isomorphisms

�C2
� .Z

H Z/Š HomZ.�
C2
��HZ;Z/Š Z�:

Since
�C2
� .S

2�2�
˝HZ/DH�C2

.S2��2
IZ/DH�.S2��2=C2IZ/;

and S2� D S0 �S.2�/ is the unreduced suspension of S.2�/, the second equivalence
is a calculation of the cohomology of RP1 .

Remark 3.2 This proof shows that if C2 is replaced by a cyclic group of any order,
we still have

ZH Z
DHZ� '†�HZ;

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3559

where �D ��˛ (with � the trivial one dimensional complex representation and ˛ a
faithful one dimensional representation).

Anderson duality works, of course, also for nonequivariant spectra. We learnt the follow-
ing proposition comparing the equivariant and nonequivariant version in a conversation
with Nicolas Ricka.

Proposition 3.3 Let A be an abelian group. We have .AX /C2 ' A.X
C2 / for every

C2 –spectrum X .

Proof Let inf C2
e Y denote the inflation of a spectrum Y to a C2 –spectrum with “trivial

action”, ie the left derived functor of first regarding it as a naive C2 –spectrum with
trivial action and then changing the universe. This is the (derived) left adjoint for the
fixed point functor [25, Proposition 3.4].

Let I be an injective abelian group. Then there is for every spectrum Y a natural
isomorphism

ŒY; .IX /C2 �Š Œinf C2
e Y; IX �C2

Š Hom.�C2
0 .inf C2

e Y ˝X /; I/

Š Hom.�0.Y ˝X C2/; I/

Š ŒY; I .X
C2 /�:

Here, we use that fixed points commute with filtered homotopy colimits and cofibre
sequences and therefore also with smashing with a spectrum with trivial action. Thus,
there is a canonical isomorphism in the homotopy category of spectra between I .X

C2 /

and .IX /C2 that is also functorial in I (by Yoneda). For a general abelian group A,
we can write A.X

C2 / as the fibre of .I0/X
C2
! .I1/X

C2 (and similarly for the other
side) for an injective resolution 0! A! I0 ! I1 . Thus, we obtain a (possibly
noncanonical) equivalence between A.X

C2 / and .AX /C2 .

Remark 3.4 An analogous result holds, of course, for every finite group G .

3C Koszul complexes and derived power torsion

Let R be a nonequivariantly E1 C2 –ring spectrum and M an R–module. In this
section, we will recall two versions of stable Koszul complexes. Among their merits is
that they provide models for cellularization or R–cellularization in cases of interest for
us. A basic reference for the material in this section is [11].

As classically, the r –power torsion in a module N can be defined as the kernel of
N !N Œ1=r �, we define the derived J –power torsion of M with respect to an ideal
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J D .x1; : : : ;xn/� �
C2
? .R/ as

�J M D fib
�
R!R

h
1

x1

i�
˝R � � � ˝R fib

�
R!R

h
1

xn

i�
˝R M:

This is also sometimes called the stable Koszul complex, also denoted by K.x1; : : : ;xn/.
As shown in [11, Section 3], this only depends on the ideal J and not on the chosen
generators. As algebraically, the derived functors of J –power torsion are the local
cohomology groups, we might expect a spectral sequence computing the homotopy
groups of �J M in terms of local cohomology. As in [11, Section 3], this takes the form

H s
J .�

C2

?CV
M / H) �C2

V�s
.�J M /:(3.5)

Our second version of the Koszul complex can be defined in the one-generator case as

�R.x/D holim
!

†.1�l/jxjR=xl

for x 2 �C2
? .R/. Here, the map R=xl !†�jxjR=xlC1 is induced by the diagram of

cofibre sequences:

†jx
l jR

xl
//

D

��

R //

x

��

R=xl

��

†jx
l jR

xlC1
// †�jxjR // †�jxjR=xlC1

More generally, we can make, for a sequence xD.x1; : : : ;xn/ in �C2
? .R/, the definition

�R.xIM / WD �R.x1/˝R � � � ˝R �R.xn/˝R M

' holim
!

†�..l1�1/C���C.ln�1//jxjM=.x
l1

1
; : : : ;xln

n /:

The spectrum �R.x/ comes with an obvious filtration by †.1�l/jxjR=xl with filtration
quotients †�ljxjR=x . We can smash these filtrations together to obtain a filtration
of �R.x/ with filtration quotients wedges of summands of the form

†�l1jx1j�����lnjxnjR=.x1; : : : ;xn/I

see [32, Definition 1.3.11, Proposition 12] or [33, Remark 2.8, Lemma 2.12]. Using
the following lemma, we obtain also a corresponding filtration on �J R.

Lemma 3.6 For x as above, we have

�R.x/'†
jx1jC���CjxnjCn �J R:

Proof See [11, Lemma 3.6].
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We can also define �R.xIM / (and likewise the other versions of Koszul complexes)
for an infinite sequence of xi by just taking the filtered homotopy colimit over all finite
subsequences. Usually Lemma 3.6 breaks down in the infinite case.

Remark 3.7 The homotopy colimit defining �R.xIM / has a directed cofinal sub-
system, both in the finite and in the infinite case. Indeed, the colimit ranges over
all sequences .l1; l2; : : : / with only finitely many entries nonzero. For the directed
subsystem, we start with .0; 0; : : : / and raise in the nth step the first n entries by 1.
Directed homotopy colimit are well known to be weak colimits in the homotopy category
of R–modules, ie every system of compatible maps induces a (possibly nonunique)
map from the homotopy colimit [26, Section 3.1; 29, Section II.5].

One of the reasons for introducing �J M is that it provides a model for the R–
cellularization of M with respect to R=J D .R=x1/˝R � � � ˝R .R=xn/ in the sense
of Section 2B.

Proposition 3.8 Suppose that x1; : : : ;xn 2 �
C2
��R, and set J D .x1; : : : ;xn/. Then

�J M !M is an R–cellularization with respect to R=J in the (triangulated ) category
of R–modules.

Proof Clearly, �R.x1; : : : ;xnIM / is R–cellular with respect to M=J ; furthermore
M=J is R=J -R–cellular as clearly M is R–cellular. To finish the proof, we have to
show that

HomR.R=J; �J M /! HomR.R=J;M /

is an equivalence. Note that �J M D �xn
.�.x1;:::;xn�1/M /. Thus, it suffices by

induction to show that

HomR.A=x; �xB/! HomR.A=x;B/

is an equivalence for all R–modules A;B . This is equivalent to

HomR.A=x;BŒx
�1�/D 0;

which is true as multiplication by x induces an equivalence

HomR.A;BŒx
�1�/

x�

��! HomR.†
jxjA;BŒx�1�/:

Corollary 3.9 Let M be a connective R–module and A an abelian group. Then the
Anderson dual AM is R–cellular with respect to R=J for every ideal J ��C2

? finitely
generated in degrees aC b� with a� 1 and aC b � 1.
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Proof By the last proposition, we have to show that �J AM ' AM . For this, it
suffices to show that AM Œx�1� is contractible for every generator x of J . As M is
connective, we know that �aCb�M D 0 if a < 0 and aC b < 0 (this follows, for
example, using the cofibre sequence .C2/C! S0! S� ). Thus, �aCb�AM D 0 if
a> 0 and aC b > 0. The result follows.

4 Real bordism and the spectra BPRhni

4A Basics and homotopy fixed points

The C2 –spectrum M R of real bordism was originally defined by Araki and Landweber.
In the naive model of C2 –spectra, where a C2 –spectrum is just given as a sequence .Xn/

of pointed C2 –spaces together with maps

†�Xn!XnC1;

it is just given by the Thom spaces M Rn D BU.n/n with complex conjugation as
C2 –action. Defining it as a strictly commutative C2 –orthogonal spectrum requires
more care and was done in [30, Example 2.14] and [16, Section B.12]. An important
fact is that the geometric fixed points of M R are equivalent to MO (first proven in [3]
and reproven in [16, Proposition B.253]).

As shown in [2] and [18, Theorem 2.33], there is a splitting

M R.2/ '
M

i

†mi�BPR;

where the underlying spectrum of BPR agrees with BP . This splitting corresponds on
geometric fixed points to the splitting

MO'
M

i

†mi HF2:

As shown in [18] (see also the appendix), the restriction map

�C2
�� BPR! �2�BP

is an isomorphism. Choose now arbitrary indecomposables vi 2 �2.2i�1/BP and
denote their lifts to �C2

.2i�1/�
BPR and their images in �C2

.2i�1/�
M R by vi . We denote

by BPRhni the quotient
BPR=.vnC1; vnC2; : : : /

in the homotopy category of M R–modules. At least a priori, this depends on the
choice of vi .
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We want to understand the homotopy groups of BPRhni. This was first done by Hu
in [17] (beware though that Theorem 2.2 is not correct as stated there) and partially
redone in [20]. For the convenience of the reader, we will give the computation again.
Note that our proofs are similar but not identical to the ones in the literature. The main
difference is that we do not use ascending induction and prior knowledge of HZ to
compute ˆC2BPRhni, but precise knowledge about �C2

? BPR; this is not simpler than
the original approach, but gives extra information about other quotients of BPR, which
we will need later. We recommend that the reader looks at the appendix for a complete
understanding of the results that follow.

We will use the Tate square [12] and consider the following diagram in which the rows
are cofibre sequences:

BPRhni˝.EC2/C //

'

��

BPRhni //

��

BPRhni˝ zEC2

��

// †BPRhni˝.EC2/C

��

BPRhni.EC2/C˝.EC2/C // BPRhni.EC2/C // BPRhni.EC2/C˝ zEC2
// †BPRhni˝.EC2/C

After taking fixed points, this becomes the diagram:

BPRhnihC2
//

D

��

BPRhniC2 //

��

BPRhniˆC2

��

// †BPRhnihC2

��

BPRhnihC2
// BPRhnihC2 // BPRhnitC2 // †BPRhnihC2

First, we compute the homotopy groups of the homotopy fixed points. For this, we use
the RO.C2/–graded homotopy fixed point spectral sequence, described for example in
[27, Section 2.3].

Proposition 4.1 The RO.C2/–graded homotopy fixed point spectral sequence

E2DH�.C2I�
e
?BPRhni/ŠZ.2/Œv1; : : : ; vn;u

˙1; a�=2a H) �C2
? .BPRhni.EC2/C/

has differentials generated by d2iC1�1.u
2i�1

/Da2iC1�1vi for i � n and E2nC1DE1.

Proof The description of E2nC1 is entirely analogous to the proof of A.2, using
that a2iC1�1vi D 0 in �C2

? BPRhni.EC2/C . Now we need to show that there are no
further differentials: As every element in filtration f is divisible by af in E2nC1

, the
existence of a nonzero dm (with m � 2nC1 ) implies the existence of a nonzero dm

with source in the 0–line. Moreover, a nonzero dm of some element ulv (for v a
polynomial in the vi ) on the 0–line implies a nonzero dm on ul as v is a permanent
cycle (in the image from BPR). The image of such a differential must be of the
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form amul 0v0 , where v0 is a polynomial in v1; : : : ; vn . As amvi D 0 for 1 � i � n

in E2nC1

, the polynomial v0 must be constant. Counting degrees, we see that

.2l � 1/� 2l� D jul
j � 1D jamul 0

j D 2l 0� .2l 0Cm/�;

and thus mD 2l � 2l 0 D 1. This is clearly a contradiction.

Corollary 4.2 We have

�C2
?
�
BPRhni.EC2/C ˝ zEC2

�
Š F2Œu

˙2n

; a˙1�:

In particular, we get ��BPRhnitC2 ŠF2Œx
˙1�, where xDu2n

a�2nC1

and jxjD 2nC1 .
These are understood to be additive isomorphisms.

Proof Recall that

�C2
?
�
BPRhni.EC2/C ˝ zEC2

�
D �C2

?
�
BPRhni.EC2/C

�
Œa�1�:

as S1� is a model of zEC2 . The result follows as all vi are a–power torsion, but
u2nm is not.

4B The homotopy groups of BPRhni

Computing the homotopy groups of the fixed points is more delicate than the com-
putation of the homotopy fixed points. We first have to use our detailed knowledge
about the homotopy groups of BPR. Given a sequence l D .l1; : : : /, we denote by
BPR=v l the spectrum BPR=.v li1

i1
; v li2

i2
; : : : /, where ij runs over all indices such that

lij ¤ 0. Similarly BPR=vj
i is understood to be BPR if j D 0. We use the analogous

convention when we have algebraic quotients of homotopy groups.

We recommend the reader skips the proof of the following result for first reading, as
the technical detail is not particularly illuminating.

Proposition 4.3 Let k � 1 and let l D .l1; l2; : : : / be a sequence of nonnegative
integers with lk D 0. Then the element vk acts injectively on .�C2

���cBPR/=v l if
0� c � 2kC1C 1, with a splitting on the level of Z.2/–modules.

Proof Recall from the appendix that �C2
? BPR is isomorphic to the subalgebra of

P=.2a; via
2iC1�1/

(where i runs over all positive integers) generated by vi.j /Du2ijvi (with i; j 2Z and
i � 0) and a, where P DZ.2/Œa; vi ;u

˙1�. The degrees of the elements are jaj D 1��

and
jvi.j /j D .2

i
� 1/�C 2ij .4� 2�/D .2i

� 1� 2iC1j /�C 2iC2j:
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We add the relations vli

i D 0 if li ¤ 0.

We will first show that the ideal of vk –torsion elements in .�C2
? BPR/=v l is contained

in the ideal generated by a2kC1�1 and vls�1
s vs.j / for s with ls ¤ 0 and j divisible

by 2k�s if s < k . Indeed, because the ideal .2a; via
2iC1�1; v l/ � P is generated

by monomials, a polynomial in P defines a vk –torsion element in .�C2
? BPR/=v l if

and only if each of its monomials define vk –torsion elements. A monomial xP in P

can only define a nonzero vk –torsion element in .�C2
? BPR/=v l if it is divisible by

a2kC1�1 or vls
s . In the latter case, xP is of the form vv

ls
s um , where v is a polynomial

in the vi . This is divisible by vls
s in �C2

? BPR if and only if m is divisible by 2i for
some vi in v . Thus, xP defines a nonzero element x in .�C2

? BPR/=v l such that vkx

defines 0 only if 2k jm, which corresponds to the condition above.

Let x be a nonzero vk –torsion element in .�C2
? BPR/=v l , represented by a monomial

in P . First assume that x is divisible by an with n� 2kC1�1, but not by anC1 . Then,
x is not divisible by any vi.j / with i � k as anvi.j /D 0. We demand that x is in
degree ���c with c�0; in particular, x¤an . Let vi.j / a divisor of x with minimal i .
Thus, the degree of x must be of the form ��C2iC2mCn. We know that n� 2iC1�2.
The largest negative value the non-�-part can take is �2iC2C 2iC1� 2D�2iC1� 2.
The statement about injectivity follows in this case as i > k .

Now assume that x is a vk –torsion element not divisible by an for n�2kC1�1. Then x

must be of the form v
ls�1
s vs.j /, where j is divisible by 2k�s if s < k . Observe that

vls�1
s vs.j /v t .m/D v

ls
s v t .2

s�tj Cm/D 0 2 .�C2
? BPR/=v l

for t < s , so y is not divisible by any v t .m/ for t < s . Likewise observe that if
s � t � k , then

vls�1
s vs.j /v t .m/D v

ls
s v t .mC 2k�tj 0/D 0 2 .�C2

? BPR/=v l ;

where j D 2k�sj 0 . Thus, y is also not divisible by any v t .m/ with s � t � k . As
jvs.j /j D ��C d , where d is divisible by 2kC2 , and the same is true for jv t .j /j

with t > k , we see that if jxj is of the form ��� c with c � 0, then we have

c � 2kC2
� .2kC1

� 2/D 2kC1
C 2:

The statement about injectivity follows also in this case.

We still have to show the split injectivity. If vky D 2z , but y is not divisible by 2,
then y must be of the form 2vu2kj in P , where v is a polynomial in the vi . Thus,
jyjD 2kC2jC�� , so we are fine in degree ���c for 0� c� 2kC1C1� 2kC2�1.

Remark 4.4 The exact bounds in the preceding proposition are not very important.
The only important part for later inductive arguments is that the bound grows with k .
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Corollary 4.5 Let l D .l1; l2; : : : / be a sequence with only finitely many nonzero
entries, and let j be the smallest index such that lj ¤ 0. Then the map

.�C2
���cBPR/=v l

! �C2
���c.BPR=v l/

is an isomorphism for 0� c � 2jC1 .

Proof We use induction on the number n of nonzero indices in l . If n D 0 (and
j D1), the statement is clear.

For the step, define l 0 to be the sequence obtained from l by setting lj D 0. Consider
the short exact sequence

0!
�
�C2
���c.B=v

l 0/
�
=v

lj
j ! �C2

���c.B=v
l/!

˚
�C2
���.cC1/.B=v

l 0/
	
v

lj

j

! 0:

Here, the notation fX gz denotes the elements in X killed by z .

Assume c � 2jC1 . By the induction hypothesis, �C2
���c.B=v

l 0/Š .�C2
���cB/=v l 0 as

c � 2jC2 , so .�C2
���c.B=v

l 0//=v
lj
j Š .�

C2
���cB/=v l . Furthermore,˚

�C2
���.cC1/.B=v

l 0/
	
v

lj

j

Š
˚
.�C2
���.cC1/B/=v

l 0
	
v

lj

j

Š 0;

as follows from cC 1� 2jC2 and cC 1� 2jC1C 1 by the induction hypothesis and
Proposition 4.3. Thus .�C2

���cB/=v l ! �C2
���c.B=v

l/ is an isomorphism.

The following corollary is crucial:

Corollary 4.6 Let I � Z.2/Œv1; : : : � be an ideal generated by powers of the vi . Then
BPR=I is strongly even.

Proof As being strongly even is a property closed under filtered homotopy colimits,
we are reduced to the case that I is finitely generated. By the last corollary, it suffices to
show that BPR itself is strongly even. That the Mackey functor �C2

��.BPR/ is constant
is clear from Theorem A.4.

Assume that x is a nonzero element in �C2
���1BPR. We can assume that x is represented

by akulv in the E2 –term of the homotopy fixed point spectral sequence for BPR,
where v is a monomial in the vi (with v0 D 2), k � 0 and l 2Z. The element x is in
degree kC4lC�� . Let j � 0 be the minimal number such that vj jv . Then 2j jl and
k � 2jC1� 2. This is clearly in contradiction with kC 4l D�1.

We recover the C2 –case of the reduction theorem of [18, Proposition 4.9] and [16,
Theorem 6.5].
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Corollary 4.7 There is an equivalence BPR=.v1; v2; : : : /'HZ.2/ .

Proof This follows directly from the last corollary and Corollary 2.3.

Corollary 4.8 Let I � Z.2/Œv1; : : : � be an ideal generated by powers of the vi . Then

�C2
��C1BPR=I Š F2fag˝Z.2/Œv1; v2; : : : �=I:

Proof As BPR=I is strongly even, this follows from [27, Lemma 2.15].

This allows us to compute �C2
? BPRhni.

Proposition 4.9 The spectrum BPRhni is the connective cover of its Borel completion
BPRhni.EC2/C . The cofibre C of BPRhni ! BPRhni.EC2/C has homotopy groups

�C2
? C Š F2Œa

˙1;u�2n

�u�2n

;

with the naming of the elements indicating the map �C2
? BPRhni.EC2/C ! �C2

? C .

Proof This is clear on underlying homotopy groups. Thus, we have only to show that
BPRhniC2! BPRhnihC2 is a connective cover. For that purpose, it is enough to show
that BPRhniˆC2 is connective and that the fibre of BPRhniˆC2 ! BPRhnitC2 has
homotopy groups only in negative degrees.

We have BPRhniˆC2'BPRˆC2=.vnC1; : : : /. As noted in the proof of Proposition A.1,
the image of vi in M R�C2 is 0. As the quotient BPRˆC2=.vnC1; : : : / can be taken in
the category of M RˆC2 –modules, we are only quotienting out by 0. It follows easily
that .BPR=.vnC1; : : : ; vnCm//

ˆC2 has in the homotopy groups an F2 in all degrees
of the form

PnCm
iDnC1"i.jvi jC1/D

PnCm
iDnC1"i2

i with "i D 0 or 1. As geometric fixed
point commute with homotopy colimits, we see that ��BPRhniˆC2ŠF2Œy� (additively)
with jyj D 2nC1 . It remains to show that yk maps nonzero to ��BPRhnitC2 (and
hence maps to xk/.

It is enough to show that a�jy
k j�1yk maps nonzero to �C2

? †BPRhni˝ .EC2/C in
the sequence coming from the Tate square, ie that a�jy

k j�1yk is not in the image
from (the fixed points of) BPRhni. But a�jy

k j�1yk is in degree .jyk jC 1/�� 1 and
�C2
.jyk jC1/��1

BPRhni D 0 by Corollary 4.6.

Let us describe the homotopy groups of BPRhni in more detail. We set v0 D 2 for
convenience. Denote by BB (for basic block) the Z.2/Œa; v1; : : : ; vn�=2a–submodule of

Z.2/Œv1; : : : ; vn�=.a
2kC1�1vk/0�k�n
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generated by 1 and by vk.m/ D u2kmvk for 0 � k < n and 0 < m < 2n�k . By
Proposition 4.1, we see that

�C2
? BPRhni.EC2/C Š BB ŒU˙1�

with U Du2n

. Note that this isomorphism is not claimed to be multiplicative; in general,
BPRhni is not even known to have any kind of (homotopy unital) multiplication.

Define BB 0 to be the kernel of the map BB!F2Œa� given by sending all vk and vk.m/

to zero. Set NBD†��1F2Œa�
_˚BB 0 , where NB stands for negative block. Then it is

easy to see from the last proposition that

�C2
? BPRhni Š BB ŒU �˚U�1NB ŒU�1�;

where this isomorphism is again only meant additively. We will be a little bit more
explicit about the homotopy groups of BPRhni in the cases nD 1 and 2 in Part IV.

4C Forms of BPRhni

Our next goal is to identify certain spectra as forms of BPRhni. We take the following
definition from [27]:

Definition 4.10 Let E be an even 2–local commutative and associative C2 –ring
spectrum up to homotopy. By [27, Lemma 3.3], E has a real orientation, and after
choosing one, we obtain a formal group law on �C2

��E . The 2–typification of this
formal group law defines a map �e

2�
BP Š �C2

�� BPR! �C2
��E . We call E a form of

BPRhni if the map
Z.2/Œv1; : : : ; vn�� ���BPR! ���E

is an isomorphism of constant Mackey functors.

This depends neither on the choice of vi nor on the chosen real orientation, as can be
seen using that vi is well defined modulo .2; v1; : : : ; vi�1/.

Equivalently, one can say that E is a form of BPRhni if and only if E is strongly even
and its underlying spectrum is a form of BP hni. We want to show that every form of
BPRhni is also of the form BPR=.vnC1; vnC2; : : : / for some choice of elements vi .
For this, we need the following lemma from [27, Lemma 3.4]:

Lemma 4.11 Let f W E ! F be a map of C2 –spectra. Assume that f induces
isomorphisms

�C2
k�E! �C2

k�E and �kE! �kF

for all k 2 Z. Assume furthermore that �C2
k��1E ! �C2

k��1F is an injection for all
k 2 Z (for example, if �C2

k��1E D 0). Then f is an equivalence of C2 –spectra.
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Proposition 4.12 Let E be a form of BPRhni. Then one can choose indecomposables
vi 2 �

C2

.2i�1/�
BPR for i � nC 1 such that E ' BPR=.vnC1; vnC2; : : : /.

Proof First choose any system of vi . Also choose a real orientation f W BPR!E

and denote f .vi/ by xi . Define a multiplicative section

sW �C2
��E! �C2

�� BPR

by s.xi/D vi for 1� i � n.

Now define a new system of vi by

vnew
i D vi � s.f�.vi//

for i � nC1. As these agree with vi mod .v1; : : : ; vn/, they are still indecomposable.
Furthermore, the vnew

i are for i � nC 1 clearly in the kernel of f� . Thus, we obtain a
map BPRhni=.vnew

nC1
; vnew

nC2
; : : : /!E that is an isomorphism on �C2

�� . By Corollary 4.6,
the source is strongly even. By Lemma 4.11, the map is an equivalence.

Examples 4.13 We consider real versions of the classical examples ku and tmf1.3/.

(1) The connective real K-theory spectrum kR.2/ is a form of BPRh1i. Indeed,
the underlying spectrum ku.2/ is well known to be a form of BP h1i and kR.2/ is
also strongly even (as can be seen by the results from [7, Section 3.7.D] or from the
computation in Section 11).

(2) Define tmf1.3/ as the equivariant connective cover of the spectrum Tmf1.3/, ie
Tmf1.3/ with the algebro-geometrically defined C2 –action (see [27, Section 4.1]
for details). As shown in [27, Corollary 4.17], tmf1.3/.2/ is a form of BPRh2i.
By Proposition 4.12, we can construct tmf1.3/.2/ by killing a sequence v2; v3; : : :

in BPR. This construction is used in [23] to define a C2 –equivariant version of
tmf1.3/.2/ . In particular, we see (using the discussion before Proposition 4.23 in [27])
that TMF1.3/.2/ (with the algebro-geometrically defined C2 –action) agrees with the
TMF1.3/.2/ of [23].

5 Results and consequences

In this section, we want to discuss our main results in more detail than in the introduction
and we will also derive some consequences and give some examples. Recall to that
purpose the notation from Sections 3C and 4A. Furthermore, we will implicitly localize
everything at 2, so Z means Z.2/ , etc. Our main theorem is the following:
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Theorem 5.1 Let .m1;m2; : : : / be a sequence of nonnegative integers with only
finitely many entries bigger than 1, and let M be the quotient BPR=.vm1

1
; v

m2

2
; : : : /,

where we only quotient by the positive powers of vi . Denote by v the sequence of vi

in �C2
? M R such that mi D 0, by jvj the sum of their degrees and by m0 the sum of all

.mi � 1/jvi j for mi > 1. Then

ZM
'†�m0C4�2��MR.vIM /:

The most important case is where mnC1 DmnC2 D � � � D 1, so

M D BPRhni=.vm1

1
; : : : ; vmn

n /:

If k is the number of elements in v , we also get

ZM
'†�m0CkCjvjC4�2��vM;

where we view M as an M R–module.

The first form will be proved as Theorem 10.1 and the second follows from it using
Lemma 3.6. The second form also follows from Corollary 7.5 (using that �v preserves
cofibre sequences to pass to quotients of BPRhni).

Example 5.2 ZBPRhni'†nCDn�C4�2��.v1;:::;vn/BPRhni for DnDjv1jC� � �Cjvnj.
This says BPRhni has Gorenstein duality with respect to HZ'BPRhni=.v1; : : : ; vn/.
(The last equivalence follows from Corollary 4.7.)

Example 5.3 Set kR.n/ D BPRhni=.v1; : : : ; vn�1/ to be connective integral real
Morava K-theory and KR.n/D kR.n/Œv�1

n � its periodic version. Then

ZkR.n/
'†1CjvnjC4�2��vn

kR.n/

'†.2
n�3/�C4 cof.kR.n/!KR.n//:

This includes for nD 1 the case of usual (2–local) connective real K-theory.

Example 5.4 To have a slightly stranger example, take M D BPRh3i=.v4
1
; v2

3
/. Then

ZM
'†5�9��v2

M:

So far, we have only talked about quotients of BPR. This does not include important
real spectra like the real Johnson–Wilson theories ER.n/ D BPRhniŒv�1

n � or the
(integral) real Morava K-theories KR.n/. For this, we have to study the behaviour of
our constructions under localizations.
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Let M be an RO.C2/–graded ZŒv�–module, where v has some degree jvj 2 RO.C2/.
We say that M has bounded v–divisibility if for every degree aC b� , there is a k

such that
vk
W MaCb��jvk j!MaCb�

is zero. We will also apply the concept to modules that are just Zjvj–graded.

Lemma 5.5 The class of RO.C2/–graded ZŒv�–modules of bounded v–divisibility is
closed under submodules, quotients and extensions.

Proof This is clear for submodules and quotients. Let

0!K!M !N ! 0

be a short exact sequence of ZŒv�–modules where K and N are of bounded v–
divisibility. For a given degree ˛ 2 RO.C2/, we know that there is a k such that vk

maps trivially into K˛ . Furthermore, there is an n such that vn maps trivially into
N˛�kjvj . Thus, multiplication by vnCk is the zero map M˛�.kCn/jvj!M˛ .

Let M be an M R–module. We say that M is of bounded vn –divisibility if both
�C2
? M and �e

�M are of bounded vn –divisibility. This is, for example, true if M is
connective.

Lemma 5.6 We have the following two properties of vn –divisibility.

(1) Being of bounded vn –divisibility is closed under cofibres and suspensions.

(2) An M R–module M is of bounded vn –divisibility if and only if �C2
��M and

�e
�M are of bounded vn –divisibility.

Proof Both statements follow from the last lemma. For the second item, we addition-
ally use the exact sequence

�e
aCbC1M ! �C2

aC.bC1/�
M ! �C2

aCb�
M ! �e

aCbM

induced by the cofibre sequence

.C2/C! S0
! S� :

Lemma 5.7 If M has bounded vn –divisibility, then there is a natural equivalence

M Œv�1
n �'† holim

 
.� � � !†jvnj�vn

M
vn
�! �vn

M /

of M R–modules.
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Proof We apply the endofunctor H W N 7! holim
 

.� � � ! †jvnjN
vn
�! N / of M R–

modules to the cofibre sequence

�vn
M !M !M Œv�1

n �:

Clearly H.M Œv�1
n �/ 'M Œv�1

n �. Thus, we just have to show that H.M / ' 0. This
follows by the lim1 –sequence and bounded vn –divisibility.

Lemma 5.8 Let B be a quotient of BPR by powers of the vi . Then BŒv�1� has
bounded vn –divisibility if v is a product of vi not containing vn . Hence, the same
is also true for the stable Koszul complex �vB , where v is a sequence of vi not
containing vn .

Proof By Lemma 5.6, it is enough to check the first statement on �C2
�� and on �e

� . On
the latter, it is clear and the former is isomorphic to it by Corollary 4.6. For the second
statement, we use that �vB is the fibre of B! LC .vIB/, where LC .vIB/ has a filtration
with subquotients M R–modules of the form †?BŒx�1� for some x 2 �C2

? M R [11,
Lemma 3.7]. Thus, the second statement follows from Lemma 5.6.

Theorem 5.9 Let the notation be as in Theorem 5.1, and assume for simplicity that
only finitely many mi are zero and that mn D 0. Then

ZM Œv�1
n �
'†�m0CjvjC.k�1/C4�2��vnvn

M:

Here v n vn denotes the sequence of all vi such that mi D 0 and i ¤ n.

Proof The preceding lemmas imply the following chain of equivalences:

ZM Œv�1
n �
' Z

holim
!

.M
vn
�!†�jvnjM

vn
�!��� /

' holim
 

.� � �
vn
�! ZM /

'†�m0CjvjCkC4�2�holim
 

.� � �
vn
�! �vM /

'†�m0CjvjCkC4�2�holim
 

.� � �
vn
�! �vn

.�vnvn
M //

'†�m0CjvjC.k�1/C4�2�.�vnvn
M /Œv�1

n �

'†�m0CjvjC.k�1/C4�2��vnvn
.M Œv�1

n �/:

Example 5.10 We recover the following result by Ricka [28]:

ZKR.n/
'†4�2�KR.n/:

Here, KR.n/ denotes integral Morava K-theory ER.n/=.v1; : : : ; vn�1/.
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Example 5.11 In the following, we will use the fact that there are invertible classes
x; vn 2 �

C2
? ER.n/ of degree �22nC1C 2nC2� � and .2n� 1/� , respectively, where

x D v1�2n

n u2n.1�2n�1/ :

ZER.n/
'†Dn�1�C.n�1/C4�2��.v1;:::;vn�1/ER.n/

'†�.nC2/�C.nC3/�.v1;:::;vn�1/ER.n/

'†.nC2/.22nC1�2nC2/CnC3�.v1;:::;vn�1/ER.n/:

This says that ER.n/ has Gorenstein duality with respect to ER.n/=.v1; : : : ; vn�1/D

KR.n/. Note that we can replace the ideal .v1; : : : ; vn�1/ by an ideal generated in
integral degrees, namely .v1x; : : : ; vn�1x2n�1�1/.

Example 5.12 Recall from [27] the spectra tmf1.3/, Tmf1.3/ and TMF1.3/ and
the corresponding C2 –spectra tmf1.3/, Tmf1.3/ and TMF1.3/. Recall that we have
��tmf1.3/ D ZŒa1; a3�, where a1 and a3 can be identified with the images of the
Hazewinkel generators v1 and v2 , and that tmf1.3/ is a form of BPRh2i (as already
discussed in Examples 4.13). This gives the Anderson dual of tmf1.3/. Tweaking the
last theorem a little bit allows us also to show that

ZTMF1.3/ '†5C2��v1
TMF1.3/:

We can also recover one of the main results of [27], namely that

ZTmf1.3/ '†5C2�Tmf1.3/:

Indeed, Tmf1.3/ is by [27, Section 4.3] the cofibre of the map

�v1;v2
tmf1.3/! tmf1.3/:

As the source is equivalent to †�6�2�Ztmf1.3/ , applying Anderson duality shows that
ZTmf1.3/ is the fibre of

†6C2�tmf1.3/!†6C2��v1;v2
tmf1.3/:

This is equivalent to †5C2�Tmf1.3/. This example does not require 2–localization,
only that 3 is inverted.

Remark 5.13 By Proposition 3.3, all the results in this section have direct implications
for the Anderson duals of the fixed point spectra. These are easiest to understand in
the case of ER.n/D .ER.n//C2 , where we get

ZER.n/
'†.nC2/.22nC1�2nC2/CnC3�.v1x;:::;vn�1x2n�1/ER.n/:
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Part II The Gorenstein approach

In this part, we explain the Gorenstein approach to prove Gorenstein duality, first
for kR and then for BPRhni.

6 Connective K-theory with reality

The present section considers K-theory with reality, which is more familiar than BPRhni
for general n, and no 2–localization is necessary. The arguments are especially simple,
firstly because kR is a commutative ring spectrum, and secondly because we only
need to consider principal ideals. Simple as the argument is, we see in Section 11 that
the consequences for coefficient rings are interesting.

6A Gorenstein condition and Matlis lift

It is well known that there is a cofibre sequence

†�ku
v
�! ku!HZ:

If one knows the coefficient ring ku� D ZŒv�, this is easy to construct, since we can
identify ku=v as the Eilenberg–Mac Lane spectrum from its homotopy groups.

There is a version with reality [8]. Indeed, we may construct the cofibre sequence

†�kR
v
�! kR!HZ;

where kR=v is identified using Corollary 2.3

Since the Dugger sequence is self dual we immediately deduce that kR is Gorenstein.

Lemma 6.1 HomkR.HZ; kR/D†���1HZ;

and kR!HZ is Gorenstein.

Proof Apply HomkR. � ; kR/ to the Dugger sequence.

To actually get Gorenstein duality we need to construct a Matlis lift (adapted from [9,
Section 6]), which is a counterpart in topology of the injective hull of the residue field.

Definition 6.2 If M is an HZ–module, we say that a kR–module �M is a Matlis lift
of M if �M is HZ-R–cellular, and

HomkR.T; �M /' HomH Z.T;M /

for all HZ–modules T .
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The Anderson dual provides one such example.

Lemma 6.3 The kR–module †�2.1��/ZkR is a Matlis lift of HZ. Indeed,

(i) ZkR is HZ-R–cellular, and

(ii) there is an equivalence

†2ıHZ'HZ� D HomkR.HZ;ZkR/;

where ı D 1� � .

Proof One could prove the first part from the slice tower, but it also follows directly
from Corollary 3.9.

The second statement is immediate from Lemma 3.1.

6B Gorenstein duality

We next want to move on to Gorenstein duality, so we write

E D HomkR.HZ;HZ/:

Combining Lemmas 6.1 and 6.3, we have

(6.4) HomkR.HZ; kR/'†���1HZ' HomkR.HZ; †�4C�ZkR/:

We now want to remove the HomkR.HZ; � / from this equivalence.

Lemma 6.5 (effective constructibility) The evaluation map

HomkR.HZ;M /˝E HZ!M

is an HZ-R–cellularization for every left kR–module M .

Proof Since the domain is clearly HZ-R–cellular, it is enough to show the map is an
equivalence for all cellular modules M .

This is clear for M D HZ. The class of M for which the statement is true is
closed under (i) triangles, (ii) coproducts (since HZ is small) and (iii) suspensions by
representations. This gives all R–cellular modules.

Local cohomology gives an alternative approach to cellularization. Recall that we
define the v–power torsion of a kR–module M by the fibre sequence

�vM !M !M Œ1=v�:

The following lemma is a special case of Proposition 3.8.
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Lemma 6.6 The map
�vM !M

is an HZ-R–cellularization.

It remains to check that the two E –actions on HZ coincide.

Lemma 6.7 There is a unique right E –module structure on HZ.

Proof Suppose that HZ0 is a right E –module whose underlying C2 –spectrum is
equivalent to the Eilenberg–Mac Lane spectrum HZ. We first claim that HZ0 can be
constructed as an E –module with cells in degrees k� for k � 0:

HZ0 'E S0
E [ e

��
E [ e

�2�
E [ � � � :

Once that is proved, we argue as follows. If HZ00 is another right E –module with
underlying C2 –spectrum HZ, we may construct a map HZ0 ! HZ00 skeleton by
skeleton in the usual way. We start with the E –module map E D .HZ0/.0/! HZ0

giving the unit, and successively extend the map over the cells of HZ0 . At each stage
the obstruction to the existence of an extension over .HZ0/�k� lies in �C2

�k��1.HZ00/.
These groups are zero. We end with a map which is an isomorphism on 0th homotopy
Mackey functors and therefore an equivalence.

For the cell-structure, it is enough to show that for every right E –module HZ0 of the
homotopy type of the Eilenberg–Mac Lane spectrum HZ, there is a map E!HZ0 of
right E –modules whose fibre has the homotopy type of †���1HZ. Indeed, suppose
we have already constructed a right E –module .HZ0/.n/ with an E –map to HZ0

with fibre of the homotopy type †�.nC1/��1HZ. Then it is easy to see that the
cofibre .HZ0/.nC1/ of the map †�.nC1/��1E!†�.nC1/��1HZ! .HZ0/.n/ has the
analogous property. Taking the homotopy colimit, we get a map holim

!
.HZ0/.n/!HZ0

with fibre holim
!

†�.nC1/��1HZ, which is clearly zero (eg by Lemma 4.11 and the
fact that HZ is even; we refer to [28, Section 3.4] for a table of �C2

? HZ).

We choose the map f W E!HZ0 representing 1 2 �C2
0 HZ0 and call the fibre F . We

want to show that f agrees with the canonical map E !HZ on homotopy groups
of the form �C2

k��
for k 2 Z. Indeed, the only nonzero class in HZ0 in these degrees

is a 2 �C2
��HZ0 , which has to be hit by a 2 �C2

��E as it comes from the sphere. Thus,
�C2

k��
F Š �C2

k��
†�1��HZ for all k and hence F ' †�1��HZ as C2 –spectra, as

we needed to show.

From this the required statement follows.

Corollary 6.8 (Gorenstein duality) There is an equivalence of kR–modules

�vkR'†�4C�ZkR:
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Proof By (6.4) and Lemma 6.7, we know that

HomkR.HZ; kR/˝E HZ' HomkR.HZ; †�4C�ZkR/˝E HZ:

By Lemma 6.5, the two sides are the cellularizations of kR and †�4C�ZkR respec-
tively. By Lemmas 6.6 and 6.3, the former is �vkR and the latter is †�4C�ZkR

itself.

The implications of this equivalence for the coefficient ring are investigated in Section 11.

7 BPhni with reality

We now turn to the case of BPRhni for a general n. The counterpart of the argument of
Section 6 is a little simpler when BPRhni is a commutative ring spectrum. For nD 1

and n D 2, the spectra kR, and tmf1.3/, are both known to be a commutative ring
spectra, and their 2–localizations give BPRhni when nD 1 and nD 2 respectively.
However for higher n it is not known that BPRhni is a commutative ring spectrum. This
is a significant technical issue, but one that is familiar when working with nonequivariant
BP –related theories since BP is not known to be a commutative ring. The established
method for getting around this is to use the fact that BP and BPhni are modules over
the commutative ring MU . We will adopt precisely the same method by working with
M R–modules. The only real complication is that we are forced to work with spectra
whose homotopy groups are bigger than we might like, but if we focus on the relevant
part, it causes no real difficulties.

7A Gorenstein condition and Matlis lift

As mentioned in the introduction of this section, we will work in the setting of M R–
modules. More precisely, we will always (implicitly) localize at 2 and set S DM R.2/ .
As discussed in Section 4A, we can define S –modules BPRhni, once we have chosen
a sequence of vi (for example, the Hazewinkel or Araki generators).

The ideal
xJn D .xv1; : : : ; xvn/

plays a prominent role, and we will abuse notation by writing

S= xJn WD cof.S
xv1
�! S/˝S cof.S

xv2
�! S/˝S � � � ˝S cof.S

xvn
�! S/;

and then
M= xJn WDM ˝S S= xJn:
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In particular,
BPRhni= xJn D BPRhni=xvn=xvn�1= � � � =xv1 'HZ

by the C2 –case of the reduction theorem, here proved as Corollary 4.7.

If BPRhni is a ring spectrum,

HomBPRhni.HZ;M /D HomBPRhni.BPRhni˝S S= xJn;M /D HomS .S= xJn;M /:

The right-hand side gives a way for us to express the fact that certain BPRhni–modules
(such as BPRhni and ZBPRhni ) are Matlis lifts, using only module structures over S .

Applying this when M D BPRhni, we obtain the Gorenstein condition.

Lemma 7.1 The map BPRhni!HZ is Gorenstein of shift �Dn��n in the sense that

HomS .S= xJn;BPRhni/'†�Dn��nHZ;

where
Dn�D jxvnjC jxvn�1jC � � �C jxv1j D Œ2

nC1
� n� 2��:

Proof Since each of the maps xvi W †
jxvi jS ! S is self-dual, for any S –module M ,

we have
HomS .S= xJn;M /'†�Dm��nS= xJn˝S M:

Applying this when M D ZBPRhni , we obtain the Anderson Matlis lift.

Lemma 7.2 The Anderson dual of BPRhni is a Matlis lift of HZ� in the sense that

(i) ZBPRhni is HZ-R–cellular, and

(ii) there is an equivalence

†2�2�HZ'HZ� ' HomS .S= xJn;Z
BPRhni/:

Proof One could prove the first part from the slice tower, but it also follows directly
from Corollary 3.9.

For the second statement, observe that

HomS .S= xJn;Z
BPRhni/' HomS .S= xJn˝S BPRhni;ZS /' ZH Z:

Thus, Lemma 3.1 implies the statement.

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3579

7B Gorenstein duality

Throughout this section, we will write RD BPRhni for brevity. Combining Lemmas
7.1 and 7.2, we have an equivalence of S –modules

HomS .S= xJn;R/'†
�Dn��nHZ' HomS .S= xJn; †

�.DnCnC2/�.Dn�2/�ZR/:

We want to remove the HomS .S= xJn; � / from this equivalence. The endomorphism ring

zEn D HomS .S= xJn;S= xJn/

of the small S –module S= xJn , replaces En D HomR.HZ;HZ/ from the case that
RD BPRhni is a ring spectrum. We note that

zEn˝S RD HomS .S= xJn;S= xJn/˝S R' HomS .S= xJn;S= xJn/˝S R/:

If R D BPRhni were a commutative ring, then this would be a ring equivalent to
HomR.HZ;HZ/.

In any case, the following is proved exactly like Lemma 6.5.

Lemma 7.3 (effective constructibility) The evaluation map

HomS .S= xJn;M /˝zEn
S= xJn!M

is an S= xJn-R–cellularization.

Of course local cohomology gives an alternative approach to cellularization. Recall
that we define

� xJn
M D �xv1

S ˝S �xv2
S ˝S � � � ˝S �xvn

S ˝S M:

Then Proposition 3.8 gives the following lemma.

Lemma 7.4 � xJn
M !M

is an HZ-R–cellularization.

It remains to check that the two zEn actions on HZ coincide. For kR (ie nD 1), we
showed there was a unique right En –module structure on HZ. This may be true for
zEn –module structures, but we will instead just prove in the next subsection that the two
particular zEn –modules that arose from the left and right-hand ends of the first display
of this subsection are equivalent.

The required Gorenstein duality statement follows. Its implications for the coefficient
ring for nD 2 are investigated explicitly in Section 13.
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Corollary 7.5 (Gorenstein duality) There is an equivalence of M R–modules

� xJn
R'†�.DnCnC2/�.Dn�2/�ZR

with RD BPRhni.

Proof We will argue in Section 7C that the equivalence

HomS .S= xJn;R/' HomS .S= xJn; †
�Dn��n�2ıZR/;

is in fact an equivalence of right modules over zEn . By Lemma 7.3, we see that R

and †�.DnCnC2/�.Dn�2/�ZR have equivalent S= xJn cellularizations. We have seen
above that the cellularization of R is � xJn

BPRhni and that †�Dn��n�2ıZR itself is
cellular.

7C The equivalence of induced and coinduced Matlis lifts of H Z

For brevity, we will still write RDBPRhni, and note that we have a map S DM R!
BPRhni DR. The two S –modules that concern us are of a very special sort, one looks
as if it is obtained from an S –module by “extension of scalars from S to R” and one
looks as if it is obtained by “coextension of scalars from S to R”.

Lemma 7.6 We have equivalences of right zEn –modules

HomS .S= xJn;R/' HomS .S= xJn;S/˝S R;

HomS .S= xJn;Z
R/D HomS .R;HomS .S= xJn;Z

S //:

Proof The first equivalence is immediate from the smallness of S= xJn .

The second equivalence is a consequence of the following equivalence of S –modules:

ZR
' HomS .R;Z

S /:

Suspending the equivalences from Lemma 7.6 so that we are comparing two zEn –
modules equivalent to HZ (see Lemma 7.2), we have

Y1 D HomS .S= xJn; †
Dn�CnR/' HomS .S= xJn; †

Dn�CnS/˝S RDX1˝S R

and

Y2 D HomS .S= xJn; †
2ıZR/' HomS .S;HomS .S= xJn; †

2ıZS //D HomS .R;X2/:

In Section 7D, we will construct an zEn –map ˛ WX1! Y2 and then argue in Section 7E
that this extends along X1 DX1˝S S !X1˝S RD Y1 to give a map z̨W Y1! Y2
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which is easily seen to be an equivalence: it is clearly a ��� isomorphism and hence
an equivalence by Lemma 4.11.

To see our strategy, note that the extension problem

X1

��

˛
// HomS .S= xJn;HomS .R;Z

S //

X1˝S R

z̨

55

in the category of zEn –modules is equivalent to the extension problem

X1˝zEn
S= xJn˝S R

��

˛0
// ZS

X1˝zEn
S= xJn˝S R˝S R

z̨0

66

in the category of S –modules. The point is that by the defining property of the
Anderson dual, this latter extension problem can be tackled by looking in �C2

0 . The
0th homotopy groups of the spectra on the left are easily calculated from the known
ring �C2

? .HZ/.

7D Construction of the map ˛

We construct the map ˛ using a similar method as in the proof of Lemma 6.7.

Lemma 7.7 There is a map
˛W X1! Y2

of right zEn –modules that takes the image of 12�C2
0 .S/ to a generator of �C2

0 .HZ/DZ.

Proof First we claim that X1 has a zEn –cell structures with one 0–cell and other cells
in dimensions which are negative multiples of � . More precisely, there is a filtration

zEn 'X
Œ0�
1
!X

Œ1�
1
!X

Œ2�
1
! � � � !X1

such that X1 ' holim
!

dX
Œd �
1

, and there are cofibre sequences

X
Œd�1�
1

!X
Œd �
1
!

W
†�d� zEn:

By definition, X1 D HomS .S= xJn; †
Dn�CnS/. By Proposition 3.8 and Lemma 3.6,

this is equivalent to

HomS .S= xJn; †
Dn�Cn� xJn

S/' HomS .S= xJn; �S .v1; : : : ; vn//
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because � xJn
S! S is an S= xJn-R–cellularization. The usual construction of the stable

Koszul complex from the unstable Koszul complex recalled in Section 3C, shows that

�S .v1; : : : ; vn/

has a filtration with subquotients sums of .�k�/–fold suspensions of S= xJn . This
induces a corresponding filtration on X1 .

As in Lemma 6.7 we may construct ˛ by obstruction theory. Indeed, we start by
choosing a map zEn DX Œ0�

1
! Y Œ0�

2
taking the unit to a generator. At the d th stage we

have a problem:

X
Œd�1�
1

//

��

Y2

X
Œd �
1

==

The obstruction to extension is in a finite product of groups

Œ†�d��1zEn;Y2�
zEn D �C2

�d��1
.HZ/D 0;

where the vanishing is from the known value of �C2
? .HZ/.

7E The map z̨

Referring to the second extension problem diagram above, we note S= xJn˝S R'HZ
as S –modules. Thus, we have to solve the lifting problem

X1˝zEn
HZ˝S S

1˝1˝�

��

˛0
// ZS

X1˝zEn
HZ˝S R

z̨0

88

where HZ is equipped with some zEn –module structure. Denote the upper left corner
by T . The map T ! T ˝S R is a split inclusion on underlying MU–modules. Indeed,

T 'X1˝zEn
S= xJn˝S R;

and the map R!R˝S R is a split inclusion on underlying spectra because BP hni

has the structure of a homotopy unital MU–algebra [10, Theorem V.2.6].
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By the definition of Anderson duals, we have a diagram of short exact sequences:

0 // Ext1Z.�
C2
�1
.T˝SR/;Z/

��

// ŒT˝SR;ZS �S

��

// HomZ.�
C2
0 .T˝SR/;Z/

��

// 0

0 // Ext1Z.�
C2
�1
.T /;Z/ // ŒT;ZS �S // HomZ.�

C2
0 .T /;Z/ // 0

We want to show that the maps �C2
k T !�C2

k T ˝S R are split injections for kD 0;�1,
which solves the problem. For the computation of �C2

� T , recall from the last section
that X1 has a filtration starting with X Œx�

1
D zEn and with subquotients sums of terms

of the form †�d� zEn . Thus, T obtains a filtration starting with T Œ1� DHZ and with
subquotients sums of terms of the form †�d�HZ. The map HZD T Œ1�! T clearly
induces isomorphisms on �C2

k
for k D 0;�1 by the known homotopy groups of HZ;

see eg [28, Section 3.4] for a table. Thus, �C2
�1

T D 0 and �C2
0 T D Z.

If we have a map Z!M from the constant Mackey functor, it is a split injection on
.C2=C2/ if it is one on .C2=e/. But we have already seen above that on underlying
spectra T ! T ˝S R is a split inclusion. Thus, we have shown that �C2

k
T !

�C2
k
.T ˝S R/ is split injective, which provides the map z̨0 .

Part III The hands-on approach

In this part, we give a different way to compute the Anderson dual of BPRhni by first
computing the Anderson dual of BPR itself. Again, we will first do the case of kR.

8 The case of kR again

To illustrate our strategy, we give an alternative calculation of the Anderson dual of kR.
This can also be deduced from our main theorem below, but it might be helpful to
see the proof in this simpler case first. General references for the RO.C2/–graded
homotopy groups of kR are [7, Section 3.7] or Section 11B.

We want to show the following proposition:

Proposition 8.1 There is an equivalence �kR.v/!†2��4ZkR .

Recall here that v 2 �C2
� kR is the Bott element for real K-theory, and

�kR.v/D hocolim
n

†�.n�1/�kR=vn:

Our idea is simple: to get a map from the homotopy colimit, we have just to give maps

†�.n�1/�kR=vn
!†2��4ZkR
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that are compatible in the homotopy category (see Remark 3.7). We will show in the next
lemma that these maps are essentially unique: the Mackey functor of homotopy classes
of kR–linear maps †�.n�1/�kR=vn!†2��4ZkR is isomorphic to Z and the precom-
position with the map †�.n�1/�kR=vn!†�n�kR=vnC1 induces the identity on Z.

Choosing the C2 –equivariant map �kR.v/!†2��4ZkR that corresponds to 1 2 Z
for every n induces an equivalence on underlying homotopy groups. By Lemma 4.11,
the result follows as soon as we have established that �kR.v/ is strongly even and that
the Mackey functor ���†2��4ZkR is constant. These two facts will also be shown in
the following lemma, finishing the proof of the proposition.

Lemma 8.2 For a ZŒv� module M , denote by fM gvn its vn –torsion. Then we have:

(1) kR=vn is strongly even, and hence the same is true for �kR.v/.

(2) �C2
n�†

2��4ZkR Š �C2
.n�2/�C4

ZkR is constant for all n 2 Z.

(3) Œ†�.n�1/�kR=vn; †2��4ZkR�
C2

kR Š
˚
�C2

�.n�1/�
†2��4ZkR

	
vn Š Z.

Proof The first part follows as

�C2
k��i.kR=vn/D �C2

k��i.kR/=vn

for i D 0; 1 because �C2
k��ikRD 0 for i D 1; 2.

For the second part, consider the short exact sequence

0! Ext.�C2
k��5kR;Z/! �C2

�k�C4
ZkR

! Hom.�C2
k��4kR;Z/! 0:

We have �C2
k��5kR D 0 for all k 2 Z. For k < 2, the Mackey functor �C2

k��4kR
vanishes as well and for k � 2, we have �C2

k��4kR Š Z� , generated by vk�2 and
2vk�2u. Thus,

�C2

�k�C4
ZkR

Š

�
0 if k < 2;

Z if k � 2:

This shows part (2). As multiplication by vn does not hit �C2
.nC1/��4

kR, the whole
Mackey functor �C2

�.nC1/�C4
ZkR is vn –torsion. This gives the second isomorphism

of the third part.

For the remaining isomorphism, note that the cofibre sequence

†�kR
vn

�!†�.n�1/�kR!†�.n�1/�kR=vn
!†�C1kR

induces a short exact sequence

0! .�C2
�C1†

2��4ZkR/=vn! Œ†�.n�1/�kR=vn; †2��4ZkR�
C2

kR

!
˚
�C2

�.n�1/�
†2��4ZkR	

vn ! 0:
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We have �C2
�C1

†2��4ZkR Š �C2
5��Z

kR , which sits in a short exact sequence

0! ExtZ.�C2
��6kR;Z/! �C2

5��Z
kR
! HomZ.�

C2
��5kR;Z/! 0:

But because of connectivity, �C2
��ckRD 0 for c � 3.

9 Duality for BPR

We will use throughout the abbreviation B D BPR and will furthermore implicitly
localize everything at 2, so Z D Z.2/ etc, and all Hom and Ext groups are over
ZD Z.2/ unless marked otherwise. Denote by v a sequence of indecomposable ele-
ments vi 2�

C2

.2i�1/�
B . The aim of this section is to show that †2��4ZB' �MR.vIB/.

Recall that �M R.vIB/ is defined as follows: Given a sequence l D .l1; l2; : : : / with
li � 0, we denote by B=v l the spectrum B=.v li1

i1
; v li2

i2
; : : : /, where ij runs over all

indices such that lij > 0. Set

jl j D l1jv1jC l2jv2jC � � � :

Then
�MR.vIB/D hocolim

l
†�jl�1jB=v l ;

where l runs over all sequences such that all but finitely many li are zero, and 1

denotes the constant sequence of ones. Furthermore, the i th entry of l �1 is defined to
be the maximum of 0 and li � 1.

Thus, to get a map �MR.vIB/! †2��4ZB , we have to understand the homotopy
classes of maps B=v l !†2��4ZB . This will be the content of the next subsection.

9A Preparation

Recall the Mackey functor Z� defined by

Z�.C2=C2/Š Z�.C2=e/Š Z

with transfer equalling 1 while restriction is multiplication by 2.

Lemma 9.1 As ZŒv1; v2; : : : �–modules, we have the following isomorphisms:

(1) �C2
���4B Š Z�˝Z ZŒv1; v2; : : : �, where Z� is generated by 1 on underlying

and by 2u�1 on C2 –equivariant homotopy groups.

(2) �C2
���5B D 0.

(3) �C2
���6B Š F2fa

2v1.�1/g˝Z ZŒv1; v2; : : : �.
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Proof By Theorem A.4, the groups �C2
���cB are additively generated by nonzero

elements of the form x D alv with v a monomial in the vi.j /. Let vi.j / be the
one occurring with minimal i , where j is chosen such that v D vi.j /v

0 with v0 a
monomial in the vk (this is possible by the third relation in Theorem A.4). Then
jxj D ��C j 2iC2C l and 0� l < 2iC1� 1.

For c D 4, this implies j D�1, i D 0 and l D 0. Thus, x is of the form v0.�1/v0 .
As the restriction of v0.�1/ to �e

0
B equals 2, the result follows.

For c D 5, we must have l � 2iC2 � 5, which implies l � 2iC1 � 1 or i D 0; in the
latter case l must be zero, which is not possible.

For c D 6, we must have l D�j 2iC2� 6, which implies l � 2iC1� 1 or i � 1 and
j D�1. As i D 0 is again not possible, x D a2v1.�1/v0 with v0 2 �C2

�� .

Lemma 9.2 For a sequence l D .l1; l2; : : : /, the map

�C2
��C4ZB=v l

! Hom.�C2
����4B=v l ;Z/Š Z˝Z .ZŒv1; v2; : : : �=v

l/�

is an isomorphism, where ZŒv1; v2; : : : �
�DHomZ.ZŒv1; v2; : : : �;Z/ (so that the grad-

ings become nonpositive). Here, the second map is the dual of the map

Z�˝Z ZŒv1; v2; : : : �=v
l
! �C2

����4B=v l

sending 1 2 Z�.C2=C2/ to the image of u�1 under the map B! B=v l and sending
1 2 Z�.C2=e/ to 1.

Proof We have a short exact sequence

0! Ext.�C2
����5B=v l ;Z/! �C2

���4ZB=v l

! Hom.�C2
����4B=v l ;Z/! 0:

If l1 D 0, then Corollary 4.5 and Lemma 9.1 directly imply the statement. If l1 ¤ 0,
Corollary 4.5 only allows us to identify the homotopy Mackey functor in degree
����4, but not the one in degree ����5. We give a separate argument in this case.

If l1 ¤ 0, consider the sequence l 0 D .0; l2; l3; : : : / and the corresponding cofibre
sequence

†l1�B=v l 0
vl1

1
��! B=v l 0

! B=v l
!†l1�C1B=v l 0 :

This induces a short exact sequence

0! .�C2
���5B=v l 0/=v

l1

1
! �C2

���5B=v l
! f�C2

���6B=v l 0
gvl1

1
! 0:

Here the last term denotes the Mackey subfunctor of �C2
���6B=v l 0 killed by v l1

1 . By
Corollary 4.5 and Lemma 9.1, we see that �C2

���5B=v l D 0.
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As BDBPR is not known to have an E1–structure, we have to work with M R–linear
maps instead, for which the following lemma is useful:

Lemma 9.3 The map

ZB
' HomMR.M R;ZB/! HomMR.B;Z

B/

is an equivalence.

Proof Let eW M R!M R be the Quillen–Araki idempotent. Recall that

B D hocolim.M R
e
�!M R

e
�! � � � /:

Thus,

ZB
' holim

 
.� � �

e�

�! ZMR e�

�! ZMR/:

Hence,

HomMR.B;Z
B/' holim

 

�
� � �

e�

�! HomMR.B;Z
MR/

e�

�! HomMR.B;Z
MR/

�
:

As every HomMR.B;Z
MR/ is equivalent to a holim over

HomM R.M R;ZMR/' ZMR

connected by e�, we get that HomM R.B;Z
B/ is the homotopy limit holimZ��Z�ZMR,

where Z� denotes the poset of negative numbers and all connecting maps are e� . This
is equivalent to the homotopy limit indexed over the diagonal, which in turn is equivalent
to the homotopy limit indexed over a vertical.

Recall that we want to show that X D †2��4ZB is equivalent to �MR.v;B/. The
reason for the choice of suspension is essentially (as before) that HZ'†2��4HZ� .

Proposition 9.4 For a sequence l D .l1; l2; : : : /, we have an isomorphism

Œ†��B=v l ;X �
C2

MR Š Z˝Z .ZŒv1; v2; : : : �=v
l/�;

natural with respect to the maps B=v l ! †�jl
0�lj�B=v l 0 in the defining homotopy

colimit for �MR.vIB/ for l 0 D .l 0
1
; l 0

2
; : : : / a sequence with l 0i � li for all i � 1.

Proof The last lemma implies that we also have

ZB=v l

' HomMR.B=v
l ;ZB/

as the functors Z? and HomMR.?;Z
B/ behave the same way with respect to cofibre

sequences and (filtered) homotopy colimits. Then we just have to apply Lemma 9.2.
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9B The theorem

We first describe the homotopy groups of X D†2��4ZB with B D BPR as before.
By Lemma 9.2, we get

�C2
��X Š Hom.�C2

.�C2/��4B;Z/Š Z˝Z ZŒv1; v2; : : : �
�:

Let l be a sequence with only finitely many nonzero entries. By Proposition 9.4, the
element .v l�1/� induces a corresponding M R–linear map †�jl�1jB=v l!X , which
is unique up to homotopy. By this uniqueness, these maps are also compatible for
comparable l . By Remark 3.7, this induces a map

�MR.v;B/D hocolim
l

.†�jl�1jB=v l/
h
�!X;

where l ranges over all sequences where only finitely many li are nonzero.

Theorem 9.5 The map hW �MR.vIB/!X is an equivalence of C2 –spectra.

Proof By Corollary 4.6, we get on ���–level

colim
l

†�jl�1jZŒv1; v2; : : : �=.v
l1

1
; : : : /! Z˝Z ZŒv1; : : : �

�;

which is an isomorphism. The odd underlying homotopy groups of both sides are
zero. To apply Lemma 4.11, it is left to show that �C2

k��1�MR.vIB/D 0 for all k 2Z.
Again by Corollary 4.6, it is even true that �C2

k��1.B=v
l/ is zero for all k 2 Z and all

sequences l .

10 Duality for regular quotients

The goal of this section is to prove our main result Theorem 5.1:

Theorem 10.1 Let .m1;m2; : : : / be a sequence of nonnegative integers with only
finitely many entries bigger than 1. Denote by v0 the sequence of vi in �C2

? M R
such that mi D 0 and by m0 the sum of all .mi � 1/jvi j for mi > 1. Then there is an
equivalence

ZB=vm

'†�m0C4�2��MR.v
0
IB=vm/:

Here and for the rest of the section we will implicitly localize everything at 2 again.
Before we prove the theorem, we need some preparation.

Lemma 10.2 Let mD .m1; : : : / be a sequence of nonnegative integers with a finite
number n of nonzero entries. Then

ZB=vm

'†�jmj�n.ZB/=vm:
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Proof Let Y be an arbitrary (C2 –)spectrum and †jvjY
v
�! Y ! Y=v be a cofibre

sequence. Then we have an induced cofibre sequence

ZY=v
! ZY v

�!†�jvjZY
!†ZY=v

'†�jvj.ZY /=v:

Thus, ZY=v '†�jvj�1.ZY /=v . The claim follows by induction.

Lemma 10.3 The element v3k
i acts trivially on B=vk

i for every i � 1 and k � 1.

Proof By the commutativity of the diagram

†kjvi jB

vk
i

��

q
// †kjvi jB=vk

i

vk
i
����

B // B=vk
i

we see that the composite vk
i q is zero, and so the vk

i on the right factors over an
M R–linear map †2kjvi jC1B ! B=vk

i . As Œ†2kjvi jC1B;B=vk
i �MR is a retract of

Œ†2kjvi jC1M R;B=vk
i �MRŠ �

C2

2kjvi jC1
B=vk

i , we just have to show that v2k
i xD 0 for

every x 2 �2kjvi jC1B=vk
i .

We have a short exact sequence

0! .�C2
? B/=vk

i ! �C2
? .B=vk

i /!
˚
�C2
?�kjvi j�1B

	
vk

i

! 0:

As vk
i x clearly maps to zero, it is the image of a y 2 .�C2

? B/=vk
i . But vk

i y D 0.

Lemma 10.4 We have

B=vl
i ˝MR B=vm

j ' B=.vl
i ; v

m
j /:

Furthermore, there is an equivalence

hocolim
l

†�.l�1/jvi jB=vl
i ˝MR B=vm

i '†
jvi jC1B=vm

i

of M R–modules if m� 1.

Proof We have

B˝MR B ' hocolim.B
e
�! B

e
�! � � � /' B;

where e denotes again the Quillen–Araki idempotent, and thus also

B=vl
i ˝MR B=vm

j ' B=.vl
i ; v

m
j /:
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Thus, the maps in the homotopy colimit in the lemma are induced by the following
diagram of cofibre sequences:

†jvi jB=vm
i

vl
i
//

id
��

†�.l�1/jvi jB=vm
i

//

vi
��

†�.l�1/jvi jB=vl
i ˝MR B=vm

i

��

†jvi jB=vm
i

v
lC1
i

// †�ljvi jB=vm
i

// †�ljvi jB=vlC1
i ˝MR B=vm

i

We can assume that the homotopy colimit only runs over l � 3m so that, by the last
lemma, the two cofibre sequences split, and we get

†�.l�1/jvi jB=vl
i ˝MR B=vm

i '†
�.l�1/jvi jB=vm

i ˚†
jvi jC1B=vm

i :

The corresponding map

†�.l�1/jvi jB=vm
i ˚†

jvi jC1B=vm
i !†�ljvi jB=vm

i ˚†
jvi jC1B=vm

i

induces multiplication by vi on the first summand, the identity on the second plus
possibly a map from the second summand to the first.

Using this decomposition, it is easy to show that

hocolim
l

†�.l�1/jvi jB=vl
i ˝MR B=vm

i !†jvi jC1B=vm
i

(defined by the projection on the second summand for l � 3m) is an equivalence.
Indeed, on homotopy groups the map is clearly surjective. And if

.x;y/ 2 �C2
? †�ljvi jB=vm

i ˚�
C2
? †jvi jC1B=vm

i

maps to 0 2 �C2
? †jvi jC1B=vm

i , then y D 0 and .x; 0/ represents 0 in the colimit
because vi acts nilpotently.

Proof of Theorem 10.1 As in the theorem, let v0 be the sequence of vi such that
mi D 0 and also denote by v00 D .vi1

; vi2
; : : : / the sequence of vi such that mi ¤ 0.

We begin with the case that m has only finitely many nonzero entries (say n). By
Lemma 10.2, we see that

ZB=vm

'†�jmj�n.ZB/=vm:

Combining this with Theorem 9.5, we obtain

ZB=vm

'†�jmj�nC4�2��MR.v;B/=v
m

'†�jmj�nC4�2��MR.v
0; �MR.v

00;B=vm//:

Thus, we have to show that �MR.v
00;B=vm/'†jvi1

jC���Cjvin jCnB=vm .
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By Lemma 10.4, we have an equivalence

.B=vm/=.vli1
i1
; : : : ;vlin

in
/'.B=vli1

1 ˝MRB=vmi1
1 /˝MR: : :˝M R.B=v

lin
n ˝MRB=vmin

n /:

If we let now the homotopy colimit run over the sequences .li1
; : : : ; lin

/, we can do it
separately for each tensor factor. Hence, we obtain again by Lemma 10.4 an equivalence

�MR.v
00;B=vm/'†jvi1

jC���Cjvin jCnB=vm:

Thus, we have shown the theorem when m has only finitely many nonzero entries.

We prove the case that m has possibly infinitely many nonzero entries by a colimit ar-
gument. Define m�k to be the sequence obtained from m by setting mkC1;mkC2; : : :

to zero. Then B=m' hocolimk B=m�k and thus ZB=m ' holimk ZB=m�k . Denote
by v0�k the sequence of vi such that miD0 or i >k and by m0

k
the quantity jm�k�1j;

note that m0
k
Dm0 for k large.

We have to show that the map

hW †�m0�M R.v
0;B=vm/! holim

k
†�m0

k�MR.v
0
�k ;B=v

m�k /

is an equivalence. This map is defined as follows: We know that

�MR.v
0;B=vm/' hocolim

k
�M R.v

0;B=vm�k /:

Using this, we get a map induced from the maps

�MR.v
0;B=vm�k /! �MR.v

0
�k ;B=v

m�k /

for k large.

By Corollary 4.6, we can describe what happens on �C2
�� : The left-hand side has as

Z–basis monomials of the form vn with only finitely many ni nonzero, ni � 0 and
ni � �mi C 1 if mi ¤ 0. Likewise,

�C2
��

�
†m0

k�MR.v
0
�k ;B=v

m�k /
�

has as Z–basis monomials of the form vn with only finitely many ni nonzero, ni � 0

and ni � �mi C 1 if mi ¤ 0 and i � k . The maps in the homotopy limit induce the
obvious inclusion maps. Thus, clearly the map

�C2
��

�
†m0�MR.v

0;B=vm/
�
! lim

k
�C2
��

�
†m0

k�MR.v
0
�k ;B=v

m�k /
�

is an isomorphism.

It remains to show lim1
k �

C2
��C1

�
†m0

k�MR.v
0
�k ;B=v

m�k /
�

vanishes. By Corollary 4.8,
every term has as F2 –basis monomials of the form avn with only finitely many ni

nonzero, ni � 0 and ni � �mi C 1 if mi ¤ 0 and i � k . The system becomes
stationary in every degree, more precisely if �>�2kC1 . Thus, the lim1 –term vanishes.

Algebraic & Geometric Topology, Volume 17 (2017)



3592 J P C Greenlees and Lennart Meier

A similar lim1 –argument also shows that the odd underlying homotopy groups of
holimk †

�m0
k�MR.v

0
�k ;B=v

m�k / vanish.

As the source of h is strongly even by Corollary 4.6 and by the arguments we just gave
the morphism h induces an isomorphism on �C2

�� and on (odd) underlying homotopy
groups, Lemma 4.11 implies that h is an equivalence.

Part IV Local cohomology computations

In Part IV, we will describe the local cohomology spectral sequence in some detail,
and use it to understand the structure of the HZ–cellularization of BPRhni. The
calculation is not difficult, but on the other hand it is quite hard to follow because it is
made up of a large number of easy calculations which interact a little, and because one
needs to find a helpful way to follow the RO.C2/–graded calculations.

In contrast, the case of kR is simple enough to be explained fully without further
scaffolding, and it introduces many of the structures that we will want to highlight.
Since it may also be of wider interest than the general case of BPRhni we devote
Section 11 to it before returning to the general case in Section 12. Section 13 will then
give a more detailed account in the interesting case nD 2.

Let us also recall some notation used throughout this part. As in the rest of the paper we
work 2–locally, except when speaking about kR or tmf1.3/ when fewer primes need
be inverted. We often write ıD 1�� 2RO.C2/. We also recall the duality conventions
from Section 3A; in particular, for an F2 –vector space V _ equals the dual vector space
HomF2

.V;F2/ and for a torsion-free Z–module M , we set M � D Hom.M;Z/.

If R is a C2 –spectrum, we will use the notation RC2
? for its RO.C2/–graded homotopy

groups. We will also write RhC2
? D �C2

? .R.EC2/C/ and similarly for geometric fixed
points and the Tate construction.

11 The local cohomology spectral sequence for kR

This section focuses entirely on the classical case of kR, where there are already a
number of features of interest. This gives a chance to introduce some of the structures
we will use for the general case.

11A The local cohomology spectral sequence

Gorenstein duality for kR (Corollary 6.8) has interesting implications for the coefficient
ring, both computationally and structurally. Writing F for RO.C2/–grading as usual,
the local cohomology spectral sequence [11, Section 3] takes the following form.
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Proposition 11.1 There is a spectral sequence of kRC2
? –modules

H�.v/.kRC2
? / H) †�4C��C2

? .ZkR/:

The homotopy of the Anderson dual in an arbitrary degree ˛ 2 RO.C2/ lies in an exact
sequence

0! ExtZ.kRC2

�˛�1
;Z/! �C2

˛ .ZkR/! HomZ.kRC2
�˛;Z/! 0:

Since local cohomology is entirely in cohomological degrees 0 and 1, the spectral
sequence collapses to a short exact sequence

0!†�1H 1
.v/.kRC2

? /!†�4C��C2
? .ZkR/!H 0

.v/.kRC2
? /! 0:

This sequence is not split, even as abelian groups.

One should not view Proposition 11.1 as an algebraic formality: it embodies the fact
that kRC2

? is a very special ring. To illustrate this, we recall the calculation of kRC2
? in

Section 11B. In Section 11C, we calculate its local cohomology, and how the Gorenstein
duality isomorphism with the known homotopy of the Anderson dual works.

11B The ring kRC2
?

One may easily calculate kRC2
? . This has already been done in [7], but we sketch

a slightly different method. We will first calculate kRhC2
? and then use the Tate

square [12].

In the homotopy fixed point spectral sequence

ZŒv; a;u˙1�=2a H) kRhC2
? ;

all differentials are generated by d3.u/D va3 . Indeed, this differential is forced by
�4 D 0 and there is no room for further ones. It follows that U D u2 is an infinite
cycle, and so the whole ring is U –periodic:

kRhC2
? D BB ŒU;U�1�;

where BB is a certain “basic block”. This basic block is a sum

BBD BR˚ .2u/ �ZŒv�

as BR–modules, where
BRD ZŒv; a�=.2a; va3/:

It is worth illustrating BB in the plane (with BBaCb� placed at the point .a; b/);
see Figure 1. The squares and circles represent copies of Z, and the dots represent
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BB

a1

a2

a3

a4

a5

a6

1

v1

v2

v3

v4

v5

v6

2u

Figure 1: The basic block BB

copies of F2 . The left-hand vertical column consists of 1 (at the origin, .0; 0/) and
the powers of a, but the feature to concentrate on is the diagonal lines representing
ZŒv�–submodules. These are either copies of ZŒv� or of F2Œv� or simply copies of F2 .

Proceeding with the calculation, we may invert a to find the homotopy of the Tate
spectrum kRt D F.E.C2/C; kR/^S1� :

kRtC2
? D F2Œa; a

�1�ŒU;U�1�:

One also sees that the homotopy of the geometric fixed points (the equivariant homotopy
of kRˆ D kR^S1� ) is

kRˆC2
? D F2Œa; a

�1�ŒU �

using the following lemma:

Lemma 11.2 Let X be a C2 –spectrum which is nonequivariantly connective and such
that X C2 !X hC2 is a connective cover. Then XˆC2 !X tC2 is a connective cover
as well.

Proof This follows from the diagram of long exact sequences

�kXhC2
//

��

�kX C2 //

��

�kXˆC2 //

��

�k�1XhC2
//

��

�k�1X C2

��

�kXhC2
// �kX hC2 // �kX tC2 // �k�1XhC2

// �k�1X hC2

the fact that XhC2
is connective, and the five lemma.
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NB

2

v1

v2

v3

v4

v5

v6

2u

Figure 2: The negative block NB

Now the Tate square

kR //

��

kR^S1�

��

kR.EC2/C // kR.EC2/C ^S1�

gives kRC2
? .

It is convenient to observe that the two rows are of the form M !M Œ1=a�, so the
fibre is �aM . Since the two rows have equivalent fibres, we calculate the homotopy
of the second and obtain

kR?hC2
D NB ŒU;U�1�;

where NB is quickly calculated as the .a/–local cohomology H�.a/.BB/ (and named
NB for “negative block”). The element a acts vertically and we can immediately read
off the answer: the tower ZŒa�=.2a/ gives some H 1 , and the rest is a–power torsion:

NBD BB 0˚†�ıF2Œa�
_;

where BB 0 � BB is the BR–submodule generated by 2, v and 2u (informally, we
may say that BB 0 omits from BB all monomials ak for k � 1 and the generator 1).
Note that NB is placed so that its element 2 is in degree 0 for ease of comparison
to BB; all occurrences of NB in kRC2

? involve nontrivial suspensions.

Again, it is helpful to display the negative block; see Figure 2. This differs from BB
in that the powers of a have been deleted, and replaced by a new left-hand column
†�ıF2Œa�

_ . The other new feature is that the copy of ZŒv� generated by 1 has been
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replaced by the kernel .2; v/ of ZŒv�! F2 , as indicated by the circle at the origin,
labelled by its generator 2.

The Tate square then lets us read off

kRC2
? D

M
k��1

NB � fU k
g˚

M
k�0

BB � fU k
g D .U�1

�NB ŒU�1�/˚BB ŒU �:

The ZŒU � module structure is given by letting U act in the obvious way on the NB
and BB parts, and by the maps

NB! BB 0! BB

in passage from the U�1 factor of NB to the U 0 factor of BB.

Perhaps it is helpful to note that with the exception of the towers U�k†�ıF2Œa�
_ , we

have a subring of BB ŒU;U�1�, which consists of blocks BB �U i for i � 0 and blocks
BB 0 �U i for i < 0.

11C Local cohomology

Recall that we are calculating local cohomology with respect to the principal ideal .v/
so that we only need to consider kRC2

? as a ZŒv�–module. As such it is a sum of
suspensions of the blocks BB and NB, so we just need to calculate the local cohomology
of these.

More significantly, ZŒv� is graded over multiples of the regular representation, so local
cohomology calculations may be performed on one diagonal at a time (ie we fix n and
consider gradings nC��). The only modules that occur are

ZŒv�; F2Œv�; F2 and the ideal .2; v/� ZŒv�;

each of which has local cohomology that is very easily calculated.

Lemma 11.3 The local cohomology of the basic block BB is as follows:

H 0
.v/.BB/D a3F2Œa�;

H 1
.v/.BB/D†��ZŒv��˚†��C2ıZŒv��˚†����F2Œv�

_
˚†���2�F2Œv�

_:

Proof The local cohomology is the cohomology of the complex

BB! BB Œ1=v�:
It is clear that

BB Œ1=v�D ZŒv; v�1�˚u �ZŒv; v�1�˚ a �F2Œv; v
�1�˚ a2

�F2Œv; v
�1�:
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Turning to NB, we recall that NB D BB 0 ˚†�ıF2Œa�
_ , and we have a short exact

sequence
0! BB 0! BB! F2Œa�! 0:

The local cohomology is thus easily deduced from that of BB.

Lemma 11.4 The local cohomology of the negative block NB is as follows:

H 0
.v/.NB/D†�ıF2Œa�

_;

H 1
.v/.NB/D†��ZŒv��˚F2˚†

��C2ıZŒv��˚†��F2Œv�
_
˚†�2�F2Œv�

_:

More properly, the ZŒv�–module structure of the sum of the first two terms is

†��ZŒv��˚F2 Š ZŒv��=.2 � 1�/:

Proof The local cohomology is the cohomology of the complex

NB! NB Œ1=v�:

It is clear that NB Œ1=v�D BB Œ1=v�, which makes the part coming from the 2–torsion
clear. For the Z–torsion free part, it is helpful to consider the exact sequence

0! .2; v/! ZŒv�! F2! 0

and then consider the long exact sequence in local cohomology.

Immediately from the defining cofibre sequence �vkR! kR! kRŒ1=v� we see that
there is a short exact sequence

0!H 1
.v/.†

�1kRC2
? /! �C2

? .�.v/kR/!H 0
.v/.kRC2

? /! 0:

This gives �C2
? .�.v/kR/ up to extension. The Gorenstein duality isomorphism can

be used to resolve the remaining extension issues, and the answer is recorded in the
proposition below.

The diagram Figure 3 should help the reader interpret the statement and proof of the
calculation of the homotopy of �.v/kR. We have omitted dots, circles and boxes except
at the ends of diagonals or where an additional generator is required. The vertical
lines denote multiplication by a and the dashed vertical line is an exotic multiplication
by a that is not visible on the level of local cohomology. The green diamond does
not denote a class, but marks the point one has to reflect (nontorsion classes) at to see
Anderson duality. Torsion classes are shifted by �1 after reflection (ie shifted one step
horizontally to the left).
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BB

1

2u

a1

a2

NB

.2; xv1/P

GBB

a3

a4

a5

a6

a7

a8

a9

a10

a12

a13

a14

a15

GNB

Figure 3: Gorenstein duality for kR

Proposition 11.5 The homotopy of the derived v–power torsion is given by

�C2
? .�.v/kR/Š .U�1

�GNB ŒU�1�/˚GBB ŒU �;

where GBB and GNB are based on the local cohomology of BB and NB respectively,
and described as follows. We have

GBBD†�2��
�
ZŒv��˚ a �F2Œv�

_
˚ a2

�F2Œv�
_
˚u �N

�
;

where N (with top in degree 0) is given by an exact sequence nonsplit in degree 0:

0! ZŒv��!N ! F2Œa�! 0:
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Similarly,

GNBD†�1
�
ZŒv��=.2 � .1�//˚ a �F2Œv�

_
˚ a2

�F2Œv�
_
˚†1�3�ZŒv��˚†�F2Œa�

_
�
;

where the action of a is as suggested by the sum decomposition except that multiplica-
tion by a is nontrivial wherever possible (ie when one dot is vertically above another,
or where a box is vertically above a dot).

Proof We first note that the contributions from the different blocks do not interact.
Indeed, the only time that different blocks give contributions in the same degree come
from the F2Œa� towers of BB: one class in that degree is v–divisible (and not killed
by v ) and the other class is annihilated by v . We may therefore consider the blocks
entirely separately.

The block GBB comes from the local cohomology of BB and therefore lives in a short
exact sequence

0!H 1
.v/.†

�1BB/! GBB!H 0
.v/.BB/! 0:

The block GNB comes from the local cohomology of NB and therefore lives in a short
exact sequence

0!H 1
.v/.†

�1NB/! GNB!H 0
.v/.NB/! 0:

Most questions about module structure over BB ŒU � are resolved by degree, but there
are two which remain. These can be resolved by Gorenstein duality (Corollary 6.8)
and the known module structure in ZkR .

In GBB, the additive extension in �C2
�3�

is nontrivial:

�C2

�3�
.�.v/kR/Š Z:

Also the multiplication by a

F2 Š GNB�1C� ! GNB�1 Š F2

is nonzero (where GNB�1C� corresponds to �C2

�5C5�
.�.v/kR/ in the U�1 –shift).

Remark 11.6 It is striking that the duality relates the top BB to the bottom NB (ie
Anderson duality takes the part of �vkR coming from the local cohomology of BB
to NB), and it takes the bottom NB to the top BB (ie Anderson duality takes the part
of �vkR coming from the local cohomology of NB to BB). Indeed, as commented
after Lemma 11.2, since NBD �.a/BB, we have

†2C� �.v/BB' .�.a/BB/� and �.v;a/BB'†�2��BB�;

with the second stating that BB is Gorenstein of shift �2� � for the ideal .a; v/.
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By extension, Anderson duality takes the part of �vkR coming from the local coho-
mology of all copies of BB to all copies of NB and vice versa. This might suggest
separating kR into a part with homotopy BB ŒU �, giving a cofibre sequence

hBB ŒU �i ! kR! hU�1NB ŒU�1�i;

where the angle brackets refer to a spectrum with the indicated homotopy. However one
may see that there is no C2 –spectrum with homotopy the Mackey functor corresponding
to BB ŒU � (considering the b� and .bC 1/� rows one sees that the nonequivariant
homotopy of the spectrum would be zero up to about degree 2b ; taking all rows
together it would have to be nonequivariantly contractible and hence a–periodic).
Similarly, there is no spectrum with homotopy U�1NB ŒU�1�, so these dualities are
purely algebraic.

12 The local cohomology spectral sequence for BPRhni

Gorenstein duality for BPRhni (Example 5.2) has interesting implications for the
coefficient ring, both computationally and structurally. Writing F for RO.C2/–grading
as usual, the local cohomology spectral sequence [11, Section 3] takes the form
described in the following proposition. We now revert to our standard assumption of
working 2–locally, so Z means the 2–local integers.

Proposition 12.1 There is a spectral sequence of BPRhniC2
? –modules

H�xJn
.BPRhniC2

? / H) †�.DnCnC2/�.Dn�2/��C2
? .ZBPRhni/

for xJn D .v1; : : : ; vn/. The homotopy of the Anderson dual in an arbitrary degree
˛ 2 RO.C2/ is easily calculated:

0! ExtZ.BPRhniC2

�˛�1
;Z/! �C2

˛ ZBPRhni
! HomZ.BPRhniC2

�˛;Z/! 0:

For n� 2, the local cohomology spectral sequence has some nontrivial differentials.

One should not view Proposition 12.1 as an algebraic formality: it embodies the fact
that BPRhniC2

? is a very special ring.

In the present section, we will discuss the implications of this for the coefficient ring
for general n. The perspective is a bit distant so the reader is encouraged to refer back
to kR (ie the case nD 1) in Section 11 to anchor the generalities.

However the case nD 1 is too simple to show some of what happens, so we will also
illustrate the case tmf1.3/ (ie the case nD 2) in Section 13.

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3601

12A Reduction to diagonals

For brevity, we write R? D BPRhniC2
? . Because the ideal xJn D .xv1; : : : ; xvn/ is gener-

ated by elements whose degrees are a multiple of � , we can do xJn –local cohomology
calculations over the subring R�� of elements in degrees which are multiples of � .

Thus, for an R?–module M? we have a direct sum decomposition

M? D
M

d

MdC��

as R��–modules, where we refer to the gradings d C�� as the d –diagonal. Hence,
we also have

H i
xJn
.M?/D

M
d

H i
xJn
.MdC��/:

(We have abused notation by also writing xJn for the ideal of R�� generated by
xv1; : : : ; xvn .)

12B The general shape of BPRhniC2
?

By the description at the end of Section 4B, we have an isomorphism

R? D U�1
�NB ŒU�1�˚BB ŒU �

with BB and NB as described there. It is easy to see that BB and NB decompose as
R��–modules into modules of a certain form we will describe now. We will implicitly
2–localize everywhere.

The modules BB and NB decompose into are

P DR�� D ZŒxv1; : : : ; xvn� and xPs D P=.xv0; : : : ; xvs/D F2ŒxvsC1; : : : ; xvn�

for s � 0 and the ideals expressed by the exact sequences

0! .2; xv1; : : : ; xvt /! P ! xPt ! 0 or 0! .xvsC1; : : : ; xvt /! xPs!
xPt ! 0

with s � 0.

Their local cohomology is easily calculated. In the first two cases, the modules only
have local cohomology in a single degree:

H�xJn
.P /DH n

xJn
.P /D P�.�Dn�/;

H�xJn
. xPs/DH n�s

xJn
. xPs/D xP

_
s ..Ds �Dn/�/:

The top nonzero degree of P� is zero, so 1� 2 P�.�Dn�/ is in degree �Dn� D

�jv1j � � � � � jvnj. We alert the reader to the fact that star is used in two ways:
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occasionally in H� to mean cohomological grading and rather frequently here in P�

to mean the Z–dual of P .

Now we turn to the ideal .xvsC1; : : : ; xvt /. If t D s C 1 the ideal is principal and
.xvsC1/Š xPs..sC 1/�/; thus we get a single local cohomology group

H n�s
xJn
..xvsC1/ xPs/D xP

_
s ..Ds �DnC sC 1/�/

as can be seen from the long exact sequence of local cohomology.

Otherwise we get two local cohomology groups

H n�s
xJn
..xvsC1; : : : ; xvt / xPs/D xP

_
s ..Dn�Ds/�/

and
H n�tC1
xJn

..xvsC1; : : : ; xvt / xPs/D xP
_
t ..Dn�Dt /�/:

The case of .2; xv1; : : : ; xvt / is similar but with an extra case. The case t D 0 is easy
since then .2/Š P so the local cohomology is all in cohomological degree n where it
is P�.�Dn�/. If t D 1 we again get a single local cohomology group

H n
xJn
..2; xv1/P /D P�.�Dn�/˚ xP

_
1 ..D1�Dn/�/:

Otherwise we get two local cohomology groups

H n
xJn
..2; : : : ; xvt /P /DP�.�Dn�/ and H n�tC1

xJn

..2; : : : ; xvt /P /D xP
_
t ..Dt�Dn/�/:

12C The special case n D 1

The best way to make the patterns apparent is to look at the simplest cases. In this
section, we begin with kRC2

? as treated in Section 11 above, and we encourage the
reader to relate the calculations here to the diagrams in Section 11. In that case,

P D kRC2
�� D ZŒxv1�; xP0 D F2Œxv1� and xP1 D F2:

Table 1 (left) displayes BB by d –diagonal. The position of the modules along the
d –diagonal can be inferred from the label at the top of the column. Thus the first
column has generators in degree �d� , and the second column similarly, but in the
column of u (namely the 2–column). Noting that u is on the 4–diagonal, the d th row
has generators in juj � .d � 4/� D 2� .d � 2/� . For example, along the 4–diagonal
we have a4 xP1˚ .2u/P .

Taking local cohomology, and shifting H
s
xJn

down by s (as in the local cohomology
spectral sequence), we have Table 1 (right). Note that shifting down by s both lowers d

by s and adds a shift by �s� . For example, considering the 3–diagonal of this table,
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BB

d 1 u

0 P

1 xP0

2 xP0

3 xP1

4 xP1 .2/P

5 xP1

6 xP1

7 xP1

8 xP1

H�.v1/
.BB/

d 1 u

� 1 P�.�2�/

0 xP_
0
.�2�/

1 xP_
0
.�2�/

2

3 xP1 P�.�2�/

4 xP1

5 xP1

6 xP1

7 xP1

8 xP1

Table 1: BB (left) and the local cohomology (right) by d -diagonal for nD 1 .
The H 1 –groups are coloured brown.

the xP1 comes directly from the 3–diagonal of BB, whilst the P�.�2�/ comes from
the .2/P on the 4–diagonal of BB; the local cohomology is P�.��/, but its diagonal
is shifted by �1 since it is a first local cohomology, and because it is by reference to
the 2–column the shift is �� . The top of this module is calculated by reference to the
column of juj (ie the 2–column), and has top in degree 2� .3� 2/� � 2�D�3� .

We saw in Section 11 that the two modules on the 3–diagonal give a nontrivial additive
extension (in degree �3� ) after running the spectral sequence.

12D The special case n D 2

Continuing our effort to make patterns visible, we consider tmf1.3/
C2
? in this subsection

(ie the case nD 2). With Z denoting the integers with 3 inverted here, this has

P D tmf1.3/
C2
�� D ZŒxv1; xv2�; xP0 D F2Œxv1; xv2�; xP1 D F2Œxv2� and xP2 D F2:

See Table 2. Once again, the column labelled ui is the 2i th column, and shifts along
the diagonal have as reference point where this column meets the relevant diagonal.

We take local cohomology, again remembering that H
s
xJn

is shifted down by s , which
changes the diagonal by s . For example, on the 7–diagonal, xP2 comes from the
7–diagonal in BB, whereas the xP_

0
.�5�/ comes from the 2nd local cohomology of

the entry .xv1/ xP0 on the 9–diagonal; the local cohomology of xP0 is xP_
0
.�4�/, this is

shifted by a further �2� from the change of diagonal, and C� because of the xv1 .
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BB

d 1 u u2 u3

0 P

1 xP0

2 xP0

3 xP1

4 xP1 .2/

5 xP1

6 xP1

7 xP2

8 xP2 .2; xv1/P

9 xP2 .xv1/ xP0

10 xP2 .xv1/ xP0

11 xP2

12 xP2 .2/

13 xP2

H�.v1;v2/
.BB/

d 1 u u2 u3

� 2 P�.�6�/

�1 xP_
0
.�6�/

0 xP_
0
.�6�/

1

2 xP_
1
.�4�/ P�.�6�/

3 xP_
1
.�4�/

4 xP_
1
.�4�/

5 xP_
1
.�4�/

6 xP_
1
.�5�/˚P�.�6�/

7 xP2
xP_

0
.�5�/

8 xP2
xP_

0
.�5�/

9 xP2

10 xP2 P�.�6�/

11 xP2

12 xP2

13 xP2

Table 2: BB (left) and the local cohomology (right) by d -diagonal for nD 2 .
The H 1 –groups are coloured in brown and the H 2 –groups in teal.

We will see below that there are nontrivial extensions on the 2– and 10–diagonals, and
that there are differentials in the local cohomology spectral sequence from the 7–, 8–
and 9–diagonals (differentials go from the d –diagonal to the .d�1/–diagonal).

12E Moving from the basic block BB to the negative block NB

Moving from BB to NB only affects the 0 column, where in each case M is replaced
by ker.M ! F2/ D .2/M . In effect, this replaces xPn by 0. It also adds on a new
.�1/–column of xPnDF2 going up from the � row. We resist the temptation to display
a table for NB explicitly, but note that NBD �.a/BB as for kR.

12F Gorenstein duality

With the above data in mind, we may consider the d –diagonal BBd , where the lowest
value of d is 0 and the highest is N D 4.2n� 1/. If we ignore the difference between
BB and NB (which is at most F2 in any degree) we find approximately that BBd has a
relationship to BBN�d , namely something like an equality

H n
xJn
.BBd /

�
D BBN�d :
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There are various ways in which this is inaccurate and needs to be modified. Firstly, if
the local cohomology of BBd is entirely in cohomological degree n�� with �¤0, there
will be a shift of � (if it is in several degrees there is a further complication). Secondly,
Anderson duality introduces a shift of one diagonal if applied to torsion modules.
Thirdly, we have seen that there may be extensions between these local cohomology
groups, sometimes removing Z–torsion. Finally, there may be differentials.

In fact, all of these effects are “small” in the sense that the growth rate along a diagonal
is bounded by a polynomial of degree n� 1. Encouraged by this, if we ignore all of
these effects, we see that BB is a Gorenstein module in the sense that the reverse-graded
version is equivalent to the dual of its local cohomology:

H n
xJn
.BB/� D rev.BB/:

This is rather as if there is a cofibre sequence

S ! BPRhni !Q

where S is Gorenstein and Q is a Poincaré duality algebra of formal dimension
N D 2.1� �/.2n� 1/.

13 The local cohomology spectral sequence for tmf1.3/

We examine the local cohomology spectral sequence and Gorenstein duality in more
detail for tmf1.3/. Actually, our calculations are equally valid for all forms of BPRh2i,
but we prefer the more evocative name tmf1.3/ of the most prominent example. More
of the general features are visible for tmf1.3/ than for kR.

As usual we will implicitly localize everywhere at 2 (although for tmf1.3/ itself it
would actually suffice to just invert 3).

13A The local cohomology spectral sequence

We make explicit the implications for the coefficient ring, both computationally and
structurally. Writing F for RO.C2/–grading as usual, the spectral sequence takes the
following form.

Proposition 13.1 There is a spectral sequence of tmf1.3/
C2
? –modules

H�xJn
.tmf1.3/

C2
? / H) †�8�2��C2

? .Ztmf1.3//:

The homotopy of the Anderson dual is easily calculated:

0! ExtZ.tmf1.3/
C2

�˛�1
;Z/! �C2

˛ Ztmf1.3/! HomZ.tmf1.3/
C2
�˛;Z/! 0:

The local cohomology spectral sequence has some nontrivial differentials.

Algebraic & Geometric Topology, Volume 17 (2017)



3606 J P C Greenlees and Lennart Meier

tmf 1.3/
C2

F

1

U 1

U 2

U 3

U 4

2 �U�7

2 �U�6

2 �U�5

2 �U�4

2 �U�2

2 �U�1

2 �U�3

Figure 4: The homotopy of tmf1.3/

13B The ring tmf1.3/
C2
?

The ring tmf1.3/
C2
? is approximately calculated in [27] and more precisely described as

BB ŒU �˚U�1NB ŒU�1�

as at the end of Section 4B with n D 2. We already tabulated BB in Section 12D,
but we want also want to display a bigger chart of �C2

? tmf1.3/ as Figure 4 to give the
reader a feeling of how the blocks piece together.

A black diagonal line means a copy of P when it starts in a box, a copy of .2/P when
it starts in a small circle, a copy of .2; v1/P when it starts in a dot and a copy of
.2; v1; v2/ when it starts in a big circle. In Figure 4, a red diagonal line means a copy
of xP0 and a green diagonal line a copy of xP1 . A red dot is a copy of F2 D

xP2 .
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BB

1

M1

2u2

u2xv1

2u3

a1

a2

a3

a4

a5

a6

NB

.2; xv1; xv2/P .2; xv1/P

GBB

a7

a8

a9

a10

a11

a12

a13

a14

a15

GNB

d2

d2

d2

2u

.xv1; xv2/ xP0

.xv1; xv2/ xP0

Figure 5: Gorenstein duality for tmf1.3/

13C Local cohomology

We are calculating local cohomology with respect to the ideal xJ2 D .xv1; xv2/ so that
we only need to consider tmf1.3/

C2
? as a ZŒxv1; xv2�–module. As such it is a sum of
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suspensions of the blocks BB and NB, so we just need to calculate the local cohomology
of these. This was described in Section 12 above. Here we will simply describe the
extensions and the behaviour of the local cohomology spectral sequence.

The basis of this discussion are the tables of BB and GBB from Section 12D together
with the analogues for NB and GNB. Although these are organized by diagonal,
Figure 5 displaying BB;GBB;U�1NB and U�1GNB may help visualize the way the
modules are distributed along each diagonal. The vertical lines denote multiplication
by a and the dashed vertical line is an exotic multiplication by a that is not visible on
the level of local cohomology. The green diamond does not denote a class, but marks
the point one has to reflect (nontorsion classes) at to see Anderson duality. Torsion
classes are shifted after reflection by �1 (ie one step horizontally to the left).

The strategy is to take the known subquotients from the local cohomology calculation,
and resolve the extension problems using Gorenstein duality.

Proposition 13.2 We have an isomorphism

�C2
? � xJ2

tmf1.3/Š GBB ŒU �˚U�1GNB ŒU�1�;

where GBB and GNB are described in the following. We will simultaneously describe
what differentials and extensions in the local cohomology spectral sequence caused the
passage from H�

xJ2

.BB/ and H�
xJ2

.NB/ to GBB and GNB respectively.

(i) The ZŒxv1; xv2�–modules along the diagonals in GBB are as in Table 3 (left). There
are three nontrivial differentials

d2W H
0
xJ2
.BB/!H 2

xJ2
.BB/

from the groups at �7�;�8�;�9� to the groups at �7� �1;�8� �1;�9� �1, which
have affected the values on the 6–, 7–, 8– and 9–diagonals in Table 3 (left).

The extensions
0! P�! Œ.2; xv1/P �

�
! F2Œv2�

_
! 0

on the 2–diagonal and the 6–diagonal are Anderson dual to the defining short exact
sequence

0! .2; xv1/P ! P ! F2Œv2�! 0

in the following sense: The Anderson dual of the latter exact sequence is a triangle

F2Œv2�
�
! P�! Œ.2; xv1/P �

�
!†F2Œv2�

�
Š F2Œv2�

_

which induces (on homology) the extensions above. The extension

0! P�! Œ.2; xv1; xv2/P �
�
! F2! 0
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GBB

d module top degree

�2 P� �6�4�

�1 xP_
0

�6�5�

0 xP_
0

�6�6�

1 0

2 Œ.2;xv1/P �
� �4�6�

3 xP_
1

�4�7�

4 xP_
1

�4�8�

5 xP_
1

�4�9�

6 Œ.2;xv1/P �
� �2�8�

7 .xv1;xv2/ xP0 �2�9�

8 .xv1;xv2/ xP0 �2�10�

9 0

10 Œ.2;xv1;xv2/P �
� 0�10�

10Ck � 11 F2 0�.10Ck/�

GNB

d module top degree

�k � �3 F2 �1�k�

�2 P�;F2 �6�4�;�1C�

�1 xP_
0
;F2 �6�5�;�1C0�

0 xP_
0
;F2 �6�6�;�1��

1 F2 �1�2�

2 P�; xP_
1
�4�6�;�1�3�

3 xP_
1

�1�4�

4 xP_
1

�1�5�

5 xP_
1

�1�6�

6 Œ.2;xv1/P �
� �1�7�

7 xP_
0

�1�8�

8 xP_
0

�1�9�

9 0

10 P� 0�10�

Table 3: ZŒxv1;xv2�–modules as described in Proposition 13.2

on the 10–diagonal is Anderson dual to the short exact sequence

0! .2; xv1; xv2/P ! P ! F2! 0:

(ii) The ZŒxv1; xv2�–modules along the diagonals in GNB are as in Table 3 (right) (take
the direct sum of the two entries for the .�2/–, .�1/–, 0– and 2–diagonals). The
extension

0! P�! Œ.2; xv1/P �
�
! F2Œv2�

_
! 0

on the 6–diagonal is Anderson dual to the short exact sequence

0! .2; xv1/P ! P ! F2Œv2�! 0:

Proof We first note that the contributions from the different blocks do not interact.
Indeed, the only time that different blocks give contributions in the same degree comes
from the F2Œa� towers of BB, and one class in that degree is divisible by xv1 or xv2 and
not killed by both xv1 and xv2 . We may therefore consider the blocks entirely separately.

The block GBB comes from the local cohomology of BB in the sense that there is a
spectral sequence

H�xJ2
.BB/ H) GBB:
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H
�
xJ2
.NB/

d 1 u2 u4 u6

� 2 P�.�6�/

�1 xP_
0
.�6�/˚ xP2

0 xP_
0
.�6�/˚ xP2

1 xP2

2 xP_
1
.�4�/ P�.�6�/

3 xP_
1
.�4�/

4 xP_
1
.�4�/

5 xP_
1
.�4�/

6 xP_
1
.�5�/˚P�.�6�/

7 xP_
0
.�5�/

8 xP_
0
.�5�/

9

10 P�.�6�/

11

12

13

Table 4: Local cohomology for n D 2 from the proof of Proposition 13.2.
Again, the H 1 –groups are coloured in brown and the H 2 –groups in teal.

Thus there is a filtration

GBBD GBB0
� GBB1

� GBB2
� GBB3

D 0

with

0! GBB0=GBB1
!H 0

xJ2
.BB/

d2
�!†�1H 2

xJ2
.BB/!†1GBB2

! 0

and
GBB1=GBB2

Š†�1H 1
xJ2
.BB/:

The block GNB comes from the local cohomology of NB in a precisely analogous way.

Most questions about module structure over BB ŒU � are resolved by degree. The
remaining issues are resolved by using Gorenstein duality.

Referring to the table for H
�
xJ2
.BB/ in Section 12D, the first potential extension is on

the 2–diagonal. Using Gorenstein duality to compare with NBıD8 we see that the
actual extension on the 2–diagonal of GBB is

0! P�! Œ.2; v1/P �
�
! xP_1 ! 0;
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ı ı0 s.t. H
�
xJ2
.BBı/� � NBı0 ı ı0 s.t. H

�
xJ2
.NBı/� � BBı0

0 12 0 12

1 10 1 10

2 9 2 9

3 8 3 8

4 8; 6 4 8; 6

5 5 5 5

6 4 6 4

7 2 7 :

8 4; 3 8 4

9 2 9 2

10 1; 0 10 1

11 0 11 :

12 0 12 0

Table 5: Diagonal contributions from Remark 13.3(i)

where we have shifted the modules so they all have top degree 0. There is an additive
extension on the 10–diagonal by reference to the Anderson dual. Finally the three
nonzero d2 differentials from �1�k� for kD7; 8 and 9 are necessary for connectivity
(this removes the need to discuss the possible extensions on the 7– and 8–diagonals).

The situation is rather similar for GNB. We will not explicitly display NB since the
only effect (apart from the addition of F2Œa�

_ ) is on the first column, where a module
is replaced by the kernel of a surjection to F2 . It is perhaps worth displaying H

2
xJ2
.NB/,

where we leave out the big F2Œa�
_–tower in H

0
xJ2

NB. See Table 4. In this case, all
extensions are split, except for the one on the 6–diagonal and there are no differentials.
The a multiplications in the F2Œa�

_ tower are clear from Gorenstein duality and the
a–tower F2Œa� in BB.

Remark 13.3 (i) In Table 5, we summarize the way a diagonal BBı contributes
to NB as in

H�xJ2
.BBı/

�
� NBı0

as sketched in Section 12F. Because most of the modules are 2–torsion the most
common pairing is between ı and 11� ı rather than between ı and 12� ı as happens
for the main U –power diagonals.

(ii) We also note as before that since NBD �.a/BB, we have

†6C4��.v1;v2/BB� .�.a/BB/�
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(where we have written � rather than ' in recognition of the differentials) and

†6C4��.v1;v2;a/BB' BB�;

with the second stating that BB is Gorenstein of shift �6�4� for the ideal .v1; v2; a/.

Appendix: The computation of �C2
? BPR

Our main goal in this appendix is to compute the homotopy fixed point spectral
sequence for BPR and hence for M R. All the results in this appendix and the
essential idea of the argument for Proposition A.2 are contained in [18] (see especially
Formula 4.16). We just rearranged their arguments and added some details. Our
argument for the multiplicative extensions might be considered new though. We
have strived for elementary and short proofs though they retain some computational
complexity. We hope this is helpful for the reader to understand this crucial computation.
Note that even before Hu and Kriz, the computation of �C2

? BPR was announced in [3].

We will work throughout 2–locally. As before, we denote by � the regular real C2 –
representation and by � the sign representation. We need a few facts, first proven by
Araki:

(1) If E is a real-oriented spectrum, then E?C2
.CP1/ Š E?C2

JuK with juj D ��
and E?C2

.CP1 �CP1/ Š E?C2
J1˝ u;u˝ 1K. This induces a formal group

law on �C2
��E and the forgetful map �C2

��E! �e
2�

E maps it to the usual formal
group law from the complex orientation of E . [18, Theorem 2.10]

(2) Thus, we get a ring map �e
2�

MU! �C2
��M R from the Lazard ring such that

�e
2�

MU is a retract of �C2
��M R. For every class in x 2 �2�MU , we have thus a

corresponding class xx 2 �C2
��M R. [18, Proposition 2.27]

(3) There is a splitting M R.2/ '
L

mi
†mi�BPR, where the underlying spectrum

of BPR agrees with BP . This splitting corresponds on geometric fixed points
to the splitting MO'

L
mi
†mi HF2 . [18, Theorem 2.33]

Define aW S0 ! S� as before to be the inclusion of the points 0 and 1; we will
denote the image of a in �?M R and �?BPR by the same symbol. The class a has
degree �� D 1� � .

Proposition A.1 We have a2nC1�1vn D 0 in �C2
? M R.

Proof We have a fibre sequence

.EC2/C˝M R!M R! zEC2˝M R:
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First, we claim that the image of vn under M R! zEC2˝M R is zero. Indeed, as a

is invertible on zEC2˝M R, the formal group law on �C2
�� .
zEC2˝M R/ agrees with

that on �C2
� .
zEC2˝M R/D ��MO, which is additive. Therefore, the map

MU2�! �C2
��M R! �C2

��
zEC2˝M R

sends all vn to zero. Thus, vn and hence also a2nC1�1vn are in the image of the map

.EC2/C˝M R!M R:

Observe that

ja2nC1�1vnj D �.2
nC1
� 1/� C .2n

� 1/.1C �/D 2n
� 1� 2n�:

We claim that �C2

2n�1�2n�
..EC2/C˝M R/ is zero. Indeed, we have

�C2

2n�1�2n�
..EC2/C˝M R/Š �2n�1.†

2n�M R/hC2
:

This can be computed by the homotopy orbit spectral sequence

Hp.C2I�q†
2n�M R/ H) �pCq.†

2n�M R/hC2
:

But �q†
2n�M R D 0 for q < 2n , so �2n�1.†

2n�M R/hC2
D 0. Thus, we see that

a2nC1�1vn D 0 in �C2
? M R.

For a C2 –spectrum X , the RO.C2/ graded homotopy fixed point spectral sequence is
defined by combining the homotopy fixed point spectral sequences

E
p;q
2
.r/DH q.C2; �pCq.X^S�r� //H) �C2

p ..X^S�r� /hC2/Š�C2
pCr� .X

.EC2/C//

into a single spectral sequence with differential

dnW E
p;q
n .r/!Ep�1;qCn

n .r/:

Note that we use an Adams grading convention here. We will often call pC r� the
degree of an element.

The RO.C2/–graded homotopy fixed point spectral sequence (HFPSS) for BPR has
E2 –term

Z.2/Œa;u
˙1; v1; v2; : : : �=2a

with
jaj D .��; 1/; juj D .2� 2�; 0/ and jvi j D ..2

i
� 1/�; 0/:

This can be seen, for example, by the identification with the Bockstein spectral sequence
for a discussed in [27, Lemma 4.8]. As BPR is a retract of M R.2/ , it has the structure
of a (homotopy) ring spectrum and thus the RO.C2/–graded homotopy fixed point
spectral sequence is multiplicative by [27, Section 2.3].
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By the discussion above, a and the vi are permanent cycles. As a2nC1�1vn is zero, it
must be hit by a differential. This is the crucial ingredient for the following central
proposition. It is fully formal in the sense that we do not need any other input in
addition to the things we already discussed; we argue just with the form of the spectral
sequence. We will set v0 D 2 for convenience.

Proposition A.2 In the HFPSS for BPR, we have E2n D E2nC1�1 , and it is the
subalgebra of

E2=.a
3v1; : : : ; a

2n�1vn�1/

generated by a, u˙2n�1

, the vi for i � 0 and by the viu
2ij for i < n� 1 and j 2 Z.

Proof We prove it by induction. It is obviously true for nD 1 by the checkerboard
phenomenon; indeed, for all generators of the E2 –term in degree .aC b�; q/ we have
aC q even.

Now assume it to be true for a given n. First, we will show that d2nC1�1.u
2n�1

/D

a2nC1�1vn . Indeed, as a2nC1�1vn is nonzero in E2nC1�1 , it must be hit by a d2nC1�1 .
Its source x is in the zero-line in degree 2nC1�2n� . As the zero-line in E2 is generated
by u of degree 4� 2� and by the vi in regular representation degrees, we see that
the exponent of u in x must be 2n�1 , so there is no room for further vi . Thus,
d2nC1�1.u

2n�1

/D a2nC1�1vn .

Next, we want to show that dq.viu
2ij /D 0 for 2nC1� 1� q < 2nC2� 1 and i < n.

Write dq.viu
2ij /D aqx . The degree of x is

.2i
� 1/�C 2ij .4� 2�/� q.1� �/� 1D .2iC2j � q� 1/C .2i

� 2iC1j C q� 1/�:

Thus, x D u2ij�.qC1/=4v , where v is a polynomial in the v� . The degree of v is
.2i � 2C 1

2
.qC 1//� . As 1

2
.qC 1/ < 2nC1 , we have

jvj< jv2
nC1j< jvr j

for r � nC 2. Thus, no monomial in v is divisible by v2
nC1 or vr . Assume that

jvj D jvnC1j. Then 1
2
.qC 1/D 2nC1� 1C 2� 2i D 2nC1� 2iC 1, which is odd; but

then 1
4
.qC 1/ 62 Z, which is a contradiction. Thus, every monomial in v is divisible

by some vk for some k � n as v ¤ 1 for degree reasons. But aqvk D 0 in Eq . Thus,
also aqx D 0 in Eq .

Similarly, write dq.u
2n

/D aqx for 2nC1� 1� q < 2nC2� 1 and assume that this is
nonzero. The degree of x is

2n.4� 2�/� q.1� �/� 1D .2nC2
� q� 1/C .q� 2nC1/�:
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Thus, we can write x in E2 as u2n�.qC1/=4v , where v is a polynomial in the v� . The
degree of v is 1

2
.q� 1/ < 2nC1� 1. Thus, no monomial in v can be divisible by vr

for r � nC 1. Thus, every monomial in v is divisible by some vk for some k � n as
v ¤ 1 for degree reasons. But aqvk D 0 in Eq . Thus, dq.u

2n

/D 0.

By the Leibniz rule, this implies the proposition.

Before we solve the multiplicative extension issues, we need a technical lemma.

Lemma A.3 Assume that there is an element akulv ¤ 0 above the zero line in the
E1–term of the RO.C2/–graded HFPSS for BPR with v a monomial in the v� and
in the same degree as vivmu2mj . Let p be the minimal index such that vp divides v
(which we will show to exist). Then i > pCm.

Proof The degree of vivmu2mj is

2mj .4� 2�/C .2i
� 1C 2m

� 1/�D 2mC2j C .2i
C 2m

� 2mC1j � 2/�:

Let akulv ¤ 0 be an element in E1 in this degree with v a monomial in the v�
of degree n� and assume that k > 0. (In the following, we will use the notation
kvpk D jvpj=� so that kvk D n.) We get

4l C k D 2mC2j ;

n� 2l � k D 2i
C 2m

� 2mC1j � 2:

This implies nD 2i C 2m� 2C 1
2
k . We see that n¤ 0. Let p be the minimal index

such that vpjv . Then 2pjl and we set c D l=2p . Then k D 2mC2j � 2pC2c . Due
to the relation a2pC1�1vp D 0, we have k � 2pC1 � 2 and thus mC 2 � p (as else
2pC1jk and thus k � 2pC1 ). In particular, 2mC1 divides 1

2
k . Now observe that

n� kvpk D 2p � 1, so
2i
C 2m

� 1� 2p
�

1
2
k:

As k � 2pC1� 2, the right-hand side is positive; as it is also divisible by 2mC1 it is
thus it is at least 2mC1 . We see that i � mC 1. Thus n � 2m � 2 mod 2mC1 . As
kvqk ��1 mod 2mC1 for q � p >mC1, we see that the total exponent of v (ie the
degree of v as a monomial in the v� ) must be � 2mC 2 mod 2mC1 . In particular,
n� kvpk.2

mC 2/D .2p � 1/.2mC 2/. Thus,

1
2
k D n� 2i

� 2m
C 2� 2pCm

� 2i
C .2pC1

� 2mC1/:

If pCm� i , then the right-hand side is at least 2p , which would be a contradiction.
Thus i > pCm.
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Now, we are ready to prove the main result of the appendix. Note that [18, Theorem 4.11]
gives a different relation than our last one; our relation implies their relation, but not
vice versa. Note also that our arguments for the multiplicative relations are completely
algebraic (using the form of the spectral sequence), while [18] uses additionally a
C2 –equivariant Adams spectral sequence.

Theorem A.4 The ring �C2
? BPR is isomorphic to the E1–term of the homotopy

fixed point spectral sequence above, ie to the subalgebra of

Z.2/Œa; vi ;u
˙1�=.2a; via

2iC1�1/

(where i runs over all positive integers) generated by vm.n/D u2mnvm (with m; n2Z
and m� 0) and a with v0 D 2. Consequently, it is the quotient R of the ring

Z.2/Œa; vm.n/ jm� 0; n 2 Z�

by the relations

v0.0/D 2;

a2mC1�1vm.n/D 0;

vi.j /vm.n/D vivm.2
i�mj C n/ for i �m;

with vi D vi.0/. Here, jaj D 1� � and jvm.n/j D 2mC2nC .2m� 1� 2mC1n/� .

Proof It suffices to show that the expression above computes the homotopy fixed points
�C2
? BPR.EC2/C. Indeed, Proposition A.2 implies that .a�1BPR.EC2/C/C2 'HF2 , so

the map BPRˆC2 ! BPRtC2 is an equivalence and hence also BPR! BPR.EC2/C

by the Tate square.

Set v0.0/ D 2. By Proposition A.2, the classes u2mnvm are permanent cycles in
the HFPSS; choose element vm.n/ 2 �

C2
? BPR.EC2/C representing them. Again by

Proposition A.2, the vm.n/ generate together with a the E1–term of the HFPSS.
Thus, we get a surjective map R!E1 . The third relation defining R allows to define
a normal form: Every monomial in the vi.j / equals in R an element of the form
v vm.k/, where v is a monomial in the vi and m was the smallest index of all vi.j /.
Thus, two monomials in the vi.j / are equal in R if they are equal in E1 ; hence, the
map R!E1 is also injective.

We now check that the relations are also satisfied in �C2
? BPR.EC2/C . This is clear or

was already shown for the first two relations. Let now i be the least number such that
m� i and

vi.j /vm.n/¤ vivm.2
i�mj C n/
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for some j ;m; n if such an i exists. The difference must be detected by a class akulv ,
where v is a polynomial in the v� . Let p the minimal index such that every monomial
in v is divisible by a vr with r � p . From Lemma A.3, we know that p � i � 1 (and
in particular i � 1). Thus,

vi.j /vm.n/vi�1 ¤ vivm.2
i�mj C n/vi�1

as their difference is detected by a nonzero class akulvvi�1 (indeed, this could only
be zero if k � 2i � 1, but k < 2pC1� 1). By the minimality of i , we have

vm.2
i�mj C n/vi�1 D vi�1.2j /vm.n/:

In addition, vivi�1.2j /D vi.j /vi�1 because there is no element of higher filtration
in the same degree as vi�1vi.j / by Lemma A.3. The last two equations combine to
the chain of equalities

vi.j /vm.n/vi�1 D vivi�1.2j /vm.n/

D vivm.2
i�mj C n/vi�1:

This is a contradiction to the inequality above. Thus,

vi.j /vm.n/D vivm.2
i�mj C n/

is always true for i �m.

Remark A.5 We remark that all the work above for the multiplicative extensions
was actually necessary. For example, we get from the homotopy fixed point spectral
sequence only that v5v1.1/� v5.1/v1.�15/ has filtration at least 1. But there are
indeed classes in this degree of higher filtration, for example, a8v3

3
v4 .
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Slice implies mutant ribbon for odd 5–stranded pretzel knots

KATHRYN BRYANT

A pretzel knot K is called odd if all its twist parameters are odd and mutant ribbon
if it is mutant to a simple ribbon knot. We prove that the family of odd 5–stranded
pretzel knots satisfies a weaker version of the slice-ribbon conjecture: all slice odd
5–stranded pretzel knots are mutant ribbon, meaning they are mutant to a ribbon
knot. We do this in stages by first showing that 5–stranded pretzel knots having twist
parameters with all the same sign or with exactly one parameter of a different sign
have infinite order in the topological knot concordance group and thus in the smooth
knot concordance group as well. Next, we show that any odd 5–stranded pretzel knot
with zero pairs or with exactly one pair of canceling twist parameters is not slice.

32S55, 57-XX

1 Introduction

A knot K � S3 is smoothly slice if it bounds a smoothly embedded disk in the 4–ball.
Similarly, a knot K � S3 is said to be topologically slice if it bounds a locally flat
embedded disk D � B4 , where D is a locally flat submanifold of B4 , if for every
point x 2D there exists a neighborhood U � B4 of x such that the pair .U;U \D/

is homeomorphic to the pair .R4;R2/. The notions of smoothly slice and topologically
slice knots can be used to define the smooth and topological knot concordance groups
C and T , respectively, under the operation of connected sum. These are widely studied
groups for which the corresponding slice knot represents the identity element. For
explicit information about the concordance relations, see Livingston [12]. Fine details
of the group structure of C and T continue to elude mathematicians, but concordance
order is one small way of gaining insights into these groups. The topic of determining
smoothly slice knots and concordance order for knots within families of pretzel knots
has also been studied with increasing frequency over the past 30 years and various
results can be found in Greene and Jabuka [3], Lecuona [10], Miller [14], Herald, Kirk
and Livingston [4] and Long [13]. This work will focus almost entirely on slice knots
and concordance in the smooth case, except where “topological” is explicitly stated.

The slice-ribbon conjecture hypothesizes that if a knot is slice then it is also ribbon.
Given that ribbon knots are easily seen to be slice, this is ultimately a conjecture about
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the equivalence of the notions “slice” and “ribbon”. Previous work by Joshua Greene
and Stanislav Jabuka in [3] on the slice-ribbon conjecture for odd 3–stranded pretzel
knots and work by Ana Lecuona in [10] on even pretzel knots inspired this project.
This paper studies sliceness and concordance order for odd 5–stranded pretzel knots.

A k–stranded pretzel link, denoted by P .p1;p2; : : : ;pk/, where the pi 2 Z� f0g
are called the twist parameters, is a knot in two cases: when exactly one of the twist
parameters is even, or when k is odd and all the twist parameters are odd. A pretzel
knot will be called even in the former case and odd in the latter. A 0–pair pretzel knot
is a pretzel knot for which there are no canceling pairs of twist parameters satisfying
pi D�pj . A 1–pair pretzel knot is a pretzel knot for which there exists a canceling pair
of twist parameters, but when the pair is removed from the k–tuple defining the knot,
the resulting .k�2/–stranded knot is 0–pair. Generally, a t –pair pretzel knot is one
for which removing a single canceling pair of twist parameters results in a .t�1/–pair
pretzel knot with two fewer strands. With this definition, 5–stranded pretzel knots
P .a; b; c; d; e/ can be 0–pair, 1–pair or 2–pair. See Figure 1.

Figure 1: Pretzel knot P .3; 5; 7;�3;�5/

When proving statements about pretzel knots, it is often necessary to differentiate
between the knots that contain twist parameters equal to ˙1 and those that do not. If
for K D P .p1; : : : ;pk/ there exists i 2 f1; : : : ; kg such that pi D˙1, then we say
K is a pretzel knot with single-twists; otherwise, we say K is a pretzel knot without
single-twists.

The classification of pretzel knots appears in Zieschang [20], a work that classifies the
much larger class of Montesinos knots of which pretzel knots are a special case. The
classification gives that two pretzel knots without single-twists are smoothly isotopic if
their twist parameters differ by cyclic permutations, reflections, or compositions thereof.
Two pretzel knots with single-twists are smoothly isotopic if their twist parameters
differ by cyclic permutations, reflections and/or transpositions involving ˙1–twisted
strands. Two k–stranded pretzel knots whose twist parameters are equal as unordered
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k–tuples but not equal as ordered k–tuples are called pretzel knot mutants. This specific
kind of mutation is the only type considered here, so “mutation” from this point on
will always mean “pretzel knot mutation”.

Mutation is a crucial topic for the problem of determining sliceness for k–stranded
pretzel knots when k � 4 because many knot invariants used to obstruct sliceness are
unable to detect pretzel knot mutants. In fact, any knot invariant based on the double
branched cover of S3 along the knot will fail to detect pretzel knot mutants; Bedient
shows in [2] that any two pretzel knots defined by the same unordered k–tuple of twist
parameters have the same double branched cover. Given a k–tuple .p1; : : : ;pk/ of twist
parameters, Pfp1; : : : ;pkg will denote the set of pretzel knots having fp1; : : : ;pkg

as twist parameters, and also all mirrors of such knots.

Among pretzel knots is a subset of knots we will call simple ribbon. A simple ribbon
move on a pretzel knot is the ribbon move shown in Figure 2, performed always on
the topmost twist of two adjacent strands of K having canceling numbers of twists.
We say a pretzel knot K is simple ribbon if there exists a sequence of simple ribbon
moves that reduces K to a 1–stranded pretzel knot (if K is odd) or to a 2–stranded
pretzel knot P .a; b/ where a D �b � 1 (if K is even). A prerequisite for a pretzel
knot to be simple ribbon is that if K is k–stranded, then K must be 1

2
.k�1/–pair. But,

while all 1–pair 3–stranded pretzel knots are simple ribbon, not all 2–pair 5–stranded
pretzel knots are simple ribbon. For example, the 2–pair knot P .3; 5;�3;�5; 7/ is
not simple ribbon because no two adjacent strands have canceling numbers of twists.
This phenomenon extends for all k � 4.

Figure 2: Simple ribbon move on pretzel knot P .�3;�5; 5; 3;�5/

The remainder of this paper is structured as follows: Section 2 presents our main results,
the strongest of which is Corollary 2.5, a weak version of the slice-ribbon conjecture
for generic odd 5–stranded pretzel knots. Section 3 gives foundational information
on branched covers, framed links, weighted graphs and plumbings in the specific
context of 4–dimensional topology. Section 4 describes a classical slice obstruction,
the signature condition, and it gives the proof of Theorem 2.1. Section 5 gives details
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about Donaldson’s diagonalization theorem and a resulting slice obstruction we call the
lattice embedding condition. Section 6 addresses the final slice obstructions utilized in
this work, d–invariants and the coset counting conditions. The proofs of the main results
following Theorem 2.1 are given in Sections 7–10 and are organized by increasing
number of slice obstructions needed to obtain the desired result.

Acknowledgements The author would like to thank her advisor Paul Melvin for his
patience and guidance throughout this project. She is forever indebted to him for not
only passing along his knowledge of this subject, but also for his invaluable edits of
her work, both in style and content. She would also like to thank the referee for helpful
suggestions and great attention to detail.

2 Results

As previously mentioned, this project was motivated by work of Greene and Jabuka
in [3] on the slice-ribbon conjecture for odd 3–stranded pretzel knots and by work
of Ana Lecuona in [10] on even pretzel knots. Lecuona writes down the following
conjecture:

Pretzel ribbon conjecture (Lecuona) Let K be a pretzel knot whose twist parame-
ters are all greater than 1 in absolute value. If K is ribbon, then K is simple ribbon.

For odd 3–stranded pretzel knots, the pretzel ribbon conjecture posits that the only
ribbon knots are the simple ribbon knots, ie the 1–pairs. Similarly for odd 5–stranded
pretzel knots, it says that the only ribbon knots are the simple ribbon knots which are
2–pairs for which at least one of the canceling pairs is adjacent. Greene and Jabuka
show in [3] that odd 3–stranded pretzel knots satisfy both the pretzel ribbon conjecture
and the slice-ribbon conjecture by proving that a knot of this type is slice if and only if
it is 1–pair. This result, which proves the two aforementioned conjectures in a particular
case, hints to the following possible strengthening of the slice-ribbon conjecture in the
specific case of pretzel knots:

Pretzel slice-ribbon conjecture If K is a slice pretzel knot, then K is simple ribbon.

Of course, if the pretzel ribbon conjecture is true then the above is equivalent to
the original version of the slice-ribbon conjecture. There is evidence that supports
the pretzel slice-ribbon conjecture in the odd 5–stranded case. Herald, Kirk and
Livingston [4] prove that P .3; 5;�3;�5; 7/ is not slice despite being mutant to the
two simple ribbon knots P .3;�3; 5;�5; 7/ and P .3; 5;�5;�3; 7/. See Figure 2 for
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an illustration of the ribbon move on two adjacent strands in a 5–stranded pretzel knot
whose twist numbers cancel.

This present work applies the techniques used by Jabuka and Greene on odd 3–stranded
pretzel knots to odd 5–stranded pretzel knots, in the hope of showing that this new
class of knots also satisfies the pretzel slice-ribbon conjecture as well. It should be
noted that Greene and Jabuka went a step farther and proved that all nonslice odd
3–stranded pretzel knots have infinite order in C . To obtain these results, they used
three tools: the knot signature from classical knot theory, Donaldson’s diagonalization
theorem from gauge theory, and the d–invariant from Heegaard Floer theory.

The main results of this project are given below, accompanied by brief explanations
as to where each of the above three tools comes into play. In Theorem 2.1 and its
corollary, �.K/ denotes the signature of K; s is the difference between the number
of positive twist parameters and the number of negative twist parameters of K; ye is
the orbifold Euler characteristic of K given by the sum of the reciprocals of the twist
parameters; and sgn. / is the function returning �1, 0, or C1 according to whether
the input is negative, zero, or positive, respectively. The first result is about the class of
odd pretzel knots:

Theorem 2.1 If K is an odd pretzel knot, then �.K/ D s � sgn.ye/. In particular,
�.K/D 0 if and only if s D sgn.ye/.

Corollary 2.2 All odd pretzel knots with s ¤ sgn.ye/ have infinite order in the topo-
logical knot concordance group T .

The corollary follows from the fact that � is a homomorphism from T ! Z, and it
implies infinite order in the smooth knot concordance group C as well. It is a well-
known fact that we call on later that if a knot K is slice, then �.K/D 0. An implicit
implication of Theorem 2.1 is that all odd pretzel knots for which s ¤ ˙1 are not
slice, which is particularly easy to read off from the k–tuple defining the knot. For odd
5–stranded pretzel knots this tells us that if all or all but one of the twist parameters
have the same sign, then K is not slice.

Powerful as the signature is as a concordance invariant, the signature alone is insufficient
for determining sliceness in odd pretzel knots for which s D ˙1. For example, the
pretzel knot K D P .�3;�5;�7; 9; 27/ has vanishing signature, but the pretzel slice-
ribbon conjecture gives us reason to think that K may not be slice. Such occurrences
in the odd 3–stranded case prompted Jabuka and Greene to turn to an obstruction
based on Donaldson’s diagonalization theorem, which is ultimately phrased as a lattice
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embedding condition necessary for sliceness. This same obstruction was originally
used by Paolo Lisca in [11] to classify slice knots within the family of 2–bridge knots.

The use of Donaldson’s diagonalization theorem to define a “lattice embedding condi-
tion” for sliceness is based on the construction of a (potentially hypothetical) closed,
definite 4–manifold X , created as follows: Assume K is a slice knot. Let Y be the
double branched cover of S3 along K; let W be the double branched cover of the
4–ball with branching set the slice disk for K , so that W is a rational homology 4–ball
with @W D Y ; let P be a canonical definite 4–dimensional plumbing1 with @P D Y .
Define X D P [Y .�W /. The lattice embedding condition arises by applying the
diagonalization theorem to X , for which it is necessary to verify that the intersection
form on X , QX , can in fact be diagonalized over the integers. We do this in Section 5.

The lattice embedding condition for sliceness puts great restrictions on the possible
k–tuples that can define a slice odd pretzel knot, so it enables us to conclude that
all but a very select subset of such knots are not slice. Unfortunately, the knots that
satisfy both the vanishing signature condition and the lattice embedding condition are
not easily differentiated from the knots satisfying the signature condition but not the
lattice embedding condition. For example, sliceness is obstructed for P .�3;�17; 27/

and P .�3;�7;�19; 17; 55/ by the lattice embedding condition, but not obstructed for
P .�3;�17; 29/ and P .�3;�7;�19; 19; 55/.

For this reason Jabuka and Greene introduced a third slice obstruction based on the
d–invariant from Heegaard Floer theory. It assumes the same construction used above
involving K , Y , W , P , and X , but it boils down to a comparison of two different
“counts” obtained by analysis on the homology long exact sequences of the pairs
.X;W / and .P;Y /. We refer to it here as “coset condition I”. Combining the signature
obstruction, the lattice embedding condition, and coset condition I, Jabuka and Greene
were able to prove their full result. With these same tools, we obtain the following
results for odd 5–stranded pretzel knots with signature zero:

Theorem 2.3 If K is a 0–pair odd 5–stranded pretzel knot, then K is not slice.

Coset condition I fails to obstruct sliceness in t–pair odd k–stranded pretzel knots K

if t � 1, k is odd, and �.K/D 0, so yet another tool is required to prove analogous
results in the present case. When k � 5, the increased number of twist parameters
introduces complexity not present when k D 3, requiring a more refined “count” than
Jabuka and Greene needed when implementing the d–invariant obstruction. With just

1A canonical definite plumbing P is one for which the weights of the vertices in the corresponding
plumbing graph are either all � 2 or ��2 . It should be noted that not all knots have such plumbings, but
that pretzel knots do.
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a little bit of work we derive a stronger version of coset condition I and uncreatively
call it coset condition II. Combining the signature obstruction, the lattice embedding
condition, and coset condition II, we prove:

Theorem 2.4 If K is a 1–pair odd 5–stranded pretzel knot without single-twists, then
K is not slice.

Theorem 2.4 avoids mention of odd 5–stranded pretzel knots with single-twists because
they behave slightly differently from those without single-twists for the following
reason: any strand with exactly one positive or negative half twist can be transposed
with an adjacent strand through a flype as in Figure 3. Such a move preserves the
smooth knot type thus, for example, P .1; 3;�5; 1;�7/ and P .1; 1; 3;�5;�7/ are not
only mutants of one another but also members of the same smooth isotopy class.

Figure 3: Transposition of a single-twist strand, turning P .3; 1; 5;�3;�5/

into P .3; 5; 1;�3;�3/

Furthermore, by flyping we can always “collect” all strands with ˙1 twists so that
they occur in succession. This has the greatest impact on 1– and 2–pair pretzel knots
for which at least one of the pairs is f�1; 1g. If K is defined by f�1; 1; b; c; dg,
then K is not only concordant to P .b; c; d/ but also smoothly isotopic, regardless
of the initial locations of 1 and �1 in the 5–tuple. It follows that every 2–pair odd
5–stranded pretzel knot containing the pair f�1; 1g is simple ribbon. To contrast, if
K 2Pf�a; a; b; c; dg with jaj� 3, then K is smoothly concordant to P .b; c; d/ if and
only if the pair f�a; ag is adjacent; it is precisely this that leads to P .3; 5;�3;�5; 7/

and P .3;�3; 5;�5; 7/ having different smooth concordance order.

Theorems 2.3 and 2.4 together imply that odd 5–stranded pretzel knots without single-
twists satisfy a weaker version of the slice-ribbon conjecture:

Corollary 2.5 If K is a slice odd 5–stranded pretzel knot without single-twists, then
K is mutant to a simple ribbon knot.

For 2–pair, odd, 5–stranded pretzel knots (with or without single-twists) not containing
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the pair f�1; 1g and for 1–pairs with single-twists and pair f�a; ag ¤ f�1; 1g, the
signature condition, the lattice embedding condition, and coset conditions I and II all
fail to obstruct sliceness in the knots that are not simple ribbon because these slice
obstructions, at their cores, obstruct the double branched covers of the knots from having
certain properties. As previously mentioned, all mutants of a given pretzel knot share
the same double branched cover and hence there is no hope of obstructing sliceness
for a knot K 2Pfa; b; c; d; eg if any member of Pfa; b; c; d; eg is slice. Since 2–pair
knots of the form P .a;�a; b;�b; c; / and P .a; b;�b;�a; c/ are simple ribbon and
therefore slice, we cannot use the aforementioned tools to say that P .a; b;�a;�b; c/

is not slice. Similarly, Remark 1.3 in [3] gives that the 1–pair knots with single-twists
and pair f�a; ag ¤ f�1; 1g of the form P .a;�a; 1; b; c/ with bC c D 4 are slice, and
therefore again there is no way to distinguish between slice and suspected nonslice
members of Pfa;�a; 1; b; cg.

In [4], Herald, Kirk and Livingston used twisted Alexander polynomials to show that
the 2–pair knot P .3; 5;�3;�5; 7/ is not slice, despite being mutant to the simple
ribbon knot P .3;�3; 5;�5; 7/. Twisted Alexander polynomials are able to distinguish
mutants and, in fact, they can reveal when a knot is not topologically slice. The issue in
using twisted Alexander polynomials to show that pretzel knots satisfy the slice-ribbon
conjecture is that their computation relies on number-theoretic choices that often make
it difficult to find general formulas for infinite families of knots. Of the examples
computed for pretzel knots to date, there is only one infinite family of pretzel knots
whose slice status has been determined using twisted Alexander polynomials. It is a
subfamily of the 4–stranded family K D P .2n;m;�2n˙ 1;�m/, done by Allison
Miller in [14].

3 Branched covers, framed links, weighted graphs
and plumbings

Let K D P .a1; : : : ; ap;�b1; : : : ;�bn/ be an odd k–stranded pretzel knot with k D

pC n odd, ai ; bj > 0, and let Y be the double branched cover of S3 along K . As
a 3–manifold, we will describe Y by two framed links L0 and LC which differ by
a sequence of moves in the Kirby calculus for framed links. The links L0 and LC
are equivalently represented by weighted star-shaped graphs �0 and �C , shown in
Figure 4. In �0 and �C , each vertex vi with weight w.vi/ represents an unknot
component Ki with framing ri Dw.vi/; two components Ki and Kj link once in L0

(resp. LC ) if the corresponding vertices vi and vj share an edge in �0 (resp. �C ).

To obtain the double cover of S3 branched along a pretzel knot, we use the following
algorithm of Montesinos: start with an unknot in S3 and the double cover of S3
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Figure 4: Weighted plumbing graphs �L0
(left) and �LC (right)

branched along the unknot. Recall that the double cover of S3 branched along the
unknot is, again, S3 , which can be described as surgery on an unknot with 0–framing.
The unknot can be turned into a P .p1; : : : ;pk/ pretzel knot by replacing a 0–tangle in
the unknot by a pi–tangle for each i and replacing a single 1–tangle by a 0–tangle,
as shown in Figure 5 for a 5–stranded pretzel knot. Determining the double branched

0–tangle

pi–tangle

1–tangle

0–tangle

P .3; 5; 7;�3;�5/

.
unknot

Figure 5: Obtaining a 5–stranded pretzel knot by replacing tangles
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Figure 6: Double covers of B3 branched along the 1–tangle and over the 1
2

–tangle

cover of S3 along P .p1; : : : ;pk/ now amounts to accounting for the changes affected
in the cover above by the tangle replacements in the knot below.

The double cover of B3 branched along a pi–tangle is a solid torus Tpi
parametrized

by S1 �B2 such that the lift zd of the disk d in B3 separating the two arcs of the
tangle satisfies (i) @ zd \ .f0g �B2/D 1 and (ii) lk.@ zd ;S1 � f0g/D pi . See Figure 6.
As such, the effect in the double branched cover of replacing a 0–tangle by a pi–tangle
is pi–surgery on an unknot in S3; the effect in the cover of replacing the 1–tangle
with the 0–tangle is 0–surgery on an unknot in S3 that links once with each of the
other unknots. Considering all surgeries as being done simultaneously, the double
cover of S3 branched along the pretzel knot P .p1; : : : ;pk/ is thus obtained by surgery
on S3 described by this framed link:2

0

p1 p2 pk�1 pk

2From this construction, we see that any two pretzel knots defined by the same unordered k–tuple of
twist parameters have the same double branched cover. As a result, any knot invariant based on the double
branched cover of S3 along the knot will fail to detect pretzel knot mutants.
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Figure 7: “Slam dunk” shortcut

n m n m n˙ 1 m˙ 1blow up

blow down

handleslide
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Figure 8: “Kirby twist” shortcut

To transform L0 into LC via Kirby moves, we operate on the negatively framed
components of L0 using the shortcuts shown in Figures 7 and 8. The course of Kirby
moves needed to change L0 into LC is described in Figure 9. The accompanying
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Figure 9: Kirby calculus sequence L0!LC . The asterisk on Step 2 indicates
that it will be repeated until the bottommost component has framing �1 .
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weighted graphs are shown as well. If the prescribed sequence of moves is performed
on a component with framing �bi , then Step 2 is repeated bi�3 times and the original
component is ultimately replaced by bi � 1 new components, all of which are unknots
with framing 2. In the corresponding weighted graphs, this translates into replacing
a single arm of length one, whose lone vertex has weight �bi , by an arm of length
bi � 1 containing all weight-2 vertices; the weight of the central vertex increases by 1

for each arm altered.

Any sequence of Kirby moves used to transform one framed link into another is
mimicked in the corresponding graphs by adding (resp. deleting) vertices and edges to
the graph at the expense of subtracting 1 (resp. adding 1) to the weights of the vertices
sharing an edge with the added (resp. deleted) vertex.

In addition to describing the double branched cover Y of S3 along a pretzel knot,
the framed links L0 and LC and weighted graphs �0 and �C define 4–dimensional
plumbings P0 and PC (respectively) bounded by Y . The plumbings P0 and PC
can be viewed as 4–dimensional handlebodies whose handle decompositions consist
entirely of a single zero handle and a collection of 2–handles. For P0 , each component
Ci � L0 corresponds to a 4–dimensional 2–handle Gi that is attached to B4 (the
single 0–handle) by a map f W

S
i.
zGi/! @B4 , where zGi D S1 �B2 is the attaching

region of Gi . The map f identifies zGi with a tubular neighborhood Ni of Ci , such
that the core of zGi lies along Ci and a meridian of @ zGi is identified with a curve in Ni

that links ni times with Ci . Plumbing PC is given similarly.

The effect on @B4D S3 of attaching 2–handles to B4 corresponds exactly to perform-
ing surgery on S3 by viewing the identification of zGi with Ni instead as removing Ni

and replacing it with the zGi according to the framing. Since P0 and PC are described
by L0 and LC as plumbings/4–dimensional handlebodies and Y is described by L0

and LC as surgery on S3 , it follows that @P0 D @PC D Y .

The intersection form QP0
for P0 , represented as a matrix with basis equal to the set

of classes represented by the zero-section of each plumbed disk bundle, is equal to the
incidence matrix for �0 . Likewise, with an analogous choice of basis the intersection
form of PC is equal to the incidence matrix for �C . Knowing an exact sequence of
Kirby moves between L0 and LC allows one to compute the overall change in the
signature from P0 to PC by analyzing how the signature changes with each step.

At this point, it is worth detailing a labeling scheme for the vertices of �0 and �C so that
the bases for the incidence matrices are ordered consistently. Given the vertex labelings
pictured in Figure 10, �0 will have ordered basis fv0; v1; : : : ; vp; vpC1; : : : ; vpCng

and �C will have ordered basis fs0; s1; : : : ; sp; s1;1; : : : ; s1;r1
; : : : ; sn;1; : : : ; sn;rn

g.
Written succinctly, the basis for �C can be written fsi ; sj ;rj

g where 0 � i � p ,
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Figure 10: Vertex labeling scheme for �0 (left) and �C (right)

1� j � n, and rj is equal to one less than the number of vertices in the j th arm of �C .
It is with these ordered bases for �0 and �C that the matrices for QP0

and QPC are
given later.

4 The signature condition and proof of Theorem 2.1

The signature of a symmetric matrix Q, denoted �.Q/, is the difference between
the number of positive diagonal entries and the number of negative diagonal entries
of Q, after Q has been diagonalized over R. The signature of a knot K is defined
as �.K/D �.V T CV /, where V is a Seifert matrix for K . Given a 4–manifold X

with intersection form QX , the signature of X is defined as the signature of QX :
�.X /D �.QX /. The signature is an abelian invariant based on the double branched
cover of the knot, and therefore it cannot detect pretzel mutants.

The signature is a homomorphism � W T !Z, where T is the topological knot concor-
dance group. Hence

(1) �.�K/D��.K/, where �K is the mirror of K , and

(2) �.K1 # K2/D �.K1/C �.K2/.

The signature is also invariant under mutation; see [8]. For pretzel knots, if we combine
this fact with (1) we see that computation of the signature of K D P .p1; : : : ;pk/ may
be obtained using any knot in Pfp1; : : : ;pkg. Often, a specific K is chosen in order
to simplify computations. Homomorphism property (2) implies that if �.K/ > 0, then
the knot K will have infinite order in the topological (and therefore smooth) knot
concordance group. A classical theorem (a proof of which can be found in [18]) states
that any slice knot has signature zero.

With this result we are now ready to prove Theorem 2.1.
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Proof of Theorem 2.1 Let KDP .a1; : : : ; ap;�b1; : : : ;�bn/ be an odd pretzel knot.
For simplicity throughout this proof, we will make two notational simplifications:
First, we will call a framed link and the 4–manifold it describes by the same name; in
particular, we will use the framed link L0 and the corresponding plumbing manifold P0

from Section 3 in this proof but we will resort to using P0 to describe both, letting
context dictate whether we are referring to the framed link or the 4–manifold. This
notational simplification will be implicit in all other framed links and 4–manifolds
defined within this proof. The second notational simplification we will make is to write
�.M / rather than �.QM / for the signature of a 4–manifold M ; in fact, this is less
of an idiosyncrasy in notation and more appropriately an understated definition of the
signature of a 4–manifold as the signature of its intersection form.

Kauffman and Taylor prove in [7] that �.K/D �.T /, where T is the double branched
cover of B4 along any pushed-in Seifert surface of K . In [1], Akbulut and Kirby
give an algorithm for computing the p–fold (p � 2) cyclic cover of B4 branched
along a pushed-in Seifert surface for a given knot, where the Seifert surface used is
one that can be described as a disk with possibly twisted and possibly knotted bands
attached. Such a Seifert surface F can be obtained for a pretzel knot by an isotopy of
the “standard” Seifert surface, ie the Seifert surface obtained from Seifert’s algorithm
via the standard pretzel knot diagram. Using this particular Seifert surface F for K

together with Akbulut and Kirby’s algorithm for the double branched cover of B4 , we
get a framed link that describes the handlebody structure of the 2–fold cover of B4

branched along F pushed-in. We call this particular cover T . See Figure 11 for an
example of F and T for the pretzel knot P .3; 5;�5;�3;�5/.

Rather than compute �.T / D �.K/ directly, we will instead show that �.T / D
�.T # .S2 z�S2//D �.P0/, where P0 is the plumbing manifold from Section 3. By
choosing the basis for QP0

to be the set of spheres obtained from the cores of the
attaching 2–handles together with hemispheres in B4 (alternatively, the spheres are
the 0–sections of the disk bundles used to create P0 ), QP0

is given by the incidence
matrix of the plumbing graph �0 from Section 3. A straightforward diagonalization
of QP0

shows that

QP0
D

266666666664

0 1 1 1 1 1 1

1 a1 0 0 0 0 0
:::
:::
: : :

:::
:::

:::
:::

1 0 0 ap 0 0 0

1 0 0 0 �b1 0 0
:::
:::

:::
:::

:::
: : :

:::

1 0 0 0 0 0 �bn

377777777775
�

266666666664

�ye 0 0 0 0 0 0

0 a1 0 0 0 0 0
:::

:::
: : :

:::
:::

:::
:::

0 0 0 ap 0 0 0

0 0 0 0 �b1 0 0
:::

:::
:::

:::
:::

: : :
:::

0 0 0 0 0 0 �bn

377777777775
:
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F T

3C5 5C.�5/ �5C.�3/ �3C.�5/

Figure 11: The Seifert surface F and the double cover T of B4 branched
along F pushed-in for the pretzel knot P .3; 5;�5;�3;�5/ according to
Akbulut and Kirby’s algorithm.

Therefore, �.P0/D s� sgn.ye/.

Now, P0 can be seen to be equivalent to T #.S2 z�S2/ by performing handle slides: for
each adjacent pair of nonzero framed handles ..hi ; ˛i/; .hiC1; ˛iC1// of P0 , where hi

is the i th nonzero-framed handle3 and ai its framing, we slide hi over hiC1 . The result
is a new pair of adjacent handles ..zhi ; ˛iC˛iC1/; .hiC1; ˛iC1// that link ˛iC1 times.
This is performed for the pairs of handles ..hi ; ai/; .hiC1; aiC1// for 1� i �p�1, for
the pair ..hp; ap/; .hpC1; b1//, and lastly for the pairs ..hpCj ; bj /; .hpCjC1; bjC1//

for 1� j � n�1. The result of performing these handle slides is a framed link diagram
of T linked with a Hopf link, where one component of the Hopf link has framing 0
and the other has odd framing. This entire process is summarized in Figure 12.

By Lemma 4.4 in [9], a Hopf link with such framings is equivalent to a Hopf link H

with a single 0–framed component and a single 1–framed component, which gives a
description of the twisted sphere bundle S2 z�S2 . By Lemma 4.5 in [9], H can be

3Handles ordered from left to right in the standard diagram of P0 .
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Figure 12: The sequence of handle slides showing that P0 is equivalent
to T # .S2 z�S2/ as 4–manifolds
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unlinked from T through handle slides to yield T tH , which describes the 4–manifold
T # .S2 z�S2/. Given that we moved from P0 to T # .S2 z�S2/ exclusively through
handle slides (no blow-ups or blow-downs), P0 and T # .S2 z� S2/ are the same
4–manifold and thus �.P0/D �.T # .S2 z�S2//.

To finish, recall that the signature is additive under connected sums and �.S2 z�S2/D 0.
Hence

�.K/D �.T /D �.T /C 0D �.T /C �.S2
z�S2/

D �.T # .S2
z�S2//

D �.P0/

D s� sgn.ye/:

Let a; b; c; d; e � 3. As mentioned in Section 2, Theorem 2.1 shows nonsliceness for
all odd 5–stranded pretzel knots K in Pfa; b; c; d; eg and in Pfa; b; c; d;�eg, since
s fails to equal ˙1. But, it also shows nonsliceness for all K in Pfa; b; c;�d;�eg

for which 1=aC 1=bC 1=c > 1=d C 1=e . For example, K D P .5; 5; 5;�3;�3/ has
nonvanishing signature by Theorem 2.1 and is therefore not slice.

5 Donaldson’s diagonalization theorem and the lattice
embedding condition

Donaldson’s diagonalization theorem constitutes a small piece of the larger topic of
Yang–Mills gauge theory. It remains one of the most significant results in 4–manifold
topology, and it has useful applications in many other areas of low-dimensional topology.
Donaldson’s diagonalization theorem can be used to obstruct knot sliceness and it is with
this goal in mind that we call on it here. Recall that a closed, oriented 4–manifold X

has a unimodular intersection form4

QX W H2.X /=Tor˝H2.X /=Tor! Z;

and that QX is definite if j�.QX /j D rk.QX /. Then:

Theorem (Donaldson 1987) Let X be a smooth, closed, oriented, 4–manifold with
positive definite intersection form QX . Then QX is equivalent over the integers to the
standard diagonal form, so in some base,

QX .u1;u2; : : : ;ur /D u2
1Cu2

2C � � �Cu2
r :

4Here, Tor denotes the torsion part of H2.X / .
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Remark Donaldson’s diagonalization theorem was originally phrased for QX nega-
tive definite, making all the u2

i terms negative. Also, QX being definite and diagonal-
izable means that the pair .Zb2.X /;QX / can be viewed geometrically as a lattice that
is isomorphic to Zb2.X / with the standard dot product.

Donaldson’s diagonalization theorem is used to obstruct sliceness of a knot in the
following way: Assume the knot K � S3 is slice and that Y is the 2–fold branched
cover of S3 along K . Let P be a canonical definite 4–dimensional plumbing manifold
satisfying @P D Y , and let W be the double branched cover of B4 along a slicing disk
for K . Since K is a knot, Y is a rational homology 3–sphere. Furthermore, W is a
rational homology 4–ball with @W DY , which follows from the more general fact that
the double branched cover of a Z=2Z–homology ball branched along a codimension-2
Z=2Z–homology ball is again a Z=2Z–homology ball. For a proof of this, see [6,
Lemma 17.2]. A new 4–manifold X is formed by gluing P and W together along their
common boundary Y in the usual, orientation-preserving way. This new manifold X

will be compact, smooth, oriented, and have definite intersection form, and thus the
diagonalization theorem applies. This gives that .Zb2.X /;QX / is lattice isomorphic
to .Zb2.X /; Id/, the standard n–dimensional integer lattice.

The Mayer–Vietoris sequence involving X D P [Y .�W / with rational coefficients
shows that H2.P / includes into H2.X /, and therefore .Zb2.P/;QP / must embed
into .Zb2.X /;QX / as a sublattice of full rank. Algebraically, .Zb2.P/;QP / embeds
into .Zb2.X /; Id/ if there exists an injection ˛W Zb2.P/!Zb2.X / such that QP .a; b/D

Id.˛.a/; ˛.b// [3]. If this embedding does not exist then the conclusion is that X ,
as constructed, does not exist. The only assumption made in this construction was
that K is slice; therefore the contradiction implies this cannot be the case. Thus,
the existence of an embedding ˛ of the lattice .Zb2.P/;QP / into .Zb2.X /;QX / is a
necessary condition for the knot K to be slice, which is precisely the obstruction to
sliceness utilized in [11] and [3]. We call this the lattice embedding condition.

In practice, showing the embedding ˛ exists amounts to writing down a matrix A for ˛
that satisfies ATADQP . This requires a choice basis for H2.P / and for H2.X /=Tor.
The basis fsig chosen for H2.P /=Tor is the set of classes represented by the zero-
sections in the disk bundles used to create P ; the basis feig for H2.X /=Tor is chosen
to be one that makes QX diagonal by Donaldson’s theorem. As such, each column
of A corresponds to one of those 2–spheres in P whose intersection information is
recorded by the plumbing graph of P . That is, the columns of A must have standard
dot products consistent with the information given by the plumbing graph for P .

In an attempt to use Donaldson’s diagonalization theorem to obstruct sliceness of an
odd pretzel knot K , we refer back to the Section 3 and take P D PC , which has
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plumbing graph �C and intersection form QPC , with matrix equal to the incidence
matrix for �C with respect to the above bases. By the signature obstruction to sliceness,
we need only consider odd pretzel knots K for which �.K/D 0. In order to utilize
the positive definite version of Donaldson’s diagonalization theorem, we need to prove
that QX is positive definite for X D PC[Y .�W /. This is done with the help of the
following lemma:

Lemma 5.1 If K is an odd k–stranded pretzel knot with k odd and �.K/D 0, then
either QPC.K/ or QPC.�K/ is positive definite.

Proof From Theorem 2.1, we know that ye ¤ 0 for pretzel knots K with �.K/D 0.
Then, Theorem 5.2 in [15] tells us that QPC is either positive definite or negative
definite, according to whether ye > 0 or ye < 0, respectively. Taking the mirror �K of
a knot K will change QPC from positive definite to negative definite, or vice versa.
Thus after mirroring if necessary, it is always possible to choose K so that QPC is
positive definite.

With our eye on applying the diagonalization theorem to X and the help of Lemma 5.1,
we argue that QX is also positive definite for X D PC [Y .�W /. Consider the
following portion of the Mayer–Vietoris sequence for X with rational coefficients:

0 // Qn˚ 0
i�
// H2.X IQ/ // 0:

The map i� is an isomorphism, which implies every element x 2H2.X / is a Q–linear
combination of basis elements fsig for H2.PC/ and torsion elements of H2.W /.
Bilinearity of QX and positive-definiteness of QPC yield that QX is positive definite.
Thus, we are free to utilize the previously described construction using Donaldson’s
diagonalization theorem, with P DPC , to obtain the embedding criterion for sliceness
on odd, 5–stranded pretzel knots.

In all the results that follow, we use Theorem 2.1 to immediately reduce to considering
only those odd, 5–stranded pretzel knots of the form P .�a;�b;�c; d; e/ for which
sgn.ye/ D �1. We use P .�a;�b;�c; d; e/ rather than its mirror in order to use the
positive definite formulation of Donaldson’s theorem. As stated in the explanation
of the lattice embedding condition, we wish to write down a matrix A satisfying
ATA D QPC . This condition can be phrased as a collection of conditions on the
column vectors of A:

Embedding conditions For a slice odd 5–stranded pretzel knot K of the form
P .�a;�b;�c; d; e/, there exist vectors vi ; vj ;r 2Zm , with mD aCbCc , satisfying
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(0) v0 � v0 D 3; (1) v1 � v0 D 1;

(2) v2 � v0 D 1; (3) v1 � v2 D 0;

(4) v1 � v1 D d; (5) v2 � v2 D e;

(6) vj ;1 � v0 D 1; (7) vj ;r � vj ;r D 2;

(8) vj ;r � vj ;r˙1 D 1 for r � 2;

(9) vj ;r � v� D 0 for r � 2 and all vectors v� ¤ vj ;r˙1.

The embedding conditions impose severe restrictions on the form each vi and vj ;rj

can take. Condition (0) for example, implies that v0 must have exactly three entries
equal to ˙1 and zeros otherwise; similarly, condition (7) implies that each vector vj ;rj

must have exactly two entries equal to ˙1 and zeros otherwise. It can be verified
using conditions (0)–(7) that up to a change of basis, A will have the following form,
with ˛; ˇ; ;x;y; z 2 Z:2666666666666666666666666666666666666666666664

v0 v1 v2 va;1 va;2 � � � va;a�1 vb;1 vb;2 � � � vb;b�1 vc;1 vc;2 � � � vc;c�1

1 ˛ x 1 0 � � � 0

0 ˛ x �1 �1 0

0 ˛ x 0 1 0

0 ˛ x 0 0 � � � 0 0 0
:::

:::
: : :

:::

0 ˛ x 0 0 � � � �1

0 ˛ x 0 0 � � � 1

1 ˇ y 1 0 � � � 0

0 ˇ y �1 �1 0

0 ˇ y 0 1 0

0 ˇ y 0 0 0 � � � 0 0
:::

:::
: : :

:::

0 ˇ y 0 0 � � � �1

0 ˇ y 0 0 � � � 1

1  z 1 0 � � � 0

0  z �1 �1 0

0  z 0 1 0

0  z 0 0 0 0 � � � 0
:::

:::
: : :

:::

0  z 0 0 � � � �1

0  z 0 0 � � � 1

3777777777777777777777777777777777777777777775
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Having A in this explicit form allows us to put restrictions on the unordered 5–tuples
fa; b; c; d; eg ensuring the embedding conditions are satisfied. For fixed a, b , and c , we
enumerate the embedding conditions in terms of the entries of the column vectors of A,
which reduces the problem of finding the desired embedding to the problem of finding
integers ˛ , ˇ ,  , x , y , z that satisfy the following system of nonlinear equations.
Each new condition is numbered to correspond to the original embedding condition that
implies it. In references by number, no distinction is made between the original and
updated conditions since the updated conditions are direct implications of the originals.

(Updated) embedding conditions For a slice odd 5–stranded pretzel knot K of the
form P .�a;�b;�c; d; e/, there exist integers ˛ , ˇ ,  , x , y , z satisfying

(1) ˛CˇC  D 1,

(2) xCyC z D 1,

(3) a˛xC bˇyC c z D 0,

(4) a˛2C bˇ2C c 2 D d ,

(5) ax2C by2C cz2 D e .

In fact, these updated embedding conditions are exactly the contents of Theorem 4.1.6
in [13], so a more detailed account of these facts can be found there.5

6 The d–invariants and the coset conditions

Peter Ozsváth and Zoltán Szabó defined the d–invariant d.Y; s/ 2 Q in the setting
of Heegaard Floer homology for a rational homology 3–sphere Y equipped with a
Spinc structure s. While the d–invariant has an important function as a correction
term for the grading in Heegaard Floer homology, it is significant in 4–manifold
topology because it is a Spinc rational homology bordism invariant. As stated in [16],
if .Y1; s1/ and .Y2; s2/ are two pairs such that Yi is a rational homology 3–sphere
and si is a Spinc structure on Yi , then if there exists a connected, oriented, smooth
cobordism W from Y1 to Y2 with Hi.W IQ/D 0 for i D 1; 2 which can be endowed
with a Spinc structure t whose restriction to Yi is si , then d.Y1; s1/D d.Y2; s2/. The
proof of this highly nontrivial fact is given in Proposition 9.9 of [16], and it has the
following corollary:

5Warning: Long’s approach to the problem of sliceness in 5–stranded pretzel knots uses a negative
definite convention rather than the positive definite convention of this paper.
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Corollary 6.1 (Ozsváth and Szabó) Let Y be a rational homology 3–sphere with
Spinc structure s, and let W be a rational homology 4–ball with @W D Y and Spinc

structure t. If s can be extended over W so that tjY D s, then d.Y; s/D 0.

In general d.Y; s/ may be hard to compute, but in [17] Ozsváth and Szabó give a
formula for d.Y; s/ when Y is the boundary of a 4–dimensional plumbing manifold P .
Their formula holds in more generality than the version presented below, but the formula
is stated here in the special case relevant to the present situation of determining sliceness
of pretzel knots. Throughout this section, we refer to K , Y , P , W , and X as defined
in Section 5. To remind the reader of these definitions: K is assumed to be a slice
odd pretzel knot; Y is the double branched cover of S3 along K; W is the double
branched cover of B4 along a fixed slice disk for K with @W D Y ; P D PC is a
positive definite plumbing manifold with @P D Y ; and X D P [Y .�W / is a closed
positive definite manifold. Under these assumptions, W is a rational homology 4–ball
and Y is a rational homology 3–sphere. To state the aforementioned formula easily
and to give a more geometric flavor to the material that follows, we first discuss an
identification of Spinc.Y / with H1.Y /.

If Y is a 3–manifold such that H1.Y / is odd torsion, then there is a natural identification
of Spinc.Y / with H1.Y /. In our current work Y is the double branched cover of S3

along a knot K and a bit of straightforward algebraic topology reveals that H1.Y / is
always odd torsion in this case. The first step in the identification shows a one-to-one
correspondence between Spinc.Y / and vect.Y /, the set of Euler structures on Y . An
Euler structure on a smooth closed connected oriented 3–manifold Y is an equivalence
class of nonsingular tangent vector fields on Y , where two vector fields u and v on Y

are deemed equivalent if u and v are homotopic as nonsingular vector fields outside
of some closed 3–dimensional ball. This particular identification of Spinc.Y / with
vect.Y / is due to Vladimir Turaev and constitutes Lemma 1.4 in [19], so the reader is
directed there for details. The salient feature of this step is that it allows us to view a
Spinc structure on Y as a vector field over Y under some notion of equivalence.

Assuming Turaev’s identification of Spinc.Y / with vect.Y /, the second step is to iden-
tify vect.Y / with H1.Y /. Start by fixing a trivialization � of the tangent bundle TY .
Since H1.Y / has only odd torsion, � is unique off a 3–ball up to homotopy. Let ŒY;S2�

denote the space of smooth maps from Y to S2 up to homotopy. The identification
of vect.Y / with H1.Y / will be done via a composition vect.Y /! ŒY;S2�!H1.Y /.

For each equivalence class of nonvanishing vector fields on Y , we choose a representa-
tive vector field V . By a straight line homotopy, we can assume that each vector in V
is a unit vector, where the length is measured according to the trivialization � . For
each point p 2 Y , the tangent space TpY at p is isomorphic to R3 and thus provides
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a way to give Euclidean coordinates to vp 2 V , the vector based at p . Let .xp;yp; zp/

be the Euclidean coordinates for vp obtained from � . With this we define a smooth
map �V W Y ! S2 by sending p 2 Y to the vector .xp;yp; zp/ 2 S2 . The map
gW vect.Y /! ŒY;S2� is then defined as g.ŒV �/D �V .

For the second map, recall that any map � 2 ŒY;S2� has the property that the preimage
��1.z/ of a regular value z 2S2 will be a submanifold of Y of codimension 2, namely,
a curve  . From this fact, define hW ŒY;S2�!H1.Y / by h.�/D Œ �, where  is the
preimage of any regular value of � . The Pontryagin–Thom construction shows that
this map is well defined. It follows that Spinc is identified with H1.Y / via Turaev’s
identification of Spinc with vect.Y / followed by the composition h ıg ıf .

A second topic necessary to discuss before stating the d–invariant formula is that of
characteristic elements of H2.X /=Tor, H2.P /, and H2.P;Y /. These definitions
involve intersection numbers, and in all cases we will abbreviate the intersection
number of two elements a, b in H2.X /=Tor, H2.P /, or H2.P;Y / by a � b and let
the definition of a �b be given by context. As before, QX and QP are the intersection
forms on X and P , respectively. The map Q�1

P
is the relative intersection form

on .P;Y / given as the inverse of QP over Q. We define:

� a � b DQX .a; b/ if a; b 2H2.X /=Tor.

� a � b DQP .a; b/ if a; b 2H2.P /.

� a � b DQP .x; b/ if a 2H2.P;Y / and b 2H2.P /, where x DQ�1
P
.a/ 2H2.P /.

� a � b D QP .x;y/ if a; b 2 H2.P;Y /, where again x D Q�1
P
.a/ 2 H2.P / and

y DQ�1
P
.b/ 2H2.P /.

By choosing bases for H2.X /=Tor, H2.P /, and H2.P;Y /, homology classes in these
groups can be represented by column vectors and the intersection forms QX and QP

can be represented by matrices. We choose bases as follows: the basis feig for
H2.X /=Tor is the one that makes QX diagonal by Donaldson’s theorem; the basis fsig

for H2.P / is the set of homology classes represented by the zero-sections of the disk
bundles used to create P ; lastly, the basis fdig for H2.P;Y / is the set of classes
represented by single fiber disks in each of the disk bundles of P . Note that the fiber
disks fdig are the Hom-duals of the fsig.

With fixed bases the above intersection numbers can be computed using column vector
representatives for homology classes and the matrix representatives for QX and QP .
As matrices with the above bases, recall that QP is equal to the incidence matrix of the
weighted graph representing P and QX is equal to the identity matrix of rank b2.X /.
By an abuse of notation, we use QP to denote both the intersection form for P and
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its matrix representative in this case. This allows us to write and compute the above
intersection numbers in terms of column vectors a, b as follows:

� If a; b 2H2.X /=Tor, then a � b D aTb .

� If a; b 2H2.P /, then a � b D aTQP b .

� If a2H2.P;Y / and b2H2.P /, then a � bDxTQP b , where xDQ�1
P
.a/2H2.P /.

This simplifies to a � b D aTb .

� If a; b 2 H2.P;Y /, then a � b D QP .x;y/, where again x D Q�1
P
.a/ 2 H2.P /

and y DQ�1
P
.b/ 2H2.P /. This simplifies to a � b D aTQ�1

P
b .

Now, we say that an absolute class w 2 H2.X /=Tor is a characteristic class of X

if w � x � x � x .mod 2/, for all x 2H2.X /=Tor; we say a characteristic class w is
minimal if w �w � z � z for all characteristic classes z . Characteristic and minimal
characteristic elements of H2.P / are defined similarly. A relative class w 2H2.P;Y /

is characteristic in X with respect to s, where s is regarded as an element of H1.Y /, if
@wD s and w �u� u �u .mod 2/, for all u2H2.P /. The set of characteristic elements
in H2.P;Y / relative to s is denoted by Chars.P /, which makes an appearance in the
formula below.

We are now ready to state Ozsváth and Szabó’s formula for d.Y; s/ in the case that Y

bounds a certain type of 4–dimensional plumbing:

Theorem 6.2 (Ozsváth and Szabó) Let P be a 4–dimensional plumbing with positive
definite intersection form QP , such that the weighted graph of P has at most two
vertices whose weights are less than their valences. Then under the identification
Spinc.Y /!H1.Y /,

(1) d.Y; s/D min
w2Chars.P/

w �w��.P /

4
:

In [3], Greene and Jabuka use Theorem 6.2 and Corollary 6.1 to give an obstruction to
sliceness for odd pretzel knots through some analysis of the cohomology long exact
sequences of the pairs .P;Y / and .X;W /. Here, we derive their results in terms of
homology and obtain the following commutative diagram at the top of the next page.
In the diagram the horizontal maps arise from the long exact sequences of the pairs
.P;Y / and .X;W /; the vertical maps r and  are induced by inclusions; ˇ is an
isomorphism due to excision; and q is the usual quotient map.
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0 H2.P / H2.P;Y / H1.Y / 0 0

� � � H2.X / H2.X;W / H1.W / H1.X / 0

� � � H2.X /=Tor

� @

r Šˇ 

g

q �

Because H2.P / is free and r is a homomorphism, the image of r lies entirely in
the free part of H2.X /. Let ˛ D qr and ˛� D ˇ�1�; this allows us to use the first
isomorphism theorem to eliminate H2.X / from the diagram. By commutativity, � can
be seen to have the factorization �D ˛�˛ , converting the previous diagram into:

0 H2.P / H2.P;Y / H1.Y / 0 0

� � � H2.X /=Tor H2.X;W / H1.W / H1.X / 0

� @

˛ Šˇ 
˛�

� �

To use this diagram in conjunction with the lattice embedding condition, it is advan-
tageous to work with matrix representatives of the maps ˛ , ˛� , and �. We choose
the bases for H2.P /, H2.P;Y /, and H2.X /=Tor as before, we let A be the matrix
representative for the map ˛ (induced by the embedding of P into X ), and we let A�

be the matrix for ˛� .

The columns of A express the basis elements feig of H2.X /=Tor in terms of the
basis disks fdig for H2.P;Y /. Consequently, the rows of AT express the spheres fsig

in terms of the feig, which implies that the ij th entry in ATA gives the intersection
number between the spheres si and sj . Thus ATA is the matrix of the intersection
formQP of P with respect to the basis fsig.

Recall that each basis element di of H2.P;Y / is the Hom-dual of the basis element si

of H2.P /, and therefore �.si/D
P

j .si � sj /dj . This implies that with respect to the
chosen bases, � (as a linear map from H2.P / to H2.P;Y /) is represented by the same
matrix as is QP (regarded as a bilinear map from H2.P /�H2.P / to Z). Namely,
� is also represented by ATA. Given that �D ˛�˛ , it follows that A�AD ATA as
matrices. Since QP is invertible over Q, so is A; whence A� DAT . By reinstating
the abuse in notation whereby we use QP to denote both the intersection form on P
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and its matrix representative in this case, we let the matrix QP represent � with respect
to the chosen bases.

Dropping the less relevant maps, the previous commutative diagram becomes:

0 H2.P / H2.P;Y / H1.Y / 0 0

� � � H2.X /=Tor H2.X;W / H1.W / H1.X / 0

QP

A Š 
AT

We use this to restate and reprove — in a homological setting — Greene and Jabuka’s
d–invariant obstruction to sliceness in odd pretzel knots:

Theorem 6.3 (Greene and Jabuka) Let K be a slice odd pretzel knot with Y , W ,
P D PC , and X as in the above commutative diagram. Then every coset of coker.˛/
contains a minimal characteristic class of H2.X /=Tor.

Proof Under the assumption that K is slice, it follows that K satisfies the embedding
conditions and �.P / D rk.QP / D rk.QX / D b2.X / WD m. It also follows from
Corollary 6.1 that d.Y; s/D 0 for every s that extends over W . In general, the Spinc

structures on a rational homology 3–sphere Y that extend over a rational homology
4–ball W are identified with precisely those elements in H1.Y / that bound relative
homology classes in H2.W;Y /. As such, they are in one-to-one correspondence with
the elements of ker. /, where  W H1.Y /!H1.W / is induced by inclusion.

Theorem 6.2 applies to Y since the plumbing graph of P will have exactly one vertex
whose weight is less than its valence, namely, the central node. Ozsváth and Szabó’s
formula

d.Y; s/D min
w2Chars.P/

w �w��.P /

4

implies that d.Y; s/D 0 if and only if there exists w 2 Chars.P / such that w �wDm.
A straightforward diagram chase shows that for each w 2 Chars.P / there exists an
element x 2H2.X /=Tor such that ˛�.x/D w . In addition, x is characteristic in X

and x �x D w �w , so in general the characteristic classes of P relative to s correspond
to absolute characteristic classes of X with equal intersection number. This fact,
which is verified below, allows us to compute w �w , which appears in formula (1), by
using x �x instead.

Fix the bases for H2.P /, H2.P;Y /, and H2.X /=Tor as before, and let AD .aij /

again be the matrix representative of ˛ with respect to these bases. Let w 2 Chars.P /
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and x D .x1; : : : ;xm/ 2H2.X /=Tor such that ˛�.x/D w . Recall that ˛� is repre-
sented by the matrix AT with respect to these bases. To show that x is characteristic
in X , it suffices to show that x � ej � ej � ej .mod 2/, for all basis elements ej . Since
ej � ej D 1, one need only show that x � ej — that is, the j th component of x — is odd
for all j . Stated differently, it must be shown that every component of x is odd.

By definition of Chars.P /, w �u� u �u .mod 2/ for all u2H2.P /, in particular for u

equal to a basis element sj for H2.P /: w �sj � sj �sj .mod 2/. Observe that for all j ,

w � sj DATx � sj D xTAsj D

X
i

xiaij ;

sj � sj D .QP /jj D .A
TA/jj D

X
i

aij aij �

X
i

aij .mod 2/:

Hence,
P

i xiaij �
P

i aij .mod 2/ for all j . Letting xi�1 .mod 2/ yields a solution
to this equation, which in fact is the unique solution since A is invertible modulo 2.
Given that this holds for all j , it has thus been shown that x has all odd entries and
is therefore characteristic in X . Furthermore, since w 2H2.P;Y /, it follows from
above that w �w D wTQ�1

P
w . Making the substitutions QP D ATA and w D ATx

shows that w �w D x �x .

In addition, the diagram chase from before shows that ker. /Š coker.˛/. Combining
this with the preceding information implies that d.Y; s/D 0 for all s 2 ker. / with
corresponding k 2 coker.˛/ if and only if there exists w 2Chars.P / and x 2Char.X /
such that wDATx , x �xDm, and xC im.˛/D k . Clearly, x �xDm only if xi D˙1

for all i , which implies that x is a minimal characteristic class of X . Hence, K slice
implies that every element of coker.˛/, ie every coset of im.˛/, contains a minimal
characteristic class of X .

Theorem 6.3 gives a necessary condition for sliceness for odd 5–stranded pretzel knots
that can be rephrased in a simpler, more geometric way by analyzing the quotient
coker.˛/ D .H2.X /=Tor/= im.˛/. We will reduce the problem of finding minimal
characteristic vectors in each coset of im.˛/ to a more visualizable problem of finding
lattice points in Z2 with certain properties.

Since H2.X /=TorŠZm , it follows that coker.˛/ŠZm= im.˛/. Given that the image
of ˛ with the chosen bases is equal to the span of the columns of A, coker.˛/ is
isomorphic to the quotient of Zm by the columns of A. Let U D fvj ;rj

g be the set of
column vectors of A with standard dot product, where 1� j � n and 1� rj � j � 1.
Then the columns of A, as vectors, are given by fv0; v1; v2; Ug.
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Define BW Zm! Z2 by

.x1; : : : ;xa;y1; : : : ;yb; z1; : : : ; zc/
T
7!

� aX
iD1

xi �

cX
kD1

zk ;

bX
jD1

yj �

cX
kD1

zk

�T

:

It is straightforward to see that ker.B/ D hv0;Ui and that B is onto, so by the first
isomorphism theorem Z2 Š Zm=hv0;Ui. It follows that

coker.˛/Š Zm=hv0; v1; v2;Ui Š Z2=hB.v1/;B.v2/i:

Let xv1 WD B.v1/ and xv2 WD B.v2/. Using the above isomorphisms, the slice condition
in Theorem 6.3 can now be rephrased to say that every coset in Z2=hxv1; xv2i must have
a representative in B.f˙1gm/. Thus, Z2=hxv1; xv2i and B.f˙1gm/ are analyzed:

xv1 D B..˛; : : : ; ˛; ˇ; : : : ; ˇ; ; : : : ;  //T D .a˛� c; bˇ� c /T ;

xv2 D B..x; : : : ;x;y; : : : ;y; z; : : : ; z//T D .ax� cz; by � cz/T ;

B.f˙1gm/D f.q� s; r � s/ j �a� c � q� s � aC c and � b� c � r � s � bC cg:

The vectors fxv1; xv2g define a fundamental domain R�R2 . Let R be the set of lattice
points in R that represent unique cosets of im.˛/ coming from coker.˛/. Note that
R � Z2 and R � R. Also, let H WD B.f˙1gm/. Then H is a collection of lattice
points .x;y/ satisfying �a�c � x � aCc and �b�c � y � bCc . Since a, b , and c

are odd and positive, every element of H is an element of 2Z2 and collectively these
points lie in a hexagonal region H �R2 . Hence, H� 2Z2 and H�H .

Greene and Jabuka observed that Theorem 6.3, which gives the slice condition that every
element of coker.˛/ contains a minimal characteristic vector of the form .f˙1gn/, is
equivalent to the condition that every lattice point of R can be translated onto a lattice
point of H by a linear combination of xv1 and xv2 . Hence, a knot K cannot be slice
if there exists an element of coker.˛/ that does not contain a minimal characteristic
vector of X by Theorem 6.3. The correspondence between cosets of im.˛/, minimal
characteristic vectors of X , and lattice points implies that K is not slice if there exists
a lattice point in R that can not be translated onto a lattice point in H by a linear
combination of xv1 and xv2 . By the definition of R, every element of R represents a
distinct coset in the quotient Z2=hxv1; xv2i, and thus if there are more lattice points in R
than there are in H for a knot K , then K is not slice. This proves the following:

Coset condition I If P .a; b; c; d; e/ is a slice odd 5–stranded pretzel knot, then
jRj � jHj.

It is possible, however, for many points in H to belong to the same coset in Z2=hxv1; xv2i.
Let H WD H=hxv1; xv2i, so that jHj is the number of hxv1; xv2i–cosets in H . With this
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observation and Theorem 6.3 and the above observation, K is not slice if jRj> jHj.
This condition is a refinement of coset condition I, which the author unimaginatively
calls coset condition II:

Coset condition II If P .a; b; c; d; e/ is a slice odd 5–stranded pretzel knot, then
jRj � jHj.

7 Proof of Theorem 2.3

Due to the slightly different nature of pretzel knots with single-twists versus those
without, the proof of Theorem 2.3 is divided according to this distinction. A technical
lemma, Lemma 7.1, is given first and then it is shown that all 0–pair odd 5–stranded
pretzel knots without single-twists are not slice. Lemma 9.1 refines Lemma 7.1 and is
then used to show that all 0–pair odd 5–stranded pretzel knots with single-twists are
not slice.

Recall from Section 4 that a knot K is slice if and only if its mirror �K is slice.
To make the computations in the proof easier, the knot K D P .�a;�b;�c; d; e/

in Pfa; b; c;�d;�eg will be used rather than its mirror P .a; b; c;�d;�e/. Lemma 7.1,
which is given next, states the conditions on ˛ , ˇ ,  , x , y , and z under which
P .�a;�b;�c; d; e/ will be a 0–pair pretzel knot. Without loss of generality, assume
throughout that a� b � c .

Lemma 7.1 If K 2 Pfa; b; c;�d;�eg is 0–pair and satisfies the embedding con-
ditions, then at most one of ˛ , ˇ ,  , x , y , z is zero. Furthermore, if the set
f˛; ˇ; ;x;y; zg contains 0, then d � 4aC b and e � aC b C c; otherwise, both
d and e are greater than or equal to aC bC c .

Proof Choose K D P .�a;�b;�c; d; e/. First it will be shown that if any two
of ˛ , ˇ ,  are zero or if any two of x , y , z are zero, then K is not 0–pair. By the
symmetry of the embedding conditions on f˛; ˇ;  g and fx;y; zg, it suffices to prove
this only for f˛; ˇ;  g. Suppose two of the parameters ˛ , ˇ ,  are zero. Then the
third parameter is equal to 1 by embedding condition (1), and thus d 2 fa; b; cg by
embedding condition (4). Consequently, K has at least one pair of canceling twist
parameters, a contradiction. It follows that at most one of ˛ , ˇ ,  is zero and at most
one of x , y , z is zero. The remainder of the proof consists in showing the stronger
statement that the sets f˛; ˇ;  g and fx;y; zg cannot both contain 0.

Without loss of generality, suppose ˛ D 0 and ˇ ¤  ¤ 0. It will be shown that if any
of x , y , z is zero, then either K is not 0–pair or there is a contradiction to x;y; z 2Z.
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With the assumptions on ˛ , ˇ , and  , embedding conditions (1) and (4) immediately
yield d D bˇ2C c 2 � 4bC c � 4aC b , and embedding condition (3) implies

(2) bˇy D�c z:

From (2), if either one of y or z is 0, then so is the other. Thus, K is not 0–pair by
the first paragraph of the proof and therefore y and z are both nonzero.

If x D 0, embedding condition (2) implies that z D 1� y . Substituting this into (2)
and solving for y yields

(3) y D
c

c � bˇ
:

Since ˛ D 0, embedding condition (1) implies that ˇC  D 1. If either one of ˇ or 
is equal to 1, then the other vanishes. This violates the assumption that ˇ ¤  ¤ 0;
therefore ˇ;  62 f0; 1g. Note that ˇ and  always have different signs. If  � 2, then
ˇ � �1 and thus �bˇ > 0. Thus, (3) takes on the form

(4) y D
p

pC q
;

where p; q 2ZC . Thus y cannot be an integer, contradicting the embedding conditions.
If instead  ��1, then ˇ � 2. In this case, one can take (2) and solve for z instead of
y , yielding

(5) z D
bˇ

bˇ� c
:

By the same argument given for  � 2, if ˇ � 2 it follows that z cannot be an integer
and the embedding conditions are again contradicted. Thus if ˛ D 0, each of x , y , z

must be nonzero and e D ax2C by2C cz2 � aC bC c by embedding condition (5).

If ˇD 0, the proof follows similarly with d D a˛2Cc 2 � 4aCc � 4aCb; if  D 0,
then again the proof follows similarly with d D a˛2Cbˇ2 � 4aCb . In all three cases,
e D ax2C by2C cz2 � aC bC c . Lastly, if none of ˛ , ˇ ,  , x , y , z is zero, then
embedding conditions (4) and (5) imply that d D a˛2C bˇ2C c 2 � aC bC c and
e D ax2C by2C cz2 � aC bC c , since c � b � a� 1.

8 Proof of Theorem 2.3 without single-twists

The proof of Theorem 2.3 will now proceed by showing that if K is a 0–pair odd
5–stranded pretzel knot without single-twists, then coset condition I is violated. Assume
K is slice. It follows that K satisfies the signature condition and the lattice embedding
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condition. Furthermore, it may also be assumed that K D P .�a;�b;�c; d; e/ with
a� b � c . Let R and H be as in coset condition I.

The fact that K is 0–pair implies that d � 4aC b and e � aC bC c by Lemma 7.1.
Given that ker. /Š coker.˛/ (where  and ˛ here refer to the maps in Section 6) and
jker. /j D

p
jH1.Y /j D

p
jdet.K/j, it follows that jRj D jcoker.˛/j D

p
jdet.K/j.

Theorem 1.4 in [5] gives the following formula for the determinant of odd pretzel knots
P .p1; : : : ;pk/:

det.K/D
kX

iD1

p1 � � �pi�1 ypipiC1 � � �pk :

Using this with the above choice of K , one gets

det.K/D�abcd � abceC abdeC acdeC bcde:

To compute jHj, a direct computation shows that the closed hexagonal region H in
which H is contained is a region in R2 defined by the 2.aC c/� 2.bC c/ rectangle
centered at the origin, minus the lower-right and upper-left half-square triangular regions
with side lengths 2c . See Figure 13. The set H contains all lattice points in 2Z2 in
the interior of H and on the boundary of H . These can be counted in many different
ways but are counted here by observing that there are aC bC 1 even lattice points
in the perpendicular boundary components of H lying in the third quadrant of R2 ,
and there are cC 1 copies of this L-shaped collection of even lattice points repeated
throughout H ; furthermore, H includes a a�b rectangle of even lattice points. Hence

jHj D .aC bC 1/.cC 1/C ab D abC acC bcC aC bC cC 1:

To violate coset condition I, it will be argued that jRj2 > jHj2 using the facts that

(1) 3� a� b � c ,

(2) d � 4aC b and e � aC bC c or d; e � aC bC c , and

(3) ab > aC bC 1
2

for a; b � 3.

By [13, Theorem 2.0.3], 0–pair odd 5–stranded pretzel knots P .�a;�b;�c; d; e/

are not slice if d; e � aC bC c , thus that case is omitted here. Hence, we assume
d � 4aC b and e � aC bC c . First consider jHj2 :

jHj2 D .abC acC bcC aC bC cC 1/2 DLCM CN CS;
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H

Figure 13: H for P .�3;�7;�19; d; e/

where
LD a2b2

C a2c2
C b2c2

C 2.a2bcC ab2cC abc2/;

M D 2.a2bC a2cC ab2
C b2c/;

N D 2c2
�
aC bC 1

2

�
C 6abcC 4.abC ac/C 3bc;

S D a2
C b2

C bcC 2.aC bC c/C 1:

It will be shown that jRj2 > jHj2 by proving equivalently that

jRj2�L�M �N > jHj2�L�M �N:

Consider jRj2 :

jRj2 D jdet.K/j D j�abcd �abceCabdeCacdeC bcdej

D abd.e� c/C bce.d �a/Cacde

� 5a2b2
C 4a2c2

C b2c2
C 8a2bcC 5ab2cC 4abc2

C 4a3.bC c/C b3.aC c/

DWE3;

where the inequality follows from making the substitutions d �4aCb and e�aCbCc .
Thus

jRj2�L�E3�L:

Next we have
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E3�LD 4a.a2bCa2c/Cb.ab2
Cb2c/C4a2b2

C3a2c2
C6a2bcC3ab2cC2abc2

� 12.a2bCa2c/C3.ab2
Cb2c/C4a2b2

C3a2c2
C6a2bcC3ab2cC2abc2

DWE2;

where the inequality comes from the fact that 4a � 12 since a � 3. Therefore
jRj2�L�E3�L>E2 , and so

jRj2�L�M �E3�L�M >E2�M:

Next we have

E2�M D 10.a2bCa2c/C.ab2
Cb2c/C4a2b2

C3a2c2
C6a2bcC3ab2cC2abc2

> 2c2
�
aCbC 1

2

�
C6abcC4.abCac/C3bcC4a2b2

C3a2c2

C3ab2cC6.a2bCa2c/Cab2

DWE1;

where the inequality comes from the following four facts, obtained from the assumption
that c � b � a� 3:

� 2abc2
D 2c2.ab/ > 2c2

�
aC bC 1

2

�
;

� b2c > 3bc;

� 6a2bc > 6abc;

� 10.a2bC a2c/D 6.a2bC a2c/C 4.a2bC a2c/ > 6.a2bC a2c/C 4.abC ac/:

This shows that E2�M >E1 , so it follows that

jRj2�L�M �N �E3�L�M �N >E2�M �N >E1�N:

Now observe that

E1�N D 4a2b2
C 3a2c2

C 3ab2cC 6.a2bC a2c/C ab2

D 6a2bC ab2
C 3a2c2

C .4a2b2
C 3ab2cC 6a2c/

> a2
C b2

C bcC 2.aC bC c/C 1

D S D jHj2�L�M �N;

where the inequality comes from the following six facts, again obtained from the
assumption that c � b � a� 3:

6a2b> a2; ab2> b; 3ab2c> bc; 3a2c2> 2a; 4a2b2> 2b; 6a2c> 2cC1:

Combining everything, one sees that

jRj2�L�M �N > jHj2�L�M �N;
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which implies that jRj2 > jHj2 , as desired. This completes the proof that all 0–pair
odd 5–stranded pretzel knots without single-twists are not slice.

9 Proof of Theorem 2.3 with single-twists

Next, the knots with single-twists are addressed. As before, assume all knots in question
are slice and therefore satisfy the signature condition, the lattice embedding condition,
and both coset conditions. Just a bit of thought reveals that, possibly after mirroring,
the signature condition yields only three cases to consider for 0–pair odd 5–stranded
pretzel knots with single-twists. Note that d; e � a in all cases due to embedding
conditions (1), (2), (4), and (5). For K 2 Pf�a;�b;�c; d; eg, the cases are

(1) aD b D c D 1 and d; e � 3,

(2) aD b D 1 and c; d; e � 3,

(3) aD 1 and b; c; d; e � 3.

Since the lattice embedding conditions hold, there exist ˛ , ˇ ,  , x , y , z 2Z satisfying
the system of equations given in Section 5. Thus, this proof for nonsliceness of 0–pair
pretzel knots with single-twists has the same starting point as the previous proof for
nonsliceness of 0–pair knots without single-twists. Lemma 7.1 still applies here for
all three cases of 0–pair pretzel knots with single-twists. To obstruct sliceness for
0–pair knots P .�a;�b;�c; d; e/ with single twists, however, it is necessary to get
more precise lower bounds on d and e than are obtained in Lemma 9.1.

Lemma 9.1 If K 2 Pf�a;�b;�c; d; eg is 0–pair and d is equal to its lower bound
(either d D 4aC b or d D aC bC c ), then e � 4aC 4bC c .

Proof First, suppose d D 4aC b and e D aC bC c . By the embedding conditions,
it follows that ˛ D 2; ˇ D �1, and  D 0, and jxj D jyj D jzj D 1. Embedding
condition (3) says a˛xCbˇyCc zD 0, which reduces to ˙2aD b after substitutions.
But, b is odd so this is a contradiction. If instead one supposes that eD aCbCc , then
by the embedding conditions, j˛jD jˇjD j jD jxjD jyjD jzjD 1. After substitutions,
embedding condition (3) becomes c D˙a˙ b , which is again a contradiction since
all three of a; b; c are odd.

Hence when d D 4aC b or d D aC bC c , we have e ¤ aC bC c . In words, both
d and e cannot simultaneously achieve their lower bounds as given in Lemma 7.1. It
follows that at least one of jxj, jyj, or jzj must be � 2. But, in fact, it will be shown
presently that at least two of jxj, jyj, and jzj must be � 2. If x D 2, embedding
condition (2) implies that yC z D�1; if x D�2, then yC z D 3. In both cases, it
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is impossible for both jyj D 1 and jzj D 1, and therefore jyj � 2 or jzj � 2. By the
symmetry in x;y; z of embedding condition (2), similar results follow if y D˙2 or
if z D˙2. Hence, at least two of jxj, jyj, or jzj must be � 2.

The choices of jxj; jyj; jzj that satisfy the above discovery and that minimize e are
jxj D jyj D 2 and jzj D 1, which yields e D ax2C by2C cz2 D 4aC 4bC c . Thus,
if d is equal to a lower bound then e � 4aC 4bC c .

The proof of Theorem 2.3 will now proceed. The goal in each of the following cases is
to arrive at a contradiction to coset condition I by showing that jRj2 > jHj2 .

Case 1 K 2 Pf�a;�b;�c; d; eg with aD b D c D 1.

By Lemma 7.1, d � 4aCbD 5 or d � aCbCcD 3. Assume d D 3. By Lemma 7.1,
it follows that e � 4aC 4bC c D 9. Then

jRj2 D jdet.K/j D j� abcd � abceC abdeC acdeC bcdej

D d.e� 1/C e.d � 1/C de � 69

> 49D .abC acC bcC aC bC cC 1/2

D jHj2;

as desired.

Case 2 K 2 Pf�a;�b;�c; d; eg with aD b D 1 and c � 3.

By Lemma 7.1, d � 4aC b D 5 or d � aC bC c D 2C c . But, c � 3 so in any case
we have d � 5 and thus e � 4aC 4bC c D 8C c by Lemma 9.1. Then

jRj2 D jdet.K/j D j� abcd � abceC abdeC acdeC bcdej

D d.e� c/C ce.d � 1/C cde

� 5.8C c � c/C c.8C c/.5� 1/C 5c.8C c/D 9c2
C 72cC 40

> 9c2
C 24cC 16D .3cC 4/2

D .abC acC bcC aC bC cC 1/2

D jHj2;

as desired.

Case 3 K 2 Pf�a;�b;�c; d; eg with aD 1 and b; c � 3.

By Lemma 7.1, d � 4aC b D 4C b or d � aC bC c D 1C bC c . Assuming that
d � bC4 accounts for both situations. By Lemma 9.1, e � 4aC4bC c D 4C4bC c .
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Then

jRj2 D jdet.K/j D j�abcd �abceCabdeCacdeCbcdej

D bd.e�c/Cbce.d �1/Ccde

� b.bC4/.4C4bCc�c/Cbc.4C4bCc/.bC4�1/Cc.bC4/.4C4bCc/

D 4b3cCb2c2
C4b3

C20b2cC4bc2
C20b2

C32bcC4c2
C16bC16c:

Also

jHj2 D .abC acC bcC aC bC cC 1/2

D b2c2
C 4b2cC 4bc2

C 4b2
C 12bcC 4c2

C 8bC 8cC 4:

Let LD b2c2C 4b2cC 4bc2C 4b2C 12bcC 4c2C 8bC 8c . Then

jRj2� jHj2 D 4b3cC 16b2cC 20bcC 8cC 4b3
C 16b2

C 8b� 4> 0

Thus, jRj2 > jHj2 . This concludes the proof that 0–pair odd pretzel knots with single-
twists are not slice, and therefore all 0–pair odd 5–stranded pretzel knots are not
slice.

10 Proof of Theorem 2.4

Theorem 2.4 asserts that if K is a 1–pair odd 5–stranded pretzel knot without single-
twists, then K is not slice. This will be shown by proving that coset condition II
is violated for the knots in question. It suffices to consider only the 1–pair pretzel
knots P .a; b; c; d; e/ for which the signature vanishes and both the lattice embedding
condition and coset condition I are satisfied. Let a; b; c; d; e > 0 such that a� b � c ,
and assume that K D P .�a;�b;�c; d; e/ throughout. Let Y , P D PC , W , X , and
the embedding map ˛W H2.P /!H2.X /=Tor be as usual.

Theorem 6.3 gives that if K is slice, then every coset of im.˛/ coming from coker.˛/
has a coset representative in the set f˙1gm , where mD aC bC c . Let v1 and v2 be
the second and third columns (respectively) in the matrix A of ˛ with respect to the
bases chosen in Sections 5 and 6; lastly, let B be the map outlined in Section 6.

Recall from the coset conditions the sets R and H associated with A. The set R
consists of the integer lattice points in a fundamental region R � R2 defined by
xv1 and xv2 that correspond to unique cosets of im.˛/; H is the set of lattice points
.x;y/ 2 2R2 such that �a � c � x � aC c and �b � c � y � b C c , lying in a
hexagonal region H �R2 . The argument now reduces to determining jRj and jHj,
where HDH=hxv1; xv2i. An important note is that the computation of jRj will be done
differently here from how it is done in Chapter 7.
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Observe that R consists of all lattice points in the interior of R as well as all lattice
points on the boundary of R modulo xv1 and xv2 . The action of modding out the
boundary of R by xv1 and xv2 has the effect of removing half of all boundary lattice
points, plus one more. The extra lattice point that must be removed is, without loss of
generality, the one at the tip of xv1 that gets identified with .0; 0/. Hence, if i is the
number of interior lattice points of R and b is the total number of lattice points lying
on the boundary, then

jRj D i C
b

2
� 1:

In a lucky turn of events, Pick’s theorem equates the right hand side of this expression
with the area of R. In it’s general form, Pick’s theorem states that the area A of any
polygon P in R2 with vertices at integer lattice points is given by

A.P /D i C
b

2
� 1;

where i is the number of integer lattice points in the interior of the polygon and b is
the number of integer lattices points lying on the boundary of the polygon. Thus,

jRj D i C
b

2
� 1DA.R/:

Given that R is a parallelogram in R2 defined by xv1; xv2 2 Z2 , its area A.R/ — and
thus jRj— is equal to the absolute value of the determinant of the 2� 2 matrix whose
column vectors are xv1 and xv2 :

jRj DA.R/D

ˇ̌̌̌
a˛� c ax� cz

bˇ� c by � cz

ˇ̌̌̌
:

Also, recall from Section 8 that

jHj D .aC bC 1/.cC 1/C ab D abC acC bcC aC bC cC 1:

In obstructing sliceness for 1–pair pretzel knots (still under the assumption a� b � c ),
three cases must be considered: (1) when the pair is fa;�ag, (2) when the pair
is fb;�bg, and (3) when the pair is fc;�cg. By assumption, the twist parameters in
all three cases satisfy the embedding criterion.

Case 1 K 2 Pf�a;�b;�c; a; eg with e 62 fb; cg.

When the twist parameters contain the pair fa;�ag, we obtain ˛D 1, ˇD  D xD 0,
and that y and z are nonzero. This yields xv1D .a; 0/ and xv2D .�cz; by� cz/, hence

jRj D
ˇ̌̌̌
a �cz

0 by � cz

ˇ̌̌̌
D ajby � czj:
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As y !1, it follows that z ! �1 by embedding condition (2) which says that
1 D xC yC z D 0C yC z; thus jRj ! 1. Similarly, as y !�1 (and z!1),
jRj !1. For this reason, jRj is minimized when y and z are both small in absolute
value, ie when xv2 is short. Given that b < c , we have xv2 shortest when y D 2 and
z D�1. In this case

(6) jRj D aj2bC cj D 2abC ac:

An upper bound for jHj will now be computed. Due to the shape and dimensions of H ,
we can see that many of the lattice points of H lie in the same hxv1; xv2i–coset because
any two lattice points in H that differ by multiple of xv1 D .a; 0/ will be identified.
Furthermore, modding out by xv2 would only result in more identification among the
lattice points of H . Hence

jHj D jH=hxv1; xv2i �H=hxv1i:

Note: Figures 14–19 show the lattice points in 2Z2 , that is, each grid square is 2� 2.

From Figure 14, we see that each of the bC cC 1 rows in H has a distinct hxv1; xv2i–
cosets. The result of eliminating repeated representatives from each coset to obtain H

.�aC c; bC c/ .aC c; bC c/

.aC c;�bC c/

H
c�b

2

b

a

Figure 14: H and its R–cosets for P .�3;�7;�19; 3; 47/ . Points of the
same color with the same y–coordinate represent the same R–coset.
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H
c�b

2

b

a

Figure 15: H and its R–cosets for P .�3;�7;�19; 3; 47/ , repeat represen-
tatives removed

is shown in Figure 15. Thus, an upper bound for jHj is given by

jHj �H=hxv1i D a.bC cC 1/D abC acC a:

Comparing this to (6), the desired result is achieved:

jHj � abC acC a< 2abC ac D jRj;

since a � b � c . Hence, an odd 5–stranded pretzel knot K 2 Pf�a;�b;�c; a; dg,
with a; b; c; d � 3, is not slice by coset condition I.

Case 2 K 2 Pf�a;�b;�c; b; dg with e 62 fa; cg.

When the twist parameters contain the pair fb;�bg, we obtain ˇD 1, ˛D  D y D 0,
and that x and z are nonzero. With this, xv1 D .0; b/ and xv2 D .�cz; by � cz/, hence

jRj D
ˇ̌̌̌
0 ax� cz

b �cz

ˇ̌̌̌
D bjax� czj:

Following the logic of Case 1, it suffices to show that jRj> jHj when the length of xv2
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.�aC c; bC c/ .aC c; bC c/

.aC c;�bC c/

H

b

a c�a
2

Figure 16: H and its R–cosets for P .�3;�7;�19; 7; 31/ . Points of the
same color with the same x–coordinate represent the same R–coset.

is minimized. Since a< c , we have xv2 shortest when x D 2 and z D�1, so

(7) jRj D b j2aC cj D 2abC bc:

The upper bound for jHj is computed for Case 2 in a similar manner as for Case 1,
the only difference being that xv1 D .0; b/, and thus lattice points in H=hxv1i are in the
same coset when they differ by multiple of .0; b/ (vertical translations), as seen in
Figure 16. Each of the aC cC 1 columns in H always has b distinct R–cosets. The
result of eliminating repeated representatives from each coset to obtain H is shown in
Figure 17. Thus, an upper bound for jHj is given by

jHj �H=hxv1i D b.aC cC 1/D abC bcC b:

Comparing this to (7), again the desired result is achieved:

jHj � abC bcC b < 2abC bc D jRj;

since b � a � 3. Hence, 5–stranded pretzel knots K 2 Pf�a;�b;�c; b; d/g, with
a; b; c; d � 3, are not slice.

Case 3 K 2 Pf�a;�b;�c; c; dg with e 62 fa; bg.
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H

b

a c�a
2

Figure 17: H and its R–cosets for P .�3;�7; 19; 7; 31/ , repeat representa-
tives removed.

The final case of 5–stranded odd 1–pair pretzel knots has fc;�cg as the pair in the twist
parameters. Unlike for the 1–pair cases where the pair of canceling twist parameters
is fa;�ag or fb;�bg, the case with fc;�cg does not necessarily imply that  D 1,
˛ D ˇ D z D 0, with x and y nonzero. Since c � b � a, it is possible that both
˛ and ˇ are nonzero and embedding condition (4) is satisfied by c D a˛2C bˇ2 . In
this case, however, the proof of Lemma 9.1 shows we would have c � 4aC b and
eD ax2Cby2C cz2 � aCbC c , which implies that P .�a;�b;�c; c; d/ is not slice
by the proof of Theorem 2.3.

Hence, the only case that need be considered is the case in which  D 1, ˛DˇD zD 0,
with x and y nonzero. Under these conditions, xv1 D .�c;�c/ and xv2 D .ax; by/,
and therefore

jRj D
ˇ̌̌̌
�c ax

�c by

ˇ̌̌̌
D c jax� byj:

Again by following the logic from Case 1 and Case 2, it suffices to show that jRj> jHj
when xv2 is at its shortest. Since a< b , the length of xv2 is minimized when x D 2 and

Algebraic & Geometric Topology, Volume 17 (2017)
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.�aC c; bC c/ .aC c; bC c/

.aC c;�bC c/

H

bC 1

aC 1

Figure 18: H and its R–cosets for P .�3;�7;�19; 19; 55/ . Each white
point represents a distinct R–coset; colored points lying along the same
45–degree diagonal represent the same R–coset.

y D�1. In this case,

(8) jRj D c j2aC bj D 2acC bc:

The computation of an upper bound for jHj in Case 3 is similar to those in Cases
1 and 2. Namely, it is computed by identifying lattice points in H via multiples of
xv1 D .�c;�c/ (45–degree diagonal translations). The computations are also done as
before using the well-understood region H , however it is more efficient now to subtract
off the number of repeat hxv1i–coset representatives from jHj, rather than count the
cosets directly as in Cases 1 and 2. Figure 18 indicates that

jHj � jHj � .aC 1/.bC 1/

D abC acC bcC aC bC cC 1� .abC aC bC 1/

D acC bcC c:

Since c � a� 3, comparing this result with (8) gives the result

jHj � acC bcC c < 2acC bc D jRj:
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H

bC 1

aC 1

Figure 19: H and its R–cosets for P .�3;�7; 19; 19; 55/ , repeat representa-
tives removed.

Refer to Figure 19 for H in this case. Thus, 5–stranded odd pretzel knots of the form
P .�a;�b;�c; c; d/, with a; b; c; d � 3, are not slice. The proof is complete.
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Axioms for higher twisted torsion invariants
of smooth bundles

CHRISTOPHER OHRT

This paper attempts to investigate the space of various characteristic classes for smooth
manifold bundles with local system on the total space inducing a finite holonomy
covering. These classes are known as twisted higher torsion classes. We will give a
system of axioms that we require these cohomology classes to satisfy. Higher Franz–
Reidemeister torsion and twisted versions of the higher Miller–Morita–Mumford
classes will satisfy these axioms. We will show that the space of twisted torsion
invariants is two-dimensional or one-dimensional depending on the torsion degree and
is spanned by these two classes. The proof will greatly depend on results about the
equivariant Hatcher constructions developed in Goodwillie, Igusa and Ohrt (2015).

19J10, 55R40; 57R80, 55R10

1 Introduction

Higher torsion invariants have been developed by J Wagoner, J R Klein, K Igusa,
M Bismut, J Lott, W Dwyer, M Weiss, E B Williams, S Goette and many others; see
Wagoner [12], Igusa [5], Igusa and Klein [9], Bismut and Lott [2], Dwyer, Weiss and
Williams [3] and Bismut and Goette [1].

In [7], Igusa defined a higher torsion invariant of degree 2k to be a characteristic class
�.E/ 2H 4k.BIR/ of a smooth bundle E! B satisfying an additivity and a transfer
axiom; see [7, Section 2]. He proved that the set of higher torsion invariants forms
a two-dimensional vector space spanned by the higher Reidemeister torsion and the
Miller–Morita–Mumford class.

But higher Reidemeister torsion or Igusa–Klein torsion can be defined in a more
general way: it is a characteristic class � IK.E; �/ 2H 2k.BIR/ for a smooth bundle
with an unitary representation �W �1E! U.m/ factorizing through a finite group; see
for example Igusa [5]. For our purposes it will be better to look at finite complex
local systems on E instead. After a choice of a base point, this corresponds to a
representation of the fundamental group as can be found for example in T Szamuely’s
book [11, Corollary 2.6.2]. Regarding that, we will define a twisted higher torsion
invariant in degree k to be a characteristic class �.EIF/ 2H 2k.BIR/ depending on

Published: 4 October 2017 DOI: 10.2140/agt.2017.17.3665

http://msp.org
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a finite local complex system F on E inducing a finite holonomy covering satisfying
six axioms: the first two are versions of the original two axioms for nontwisted torsion
invariants, which will respect the local system; the remaining four axioms will determine
the dependence of the torsion class on the local system.

The goal of this paper is to show an analogous result to Igusa’s on twisted torsion
invariants. For this we will generalize Igusa’s paper [7] step by step:

In Section 2, we will define twisted higher torsion invariants.

In Section 3, we will repeat why the Igusa–Klein torsion � IK satisfies the axioms,
introduce a twisted version of the Miller–Morita–Mumford classes M 2k and show that
these also satisfy the axioms. The MMM classes will be zero in degree 4l C 2. Then
we will state our main theorem:

Theorem 1.1 (main theorem) The space of higher twisted torsion invariants in
degree 4l on bundles with simple fibers and base having a finite fundamental group is
two-dimensional and spanned by the twisted MMM class and the twisted Igusa–Klein
torsion, and one-dimensional in degree 4l C 2 and spanned by the Igusa–Klein torsion.
In other words, for any twisted torsion invariant of even degree � , there exist unique
a; b 2R such that

� D a� IK
C bM;

and for every twisted torsion invariant � of odd degree there exists a unique a 2R such
that

� D a� IK:

The scalars a and b can be calculated as follows: For torsion in degree 4l we
look at the universal line bundle �W ES1 ! CP1. Since the cohomology groups
H 2k.CP1IR/ are one-dimensional, the torsion invariant of the associated S1–bundle
S1.�/ and the associated S2–bundle S2.�/ over CP1 will determine the scalars
a and b. In degree 4l C 2 we only have to calculate a by looking at a fiberwise
quotient S1.�/=.Z=n/ of the n–action on S1. This admits a nontrivial finite complex
local system and therefore has a nontrivial higher twisted torsion.

Before we prove the main theorem, we will extend a higher twisted torsion invariant to
have values on bundles with vertical boundaries and then define a relative torsion for
bundle pairs (see Section 4), which we will use to deconstruct any bundle into easier
pieces and keep control over the torsion.

In Section 5, we will show that the main theorem holds on S1–bundles. Then we will
define the difference torsion to be

�ı WD � � a� IK
� bM;
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and we will see that �ı D 0 for every sphere bundle, disc bundle and odd-dimensional
lens space bundle. In Goodwillie, Igusa and Ohrt [4] we give an explicit base for the
space of h–cobordism bundles of a lens space, and the calculations in Section 6 of this
paper show that the difference torsion will be zero on these basis elements. From this
crucial observation we can deduce that the difference torsion will be a fiber homotopy
invariant, and in Section 7 we will show that this fiber homotopy invariant must be trivial
if it is restricted to bundles with simple fiber and base having finite fundamental group.

Acknowledgements This paper is the product of my work with Kiyoshi Igusa during
my stay at Brandeis University in the academic year 2011/2012, which led up to further
work on the equivariant Hatcher constructions with Thomas Goodwillie and Kiyoshi
Igusa in the academic year 2012/2013. I want to thank Kiyoshi for the great support,
advice, and guidance he offered me. I also want to thank Ulrich Bunke from my
home university in Regensburg, Germany, for the many comments and corrections he
contributed.

2 Axioms and definitions

2.1 Preliminaries

Throughout the whole paper, let F ,! E
p
�!B be a smooth fiber bundle, where E

and B are compact smooth manifolds, p is a smooth submersion, and F is a compact
orientable n–dimensional manifold with or without boundary. In the boundary case,
there is a subbundle @F ! @vE ! B of E. We call @vE the vertical boundary
of E. We assume that B is connected and that the action of �1B on F preserves the
orientation of F . We also assume that �1B is finite, which immediately implies that
the bundle E is unipotent (as required in [7]).

These are all similar assumptions to the ones for considering nontwisted higher torsion
classes. Additionally to those, we assume that E comes equipped with a finite complex
local system F . By “finite” we mean that there exists a finite covering zE!E such that
the pull-back of the local system is trivializable. These local systems are sometimes also
called hermitian local coefficient systems because they induce a well defined hermitian
inner product on each fiber. We will often call F just local coefficient system.

If F ,!E! B is a smooth bundle we have the transfer map

trEB W H
�.EIZ/!H�.BIZ/:

For an exact definition, one can consult [7, Section 2]. The most important property
we will need is that we always have

trBE D .�1/
n trEB ;
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where n is the dimension of the fiber F . In particular, this implies trEB D 0 if dimF

is odd and we only consider it on cohomology with real coefficients.

2.2 Higher twisted torsion invariants

We are ready to give the definition of a twisted higher torsion invariant. Most of the
axioms were proposed by Igusa in [8, Section 4].

Definition 2.1 A higher twisted torsion invariant in degree 2k with k 2N is a rule �k ,
which assigns to any bundle F ,!E! B with closed fiber F and local coefficient
system F on E a cohomology class �k.E;F/ 2 H 2k.BIR/ subject to the axioms
beneath. We will drop the degree out of the notation most of the time and just write � .

Remark 2.2 We consider higher twisted torsion invariants as real cohomology classes
(rather than rational ones) since our main example is Igusa–Klein torsion which can
only be defined with real coefficients.

Axiom 1 (naturality) �k is a characteristic class in degree 2k. That means for a map
f W B 0!B and a bundle F ,!E!B with local coefficient system F on E we have

�k.f
�.E/; f �F/D f ��.E;F/ 2H 2k.B 0IR/;

where f � denotes the pull-back along f .

Remark 2.3 The naturality axiom immediately implies triviality on trivial bundles
�k.B �F;F/D 0, if F D 1 is the constant local system. Furthermore, if B is simply
connected, a local system F on B �F will pull back from a local system FF on F
under the projection B �F ! F . So if we view F as a trivial bundle over a point,
naturality gives that �.B�F;F/D 0 for any local system F if B is simply connected.

If B is a space with finite fundamental group and B �F ! B is a trivial bundle with
local system F , we can look at the pull-back zB �F ! zB of B �F to the universal
covering space � W zB!B . By the previous paragraph we know that the twisted torsion
of zB �F is trivial with respect to any finite local system and since the � is a finite
covering the map ��W H�.BIR/!H�.BIR/ is a monomorphism. By naturality we
see that the torsion of a trivial bundle over a base with finite fundamental group is 0
with respect to any local system.

Let E1 and E2 be bundles over B with local coefficient systems F1 and F2, such
that there is an isomorphism �W @vE1! @vE2 ¤ ∅ and such that we have, for the
restrictions of the local systems,

.F1/j@vE1 Š �
�.F2/j@vE :
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Then we can glue them together to a local coefficient system F WD F1 [� F2 on
E1[� E2.

Axiom 2 (geometric additivity) In the setting from above we have, for any twisted
torsion invariant � ,

�.E1[� E2;F/D 1
2

�
�.DE1;F l1[id Fr1 /C �.DE2;F

l
2[id Fr2 /

�
;

where DEi denotes the fiberwise double Eli [idE
r
i with a left copy Eli and a right

copy Eri glued together along their isomorphic boundaries and the induced local
coefficient system F li [id Fri .

Now suppose again that pW E!B is a bundle with closed fiber F and local coefficient
system F on E. Let qW D!E be an Sn–bundle which is isomorphic to the sphere
bundle of a vector bundle. We get the local coefficient system q�F on D by pulling
back F along q.

Axiom 3 (geometric transfer) In the situation above, for a twisted torsion invariant � ,
we have the following relation between the torsion class �B.D; q�F/ 2H 2k.BIR/
of D as a bundle over B and the torsion class �E .D; q�F/ 2H 2k.EIR/ of D as a
bundle over E :

�B.D; q
�F/D �.Sn/�B.E;F/C trEB .�E .D; q

�F//;

where � denotes the Euler class, trEB W H
2k.EIR/! H 2k.BIR/ the transfer, and

�E .D; q
�F/ the twisted torsion class of D over E.

Remark 2.4 We have �.Sn/D 2 or 0 depending on whether n is even or odd.

Remark 2.5 If we take a twisted torsion class �2k with k D 2l even, we will get a
nontwisted torsion class in the sense of Igusa [7],

�nontw.E/ WD �.E; 1/ 2H 4k.BIR/;

where E! B is a bundle and 1 the constant local system on E. We will denote this
nontwisted torsion invariant simply by �.E/ without any local system in the argument.

Since according to Igusa’s definition there are no higher torsion invariants in degree
4l C 2D 2k, we also need the following axiom:

Axiom 4 (triviality) For a twisted torsion invariant in degree 4l C 2, we have, for
every bundle E! B and the constant local system 1 on E,

�.E; 1/D 0 2H 4lC2.BIR/:

These axioms so far were only modifications of the axioms for nontwisted torsion
invariants. We also need some axioms concerning the local system F on E:

Algebraic & Geometric Topology, Volume 17 (2017)



3670 Christopher Ohrt

Axiom 5 (additivity for coefficients) If F D
L
i Fi for local systems Fi on E, with

E! B a bundle, then we have, for every twisted torsion invariant � ,

�.E;F/D
X
i

�.E;Fi /:

Axiom 6 (transfer/induction for coefficients) If zE!B and E!B are bundles and
� W zE!E is a finite fiberwise covering, then we have, for every local system F on zE,

�. zE;F/D �.E; ��F/;

where �� denotes the push-down operator for local systems.

Remark 2.6 Igusa [8, Section 4.7] proposed this axiom originally in the following
form, which corresponds to our formulation:

If G is a group that acts freely and fiberwise on E!B , H is a subgroup of G, and V
is a unitary representation of H , then the torsions of the orbit bundles E=G; E=H!B

are related by
�.E=G; IndGH V /D �.E=H; V /:

Lastly we need a continuity axiom. It roughly states that if we fix a bundle E! B

then the values of a twisted torsion invariant on E depend continuously on the different
local systems F we might choose. More explicitly we can look at the universal linear
S1–bundle S1!CP1. If we identify the quotient Q=Z with the roots of unity in C
we get a local system F� on S1=.Z=n/ for every � 2Q=Z of degree n. We can use
this and a fixed torsion invariant � to define a map

f� W Q=Z!H 2k.CP1;R/ŠR

given by f� .�/ WD �.S1=.Z=n/;F� /. Details will provided in Section 5 where we
need to use the following axiom:

Axiom 7 (continuity) The map f� W Q=Z!R is continuous.

3 Statement of main theorem

3.1 Examples of higher twisted torsion invariants

Our main example of higher twisted torsion is the higher Franz–Reidemeister torsion
or Igusa–Klein torsion

� IK
k .E; @0E;F/ 2H

2k.BIR/;
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which is defined for any unipotent bundle pair .F; @0F / ! .E; @0E/ ! B with
@0E � @

vE and local system F on E ; for details, see [5].

Igusa proved the following result:

Theorem 3.1 [7, Theorem 9.4; 5, Theorem 2.4.7 and Theorem 2.7.1] The Igusa–
Klein torsion invariants are higher twisted torsion invariants for bundles with closed
fibers.

Besides this torsion, we also have the Miller–Morita–Mumford classes in degree 4l
with l 2N

M 2l.E/ WD trEB ..2lŠ/ ch4l.T
vE//;

where ch4l.T vE/D 1
2

ch4l.T vE˝C/. We will consider this to be a real characteristic
class. Igusa also showed that this class is a higher nontwisted torsion invariant [7,
Proposition 9.1]. To make it a higher twisted torsion invariant we simply define, for an
m�dimensional local system F on E,

M 2l.E;F/ WDmM 2l.E/ 2H 4l.BIR/:

Furthermore we set
M 2lC1.E;F/ WD 0;

since there is no nontwisted torsion in degree 2k D 2.2l C 1/, and the twisted MMM
torsion always induces nontrivial nontwisted torsion. Knowing that the MMM class is
a nontwisted torsion invariant (and therefore fulfills the first three axioms) it is now
easy to see:

Theorem 3.2 The twisted MMM class is a higher twisted torsion invariant.

We also know that for any bundle F ! E! B with closed l–dimensional fiber F ,
twice the transfer map trEB is rationally trivial, if l is odd. Therefore we get:

Proposition 3.3 M k.E;F/D 0 for closed odd-dimensional fiber F .

3.2 The space of twisted torsion invariants

We are moving on to the space of higher twisted torsion invariants in degree 2k. We
begin with an elementary observation:

Lemma 3.4 For each k, the set of all twisted torsion invariants of degree 2k is a
vector space over R.

Of course, the same statement holds for the set of nontwisted higher torsion invariants.
Igusa proved for the space of nontwisted higher torsion invariants:
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Theorem 3.5 [7, Theorem 4.4] For any l the space of higher nontwisted torsion
invariants in degree 4l is two-dimensional and spanned by the nontwisted MMM
class M 4l and the nontwisted Igusa–Klein torsion � IK

2l
. In other words, for any

nontwisted torsion invariant � there exist unique a; b 2R such that

� D a� IK
C bM:

Now, let Topfin be the full subcategory of Top of topological spaces with finite funda-
mental group and Topsim the full subcategory of simple topological spaces. A space F
is called simple if the fundamental group �1F acts trivially on the higher homotopy
groups ��F . If we restrict a twisted torsion invariant to bundles with fibers in Topsim
and base in Topfin we get the main theorem:

Theorem 3.6 (main theorem) In the setting above, the space of higher twisted torsion
invariants in degree 2k on bundles with simple fibers and base having finite fundamental
group is two-dimensional and spanned by the twisted MMM class and the twisted Igusa–
Klein torsion, if k is even, and one-dimensional and spanned by the Igusa–Klein torsion,
if k is odd. In other words, for any twisted torsion invariant � of degree 4l , there exist
unique a; b 2R such that

� D a� IK
C bM;

and for every twisted torsion invariant � of odd degree 4l C 2 there exists a unique
a 2R such that

� D a� IK:

Remark 3.7 If k is even, we get a nontwisted torsion invariant from the twisted one
by always inserting the trivial representation. Then the numbers a and b used in both
theorems above will be the same.

The proof of the main theorem is developed in Sections 4 to 7. In the very technical
Section 4 we will introduce relative torsion of bundles with vertical boundary and we
will turn the geometric additivity axiom into two eye-pleasing formulas that will allow
us to dissect the fiber F into easier pieces meeting along a common vertical boundary.
Section 5 is devoted to investigating the higher twisted torsion of linear S1–bundles.
Concretely, we show that the continuity, geometric additivity, and geometric transfer
axioms together imply that the space of twisted torsion invariants restricted to only the
universal bundle S1! S1!CP1 is one-dimensional. This together with the results
in the untwisted case implies that the difference torsion �ı WD � �a� IK�bM is trivial
on all linear disc and sphere bundles. The goal of Section 6 is to use this to show that
�ı is a fiber homotopy invariant which will follow from �ı being trivial on any lens
space bundle. The proof of this last assertion relies on the twisted Hatcher example we
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defined in [4]. Armed with the fiber homotopy invariance we then proceed in Section 7
to use homotopical tools to replace any fiber bundle E! B with another one that has
homologically trivial fibers and the same difference torsion as E and prove triviality
on those.

3.3 The scalars a and b

Before we get to the proof of the main theorem let us assume for now that it is true.
This section aims to explain how given a torsion invariant one can calculate the scalars
of the equation � D a� IKC bM . We need to distinguish between � having degree
2k D 4l or 2k D 4l C 2.

3.3.1 In degree 2k D 4l First we first look at a twisted torsion invariant in degree
2kD 4l . In this case the scalars must be the same as the ones we get for the correspond-
ing nontwisted torsion. To determine them we follow Igusa’s approach [7, Section 4.2]
and look at the universal S1 Š U.1/ Š SO.2/–bundle � over CP1 Š BU.1/. Fur-
thermore, let S1.�/ be the associated circle bundle with � and S2.�/ the S2–bundle
associated with S1.�/ (by fiberwise suspension of S1.�/). Since the cohomology
ring of CP1 is a polynomial algebra generated by c1.�/, the cohomology group
H 2k.CP1IR/ŠR is generated by ch2k.�/D ck1 =kŠ.

From this, we immediately get scalars s1; s2 2R for any twisted torsion invariant in
degree 2k D 4l with

�.S1.�//D s1 ch2k.�/ and �.S2.�//D s2 ch2k.�/:

Furthermore we have the following two propositions:

Proposition 3.8 [5, Chapter 2.7] We get

� IK
2l .S

n.�//D .�1/lCn�.2l C 1/ ch4l.�/:

Proposition 3.9 [7, Proposition 9.2] Mk.S
2.�//D 2kŠ ch2k.�/Š.

Now we are taking into account that the MMM class is trivial on odd-dimensional
fibers, and therefore we get that �.S1.�//D a� IK.S1.�//. From this we get

aD s1=..�1/
1Cl�.2l C 1//:

Looking at the S2.�/ case, we have

s2 D a.�1/
l�.2l C 1/C b2kŠD�s1C b2kŠ

and therefore
b D

s1C s2

2kŠ
:
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3.3.2 In degree 2k D 4l C 2 Now let the degree be 2k D 4l C 2. In this case �
does not define a nontrivial nontwisted torsion invariant. On the other hand we also
just need to determine a since the MMM class vanishes in this degree.

Furthermore, we cannot use the standard universal bundle for linear S1–bundles
ES1! BS1, since ES1 is contractible and therefore will not admit a nonconstant
local system. But we can replace it by a very similar construction. First, recall that
ES1 can be constructed as follows: Take S1 �C and S2N�1 �CN . Then we have
a fibration S1 ,! S2N�1 ! CPN�1. Taking the direct limit of this will yield an
S1–bundle with total space S1, which is contractible and therefore the universal
S1–principal bundle S1 ,! S1!CP1.

We can look at a Z=n–action on S1 given by multiplication with the primitive nth

root of unity e2�i=n. This will give rise to a fiberwise Z=n–action on the bundle
S1 ,! S2N�1 ! CPN�1. The action of Z=n on S2N�1 is by construction the
same as the one being taken to get a lens space L2N�1n as quotient out of S2N�1.
Therefore taking the fiberwise quotient under the given Z=n–action gives a bundle
(since S1=nŠ S1 )

S1 ,! L2N�1n !CPN�1;

which yields in the limit to

S1 ,! L1n !CP1:

We will refer to this bundle as S1.�/=n, since it has the S1–bundle associated with the
universal line bundle as its n–fold covering. The n–fold Galois covering S2N�1!
L2N�1n gives a bundle S2N�1 �C! L2N�1n where a fixed generator of Z=n acts
on C by multiplication with an nth root of unity �n. Using this we can make the
following important definition.

Definition 3.10 In the setting above, the nonconstant local system F�n on L2N�1n is
defined to be the nonconstant local system of the sections of the bundle S2N�1�C!
L2N�1n . The nonconstant local system F�n on L1n is defined as the direct limit of
these local systems on L2N�1n .

Again, we can use the fact that the cohomology of CP1 is a group ring and that
H 2k.CP1IR/ will be spanned by ch2k.�/ and therefore

�.S1.�/=n;F�n/D s1 ch2k.�/:

Furthermore we have again the following result from Igusa [6]:
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Proposition 3.11 For the Igusa–Klein torsion we have

� IK.S1.�/=n;F�n/D�n
kLkC1.�n/ ch2k.�/;

where LkC1 denotes the polylogarithm

LkC1.�/ WD Re
�
1

ik

1X
lD1

�ln

nkC1

�
:

Putting this together we get

aD�s1=.n
kLkC1.�//:

We will prove later that a is independent of the choice of the local system.

4 Extension of higher twisted torsion

Now we present some easy consequences of the geometric additivity and transfer
axioms. More precisely, we introduce twisted torsion and calculations thereof for
bundles with vertical boundary and bundle pairs. This is completely parallel to the
corresponding Section 5 in [7] and all the proofs can be translated word-by-word and
will be skipped. While the material is very technical the formulas to keep in mind are
Lemma 4.2 and Example 4.7.

First we define the higher twisted torsion on bundles with vertical boundary:

Definition 4.1 (higher twisted torsion for bundles with vertical boundary) Suppose
F ,! E ! B is a bundle with vertical boundary @vE ! B and local coefficient
system F on E and � is a higher twisted torsion invariant. Then the twisted torsion of
the bundle with boundary is defined by

�.E;F/ WD 1
2

�
�.DE;F l [id Fr/C �.@vE;Fj@vE /

�
;

where DE WDEl [idE
r denotes the fiberwise double as before.

Building onto two lemmas one can prove the following formula (compare to [7],
Proposition 5.4):

Lemma 4.2 (additivity in the boundary case) Suppose E is a bundle over B and
.E1; @0/ and .E2; @0/ are bundle pairs such that E1; E2�E, @0E1D@0E2DE1\E2
and E D E1 [E2. Let F be a local system on E and F1 WD FjE1 and F2 WD FjE2 .
Then

�.E1[E2;F/D �.E1;F1/C �.E2;F2/� �.E1\E2;FjE1\E2/:

Furthermore, we get the transfer formula (compare [7], Proposition 5.5):

Algebraic & Geometric Topology, Volume 17 (2017)



3676 Christopher Ohrt

Lemma 4.3 (transfer in the boundary case) Let X !D
q
�!E be an oriented disc

or sphere bundle over a bundle F !E!B with local coefficient system F on E. As
for the transfer axiom this pulls up to a local coefficient system q�F on D and we get

�B.D; q
�F/D �.X/�.E;F/C trEB .�E .D/; q

�F/:

Now we turn to bundle pairs.

Definition 4.4 A pair of bundles .F; @0/! .E; @0/! B is called a bundle pair if
the vertical boundary @vE is the union @vE D @0E [ @1E of two subbundles which
meet along their common boundary @0E \ @1E D @v@0E D @v@1E.

@0Fx Š I

@1Fx Š I

���
���
��
�
@@iFx Š f0; 1g

Figure 1: The fiber over x of a bundle pair with fiber F ŠD2

Definition 4.5 (relative torsion) For a bundle pair .F; @0/! .E; @0/!B with local
coefficient system F on E we define the relative torsion to be

�.E; @0;F/ WD �.E;F/� �.@0E;Fj@0E /:

We get the following proposition (compare [7], Proposition 5.7):

Proposition 4.6 (relative additivity) Suppose E ! B is a smooth bundle with
local coefficient system F , which can be written as the union of two subbundles
E D E1 [E2, which meet along a subbundle of their respective vertical boundaries
E1 \E2 D @0E2 � @

vE1. Let @vE1 D @0E1 [ @1E1 be a decomposition of @vE1,
so that @0E2 � @1E1 and .Ei ; @0/! B for i D 1; 2 are smooth bundle pairs. Then
.E; @0E/! B is a smooth bundle pair and

�.E1[E2; @0E1;F/D �.E1; @0;FjE1/C �.E2; @0;FjE2/:

Example 4.7 The example to keep in mind here are h–cobordism bundles. That is
bundle pairs B�M �E!B such that the fibers are h–cobordisms of M with 0–end
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the fiber of the trivial bundle. Often we have two h–cobordism bundles B�M �E!B

and B �M 0 �E 0!B and an inclusion into the 1–end B �M 0 ,!E. This is exactly
the situation in which we want to apply the relative additivity, and we get, with an
appropriate local system F ,

�.E [E 0; B �M;F/D �.E;B �M;F/C �.E 0; B �M 0;F/;

where we regard E [E 0 as the h–cobordism bundle obtained by “gluing E 0” on top
of E.

To state the transfer axiom in the relative case, we need the relative transfer:

tr.E;@0/B W H�.EIR/!H�.BIR/;

which is also introduced in [7, Section 5].

Proposition 4.8 (relative transfer; compare [7, Proposition 5.9]) Let .F; @0/ !
.E; @0/ ! B and .X; @0/ ! .D; @0/

q
�! E be bundle pairs with local system F

on E, so that the second bundle is an oriented linear Sn or Dn bundle with @0X D
Sn�1;Dn�1 or ∅. Then

�B.D; @0D[ q
�1@0E; q

�F/D �.X; @0/�.E; @0;F/C trE;@0B .�E .D; @0; q
�F//:

Remark 4.9 Note that we do not have a result analogous to the product formula [7,
Corollary 5.10]. However, we still have the following corollary.

Corollary 4.10 (stability theorem) If .E; @0/!B is a smooth bundle pair with local
system F on E, then so is .E �Dn; @0E �Dn/ and the relative torsion is the same:

�.E �Dn; @0E �D
n;F � 1/D �.E; @0;F/;

where F � 1 is the local system constant on Dn:

5 Higher twisted torsion of sphere bundles

The goal of this section is to calculate the higher twisted torsion of linear S1–bundles
only using the axioms. Before we can do this we will discuss why we can always restrict
our calculations to finite cyclic local systems on bundles with simply connected base.

5.1 Reduction of the representation

In the following we will simplify the local systems:
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Proposition 5.1 To prove the main theorem, Theorem 3.6, it is enough to only consider
bundles with simply connected base instead of base having finite fundamental group.
We can also restrict to only considering local systems (on the fiber) that induce n–fold
holonomy covers with transition group Z=n instead of just finite local systems.

Remark 5.2 Let F ,! E! B be a fiber bundle and F a finite local system on E.
This corresponds to its holonomy cover zE ! E with finite transition group G and
representation �W G ! U.m/. On the other hand every finite covering zE G

�! E

with representation �W G! U.m/ gives us a local system F� as the sections of the
bundle zE �G Cm!E where G acts on Cm via �. This construction is a one-to-one
correspondence. Now let H � G be a subgroup. From the covering zE G

�!E we
get coverings �H W zE=H ! E and zE H

�! zE=H . Suppose we have a representation
�H W H ! U.m/ and thereby get a local system F�H on zE=H . Then we can either
form the induced representation IndGH .�H /W G! U.m/ and its corresponding local
system FIndGH .�H /

on E or the local system ��F�H on E given by the push-down of
the local system F�. It follows from an easy calculation that

FIndGH .�H /
D ��F�H :

Proof of the proposition Let F be again a local system on E corresponding to a
finite covering zE G

�!E with representation �W G ! U.m/. Let H D fHig be the
finite set of cyclic subgroups Hi of G. By Artin’s induction theorem, we can write
the character of � rationally as linear combination of characters of one-dimensional
representations. Since we are working over C, we therefore can write � rationally as a
linear combination of one-dimensional representations �i W Hi ! U.1/ and inductions
thereof. Concretely we have

n�Š
M
i

ni IndGHi .�i / with n; ni 2 Z:

Let � be a twisted torsion invariant and �i W zE=H !E be a covering. Then we have,
using the transfer of coefficient axiom and the calculation above,

n�.E;F/D
X
i

ni�.E;FIndGHi .�i /
/D

X
i

ni�.E; ��F�i /

D

X
i

ni�. zE=Hi ;F�i / 2H
2k.BIR/:

Therefore it suffices for the rest of the paper to work with local systems with n–fold
holonomy covers with cyclic transition group Z=n.

Now let F !E!B be a bundle with local system F on E and the base B having a
finite fundamental group. We have the universal covering qW zB! B and pulling back
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E along q gives a bundle zE WD q�E! zB with local system zF WD q�F . Naturality
implies

�. zE; zF/D q��.E;F/ 2H 2k. zBIR/:

Furthermore we know that q�W H 2k.BIR/!H 2k. zBIR/ is injective. By this construc-
tion it suffices to prove the main theorem only on bundles with simply connected base.

5.2 Twisted torsion for S 1–bundles

We want to show the following theorem:

Theorem 5.3 For every S1–bundle S1 ,! E ! B with B simply connected and
local system F on E with Z=n–fold holonomy cover zEn!E every twisted torsion
invariant � is given by

�.E;F/D a� IK.E;F/;

where a is the scalar defined earlier.

We will follow an approach Igusa introduced in [8, Section 4]. Since BDiff.S1/ '
BSO.2/ it suffices to look at linear S1–bundles. These pull back from the universal
S1–bundle S1.�/ given by S1 ,! S1!CP1.

Let E! B be an S1–bundle with local system F on E inducing a finite holonomy
covering. At first we look at the following n–fold holonomy Galois covering:

S1

��

n
// S1

��

zEn

��

n
// E

��

B B

Now zEn is again a linear S1–bundle with fiberwise Z=n–action. This will pull back
equivariantly from the universal S1–bundle S1.�/ given by S1!CP1, which also
admits an Z=n–action. Therefore E will pull back from the quotient S1.�/=.Z=n/.
Also the local system F on E will pull back from the local system F�n on S1 for
some nth root of unity �n. We defined this earlier (Definition 3.10) to be given by the
bundle S1.�/�C! S1.�/=n where the action on C is given by multiplication by �n.
So because of naturality it is enough to show:

Theorem 5.4 For all n and �n,

�.S1.�/=n;F�n/D a�
IK.S1.�/=n;F�n/ 2H

2k.CP1IR/:
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First we prove two important lemmas already introduced in [8] (Lemmas 4.11 and 4.12).
These will isolate certain properties of �.S1.�/=n;F� / thought of as a function of �.

Lemma 5.5 Suppose we have a bundle E!B and a free fiberwise nm–action on E,
where n;m 2 N. Then we have, for any twisted torsion invariant and nth root of
unity �n,

�.E=n;F�mn /D
X
�mD1

�.E=.nm/;F��n/;

where the local systems F�n on E=n are given by the construction above.

Proof Denote the projection by � W E=n!E=.nm/. We get

��F�mn D
M
�mD1

F��n :

Now we can use the transfer of coefficients and the additivity axiom to get

�.E=n;F�mn /D �.E=.nm/; ��F�mn /D
X
�mD1

�.E=.nm/;F��n/:

Lemma 5.6 For every linear S1–bundle E ! B and any nth root of unity �n, we
have, for every twisted torsion class in degree 2k,

�.E=.nm/;F�n/Dm
k�.E=n;F�n/:

Proof Again we look at the universal circle bundle S1.�/, and by the naturality axiom
it is enough to show the lemma only on E D S1.�/. We have that S1.�/=m is again
a circle bundle over CP1 and therefore classified by a map

fmW CP1!CP1:

In degree 2 we can see (by looking at circle bundles over spheres S2 ) that this map
is multiplication by m on H 2. Then it follows that f �m is multiplication by mk

on H 2k.CP1IR/. The classifying maps for S1.�/=nm and S1.�/=n are related by

fmn D fn ıfm:

The lemma now follows from naturality.

Now let f W Q=Z!C a function. It is said to satisfy the Kubert identity if

f .x/Dms�1
m�1X
kD0

f

�
xCk

m

�
for fixed s and all integers m and all x 2Q=Z. Identifying Q=Z with the roots of
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unity in C (by x 7! e2�ix ), we can write f .x/D L.e2�ix/ and the Kubert identity
becomes

L.�m/Dms�1
X
�mD1

L.��/:

The following result can be proved by considering Fourier coefficients:

Theorem 5.7 (Milnor 1983 [10, Section 3, Theorem 1]) Let Q=Z have the quotient
topology. The space of continuous functions f W Q=Z ! C satisfying the Kubert
identity is two-dimensional and splits into two one-dimensional spaces, the first of
which contains all the functions with L.�/ D L.x�/ and the second, the ones with
L.�/D�L.x�/.

Remark 5.8 Milnor states this theorem for continuous functions R=Z!C rather than
Q=Z!C, but since Q�R is dense this does not impact the statement. Furthermore
the original theorem is formulated without identifying R=Z with the unit sphere
in C. The two one-dimensional subspaces are then formed by the functions satisfying
f .x/D�f .1� x/ and f .x/D f .1� x/, which correspond exactly to the equations
L.�/D˙L.x�/ on the unit sphere.

Proof of Theorem 5.4 To any higher twisted torsion invariant � we get, for any nth

root of unity, a coefficient s1.�; �/ defined by

�.S1.�/=n;F� /D s1.�; �/ ch2k.�/ 2H
2k.CP1IR/ŠR:

Identifying Q=Z with the roots of unity, we get a function f� W Q=Z!R defined by

f� .�/ WD
1

nk
s1.�; �/;

where �n D 1. This is well defined, since by the previous lemma we have

�.S1.�/=.nm/;F� /Dmk�.S1.�/=n;F� /;

so f� .�/ is by construction independent from the choice of n with �n D 1.

Our goal is to show that this satisfies the Kubert identity and then to use Milnor’s result
to prove our theorem. But for this, f� needs to be continuous, a fact which we cannot
prove, but must assume. Therefore we need the following last axiom:

Axiom 7 (continuity) For any twisted torsion invariant, the function f� W Q=Z!R
constructed above is continuous.

As explained earlier in the paper, this axiom basically states that for a fixed bundle
E! B the twisted torsion depends continuously on the local system F on E.
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Continuation of the proof Now we calculate for � 2 Q=Z with �n D 1 using the
two lemmas from above:

f� .�
m/ ch2k.�/D

1

nk
�.S1.�/=nm;F�m/

D
1

nk

X
�mD1

�.S1.�/=nm;F�� /

Dmk
X
�mD1

f� .��/ ch2k.�/:

So f� satisfies the Kubert identity (with s D kC 1) for any � .

We note that the change of representation from � to x� represents a change of ori-
entation in the fiber. Therefore, it corresponds to a map gW CP1 ! CP1, giving
g�W �1S

1! �1S
1 as multiplication by �1. Using that �1S1.�/=nŠ Z=n, we get

the following commutative diagram relating the exact sequence of the homotopy groups
of the fibration S1 ,! S1.�/=n!CP1 to itself under g� :

�2CP1

g�

��

�n
// Z

�1

��

// // Z=n //

g�

��

0

�2CP1
�n
// Z // // Z=n // 0

From this one can see that g�W �2CP1! �2CP1 is multiplication by �1. Since
CP1 is simply connected, g� is also multiplication by �1 in homology of degree 2.
Since CP1 is an Eilenberg–Mac Lane space, g� must be multiplication by �1 on
degree-2 cohomology and thus multiplication by .�1/k on degree-2k cohomology.

This yields
f� .�/D .�1/

kf� .x�/

for any � with degree 2k. So f� is in one specific one-dimensional subspace of the space
of functions satisfying the Kubert identity for any torsion invariant � of degree 2k, and
therefore we have, for an arbitrary torsion invariant � and the Igusa–Klein torsion � IK,

f� D af� IK

for a certain a 2R. This translates to

�.S1.�/=n;F� /D a� IK.S1.�/=n;F� /

for any root of unity � and proves the theorem.

Remark 5.9 This also shows that the scalar a that we calculated earlier by choosing
an arbitrary local system is well-defined and does not depend on this choice.

Algebraic & Geometric Topology, Volume 17 (2017)



Axioms for higher twisted torsion invariants of smooth bundles 3683

Remark 5.10 It is an unproven conjecture by Milnor [10] that any function satisfying
the Kubert identity is already continuous. If this conjecture was proven we could drop
the continuity axiom.

6 The difference torsion

Given a twisted torsion invariant � , we can now form the twisted difference torsion

�ı WD � � a� IK
� bM;

where the scalars a and b are the ones from Theorem 3.6 (and b is 0 if the torsion
has degree 4l C 2). Clearly, �ı is a twisted torsion invariant.

Our goal in this section and the next is to show �ı.E;F/D 0 for every bundle E!B

with every local coefficient system F on E and base B having finite fundamental
group. In this section we will show that �ı is a fiber homotopy invariant. Here is a
sketch of our approach: Given two fiber bundles E!B and E 0!B 0 with appropriate
local system F and fiber homotopy equivalence gW E!E 0 (which we can without
restriction assume to be an embedding) we can view E 0ng.E/ as a bundle with fibers
h–cobordisms (this is not necessarily an h–cobordism bundle) the torsion of which
is exactly the difference of the torsions of E and E 0. (This is done in the proof of
Theorem 6.12.) To show that the difference torsion of bundles with h–cobordisms as
fibers is trivial in Lemma 6.11 we embed one end of the bundle in a trivial lens space
bundle (we have to use lens spaces instead of discs or spheres to preserve a nontrivial
first homotopy group) making it a bundle fiber homotopy equivalent to a trivial lens
space bundle. Now we use the fiber homotopy from such a bundle to the trivial lens
space bundle to get an h–cobordism bundle of a lens space (done in Lemma 6.10).
Finally, in our paper [4] we essentially classified all h–cobordism bundles of a lens
space and showed that their Igusa–Klein torsion can be calculated only using the axioms.
So their difference torsion is zero.

6.1 Lens spaces

Any cyclic group Z=n acts on the complex numbers C by rotation. For the rest of
the paper, we will pick a generator 1 2 Z=n and have it act by multiplication with
e2�i=n on C. Then we get a componentwise action on the odd-dimensional sphere
S2NC1 �CNC2.

Definition 6.1 The odd-dimensional lens space L2NC1n is defined to be the quotient
S2NC1=.Z=n/ by the action defined above.
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It is well known that the CW–structure on L2NC1n has a cell in every dimension and
its associated chain complex is given by

0! Z 0
�!Z n

�!Z 0
�!� � �

0
�!Z n

�!Z 0
�!Z! 0:

In particular we see that L2NC1n is rationally spherical with fundamental group Z=n.
Recall that we are interested in twisted torsion invariants and thereby require our
manifolds to have nontrivial fundamental group, so the odd-dimensional lens spaces
will play the role of finite-dimensional spheres in some sense.

In Section 7 we will also need spaces with nontrivial fundamental group that are
rationally contractible to provide a twisted analogue of the infinite-dimensional sphere
S1'� or large-dimensional discs DN . The even-dimensional lens spaces are exactly
going to fulfill this condition:

Definition 6.2 The even-dimensional lens space L2Nn � L2NC1n is obtained from
the odd-dimensional one by omitting the top cell in the CW decomposition described
above.

It follows immediately that L2Nn is rationally acyclic with fundamental group Z=n.
We choose a universal covering eL2Nn ! L2Nn . This comes equipped with a .2N�1/–
connected map Qi W eL2Nn ! S2NC1.

Lastly, note that there is a chain of inclusions

� � � � L2N�2n � L2N�1n � L2Nn � L
2NC1
n � � � � :

6.2 Lens space bundles

Following the outline above, we first want to show that the difference torsion is zero
on every linear odd-dimensional lens space bundle L2NC1n ,! E2NC1n ! B with
local coefficient system F on E2NC1n . We already know from the base case that the
difference torsion is zero on every S1–bundle. Furthermore, if we take an S l–bundle
with l > 1 or disc bundle, we know that the fundamental group of the fiber is trivial and
it therefore admits no nonconstant local system. So the twisted difference torsion on
these bundles is always given by the nontwisted difference torsion. But the nontwisted
difference torsion is zero everywhere as Igusa showed in [7]. From this we get the
following lemma:

Lemma 6.3 For the difference torsion �ı associated with any higher twisted torsion
invariant, we have

�ı.E;F/D 0

for any disc or sphere bundle E! B with local system F on E.
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At first we will prove:

Lemma 6.4 The difference torsion is 0 on any linear odd-dimensional lens space
bundle L2NC1n ,! E2NC1n ! B . By linear we mean that it is covered by a linear
sphere bundle S2NC1 ,! zE2NC1! B .

Remark 6.5 The corresponding statement [7, Lemma 7.3] only deals with linear
disc bundles, the proof of which follows swiftly from the product formula for relative
torsion. Unfortunately, there is no twisted product formula, so our proof is slightly
more difficult.

Proof The covering sphere bundle zE2NC1 is a subbundle of an .NC1/–dimensional
complex vector bundle. By the splitting principle, it suffices to look at the direct sum
of NC1 complex line bundles. The sphere bundle will become the fiberwise join of
the circle bundles associated with the line bundles:

S1 � � � � �S1 ,! zE11 � � � � �
zE1NC1! B:

Now we have

L2NC1n Š .S2N�1 �S1/=n

D .S2N�1 �D2/=n[.S2N�1�S1/=n .D
2N
�S1/=n:

Fiberwise, this gives us
E2NC1n DH 2N�1

n [H 1
n ;

where H 2N�1
n !B is an .S2N�1�D2/=n–bundle and H 1

n !B is a .D2N�S1/=n–
bundle, both meeting along their common vertical boundary, which is given by an
.S2N�1�S1/=n–bundle Gn. The Z=n–action is given by the simultaneous action on
each component of the products. While the Z=n–action on any disc is not free, the
simultaneous action will guarantee that it is free on the product. We can restrict every
local coefficient system F on E2NC1n to H 2N�1

n , H 1
n and Gn and use the additivity

axiom.

Now we will continue the proof by induction. We know that the difference torsion
is 0 on every L1nŠS

1–bundle. Let us then assume that the difference torsion is 0 on
any linear L2N�1n –bundle with any representation of the fundamental group. Given a
linear L2NC1n –bundle E2NC1n ! B with local coefficient system F , the construction
above yield, by Lemma 4.2,

�ı.E2NC1n ;F/D �ı.H 2N�1
n ;F

jH2N�1
n

/C �ı.H 1
n ;FjH1

n
/� �ı.Gn;FjGn/:

We have nontrivial fibrations

D2 ,! .S2N�1 �D2/=n! L2N�1n ;
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D2N ,! .D2N �S1/=n ! L1n;

S1 ! .S2N�1 �S1/=n ! L2N�1n :

The first of these splits the bundle H 2N�1
n in the following manner:

D2
� � // .S2N�1 �D2/=n //

� _

��

L2N�1n
mM

||

D2
� � // H 2N�1

n
//

��

Jn

xx
B

where Jn! B is an L2N�1n –bundle and H 2N�1
n ! Jn is a D2–bundle. Since D2

is contractible, we get a local system FJ on Jn the pull-back of which to H 2N�1
n is

isomorphic to F
jH2N�1
n

. Now we can use the geometric transfer and the fact that we
already determined the difference torsion to be 0 on L2N�1n –bundles and D2–bundles
to show

�ı.H 2N�1
n ;F

jH2N�1
n

/D �.D2/�.Jn;FJ /C trJnB .�Jn.H
2N�1
n ;F

jH2N�1
n

//D 0:

A similar argument holds for H 1
n and Gn, and this completes the proof.

6.3 Difference torsion as a fiber homotopy invariant

In this section, we will prove that the difference torsion �ı is a fiber homotopy invariant.
By this we mean that for any two bundles F1 ,! E1! B and F2 ,! E2! B and
fiber homotopy equivalence f W E1! E2 with local coefficient systems F2 on E2
and f �F2 Š F1 on E1, we have

�ı.E1;F1/D �ı.E2;F2/ 2H 2k.BIR/:

This section will greatly rely on the construction of the equivariant Hatcher examples
from [4]. We will especially use some techniques involving h–cobordism bundles, for
a basic depiction of which the reader is also referred to [4, Section 1].

First we show the following lemmas:

Lemma 6.6 For any linear disc bundle D q
�!E and any bundle pair .E; @0/! B

with local coefficient system F we have

�ıB.D; @0; q
�F/D �ıB.E; @0;F/;

where we pull the system up to D and @0D D q�1@0E as usual.
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Proof By geometric transfer (Proposition 4.8) we have

�ıB.D; @0; q
�F/D �ı.E; @0;F/C trEB .�

ı
E .D; q

�F//

and �ıE .D; q
�F/D 0 because D is a disc bundle over E.

Remark 6.7 The same statement still holds in the nonrelative case.

We will now need to prove three subsequent lemmas before we can prove the fiber
homotopy invariance.

Remark 6.8 As before (Proposition 5.1) it is enough to look at local systems that
induce holonomy covers with cyclic transformation group. So we will always assume
that.

Lemma 6.9 Let B be a space with finite fundamental group. Then for sufficiently large
integers N the difference torsion �ı is zero on any h–cobordism bundle of L2N�1n

over B for a given n.

Proof Since we can assume that B is simply connected, all local systems on an
h–cobordism bundle of L2N�1n �DM inducing an n–fold cyclic holonomy are iso-
morphic to the local systems of the form F� , where � is an nth root of unity. We will
now fix such a �.

We will follow Igusa [7, Lemma 7.11] closely in his discussion of the untwisted version
of this crucial proof. By the stability of higher torsion (Corollary 4.10) we can view
the difference torsion as a map

�ı. ;F� /W ŒB; BP.L2N�1n /�D ŒB; B.colimM C.L2N�1n �DM //�!H�.BIR/

sending an h–cobordism bundle h! B to �ı.h;F� /. Here C.M/ is the concordance
space and P.M/ is the stable concordance space; for details see [4, Section 1]. We
can give the set ŒB; BP.L2N�1n /� a group structure by the fiberwise gluing together of
the h–cobordisms as explained in [7]. From the additivity properties of higher twisted
torsion (in particular Example 4.7) it follows that �ı. ;F� / is a group homomorphism.
So it is enough to give rational generators of ŒB; BP.L2N�1n /� and show that the
difference torsion is zero on these generators.

For N large enough (N � dimB ) we have

ŒB; BP.L2N�1n /�D ŒB;H.L2N�1n /�Š ŒB;H.BZ=n/�;

where H denotes the classifying space of h–cobordism bundles. In [4, Section 3.2], we
define the twisted Hatcher maps �i W Gn=U!H.BZ=n/ and the main theorem thereof
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uses those to show that the space Q˝ ŒB;H.BZ=n/� is spanned by various Hatcher
constructions (also defined in [4]) of one nontrivial vector bundle � over B with fiber
a homotopically trivial sphere bundle. The calculations in [4, Section 4.1] only rely
on the axioms and ensure that the difference torsion of these Hatcher constructions is
zero. This is because the nontrivial Igusa–Klein torsion of those bundles arises from
the torsion of sphere bundles and linear lens space bundles.

Lemma 6.10 Let N be an sufficiently large integer and E ! B a bundle with
local system F on E inducing an n–fold cyclic holonomy covering. Then we have
�ı.E;F/D 0 if there is a fiber homotopy equivalence:

E
�
//

��

L2N�1n �B

��

B
D

// B

Proof Denote the fiber homotopy equivalence H W E ! L2N�1n �B . We can take
the product of L2N�1n �B with a large-dimensional disc DM and make H into an
embedding

H W E �,�!DM �L2N�1n �B:

Then we can take a tubular neighborhood of H.E/ � DM � L2N�1n � B to get a
codimension-0 embedding of an M 0–dimensional disc bundle D.E/ over E

GW D.E/ �,�!DM �L2N�1n �B:

Then .DM �L2N�1n �B/nG.Dı.E// is an h–cobordism bundle of L2N�1n �SM�1

over B and by Lemma 4.2 its difference torsion is given by

�ı..DM �L2N�1n �B/nG.Dı.E//;F/C �ı.D.E/;F/� �ı.S.E/;F/

D �ı.DM �L2N�1n �B;F/

D 0;

since the last bundle is trivial. S.E/ denotes the sphere bundle given as the vertical
boundary of D.E/. We can use the transfer axiom to show that

�ı.D.E/;F/D �ı.E;F/;

and, given that M 0 is even,

�ı.S.E/;F/D �.SM
0�1/�ıB.E;F/C trEB �

ı
E .S.E/;F/D 0;

because the difference torsion is zero on any disc and sphere bundles. Therefore
it suffices to show that the difference torsion is zero on any h–cobordism bundle

Algebraic & Geometric Topology, Volume 17 (2017)



Axioms for higher twisted torsion invariants of smooth bundles 3689

of L2N�1n �SM�1 over B for arbitrarily large N . Such a bundle can easily be reduced
to an h–cobordism bundle of L2N�1n without changing its torsion: Let H ! B be
an h–cobordism bundle of L2N�1n � SM�1. We can embed SM�1 � I as a tubular
neighborhood of SM�1 into DM and thereby get

H � L2N�1n �SM�1 �B ,! L2N�1n �DM � 1�B � L2N�1n �DM � I �B;

and we can define the h–cobordism bundle of L2N�1n �DM (and thereby of L2N�1n

by stability)

H 0 WDH [L2N�1n �SM�1�B L
2N�1
n �DM � I �B:

Intuitively, we get H 0 by gluing the h–cobordism bundle H of L2N�1n �SM�1 on top
of a trivial h–cobordism bundle of L2N�1n �DM along the inclusion SM�1 ,!DM .

We calculate, using the relative additivity properties of higher torsion (Example 4.7), for
any local system F in L2N�1n extended naturally to H , H 0 and L2N�1n �DM �I �B ,

�ı.H 0;F/D �ı.H 0; Ln �DM � 0�B;F/

D �ı.H;L2N�1n �SM�1 �B;F/
C �ı.L2N�1n �Dm � I �B;L2N�1n �Dm � 0�B;F/

D �ı.H;F/:

With this construction on h–cobordism bundles the proof now follows from the previous
lemma.

Lemma 6.11 The difference torsion �ı is 0 on any bundle pair .E; @0/! B the
fibers .F; @0/ of which are h-cobordisms and have a local system F inducing a cyclic
n–fold holonomy covering.

Proof This proof can be translated directly from the proof of Lemma 8.3 in [7] by
replacing the high-dimensional discs DN with high-dimensional lens spaces L2Nn .

Theorem 6.12 The difference torsion �ı is a fiber homotopy invariant of smooth
bundle pairs with local systems.

Proof Same as for Theorem 8.4 in [7].

Remark 6.13 Since �ı is a fiber homotopy equivalence, it is well defined on any
fibration .Z; C /!B with fiber .X;A/ and local system F on X which is smoothable
in the sense that it is fiber homotopy equivalent to a smooth bundle pair .E; @0/ with
compact manifold fiber .F; @0/.
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7 Triviality of the difference torsion

Using the fiber homotopy invariance of the difference torsion we will first show that
we can replace any bundle E! B with another one with the same torsion and real
acyclic fiber. Then we will show that the difference torsion (or more general any torsion
invariant that is fiber homotopy invariant) must be zero on any bundle with acyclic fibers.

7.1 Lens space suspensions

As outlined above, our first goal is to eliminate the real homology groups of the
fiber F of a bundle E ! B . We will use the fact that the stable homotopy groups
of F are rationally equivalent to the rational homology groups. This means that
sufficiently large k and for an element ˛ 2 HmCk.†kF IR/ Š Hm.F IR/ there is
a map SmCk ! †kF representing ˛ as an element of �mCk.†kF /˝R. We then
can glue in an .mCkC1/–cell along this map to effectively kill off the element ˛
and continue inductively. Unfortunately, this naive construction has a big problem for
us: even just one suspension destroys the first homotopy group of F leaving us with
only the trivial local system which is not very interesting (or helpful). So we need an
alternative suspension construction that shifts up the rational homology groups, exhibits
the isomorphism to stable homotopy groups after sufficiently many suspensions and
preserves the first homotopy group. We achieve all of this by suspending via a push-out
along two high-dimensional (even) lens spaces rather than discs.

Let us recall that the usual suspension †F is defined by the (homotopy) push-out:

F //

��

DN

��

DN // †F

Since DN is contractible, we know that �1†F D 0, and therefore this construction
cannot give us a nonconstant local system on †F . Now we make the following
definition:

Definition 7.1 (lens space suspension) Let F be a topological space with local
system F on F inducing an n–fold holonomy cover zF ! F with finite cyclic
transition group. The cover gives us a mapping F !L2Nn for a large N 2N (because
L1n ŠK.Z=n; 1/). Using this map, we can define the lens space suspension †nF as
the homotopy push-out:

F //

��

L2Nn

��

L2Nn
// †n.N /F
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Remark 7.2 We will drop N from the notation and consider it to be very large.

We have the earlier introduced local systems F� on L2Nn for an nth root of unity �. By
choosing the map i W F ! L2Nn properly, we can assume F D i�Fe2�i=n . So we get
a local system †F D Fe2�i=n [F Fe2�i=n on †nF . From this we get the holonomy
covering A†nF n

�!†nF ; but we also have the holonomy covering zF n
�!F . These

two covering spaces are related by the following lemma:

Lemma 7.3 In the setting above, we have

�iA†nF Š �i† zF
in low degrees i (smaller than 2N ).

Proof Let †.N/ zF be the suspension of zF along S2N (instead of S1 ). This forms
an n–fold covering †.N/ zF !†n.N /F , which must be homotopy equivalent to the
universal covering of C†n.N /F !†n.N /F .

For the usual suspension, it is well known that HkC1.†F IR/ŠHk.F IR/ for all k�1.
For the lens space suspension this becomes:

Lemma 7.4 For every topological space F with local system inducing an n–fold
holonomy covering, we have, for k � 1,

HkC1.†nF IR/ŠHk.F IR/:

Proof Using the Mayer–Vietoris sequence for the defining push-out of the lens space
suspension, we get:

� � � !HkC1.L
2N
n IR/˚HkC1.L

2N
n IR/!HkC1.†nF IR/

!Hk.F IR/!Hk.L
2N
n IR/˚Hk.L

2N
n IR/! � � �

The fact that L2Nn is rationally homologically trivial now yields the desired isomor-
phism.

Furthermore, we know for the usual suspension that �Sm.F /˝RŠHm.F IR/, where
�Sm.F / WD�m.colimk �k†kF / denotes the stabilized homotopy group. This becomes:

Lemma 7.5 If k 2N is large enough, and F is a space with local system inducing an
n–fold holonomy covering, we have an isomorphism

�mCk.†
k
nF /˝RŠHmCk.†

k zF IR/

for mC k < N .
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Proof We get the n–fold holonomy covering zF ! F . Using Lemma 7.3 several
times, we get in low degrees i

�i
A
†knF Š �i†.

B
†k�1n F /Š � � � Š �i†

k zF :

Thus we have, for N >mC k > 1,

�mCk.†
k
nF /˝RŠ �mCk.†

k zF /˝R

Š �Sm.
zF /˝R for k large

ŠHm. zF IR/

ŠHmCk.†
k zF IR/:

Remark 7.6 Although we require k to be large in the last lemma, it does not depend
on N at all, meaning that we can still choose N to be much larger than k.

We will need the following definition and proposition:

Definition 7.7 A topological space F is called simple if �1F is abelian and acts
trivially on every �iF for i � 2.

Proposition 7.8 Let F be a path connected, simple space and zF n
�! F an n–fold

Galois covering. Then the transition group Z=n will act trivially on H�. zF IR/

Proof Let fF lg be the Postnikov tower for F ; that is a sequence of spaces with
liml F l Š F and �iF l Š �iF for 0 � i � l and �iF l Š 0 for i > l . Since we
have �1F l Š �1F for every l > 0, we have n–fold coverings zF l n

�!F l . We will
prove by induction that Z=n acts trivially on H�. zF l IR/. The sequence f zF lg will
clearly provide a Postnikov tower for zF , and since the real homology of the stages of
a Postnikov tower stabilizes in every degree, this will prove the proposition.

To start the induction we look at F 1 ' K.�1F; 1/, which will only have the first
homotopy group �1F 1 Š �1F . The covering zF n

�!F gives a map ˛W �1F ! Z=n.
Using this, we see that the covering zF 1 n

�!F 1 will be an Eilenberg–Mac Lane space:

zF 1 'K.ker˛; 1/:

The group Z=n acts trivially on ker˛ � �1F because �1F is abelian, and therefore
Z=n acts trivially on zF 1 'K.ker˛; 1/ and H�. zF 1IR/. This starts the induction.

Now assume that Z=n acts trivially on H�. zF l�1IR/ with l > 1. We have the fibration

K.�l zF ; l/! zF
l
! zF l�1:

Since we know �lF Š �l zF , the group Z=n will act trivially on �l zF and thereby also
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trivially on K.�l zF ; l/ and H�.K.�l zF ; l/IR/. By induction assumption it must also
act trivially on

Hi . zF
l�1
IHk.K.�l. zF /; l/IR//;

and thereby it acts trivially on the whole Leray–Serre spectral sequence for the fi-
bration K.�l zF ; l/! zF l ! zF l�1. From this it follows that Z=n acts unipotently
on H�. zFl IR/, and since RŒZ=n� is semisimple, this includes that Z=n acts trivially
on H�. zF IR/.

From this we get the following important corollary.

Corollary 7.9 If F is a simple topological space with local system inducing an n–fold
holonomy covering zF n

�!F , then we have

Hl.†.N /
k zF IR/ŠHl.†

k
nF IR/

for all l <2N . (Recall that †.N/ zF is the suspension of zF along S2N instead of S1.)

Proof Since F is simple, the group Z=n will act trivially on H�. zF IR/. It is well
known that this implies

H�.F IR/ŠH�. zF IR/:

The inclusion S2N!S1 gives a map †.N/ zF!† zF that is evidently 2N–connected.
By using Lemma 7.4 we see

H�.†.N /
k zF IR/ŠH��k. zF IR/ŠH��k.F IR/ŠH�.†

k
nF IR/

up to degree 2N .

Now we are turning back to bundles. For a fiber bundle F ,! E ! B with local
system F on F inducing a finite cyclic n–fold holonomy covering, we get a fiberwise
map E! B �L2Nn and can use this to define the fiberwise lens space suspension as
the (homotopy) push-out:

E //

��

B �L2Nn

��

B �L2Nn
// †n;BE

It is easy to see that †n;BE!B is a bundle with fiber †nF and as before we get a local
system †F on †n;BE. We have the following lemma analogous to [7, Lemma 8.7]:

Lemma 7.10 The bundle †n;BE is smoothable (ie fiber homotopy equivalent to a
smooth bundle) if E is smoothable, and we have

�ı.E;F/D��ı.†n;BE;†F/:
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7.2 Reducing the homology of the fiber

We now attempt to make the fiber of a bundle F ,!E!B with a local system on F ,
simply connected base B , and simple fiber F rationally homologically trivial without
changing the difference torsion. This is the general strategy: Assume that m is the
largest integer such that Hm.F IR/ is nontrivial. Picking an element ˛ 2Hl.F IR/,
Lemma 7.12 asserts that we can find a representative of ˛

B �LmCkn !†kn;BE;

and then Lemma 7.11 uses this to create a new fiber bundle E1! B with the same
difference torsion as E and the fiber F1 having overall one dimension lower homology
than F . Then Lemma 7.13 puts everything together inductively. The basic ideas
reflect what has been done by Igusa in [7], yet the fact that we need to preserve the
representation of a fundamental group poses some challenges. In the following, let N
always be a sufficiently large integer.

Lemma 7.11 Suppose F ,!E!B is a fibration with local system F on F inducing
a finite cyclic n–fold holonomy covering. Let m2N denote the largest integer for which
Hm.F IR/¤ 0. Suppose that we have Hl.F IR/ŠHl. zF IR/ for 0 < l <mCdimB .
Suppose further that m is odd and let ˛ be a map

˛W B �Lmn !E

with the following properties: on each fiber we have ˛�F Š F� for some nth root of
unity � and ˛�W Hm.L

m
n IR/!Hm.F IR/ is nontrivial. Then if we look at the bundle

E1 DE [B�Lmn B �L
2N
n

with fiber F1 with local system F1 WDF[F�F� and corresponding covering zF1 n
�!F1,

we have
dimRH�.F1IR/ < dimRH�.F IR/

and
Hl.F1IR/ŠHl. zF1IR/ for 0 < l < mC dimB:

Proof Assume that we have a map ˛W B �Lmn !E such that the induced map

˛�W Hm.L
m
n IR/!Hm.F IR/

is nontrivial. Note this implies that the integer m is odd. Then the homology of the fiber
F1 D F [Lmn L

2N
n will be given by the Mayer–Vietoris sequence as (where i < 2N )

Hi .L
m
N IR/

˛��!Hi .F IR/˚ 0!Hi .F1IR/! 0

and therefore we have dimRH�.F1IR/ < dimRH�.F IR/. This also shows that
Hi .F1IR/ŠHi .F IR/ for i ¤m.
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To show that this F1 will satisfy the second property, we can use a similar sequence
and show Hi . zF1IR/ŠHi . zF IR/.

Lemma 7.12 Suppose F ,!E!B is a fibration with simply connected base B and
local system F on F inducing a finite cyclic n–fold holonomy covering. As before
let m 2 N denote the largest integer for which Hm.F IR/¤ 0 and suppose that we
have Hl.F IR/ŠHl. zF IR/ for 0< l <mCdimB . Then there exists an integer k 2N
and a map

˛W B �LmCkn !†kn;BE

such that ˛�†kF Š F� for some nth root of unity � and ˛�W HmCk.L
mCk
n IR/!

HmCk.†
k
nF IR/ is nontrivial.

Proof Note that in the following, m and n are fixed, already determined integers,
whereas k is an sufficiently large integer bounded by the sufficiently large integer N .
Furthermore mCk must be odd, such that LmCkn has a nonvanishing rational homology
group in degree mC k, but we can choose k in such a way that this is satisfied.

Such a map ˛ will correspond to a section s of the bundle

Map.LmCkn ; †knF / ,!MapB.B �L
mCk
n ; †kn;BE/! B;

which is a homologically nontrivial map in each fiber. In this context the notation
MapB.B �L

mCk
n ; †En;b/ will always mean the space of fiberwise maps between

B �LmCkn and †kn;BE. We will construct this section using obstruction theory. Let Bl
denote the l–skeleton of B . Firstly, we will give s1W B1!MapB.B �L

mCk
n ; †kn;BE/.

By the choice of m we have a nonzero element

z 2HmCk.†.N /
k zF IR/ŠHmCk.†

k
nF IR/ŠHm.F IR/:

Since the reduced homology is isomorphic to rationalized stabilized homotopy, we can
view z as an element of �mCk.†.N /k zF /˝R, if k is large enough. Now choose a
representative z̨1W SmCk!†.N/k zF of z . The map z̨1 will clearly be nontrivial on
homology.

Our goal is now to modify z̨1 to z̨W SmCk ! †.N/k zF such that it covers an
˛W LmCkn ! †knF . Since HmCk.†.N /k zF IR/ Š HmCk.†knF IR/, the map ˛ will
be nontrivial on homology. Furthermore the covering will ensure ˛�F Š F� for some
nth root of unity �. To begin, we have from the last lens space suspension an inclusion

i W LmCkn ,!†knF

trivial on homology. This will be covered by a homologically trivial equivariant
inclusion

Qi W SmCk ,!
A
†knF :
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Qi

SmCk

Q
Q
Q

DmCk

�
�
��

pDmCk

e†knF
��
�

   
 

z̨1.S
mCk/

p z̨1.S
mCk/

Figure 2: Modifying the inclusion Qi W SmCk ,! e†knF

The idea now is to take a small disc DmCk in SmCk �A†knF and connect it to the
image z̨1.SmCk/. Then we can map SmCk to this new image instead and this map
will be nontrivial on homology because z̨1 is nontrivial on homology. To make it
equivariant we do the same construction equivariantly to every disc piDmCk in the
orbit of DmCk under the Z=n action on SmCk . Here p 2 Z=n denotes a generator.
This is illustrated in Figure 2.

The formal construction is the following: Choose a small disc DmCk � SmCk . By
doing this in a slightly bigger disc, we can modify the inclusion such that it factorizes

DmCk!� ,!
A
†knF :

Using DmCk=@DmCk ' SmCk , we can glue in z̨1 and modify the inclusion again so
that it factorizes

DmCk
z̨1
�!

A
†knF :

Now let p 2Z=n be a generator. If we make DmCk small enough, it will not intersect
with any of the piDmCk � SmCk for 0 < i < n. Doing the same construction to
every piDmCk using pi z̨1, we can modify the inclusion to a map

z̨W SmCk!
A
†knF ;

which will clearly be n–equivariant and thus cover a map

˛W LmCkn !†nF:

The corresponding rationalized homotopy class of z̨ in �mCk.†knF /˝R is given by

Œz̨�D Œz̨1�CpŒz̨1�C � � �Cp
n�1Œz̨1�D nŒz̨1�¤ 0;
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since �1F acts trivially on

�mCk
A
†knF ˝RŠ �mCk.†.N /

k zF /˝RŠHmCk.†.N /
k zF IR/

ŠHm. zF IR/ŠHm.F IR/

(otherwise the map Hm.F IR/ ,! Hm. zF IR/ would not be an isomorphism and
thereby Hm.F IR/ would not be isomorphic to Hm. zF IR/ either). So ˛ will be
nontrivial in rational homology.

With this we can define s0W B0 ' �!MapB.B �L
mCk
n ; †kn;BE/ nontrivial in the

homology of the fiber. Since B is simply connected, this section, defined over a point
of B , can be extended to a section s1W B1!MapB.B �L

mCk
n ; †kn;BE/.

Let us now continue inductively. Suppose we already have a section sl W Bl !

MapB.B �L
mCk
n ; †kn;BE/ with 1� l < dimB . By restriction, we will get sections

sl;i W Bl !MapB.B �L
i
n; †

k
n;BE/:

Let us first extend sl;1 to slC1;1W BlC1!MapB.B �L
1
n; †

k
nE/: This depends on the

obstruction class

�.sl ; 1/ 2H
lC1.B;Bl I�l.Map.L1n; †

k
nF ///ŠH

lC1.B;Bl I�lC1.†
k
nF //;

because L1n ' S
1. So �.sl;1/ is rationally trivial, if k is large enough (larger than

l C 1). This is enough to extend sl;1 as Igusa showed in the nontwisted version [7,
Lemma 8.9] of this lemma.

We now want to extend slC1;1 to slC1;2 relative to sl;2. For this we look at the
cofibration sequence

L1n ,! L2n! S2;

which gives us the fibration sequence

�2.†knF / ,!MapB.B �L
2
n; †

k
n;BE/!MapB.B �L

1
n; †

k
n;BE/:

From this we get the commutative diagram

�2.†knF /� _

��

Bl� _

��

sl;2
// MapB.B �L

2
n; †

k
n;BE/

��

BlC1

slC1;2

66

slC1;1
// MapB.B �L

1
n; †

k
n;BE/
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where the right column is a fibration sequence. Consequently the extension from slC1;1
to slC1;2 depends on the obstruction class

�.sl;1/ 2H
lC1.B;Bl I�l.�

2.†knF ///ŠH
lC1.B;Bl I�lC2.†

k
nF //;

which is, again, rationally trivial for large k.

Now assume that we have already constructed slC1;i with i 2N even. Next, look at
the cofibration

Lin ,! LiC2n !M.Zn; i/;

where

M.Zn; i/ WD cof.S i n
�!S i /

is the Moore space. Directly from the definition of the Moore space, we get that
�l.Map.M.Zn; i/; X// is finite for any space X . Using the fibration

Map.M.Zn; i/; †knF / ,!MapB.B �L
iC2
n ; †kn;BE/!MapB.B �L

i
n;B†

k
nE/;

the commutative diagram

Map.M.Zn; i/; †knF /� _

��

Bl� _

��

sl;iC2
// MapB.B �L

iC2
n ; †kn;BE/

��

BlC1

slC1;iC2

55

slC1;i
// MapB.B �L

i
n; †

k
n;BE/

tells us that extending slC1;i to slC1;iC2 depends on the obstruction class

�.slC1;i / 2H
lC1.B;Bl I�l.Map.M.Zn; i/; †knF ///;

which is rationally trivial.

Using this inductively, we get slC1;kCm�1. To extend this to slC1;kCm D slC1, we
use again the cofibration sequence

LkCm�1n ,! LkCmN ! SkCm;

the induced fibration sequence

�kCm.†knF / ,!MapB.B �L
kCm
n ; †kn;BE/!MapB.B �L

kCm�1
n ; †kn;BE/
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and the commutative diagram

�kCm.†knF /� _

��

Bl� _

��

sl;kCm
// MapB.B �L

kCm
n ; †kn;BE/

��

BlC1

slC1;kCm

44

slC1;kCm�1
// MapB.B �L

kCm�1
n ; †kn;BE/

making the obstruction class

�.slC1;kCm�1/ 2H
lC1.B;Bl I�kCmCl.†

k
nF //:

However, if k is large enough, we have

�kCmCl.†
k
nF /˝RŠ �kCmCl.†.N /

k zF /˝R

ŠHkCmCl.†.N /
k zF IR/

ŠHkCmCl.†
k
nF IR/

ŠHmCl.F IR/Š 0

by assumption because mC l < mC dimB . This guarantees that we can extend
slC1;kCm�1 to slC1 and completes the proof.

Lemma 7.13 Let F ,!E!B be a fibration with simply connected base B and local
system F on F inducing a finite cyclic n–fold holonomy covering. Suppose further
that F is simple. Then there exists a bundle F 0 ,! E 0 ! B with local coefficient
system F 0 on F 0, where F 0 is rationally homologically trivial such that

�ı.E;F/D˙�ı.E 0;F 0/:

Proof Let again m be the largest integer such that Hm.F IR/ is nontrivial. Since F
is simple we get H�.F IR/ŠH�. zF IR/ by Corollary 7.9, and we can use Lemma 7.12
to get, for an integer k, a bundle map

˛W B �LmCkn !†kn;BE

nontrivial on the .mCk/th homology. By Lemma 7.3 the n–fold covering of †knF
is given in low degrees by †.N/k zF . Since both †kn and †.N/k only shift rational
homology up by k degrees we have

Hl.†
k
nF IR/ŠHl.†.N /

k zF IR/ŠHl.
A
†knF IR/
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for all 0 < l < mC kC dimB . Furthermore the highest nontrivial homology group
of †knF is in degree mC k and we also have

dimRH�.†
k
nF IR/D dimRH�.F IR/:

Now we can apply the construction of Lemma 7.11 to get a bundle F1 ,! E1! B

such that

dimRH�.F1;R/ < dimRH�.†
k
nF IR/D dimRH�.F IR/:

By definition of E1, and since the torsion of trivial bundles is zero, we get with
additivity and Lemma 7.10

�ı.E1;F1/D �ı.†kn;BE;†
kF/D .�1/k�ı.E;F/:

Since Lemma 7.11 guarantees that Hl.F1IR/ŠHl. zF1IR/ for 0< l <mCkCdimB

we now can repeat this process and decrease the dimension of the rational homology
until we will get the bundle F 0 ,!E 0! B with local system F 0 on F such that

�ı.E;F/D˙�ı.E 0;F 0/

and F 0 is rationally homologically trivial.

We are now finally in the position to prove the main theorem. As a consequence of
Lemma 7.13 it suffices to only determine �ı on bundles with rationally trivial fiber, so
we conclude with the following lemma.

Lemma 7.14 We have �ı.Z;F/ D 0 for any torsion invariant, smoothable bundle
X ,! Z ! B with H�.X IR/ D 0, simply connected base B and local system F
inducing an n–fold holonomy covering.

Proof This is completely analogous to the proof of Lemma 8.11 in [7]. We will only
explain the main points. We replace the bundle by a manifold bundle M ,!E! B

and its universal covering zM ! zE ! B . Choosing a section of E ! B gives disc
bundles D �E! B and zD � zE! B . Now there is a universal torsion class

�ı 2H 2k.BDiffn. zM rel zD/IR/;

where BDiffn. zM rel zD/ is the classifying space of Z=n–equivariant diffeomorphisms
of zM relative to zD.

In the original paper [7], one only has to consider BDiff.M relD/, but luckily in the
end we are only interested in maps that leave a certain base point fixed and we have

BDiff0;n. zM rel zD/Š BDiff0.M relD/;

where the subscript 0 indicates the identity component. From here on the proof is
parallel to the proof in [7].
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Super q–Howe duality and web categories

DANIEL TUBBENHAUER

PEDRO VAZ

PAUL WEDRICH

We use super q–Howe duality to provide diagrammatic presentations of an idempo-
tented form of the Hecke algebra and of categories of glN –modules (and, more gener-
ally, glN jM –modules) whose objects are tensor generated by exterior and symmetric
powers of the vector representations. As an application, we give a representation-
theoretic explanation and a diagrammatic version of a known symmetry of colored
HOMFLY–PT polynomials.

57M25, 81R50

1 Introduction

Let Uq.glN / be the quantum enveloping Cq DC.q/–algebra for glN with q being
generic. Let glN –Modes denote the braided monoidal category of Uq.glN /–modules1

tensor generated by exterior
Vk
qCN

q and symmetric SymlqCN
q powers and Uq.glN /–

intertwiners between them.

We denote by LH an idempotented version of the direct sum of all Iwahori–Hecke
algebras H1.q/D

L
K2Z�0HK.q/ of type A. Roughly, LH is the category obtained

from the one-object category H1.q/ by adding formal Gyoja–Aiston idempotents
corresponding to column and row Young diagrams as new objects.2 By quantum Schur–
Weyl duality, the categories glN –Modes are quotients of LH and the added idempotents
can be thought of as lifts of the exterior

Vk
qCN

q and the symmetric SymlqCN
q powers.

We construct diagrammatic presentations of LH and glN –Modes by using the green–red
web categories 1–Webgr and N–Webgr . Morphisms in these Cq –linear categories
are combinations of planar, upward-oriented, trivalent graphs with edges labeled by
positive integers and colored black, green or red3 modulo local relations. Objects are

1We only consider finite-dimensional, left modules (of type 1) throughout the paper.
2Adding only column idempotents, one obtains the type A Schur algebroids introduced by Williamson

in [30].
3We use colored diagrams in this paper. The colors (black, green and red) are important and we

recommend to read the paper in color. If the reader has a black-and-white version, then green will appear
lightly shaded and black and red can be distinguished since black edges are always labeled 1 .

Published: 4 October 2017 DOI: 10.2140/agt.2017.17.3703
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boundaries of such green–red webs, ie finite sequences of positive integers, each of
which additionally carries the color black, green or red, indicated either by an actual
coloring or by a subscript.

An example of a green–red web is:

5 2 6 1 7

6 6 7 2

5
7 1 8

2 3
5

1 6

A green integer k in a boundary sequence is meant to correspond to the Uq.glN /–
module

Vk
qCN

q , a red integer l to SymlqCN
q , and sequences of integers correspond to

tensor products of such. Vertical edges are identities on these Uq.glN /–modules and
trivalent vertices encode more interesting Uq.glN /–intertwiners. The integer 1 should
be CN

q Š
V1
qCN

q Š Sym1qCN
q independent of the color green or red, so we color it

black.

Our main result is:

Theorem (The diagrammatic presentation) The additive closures of 1–Webgr and
of N–Webgr are braided monoidally equivalent to LH and glN –Modes , respectively.

We will see that 1–Webgr admits an involution interchanging the colors green and
red. An almost direct consequence of this is a symmetry between the HOMFLY–PT

polynomial Pa;q. � / of a link L colored with E�D .�1; : : : ; �d / and the HOMFLY–PT

polynomial of L colored with E�T D ..�1/T; : : : ; .�d /T/:
Proposition (The colored HOMFLY–PT symmetry) We have

(1-1) Pa;q.L.E�//D .�1/cPa;q�1.L.E�T//:

Here c is the sum of the number of nodes in the Young diagrams �i for 1� i � d .

Our results might help to understand symmetries observed within the homologies that
categorify the colored HOMFLY–PT polynomials; see Gukov and Stošić [10, Section 5].

Moreover, we show that a straightforward generalization of our approach also leads
to diagrammatic presentations for categories glN jM–Modes of Uq.glN jM /–modules
tensor generated by exterior and symmetric powers of the vector representation. The
presentations are given by quotients N jM–Webgr of 1–Webgr , which are obtained
by killing Gyoja–Aiston idempotents corresponding to box-shaped Young diagrams.

Algebraic & Geometric Topology, Volume 17 (2017)
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1.1 The framework

A prototypical diagrammatic presentation result (with roots in the work of Rumer, Teller
and Weyl [26]) states that the Temperley–Lieb category gives a presentation of the full
subcategory of Uq.sl2/–modules tensor generated by the vector representation C2

q .
Kuperberg [15] extended this to all rank-2 Lie algebras. In particular, he described
a presentation of the full subcategory of Uq.sl3/–modules tensor generated by the
exterior powers

V1
qC3

q Š C3
q and

V2
qC3

q . More generally, Cautis, Kamnitzer and
Morrison [3] gave a presentation of glN –Mode , the full subcategory of Uq.glN /–
modules tensor generated by the exterior powers

Vk
qCN

q for k D 0; : : : ; N.

One of their key ideas in [3] is the usage of skew quantum Howe duality (or, short,
skew q–Howe duality). In order to explain their approach, let Ek 2 Zm�0 be such that
k1C� � �CkmDK . By skew q–Howe duality, the commuting actions of Uq.glm/ and
Uq.glN / on VK

q .C
m
q ˝CN

q /Š
M
Ek2Zm�0

Vk1
q CN

q ˝ � � �˝
Vkm
q CN

q

give rise to a functor ˆmskewW PUq.glm/! glN –Mode , where PUq.glm/ is the idempo-
tented form of Uq.glm/. Then Cautis, Kamnitzer and Morrison construct a commutative
diagram, which takes the following form in our notation:4

(1-2)

PUq.glm/
ˆmskew

//

‡mskew &&

glN –Mode

N –Webg

�

OO

Here ‡mskew is a certain ladder functor realizing an action of PUq.glm/ on the diagram
category N –Webg . The presentation functor � is constructed so that (1-2) commutes.
The functor ˆmskew is full and its kernel is generated by killing glm–weights with entries
not in f0; : : : ; N g. That � is an equivalence follows since N –Webg is defined to be the
quotient of a “free” web category by relations coming from PUq.glm/ (to make the ladder
functor ‡mskew well-defined) and the ‡mskew image of the kernel of ˆmskew . slN –Mode
can be recovered by identifying

Vk
qCN

q Š .
VN�k
q CN

q /
� as Uq.slN /–modules.

Rose and the first-named author [25] studied the situation of symmetric quantum Howe
duality (for short, symmetric q–Howe duality).5 That is, there is an analogue of (1-2)
where glN –Mode is replaced by glN –Mods , the full subcategory of Uq.glN /–modules
tensor generated by the symmetric powers SymlqCN

q for l 2 Z�0 . In the N D 2 case,

4We consider glN –Modes instead of slN –Modes ; see also Remark 1.1.
5In fact, the observations made in [25] were one of the main motivations to start this project.
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the kernel of ˆmsym is generated by killing glm–weights with negative entries and one
additional dumbbell relation, which encodes the relation C2

q ˝C2
q ŠCq˚Sym2qC2

q

in gl2–Mods . A direct generalization for N > 2 would require additional complicated
relations besides killing glm–weights.

In this paper we give a diagrammatic presentation of the category glN –Modes , the full
subcategory of Uq.glN /–modules tensor generated by both exterior and symmetric
powers of the vector representation. This diagrammatic presentation gives a common
generalization of the web categories of [3] (only black–green webs) and [25] (only
black–red webs). We see Cautis, Kamnitzer and Morrison’s approach as a machine that
takes dualities and produces diagrammatic presentations of the related representation-
theoretical categories. Specifically, we start with super quantum Howe duality (for short,
super q–Howe duality) between the superalgebra Uq.glmjn/ and Uq.glN /. We obtain a
full super q–Howe functor ˆmjnsu , which we attempt to factor as a composite of a ladder
functor ‡mjnsu — mapping into an appropriate web category — and a diagrammatic
presentation functor �N , to give an analogue of the commutative diagram (1-2):6

PUq.glmjn/
ˆ
mjn
su
//

‡
mjn
su &&

glN –Modsort
es

N–Websort
gr

�sort
N

OO

Having decided to follow this strategy, the definition of the appropriate web category
is already determined. Two aspects are important:

(I) In order to make ‡mjnsu well-defined, the web category needs to satisfy ladder
images of PUq.glmjn/ relations. Remarkably, it suffices to consider relations
coming from the subalgebra PUq.glm/˚ PUq.gln/ and only one additional super
commutation relation Œ2�1 Ek D FmEm1 Ek CEmFm1 Ek for glmjn–weights with
km D kmC1 D 1. This corresponds to the dumbbell relation on webs and to
CN
q ˝CN

q Š
V2
qCN

q ˚Sym2qCN
q in glN –Modes .

(II) In order to make the diagrammatic presentation functor an equivalence, we
need to impose the ladder image of ker.ˆmjnsu / as relations in the web category.
In fact, ker.ˆmjnsu / is spanned by idempotents corresponding to glmjn–weights
EkD .k1; : : : ; kmCn/ with k1; : : : ; km … f0; : : : ; N g or kmC1; : : : ; kmCn …Z�0 .
It is remarkable that no extra relations, aside from killing these glmjn–weights,
are necessary.

6Here the superscript “sort” indicates subcategories in which exterior powers are sorted to the left of
symmetric powers in tensor products. This small technical restriction stems from the use of super q–Howe
duality, but will be removed later on.
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We impose the ladder images of ker.ˆmjnsu / in two steps: first we kill all glmjn–weights
with negative entries by allowing only nonnegative labels on web edges. This produces
the web category 1–Webgr , which is symmetric under exchanging green and red.
On this we further quotient by setting glmjn–weights Ek D .k1; : : : ; kmCn/ to zero if
one of k1; : : : ; km is greater than N. This produces the web category N–Webgr and
in Theorem 3.20 we show that its additive closure is equivalent to glN –Modes . Note
that, although our graphical calculus is finer than the one in [3] in the sense that it
contains more objects, the Karoubi envelopes of these diagrammatic categories agree
for each N.

In Theorem 3.22 we use quantum Schur–Weyl duality to derive from Theorem 3.20
that 1–Webgr gives a diagrammatic presentation of the idempotented Iwahori–Hecke
algebra LH from above.

Remark 1.1 We describe glN –Modes and not slN –Modes because of the algebraic
form of super q–Howe duality. In particular, our web categories do not contain
duality isomorphisms

Vk
qCN

q Š .
V
N�k
q CN

q /
� , which would be necessary for a dia-

grammatic presentation of slN –Modes . In glN –Modes , on the other hand, there are
no such hidden duals, as we have

Vk
qCN

q Š
VN
qCN

q ˝ .
VN�k
q CN

q /
� as Uq.glN /–

modules. Here
VN
qCN

q Š L..1; : : : ; 1// is the Uq.glN /–module of highest weight
�D .1; : : : ; 1/ 2 ZN�0.

Last, but not least, we use the more general super q -Howe duality between Uq.glmjn/
and Uq.glN jM / to describe glN jM–Modes . Feeding this duality into the “diagrammatic
presentation machine” shows that this representation category is equivalent to the
quotient N jM–Webgr of 1–Webgr , which is obtained by killing the Gyoja–Aiston
idempotent corresponding to the size .N C 1/� .M C 1/ box-shaped Young diagram.
This is a generalization, since, for M D 0, glN jM–Modes is equivalent to glN –Modes

and N jM–Webgr is equal to N–Webgr , because the box idempotent corresponds
exactly to an .NC1/–labeled green edge.

This generalizes Grant’s [9] and Sartori’s [28] presentations of the category gl1j1–Mode ,
and the diagrammatic calculus for glN jM–Mode given by Queffelec and Sartori [23]
(see also Grant [8]). Compared to the latter, our generalization, which also takes the
symmetric powers of CN jM

q into account, does not need any extra relations aside from
the dumbbell relation. In fact, the one extra relation needed to make the diagrammatic
calculus given in [23] faithful — see [23, Remark 6.19] — has a very compact and
natural description in our green–red web category N jM–Webgr .

Finally, we sketch how our presentation of glN jM–Modes extends to take duals of
exterior and symmetric powers into account. This closely follows [23, Section 6]. The
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resulting diagrammatic category allows the computation of the colored Reshetikhin–
Turaev glN jM –link invariants. In Corollary 5.13, we interpret the colored HOMFLY–PT

symmetry (1-1) as a stable version of a symmetry between colored Reshetikhin–Turaev
glN jM – and glM jN –link invariants.

1.2 Outline of the paper

Section 2 is the diagrammatic heart of our paper, where we introduce 1–Webgr and
its subquotients N–Webgr , N–Webg and N–Webr .

Section 3 contains the proof of our main theorems and splits into three subsections: We
first introduce super q–Howe duality. Then we show an equivalence between “sorted”
subcategories of N–Webgr and glN –Modes . These subcategories are induced by the
algebraic form of super q–Howe duality. By using the “sorted” equivalence and the
fact that the braiding gives a way to “shuffle” the “sorted” subcategories, we prove our
main theorems.

In Section 4 we discuss one application of our diagrammatic presentation: we give a
procedure to recover the colored HOMFLY–PT polynomial from 1–Webgr . A direct
consequence of the green–red symmetry is a symmetry within the colored HOMFLY–
PT polynomial obtained by transposing Young diagrams, see (1-1). The colored
Reshetikhin–Turaev slN –link polynomials can be recovered from our approach as well,
as we sketch in the last subsection.

Finally, in Section 5 we generalize the diagrammatic presentation of glN –Modes to the
super case glN jM–Modes , and we sketch an extension of our diagrammatic calculus
to include dual representations. The required arguments are — mutatis mutandis —
contained in the previous sections and in [23, Section 6], which allows a very compact
exposition in Section 5.
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2 The diagrammatic categories

In the present section we introduce the category 1–Webgr and its quotient N–Webgr .
These provide diagrammatic presentations of LH and its quotient categories glN –Modes

respectively. Other subquotients of 1–Webgr are N–Webg and N–Webr (and later
in Section 5, N jM–Webgr ) which are related to categories studied in [3] and [25],
respectively.

2.1 Definition of the category 1–Webgr and its subquotients

We first introduce the free green–red web category 1–Webfgr . To this end, we denote
by X the set

X DXb [Xg [Xr D f0b; 1bg[ f2g ; 3g ; : : : g[ f2r ; 3r ; : : : g;
where we think of the elements of Xb as being colored black, of the elements of Xg as
being colored green and of the elements of Xr as being colored red. We usually omit
the subscripts, since the colors on the boundary can be read off from the diagrams.

Definition 2.1 The free green–red web category, which we denote by 1–Webfgr , is
the category determined by the following data:

� The objects of1–Webfgr are finite (possibly empty) sequences Ek 2XL with entries
from X for some L 2 Z�0 , together with a zero object. We display the entries of Ek
ordered from left to right according to their appearance in Ek .

� The morphism space Hom1–Webfgr
. Ek; El/ from Ek to El is the Cq –vector space

spanned by isotopy classes7 of planar, upward-oriented, trivalent graphs with edges
labeled by positive integers and colored black, green or red, with bottom boundary Ek
and top boundary El . More precisely, we only allow webs that can be obtained by compo-
sition ı (vertical gluing) and taking the monoidal product ˝ (horizontal juxtaposition)
of the following basic pieces (including the empty diagram).

7We require that isotopies preserve the upward orientations and the boundary of green–red webs.
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Let k; l 2 Z�2 ; then the generators are

(2-1)

0

0

;

1

1

;

k

k

;

k

k

;

kCl

k l

;

kCl

k l

;

kCl

k l

;

kCl

k l

called (from left to right) empty identity, black identity, green identity, red identity,
green merge, green split, red merge and red split, together with (here k; l 2 Z�0 )

(2-2)

kC1

k 1

;

kC1

k 1

;

lC1

1 l

;

lC1

1 l

;

lC1

1 l

;

lC1

1 l

;

kC1

k 1

;

kC1

k 1

called mixed merges and mixed splits, respectively. (We also include versions of these
involving edges labeled 0, which we, as in (2-1), do not illustrate.)

We call webs obtained by composition of generators with only black and green edges
or only black and red edges monochromatic; cf (2-3). Þ

Remark 2.2 Note the following conventions and properties of 1–Webfgr :

� The category is Cq –linear, ie the spaces Hom1–Webfgr
. Ek; El/ are Cq –vector spaces

and the composition ı is Cq –bilinear. Moreover, the category is monoidal by juxtapo-
sition ˝ of objects and morphisms. ˝ is also Cq –bilinear on morphism spaces.

� It is sometimes convenient in illustrations to allow green and red edges with label 1.
By convention, these edges are to be read as being black:

(2-3)

1

1

D
1

1

D
1

1

and

2

1 1

;

2

1 1

;

2

1 1

;

2

1 1

For example, the diagrams on the right are obtained by setting k D 1 or l D 1 in (2-2).

� The reading conventions for all webs are from bottom to top and left to right: if
u and v are webs, then v ıu is obtained by gluing v on top of u and u˝ v is given
by putting v to the right of u. Moreover, if any of the top boundary labels of u differs
from the corresponding bottom boundary label of v , then, by convention, v ıuD 0.

� For j 2 Z�1 , we define the so-called monochromatic F .j /1.k;l/– and E.j /1.k;l/–
ladders as
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(2-4) F .j /1.k;l/ D
k l

k�j lCj

j
; E.j /1.k;l/ D

lk

l�jkCj

j

and analogously in red. (The notation 1.k;l/ is motivated by the “dual side”, as we will
see in Section 3.1. For the green–red web calculus it is just a shorthand to indicated
the underlying objects.) Sometimes we draw such ladder rungs horizontally. We also
have the mixed F 1.k;l/– and E1.k;l/–ladders

(2-5) F 1.k;l/ D
k l

k�1 lC1

1
; E1.k;l/ D

lk

l�1kC1

1

and similarly by exchanging green and red. Note that the ladders from (2-4) exist for
all j 2 Z�1 , while the mixed ladders from (2-5) exist only for j D 1.

� We usually omit the object 0 as well as edges labeled 0 from illustrations; cf (2-1).

Definition 2.3 The green–red web category 1–Webgr is the quotient of 1–Webfgr
obtained by imposing the following local relations on morphisms. The monochromatic
relations, which hold for green webs as well as for red webs: (co)associativity

(2-6)

h k

hCk

l

hCkCl

D

lk

kCl

h

hCkCl

;

lk

kCl

h

hCkCl

D

h k

hCk

l

hCkCl

where we use the shorthand notation from (2-3) if some of the labels are 1. Next, the
digon removal relations

(2-7)

kCl

kCl

k l D
�
kC l
l

�
kCl

kCl

for which k and l might be 1. In these relations the .s; t/–quantum binomial is given
by �

s

t

�
D Œs�Œs� 1� � � � Œs� t C 2�Œs� t C 1�

Œt �Š
2Cq:
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Here Œs�D.qs�q�s/=.q�q�1/2Cq is the quantum number and Œt �ŠD Œ1�Œ2� � � � Œt �2Cq
is the quantum factorial for s 2 Z and t 2 Z�0 . Finally, the square switch relations

(2-8)

k l

k�j1Cj2 lCj1�j2

k�j1 lCj1

j1

j2

D
X
j 0�0

�
k� j1� l C j2

j 0

�

k l

k�j1Cj2 lCj1�j2

kCj2�j 0 l�j2Cj 0
j2�j 0

j1�j 0

Here we allow j1 or j2 to be 1 (we will get mixed square switch relations, with one
green and one red side, in Lemma 2.10).

To write these relations in a uniform manner, we allow negative labels on edges and set
webs with such edges equal to zero.

The defining relation between green and red edges is

(2-9) Œ2�

1 1

1 1

D

1 1

1 1

2 C

1 1

1 1

2

which we call the dumbbell relation. Þ

Remark 2.4 The category 1–Webgr is symmetric under exchanging green and red.
In the following we will often refer to this symmetry to shorten arguments.

Definition 2.5 The category N–Webgr is the quotient category obtained from the
category 1–Webgr by imposing the exterior relations, that is,

(2-10) k D 0 if k > N:

The exterior relations hold only for green edges. These relations mean that any web
u with a green edge labeled k > N is zero. In contrast, red edges labeled k > N are
usually not zero.

The sorted web category N–Websort
gr is the full (nonmonoidal) subcategory of N–Webgr

whose object set consists of Ek 2XL with no red boundary point left of a green boundary
point: if ki 2Xr for some i , then k>i 2Xb [Xr . Þ

Remark 2.6 The relations (2-10) are diagrammatic versions of
V>N
q CN

q Š 0.
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Definition 2.7 The category N–Webg is the subcategory of N–Webgr consisting of
only black and green objects and whose morphism spaces are spanned as Cq –vector
spaces by webs that contain only black or green edges.

Similarly, the category N–Webr is the subcategory of N–Webgr consisting of only
black and red objects and whose morphism spaces are spanned as Cq –vector spaces
by webs that contain only black or red edges.

We call these categories monochromatic. Þ

Remark 2.8 We will see in Corollary 2.16 that N–Webg is equivalent to the web
category given in [3, Definition 2.2] (without tags and downward-pointing arrows). The
category N–Webr is a generalization of the one given in [25, Definition 1.4]. In fact,
Proposition 2.15 shows that both monochromatic subcategories are full in N–Webgr .

2.2 The diagrammatic super relations

We show in this subsection that diagrammatic versions of the relations (3-1) in the
Howe dual quantum group PUq.glmjn/ from Definition 3.1 hold in our diagrammatic
categories 1–Webgr and N–Webgr .

Lemma 2.9 We have the relations

k

k

1 1� � � D 0D

k

k

1 1� � �

where the dots indicate k parallel black edges with label 1 which split off the bottom
and merge with the top in any order (the order does not matter because of (2-6)).

Proof It suffices by associativity (2-6) to show the statement for k D 2. We have

2

2

1 1

(2-7)D 1

Œ2�

2

2

1 1

1 1

(2-9)D

2

2

1 1 � 1

Œ2�

2

2

1 1

1 1

(2-7)D

2

2

1 1 �

2

2

1 1

D 0:

The other k D 2 relation follows by symmetry.
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Lemma 2.10 (a) We have, for all k; l 2 Z�0 ,

k l

k�2 lC2

k�1 lC1
1

1

D

k l

k�2 lC2

k�1 lC1
1

1

D 0D

k l

kC2 l�2

kC1 l�1
1

1

D

k l

kC2 l�2

kC1 l�1
1

1

(b) We have, for all k; l 2 Z�0 ,

ŒkC l �

k l

k l

D

k l

k l

kC1 l�1
1

1

C

k l

k l

k�1 lC1
1

1

and similarly for exchanged roles of green and red.

(c) We have, for all k; l 2 Z�0 ,

Œ2�

k1 k2 k3 k4

1

1

1 1

k1�1 k2�1 k3C1 k4C1

D

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

and similarly for exchanged roles of green and red, and flipped horizontal orientations.

Proof (a) This follows directly from (2-6), Lemma 2.9 and symmetry.

(b) Let u and v denote the two webs on the right-hand side of (b) above. Using (2-8)
for the edges labeled kC 1 and l C 1 in u, respectively v , we get
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uD

k l

k l

k�1 l�1

1

1

1

1

2 � Œk� 1�Œl�

k l

k l

v D

k l

k l

k�1 l�1

1

1

1

1

2 C Œk�Œ1� l �

k l

k l

after collapsing appearing digons. By using (2-9) on the central vertical edges in the ex-
pansions, we see that uCvDs�id.k;l/ . The scalar is sD Œ2�Œk�Œl �CŒk�Œ1�l ��Œk�1�Œl�D
ŒkC l �. The other cases follow by symmetry.

(c) We start with the web on the left-hand side and first use (2-9) on the middle two
horizontal edges. Thus, we obtain (our drawings are simplified and the orientations
pointing down could be isotoped to point up)

Œ2�

k1 k2 k3 k4

1

1

1 1

k1�1 k2�1 k3C1 k4C1

D

k1 k2 k3 k4

21 1

k1�1 k2�1 k3C1 k4C1

C

k1 k2 k3 k4

21 1

k1�1 k2�1 k3C1 k4C1

The two marked parts above are monochromatic squares, which can be switched to
give

1 k2

k2�1 2

k2 1
k2�1

1

D

1 k2

k2�1 2

k2C1

1

k2�1

C

1 k2

k2�1 2

k2�2
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2 k3

k3C1 1

1 k3C1

1

k3

D

2 k3

k3C1 1

k3C2

k3

1

C

2 k3

k3C1 1

k3�1

Plugging these four terms back in, we get the four webs from the right-hand side of
the equation in (c) (in the indicated order), which can be seen by using (2-6), as for
example

k1 k2 k3 k4

2 1

1

1

1

k1�1 k2�1 k3C1 k4C1

D

k1 k2 k3 k4

1

1

1

1

k1�1 k2�1 k3C1 k4C1

The other three cases in (c) follow by symmetry.

2.3 Green and red clasps

We show now that our calculus contains web analogues of the Jones–Wenzl projectors
of the Temperley–Lieb algebra. We call them clasps, following [15].

From now on, we denote by capital vectors such as EK 2 XK special objects of
1–Webgr of the form EK D .1b; : : : ; 1b/ with K entries equal 1b and no other entries.

Definition 2.11 Let K 2Z>0 . We define the K th green clasp CLgK 2End1–Webgr.
EK/

recursively: CLg1 is the black identity strand and for K 2 Z>1 set

1 1 1 1

1 1 1 1
� � �

� � �

CLg
K D

1 1 1 1

1 1 1 1
� � �

� � �

CLg
K � ŒK � 1�

ŒK�

1 1 1 1

1 1 1 1

1

1

21 1

� � �

� � �

� � �

CLg
K

CLg
K

and similarly for the red clasp CLrK by exchanging green and red. Þ

The following lemma identifies the clasps, avoiding the recursive definition.
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Lemma 2.12 We have, for all K 2 Z>0 ,

CLgK D
1

ŒK�Š

1� � �1

1� � �1

K ; CLrK D
1

ŒK�Š

1� � �1

1� � �1

K

where we repeatedly split an edge labeled K until all of the top and bottom edges are
black.

Proof Up to signs and drawing conventions as in [25, Lemma 2.12] and left to the
reader.

Corollary 2.13 For all K 2 Z>0 , the projector CLgK can be expressed as a linear
combination of webs with only black and red edges of label 2, and similarly for CLrK .

Proof This follows directly from (2-9) and Lemma 2.12.

Example 2.14 The projector CLr1 is just the black identity strand, the projector CLr2
is 1=Œ2� times the red dumbbell, as in (2-9), and

CLr3 D
1

Œ3�Š

1� � �1

1� � �1

3 D

1 1 1

1 1 1

� Œ2�
Œ3�

1 1 1

1 1 1

2

C 1

Œ3�

0BBBBB@
1 1 1

1 1 1

1
2

2

C
111

111

1
2

2

1CCCCCA�
1

Œ2�Œ3�

1 1 1

1 1 1

2

2

21

1

1

Note that all edges appearing on the right-hand side are black or green with label 2.
G

Proposition 2.15 Let Ek and El be sequences of black and green boundary points. Every
web u 2 Hom1–Webgr.

Ek; El/ can be expressed as a sum of webs with only black and
green edges, and similarly by exchanging green and red.

Proof We start by exploding8 every red edge. Around internal vertices of u with no
outgoing green edges we get

8We “explode” by using (2-7) — the order does not matter by (2-6). We indicate “explosions” with
dots.
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kCl

k l

D 1

Œk�Š

1

Œl�Š

1

ŒkC l �Š

kCl

k l

kCl
k l

1 1� � �

� � �1
1� � �

1
1

Note that the marked part above is CLr
kCl up to a nonzero scalar. This can be seen

by using (co)associativity (2-6) and the expression in Lemma 2.12. Thus, we can
use Corollary 2.13 to replace CLr

kCl by a nonzero sum of webs with only black and
green edges. Repeating this for all purely red internal vertices shows the statement,
since all outer edges are assumed to be black or green. The other statement follows by
symmetry.

Denote by N–WebCKM the subcategory given in [3, Definition 2.2] with only upward-
pointing strands, tags replaced by (untruncated) N –labeled edges and additionally
allowing 0–labeled objects. As a consequence of Proposition 2.15 we see that interpret-
ing webs in N–WebCKM as green webs in N–Webgr gives a full functor �11 between
these categories. In Lemma 3.13 we will see that it is also faithful and we get the
following corollary.

Corollary 2.16 The functor �11 W N–WebCKM! N–Webgr , given by coloring webs
green, is an inclusion of a full, monoidal subcategory. In particular, N–WebCKM and
N–Webg are equivalent as monoidal categories.

Proof The functor is well-defined since all relations in N–WebCKM hold in N–Webgr .
That �11 is monoidal is clear, fullness follows from Proposition 2.15 and faithfulness
from Lemma 3.13. Thus, we see that N–WebCKM and N–Webg are monoidally
equivalent.

2.4 Braidings

We define now a braided monoidal structure on 1–Webgr .

Definition 2.17 Define for k; l 2 Z�0 an elementary crossing depending on four
cases. The monochromatic crossings (note the different powers of q )
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(2-11)

ˇ
g

k;l
D

k l

D .�1/kCklqk
X

j1;j2�0
j1�j2Dk�l

.�q/�j1

k l

l k

k�j1 lCj1

j1

j2

ˇrk;l D
k l

D .�1/kq�k
X

j1;j2�0
j1�j2Dk�l

.�q/Cj1

k l

l k

k�j1 lCj1

j1

j2

The mixed crossings are defined via explosion of the strand going over:

(2-12) ˇmk;l D
k l

D 1

Œk�Š

k l

1 1� � �
� � � and ˇ zmk;l D

k l

D 1

Œk�Š

k l

1 1� � �
� � �

where the remaining crossings are of the form ˇr
1;l

or ˇg
1;l

, respectively. Þ

Example 2.18 The case k D l D 1 is not ambiguous, since we have

ˇ
g
1;1 D q

0BBBB@
1 1

1 1

� q�1
1 1

1 1

2

1CCCCA (2-9)D �q�1

0BBBB@
1 1

1 1

� q

1 1

1 1

2

1CCCCAD ˇr1;1;
as a small calculation shows. G
As shorthand notation, we write ˇ�

k;l
, where � stands for either g , r , m or zm from now

on. Note that the sums in (2-11) are finite, because webs with negative labels are zero.

Lemma 2.19 (Pitchfork relations) We have

k l

1

1

� � �
D

k l

1

1

� � �
;

lk

1

1
���
D

lk

1

1
���

and similar with exchanged roles of green and red, for the monochromatic cases and
with merges.
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Note that the pitchfork lemma directly implies that (2-12) could also be done by
exploding the edges going underneath instead of the edges going over (or exploding
both).

Proof The pitchfork lemma with only green colored edges follows as in Lemma 5.3
of [22]. By symmetry, the arguments go through for the monochromatic red case as well.

The mixed, left-hand equation is easy to verify by the above, since we explode the
overcrossing edge and we thus can directly use the monochromatic case. It remains
to prove the mixed, right-hand equation. We only need to check the case k D 2; the
case k 2 Z>2 then follows easily from this case by using Lemma 2.9. We write

l2

1

1

D 1

Œ2�

l2

1

1

2

1

1 (2-9)D

l2

1

1

� 1

Œ2�

l2

1

1

2

1

1

The rightmost diagram is zero by Lemma 2.9 and the monochromatic pitchfork relations.
This proves the mixed right-hand equation. The other cases are analogous.

Let Ek 2XL�0 be an object in 1–Webgr . We define for i D 1; : : : ; L� 1 the crossing
ˇ�i 1 Ek to be the corresponding elementary crossing ˇ�

ki ;kiC1 between the strands i and
i C 1 and the identity elsewhere. Clearly, it suffices to indicate the rightmost 1 Ek in a
sequence of the ˇ�i 1 Ek .

Lemma 2.20 The crossings ˇ�i 1 Ek satisfy the braid relations, that is, they are invertible,
they satisfy the commutation relations ˇ�i ˇ

�
j 1 Ek D ˇ�jˇ

�
i 1 Ek for ji � j j > 2 and the

Reidemeister 3 relations ˇ�i ˇ
�
jˇ
�
i 1 Ek D ˇ�jˇ�i ˇ�j 1 Ek for ji � j j D 1.

The inverses .ˇ�i /
�1 are given as in (2-11), but with q! q�1. See also [22, Section 5].

Proof This follows from Lemma 2.19, since the black case can be verified as in [22,
Section 5].

Remark 2.21 Let SK denote the symmetric group on K letters. Moreover, let w2SK
and let ˇ�w 2 End1–Webgr.

EK/ be the permutation braid associated to w (this is a well-
defined assignment by Lemma 2.20). Let `.w/ be the length of w . Following [14,
Chapter 3, Section 2], one can show that

CLgK D q
K.K�1/

2
1

ŒK�Š

X
w2SK

.�q/�`.w/ˇ�w ; CLrK D q�
K.K�1/

2
1

ŒK�Š

X
w2SK

q`.w/ˇ�w :

The factors q
K.K�1/

2 and q�
K.K�1/

2 come from our conventions for crossings.
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Define ˇ�Ek;El for objects Ek D .k1; : : : ; ka/ and El D .l1; : : : ; lb/ via

ˇ�Ek;El D

k1
: : : ka l1 : : : lb

l1 : : : lb k1
: : : ka

2 Hom1–Webgr.
Ek˝ El ; El ˝ Ek/;

where blue stands for all suitable color possibilities.

Recall that a braided monoidal category (with an underlying strict monoidal category)
is a pair .C; ˇC�;�/ consisting of a monoidal category C and a collection of natural
isomorphisms ˇC

Ek;El W
Ek˝El! El˝ Ek such that the hexagon identities hold for any objects

Ek; El ; Em of C :

(2-13) ˇC
Ek;El˝ EmD .idEl˝ˇ

C
Ek; Em/ı.ˇ

C
Ek;El˝id Em/; ˇC

Ek˝El; EmD .ˇ
C
Ek; Em˝idEl/ı.id Ek˝ˇ

C
El; Em/:

Proposition 2.22 The pair .1–Webgr; ˇ
��;�/ is a braided monoidal category.

Proof Since 1–Webgr is a monoidal category and the ˇ�Ek;El are isomorphisms that
clearly satisfy (2-13), we only need to prove that they are natural. That is, we need to
show that, for each web u2Hom1–Webgr.

Ek; El/ and each other object EmD .m1; : : : ; mc/
of 1–Webgr , we have (we again use blue as a generic color)

k1
: : : ka m1 : : : mc

m1 : : : mc l1 : : : lb

u id Em

D

k1
: : : ka m1 : : : mc

m1 : : : mc l1 : : : lb

uid Em

The equality follows from Lemma 2.19. This proves the statement.

The braiding ˇ��;� descends to the subquotients N–Webgr , N–Webg and N–Webr and
we denote all induced braidings also by ˇ��;� . They are all given by the formulas
in Definition 2.17, but some diagrams might be zero due to (2-10).

Corollary 2.23 .N–Webgr; ˇ
��;�/, .N–Webg; ˇ

��;�/ and .N–Webr; ˇ
��;�/, with the braid-

ing ˇ��;� induced from .1–Webgr; ˇ
��;�/, are braided monoidal categories.
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Note that N–WebCKM is also a braided monoidal category; see [3, Corollary 6.2.3].
We rescale their braiding by multiplying it with qkl=N and we denote the resulting
braided monoidal category by .N–WebCKM; ˇ

��;�/. The following corollary is immediate
from Corollary 2.16.

Corollary 2.24 The functor �11 W .N–WebCKM; ˇ
��;�/! .N–Webgr; ˇ

��;�/ is an inclusion
of a full, braided monoidal subcategory.

2.5 A collection of diagrammatic idempotents

Recall that the Iwahori–Hecke algebra HK.q/ is the q–deformation of the symmet-
ric group algebra CŒSK � on K letters. It is generated by fHi j si 2 SKg for all
transpositions si D .i; i C 1/ 2 SK , subject to the relations

H 2
i D .q� q�1/Hi C 1 for i D 1; : : : ; K � 1;

HiHj DHjHi for ji � j j> 1;
HiHjHi DHjHiHj for ji � j j D 1:

There is a representation pK W Cq.BK/! HK.q/ of the group algebra Cq.BK/ of
the braid group BK with K strands given by sending the braid group generators bi
(between the strands i and i C 1) to Hi . Thinking of the generators Hi of HK.q/ as
crossings also makes sense from the perspective of the webs, as the next lemma shows.

Lemma 2.25 Given K 2 Z�0 , there is an isomorphism of Cq –algebras

ˆ1qSWW HK.q/ Š�!End1–Webgr.
EK/; Hi 7!

1 1 1 1 1 1

1 1 1 1 1 1
� � � � � �

In order to prove Lemma 2.25, which will be used in Section 4, we need Theorem 3.20.

Proof A direct computation shows that ˆqSW is a well-defined Cq –algebra homo-
morphism. In fact, the composite � ıˆ1qSW is the isomorphism induced by quantum
Schur–Weyl duality. To see this, let V D .CN

q /
˝K and recall that quantum Schur–Weyl

duality states that

(2-14)
ˆNqSWW HK.q/� EndUq.glN /.V /;

ˆNqSWW HK.q/ Š�!EndUq.glN /.V / if N �K:
Here ˆNqSW is the Cq –algebra homomorphism induced by the action of HK.q/ on the
K–fold tensor product V . By Theorem 3.20, we will get an isomorphism HK.q/Š
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EndN–Webgr.
EK/ if N �K . By using Proposition 2.15, there is a basis of EndN–Webgr.

EK/
for N �K given by webs with only black edges or green edges with labels at most K .
Since K is fixed, a direct comparison shows that ˆ1qSW has to be an isomorphism as
well.

Let K 2 Z�0 and let ƒC.K/ denote the set of all Young diagrams with K nodes, eg

�D .4; 3; 1; 1/ 2ƒC.9/! �D ;

�T D .4; 2; 2; 1/ 2ƒC.9/! �T D ;

where we use the English notation for our Young diagrams. Here we have also displayed
the transpose Young diagram �T of �. Next, the following definition is motivated
by [11; 1]. (It is best explained via examples — cf Example 2.27 and Example 2.29 —
which the reader might want to check while reading the definition.)

Definition 2.26 (Gyoja–Aiston idempotents) Given � 2ƒC.K/, we associate to it
a primitive idempotent eq.�/ 2 End1–Webgr.

EK/. First we define two idempotents as
tensor products of green or red clasps:

ecol.�/D CLgcol1 ˝ � � �˝ CLgcolc ; erow.�/D CLrrow1 ˝ � � �˝ CLrrowr ;

where c and r are the number of columns and rows of � respectively, and coli and
rowi denote the number of nodes in the i th column and row.

Denote by T !
�

and by T #
�

the two tableaux of shape � obtained by filling the numbers
1; : : : ; K into the Young diagram � in order: ! means rows before columns and #
means columns before rows (both from left to right). Pick any shortest presentation of
the permutation w.�/2SK permuting T !

�
to T #

�
. Then we define the quasi-idempotent

associated to � via

zeq.�/D ecol.�/ ıˇ�w.�/ ı erow.�/ ı .ˇ�w.�//�1:
By [1, Theorem 4.7] (and the fact that their definition agrees with ours by Lemma 2.25
and Remark 2.21), there exists a nonzero scalar a.�/ 2 Cq such that zeq.�/2 D
a.�/zeq.�/. Thus, we define the idempotent associated to � to be

eq.�/D 1

a.�/
zeq.�/: Þ

These idempotents are primitive and orthogonal by [11, Theorem 4.5; 1, Theorem 4.7].
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Example 2.27 If K D 2, then there are two primitive idempotents, namely

eq

� �
D 1

Œ2�

1 1

1 1

2
green to red

// 1

Œ2�

1 1

1 1

2 D eq. /:
red to green
oo

Note that a.�/D 1 for only one column or only one row Young diagrams �. G

Lemma 2.28 Exchanging green and red sends eq.�/ to eq.�T/ modulo a commutator.

Proof Note that ecol.�/ and erow.�/ differ from erow.�
T/ and ecol.�

T/, respectively,
only in exchanging the colors green and red. On black crossings the green–red symmetry
acts by ˇ�1;1 7! �.ˇ�1;1/�1 , on permutation braids as ˇ�w 7! .�1/`.w/.ˇ�

w�1/
�1 and

on the quasi-idempotent zeq.�/ as

zeq.�/D ecol.�/ ıˇ�w.�/ ı erow.�/ ı .ˇ�w.�//�1

7! erow.�
T/ ı .ˇ�

w.�/�1/
�1 ı ecol.�

T/ ıˇ�
w.�/�1

D erow.�
T/ ı .ˇ�w.�T//

�1 ı ecol.�
T/ ıˇ�w.�T/:

In the first line, the signs from the crossing inversions cancel, and in the second line
we use w.�/�1 D w.�T/. The result agrees with zeq.�T/ up to a commutator. This
proves the statement of the lemma for the quasi-idempotents. Applying the green–red
symmetry to both sides of the equation zeq.�/2 D a.�/zeq.�/ shows that a.�/D a.�T/

and the lemma follows.

Example 2.29 For �D .3; 1/ 2ƒC.4/, we have

�D ; T !� D 1 2 3
4

; T
#
�
D 1 3 4

2
:

Thus, w D .243/D .23/.34/ 2 S4 permutes T !
�

to T #
�

. Then

zeq.�/D

CLg2

ˇ�
w.�/

CLr3

.ˇ�
w.�/

/�1

1 1 1 1

1 1 1 1

green$red �����!

CLr2

.ˇ�
w.�/�1/

�1

CLg3

ˇ�
w.�/�1

1 1 1 1

1 1 1 1

�tr
CLr2

.ˇ�
w.�T/

/�1

CLg3

ˇ�
w.�T/

1 1 1 1

1 1 1 1

D zeq.�T/:
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Here �tr means equal modulo a commutator and the scaling factor in this case is
a.�/D Œ4�=.Œ2�Œ3�/D a.�T/. G
Remark 2.30 For N �K , the HK.q/–module .CN

q /
˝K decomposes intoM

�2ƒC.K/
.S�/˚m� ;

where the S� are the irreducible Specht modules for HK.q/ and m� are their multi-
plicities. The primitive idempotents eq.�/ from Definition 2.26 are quantizations of
Young symmetrizers that project onto S�. Note that a braid-conjugate of eq.�/ might
project onto a different copy of S� in the above decomposition.

3 Proofs of the diagrammatic presentations

This section contains the proof of our main theorems.

3.1 Super q–Howe duality

Let m; n 2 Z�0 . We start by recalling the quantum general linear superalgebra
Uq.glmjn/ and its idempotented form PUq.glmjn/. We follow the conventions used
in [33], but adapt Zhang’s notation to be closer to the one from [3].

To this end, recall that the glmjn–weight lattice is isomorphic to ZmCn and we denote
the glmjn–weights usually by vectors Ek D .k1; : : : ; km; kmC1; : : : ; kmCn/. For I D
I0 [ I1 with I0 D f1; : : : ; mg (even part) and I1 D fmC 1; : : : ; mC ng (odd part),
define

ji j D
�
0 if i 2 I0 D f1; : : : ; mg;
1 if i 2 I1 D fmC 1; : : : ; mCng:

The notation j � j means the super degree (which is a Z=2–degree). We use a similar
notation for all Z=2–graded spaces, where we, by convention, always consider degrees
modulo 2 in the following. Moreover, let �iD .0; : : : ; 0; 1; 0; : : : ; 0/2ZmCn, with 1 be-
ing in the i th coordinate, and denote by ˛i D �i��iC1D .0; : : : ; 1;�1; : : : ; 0/2ZmCn
for i 2 I�fmCng the i th simple root. Recall that the super Euclidean inner product
on ZmCn is given by .�i ; �j /su D .�1/ji jıi;j .

Definition 3.1 Let m; n 2Z�0 . The quantum general linear superalgebra Uq.glmjn/
is the associative, Z=2–graded, unital Cq –algebra generated by L˙1i for i 2 I , and
Fi and Ei for i 2 I�fmCng, subject to the nonsuper relations

LiLj D LjLi ; LiL
�1
i D L�1i Li D 1;

LiFj D q�.�i ; j̨ /suFjLi ; LiEj D q.�i ; j̨ /suEjLi ;
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EiFj �FjEi D .�1/ji jıi;j
LiL

�1
iC1�L�1i LiC1
q� q�1 if i ¤m;

Œ2�FiFjFi D F 2i Fj CFjF 2i if ji � j j D 1; i ¤m;
Œ2�EiEjEi DE2i Ej CEjE2i if ji � j j D 1; i ¤m;

FiFj �FjFi D 0 if ji � j j> 1;
EiEj �EjEi D 0 if ji � j j> 1

(for suitable i; j 2 I ) and the super relations

F 2m D 0DE2m; EmFmCFmEm D
LmL

�1
mC1�L�1m LmC1
q� q�1 ;

Œ2�FmFmC1Fm�1Fm D
FmFmC1FmFm�1CFm�1FmFmC1FmCFmC1FmFm�1FmCFmFm�1FmFmC1;
Œ2�EmEmC1Em�1Em D
EmEmC1EmEm�1CEm�1EmEmC1EmCEmC1EmEm�1EmCEmEm�1EmEmC1:
Also, jLi j D 0 for i 2 I , jFi j D jEi j D 0 for i 2 I�fmg and jFmj D jEmj D 1. Þ

We recover Uq.glN / by setting m D N and n D 0. We write IN D f1; : : : ; N g in
the following to distinguish it from I as above. Note that Uq.glN / is concentrated in
degree 0.

The algebra Uq.glmjn/ is a Z=2–graded Hopf algebra with coproduct �, antipode S
and the counit " given by

�.Fi /DFi˝1CL�1i LiC1˝Fi ; �.Ei /DEi˝LiL�1iC1C1˝Ei ; �.Li /DLi˝Li ;
S.Fi /D�LiL�1iC1Fi ; S.Ei /D�EiL�1i LiC1; S.Li /D L�1i ;

".Fi /D ".Ei /D 0; ".Li /D 1:
In the spirit of Lusztig [20, Chapter 23], we now adjoin, for all Ek 2ZmCn, idempotents
1 Ek of super degree j1 Ekj D 0 to Uq.glmjn/. Denote by I the ideal generated by

1 Ek1El D ı Ek;El1 Ek; 1 Ek�˛iFi1 Ek D Fi1 Ek D 1 Ek�˛iFi ;
Li1 Ek D q

ki .�i ;�i /su1 Ek; 1 EkC˛iEi1 Ek DEi1 Ek D 1 EkC˛iEi :
Definition 3.2 Define by

PUq.glmjn/D
� M
Ek;El2ZmCn

1ElUq.glmjn/1 Ek

�.
I

the idempotented quantum general linear superalgebra. Þ

Algebraic & Geometric Topology, Volume 17 (2017)



Super q–Howe duality and web categories 3727

Remark 3.3 One can view PUq.glmjn/ as generated by the divided powers

F
.j /
i D F

j
i

Œj �Š
and E

.j /
i D

E
j
i

Œj �Š
for i 2 I�fmCng:

This allows the definition of an integral version of PUq.glmjn/. For simplicity, we work
over Cq in this paper and we do not consider the integral version.

The relations in PUq.glmjn/ are obtained from the relations of Uq.glmjn/. For conve-
nience we list the new versions of the super relations:

(3-1)

F 2m1 Ek D 0DE
2
m1 Ek;

EmFm1 EkCFmEm1 Ek D ŒkmC kmC1�1 Ek;
Œ2�FmFmC1Fm�1Fm1 Ek D FmFmC1FmFm�11 EkCFm�1FmFmC1Fm1 Ek

CFmC1FmFm�1Fm1 EkCFmFm�1FmFmC11 Ek;

the second of which we call the super commutation relation (the third type of relation
holds for E as well).

It is convenient for us hereinafter to view PUq.glmjn/ as a category whose objects are
the glmjn–weights Ek 2 ZmCn and Hom PUq.glmjn/.

Ek; El/D 1El PUq.glmjn/1 Ek .

Recall that the vector representation Cmjn
q of Uq.glmjn/ has a basis given by fxi j i 2 Ig

with super degrees jxi j D ji j for i 2 I , where the Uq.glmjn/–action is defined via

Fi .xj /D
�
xjC1 if i D j;
0 otherwise,

Ei .xj /D
�
xj�1 if i D j � 1;
0; otherwise,

Li .xj /D q.�i ;�j /suxj :

We need to consider the quantum exterior superalgebra
V�
q.C

mjn
q ˝CN

q /. Recall that a
vector space V D V0˚V1 with a Z=2–grading is called a super vector space. Here V0
and V1 are its degree 0 and 1 parts. These graded parts of Cmjn

q have bases given by
fxi j i 2 I0g and fxi j i 2 I1g, respectively. In contrast, CN

q D .CN
q /0 is concentrated in

degree zero and we denote its basis by fyj j j 2 IN g. Additionally, the tensor product
V ˝W of two super vector spaces V and W is a super vector space with v˝w of
degree jvjCjwj for two homogeneous elements v and w . Specifically, Cmjn

q ˝CN
q is

a super vector space with .Cmjn
q ˝CN

q /0 spanned by fzij D xi ˝yj j i 2 I0; j 2 IN g
and .Cmjn

q ˝CN
q /1 spanned by fzij D xi ˝ yj j i 2 I1; j 2 IN g. Here jzij j D ji j.

Note that .Cmjn
q ˝CN

q /
˝K is a Z=2–graded Uq.glmjn/˝Uq.glN /–module for all

K 2 Z�0 by using the Hopf algebras structures of Uq.glmjn/ and Uq.glN /.
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We denote by Sym2q.C
mjn
q ˝CN

q / the second symmetric super power as in [23, (4.1)],
but with q inverted in their formulas. Armed with this notation, we define the quantum
exterior superalgebraV�

q.C
mjn
q ˝CN

q /D T .Cmjn
q ˝CN

q /=Sym2q.C
mjn
q ˝CN

q /;

where T .Cmjn
q ˝CN

q /D
L
K2Z�0.C

mjn
q ˝CN

q /
˝K denotes the super tensor algebra

of Cmjn
q ˝CN

q . This is a Uq.glmjn/˝Uq.glN /–module and decompose asV�
q.C

mjn
q ˝CN

q /Š
M

K2Z�0

VK
q .C

mjn
q ˝CN

q /:

The space
VK
q .C

mjn
q ˝CN

q / is called the degree K part of
V�
q.C

mjn
q ˝CN

q /.

Remark 3.4 We can recover the degree K part of the quantum exterior algebraVK
q .C

m
q ˝CN

q / by setting n D 0 and, by [28, Remark 2.1], the degree K part of
the quantum symmetric algebra SymKq .C

n
q ˝CN

q / by setting m D 0. These were
originally defined in [2, Definition 2.7] and used in [3, Section 4.2; 25, Section 2.1] to
study skew and symmetric q–Howe duality.

Example 3.5 Write z Eij D zi1j1 ˝ � � � ˝ ziKjK and zikjk � zikC1jkC1 for the anti-
lexicographical order on the indices of the zij . Then

V
K
q .C

mjn
q ˝CN

q / has a basis
given by (cf [23, Lemma 4.1])

(3-2)
˚
z Eij j zikjk � zikC1jkC1 ; 1� i1 � � � � � iK �mCn; 1� j1 � � � � � jK �N;

and jikj D 1; if ik D ikC1 and jk D jkC1
	
:

By setting mD 1 and nD 0, we obtain the (usual) basis for
VK
qCN

q of the form

(3-3) fyi1 ˝ � � �˝yiK j 1� y1 < � � �< yK �N g;
while setting mD 0 and nD 1 gives the (usual) basis for SymKq CN

q of the form

(3-4) fyi1 ˝ � � �˝yiK j 1� y1 � � � � � yK �N g:
These are precisely the usual (nonsuper) bases; see for example [2, Section 2.4]. G

We call a glmjn–weight � D .�1; : : : ; �mCn/ 2 ZmCn a dominant integral glmjn–
weight if it is a dominant integral glm˚ gln–weight. We only need � that are .mjn/–
hook Young diagrams, ie diagrams that fit into a hook-shaped region with one horizontal
arm of height m and one vertical arm of width n (here we use the conventions from [4,
Definition 2.10]). The following figure shows an .mjn/–hook Young diagram � and a
box-shaped Young diagram that is not an .mjn/–hook:
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� m

n

;
m

n

We call a dominant integral glmjn–weight � an .mjn;N /–supported glmjn–weight
if it corresponds to an .mjn/–hook Young diagram with at most N columns. For
each such � there exists an irreducible Uq.glmjn/–module Lmjn.�/ and an irreducible
Uq.glN /–module LN .�T/; see eg [16, Section 2.5].

Theorem 3.6 (Super q–Howe duality) We have the following:

(a) Let K 2 Z�0 . The actions of Uq.glmjn/ and Uq.glN / on
VK
q .C

mjn
q ˝CN

q /

commute and generate each others commutant.

(b) There exists an isomorphismV�
q.C

mjn
q ˝CN

q /Š .
V�
qCN

q /
˝m˝ .Sym�qCN

q /
˝n

of Uq.glN /–modules under which the Ek–weight space of
V�
q.C

mjn
q ˝ CN

q /

(considered as a Uq.glmjn/–module) is identified with

(3-5)
VEk0
q CN

q ˝Sym
Ek1
q CN

q DVk1
q CN

q ˝ � � �˝
Vkm
q CN

q ˝SymkmC1q CN
q ˝ � � �˝SymkmCnq CN

q :

Here Ek D .k1; : : : ; kmCn/, Ek0 D .k1; : : : ; km/ and Ek1 D .kmC1; : : : ; kmCn/.
(c) As Uq.glmjn/˝Uq.glN /–modules, we have a decomposition of the formVK

q .C
mjn
q ˝CN

q /Š
M
�

Lmjn.�/˝LN .�T/;

where we sum over all .mjn;N /–supported glmjn–weights � whose entries sum
up to K . This induces a decompositionV�

q.C
mjn
q ˝Cn

q /Š
M
�

Lmjn.�/˝LN .�T/;

where we sum over all .mjn;N /–supported glmjn–weights �.

Remark 3.7 Symmetric and skew Howe duality for the pair .GLm;GLN / is orig-
inally due to Howe; see [12, Sections 2 and 4]. Note that the nonquantum version
of Theorem 3.6 can be found for example in [4, Theorem 3.3] or [28, Proposition 2.2].
Moreover, the “dual” of Theorem 3.6, given by considering Uq.glN / as the Howe dual
group instead of Uq.glmjn/, can be found in [23, Proposition 4.3].
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Proof Parts (a) and (c) are proven in [31, Theorem 2.2] or in [23, Theorem 4.2] and
only (b) remains to be verified. For this purpose, we use the bases from (3-2), (3-3)
and (3-4) to define

T ei W
Vk
q.C

N
q /!

Vk
q.C

mjn
q ˝CN

q /; yj1 ˝ � � �˝yjk 7! zij1 ˝ � � �˝ zijk ; i 2 I0;

T si W Symkq.C
n
q /!

Vk
q.C

mjn
q ˝CN

q /; yj1 ˝ � � �˝yjk 7! zij1 ˝ � � �˝ zijk ; i 2 I1:

That these maps are well-defined Uq.glN /–intertwiners follows from the explicit
description in Example 3.5. Injectivity was shown in [3, Theorem 4.2.2] for the first and
in [25, Theorem 2.6] for the second map. Thus, for Ek2ZmCn with k1C� � �CkmCnDK ,
we see that

T W
M
Ek2ZmCn�0

VEk0
q CN

q ˝Sym
Ek1
q CN

q !
VK
q .C

mjn
q ˝CN

q /

given by

T .v1˝� � �˝ vmCn/D T e1 .v1/˝� � �˝T em.vm/˝T smC1.vmC1/˝� � �˝T smCn.vmCn/
is a Uq.glN /–module isomorphism by comparing the sizes of the bases from Example
3.5. This clearly induces the isomorphism of Uq.glN /–modules we are looking for.

It remains to verify the Uq.glmjn/–weight space decomposition from (3-5). To this end,
we only have to see that the action on

VEk0
q CN

q ˝ Sym Ek1q CN
q of the Li 0 of Uq.glmjn/

under the inverse of T is just a multiplication with qki .�i ;�i0 /su . The action of Uq.glmjn/
is given by

Li 0.zij1˝� � �˝zijmCn/DLi 0.zij1/˝� � �˝Li 0.zijmCn/Dqki .�i ;�i0 /suzij1˝� � �˝zijmCn :
Hence, the Uq.glmjn/–weight space decomposition follows.

By Theorem 3.6(b), we get linear maps

f
El
Ek W 1El PUq.glmjn/1 Ek! HomUq.glN /

�VEk0
q CN

q ˝Sym
Ek1
q CN

q ;
VEl0
qCN

q ˝Sym
El1
q CN

q

�
for any two Ek; El 2 ZmCn�0 such that

PmCn
iD0 ki D

PmCn
iD0 li . Using Theorem 3.6(a), we

see that the homomorphisms f ElEk are all surjective. Thus, we get the following.

Corollary 3.8 There exists a full functor ˆmjnsu W PUq.glmjn/! glN –Modes , which we
call the super q–Howe functor, given on objects and morphisms by

ˆmjnsu . Ek/DVEk0
q CN

q ˝Sym
Ek1
q CN

q ; ˆmjnsu .1Elx1 Ek/D f
El
Ek .x/:

Everything else is sent to zero.
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3.2 The sorted equivalences

In this subsection we construct a full and faithful functor

�sort
N W N–Websort

gr ! glN –Modsort
es ;

where N–Websort
gr is the sorted web category from Definition 2.5 and glN –Modsort

es
denotes the full subcategory of glN –Modes whose objects are sorted as in (3-5).

As already explained in the introduction, we essentially define �sort
N such that there is

a commuting diagram:

(3-6)

PUq.glmjn/
ˆ
mjn
su
//

‡
mjn
su &&

glN –Modsort
es

N–Websort
gr

�sort
N

OO

The functor ‡mjnsu is a ladder functor, whose definition is motivated by [3, Section 5.1].

Lemma 3.9 Let m; n 2 Z�0 . There exists a functor

‡mjnsu W PUq.glmjn/!N–Websort
gr

which sends a glmjn–weight Ek 2ZmCn�0 to ..k1/g ; : : : ; .km/g ; .kmC1/r ; : : : ; .kmCn/r/
in N–Websort

gr and all other glmjn–weights to the zero object. On morphisms, ‡mjnsu is
given by

F
.j /
i 1 Ek 7!

k1 ki kiC1 km kmC1 kmCn

ki�j kiC1Cjk1 km kmC1 kmCn

j� � � � � � � � �

F
.j /
i 1 Ek 7!

k1 km kmC1 ki kiC1 kmCn

km kmC1k1 ki�j kiC1Cj kmCn

j� � � � � � � � �

for i 2 I0�fmg or i 2 I1�fmCng, respectively, and

Fm1 Ek 7!

k1 km�1 km kmC1 kmC2 kmCn

k1 km�1 km�1 kmC1C1 kmC2 kmCn

1� � � � � �

and similarly, but with reversed horizontal orientations, for the generators E.j /i 1 Ek
and Em1 Ek .
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Proof To show that ‡mjnsu is well-defined, it suffices to show that all relations in
PUq.glmjn/ are satisfied in N–Websort

gr . For monochromatic relations we can copy [3,
Proposition 5.2.1]. Lemma 2.10 shows that the super relations (3-1) hold in N–Websort

gr .

Definition 3.10 (The diagrammatic presentation functor �sort
N ) We define a functor

�sort
N W N–Websort

gr ! glN –Modsort
es as follows:

� On objects: to each EkD ..k1/g ; : : : ; .km/g ; .kmC1/r ; : : : ; .kmCn/r/, we assign

�sort
N . Ek/DVEk0

q CN
q ˝Sym

Ek1
q CN

q ;

where Ek0 D .k1; : : : ; km/ and Ek1 D .kmC1; : : : ; kmCn/. Moreover, we send
the empty tuple to the trivial Uq.glN /–module Cq and the zero object to the
Uq.glN /–module 0.

� On morphisms: we use the functor ˆmjnsu from Corollary 3.8 to define �sort
N on

the generating trivalent vertices in N–Websort
gr (here we assume that the diagrams

are the identities outside of the illustrated part). For this, let i 2 I and we use the
notation k D ki ; l D kiC1 and .k; l/D .k1; : : : ; ki D k; kiC1D l; : : : ; kmCn/.

(3-7)

�sort
N

0BB@
kCl

k l

1CCADˆmjnsu .E
.l/
i 1.k;l//; �sort

N

0BB@
kCl

k l
1CCADˆmjnsu .F

.l/
i 1.kCl;0//;

�sort
N

0BB@
kCl

k l

1CCADˆmjnsu .F
.k/
i 1.k;l//; �sort

N

0BB@
kCl

k l
1CCADˆmjnsu .E

.k/
i 1.0;kCl//:

Note that these definitions include the mixed case, where we either have l D 1 (and
colored black) or kD 1 (and colored black) and we use the odd generators Fm and Em .

Þ

Remark 3.11 There are certain choices for the images of monochromatic merges and
splits, but these choices do not matter; see [25, Remark 2.18]. In contrast, there is no
other choice for the mixed merges and splits. For example, take l D 1 in the top left
in (3-7). The green edge labeled k C 1 should represent

VkC1
q CN

q . Thus, we have
to see the top boundary of the left-hand side as 1.kC1;0/ and not as 1.0;kC1/ , which
determines our choices, and similarly for the other mixed generators. For example, if
mD nD 1, and k D 1 or l D 1, then
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�sort
N

0BB@
2

1 1

1CCADˆ1j1su .E11.1;1//¤ˆ1j1su .F11.1;1//D �sort
N

0BB@
2

1 1

1CCA :
Lemma 3.12 �sort

N is a well-defined functor �sort
N W N–Websort

gr !glN –Modsort
es making

the diagram (3-6) commutative.

Proof First we note that �sort
N ı‡mjnsu Dˆmjnsu on generators F .j /i 1 Ek and Fm1 Ek (and

analogously for E ) with i 2 I � fmg, j 2 Z�0 and Ek 2 ZmCn . This follows from
the definition of �sort

N via ˆmjnsu and the observation that ladders can be written as
compositions of merges and splits; see also [25, Lemma 2.20].

We need to check that the images of the relations from N–Websort
gr under �sort

N hold in
glN –Modsort

es . Corollary 3.8 guarantees that all relations in glN –Modsort
es are induced

via ˆmjnsu from relations in PUq.glmjn/ and the fact that ˆmjnsu kills certain glmjn–
weights. It remains to check that the relations in N–Websort

gr are, likewise, induced via
‡
mjn
su from relations in PUq.glmjn/. For the monochromatic and isotopy relations, this

follows as in [25, Lemma 2.20].

The dumbbell relation (2-9) can be recovered from PUq.glmjn/ as follows. Without loss
of generality we work with mD nD 1:

Œ2�

1 1

1 1

D ‡1j1su .Œ2�1.1;1//D ‡1j1su .FE1.1;1/CEF 1.1;1//D

1 1

1 1

2 C

1 1

1 1

2

Relation (2-10) is a consequence of killing glmjn–weights Ek D .k1; : : : ; kmCn/, one
of whose first m entries is larger than N.

Lemma 3.13 The functor �11 W N–WebCKM!N–Webgr is faithful.

Proof By Lemma 3.12 and a comparison of definitions, we have a commuting diagram

glN –Mode
�es
e
// glN –Modsort

es

N–WebCKM

�CKM

OO

�11
// N–Websort

gr

�sort
N

OO
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where �CKM is the functor considered in [3, Section 3.2] and �es
e is the evident embed-

ding of a full subcategory. �CKM is faithful by [3, Theorem 3.3.1] and, thus, �11 is
faithful as well.

Remark 3.14 Let Mat.N–Websort
gr / be the additive closure of N–Websort

gr : objects
are finite, formal direct sums of the objects of N–Websort

gr and morphisms are matrices
(whose entries are morphisms from N–Websort

gr ). We can extend �sort
N additively to a

functor
�sort
N W Mat.N–Websort

gr /! glN –Modsort
es ;

and similarly for �N later on.

Proposition 3.15 The functor �sort
N W N–Websort

gr !glN –Modsort
es gives rise to an equiv-

alence of categories �sort
N W Mat.N–Websort

gr /! glN –Modsort
es .

Proof Since �sort
N W Mat.N–Websort

gr /! glN –Modsort
es is well-defined by Lemma 3.12

and Remark 3.14, it remains to show that �sort
N is essentially surjective, full and faithful.

Essentially surjective This follows directly from the definitions of �sort
N , N–Websort

gr ,
its additive closure Mat.N–Websort

gr / and glN –Modsort
es .

Full It suffices to verify fullness for morphisms between objects of the form Ek2XmCn,
where XmCn D .Xb [Xg/m[ .Xb [Xr/n. That it holds is clear from diagram (3-6),
since ˆmjnsu is full by Corollary 3.8.

Faithful Again it suffices to verify faithfulness for morphisms between objects of
the form Ek 2 XmCn. Given any web u 2 HomN–Websort

gr
. Ek; El/ for Ek 2 XmCn and

El 2Xm0Cn0 , we can compose u from the bottom and the top with merges and splits,
respectively, to obtain

u0 D
� � �

� � �

� � �

� � �
u

lm0Cn0

kmCn

l1

k1

lm0

km

lm0C1

kmC1

� � �

� � �

� � �

� � �

1 1

1 1

1 1

1 1

Recall that exploding edges is, by (2-7), a reversible operation. Hence, we have

�sort
N .u/D �sort

N .v/ if and only if �sort
N .u0/D �sort

N .v0/;

Algebraic & Geometric Topology, Volume 17 (2017)



Super q–Howe duality and web categories 3735

which together with Corollary 2.16 reduces the verification of faithfulness to the
case where all web edges are black or green. Such webs lie in �11 .N–WebCKM/ and
faithfulness follows as in the proof of Lemma 3.13.

3.3 Proofs of the equivalences

Remark 3.16 Recall that the universal R–matrix for glN gives a braiding on the
category glN –Modes as follows (see eg [29, Chapter XI, Sections 2 and 7]). For any
pair of Uq.glN /–modules V and W in glN –Modes , let PermV;W W V ˝W !W ˝V
be the permutation PermV;W .v˝w/D w˝ v and define ˇRV;W D PermV;W ıR . We
scale ˇRV;W as

žR
V;W D q�

kl
N ˇRV;W

whenever V and W are exterior or symmetric power Uq.glN /–modules of exponent
k and l , respectively. This induces a scaling žRV;W of ˇRV;W for all Uq.glN /–modules
V;W 2 glN –Modes . Then .glN –Modes; žR�;�/ is a braided monoidal category.

The goal of this subsection is to finally prove our main theorems. To this end, we
extend (3-6) to a diagram

(3-8)

PUq.glmjn/
ˆ
mjn
su
//

‡
mjn
su &&

glN –Modsort
es
� � �alg

// glN –Modes

N–Websort
gr

�sort
N

OO

� �

�dia
// N–Webgr

�N

OO

where �alg and �dia are the evident inclusions of full subcategories. We will define the
functor �N such that the diagram (3-8) commutes.

Definition 3.17 (The diagrammatic presentation functor �N ) We define a functor
�N W N–Webgr! glN –Modes as follows:

� On objects, �N sends an object Ek 2XL of N–Webgr to the tensor product of
exterior and symmetric powers of CN

q specified by the entries of Ek ; green and
red integers encode exterior and symmetric powers respectively, and a black
entry 1 corresponds to CN

q itself.
� On morphisms, for an object Ek 2 XL let w. Ek/ 2 SL be a shortest length

permutation that sorts green integers in Ek to the left of red integers. We define �N
on an arbitrary web u 2HomN–Webgr.

Ek; El/ by precomposing and postcomposing
with elementary crossings and the universal R–matrix intertwiners:

�N .u/D . žR
w.El//

�1 ı�sort
N .ˇ�

w.El/ ıu ı .ˇ
�
w. Ek//

�1/ ı žR
w. Ek/:

Clearly, �N restricts to �sort
N . Þ
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Lemma 3.18 �N W N–Webgr! glN –Modes is a monoidal functor making (3-8) com-
mutative.

Proof By Lemma 3.12 and the fact that ˇ��;� and žR�;� are braidings (see Proposition 2.22
and Remark 3.16), we see that �N is well-defined. That �N is monoidal and
makes (3-8) commutative is clear from its construction.

Proposition 3.19 The functor �N W .N–Webgr; ˇ
��;�/! .glN –Modes; žR�;�/ is a functor

of braided monoidal categories.

Proof By Lemma 3.18, it remains to verify

�N .ˇ
�
Ek˝El/D ž

R

�N . Ek/;�N .El/
for all objects Ek and El of N–Webgr:

The green–red symmetry and the fact that the mixed crossings are defined via the
monochromatic crossings, together with Corollary 2.24, reduce this problem to the
situation studied in [3, Theorem 6.2.1 and Lemma 6.2.2]. It remains to show

�N .ˇ
g
1;1/D �N .ˇr1;1/D �sort

N .ˇ
g
1;1/D �sort

N .ˇr1;1/D žRCNq ;CNq :

This follows since �sort
N .ˇ

g
1;1/D �sort

N .ˇr1;1/ acts on

CN
q ˝CN

q Š
V2
q.C

N
q /˚Sym2q.C

N
q /

as �q�1 on the first summand and as q on the second (see Example 2.18).

Theorem 3.20 (The diagrammatic presentations) The functor

�N W .Mat.N–Webgr/; ˇ
��;�/! .glN –Modes; žR�;�/

is an equivalence of braided monoidal categories.

Proof By Proposition 3.19, �N extends to a braided monoidal functor on the additive
closure and it remains to show that �N is essentially surjective, full and faithful.

Essentially surjective This follows directly from the definitions; see also Remark 3.14.

Full and faithful As before, it suffices to verify this on morphisms between objects
of the form Ek 2XL. Consider the commuting diagram

glN –Modsort
es glN –Modes

!R
oo

N–Websort
gr

�sort
N

OO

N–Webgr

�N

OO

!�
oo
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where !R and !� are the functors that order f 2 HomglN –Modes.�N .
Ek/; �N .El// and

webs u 2 HomN–Webgr.
Ek; El/ by using the R–matrix braiding žR�;� and the braiding ˇ��;� ,

respectively, via a permutation of shortest length. Since sorting is invertible, we get

dim
�
HomglN –Modes.�N .

Ek/; �N .El//
�
D dim

�
HomglN –Modsort

es

�
�sort
N .!�. Ek//; �sort

N .!�.El//
��

D dim
�
HomN–Websort

gr
.!�. Ek/; !�.El//

�
D dim.HomN–Webgr.

Ek; El//;
where the second equality follows from Proposition 3.15.

Remark 3.21 For now we restrict ourselves to working with webs with only upward-
oriented edges. Downward-oriented edges, as for example in [3], can be used to
represent the duals of the Uq.glN /–modules

Vk
qCN

q and SymlqCN
q . With respect to

such an enriched web calculus, the statement of Theorem 3.20 extends to an equivalence
of pivotal categories; see [23, Section 6] and Remark 5.12.

Let LH denotes the monoidal, Cq –linear category obtained from the collection H1.q/
of Iwahori–Hecke algebras as follows. The objects e and e0 of LH are tensor prod-
ucts of Iwahori–Hecke algebra idempotents corresponding to ecol.�/ and erow.�/ (as
in Definition 2.26) under the isomorphism in Lemma 2.25. The morphism spaces are
given by Hom LH .e; e

0/D e0H1.q/e . The category LH is braided with braiding žH�;�
induced from H1.q/.

Theorem 3.22 (The diagrammatic presentation) For large N the functors �N stabi-
lize to a functor

�1W .Mat.1–Webgr/; ˇ
��;�/! .Mat. LH /; žH�;� /;

which is an equivalence of braided monoidal categories.

Proof By Schur–Weyl duality (2-14) and by the construction of the categories
N–Webgr as quotients of 1–Webgr , we have quotient functors �N1 and �N for
N 2 Z�0 such that

(3-9)

Mat. LH /
�N

// glN –Modes

Mat.1–Webgr/
�N1
//

�1

OO

Mat.N–Webgr/

�N

OO

commutes. Here the functor �1 is an idempotented version of the inverse of the
isomorphism ˆ1qSW from Lemma 2.25.
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Fix two objects Ek 2 XL and El 2 XL of 1–Webgr and suppose that N is greater
than the sum of the integer values of the entries of Ek (ignoring their colors). Then,
by (2-14), Theorem 3.20, the commutativity of (3-9) and the fullness of �N1 , we have

dim
�
Hom LH .�1. Ek/; �1.El//

�D dim
�
HomglN –Modes

�
�N .�1. Ek//; �N .�1.El//

��
D dim

�
HomN–Webgr.�

N1. Ek/; �N1.El//
�

D dim.Hom1–Webgr.
Ek; El//:

�1 is clearly essentially surjective and a braided monoidal functor, and the theorem
follows.

4 Applications

In this section we write LD for diagrams of framed, oriented links L, bKD for diagrams
of braids in K strands and xbKD for closures of such braid diagrams. We consider
labelings of the connected components of L and of braids by Young diagrams �i. If
L is a d –component link, then we write L.E�/ for its labeling by a vector of Young
diagrams E�D .�1; : : : ; �d /, and use an analogous notation for labeled link and braid
diagrams. If not mentioned otherwise, then all appearing links and related concepts are
assumed to be framed and oriented from now on.

Let LD.E�/D xbKD .E�/ be a diagram of a framed, oriented, labeled link given as a braid
closure. The following process associates to bKD .

E�/ an element pK0.zbK0D /eq.E�/ of
HK0.q/Š End1–Webgr.

EK 0/:

�i

�i 2ƒC.Ki /

cable��! � � �
Ki strands

pKi . � /���! pKi

 
� � �

Ki strands

!
eq.�

i /D
� � �

� � �
eq.�

i /

1 1 1 1

1 1 1 1

where the last equality follows from Lemma 2.25 and we write pKi for the Iwahori–
Hecke algebra representation of the braid group on Ki strands. The first step replaces
strands labeled by a Young diagram �i with Ki nodes in the braid diagram bKD by
Ki parallel strands. This results in a new braid zbK0D , where K 0 indicates the number
of strands. In the second step this cabled braid is interpreted as an element of the
Iwahori–Hecke algebra, or, equivalently, as a web in 1–Webgr , with an idempotent
eq.�

i / placed on the cable of each previously �i labeled strand.

4.1 The colored HOMFLY–PT polynomial via 1–Webgr

In this subsection we work over the ground field Ca;q DCq.a/, with a being a generic
parameter. We will use the Ca;q –valued Jones–Ocneanu trace tr. � / on the direct sum
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of all Iwahori–Hecke algebras H1.q/D
L
K2Z�0HK.q/. The definition of tr. � / can

be found in [13, Section 5] (which can be easily adapted to our notation). We will use
it in the form of the following lemma.

Lemma 4.1 Given a web u 2 End1–Webgr.
EK/,

tr.u/D u

1

1

1

1

:::

� � � � � �

:::

� � � � � �
2Ca;q;

where the closed diagram can be evaluated by using the relations in 1–Webgr and,
additionally,

(4-1) 1 D a� a�1
q� q�1 ;

1

1

2

1

D aq�1� a�1q
q� q�1

1

1

Proof By Proposition 2.15 and Corollary 2.13: any given web u 2 End1–Webgr.
EK/

can be expressed using black or green edges with labels at most 2. Using Lemma 2.25
and additionally [24, Section 4.2], where Rasmussen’s singular crossings correspond to
green dumbbells with label 2, provides the statement. Note that Rasmussen’s relations
II and III are already part of our diagrammatic calculus.

Definition 4.2 (The colored HOMFLY–PT polynomial) Let LD.E�/ D xbKD .E�/ be a
diagram of a framed, oriented, labeled link L.E�/ given as a braid closure.

The colored HOMFLY–PT polynomial of L.E�/, denoted by Pa;q.L.E�//, is defined via

Pa;q.L.E�//D tr.pK0.zbK0D /eq.E�// 2Ca;q;

where eq.E�/ is a tensor product of the eq.�i /, as described above. Þ

This polynomial is independent of all choices involved and an invariant of framed,
oriented, colored links. Up to different conventions, this is shown for example in [17,
Corollary 4.5].
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Remark 4.3 In fact, Definition 4.2 gives the framing dependent, unnormalized version
of the colored HOMFLY–PT polynomial. As usual, the polynomial can be normalized
by fixing the value of the unknot to be 1 (instead of .a� a�1/=.q � q�1/ as in our
convention) and one can get rid of the framing dependence by scaling with a factor
coming from Reidemeister 1 moves; see for example [13, Definition 6.1]. We suppress
these distinctions in the following.

Note that Lemma 4.1 provides a method to calculate the colored HOMFLY–PT polyno-
mials Pa;q. � / using the web category 1–Webgr .

Proposition 4.4 (The colored HOMFLY–PT symmetry) We have

Pa;q.L.E�//D .�1/cPa;q�1.L.E�T//;

where E�T D ..�1/T; : : : ; .�d /T/ and c is the sum of the number of nodes in the �i for
1� i � d .

This symmetry is not new: it can be deduced from [19, Section 9] and has been studied
in [18; 6, Proposition 4.4]. In our framework it follows directly from the green–red
symmetry in 1–Webgr .

Proof We only give a proof for the case of knots K . The proof for links is analogous,
but the notation is more involved. We denote by Igr the involution on 1–Webgr

given by the green–red symmetry, and by Iq the involution on Ca;q which inverts the
variable q .

Claim For u 2 End1–Webgr.
EK/ we have

(4-2) tr.u/D .�1/KIq
�
tr.Iq.Igr.u///

�
:

It suffices to prove tr.u/D .�1/KIq.tr.Igr.u/// in the case where u is a primitive web
(a morphism that consists of a single web with coefficient 1, which is thus invariant
under Iq ). In Lemma 4.1 we have met evaluation relations for monochromatic green
webs of edge label at most 2, but clearly analogous relations can be derived for red and
mixed webs. In fact, all necessary evaluation relations are invariant under Igr and Iq ,
except the two relations in (4-1). The circle relation is Igr –invariant, but acquires a sign
under Iq . The following computation shows that the green and red bubble relations
also respect (4-2):
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1

1

2

1

(2-9)D Œ2�

1

1

1

�

1

1

2

1

D aq� a�1q�1
q� q�1

1

1

q$q�1 ��!�

1

1

2

1

We note that in the computation of tr.u/ via Lemma 4.1 strands can only be removed
by circle moves and bubble moves. Both of these acquire a sign under Iq , which causes
the factor .�1/K in (4-2). This proves the claim.

Let bKD be a braid diagram that closes to a diagram of K and suppose that K is labeled
by a Young diagram � of with L nodes. Let zbKLD be the L–fold cable of the braid
diagram bKD .

Now we have

Pa;q.K.�//D tr.pKL.zbKLD /eq.�/
˝K/

D .�1/KLIq
�
tr
�
Iq.Igr.pKL.zbKLD /eq.�/

˝K//
��

D .�1/KLCcrL2Iq.tr.pKL.zbKLD /eq.�
T/˝K//D .�1/LPa;q�1.K.�T//;

where cr is the number of crossings of bKD . Here we have used (4-2) and that
IqIgr acts as �1 on black crossings — see Example 2.18 — while sending eq.�/ to
eq.�

T/ plus a commutator (which is zero in the trace), see Lemma 2.28. Moreover,
.�1/KLCcrL2 D .�1/L since cr�K � 1 mod 2 as bKD closes into a knot.

4.2 The colored slN –link polynomials via the categories N–Webgr

Recall that the colored Reshetikhin–Turaev slN –link polynomial RT qN ;q.L.E�// are
determined by the corresponding colored HOMFLY–PT polynomials Pa;q.L.E�// by
specializing aD qN. Alternatively, they can be computed directly inside the categories
N–Webgr from a framed, oriented, labeled link diagram as follows:

� First we replace all �–labeled strands in the link diagram by cables equipped
with the diagrammatic idempotent eq.�/, written in monochromatic green webs.

� The resulting diagram will contain downward-oriented green edges of label k ,
which we replace by upward-oriented green edges of label N�k . Simultaneously,
caps and cups are replaced by splits and merges

k N�k

D
N

k N�k

;

k N�k

D
N

k N � k
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� The result is a morphism in N–Webgr between objects consisting only of entries
0 and Ng . It follows from Theorem 3.20 that this Hom–space is one-dimensional.
Thus, the framed, oriented, labeled link diagram determines a polynomial, which
is the desired colored Reshetikhin–Turaev slN –link polynomial.

Recall from Remark 1.1 that this approach relies on the fact that slN –Modes contains
the duality isomorphisms

Vk
qCN

q Š
�VN�k

q CN
q

��. In Remark 5.12 we sketch how to
include duals in diagrammatic presentations of glN –Modes and glN jM–Modes and,
thus, to compute the corresponding Reshetikhin–Turaev glN or glmjn–link invariants.

5 Generalization to webs for glN jM

We now give a diagrammatic presentation of glN jM–Modes , the (additive closure of
the) braided monoidal category of Uq.glN jM /–modules tensor generated by the exteriorVk
qCN jM

q and the symmetric SymlqCN jM
q powers of the vector representation CN jM

q

of Uq.glN jM /. The diagrammatic presentation is given by the following quotient of
1–Webgr .

Definition 5.1 The category N jM–Webgr is the quotient category obtained from
1–Webgr by imposing the not-a-hook relation, that is,

eq.boxNC1;MC1/D 0;
where boxNC1;MC1 is the box-shaped Young diagram with N C 1 rows and M C 1
columns. Þ

Note that N jM–Webgr inherits the braiding ˇ��;� from 1–Webgr .

Example 5.2 If we take M D 0, then boxNC1;1 is a column Young diagram with
NC1 nodes and the corresponding not-a-hook relation is just the exterior relation (2-10).
In this case we have that N j0–Webgr is N–Webgr and glN j0–Modes is isomorphic to
glN –Modes . G
Example 5.3 If we take M DN D 1, then we have

zeq.box2;2/D zeq
� �

D 1

Œ2�4

1 1 1 1

1 1 1 1

2

2

2

2
D� 1

Œ2�4

1 1 1 1

1 1 1 1

2

2

2

2

2 D 1

Œ2�4

1 1 1 1

1 1 1 1

2

2

2

2

2
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It is easy to see that eq.box2;2/ D 0 is equivalent to the relations [27, (3.3.13a)
and (3.3.13b)], [9, Section 3.6] and [23, Corollary 6.18], which are used to describe
the “purely exterior” representation category gl1j1–Mode . This category could be
presented as monochromatic green subcategory of 1j1–Webgr , defined analogously as
in Definition 2.7. G

To prove that N jM–Webgr gives a diagrammatic presentation of glN jM–Modes , we use
a version of super q–Howe duality between Uq.glmjn/ and Uq.glN jM /. For this, we
say a dominant integral glmjn–weight � is .mjn;M jN/–supported if it corresponds to
a Young diagram which is simultaneously an .mjn/–hook as well as an .M jN/–hook.9

Theorem 5.4 (Super q–Howe duality, super–super version) We have the following:

(a) Let K 2Z�0 . The actions of Uq.glmjn/ and Uq.glN jM / on
VK
q .C

mjn
q ˝CN jM

q /

commute and generate each others commutant.

(b) There exists an isomorphismV�
q.C

mjn
q ˝CN jM

q /Š .V�qCN jM
q /˝m˝ .Sym�qCN jM

q /˝n

of Uq.glN jM /–modules under which the Ek–weight space of
V�
q.C

mjn
q ˝CN jM

q /

(considered as a Uq.glmjn/–module) is identified with

VEk0
q CN jM

q ˝Sym
Ek1
q CN jM

q DVk1
q CN jM

q ˝ � � �˝Vkmq CN jM
q ˝SymkmC1q CN jM

q ˝ � � �˝SymkmCnq CN jM
q :

Here Ek D .k1; : : : ; kmCn/, Ek0 D .k1; : : : ; km/ and Ek1 D .kmC1; : : : ; kmCn/.
(c) As Uq.glmjn/˝Uq.glN jM /–modules, we have a decomposition of the formVK

q .C
mjn
q ˝CN jM

q /Š
M
�

Lmjn.�/˝LN jM .�T/;

where we sum over all .mjn;M jN/–supported glmjn–weights � whose entries
sum up to K . This induces a decompositionV�

q.C
mjn
q ˝CN jM

q /Š
M
�

Lmjn.�/˝LN jM .�T/;

where we sum over all .mjn;M jN/–supported glmjn–weights �.

9This is really intended to be .M jN/ .
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Proof As before, (a) and (c) are proven in [23, Theorem 4.2] and only (b) remains
to be verified. This works similarly as in the proof of Theorem 3.6 and is left to the
reader. For a nonquantized version see [28, Proposition 2.2].

In the statement of this theorem,
Vk
qCN jM

q , SymlqCN jM
q and

VK
q .C

mjn
q ˝CN jM

q / are
defined similarly as in Section 3.1; see also [23, Section 3]. As before we then get:

Corollary 5.5 There exists a full functor ˆmjnsu W PUq.glmjn/! glN jM–Modes , which
we again call the super q–Howe functor, given on objects and morphisms by

ˆmjnsu . Ek/DVEk0
q CN jM

q ˝Sym
Ek1
q CN jM

q ; ˆmjnsu .1El x1 Ek/D f
El
Ek .x/:

Everything else is sent to zero.

In what follows, we denote by PUq.glmjn/�0 the quotient of PUq.glmjn/ obtained by
killing all glmjn–weights with negative entries.

Corollary 5.6 The super q–Howe functor ˆmjnsu from Corollary 5.5 induces an algebra
epimorphism (denoted by the same symbol) as in the diagram:

PUq.glmjn/�0 Š
//

ˆ
mjn
su
����

L
.mjn/–
hooks �

EndCq .Lmjn.�//

�

����

EndUq.glN jM /
�V�

q.C
mjn
q ˝CN jM

q /
�
Š
//
L
.mjn;M jN/–

supported �
EndCq .Lmjn.�//

Under Artin–Wedderburn decompositions, ˆmjnsu corresponds to an algebra epimor-
phism � , which acts on the summand EndCq .Lmjn.�// either as an isomorphism or as
zero, depending on whether the Young diagram � is .mjn;M jN/–supported or not.

Proof First, note that by Theorem 3.22, PUq.glmjn/�0 is isomorphic to LH sort
mCn , the

sorted version of LH with exactly m exterior strands and n symmetric strands. The
Artin–Wedderburn decomposition in the top row of the diagram is then given in [21,
Theorem 5.1]. The bottom Artin–Wedderburn decomposition follows directly from
part (c) of Theorem 5.4.

Remark 5.7 We obtain from Corollary 5.6 an alternative proof of the presentation of
the q–Schur superalgebra Sq.N jM;K/Š EndHK.q/..C

N jM
q /˝K/ from [5, Theorem

3.13.1].
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Lemma 5.8 Under the correspondence

LH sort
mCn

Š ! PUq.glmjn/�0 Š !
M

.mjn/–hooks �

EndCq .Lmjn.�//;

the kernel of the super q–Howe functor ˆmjnsu from Corollary 5.5 is given by the tensor
ideal Ibox in LH sort

mCn generated by the primitive idempotent eq.boxNC1;MC1/.

Proof From the right isomorphism we know that the kernel of ˆmjnsu is gener-
ated by all eq.�T/ where � is an .mjn/–hook, but not an .M jN/–hook. Every
such � corresponds to a simple Uq.glN jM /–module which appears in a tensor product
LN jM ..boxNC1;MC1/T/˝ .CN jM

q /˝K for some K 2 Z�0 . Accordingly, eq.�T / is
contained in the ideal Ibox .

Proposition 5.9 There is an equivalence of categories

Mat.N jM–Websort
gr /Š glN jM–Modsort

es :

Proof Lemma 5.8 shows that the sorted web category N jM–Websort
mCn , in which

webs have m green and n red boundary points both on the bottom and on the top, is
equivalent to EndUq.glN jM /

�V�
q.C

mjn
q ˝CN jM

q /
�
, considered as a category. Via the

PUq.glmjn/–weight space decomposition in Theorem 5.4(b), N jM–Websort
mCn gives a

presentation of the morphism spaces in glN jM–Modsort
es between objects of the formVk1

q CN jM
q ˝ � � �˝Vkmq CN jM

q ˝SymkmC1q CN jM
q ˝ � � �˝SymkmCnq CN jM

q :

Any object in glN jM–Modsort
es is a formal sum of such objects for suitable m; n 2Z�0 ,

and the conclusion follows.

Remark 5.10 Recall that glN jM–Modes is a braided monoidal category, where the
braiding ˇR�;� is given by the universal R–matrix for glN jM ; see [32]. As before, we use
a rescaled braiding žR�;� , where we follow the conventions from [23, (3.12)] except that
we substitute q by q�1 in their formulas. In particular, žR

CN jMq ;CN jMq

acts as �q�1
on

V2
qCN jM

q and as q on Sym2qCN jM
q .

Theorem 5.11 (The diagrammatic presentation) There is an equivalence of braided
monoidal categories

.Mat.N jM–Webgr/; ˇ
��;�/Š .glN jM–Modes; ˇ

R�;�/:
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Proof The equivalence from Proposition 5.9 can be extended to a monoidal functor
between the categories Mat.N jM–Webgr/ and glN jM–Modes as in Definition 3.17.
We can also copy the proof of Proposition 3.19, where we use Remark 5.10 to prove
that this functor respects the braiding. Equivalence via this functor follows then as
in Theorem 3.20.

Remark 5.12 In [23, Section 6] the authors show how to extend a diagrammatic
presentation of glN jM–Mode to diagrammatically encode the full subcategory of
Uq.glN jM /–modules tensor generated by exterior powers and their duals. Graphically,
this involves the introduction of additional objects corresponding to the duals of exterior
powers, downward-oriented edges (to represent identity morphisms on duals) and cap
and cup webs (which represent coevaluation and evaluation morphisms). Additional
web relations including analogues of (4-1) are introduced to encode basic relationships
between exterior powers and their duals. The extension of the diagrammatic presentation
to include duals is then tautological and [23, Theorem 6.5 and Proposition 6.16] show
that the extended presentation functor is fully faithful.

They further show in [23, Proposition 6.15] that their graphical calculus allows the
computation of the Reshetikhin–Turaev glN jM –tangle invariants for tangles labeled
with exterior powers of the vector representation.

The same spiderization strategy — with minimal changes in proofs — gives an exten-
sion of our diagrammatic presentation N jM–Webgr of glN jM–Modes to one for the
full subcategory of Uq.glN jM /–modules tensor generated by exterior and symmetric
powers and their duals. This spiderized green–red web category directly allows the
computation of Reshetikhin–Turaev glN jM –tangle invariants for tangles labeled with
exterior as well as symmetric powers of the vector representation. The cabling strategy
from Section 4 can then be used to compute these invariants with respect to arbitrary
irreducible representations.

Lastly, we have a direct consequence of the discussion in this section and Proposition 4.4.
It is based on the facts that N jM–Webgr is defined as a quotient of 1–Webgr and
that the spiderization in [23, Section 6] respects the specialization aD qN�M of the
relations (4-1), which are sufficient to compute colored HOMFLY–PT polynomials of
braid closures.

Corollary 5.13 We have:

(1) The Reshetikhin–Turaev glN jM –tangle invariant of a labeled tangle depends
only on N �M. In the case of a labeled link, it agrees with the specialization
aD qN�M of the corresponding colored HOMFLY–PT polynomial.
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(2) The green–red symmetry on 1–Webgr descends to a symmetry between the
categories N jM–Webgr and M jN –Webgr . Hence, there is a symmetry between
the representation categories of Uq.glN jM / and Uq.glM jN / that transposes
Young diagrams indexing irreducibles.

(3) The symmetry of HOMFLY–PT polynomials described in Proposition 4.4 is a
stabilized version of the symmetry between colored Reshetikhin–Turaev glN jM –
link invariants and glM jN –link invariants which transposes Young diagrams and
inverts q .

This confirms decategorified analogues of predictions about relationships between
colored HOMFLY–PT homology and conjectural colored glN jM –link homologies;
see [7].

References
[1] A K Aiston, H R Morton, Idempotents of Hecke algebras of type A , J. Knot Theory

Ramifications 7 (1998) 463–487 MR

[2] A Berenstein, S Zwicknagl, Braided symmetric and exterior algebras, Trans. Amer.
Math. Soc. 360 (2008) 3429–3472 MR

[3] S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math.
Ann. 360 (2014) 351–390 MR

[4] S-J Cheng, W Wang, Howe duality for Lie superalgebras, Compositio Math. 128
(2001) 55–94 MR

[5] H El Turkey, J R Kujawa, Presenting Schur superalgebras, Pacific J. Math. 262 (2013)
285–316 MR

[6] N Geer, B Patureau-Mirand, On the colored HOMFLY–PT, multivariable and
Kashaev link invariants, Commun. Contemp. Math. 10 (2008) 993–1011 MR
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Uniform fellow traveling between surgery paths
in the sphere graph

MATT CLAY

YULAN QING

KASRA RAFI

We show that the Hausdorff distance between any forward and any backward surgery
paths in the sphere graph is at most 2 . From this it follows that the Hausdorff distance
between any two surgery paths with the same initial sphere system and same target
sphere system is at most 4 . Our proof relies on understanding how surgeries affect
the Guirardel core associated to sphere systems. We show that applying a surgery is
equivalent to performing a Rips move on the Guirardel core.

20E36

1 Introduction

We study surgery paths in the sphere graph. Let M be the connected sum of n copies of
S1�S2 (we reserve the notation M for the universal cover of M, which is used more
frequently in the body of the paper). The vertices of the sphere graph are essential sphere
systems in M and edges encode containment (see Section 2 for precise definitions). We
denote the sphere graph by S and the associated metric with dS . It is known that the
sphere graph .S; dS/ is hyperbolic in the sense of Gromov [11; 16]. The relationship
between the optimal hyperbolicity constant and the rank of the fundamental group
of M (which is isomorphic to Fn , the free group of rank n) is unknown.

Given a pair of (filling) sphere systems S and †, there is a natural family of paths,
called surgery paths, connecting them. They are obtained by replacing larger and larger
portions of spheres in S with pieces of spheres in †. This process is not unique.
Also, families of paths that start from S with target † are different from those starting
from † with target S . It follows from Hilion and Horbez [16] that surgery paths are
quasigeodesics. Together with the hyperbolicity of the sphere graph, this implies that
different surgery paths starting with S and with target † have bounded Hausdorff
distance in the sphere graph. The bound depends on the optimal hyperbolicity constant,
which, as stated above, does not have a good qualitative estimate.
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However, in this paper we show that, in any rank, any two surgery paths are within
Hausdorff distance at most 4 of each other. This follows by comparing a surgery path
that starts from S with target † to a surgery path starting from † with target S .

Theorem 1.1 Let S and † be two filling sphere systems and let

S D S1;S2; : : : ;Sm; dS.Sm; †/� 1;

be a surgery sequence starting from S towards † and

†D†1; †2; : : : ; †�; dS.†�;S/� 1;

be a surgery sequence in the opposite direction. Then, for every Si there is a †j such
that dS.Si ; †j /� 2.

Using this, we get the bound of 4 between paths with the same initial sphere system
and same target sphere system.

Theorem 1.2 Let S and † be two filling sphere systems and let

S D S1;S2; : : : ;Sm; dS.Sm; †/� 1;

S D S 01;S
0
2; : : : ;S

0
n; dS.S

0
n; †/� 1;

be two surgery sequences starting from S towards †. Then, for every Si there is an
S 0j such that dS.Si ;S

0
j /� 4.

Proof Fix two filling sphere systems S and † and surgery paths as in the statement
of the theorem. Let

†D†1; †2; : : : ; †�; dS.†�;S/� 1;

be a surgery sequence starting at † towards S . Given Si , by Theorem 1.1, there is a
†k such that dS.Si ; †k/� 2. Applying Theorem 1.1 again, there is an S 0j such that
dS.†k ;Sj /� 2. Thus dS.Si ;S

0
j /� 4, as desired.

The sphere graph is a direct analogue of the graph of arcs on a surface with boundary.
In fact, there is an embedding of the arc graph into the sphere graph. The arc graph
is known to be uniformly hyperbolic; see Aougab [1], Bowditch [5], Clay, Rafi and
Schleimer [6], Hensel, Przytycki and Webb [15] and Przytycki and Sisto [19]. Since
the solutions of many algorithmic problems for mapping class groups or hyperbolic
3–manifold that fibers over a circle rely on the action of mapping class group on various
curve and arc complexes, the uniform hyperbolicity clarifies which constant depend
on the genus and which ones are genus-independent. The uniform hyperbolicity of
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Uniform fellow traveling between surgery paths in the sphere graph 3753

the sphere graph (or one of the other combinatorial complexes associated to Out.Fn/)
is a central open question in the study of the group Out.Fn/, the group of outer
automorphisms of the free group. Note that Theorem 1.2 is not sufficient to prove that
the sphere graph is uniformly hyperbolic.

Summary of other results

The Guirardel core [10] is a square complex associated to two trees equipped with
isometric actions by a group, in our case Fn . This is an analogue of a quadratic
differential in the surface case; the area of the core is the intersection number between
the two associated sphere systems. Following Behrstock, Bestvina and Clay [3], in
Section 3, we describe how to compute the core using the change of marking map
between the two trees. Lemma 3.7 gives a simple condition on when a product of two
edges is in the core, which will be used in future work to study the core. Also, in
Section 4 we define the core for two sphere systems, Core.S ; †/, directly, using the
intersection pattern of the spheres and show this object is isomorphic to the Guirardel
core for the associated tree (Theorem 4.9). Much of what is contained in these two
sections is known to the experts, however, we include a self-contained exposition of
the material since it is not written in an easily accessible way in the literature.

Applying a surgery to a sphere system amounts to applying a splitting move to the
dual tree (see Example 5.6), however, not all splittings towards a given tree come
from surgeries. In general, applying a splitting move could change the associated core
in unpredictable ways potentially increasing the volume of the core. We will show
that (Theorem 5.5) applying a surgery is equivalent to performing a Rips move on the
Guirardel core. That is, there is a subset of all splitting paths between two trees that is
natural from the point of view of the Guirardel core and it matches exactly with the set
of splitting sequences that are associated to surgery paths.

Outline of the proof

Our proof of Theorem 1.1 analyses the Guirardel core Core.Si ; †j /. Generally, this
does not have to be related to Core.S ; †/. However, we show that, for small values
of i and j , the spheres Si and †j are still in normal form and Core.Si ; †j / can
be obtained from Core.S ; †/ via a sequence of vertical and horizontal Rips moves
(Proposition 5.8). For every i , there is a smallest j where this breaks down, which
is exactly the moment the surgery path from † to S passes near Si . The proof of
Theorem 1.1 is completed in Section 6: for every Si , apply enough surgery on † until
Core.Si ; †j / has a free edge, which implies dS.Si ; †j /� 2.
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2 Sphere systems and free splittings

Let M be the connected sum of n copies of S1�S2 and fix an identification of �1.M /

with Fn . There is a well-known correspondence between spheres in M and graph of
group decompositions of Fn with trivial edge groups. We explain this correspondence
now.

Definition 2.1 A sphere system S �M is a finite union of disjoint, essential (does not
bound a 3–ball), embedded 2–spheres in M. We specifically allow for the possibility
that a sphere system contains parallel, ie isotopic, spheres. A sphere system is filling if
each of the complementary regions M �S are simply connected.

We define a preorder on the set of sphere systems by S �† if every sphere in S is
isotopic to a sphere in †. This induces an equivalence relation: S �† if S �† and
†� S . The set of equivalence classes of sphere systems in M is denoted by S ; the
subset of equivalence classes of filling sphere systems is denoted by Sfill . When there
can be no confusion, we denote the equivalence class of S again by S .

The preorder induces a partial order on S that we continue to denote by �. The sphere
graph is the simplicial graph with vertex set S and edges corresponding to domination
S �†. For S ; † 2 S , we denote by dS.S ; †/ the distance between S and † in the
sphere graph. This is the fewest edges in an edge path between the two vertices.

We denote the universal cover of M by M and the lift of the sphere system S to M

by S ; we will refer to S as a sphere system in M . To simplify notation, we use S
and Sfill , respectively, to denote (equivalence classes of) sphere systems and filling
sphere systems, respectively, in M. Let Map.M /DHomeo.M /=homotopy . The natural
map

Map.M /! Out.Fn/

is surjective and has finite kernel generated by Dehn twists about embedded 2–spheres
in M [18]. Such homomorphisms act trivially on spheres systems and hence there is a
left action of Out.Fn/ by automorphisms on the sphere graph. Specifically, realize the
given outer automorphism by a homeomorphism of M and apply this homeomorphism
to the members of a given equivalence class of sphere systems.
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Definition 2.2 A free splitting G is a simplicial tree equipped with a cocompact action
of Fn by automorphisms (without inversions) such that the stabilizer of every edge is
trivial. We specifically allow for the possibility that a free splitting contains vertices of
valence two. A free splitting is filling if the stabilizer of every vertex is trivial.

We define a preorder on the set of free splittings by G �� if there is an Fn –equivariant
cellular map � ! G with connected point preimages. This induces an equivalence
relation G � � if G � � and � �G. The set of equivalence classes of free splittings
is denoted by X ; the subset of equivalence classes of filling free splittings is denoted
by Xfill .1 When there can be no confusion, we denote the equivalence class of G again
by G.

The preorder induces a partial order on X that we continue to denote by �. The free
splitting graph is the simplicial graph with vertex set X and edges corresponding to
domination G � � . For G; � 2 X , we denote by dX .G; �/ the distance between G

and � in the free splitting graph. This the fewest edges in an edge path between the
two vertices.

Suppose that G is a free splitting and let �W Fn!Aut.G/ be the action homomorphism.
Given ˆ 2 Aut.Fn/, the homomorphism � ı ˆW Fn ! Aut.G/ defines a new free
splitting, which we denote by G �ˆ. This defines a right action by Aut.Fn/ on the
free splitting graph. As Inn.Fn/ acts trivially, this induces an action of Out.Fn/ by
automorphisms on the free splitting graph.

There is a natural Out.Fn/–equivariant map from the sphere graph to the free splitting
graph. Given a sphere system S �M, we define a tree G with vertex set consisting of
the components of M �S and edges corresponding to nonempty intersection between
the closures of the components. The action of Fn on M induces a cocompact action
of Fn on G by automorphisms such that the stabilizer of every edge is trivial, ie G is
a free splitting. This map is a simplicial isomorphism [2, Lemma 2].

3 The Guirardel core

In this section we give the definition of Guirardel core of two trees as it is presented
in [10] specialized to the case of trees in Xfill .

3.1 A core for a pair of tree actions

A ray in G 2Xfill is an isometric embedding Er W RC!G. An end of G is an equivalence
class of rays under the equivalence relation of having finite Hausdorff distance. The
set of all ends is called the boundary of G and is denoted by @G.

1Experts may recognize Xfill as the vertices in the spine of the Culler–Vogtmann outer space [9].
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A direction is a connected component of G�fxg, where x is a point in G. A direction
ı�G determines a subset @ı�@G consisting of all ends for which every representative
ray intersects ı in a nonempty (equivalently unbounded) subset. Given an edge e �G,
we denote by Ee the edge with a specific orientation. This determines a direction ıEe �G

by taking the component of G�fxg that contains e , where x is the initial vertex of Ee .
We will denote by Ee1 � @1G the set of ends with a representative that crosses Ee with
the specified orientation, ie Ee1 D @ıEe .

A quadrant in G �� is the product ı1 � ı2 of two directions ı1 �G and ı2 � �.

Definition 3.1 Fix a basepoint .�1;�2/2G�� and consider a quadrant QD ı1�ı2�

G ��. We say that Q is heavy if there exists a sequence gk 2 Fn such that:

(1) .gk�1;gk�2/ 2Q.

(2) dG.gk�1;�1/!1 and d�.gk�2;�2/!1 as k!1.

Otherwise, we say that Q is light.

The core of G �� is what remains when one has removed the light quadrants.

Definition 3.2 (the Guirardel core) Suppose that G; � 2Xfill and let L.G; �/ be the
collection of light quadrants of G ��. The (Guirardel) core of G and � is the subset

Core.G; �/D .G ��/�
� [

Q2L.G;�/

Q

�
:

It follows from the definition that Core.G; �/ is isomorphic to Core.�;G/ via the
swap .x;y/ 7! .y;x/. For more details and examples, see [10; 3].

3.2 Computing the core

There is an algorithm to compute the core for trees G; � 2 Xfill . This suffices to
compute the core for any free splittings G0; �0 2 X . Indeed, if the given trees are not
filling, they can be “blown up” to filling trees G; � 2 Xfill by replacing vertices with
nontrivial stabilizer in the quotient graph of groups G0=Fn and �0=Fn with roses of
the appropriate rank. There are domination maps pW G!G0 and � W �! �0 and we
have that Core.G0; �0/D .p��/.Core.G; �//. This material appears in [3, Section 2]
with slightly different terminology and notation. We provide proofs of the most relevant
parts necessary for the sequel.

Definition 3.3 Suppose that G; � 2Xfill . An Fn –equivariant map f W G!� is called
a morphism if

Algebraic & Geometric Topology, Volume 17 (2017)
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(1) f linearly expands every edge across a tight edge path, and

(2) at each vertex of G there are adjacent edges e and e0 such that f .e/\f .e0/ is
trivial, ie there is more than one gate at each vertex.

Such a map f induces an Fn –equivariant homeomorphism f1W @G! @� . Indeed,
this follows by bounded cancellation; for instance see [7]. Next, we state the criterion
provided in [3] regarding the existence of squares in the core.

Lemma 3.4 [3, Lemma 2.3] Let f W G ! � be a morphism between G; � 2 Xfill .
Given two edges e �G and �� � , the square e� � is in the core Core.G; �/ if and
only if for every choice of orientations of the edges e and � the subset f1.Ee1/\ E�1
is nonempty.

This condition is very natural in the following way: Given a curve ˛ on a closed
surface X , each lift ˛ of ˛ to the universal cover X determines a partition of @X
(which is homeomorphic to S1 ) into two subsets ˛C and ˛� . For two curves ˛ and ˇ
on X that intersect minimally, lifts ˛ and ˇ to X intersect if and only if for every
choice of �;�0 2 fC;�g, the set ˛�\ˇ�0 is nonempty.

Using f , it is a simple matter to determine when this condition is met for a given pair
of edges. We discuss this now. By the interior of a simplicial subtree we mean all
nonextremal edges.

Definition 3.5 Suppose that G; � 2 Xfill , f W G! � is a morphism and � 2 � is an
edge. We let Pf� be the set of edges in G whose image under f traverses �. In other
words, Pf� is the set of edges containing f �1.�/. Since f is a morphism, by bounded
cancellation, the set Pf� is finite.

Let Hf� be the interior of the convex hull of Pf� and let �Pf� D Pf� �Hf� ; see Figure 1.
Notice that the interior of the convex hull of �Pf� is also Hf� . Suppose e 2Hf� and Ee
is an orientation of e . We say that Ee can escape Pf� if there is an embedded ray of the
form Ee � Er such that Er does not cross any edge of �Pf� . Define the consolidated convex
hull CHf� of Pf� to be the set of edges in e 2Hf� such that both orientations of e can
escape Pf� .

Lemma 3.6 For every vertex v 2 G there is a ray Er originating at v that is disjoint
from Pf� .

Proof If the lemma were false, then for every edge e adjacent to v the image f .e/
would contain the initial edge in the path connecting f .v/ to �. This violates condition
(2) in Definition 3.3.

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 1: A schematic of the sets Pf� (blue), �Pf� , Hf� (red) and CHf� (green)

The following simple condition tells exactly when a square is in the core.

Lemma 3.7 Let G; � 2Xfill , fix morphisms f W G! � and �W �!G and consider
a pair of edges e �G and �� � . The square e�� is in Core.G; �/ if and only if one
of the two following equivalent conditions holds:

� e � CHf� .

� �� CH�e .

Proof We prove the first of the two equivalent statements; the fact that they are
equivalent follows from the symmetry of the construction of the core. For simplicity,

Ee Ee0

Ee1

Eu0

Eu1

Eu2

Ev1

Figure 2: Rays Er0 (blue) and Er1 (red) witnessing e � CH� in Lemma 3.7
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we omit the superscript f on the various subsets from Definition 3.5 during the proof
of this lemma.

By Lemma 3.4, what needs to be shown is that e � CH� if and only if for each
orientation Ee of e and orientation E� of � there is a ray Er crossing Ee with the specified
orientation such that f1.Er / 2 E�1 .

First suppose that e � CH� and fix an orientation Ee on e ; see Figure 2. As e � CH� ,
there is a ray Er0 D Ee � Eu such that Eu is disjoint from �P� . Let e0 be the last edge on
Er0 that is in CH� and decompose Er0 D Eu0 � Ee0 � Eu1 where Eu0 may be trivial. It is easy
to verify that the ray Eu1 is disjoint from P� . As e0 �H� , there is a ray of the form
Ee0 � Eu2 , where Eu2 is not disjoint from P� . (It may be that Eu1 and Eu2 have nontrivial
intersection.) Let e1 be the first edge on Eu2 that is contained in P� and Ep the oriented
edge path from Ee to Ee1 . By Lemma 3.6, there is a ray Ev1 originating at the terminal
vertex of Ep that is disjoint from P� . Let Er1 D Ep � Ev1 . We now see that

#jEr1\P�j D #jEr0\P�jC 1:

Since Er0 and Er1 originate from the same vertex, their f1–images lie in E�1 for opposite
choices of orientation of �. By Lemma 3.4, this shows that e� �� Core.G; �/.

For the converse we suppose that e ª CH� . If, further, e ªH� , then there is a choice of
orientation Ee such that for every ray of the form Ee � Er , the ray Er misses P� . Therefore,
there is an orientation on �, say E�, such that f1.Ee1/\ E�1 D ∅. By Lemma 3.4,
e� �ª Core.G; �/.

Thus we can assume that e �H��CH� . Hence, there is a choice of orientation Ee that
cannot escape, ie for every ray form Ee � Er , the ray Er must contain some edge in �P� . By
Lemma 3.6, we see that each such ray Er can only contain a single edge of P� . Again,
there is an orientation on �, say E�, such that f1.Ee1/\ E�1 D ∅. By Lemma 3.4,
e� �ª Core.G; �/.

Since Core.G; �/ is defined without reference to the morphism f W G!� , Lemma 3.7
shows that CHf� and CH�e do not depend on the actual morphism used to compute
them. As such, we will drop the superscripts from these sets for the remainder.

4 Sphere systems and the core

In Section 2 we described an Out.Fn/–equivariant association between sphere systems
and free splittings respecting the notion of filling: .S;Sfill/$ .X ;Xfill/. In Section 3,
given a pair of free splittings G; � 2Xfill , we described how to construct their Guirardel
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core Core.G; �/. The goal of this section is, given a pair of filling sphere systems
S; † 2 Sfill , to construct a 2–dimensional square complex Core.S; †/. We then show
that when the pair of sphere systems .S; †/ is associated to the pair of free splittings
.G; �/ there is a Fn –equivariant isomorphism from Core.S; †/ ! Core.G; �/ of
square complexes. Moreover, this association is Out.Fn/–equivariant with respect to
the actions on Xfill and Sfill . This association is implicit in the proof of Proposition 2.1
in [17]. We explain the connection in more detail here and provide an alternative proof.
The in-depth description is necessary for understanding the effect of surgery on the
core that we describe in Section 5.

4.1 Hatcher’s normal form

Central to the understanding of sphere systems in M is Hatcher’s notion of normal form.
He originally defined normal form only with respect to a maximal sphere system † [12]
and extended this to filling sphere systems in subsequent work with Vogtmann [13].
We recall this definition now. The sphere system S is said to be in normal form with
respect to † if every sphere s 2 S either belongs to †, or intersects † transversely
in a collection of circles that split s into components called pieces such that for each
component …�M �† one has

(1) each piece in … meets each boundary sphere in @… in at most one circle, and

(2) no piece in … is a disk that is isotopic relative to its boundary to a disk in @….

Hatcher proved that a sphere system S can always be homotoped into normal form
with respect to the maximal sphere system † and that such a form is unique up to
homotopy [12; 13]. Hensel, Osajda and Przytycki generalized Hatcher’s definition of
normal form to nonfilling sphere systems and in a way that is obviously symmetric
with respect to the two sphere systems [14]. With their notion, two sphere systems S

and † are in normal form if for all s 2 S and � 2† one has

(1) s and � intersect transversely in at most one circle, and

(2) none of the disks in s� � is isotopic relative to its boundary to a disk in � .

These notions are equivalent when † is filling [14, Section 7.1].

4.2 A core for a pair of sphere systems

Suppose that S and † are filling sphere systems in M and that they are in normal
form. An S –piece is the closure of a component of S �†. Likewise, a †–piece is the
closure of a component of †�S . By piece, we mean either an S –piece or a †–piece
(this agrees with the use of “piece” in Section 4.1).
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Lemma 4.1 Suppose that X is the intersection of a component of M � S and a
component of M �†. Then:

(1) X is connected.

(2) @X is the union of S –pieces and †–pieces and moreover, different pieces are
subsets of different spheres.

(3) If Y is also the intersection of a component of M � S and a component of
M �†, then either X D Y , their closures are disjoint, or @X \ @Y is a piece.

Proof This follows from the description of normal form; the details are left to the
reader.

The first item in Lemma 4.1 implies that the intersection of a component of M �S

and a component of M �† is either empty or a component of M � .S [†/.

Definition 4.2 Suppose that S and † are filling sphere systems in M and that they
are in normal form. The core of S and †, denoted by Core.S; †/, is the square
complex defined as follows:

� Vertices correspond to components of M � .S [†/. Such a region corresponds
to the intersection of a component P �M �S and a component …�M �†.
We denote the vertex by .P;…/.

� There is an edge between two vertices when the closures of the corresponding
components of M � .S [†/ have nontrivial intersection. By Lemma 4.1, each
edge corresponds to a piece. If it is an S –piece, then it is the closure of s\… for
some sphere s 2 S and component …�M �†. We denote the edge by .s;…/.
Likewise, if it is an †–piece, then it is the closure of P \� for some component
P �M �S and sphere � 2†. In this case, we denote the edge by .P; �/.

� Suppose that s 2S and � 2† have nonempty intersection. Let P1;P2�M �S

be the components whose boundary contains s and let …1;…2 �M �† be
the components whose boundary contains � . Then four edges .s;…1/, .P1; �/,
.s;…2/ and .P2; �/ form the boundary of a square with vertices .P1;…1/,
.P2;…1/, .P2;…2/ and .P1;…2/, which is then filled in. The square is denoted
by s � � ; see Figure 3.

Remark 4.3 We always assume that S and † do not share a sphere. Otherwise
Theorem 1.1 is trivial. However, the core in this case would be disconnected and make
the exposition more complicated. There is a procedure to add diagonal edges resulting
in the augmented core, which is connected. See [10] for details.
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.P1;…1/.P2;…1/

.P1;…2/.P2;…2/

.s;…1/

.s;…2/

.P1; �/.P2; �/

�

s

Figure 3: Edges .s;…1/ , .P1; �/ , .s;…2/ and .P2; �/ form the boundary
of a square s � � .

Let G, � 2 Xfill be the free splittings corresponding to S and †, respectively. We will
show that the two notions of the core, Core.S; †/ and Core.G; �/, are isomorphic
as Fn –square complexes. We will do so by showing that their horizontal hyperplanes
agree. To this end we make the following definition:

Definition 4.4 The shadow of � 2† is the union of the edges e�G whose associated
sphere in S intersects � . We denote the shadow by Shadow.�/�G.

Observe that the shadow of � is isomorphic to the tree in � that is dual to the intersection
circles between � and S . Now will show how to relate the two definitions of the core.
We will make use of the following notion:

Definition 4.5 If G 2 X corresponds to a sphere system S 2 S , and �W G ,! M

is an Fn –equivariant embedding, we say �.G/ is dual to S if each sphere s 2 S

intersects exactly one edge of �.G/, namely the image of the corresponding edge, and
this intersection is transverse and a single point. We say that � is a dual embedding
( for S ).

It is a routine matter to construct a dual embedding for a given free splitting. We need
to show that we can make it in some sense normal to †.
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Lemma 4.6 There exists a dual embedding �W G ,!M for S such that, for each edge
e 2 G and sphere � 2 †, �.e/ and � are either disjoint or intersect transversely at a
single point in the interior of �.e/.

Proof Let �0W G ,!M be a dual embedding. By general position, we can assume
that �0.G/\S \†D∅ and that † is disjoint from the vertices of �0.G/.

Suppose that for some edge e � G, the image �0.e/ intersects some sphere in † in
more than one point. Let s 2 S be the sphere corresponding to e . Fix some innermost
pair of intersection points x;y 2 �0.e/ and let � 2† be the corresponding sphere. Let
I be the subsegment of �0.e/ with endpoints x and y .

Notice that any circle of intersection of S \ � that separates x and y in � must
correspond to a sphere s0 2 S such that s0 \ I ¤ ∅. Indeed, if not, since S and †
are in normal form, there would a loop consisting of I and an arc in � that intersects
some sphere in S exactly once. This is a contradiction as spheres in S are separating.

Therefore, there is an arc J � � that intersects exactly the same set of spheres of S

as I , which is either s or the empty set. We can then homotope I to J and continue
pushing in this direction to reduce the number of intersection points between �0.e/
and † by two. Equivariantly perform this process to obtain a new dual embedding
�1W G!M that has fewer Fn –orbits of intersect between the image of G and †.

Iterating this procedure we arrive at �W G!M as in the statement of the lemma.

If �W G ,!M is an Fn –equivariant embedding so that �.G/ is transverse to † we can
create a map k�W G! � by sending an edge e to the edge path in � corresponding to
the spheres in † crossed by �.e/.

Lemma 4.7 There exists a dual embedding �W G ,!M for S such that the associated
map k�W G! � is a morphism.

Proof Whenever a dual embedding �0W G ,! M satisfies Lemma 4.6, the image
of each edge e � G is a tight edge path in �. Thus the only way that such a dual
embedding �0W G!M fails to produce a morphism is if there is some vertex v 2G

with adjacent edges e1; : : : ; e` (oriented to have v as their initial vertex) and sphere
� 2† such that the first intersection point of �0.ei/\† lies in � for each i D 1; : : : ; `.
Arguing as in Lemma 4.6, we can equivariantly homotope �0 to locally reduce the
number of intersections between the image of G and † by pushing the image of v
across � and pushing subarcs of edges with both endpoints on � across � as well.

Iterating this procedure we arrive at �W G!M as in the statement of the lemma.
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A dual embedding �W G !M satisfying the conclusions of Lemmas 4.6 and 4.7 is
said to be normal to †.

Proposition 4.8 Suppose that S and † are filling sphere systems in M and that G

and � are the associated trees. Fix an edge �2� and let � 2† be the associated sphere.
If �W G ,!M is a dual embedding that is normal to †, then Shadow.�/D CH�DHk�

� .

Proof Suppose that �W G ,!M is a dual embedding that is normal to †. Let e �G

be an edge and s 2 S the sphere corresponding to e .

First suppose that e � Shadow.�/. Thus s\� is nonempty and, as the sphere systems
are in normal form, this intersection is a single circle. Let X be one of the four
components of M � .s[ �/. Decompose @X D d [ ı , where d is a subdisk of s and
ı is a subdisk of � .

We claim that ��1.X / � G contains an infinite subtree. Suppose otherwise; thus
��1.X / is a finite subforest T . At most one extremal vertex of T corresponds to an
intersection of �.e/ and s (which is in d ); the remaining extremal vertices correspond
to intersections of ı with edges in �.G/.

If T is empty or has some component contained in an edge of G then an innermost
disk of ı (with respect to the intersection circles ı \S ) is homotopic relative to its
boundary to a disk in S , violating the assumption that S and † are in normal form.
Otherwise, if for some component T0 � T we have that �.T0/ does not intersect s ,
then for any interior vertex of T , as we saw in the proof of Lemma 4.7, the map k�
only has one gate, violating the assumption that � is not normal.

Thus we may assume that T is connected and has some interior vertex v , which we
assume is adjacent to some extremal edge of T that is not contained in e . We label
the edges e0; e1; : : : ; e` adjacent to v , where �.ei/ intersects � for i D 1; : : : ; `. Let
si be the spheres of S corresponding to ei for i D 0; : : : ; `. Then � must be disjoint
from si for i D 1; : : : ; ` for otherwise there is a component of M � .si [ �/ whose
preimage in G contains a component that is contained in a single edge, which we
already ruled out. But in this case we have that � � s0 contains a disk isotopic relative
to its boundary to a disk in s0 , which again violates the assumption that S and † are
in normal form.

Hence we can find a ray Er starting with e such that �.Er/ is eventually contained in X .
Since X was arbitrary, this shows that for each orientation of Ee for e and E� for � we
can find a ray Er crossing Ee with the specified orientation such that k�.Er/ 2 E�1 . By
Lemma 3.4, we have that e� �� Core.G; �/ and so e � CH� by Lemma 3.7. Hence
Shadow.�/� CH� �Hk�

� .
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Now suppose that e �Hk�
� . Then, for each orientation Ee , there is a ray of the form Ee � Er

such that k�.Er/ intersects � and hence �.Er/ intersects � . Since s separates M and � is
connected, this shows that s intersects � , ie e�Shadow.�/. Hence Hk�

� �Shadow.�/,
completing the proof.

In other words, Proposition 4.8 states that Shadow.�/�G is the interior of the convex
hull of k�1

� .�/.

Recall the relation between a sphere system S and the corresponding free splitting G

mentioned in Section 2: vertices of G correspond to connected components M �S

and edges correspond to nonempty intersection between the closures of the components,
ie spheres in S . We can define a map Core.S; †/!G �� as follows:

� The image of a vertex .P;…/ is the vertex .v; �/ 2G��, where v is the vertex
corresponding to P �M �S and � is the vertex corresponding to …�M �†.

� The image of an edge .s;…/ is the edge .e; �/ � G ��, where e is the edge
corresponding to s 2 S and � is the vertex corresponding to … � M �†.
Likewise, the image of an edge .P; �/ is the edge .v; �/�G��, where v is the
vertex corresponding to P �M �S and � is the edge corresponding to � 2†.

� The image of the square s�� is e���G��, where e is the edge corresponding
to s 2 S and � is the edge corresponding to � 2†.

The following theorem is implicit in the proof of [17, Proposition 2.1]. There, Horbez
uses a characterization by Guirardel of the core as the minimal closed, connect, Fn –
invariant subset of G �� that has connected fibers [10, Proposition 5.1]. We avoid
using this characterization by using Lemma 3.7 and Proposition 4.8.

Theorem 4.9 If G; � 2 Xfill correspond to S; † 2 Sfill which do not share a sphere,
then the map Core.S; †/!G �� induces an Fn –equivariant isomorphism of square
complexes Core.S; †/! Core.G; �/.

Proof It is clear that the map is injective, Fn –equivariant and preserves the square
structure. We just need to show that the image is Core.G; �/. For each � 2 †, let
S�Dfs2S j s\�¤∅g. Notice that the edges in G corresponding to S� is Shadow.�/
by definition. We can decompose the core Core.S; †/ vertically into horizontal slices
C� D fs � � j s 2 S�g. Now fix a � and let � by the corresponding edges of �.
Then image of the strip C� is exactly the set of squares fe� � j e � Shadow.�/g. By
Proposition 4.8 we can also write this as fe � � j e � CH�g. By Lemma 3.7 we can
further write this as fe � � j e � �� Core.G; �/g. Hence the image of the map is as
claimed.
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5 Surgery and the core

The purpose of this section is to show how the core changes along a surgery path in
the sphere graph.

5.1 Surgery sequences

Suppose that S; † 2 S and assume that they are in normal form. We now describe a
path from S to † in S using a surgery procedure introduced by Hatcher [12]. It is
exactly these paths that appear in the main theorem of this paper.

Fix a sphere � 2† that intersects some spheres of S . The intersection circles define
a pattern of disjoint circles on � , each of which bounds two disks on � . Choose
an innermost disk ı in this collection, ie a disk that contains no other disk from this
collection, and let ˛ be its boundary circle. The sphere s 2S containing ˛ is the union
of two disks dC and d� that share the boundary circle ˛ . Briefly, surgery replaces the
sphere � with new spheres dC[ ı and d�[ ı . One problem that arises is that the new
sphere system and S are not in normal form. This happens when some innermost disk
ı0 in a sphere � 0 2† is parallel rel s to ı . To address this, we remove all such disks
at once, so that the resulting sphere system and S are in normal form (Lemma 5.1).

Let f˛ig
`
iDk

be the maximal family of intersection circles in s\† such that

(1) k � 0� `,

(2) ˛i � d� for i � 0 and ˛i � dC for i � 0 (this implies that ˛0 D ˛ ), and

(3) for k � i < `, the circles ˛i and ˛iC1 cobound an annulus Ai � s whose
interior is disjoint from †.

Related to these circles, we let fıig�iD� be the maximal family of innermost disks in †
such that

(1) � � 0� �,

(2) @ıi D ˛i , and

(3) for � � i < �, the sphere ıi [Ai [ ıiC1 bounds an embedded 3–ball, ie ıi and
ıiC1 are parallel rel s .

See Figure 4 for an example illustrating this set-up and notation.

Using this set-up we can now describe a surgery of S . Let ı� be a parallel copy of ı� rel
s such that @ı� and ˛� cobound an annulus whose interior is disjoint from † and A� .
Similarly let ıC be a parallel copy of ı� rel s such that @ıC and ˛� cobound an
annulus whose interior is disjoint from † and A� . Set yd� to be the subdisk of d� with
boundary @ı� and set ydC to be the subdisk of dC with boundary @ıC We get two new
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ı0

˛�1

ı�1

˛�2

ı�2

˛�3

ı�3

˛�4

dCd�

s

Figure 4: An example illustrating the curves f˛ig and the disks fıig . The
green sphere is s , its intersection with † is in black and the red disks are
the innermost disks in † . The small black box represents an obstruction to
isotoping the disk bounded by ˛2 to ı1 relative to s . In this example, �D�3

and �D 1 .

spheres s�D yd�[ ı� and sCD ydC[ ıC . We say that yS D .S �Fnfsg/[FnfsC; s�g

is obtained from S by performing a surgery on S with respect to †.

In what follows, it is important to record the history of the portions of the new spheres
and so we introduce notion to this effect. Suppose that yS is the result of a surgery of
S with respect to † and that ys 2 yS is (a translate of) one of the newly created spheres
s� D yd� [ ı� for � 2 fC;�g. We call d� the portion of ys from S ; denote it by ysS.
Similarly, we call ı� the portion of ys from †; denote it by ys†. Thus ys D ysS [ys†.
Notice that ysS � S and also that ys† is parallel rel s to a disk in †. For all other
spheres s 2 yS , we set sS D s and s† D∅.

Our definition of surgery differs slightly from the standard in three ways: one, we do
not remove parallel spheres in yS ; two, we perform surgery along parallel innermost
disks in a single step; and three, we do not isotope S 0 to be in normal form with respect
to †. That we do not remove parallel spheres is in keeping with our definition of sphere
systems from Section 2. Justification of the latter two differences is the following
lemma, which shows that by performing surgery along the parallel innermost disks we
can eliminate the need to perform a subsequent isotopy.

Lemma 5.1 Let yS be the result of a surgery on S with respect to †. Then yS and †
are in normal form.

Proof Suppose otherwise. As S and † are in normal form by assumption and normal
form is a local condition, it must be that one of the newly created spheres is not in
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normal form with respect to †. Denote this sphere by ysD yd[ı , where yd is a subdisk of
the surgered sphere s 2S and ı is a disk parallel rel s to a disk in †. Any intersection
between ys and some sphere of † must lie in yd � s , and hence ys and a given sphere in
† intersect transversely in at most one circle, as the same held for s 2 S .

Therefore, if ys is not in normal form with respect to †, then there is a sphere � 2†
such that one of the disks in ys� � , say d , is isotopic relative to its boundary to a disk
in � , say ı0 . Without loss of generality, we can assume that this disk is innermost on ys ,
ie no subdisk of d is isotopic relative to its boundary to a disk in some sphere of †.
The disk d cannot lie entirely in yd since s and † are in normal form by assumption.
Hence d contains ı . Let A be the annulus such that d DA[ı . Since d [ı0 bounds a
3–ball, the assumptions that S and † are in normal form and that d is innermost imply
that † is disjoint from the interior of A. This contradicts the maximality assumption
on the family of disks fıig�iD� . Indeed, without loss of generality we can assume that
ı D ıC . Then A� [A is an annulus in s whose interior is disjoint from † and so
@ı0 D ˛�C1 , and further ı� [ .A� [A/[ ı0 bounds an embedded 3–ball. Hence yS
and † are in normal form.

Definition 5.2 A surgery sequence from S to † is a finite sequence of sphere systems

S D S1; : : : ;Sm

such that SiC1 is the result of a surgery of Si with respect to † and dS.†;Sm/� 1.

It is a standard fact that if dS.S; †/ � 2, then there is a surgery sequence from S ;
see for instance [16, Lemma 2.2]. Further, dS.Si ;SiC1/� 2 as both Si and SiC1 are
dominated by Si [SiC1 .

The discussion and notion regarding portions from S and from † make sense for
surgery sequences as well by induction. Indeed, suppose that SiC1 is obtained from
Si by a surgery with respect for †; specifically, assume that the (orbit of the) sphere
s 2Si is split into (the orbit of) two spheres s�D yd�[ı� and sCD ydC[ıC in SiC1 .
Then we have s D yd�[A[ ydC for some annulus A, the boundary curves of which
are parallel to circles in † rel s . By choosing A sufficiently narrow enough, we
can assume that the annuli of s witnessing the isotopy are contained in sS . We set
sS
� D

yd� \ sS and s†� D .
yd� \ s†/[ ı� for � 2 fC;�g. All other spheres in SiC1

are also in Si �fsg and, as such. the portions from S and † remain unchanged. See
Figure 5.

Lemma 5.3 Suppose that S D S1; : : : ;Sm is a surgery sequence from S to †. Then,
for every s 2 Si , the subset sS is connected.
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˛C
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˛�

ı� ı5ı4ı1 ı2 ı3

sCs�

s

Figure 5: An illustration showing a decomposition of s 2Si and the resulting
spheres s�; sC 2 SiC1 into their portions from S and † . In this example,
s† D fı1; ı2; ı3; ı4; ı5g , s†� D fı1; ı2; ı3; ı�g and s†� D fı4; ı5; ıCg . The
portions from S are the complements in the respective spheres.

Proof Using induction, we can conclude that the subset s† is a union of disks, each
parallel rel s to a disk in †. Hence, sS is the complement of finitely many disks in s

and therefore connected.

We remark that parallel spheres in Si may have different histories, that is, s1; s2 2 Si

may be parallel even though sS
1

and sS
2

are not parallel. For a surgery sequence
S D S1; : : : ;Sm from S to †, we set

SS
i D

[
s2Si

sS
i and S†i D

[
s2Si

s†i :

5.2 Rips moves and surgery steps

Suppose that S and † are filling sphere systems and assume that they are in normal
form. Let S D S1; S2; : : : ;Sm be a surgery sequence from S to † and let †D†1 ,
†2; : : : ; †� be a surgery sequence from † to S . We describe Core.Si ; †j / as (in
some appropriate sense) an intersection of Core.Si ; †/ and Core.S; †j /. We start
by giving an embedding of Core.Si ; †/ and Core.S; †j / into Core.S; †/. This
embedding is constructed inductively. A single step in the construction is reminiscent
of one of the elementary moves of the Rips machine [4; 8]. We start with a definition.

Definition 5.4 Suppose that S and † are filling sphere systems in M. We define @S ,
the S –boundary of Core.S; †/, to be the subset of Core.S; †/ consisting of the
(open) edges .P; �/ that are the face of exactly one square and vertices .P;…/ that
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are the vertex of exactly 3 edges of the form .P; �/, .P; � 0/ and .s;…/. A connected
component of @S is called an S –side of Core.S; †/. Similarly, we define @† , the †–
boundary of Core.S; †/, to be the subset of Core.S; †/ consisting of the (open) edges
.s;…/ that are the face of exactly one square and vertices .P;…/ that are the vertex
of exactly 3 edges of the form .s;…/, .s0;…/ and .P; �/. A connected component of
@† is called a †–side of Core.S; †/.

The union of an S –side with the set of the (open) squares that have a face contained
in that side is called a maximal S –boundary rectangle. That is, in a S –maximal
boundary rectangle, all of the squares are of the form s0 � � for some fixed s0 2 S .
A †–maximal boundary rectangle is similarly defined from a connected component
of the †–side. A Rips move on .S; †/ is the removal of the Fn –orbit of an S – or
†–maximal boundary rectangle.

If R is a maximal boundary rectangle in Core.S; †/, we let Core.S; †/R denote the
result of the associated Rips move. We like to think of the removal of the maximal
boundary rectangle as collapsing the rectangle by pushing across the adjacent squares.

We postpone presenting an example until after the following theorem.

Theorem 5.5 Suppose that S and † are filling sphere systems in M and let yS be the
result of a surgery on S with respect to †. There is a S –maximal boundary rectangle
R� Core.S; †/ such that Core.S; †/R is isomorphic to Core. yS ; †/. Moreover, for
each S –maximal boundary rectangle R, there is a sphere � 2† and innermost disk on
� that defines a surgery S 7! yS such that Core. yS ; †/ is isomorphic to Core.S; †/R .

Proof Assume yS is obtained from S by a surgery on a sphere s0 2 S and a disk
ı that is part of the sphere system †, whose boundary ˛ lies on s and is otherwise
disjoint from S . By Lemma 5.1, yS and † are in normal form and so we can use the
combinatorics of yS and † to build Core. yS ; †/.

We make use of the notation introduced in Section 5.1. Let fıig�iD� be the maximal
family of disks in † parallel rel s , where ı0 D ı . Let A be the union of the annuli
Ai � s0 , and dC and d� the components of s0 �A. Thus ı� [A[ ı� bounds a
3–ball B . The two spheres obtained by surgery of s using this family, sC and s� , are
parallel to dC[ ı� and d�[ ı� , respectively.

Let PC 2M � S be the component that contains the interior of B and let P� be
the other component with s as a boundary. Each disk ıi is contained in some sphere
�i 2 †. For each � � i < �, there are components …i � M �† such that both
�i ; �iC1 � @…i . We claim that the collections of edges and vertices

.PC; ��/; .PC;…�/; .PC; ��C1/; : : : ; .PC; ��/
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is a side. Indeed, each edge .PC; �i/ is the face of only s��i and each vertex .PC;…i/

is only also adjacent to .s0;…i/. The first of these observations is due to the fact
that PC \ �i D ıi is a disk, the second observation due to the fact that PC \…i is
bounded by ıi [Ai [ ıiC1 . Maximality of this collection follows from maximality of
the collection fıig�iD� .

Let R be the corresponding maximal boundary rectangle of Core.S; †/. We will show
that Core. yS ; †/ is isomorphic to Core.S; †/R . To do so, we will construct an injection
of square complexes Core. yS ; †/ ,! Core.S; †/ whose image is Core.S; †/R .

Components in M �S that are not in the orbit of PC and P� are also components
of M � yS . But M � yS has 3 other components: yP� , which is obtained from P�
by adding a neighborhood of s and a neighborhood of the 3–ball B bounded by
ı� [A[ ı� , and PCC and P�C , which are contained in the two components of PC�B .
In other words, we have

M � yS D
�
.M �S/�FnfPC;P�g

�
[Fnf

yP�;P
C
C ;P

�
Cg:

There is an Fn –equivariant map �W M � yS !M � S , defined by PCC ;P
�
C 7! PC ,

yP� 7! P� and the identity on the other orbits. Also, there is a Fn –equivariant map
�W yS ! S , defined by sC; s� 7! s0 and the identity on the other orbits.

Using �, we get a map on the 0–skeleton of Core. yS ;†/, defined by .P;…/ 7!.�.P /;…/.
In order for this to be well-defined, we need to know that if P \ … ¤ ∅, then
�.P /\…¤∅ also. If P is not in the orbit of yP� , then this follows as P\…� �.P /\….
Finally, since yP� D P� [B and no component of M �† is contained in B , any
component of M �† that intersects yP� necessarily intersects P� as well.

We extend over the 1–skeleton using �W .s;…/ 7! .�.s/;…/. This map is well-defined
since any intersection between sC or s� , with a component of M �† is contained in
the portion of sC or s� , respectively, from S , ie dC or d� , respectively. Notice that
this is consistent with the mapping on the 0–skeleton. The edge .sC;…/ in Core. yS ; †/
is sent to .s0;…/. The vertices of .s0;…/ are .PCC ;…/ and . yP�;…/, which are the
images of .PCC ;…/ and . yP�;…/. Other verifications are similar.

Finally, we extend over the 2–skeleton: s � � 7! �.s/� � . Since any intersection of
sC or s� with † is contained in the portion from S , this map is well-defined. Again,
the map on the 2–skeleton is consistent with the maps on 1–skeleton and 0–skeleton
by construction.

The map Core. yS ; †/! Core.S; †/ is Fn –equivariant and preserves the square struc-
ture. The map is not surjective as no 2–cell is mapped to the squares associated with
s � �i , ie the image of the map is exactly Core.S; †/R .
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The converse is similar: if s0 � �1; : : : ; s0 � �� forms an S –maximal boundary rec-
tangle R, then one shows that there are disks ıi � �i that are parallel rel s0 and that
surgery using the family fıig�iD1

results in the sphere system yS , where Core. yS ; †/ is
isomorphic to Core.S; †/R .

Example 5.6 Here we describe a Rips move and the corresponding surgery explicitly
in an example. Consider a sphere s 2 S associated to the edge b in the dual graph G.
In the example depicted in Figure 6, s intersects 7 spheres in †, spheres �0; : : : ; �6

associated to edges �0; : : : ; �6 in � . We denote the intersection circle between s and
�i by ˛i . The slice over s in Core.S; †/ consists of squares associated to intersection
circles between s and †, that is,

Cs D fs � �i j i D 0; : : : ; 6g:

�0

�1

�2

�3

�4

�5

�6

a1
a2

a3

b c1

c2

a1
a2

a3

b1

b2

c1

c2

Figure 6: The left-hand side depicts the slice Cs and squares attached to it in
Core.S; †/ . Consider the maximal S –boundary rectangle RD b�.�4[�5/ .
A Rips move along R is associated to a surgery on the sphere s or a splitting
of the edge b in the graph G. The right side depicts the associated portion of
Core.S; †/R D Core.S 0;R/ .
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˛0

˛1

˛2

˛3 ˛4

˛5

˛6

s

Figure 7: The curves ˛0; : : : ; ˛6 are intersection circles between the sphere s

and the spheres �0; : : : ; �6 , respectively. The circles ˛2 , ˛3 , ˛4 and ˛5

bound a disk in Pl . However, the circle ˛3 and ˛4 are not parallel.

In the language of trees, Cs is associated to the slice over b , which is

b �Shadow.s/D fb � �i j i D 0; : : : ; 6g �G ��:

There are two components of M �S that have s as their boundary sphere. In this ex-
ample, the component Pl , which we call left, has 3 other boundary spheres (associated
to edges a1 , a2 and a3 ) and the component Pr on the right has two other boundary
spheres (associated to edges c1 and c2 ).

Note that Figure 6 indicates that the sphere �1 intersects spheres in S associated
to edges a1 , b and c2 since the core contains squares a1 � �1 , b � �1 and c2 � �1 .
However, the sphere �2 does not intersect spheres associated to edges a1 , a2 and a3 .
But, �2 intersects s , hence, the circle ˛2 must bound a disk ı2 that is the intersection
of �2 with Pl . Similarly, circles ˛3 , ˛4 and ˛5 bound disks ı3 , ı4 and ı5 that are,
respectively, intersections of spheres �3 , �4 and �5 with Pl (thus the squares b � �i

for i D 2; : : : ; 5 have boundary edges on their left side). The circle ˛2 also bounds a
disk in �2 in Pr (thus the square b � �2 has a boundary edge on its right side).

The disks ı2 and ı3 are parallel and the disks ı4 and ı5 are also parallel, however,
the two sets of disks are not parallel to each other (see Figure 7). Thus, there are two
maximal boundary rectangles from the left, RD b� .�2[�3/ and R0D b� .�4[�5/.
More precisely, let … be the component of M �† with �0 , �3 and �4 as its boundary
spheres. Then, referring to Definition 5.4, we see that the vertex .Pl ;…/ is not in the
S –boundary of Core.S; †/ because it is the vertex of 5 different edges. Hence, the
union of R and R0 is not a boundary rectangle.

Define S 0 to be the sphere system obtained from S by applying the surgery on the set of
parallel disks fı4; ı5g (and their Fn –orbits). The surgery results in two spheres s1 and
s2 associated to edges b1 and b2 and the removal of the maximal boundary rectangle R.
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It appears that removal of this rectangle makes the slice over b disconnected. However,
the two components are slices over the edges b1 and b2 .

To summarize, the surgery along the disks fı4; ı5g changes G by splitting the edge b

and changes Core.S;†/ by removing the maximal boundary rectangle RDb�.�4[�5/,
resulting in Core.S; †/R Š Core.S 0; †/.

A different splitting of b into b1 and b2 partitioning the a edges into fa1; a3g and
fa2g does not arise as a surgery and could potentially increase the volume of the core.

5.3 The intersection of cores

Applying Theorem 5.5 to the surgery sequence S D S1;S2; : : : ;Sm , we obtain maps,
for i D 1; : : : ;m� 1,

ki;iC1W Core.SiC1; †/! Core.Si ; †/

that are the composition of the isomorphism Core.SiC1; †/Š Core.Si ; †/R for the
corresponding maximal boundary rectangle and the natural inclusion Core.Si ; †/R ,!

Core.Si ; †/. By symmetry there are also maps, for j D 1; �� 1,

�j ;jC1W Core.S; †jC1/! Core.S; †j /:

Since these maps exist for all 1 � i � m� 1 and 1 � j � �� 1, we can define the
“inclusions” alluded to at the beginning of this section,

ki D k1;2k2;3 � � � ki�2;i�1ki�1;i W Core.Si ; †/! Core.S; †/;(5-1)

�j D �1;2�2;3 � � � �j�2;j�1�j�1;j W Core.S; †j /! Core.S; †/:(5-2)

Remark 5.7 On the level of squares, the map ki W Core.Si ; †/! Core.S; †/ is easy
to describe. For each ys 2 Si , we have that ysS � s for a unique s 2 S . The map is
defined by ys � � ! s � � .

The following is the fundamental concept essential to the proof of the main theorem.

Proposition 5.8 With the above set-up, assume

(5-3) ki.Core.Si ; †//[ �j .Core.S; †j //D Core.S; †/I

then Si and †j are in normal form. Furthermore, there exists an isomorphism

ˆW Core.Si ; †j /! ki.Core.Si ; †//\ �j .Core.S; †j //:

Proof First, we show that every intersection circle between Si and †j is in fact
in SS

i \†
†
j . This is because a square in Core.S; †/ associated to an intersection

circle in S†i \†
S
j is neither in ki.Core.Si ; †// (S†i does not intersect †) nor in
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�j .Core.S; †j // (†S
j does not intersect S ) and, by the assumption (5-3), every square

in Core.S; †/ is in the image of one of these two maps.

This observation implies that Si and †j are in fact in normal form. In fact, pick
spheres si 2 Si and �j 2 †j . We will show that si and �j intersect at most once.
Otherwise, sS

i and �†j intersect more than once. But, by Lemma 5.3, sS
i and �†j are

connected, which means there is a sphere s 2 S that contains sS
i and a sphere � 2†

that contains �†j . Hence, s and � intersect more than once. This contradicts the fact
that S and † are in normal form.

Now consider a square si � �j in Core.Si ; †j / associated to an intersection circle ˛ .
Then ˛ is an intersection circle in SS

i \†
†
j , which means it is an intersection circle

in both S \†j and Si \†, and thus there are spheres s 2 S and � 2 † for which
s \ � D ˛ and sS

i � s , �†j � � . Hence, s � � is contained in both ki.Core.Si ; †//

and �j .Core.S; †j // and so we define ˆ.si � �j /D s � � . Normal form implies that
the map is injective.

To prove that ˆ is surjective, suppose s�� is in ki.Core.Si ; †//. Then the associated
intersection circle in SS

i . Similarly, the assumption that s � � is in �j .Core.S; †j //

implies that the associated intersection circle in ††j . Therefore, it also lies in Si \†j .
Hence there are spheres si 2 Si and �j 2†j such that ˆ.si � �j /D s � � .

For future reference, we record the following corollary:

Corollary 5.9 If (5-3) is satisfied, Core.Si ; †jC1/ can be obtained from Core.Si ;†j /

by a Rips move.

Proof Let R be a maximal †j –boundary rectangle in Core.S; †j / such that

Core.S; †j /R Š Core.S; †jC1/:

Thus R consists of squares s1 � y�; : : : ; s` � y� for some y� 2 †j and s1; : : : ; s` 2 S .
Let � 2 † be such that y�† � � and consider the set C�;i of squares of the form
ys � � in Core.Si ; †/. Then ki.C�;i/\ �j .R/ corresponds via the isomorphism in
Proposition 5.8 to a maximal †j –boundary rectangle in Core.Si ; †j / whose collapse
results in Core.Si ; †jC1/.

6 Proof of Theorem 1.1

To finish the proof of the main theorem, we proceed as follows, using the set-up from
the previous section. We start with a lemma giving a necessary condition for two sphere
systems to be at a bounded distance. A free edge is an edge that does not bound any
squares.

Algebraic & Geometric Topology, Volume 17 (2017)



3776 Matt Clay, Yulan Qing and Kasra Rafi

Lemma 6.1 If Core.Si ; †j / contains a free edge, then the two sphere systems are of
distance at most 2 in the sphere graph.

Proof Edges in the core are associated to spheres in either sphere system Si or †j

and squares are associated to intersection circles between sphere systems. Hence, a
free edge in the core is associated to a sphere in either Si or †j that does not intersect
any other spheres from the other system. Thus this sphere can be added to both sphere
systems. That is, Si and †j have distance 2 in the sphere graph.

We now prove Theorem 1.1. We restate it for convenience.

Theorem 1.1 Let S and † be two filling sphere systems and let

S D S1;S2; : : : ;Sm; dS.Sm; †/� 1;

be a surgery sequence starting from S towards † and

†D†1; †2; : : : ; †�; dS.†�;S/� 1;

be a surgery sequence in the opposite direction. Then, for every Si there is a †j such
that dS.Si ; †j /� 2.

Proof Fix two filling sphere systems S and † and surgery paths as in the statement
of the theorem. For every Si we need to find †j with dS.Si ; †j / � 2. Fix an
i D 1; : : : ;m and let j be the largest index where the equality

(6-1) ki.Core.Si ; †//[ �j .Core.S; †j //D Core.S; †/

still holds. Note that the equation holds when j D 1. But, since �j .Core.S; †j //

eventually contains no squares (for instance, when j D �) and ki.Core.Si ; †// is a
proper subset of Core.S; †/ for each i > 1, there exists an index j C 1 for which
(6-1) does not hold.

We will show that Core.Si ; †j / contains a free edge. By Lemma 6.1, this will complete
the proof. Let s � � be a square in Core.S; †/ that is not contained in

ki.Core.Si ; †//[ �jC1.Core.S; †jC1//:

By (6-1), s � � is contained in �j .Core.S; †j //. Thus a surgery on †j has deleted
the intersection circle associated to this square. By Corollary 5.9, s � � is part of a
maximal †j –boundary rectangle. That is, there is a component …�M �† for which
� 2 @… and such that the edge .s;…/ is a boundary edge of s�� but not the boundary
edge of any other square in �j .Core.S; †j //.
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We also know that s � � is not contained in ki.Core.Si ; †//. Thus, if .s;…/ is an
edge in ki.Core.Si ; †// then we have that .s;…/ is a free edge in

ki.Core.Si ; †//\ �j .Core.S; †j //Š Core.Si ; †j /

(Proposition 5.8). If this is not the case, then there is some i0 < i such that .s;…/
lies between two squares s � � 0 and s � � 00 that are part of a maximal Si0

–boundary
rectangle in Core.Si0

; †/ that is collapsed in the formation of Core.Si0C1; †/. Then
neither of these squares are in ki.Core.Si ; †// and at least one of these squares is not
in �j .Core.S; †j //. However, this would contradict (6-1). Therefore, .s;…/ is a free
edge in Core.Si ; †j /.

References
[1] T Aougab, Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013)

2855–2875 MR

[2] J Aramayona, J Souto, Automorphisms of the graph of free splittings, Michigan Math.
J. 60 (2011) 483–493 MR

[3] J Behrstock, M Bestvina, M Clay, Growth of intersection numbers for free group
automorphisms, J. Topol. 3 (2010) 280–310 MR

[4] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995)
287–321 MR

[5] B H Bowditch, Uniform hyperbolicity of the curve graphs, Pacific J. Math. 269 (2014)
269–280 MR

[6] M Clay, K Rafi, S Schleimer, Uniform hyperbolicity of the curve graph via surgery
sequences, Algebr. Geom. Topol. 14 (2014) 3325–3344 MR

[7] D Cooper, Automorphisms of free groups have finitely generated fixed point sets, J.
Algebra 111 (1987) 453–456 MR

[8] T Coulbois, A Hilion, Rips induction: index of the dual lamination of an R–tree,
Groups Geom. Dyn. 8 (2014) 97–134 MR

[9] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent.
Math. 84 (1986) 91–119 MR

[10] V Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres,
Ann. Sci. École Norm. Sup. 38 (2005) 847–888 MR

[11] M Handel, L Mosher, The free splitting complex of a free group, I: Hyperbolicity,
Geom. Topol. 17 (2013) 1581–1672 MR

[12] A Hatcher, Homological stability for automorphism groups of free groups, Comment.
Math. Helv. 70 (1995) 39–62 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.2140/gt.2013.17.2855
http://msp.org/idx/mr/3190300
http://dx.doi.org/10.1307/mmj/1320763044
http://msp.org/idx/mr/2861084
http://dx.doi.org/10.1112/jtopol/jtq008
http://dx.doi.org/10.1112/jtopol/jtq008
http://msp.org/idx/mr/2651361
http://dx.doi.org/10.1007/BF01884300
http://msp.org/idx/mr/1346208
http://dx.doi.org/10.2140/pjm.2014.269.269
http://msp.org/idx/mr/3238474
http://dx.doi.org/10.2140/agt.2014.14.3325
http://dx.doi.org/10.2140/agt.2014.14.3325
http://msp.org/idx/mr/3302964
http://dx.doi.org/10.1016/0021-8693(87)90229-8
http://msp.org/idx/mr/916179
http://dx.doi.org/10.4171/GGD/218
http://msp.org/idx/mr/3209704
http://dx.doi.org/10.1007/BF01388734
http://msp.org/idx/mr/830040
http://dx.doi.org/10.1016/j.ansens.2005.11.001
http://msp.org/idx/mr/2216833
http://dx.doi.org/10.2140/gt.2013.17.1581
http://msp.org/idx/mr/3073931
http://dx.doi.org/10.1007/BF02565999
http://msp.org/idx/mr/1314940


3778 Matt Clay, Yulan Qing and Kasra Rafi

[13] A Hatcher, K Vogtmann, Isoperimetric inequalities for automorphism groups of free
groups, Pacific J. Math. 173 (1996) 425–441 MR

[14] S Hensel, D Osajda, P Przytycki, Realisation and dismantlability, Geom. Topol. 18
(2014) 2079–2126 MR

[15] S Hensel, P Przytycki, R C H Webb, 1–slim triangles and uniform hyperbolicity for
arc graphs and curve graphs, J. Eur. Math. Soc. 17 (2015) 755–762 MR

[16] A Hilion, C Horbez, The hyperbolicity of the sphere complex via surgery paths, J.
Reine Angew. Math. (online publication March 2015)

[17] C Horbez, Sphere paths in outer space, Algebr. Geom. Topol. 12 (2012) 2493–2517
MR

[18] F Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astérisque 12,
Soc. Math. France, Paris (1974) MR

[19] P Przytycki, A Sisto, A note on acylindrical hyperbolicity of mapping class groups,
preprint (2015) arXiv

MC: Department of Mathematical Sciences, University of Arkansas
Fayetteville, AR, United States

YQ, KR: Department of Mathematics, University of Toronto
Toronto, ON, Canada

mattclay@uark.edu, yulan.qing@utoronto.ca, rafi@math.toronto.edu

http://comp.uark.edu/~mattclay, https://sites.google.com/site/
yulanqing/home, http://www.math.toronto.edu/~rafi/

Received: 29 October 2016 Revised: 24 February 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/pjm.1996.173.425
http://dx.doi.org/10.2140/pjm.1996.173.425
http://msp.org/idx/mr/1394399
http://dx.doi.org/10.2140/gt.2014.18.2079
http://msp.org/idx/mr/3268774
http://dx.doi.org/10.4171/JEMS/517
http://dx.doi.org/10.4171/JEMS/517
http://msp.org/idx/mr/3336835
http://dx.doi.org/10.1515/crelle-2014-0128
http://dx.doi.org/10.2140/agt.2012.12.2493
http://msp.org/idx/mr/3020214
http://msp.org/idx/mr/0356056
http://msp.org/idx/arx/1502.02176
mailto:mattclay@uark.edu
mailto:yulan.qing@utoronto.ca
mailto:rafi@math.toronto.edu
http://comp.uark.edu/~mattclay
https://sites.google.com/site/yulanqing/home
https://sites.google.com/site/yulanqing/home
http://www.math.toronto.edu/~rafi/
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 17 (2017) 3779–3810

On the integral cohomology ring of toric orbifolds
and singular toric varieties
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We examine the integral cohomology rings of certain families of 2n–dimensional
orbifolds X that are equipped with a well-behaved action of the n–dimensional
real torus. These orbifolds arise from two distinct but closely related combinatorial
sources, namely from characteristic pairs .Q; �/ , where Q is a simple convex n–
polytope and � a labeling of its facets, and from n–dimensional fans † . In the
literature, they are referred as toric orbifolds and singular toric varieties, respectively.
Our first main result provides combinatorial conditions on .Q; �/ or on † which
ensure that the integral cohomology groups H�.X/ of the associated orbifolds are
concentrated in even degrees. Our second main result assumes these conditions to be
true, and expresses the graded ring H�.X/ as a quotient of an algebra of polynomials
that satisfy an integrality condition arising from the underlying combinatorial data.
Also, we compute several examples.
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1 Introduction

There are several advantages to studying topological spaces whose integral cohomology
groups H�.X/ are torsion-free and concentrated in even degrees; for example, their
complex K–theory and complex cobordism groups may be deduced immediately,
because the appropriate Atiyah–Hirzebruch spectral sequences collapse for dimensional
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reasons. For convenience, we call such spaces even, where integral coefficients are
understood unless otherwise stated. Our fundamental aim is to identify certain families
of even spaces within the realms of toric topology, and to explain how their evenness
leads to a description of the Borel equivariant cohomology rings H�T .X/, and thence
to the multiplicative structure of H�.X/.

Many even spaces arise from complex geometry, and have been of major importance
since the early 20th century. They range from complex projective spaces and Grass-
mannian manifolds to Thom spaces of complex vector bundles over other even spaces.
Examples of the latter include stunted projective spaces, which play an influential and
enduring role in homotopy theory, and certain restricted families of weighted projective
spaces. In fact every weighted projective space is even, thanks to a beautiful and
somewhat surprising result of Kawasaki [18], whose calculations lie behind one of our
main works in Section 4. In the literature, weighted projective spaces have been viewed
as singular toric varieties or as toric orbifolds, which we shall define in Section 3, and
our results may be interpreted as an investigation of their generalizations within either
context.

We begin in Section 2 by introducing a sequence fBkg of polytopal complexes whose
initial term is a simple polytope Q and final term is a vertex of Q . We define the
sequence inductively by the rule stated as 2 in Section 2, which is motivated by several
spaces called invariant subspaces, and orbifold lens spaces sitting inside the given toric
orbifold.

In Section 3, we summarize the theory of toric orbifolds X DX.Q; �/,1 as constructed
from an n–dimensional simple convex polytope Q and an R–characteristic function �
from its facets to Zn. The combinatorial data .Q; �/ is called an R–characteristic pair
associated to the given toric orbifold. The notion of invariant subspaces and orbifold
lens spaces follow from .Q; �/, which we shall explain in the following subsections.
Moreover, for each polytopal complex B which appears in a retraction sequence, the
R–characteristic function � may be used to associate a finite group GB.v/ — see
(4-8) — to certain vertices v , called free vertices in B , and to define the collection

(1-1)
˚
jGB.v/j W v is a free vertex in B

	
:

Interest in toric orbifolds was stimulated by Davis and Januszkiewicz [9], who saw
them as natural extensions to their own smooth toric manifolds.2 They proved that toric
manifolds are always even; however, the best comparable statement for toric orbifolds
is due to Poddar and the second author [20], who showed that, in general, they are only

1In the literature, these orbifolds are sometimes called quasitoric orbifolds.
2They are renamed in Buchstaber and Panov [4] as quasitoric manifolds.
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even over the rationals. We introduce our main result of the first part of this paper in
Section 4, as follows.

Theorem 1.1 Given any toric orbifold X.Q; �/, assume that the gcd of the collection
(1-1) is 1 for each B which appears in a retraction sequence with dimB > 1; then X
is even.

The proof employs a cofiber sequence involving orbifold lens spaces, which are a gen-
eralization of lens complexes, introduced by Kawasaki [18]. Furthermore, Theorem 1.1
automatically applies to weighted projective spaces.

In Section 5, we restrict our emphasis to projective toric orbifolds, which are realized
as toric varieties whose details are admirably presented by Cox, Little and Schenck in
their encyclopedic book [6]. Every such variety X† is encoded by a fan † in Rn, and
admits a canonical action by the n–dimensional real torus T n. If † is smooth, then
the underlying geometry guarantees that X† is always even. Moreover, it is true that
the Borel equivariant cohomology ring H�T .X†/ is isomorphic to the Stanley–Reisner
ring SRŒ†�, which is also concentrated in even degrees, and H�.X†/ is its quotient
by a linear ideal determined by (5-2). It is important to note that SRŒ†� is isomorphic
to the ring PPŒ†� of integral piecewise polynomials on † for any smooth fan.

For a particular class of singular examples, a comparable description of the ring
H�.X†/ was given in Bahri, Franz and Ray [1], as follows. If ˙ is polytopal and X†
is even, then H�.X†/ is the quotient of PPŒ†� by the ideal generated by all global
polynomials. It is no longer possible to use the Stanley–Reisner ring, which only agrees
with PPŒ†� over the rationals. In these circumstances, when X† is a toric variety
over a polytopal fan, we have a major incentive to develop criteria which test whether
or not it is even. There also remains the significant problem of presenting PPŒ†� by
generators and relations, as exemplified by the calculation for the weighted projective
space CP3.1;2;3;4/ in [1, Section 4]. So the aim of Section 5 is to find an alternative
description for the ring of piecewise polynomials. It is accomplished by defining the
weighted Stanley–Reisner ring wSRŒ†�, which turns out to be a subring of SRŒ†�,
consisting of polynomials that satisfy an integrality condition; see Definition 5.2. The
main result of Section 5 combines Theorems 1.1 and 5.3, as follows.

Theorem 1.2 Given any polytopal fan † in Rn, assume that the corresponding R–
characteristic pair .Q; �/ satisfies the hypothesis of Theorem 1.1; then X† is even, and
there exists an isomorphism

H�.X˙ /Š wSRŒ†�=J

of graded rings, where J is an ideal of linear relations determined by the generators of
rays of †.
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So our combinatorial condition on the fan allows us to give an explicit description of
the integral cohomology ring of X† .

Several natural questions present themselves for future discussion. For example, Sec-
tions 3 and 5 may be linked more closely by establishing a common framework for toric
orbifolds and toric varieties over nonsmooth polytopal fans. The theory of multifans
is an obvious candidate, but we have been unable to identify an associated ring of
piecewise polynomials with sufficient clarity. However, the third author with Darby and
Kuroki [8] has recently proposed a definition of piecewise polynomials on an orbifold
torus graph, which does allow those two objects to be dealt with simultaneously.

In view of our opening remarks, another reasonable challenge is to extend our study
to the complex K–theory and complex cobordism of toric orbifolds. This program
was suggested by work of Harada, Henriques and Holm [13], and begun in Harada,
Holm, Ray and Williams [14] by the adoption of a categorical approach to piecewise
structures; but overall progress has been limited to a small subfamily of weighted
projective spaces, and much further work is required. However, some progress has
made by the second author and Uma [22].
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2 A retraction of simple polytopes

In this section, we introduce a natural way of retracting a simple polytope Q to a point,
which we call a retraction sequence. For each polytope, there are finitely many such

Algebraic & Geometric Topology, Volume 17 (2017)



On the integral cohomology ring of toric orbifolds and singular toric varieties 3783

retractions, enabling us to develop a sufficient condition for torsion-freeness in the
homology of toric orbifolds in the following section. The operation itself is motivated
by several spaces which arise in a toric orbifold by decomposing the orbit space. We
shall explain this topological interpretation in Section 3. This section is devoted to
giving the combinatorial definition and properties of retraction sequences. We begin by
introducing the definition of a polytopal complex.

Definition 2.1 [23, Definition 5.1] A polytopal complex C is a finite collection of
polytopes in Rn satisfying:

(1) If E is a face of F and F 2 C then E 2 C .

(2) If E;F 2 C then E \F is a face of both E and F .

Let jCj D
S
F 2C F be the underlying set of C .

The elements of C are called faces and the zero-dimensional faces of C are called
vertices. We denote the set of vertices of C by V.jCj/. The dimension of C or jCj is the
maximum of the dimension of its faces. Given a simple polytope Q , let C.Q/ be the
collection of all faces of Q and F .Q/ the collection of all facets of Q . Then C.Q/
is a polytopal complex and jC.Q/j is homeomorphic to Q as manifolds with corners.
Throughout this paper, we always write ` WD jV.Q/j for the number of vertices of Q ,
m WD jF .Q/j for the number of facets of Q and n WD dimQ .

Now, given an n–dimensional simple polytope Q , we construct a sequence of triples
f.Bk; Ek; bk/g

`
kD1

, which we call a retraction sequence of Q . First, we define B1 D
QDE1 and b12V.B1/. The second term .B2; E2; b2/ is defined as follows. Consider
a subcollection

C2 D fE 2 C.Q/ j b1 … V.E/g

of C.Q/. Then C2 is an .n�1/–dimensional polytopal complex. We define B2 by the
underlying set jC2j of C2 . We choose a vertex b2 of B2 such that b2 has a neighborhood
diffeomorphic to RN

�0 as manifolds with corners for some 1 � N � dimB2 and let
E2 be the unique N –dimensional face of B2 containing b2 . Notice that, in this case,
N D n� 1 and we have n different choices of b2 because Q is an n–dimensional
simple polytope.

Next we construct the sequence of triples inductively. Given .Bk; Ek; bk/, the next
term .BkC1; EkC1; bkC1/ is defined as follows. First we consider a polytopal complex

CkC1 D fE 2 Ck j bk … V.E/g:

Then BkC1 is defined by its underlying set jCkC1j. We choose a vertex bkC1 in
V.BkC1/ satisfying the condition
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(}) bkC1 has a neighborhood homeomorphic to RN
�0 as manifolds with corners for

some N 2 f1; : : : ; dimBkC1g,

and EkC1 defined to be a unique face of BkC1 containing bkC1 with dimEkC1DN .

Definition 2.2 We call a vertex v in Bk a free vertex if it has a neighborhood in Bk
that is diffeomorphic to RN

�0 as manifolds with corners for some N 2 f1; : : : ; dimBkg.
We denote the set of free vertices in Bk by FV.Bk/.

Finally, the sequence stops if the sequence reaches a vertex, ie B` DE` D b` 2 V.Q/.
Essentially, we can think of a retraction sequence as an iterated choice of free vertices
at each step. Figure 1 shows an example of retraction sequence for the vertex cut of a
cube, where the colored face of each Bk indicates Ek for k D 1; : : : ; 10.

Proposition 2.3 Every simple polytope has at least one retraction sequence.

Proof We begin by following the argument of [9, Proposition 3.1]. First, we realize
Q as a convex polytope in Rn and choose a vector u 2Rn such that

hu; vi ¤ hu;wi whenever v ¤ w 2 V.Q/�Rn;

with respect to the Euclidean inner product h ; i. Let e WD e.vw/ be the oriented edge
with the initial vertex i.e/D v and the terminal vertex t .e/D w . Here the direction
of e.vw/ is given by the rule

i.e/D v and t .e/D w if and only if hu; vi< hu;wi;

which makes the one-skeleton of Q into a directed graph.

Let ind.v/ be the number of inward edges at v and we call ind.v/ the index of v (with
respect to the choice of generic vector u). Then, for each face E �Q , there exists a
unique vertex v of E having the maximal index among the vertices in E . Moreover,
E is locally diffeomorphic to Rind.v/

�0 around v . Conversely, given a vertex v 2 V.Q/,
there exists a unique face Ev such that dimEv D ind.v/.

b1

B1

b2

B2

b3

B3

b4

B4

b5

B5

b6

B6

b7

B7

b8

B8

b9

B9

b10

B10

Figure 1: A retraction sequence of a vertex cut of the cube
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Let fbkg`kD1 be a sequence of vertices in Q determined by

hu; b1i> hu; b2i> � � �> hu; b`i:

Notice that ind.b1/D nD dimQ , and ind.b`/D 0. Now we claim that the sequence��
Bk WD

[
j�k

Ebj ; Ebk ; bk

��
kD1;:::;`

;

where Ebk is a unique face containing bk with dimEbk D ind.bk/, is a retraction
sequence of Q . Indeed, for each k 2 f1; : : : ; `� 1g, we have hu; bki> hu; vi for all
v 2 V.Bk/ n fbkg. Hence, there are no outgoing edges from bk in Bk , which implies
that bk has a neighborhood in Ebk �Bk homeomorphic to Rind.bk/

�0 as manifolds with
corners.

We denote by R.Q/ the set of all retraction sequences of Q and by B.Q/ the set of
all possible Bi which appear in R.Q/. Evidently, both R.Q/ and B.Q/ are finite
sets, because we have finitely many choices of free vertices at each step.

Remark The retraction sequence has a strong relation with shelling of a simplicial
complex. We are preparing an independent article [2] about the exact correspondence
and some other interesting properties.

3 Toric orbifolds and orbifold lens spaces

In this section we recall the characteristic pairs .Q; �/ of [9; 20], and explain the way
in which they are used to construct toric orbifolds X D X.Q; �/. If � obeys Davis
and Januszkiewicz’s condition .�/ (see [9, page 423]), then X is smooth and even;
so one of the main goals of this paper is to establish Theorem 1.1, which focuses on
singular cases, and states a sufficient condition for the orbifold X to be even. In this
section, to complete the proof of Theorem 1.1, we commandeer two additional types of
spaces, namely the invariant subspaces of X which arise as the preimage of faces via
the orbit map, and the orbifold lens spaces that arise as quotients of odd-dimensional
spheres by the actions of certain finite groups associated to �.

3.1 Toric orbifolds

In this subsection, we discuss a combinatorial definition of toric orbifolds. Let Q
be an n–dimensional simple convex polytope in Rn and F .Q/D fF1; : : : ; Fmg the
codimension-one faces of Q , which are called facets.
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Definition 3.1 A function �W F .Q/!Zn is called a rational characteristic function
(or R–characteristic function) for Q if it satisfies the following condition:

(3-1) f�.Fi1/; : : : ; �.Fik /g is linearly independent whenever
k\

jD1

Fij ¤¿:

We write �i D �.Fi / and call it an R–characteristic vector assigned to the facet Fi .
The pair .Q; �/ is called an R–characteristic pair.

Remark (1) In the literature about toric manifolds, the pair .Q; �/ satisfying the
condition .�/ in [9, page 423] is called a characteristic pair.

(2) For convenience, we usually express an R–characteristic function � as an n�m
matrix ƒ by listing the �i as column vectors. We call ƒ an R–characteristic
matrix associated to �.

(3) It is easy to check that it suffices to satisfy the linearly independence at each
vertex which is an intersection of n facets.

One canonical example of such functions can be given by a simple lattice polytope,
which is a convex hull of finitely many points in the integer lattice Zn�Rn and simple.
Namely, we can naturally assign as an R–characteristic vector the primitive normal
vector on each facet of a simple lattice polytope. In Section 5, we shall see this again
as primitive vectors of 1–dimensional cones in a normal fan associated to a simple
lattice polytope.

For x 2Q , we denote by E.x/ the face of Q which contains x in its interior. If E.x/
is a face of codimension k , then it is a unique intersection of k facets Fi1 ; : : : ; Fik . We
also denote by TE.x/ the subtorus of the standard n–dimensional torus T n determined
by �i1 ; : : : ; �ik . To be more precise, we may regard the target space Zn of � as
the Z–submodule of the Lie algebra of T n, and TE.x/ is the torus generated by the
exponential image of the lines determined by the R–characteristic vectors �i1 ; : : : ; �ik .

Now we define an equivalence relation �� on the product T n �Q by

(3-2) .t; x/�� .s; y/ if and only if x D y and t�1s 2 TE.x/:

The quotient space
X.Q; �/D .T n �Q/=��

has an orbifold structure with a natural T n–action induced by the group operation; see
Section 2 in [20]. Clearly, the orbit space of the T n–action on X.Q; �/ is Q . Let

(3-3) � W X.Q; �/!Q; �.Œt; x���/D x;
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be the orbit map, where Œt; x��� is the equivalence class of .t; x/ with respect
to �� . The space X.Q; �/ is called the toric orbifold associated to the combinatorial
pair .Q; �/.

In analyzing the orbifold structure of X.Q; �/, Poddar and Sarkar [20, Section 2.2],
gave an axiomatic definition of toric orbifolds, which generalizes the axiomatic defini-
tion of toric manifolds of [9].

3.2 Invariant subspaces

In this subsection, we study the R–characteristic pair of some invariant subspaces
of X.Q; �/. Let E D Fi1 \ � � � \Fik be a face of Q , where Fi1 ; : : : ; Fik are facets.
We can define a natural projection

(3-4) �E W Z
n
! Zn=

�
.spanf�i1 ; : : : ; �ikg˝Z R/\Zn

�
;

where the target space is isomorphic to Zn�k, because .spanf�i1 ; : : : ; �ikg˝Z R/\Zn

is a rank-k direct summand of Zn. Notice that the rank of the target space of �E is
the same as the dimension of E . We consider E as an independent simple polytope,
and denote the set of facets of E by

F .E/D fE \Fj j Fj 2F .Q/ and j ¤ i1; : : : ; ik and E \Fj ¤¿g:

Now the map �E , together with �, yields an R–characteristic function

(3-5) �E W F .E/! Zn�k

on E , defined so that �E .E\Fj / is the primitive vector of .�E ı�/.Fj /. Indeed, the
condition (3-1) naturally follows from �.

Hence, we get an R–characteristic pair .E; �E / from .Q; �/, which yields another
toric orbifold

X.E; �E / WD .T
n�k
�E/=��E ;

where the equivalence relation ��E is defined in a manner similar to (3-2).

Proposition 3.2 [20, Section 2.3] Let � W X.Q; �/!Q and .E; �E / be as above.
Then ��1.E/ is a T n–invariant suborbifold. Moreover, it is a toric orbifold homeo-
morphic to X.E; �E / as a topological space.

The second assertion of the above proposition follows from the fact that the circle
subgroups determined by �E .E \Fj / and .�E ı�/.Fj /, respectively, are identical.
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Figure 2

We also remark that the torus T n�k acting on X.E; �E / can be identified with the
image of the map

(3-6) x�E W T
n
! T n�k;

which is induced from the map �E .

Example 3.3 Suppose we have an R–characteristic pair .Q; �/ as described in
Figure 2. Notice that Q is a 3–dimensional polytope with 5 facets, say F .Q/ D

fF1; : : : ; F5g. Here we assume that the target space Z3 of � is generated by the
standard basis fe1; e2; e3g. We choose E to be the facet F5 . So k D 1 and n�k D 2.
Then the projection

�E W Z
3
! Z3=he3i D he1; e2; e3i=he3i Š Z2

is onto the first two coordinates. The facets of E are F2 \E , F3 \E and F4 \E .
Hence, the map

�E W fF2\E; F3\E; F4\Eg ! Z2

is defined by

�E .F2\E/D �E .�.F2//D .2;�1/D 2e1� e2;

�E .F3\E/D �E .�.F3//D .�1;�1/D�e1� e2;

�E .F4\E/D �E .�.F4//D .�1; 2/D�e1C 2e2:

The orbifold corresponding to .E; �E / is known to be a fake weighted projective space
with weight .1; 1; 1/. We refer to [5; 17] for the details of fake weighted projective
space.

3.3 Orbifold lens spaces

Here we introduce a generalization of lens complexes and study their homology groups.
Let �n�1 be the .n�1/–dimensional simplex and F .�n�1/DfF1; : : : ; Fng the facets
of �n�1. We begin by introducing the following definition.
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Definition 3.4 A function �W F .�n�1/! Zn is called an L–characteristic function
on �n�1 if f�.F1/; : : : ; �.Fn/g is linearly independent. We set �i WD �.Fi / for
i D 1; : : : ; n.

Now we define an equivalence relation �� on T n ��n�1 as follows:

(3-7) .t; x/�� .s; y/ if and only if x D y and t�1s 2 TF.x/;

where F.x/ is the face containing x in its interior and TF.x/ denotes the subtorus of
T n determined by �i1 ; : : : ; �ik if F.x/DFi1\� � �\Fik . The pair .�n�1; �/, together
with the equivalence relation �� , yields the quotient space

L.�n�1; �/ WD T n ��n�1=�� ;

which we call the orbifold lens space associated to .�n�1; �/.

Proposition 3.5 The orbifold lens space L.�n�1; �/ is homeomorphic to the quotient
space of the .2n�1/–dimensional sphere S2n�1 by the action of a finite group G� WD
Zn=spanf�1; : : : ; �ng.

Proof The proof is essentially same as the proof of [21, Proposition 2.3].

Remark (1) In [21], the function � is called a hypercharacteristic function if the
submodule generated by f�.Fi1/; : : : ; �.Fik /g is a direct summand of ZnC1 of
rank k whenever Fi1\� � �\Fik is nonempty. In particular, if f�.Fi1/; : : : ; �.Fin/g
is a linearly independent set, then it becomes an L–characteristic function.

(2) The action of G� is induced from the standard T n–action on S2n�1 �Cn.

(3) The order jG� j of G� is exactly same as the determinant of the n� n matrix
Œ�1 j � � � j �n�.

Proposition 3.5 leads us to the following lemma.

Lemma 3.6 Let p1; : : : ; pr be the prime factors of jG� j. Then

Hj .L.�
n�1; �//D

�
Z if j D 0; 2n� 1;
Gj if 1� j � 2n� 2;

where Gj D .Z=p
aj1
1 Z/˚� � �˚ .Z=p

ajr
r Z/ for some nonnegative integers a1; : : : ; ar .

Proof We see H0.L.�n�1; �//ŠZ trivially. The isomorphism H2n�1.L.�
n; �//Š

Z follows because the G� –action on S2n�1 is induced from the standard action of T n

on S2n�1 �Cn , which is orientation-preserving. For j 2 f1; : : : ; 2n� 2g, recall the
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following isomorphism, which can be obtained from the classical result for an action
of a finite group G on a locally compact Hausdorff space X :

(3-8) H�.X=GIk/ŠH�.X Ik/G ;

where k is a field of characteristic zero or prime to jGj; see [3, III.2].

We apply the isomorphism (3-8) to the orbifold lens space L.�n�1; �/Š S2n�1=G� .
Since H j .S2n�1Ik/G� D 0 for j D 1; : : : 2n�2, the claim is proved by the universal
coefficient theorem.

Toric orbifolds, invariant subspaces and orbifold lens spaces motivate the definition
of retraction sequences which we introduced in the previous section. For a vertex
v 2 V.Q/, let B2 be the union of all faces in Q which do not contain v . Next we
consider a hyperplane

(3-9) H.v/ WD fx 2Rn j hx; pvi D qvg;

where h ; i denotes the Euclidean inner product and pv 2Rn and qv 2R are chosen
in such a way that

� fx 2Rn j hx; pviC qv � 0g\V.Q/D fvg,

� fx 2Rn j hx; pviC qv � 0g\V.Q/D V.Q/ n fvg.

Then �Q.v/ WDQ\H.v/ is an .n�1/–dimensional simplex, because Q is a simple
polytope of dimension n; see Figure 3.

An L–characteristic pair arises naturally from an R–characteristic pair .Q; �/ for each
vertex v of Q . Indeed, if vDFj1\� � �\Fjn , we denote the set of facets of �Q.v/ by

F .�Q.v//D f�Q.v/\Fj1 ; : : : ; �Q.v/\Fjng:

Now we define a function

(3-10) �Q;vW F .�Q.v//! Zn

by �Q;v.�Q.v/\Fjr /D �.Fjr / for r D 1; : : : ; n. Notice that dim�Q.v/D n� 1,
but the rank of target space is n. Since f�.Fi1/ : : : ; �.Fin/g is a linearly independent
set, the function �Q;v is an L–characteristic function on �Q.v/.

4 Vanishing odd degree homology and torsion-freeness

Now we combine the ingredients which we introduced in the previous sections to
derive a sufficient condition for vanishing odd degree cohomology of toric orbifolds.
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x

hb1.x/
B2

b1
�Q.b1/

hb2.x/

hb2.y/

b2

x
y

�E2.b2/

Figure 3: The geometric interpretation of a retraction sequence

In particular, let X.Q; �/ be a toric orbifold and the triple f.Bk; Ek; bk/g`kD1 be a
retraction sequence of Q . Given an n–dimensional polytope Q , we begin by defining
the map

(4-1) hb1 W �Q.b1/! B2 D
[
fE jE is a face of Q; b1 … V.E/g

by hb1.x/ D B2 \ .line passing through x and b1/, where �Q.b1/ is an .n�1/–
dimensional simplex. The map hb1 is well-defined, because Q is convex. The left
picture of Figure 3 shows the map hb1 when Q is a prism.

Define a map

(4-2) fb1 W T
n
��Q.b1/!

[
E a face of B2

T dimE
�E

by fb1.t; x/D .x�E .t/; hb1.x//, where x�E is as defined in (3-6). This induces the map

(4-3) xfb1 W L.�Q.b1/; �Q;b1/!
[

E a face of B2

X.E; �E /;

where �Q;b1 is the L–characteristic function defined in (3-10). This map is well-defined
by the proof of the following proposition.

Proposition 4.1 The following diagram commutes:

(4-4)

T n ��Q.b1/
fb1

//

=��Q;b1
��

S
E a face of B2.T

dimE �E/

=��E
��

L.�Q.b1/; �Q;b1/
xfb1
//
S
E a face of B2 X.E; �E /

� � // X.Q; �/

where the equivalence relations ��Q;b1 and ��E are defined similarly as in (3-7) and
(3-2), respectively. Moreover, the bottom row is a cofiber sequence, ie X.Q; �/ is
homotopy equivalent to the mapping cone c. xfb1/ of the map xfb1 .

Algebraic & Geometric Topology, Volume 17 (2017)



3792 Anthony Bahri, Soumen Sarkar and Jongbaek Song

Proof We first show that the map xfb1 is well-defined. Suppose we choose two different
representatives, say Œt; x���Q;b1

and Œs; y���Q;b1 in L.�Q.b1/; �Q;b1/. Then x D y ,
so hb1.x/ D hb1.y/. Moreover, if x 2 �Q.b1/ \ F for some face F of Q , then
hb1.x/ 2 F \E for some face E of B2 . Hence the map x�E sends the subtorus TF.x/
of T n to TE.hb1 .x// the subtorus of T dimE. Since the map x�E is a homomorphism, if
t�1s 2 TF.x/ , then

x�E .t/
�1
x�E .s/D x�E .t

�1s/ 2 TE.hb1 .x//
:

Let C�Q.b1/ be the cone on �Q.b1/ in Q with the cone point b1 . Then we can
decompose Q into two parts as follows:

(4-5) QD C�Q.b1/[�Q.b1/Q nC�Q.b1/:

Now we define a continuous surjective map

gb1 W Q nC�Q.b1/! B2

in a manner similar to (4-1). We use it to define a straight line homotopy by

�W Q nC�Q.b1/� I !Q nC�Q.b1/; .x; u/ 7! .1�u/xCu �gb1.x/;

which preserves the face structure. Thus, � induces a homotopy

y�W .T n �Q nC�Q.b1//=�� � I ! .T n �Q nC�Q.b1//=��;

defined by
.Œt; x��� ; u/ 7! Œt; �.x; u/��� :

Note that at uD 0 the map y� is the identity and at uD 1 the image of y� is ��1.B2/.

Then

X.Q; �/D ��1.C�Q.b1//[L.�Q.b1/;�Q;b1 /
��1.Q nC�Q.b1//

' C
�
L.�Q.b1/; �Q;b1/

�
[L.�Q.b1/;�Q;b1 /

��1.B2/

' c. xfb1/:

Hence, the result follows.

Now the following isomorphisms are straightforward from the cofiber sequence

H�.X.Q; �/; �
�1.B2//ŠH�

�
C
�
L.�Q.b1/; �Q;b1/

�
; ��1.B2/

�
Š zH��1

�
L.�Q.b1/; �Q;b1/

�
:

Those two isomorphisms come from the excision and the long exact sequence of the
pair, respectively.
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So far, we have considered B1 DQ and B2 , which is the second term of a retraction
sequence starting by choosing b1 2 FV.Q/D V.Q/. However, we can apply similar
arguments to each pair Bi and BiC1 in a retraction sequence. This leads us to
the following lemma, whose proof is essentially same as that of Proposition 4.1.
Before we state the lemma, we first set up the notations: Given a retraction sequence
f.Bk; Ek; bk/g

`
kD1

of Q :

� �Ek .bk/ WDEk \H.bk/D Bk \H.bk/ is the simplex obtained by cutting the
vertex bk from Bk .

� �Ek ;bk is an L–characteristic function on �Ek .bk/ defined in a similar manner
to (3-10) induced from �Ek .

� The map
xfbk W L.�Ek .bk/; �Ek ;bk /!

[
E a face of BkC1

X.E; �E /D �
�1.BkC1/

is defined similarly to (4-3) by regarding Ek as a simple polytope.

The right-hand side of Figure 3 illustrates the case of the 3–dimensional prism. The
argument above extends to prove the following lemma.

Lemma 4.2 The sequence

(4-6) L.�Ek .bk/; �Ek ;bk /
xfbk
��!��1.BkC1/ ,!��1.Bk/

is a cofiber sequence. Moreover,

H�.�
�1.Bk/; �

�1.BkC1//Š zH��1
�
L.�Ek .bk/; �bk /

�
:

Recall from Proposition 3.5 that an L–characteristic function

�W F .�n�1/! Zn

defines a finite abelian group Zn=im.�/. An R–characteristic pair .Q; �/ induces
an R–characteristic pair .E; �E / as in (3-5) for any face E of Q . Let E be a k–
dimensional face of Q for some k � n and v 2 V.E/. Then �E .v/ WDE \H.v/ is
a .k�1/–simplex. These give us an L–characteristic function

�E;vW F .�E .v//! Zk;

which is defined in a similar manner to (3-10) associated to �E W F .E/! Zk and
v 2 V.E/. This L–characteristic function defines the finite group

(4-7) GE .v/ WD Zk=im.�E;v/:

If GE .v/ is trivial, we call a point ��1.v/ in ��1.E/Š X.E; �E / a smooth point,
and otherwise a singular point, where � W X.Q; �/ ! Q is the orbit map defined
in (3-3).
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Furthermore, for each B 2B.Q/ and a free vertex v 2 FV.B/, there exists a unique
maximal face, say Ev , of B containing v . Hence, for each B 2B.Q/, we write

(4-8) GB.v/ WDGEv .v/

whenever v is a free vertex in B .

Proposition 4.3 Given a vertex v 2 V.Q/, let E and E 0 be two faces containing v
such that E is a face of E 0. Then jGE .v/j divides jGE 0.v/j.

Proof From Proposition 3.2, we may assume that E 0 DQ without loss of generality.
Suppose that E is a face of Q with codimension k . For convenience, we further
assume that E D F1\ � � � \Fk and v D F1\ � � � \Fk \FkC1\ � � � \Fn , where the
Fi are facets of Q .

From (3-10) and (4-7), we have GQ.v/ D Zn=h�.F1/; : : : ; �.Fn/i and GE .v/ D

Zk=h�E .E \FkC1/; : : : ; �E .E \Fn/i. Now we consider the composition

Zn
�E
��Zk�Zk=h�E .E \FkC1/; : : : ; �E .E \Fn/i;

where the map �E is defined in (3-4) and the second map is the natural surjection
determined by (3-5). Observe that the kernel of the previous composition contains
h�.F1/; : : : ; �.Fn/i. Hence, we get a surjective group homomorphism from GQ.v/ to
GE .v/. The result follows from Lagrange’s theorem in group theory.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 We prove the claim by the induction on the number of vertices
of B 2B.Q/. First, notice that when the retraction sequence reaches an edge or a
union of edges, say Bs , then ��1.Bs/ is CP1 or homotopic to a finite wedge of CP1,
which implies that H�.��1.Bs// is torsion-free and concentrated in even degrees.
Therefore, if jV.B/j � 2 for B 2B.Q/, then the claim is true.

Now we assume that ��1.B/ is even for B 2B.Q/ with jV.B/j � i�1. To complete
the induction, we shall prove that the same holds for B 0 2B.Q/ with jV.B 0/j D i .
Given such B 0, there exists B 2B.Q/ such that B is obtained from B 0 by deleting all
faces containing a free vertex of B 0. To be more precise, let FV.B 0/Dfvi1 ; : : : ; vir g be
the set of free vertices in B 0. Notice that, regarding B 0 as a generic step of a retraction
sequence in R.Q/, we can produce r many different B 2B.Q/ with jV.B/j D i � 1
from B 0. According to the induction hypothesis, we assume that for each t D 1; : : : ; r ,
the group H�.��1.B.vit /// is concentrated in even degrees and torsion-free, where
B.vit / 2B.Q/ is obtained from B 0 by deleting faces containing vit . This assumption
makes sense, because any retraction sequence reaches a union of edges.

For simplicity, we fix the following notation: For each free vertex vit 2 FV.B 0/:
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� X 0 WD ��1.B 0/ and dimB 0 D d 0 D 1
2

dimRX
0.

� X.vit / WD �
�1.B.vit // and dimB.vit /D d D

1
2

dimRX.vit /.

� L.vit / WD L.�Eit .vit /; �Eit ;vit /, where Eit denotes the maximal face of B 0

containing vit .

Notice that dimL.vit /� 2d
0� 1 and d � d 0.

Now we consider the long exact sequence of the homology for the pair .X 0; X.vit //D�
��1.B 0/; ��1.B.vit //

�
(4-9) � � � !HjC1.X

0/!HjC1.X
0; X.vit //!Hj .X.vit //

!Hj .X
0/!Hj .X

0; X.vit //! � � � :

Suppose that j is odd. By the induction hypothesis and Lemma 4.2, the sequence (4-9)
becomes

(4-10) 0!Hj .X
0/! zHj�1.L.vit //

0
�!Hj�1.X.vit //:

The rightmost map is the zero map because the domain is a torsion group but the target
space is free by assumption. Hence, Hj .X 0/ is isomorphic to zHj�1.L.vit //, and the
latter is zero if j � 1 > dimL.vit / or a torsion group determined by the prime factors
of jGB 0.vit /j if j � 1� dimL.vit / by Lemma 3.6. This argument holds for each free
vertex vi1 ; : : : ; vir . Hence we have r many different exact sequences like (4-10). Now
the assumption of Theorem 1.1 tells us that

gcd
˚
j zHj�1.L.vi1//j; : : : ; j

zHj�1.L.vir //j
	
D 1;

but Hj .X 0/ stays same. Hence, we conclude that Hj .X 0/D 0 if j is odd. Moreover,
zHj�1.L.vit //D 0 for all t D 1; : : : ; r because of the exactness of (4-10).

Next we assume that j is even. Then the exact sequence (4-9) gives us

(4-11) zHj .L.vit //
0
�!Hj .X.vit //!Hj .X

0/! zHj�1.L.vit //! 0:

Then we have the following three cases:

� � �
0
�!Hj .X.vit //!Hj .X

0/! 0 if j � 1 > dimL.vit /;

� � �
0
�!Hj .X.vit //!Hj .X

0/! Z! 0 if j � 1D dimL.vit /;

� � �
0
�!Hj .X.vit //!Hj .X

0/!Gj�1! 0 if j � 1 < dimL.vit /;

where Gj�1 is as defined in Lemma 3.6 and Hj .X.vit // is free by the induction
hypothesis. The free vertices vi1 ; : : : ; vir in B 0 gives us r many exact sequences, and
each of them is one of the above three cases. If one of the free vertices gives the first
or the second type of exact sequence, then Hj .X 0/ cannot have a torsion subgroup
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because of the exactness. If all of the sequences are of the third type, then Hj .X 0/ has
no torsion because of the assumption of the theorem and arguments similar to those
used in the case when j is odd. This completes the induction.

Notice that Kawasaki [18] has shown that the cohomology ring of weighted projec-
tive space CPn� with weight � D .�0; : : : ; �n/ is concentrated in even degrees and
torsion-free, if gcd.�0; : : : ; �n/D 1. Theorem 1.1 extends Kawasaki’s theorem to the
category of toric orbifolds which contains the weighted projective spaces. The following
Example 4.4 shows how we can apply this result to a polygon, and Example 4.5 is a
practical computation on a higher-dimensional weighed projective space.

Example 4.4 Consider the 4–dimensional toric orbifold X over Q whose R–char-
acteristic pair is described in Figure 4. Let H.v/ be an affine hyperplane as defined
in (3-9). Then H.v/\Q is an 1–simplex. The induced L–characteristic function

�Q;vW fH.v/\F1; H.v/\Fmg ! Z2

is defined by �Q;v.H.v/\F1/D �.F1/D .a1; b1/ and �Q;v.H.v/\Fm/D �.Fm/D
.am; bm/. Therefore, the orbifold lens space L.�Q.v/; �Q;v/ is homeomorphic to
S3=GQ.v/, where GQ.v/ is a finite abelian group of order ja1bm � b1amj; see
Proposition 3.5. Moreover, the prime factors of the order of a torsion element in
H�.L.�Q.v/; �Q;v// is a subset of the prime factors of ja1bm�b1amj by Lemma 3.6.

Now we consider a retraction sequence fBk; Ek; bkg`kD1 starting at v . The second
space B2 is the union F2[� � �[Fm�1 of edges whose preimage ��1.B2/ is homotopic
to the wedge of m � 2 copies of CP1. Hence, H�.��1.B2// is torsion-free and
Hodd.�

�1.B2// vanishes. A cofibration

L.�Q.v/; �Q;v/! ��1.B2/!X

gives an isomorphism Hj .X; �
�1.B2//Š zHj�1.L.�Q.v/; �Q;v//. Hence, the long

exact sequence of pair .X; ��1.B2// yields

� � � ! zHj .L.�Q.v/; �Q;v//!Hj .�
�1.B2//

!Hj .X/! zHj�1.L.�Q.v/; �Q;v//! � � � ;

and this shows that, if Hj .X/ has a torsion part, then its prime factors must divide
ja1bm� b1amj. But the same argument can be applied to all the other vertices in Q .
Finally, we may conclude that H�.X/ is torsion-free and concentrated in even degrees
if

(4-12) gcd
˚
ja1b2� b1a2j; : : : ; jam�1bm� bm�1amj; ja1bm� b1amj

	
D 1;

which is the assumption of Theorem 1.1.
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QDm–gon
:::
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2
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F
m
�
1

:::

ƒD

�1 �2 � � � �4� �
a1 a2 � � � am
b1 b2 � � � bm

v

Figure 4: An R–characteristic function on a polygon

Example 4.5 We consider an R–characteristic pair .�4; �/, where �W F .�4/!Z4

is defined by
�1 �2 �3 �4 �52664

3775
�1 1 0 0 0

�2 0 1 0 0

�2 0 0 1 0

�2 0 0 0 1

:

The column vectors satisfies the relation �1C�2C 2�3C 2�4C 2�5 D 0. Then the
resulting toric orbifold is a weighted projective space CP4.1;1;2;2;2/ . We refer to [6,
Example 3.1.17] or [12, Section 2.2] for more details.

To check the assumption in Theorem 1.1, it suffices to consider all faces of �4 of
dimension greater than 1, because the set B.�4/ coincides with the set of all faces
of �4. First of all, for �4 itself, it is easy to see that

gcd
˚
jG�4.v/j W v 2 V.�

4/
	
D gcdf2; 2; 2; 1; 1g D 1:

Since the process is essentially the same, we choose E D F1\F2 D�2 as a sample.
Observe that

.h�1; �2i˝Z R/\Z4D .h�e1�2e2�2e3�2e4; e1i˝Z R/\Z4Šhe2Ce3Ce4; e1i:

Hence, we may decompose the target space Z4 Š he2C e3C e4i˚he1i˚he3i˚he4i.
This derives an R–characteristic function

�E W fE \F3; E \F4; E \F5g ! Z2 Š he3i˚ he4i;

defined by �E .E\F3/D .�1;�1/, �E .E\F4/D .1; 0/ and �E .E\F5/D .0; 1/.
Hence, ��1.E/DX.�2; �E /ŠCP2.1;1;1/ . Hence, we have

gcd
˚
jGE .v/j W v 2 V.E/

	
D gcdf1; 1; 1g D 1:

Sometimes, if the polytope has sufficiently many symmetries, we can analyze all
possible retraction sequences efficiently. Proposition 4.3 can then be used to ensure the
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B2

F5

v1

v5
v6
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Figure 5: A retraction sequence of a prism

gcd assumption of Theorem 1.1 holds. The main features of the following example
are that the polytope has at least two free vertices at each B 2 B.Q/, and that the
collection fjGQ.v/j W v 2 V.Q/g consists of mutually different prime numbers; in
particular, they are pairwise relatively prime.

Example 4.6 Let Q be the 3–dimensional cube whose facets and vertices are il-
lustrated in Figure 5. We assign an R–characteristic function �W F .Q/ ! Z3 as
follows:

�.F1/D .p1; p2; p3/; �.F5/D .p4; p5; p6/;

�.F2/D e1; �.F3/D e2; �.F4/D e3;

where the pi are all prime numbers with pi ¤ pj whenever i ¤ j , and ei is the i th

standard unit vector in Z3. Then it is easy to see that jGQ.vi /j D pi for i D 1; : : : ; 6.
Hence, we have

gcd
˚
jGQ.v/j W v 2 V.Q/

	
D gcdfp1; : : : ; p6g D 1:

The same property holds for other polytopal complex B 2B.Q/ from Proposition 4.3.
Indeed, for instance,

gcd
˚
jGB2.v/j W v 2 FV.B2/

	
D gcd

˚
jGB2.v1/j; jGB2.v3/j; jGB2.v5/j

	
D 1

because gcdfp1; p3; p5g D 1.

5 Cohomology ring of toric orbifolds

The integral equivariant cohomology ring of certain projective toric varieties is given by
a ring determined by the fan data. This ring is called the ring of piecewise polynomials,
which we denote by PPŒ†�. For a smooth fan, it uses the fan’s combinatorial data only
and coincides with the Stanley–Reisner ring SRŒ†� of the fan †. In general, however,
the ring of piecewise polynomials uses all the geometric data in a fan.
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To be more precise, let † be a fan in Rn and f�1; : : : ; �mg � Zn the set of primitive
vectors generating 1–dimensional rays in †. Then the Stanley–Reisner ring SRŒ†� is
defined by the quotient ZŒx1; : : : ; xm�=I of polynomial ring with m variables by the
following ideal generated by squarefree monomials:

(5-1) I D hxi1 � � � xik j conef�i1 ; : : : ; �ikg …†i;

where conef�i1 ; : : : ; �ikg denotes the cone generated by f�i1 ; : : : ; �ikg. For the case
of smooth toric varieties, their odd-degree cohomology always vanishes, which leads
us to the following description of the cohomology ring.

Theorem 5.1 [7; 16] Let X† be a smooth toric variety. Then there exists a ring
isomorphism H�.X†/ Š SRŒ†�=J , where J is the ideal generated by the linear
relations

(5-2)
mX
iD1

h�i ; ej ixi D 0; j D 1; : : : ; n;

where ej denotes the j th standard unit vector in Zn.

Notice that, for toric orbifolds, the theorem holds only for Q–coefficients; see for
instance [6, Section 12.4]. In order to make the singular theory better resemble the
smooth case, we introduce an intermediate ring, which models the Stanley–Reisner
ring but is based on a fan �† in Rm defined from the combinatorial data of †, which
has m one-dimensional rays. The ring of piecewise polynomials on the original fan †
is recovered by imposing an integrality condition, which leads us to the notion of the
weighted Stanley–Reisner ring wSRŒ†� of †.

5.1 Weighted Stanley–Reisner ring

Let † be a simplicial fan in Rn, ie each top-dimensional cone of † is generated by n
linearly independent primitive vectors in the lattice Zn. In particular, a simplicial fan †
is called a polytopal fan if it is the normal fan of a simple lattice polytope in Rn ; see [6,
Chapter 2] or [12, Section 1.5] for more details. Hence, the determinant of generators
of each top-dimensional cone is nonzero but not necessarily ˙1, so the corresponding
fixed point might be singular. Let †.j / denotes the set of j –dimensional cones in †.
To record the singularity of each fixed point in an efficient way, we assign a vector

z� WD .z�1 ; : : : ; z
�
m/ 2

M
m

QŒu1; : : : ; un�

to each top-dimensional cone � D conef�i1 ; : : : ; �ing 2†
.n/ by the following rule:
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(C1) z�j D 0 if j … fi1; : : : ; ing.

(C2)

264z
�
i1
:::

z�in

375D
24 �i1 � � � �in

35�1 �
264u1:::
un

375.

The inverse matrix in the condition (C2) may have rational entries. The following
definition is motivated by this observation.

Definition 5.2 Given a fan † in Rn with m one-dimensional rays, we say a poly-
nomial h.x1; : : : ; xm/ 2 ZŒx1; : : : ; xm� satisfies the integrality condition with respect
to † if h.z� / 2 ZŒu1; : : : ; un� for all � 2†.n/ .

Notice that the collection of polynomials satisfying the integrality condition is closed
under addition and multiplication, which induces the natural ring structure on it inherited
from that of ZŒx1; : : : ; xm�. Moreover, the polynomials in I defined in (5-1) satisfy
the integrality condition, obviously. Indeed, the condition (C1) leads h.z� / to be the
zero polynomial for all � 2†.n/ whenever h.x1; : : : ; xm/ 2 I .

Finally, we define the weighted Stanley–Reisner ring wSRŒ†� as follows:

(5-3) wSRŒ†� WD fh 2 ZŒx1; : : : ; xm� j h satisfies the integrality conditiong=I:

Remark When the fan † is smooth, wSRŒ†� D SRŒ†�. Indeed, the determinant
of a smooth top-dimensional cone is ˙1, which implies that its inverse has integer
entries.

Now we introduce the second main theorem of this paper. The proof will be given in
the next subsection.

Theorem 5.3 Let X† be a projective toric orbifold over a polytopal fan † with
H odd.X/D 0. Then there is a ring isomorphism

H�.X†/Š wSRŒ†�=J ;

where J is the ideal generated by the linear relations (5-2).

Consider a simple lattice polytope Q in Rn whose normal fan is †. Then the normal
vectors of each facet define an R–characteristic function �W F .Q/! Zn. Now we
have a natural R–characteristic pair .Q; �/ from †, which allows us to apply the
results of Sections 2 and 4. Hence, we have a concrete statement, which is Theorem 1.2,
with a sufficient condition for H odd.X†/D 0.

We complete this subsection by applying Theorem 1.2 to a weighted projective space
CP2.1;a;b/ . We shall recover Kawasaki’s result [18, Theorem 1].
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Example 5.4 Let † be a fan in R2 generated by

(5-4) �1 D .a; b/; �2 D .�1; 0/; �3 D .0;�1/ 2 Z2;

where a and b are relatively prime. The 2–dimensional cones are �12 , �13 and �23 ,
where �ij D conef�i ; �j g. Since f�1; �2; �3g generates the lattice Z2 and satisfies
�1C a�2C b�3 D .0; 0/, the toric variety X† is isomorphic to the weighed projec-
tive space CP2.1;a;b/ . We refer to [6, Example 3.1.17] or [12, Section 2.2] for the
characterization of a fan corresponding to weighted projective spaces.

The direct computation of inverse matrices for Œ�i j �j � gives us the following list of
vectors:

z�12 D
�
1

b
u2; �u1C

a

b
u2; 0

�
;

z�13 D
�
1

a
u1; 0;

b

a
u1�u2

�
;

z�23 D .0; �u1; �u2/:

Hence, we have

(5-5) wSRŒ†�D˚
h.x1; x2; x3/ 2 ZŒx1; x2; x3� j h.z

�ij / 2 ZŒu1; u2� for 1� i < j � 3
	
=I:

Finding elements at each degree is straightforward. For instance, for a degree-2 poly-
nomial, k1x1Ck2x2Ck3x3 2wSRŒ†� if and only if the following three polynomials
have integer coefficients:

�k2u1C
�
1

b
k1C

a

b
k2

�
u2;

�
1

a
k1C

b

a
k3

�
u1� k3u2; �k2u1� k2u2;

which is exactly the case when k1C ak2 2 bZ and k1C bk3 2 aZ. Hence, one can
show that the integers .k1; k2; k3/ are

.a;�1; 0/; .b; 0;�1/; .ab; 0; 0/; .0; b; 0/; .0; 0; a/;

and Z–linear combinations of them. They give us the following degree-2 elements in
wSRŒ†�:

(5-6) ax1� x2; bx1� x3; abx1; bx2; ax3;

and Z–linear combinations of them. Similarly, we can find the degree-4 elements:

(5-7) a2b2x21 ; b2x22 ; a2x23 ; abx1x2; a2x1x3; x2x3;

and Z–linear combinations of them.

We continue to calculate the ring structure of H�.CP2.1;a;b// using Theorem 1.2.
Indeed, the R–characteristic pair .�2; �/ induced from † satisfies the assumption
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of Theorem 1.1; see Example 4.4. Hence, we conclude that CP2.1;a;b/ is even, which
implies that the rank of the integral cohomology group is 1 in each even degree and 0
otherwise.

Remark In general, the integral Betti numbers of a toric manifold or the rational Betti
numbers of a toric orbifold are given by the h–vector of its underlying polytope; see
[9, Section 3] or [20, Section 4]. Hence, if a toric orbifold is even, then its integral
Betti numbers are obtained by the h–vector of the underlying polytope.

Now the characteristic vectors (5-4) and the relation (5-2) determine the ideal J D
hax1�x2; bx1�x3i whose generators are first two items in (5-6). Hence, the elements
in (5-6) except the first two are are the same modulo J . Hence, they represent the
same element in H�.CP2.1;a;b//. We put

w1 WD abx1 D bx2 D ax3:

Since rankH 4.CP2.1;a;b//D 1, we choose an element in (5-7) which has the minimal
divisibility. In this case, we pick

w2 WD x2x3:

Then we have the multiplicative structure w21Dabw2 . Finally, we have the presentation

H�.CP2.1;a;b//Š ZŒw1; w2�=hw
2
1 � abw2; w1w2i;

where degw1 D 2 and degw2 D 4. Notice that the monomial w1w2 comes from the
Stanley–Reisner ideal x1x2x3 .

Remark Even if we can find elements in wSRŒ†� by the direct computation of
the integrality condition, finding the minimal set of generators in wSRŒ†� for an
arbitrary simplicial fan is not obvious, in general. However, when X† is a weighted
projective space, a result of [1] allows us to find generators of the ring of piecewise
polynomials PPŒ†� and, hence, generators in wSRŒ†�, by a method in the next
subsection. Moreover, the identification result, Corollary 5.8, tells us how to interpret
those generators in terms of elements in wSRŒ†�.

5.2 Piecewise algebra and cohomology ring

We introduce now the ring of piecewise polynomials, which is determined by a fan and
describes the equivariant cohomology of a large class of toric orbifolds. As mentioned
above, unlike the Stanley–Reisner ring, which encodes combinatorial data only, the
ring of piecewise polynomials depends on the full geometric information in a fan.

We begin by introducing piecewise polynomials. Let † be a fan in Rn. A function
f W Zn ! Z is called a piecewise polynomial on † if, for each cone � 2 †, the
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restriction f j� is a polynomial function on � \Zn. Such a function can be interpreted
as a collection ff�g�2†.n/ , which we denote by ff�g for simplicity, such that

(5-8) f� j�\�0 D f� 0 j�\�0 :

In other words, it is enough to consider the polynomials on each top-dimensional cone.
The polynomials on lower-dimensional cones are determined by (5-8).

The set PPŒ†� of piecewise polynomial functions on † with integer coefficients on †
has a ring structure under pointwise addition and multiplication. Moreover, the natural
inclusion of global polynomials ZŒu1; : : : ; un� into PPŒ†� induces a ZŒu1; : : : ; un�–
algebra structure on PPŒ†�. Furthermore, by considering Qn instead of Zn, we
can define piecewise polynomial functions with rational coefficients f W Qn ! Q,
and we denote the ring of piecewise polynomial functions with rational coefficients
by PPŒ†IQ�.

It is well known that the equivariant cohomology ring with rational coefficients of a
toric variety over a simplicial fan is isomorphic to PPŒ†IQ�; see [6]. On the other
hand, for the case of polytopal fans, Bahri, Franz and Ray [1] proved the following
proposition over Z.

Proposition 5.5 [1, Proposition 2.2] Let † be a polytopal fan in Rn, X† the
associated compact projective toric variety with H odd.X†/ D 0, and T D T n the
n–dimensional torus acting on X† . Then H�T .X†/ is isomorphic to PPŒ†� as an
H�.BT /–algebra.

Here H�.BT /–algebra structure on PPŒ†� is obtained by identifying H�.BT / with
the global polynomials ZŒu1; : : : ; un�, where ui is the first Chern class of the canonical
line bundle given by the i th projection T ! S1 .

On the other hand, the combinatorial structure of † determines a canonical fan in a
higher-dimensional lattice as follows: Let †.1/ D f�1; : : : ; �mg be the set of primitive
vectors generating 1–dimensional rays in †. We define a linear map ƒW Zm! Zn

by ƒ.ei / D �i , where e1; : : : ; em denote the standard unit vectors in Zm. By the
pull-back of † through ƒ, we can define a fan�†D fy� WDƒ�1.�/ j � 2†g
in Rm. To be more precise, if � is the cone generated by �i1 ; : : : ; �ik , then y� is the
cone generated by ei1 ; : : : ; eik . Moreover, for a commutative ring k, a linear map ƒ
induces a ring homomorphism

(5-9) ƒ�W PPŒ†Ik�! PPŒ�†Ik�
Algebraic & Geometric Topology, Volume 17 (2017)
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of piecewise polynomial rings, where the map is defined by

ƒ�.ff�g/D
˚
gy� .xi1 ; : : : ; xin/ WD f� .ƒ� � Œxi1 ; : : : ; xin �

T /
	
y�2�†.n/ ;

where ƒ� D Œ�i1 j � � � j �in � is a square matrix and ƒ� � Œxi1 ; : : : ; xin �
T is the usual

matrix multiplication of n�n and n� 1 matrices.

Indeed, the map ƒ� is well-defined, since gy� jy�\y�0 D gy� 0 jy�\y�0 .

Lemma 5.6 Given a polytopal fan †, as H�.BT Ik/–algebras:

(1) When kDQ, PPŒ†IQ� is isomorphic to PPŒ�†IQ�.
(2) When kD Z, there is a monomorphism from PPŒ†� to PPŒ�†�.

Proof For each top-dimensional cone � D conef�i1 ; : : : ; �ing 2 †
.n/ , we set the

following notation:

� f� .u1; : : : ; un/, gy� .xi1 ; : : : ; xin/ are polynomial functions defined on � 2 †
and y� 2 �†, respectively.

� ff�g WD ff� .u1; : : : ; un/ j � 2†
.n/g 2 PPŒ†�.

� fgy�g WD fgy� .xi1 ; : : : ; xin/ j y� 2
�†.n/g 2 PPŒ�†�.

� ƒ� WD Œ�i1 j � � � j �in � is an n�n matrix with column vectors �i1 ; : : : ; �in .

Recall the ring homomorphism ƒ� introduced in (5-9). If we restrict k to Q, the map
ƒ� has the natural inverse

(5-10) ‚W PPŒ�†Ik�! PPŒ†Ik�;

defined by

‚.fgy�g/D
˚
f� .u1; : : : ; un/ WD gy� .ƒ

�1
� � Œu1; : : : ; un�

T / j � 2†.n/
	
;

where ƒ�1� is regarded as a linear automorphism of Qn. Indeed,

.‚ ıƒ�/.ff�g/D
˚
f� .ƒ� �ƒ

�1
� � Œu1; : : : ; un�

T / j � 2†.n/
	

D ff� .u1; : : : ; un/ j � 2†
.n/
g D ff�g:

In particular, ƒ� is a monomorphism in Z–coefficients. Finally, the H�.BT Ik/–
algebra structure on PPŒ�†Ik� is naturally inherited from that of PPŒ†Ik� via the
map ƒ�.
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Recall that the Stanley–Reisner ring SRŒ†Ik� has combinatorial data only, while
PPŒ†Ik� contains both combinatorial and geometric data. However, PPŒ�†Ik� has
only combinatorics, but looks like PPŒ†Ik�. In this point of view, PPŒ�†Ik� is an
intermediate object between SRŒ†Ik� and PPŒ†Ik�. The following lemma, together
with Lemma 5.6, concludes the relations among those three objects.

Lemma 5.7 As an H�.BT Ik/–algebra, PPŒ�†Ik� is isomorphic to SRŒ†Ik� for
kD Z or Q.

Proof We construct an isomorphism between PPŒ�†Ik� and SRŒ†Ik�, where kD

Z or Q. Assume that j†.1/j Dm. Define a map

(5-11) �W kŒx1; : : : ; xm�! PPŒ�†Ik�
by restriction to each cone of �†. Then this map � is a surjective ring homomorphism.
Indeed, given fgy�g 2 PPŒ�†Ik�, we can apply the inclusion–exclusion principle to
obtain

(5-12) h.x1; : : : ; xm/D

n�1X
jD0

�
.�1/j

X
y�2�†

dim y�Dn�j

gy� .xi1 ; : : : ; xin�j /

�

which is the desired global function h satisfying �.h/D fgy�g, where y� 2 �†.n/.
Moreover, since the zero element in PPŒ�†Ik� is fgy� D 0 j y� 2 �†.n/g, the kernel is

ker� D span
� kY
jD1

xij

ˇ̌̌
conefei1 ; : : : ; eikg … �†�;

which is exactly the Stanley–Reisner ideal I of †. Hence, the result follows.

Corollary 5.8 There is an isomorphism PPŒ†�Š wSRŒ†� (see (5-3)) as H�.BT /–
algebras.

Proof Consider the composition of ring homomorphisms

PPŒ†� ƒ
�

,�!PPŒ�†� ˆ�1�!SRŒ†�;

where ˆW SRŒ†�! PPŒ�†� is the isomorphism induced by � . With Z–coefficients,
the map ƒ� is injective by Lemma 5.6. Hence, PPŒ†� is isomorphic to its image in
SRŒ†� via the composition ˆ�1 ıƒ�.

Recall that the composition ˆ�1 ı ƒ� is an isomorphism over Q, whose inverse
‚ ıˆ�1 maps an element Œh� 2 SRŒ†IQ� to fh.z� /g�2†.n/ 2 PPŒ†IQ�. Therefore,
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over integer coefficients, Œh� 2 im.ˆ�1 ıƒ�/ if and only if the polynomial h satisfies
the integrality condition. Hence, the result follows.

Finally, we conclude this subsection with a proof of Theorem 5.3.

Proof of Theorem 5.3 Since H�.X†IZ/ concentrated in even degrees, the Serre
spectral sequence for the fibration

X†!ET �T X†
�
�!BT

degenerates at the E2 level. By the result from Franz and Puppe [11, Theorem 1.1],
we get isomorphisms of H�.BT /–algebras,

H�.X†/ŠH
�
T .X†/˝H�.BT /ZŠH�T .X†/=Im.��W H�.BT /!H�T .X†//:

By Proposition 5.5 and Corollary 5.8, we have H�T .X†/Š wSRŒ†�. Moreover, for
each uj 2 ZŒu1; : : : ; un�ŠH�.BT /,

.ˆ ıƒ�/.uj /D

mX
iD1

h�i ; ej ixi :

Hence, we conclude that im.��W H�.BT /!H�T .X†//D J .

6 Example: orbifold Hirzebruch varieties

We finish this paper by illustrating the results of the previous sections with a con-
crete example which is not a weighted projective space. Consider a primitive vector
.a; b/ 2 Z2 with a > 0. Together with .�1; 0/, .0; 1/ and .0;�1/, we can make a
complete fan † in R2 which gives us a compact toric variety with two singular points.
We denote this toric variety by H.a;b/ . See Figure 6 for the fan and corresponding
R–characteristic pair .Q; �/. When aD 1, the toric variety is known as a Hirzebruch
surface, say Hb . In this point of view, let us call H.a;b/ an orbifold Hirzebruch variety.

�3 D .�1; 0/

�2 D .0; 1/

�4 D .0;�1/

�1 D .1; b/

Hb

�3 D .�1; 0/

�2 D .0; 1/

�4 D .0;�1/

�1 D .a; b/

H.a;b/

Figure 6: A Hirzebruch surface and an orbifold Hirzebruch variety
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Since the collection in (1-1) becomes fjGQ.v/j W v 2 V.Q/g D f1; 1; a; ag when
B1 DQ , its gcd is 1. Moreover, in any retraction sequence, B2 is given by a union
of edges, which guarantees that .Q; �/ satisfies the assumption of Theorem 1.1; see
Example 4.4. Moreover, since the underlying polytope is a square, the integral Betti
numbers are given by ˇ0 D ˇ4 D 1 and ˇ2 D 2 by the remark on page 3802.

Remark We may compute the (co)homology groups of low-dimensional toric orb-
ifolds by the spectral sequence whose E1 page is described by the fan data; see [10; 15].
More generally, the low-dimensional calculations of Kuwata, Masuda and Zeng [19]
apply to the category of torus orbifolds.

Let �ij D conef�i ; �j g, where �1; : : : ; �4 are described in the right-hand side of
Figure 6. Then the integrality condition of Definition 5.2 is given by the vectors

z�12 D
�
1

a
u1; �

b

a
u1Cu2; 0; 0

�
;

z�14 D
�
1

a
u1; 0; 0;

b

a
u1�u2

�
;

z�23 D .0; u2; �u1; 0/;

z�34 D .0; 0; �u1; �u2/:

Notice that the last two vectors, z�23 and z�34 , don’t contribute to the integrality
condition, because their entries have integral coefficients.

A similar computation to Example 5.4 shows that the following polynomials are
elements of degree 2 in wSRŒ†�:

(6-1) ax1� x3; bx1C x2� x4; ax1; ax2; x3; ax4;

as are Z–linear combinations of them. The first two elements are actually the linear
relations in J , which means that they come from the global polynomials in PPŒ†�.
Since rankH 2.H.a;b//D 2, we choose two linearly independent elements as follows:

w1 WD ax1 and w2 WD ax4:

Next, degree-4 elements in wSRŒ†� are

(6-2) a2x21 ; a2x22 ; x23 ; a2x24 ; a2x1x2; a2x1x4; x2x3 and x3x4;

and their Z–linear combination. The first four of (6-2) are just the square of degree-2
elements. The remaining four monomials are

� a2x1x2 D ax1ax2 D ax1a.�bx1C x4/D w1.�bw1Cw2/,

� a2x1x4 D ax1ax4 D w
2
1 ,
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Notice that the final two monomials x2x3 and x3x4 cannot come from degree-2
elements. Hence, we put

w3 WD x3x4:

Then
x2x3 D .�bx1C x4/x3 D x3x4 D ax1x4 D w3:

The second equality holds because of the Stanley–Reisner ideal I D hx1x3; x2x4i.
Finally, the ideal I and J determine the multiplicative structures as follows:

w21 D .ax1/
2
D .ax1/.x3/D 0;

w1w2 D .ax1/.ax4/D x3.ax4/D aw3;

w22 D .ax4/.ax4/D a.bx1C x2/.ax4/D abx3x4 D abw3;

w1w3 D .ax1/.x3x4/D 0;

w2w3 D .ax4/.x3x4/D ax4x3.bx1C x2/D 0;

w23 D .x3x4/
2
D x23x

2
4 D .ax1x3/.x

2
4/D 0:

Therefore, we get the following presentation for the cohomology ring of orbifold
Hirzebruch varieties:

(6-3) H�.H.a;b//

Š ZŒw1; w2; w3�=hw
2
1 ; w1w2� aw3; w

2
2 � abw3; w1w3; w2w3; w

2
3i;

where degw1 D degw2 D 2 and degw3 D 4.

Remark The cohomology ring of Hirzebruch surfaces, by way of comparison, can be
computed from the results of [7], [9] or [16]. Indeed it has the presentation

H�.Hb/Š ZŒw1; w2�=.w
2
1 ; w

2
2 � bw1w2/;

where degw1 D degw2 D 2, which means that it is generated by degree-2 elements.
However, H�.H.a;b// has the degree-4 generator w3 which cannot be generated by
degree-2 elements, ie w1w2 D aw3 . Notice that we can recover the presentation of
H�.Hb/ by replacing a by 1 in (6-3).
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Remarks on coloured triply graded link invariants

SABIN CAUTIS

We explain how existing results (such as categorical sln actions, associated braid
group actions and infinite twists) can be used to define a triply graded link invariant
which categorifies the HOMFLY polynomial of links coloured by arbitrary partitions.
The construction uses a categorified HOMFLY clasp defined via cabling and infinite
twists. We briefly discuss differentials and speculate on related structures.

57M27; 16T99

1 Introduction

In [14; 16] Khovanov and Rozansky defined a triply graded link invariant using matrix
factorizations and subsequently Soergel bimodules. In their case the link is coloured by
the partition .1/ and the invariant categorifies the HOMFLY polynomial. In this paper
we explain how existing tools can be used to extend this construction to links coloured
by arbitrary partitions, which categorifies the coloured HOMFLY polynomial.

The idea is as follows. First one defines a 2–category Kn out of Soergel bimodules
and constructs a categorical .sln; �/ action on it (Sections 2 and 3). Combining this
action with a trace 2–functor (Hochschild (co)homology) one obtains a triply graded
invariant for links coloured by partitions with only one part .k/ for k 2N .

Finally, to deal with an arbitrary partition .k1; : : : ; ki/, one cables together i strands
labeled k1; : : : ; ki and composes with a certain projector P� . We will call these
(categorified) HOMFLY clasps to differentiate them from those in the Reshetikhin–
Turaev context (RT clasps). Apart from some general results on .sln; �/ actions and
associated braid group actions and projectors (see for instance [5]) I have tried to keep
this paper self-contained. Some example computations are worked out in Section 7.

There are many papers in the literature on coloured HOMFLY homology and it is difficult
to list them all without forgetting some. We try to recall some of the ones which are
more closely related to this paper.

There are several papers defining various generalities of triply graded homologies.
In [20] Mackaay, Stošić and Vaz work out the case of links labeled by the one-part
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partition .2/. In [24] Webster and Williamson define a triply graded homology of links
coloured by partitions with only one part. Their construction, which is geometric, is
related to ours via the equivalence between perverse sheaves on finite flag varieties and
(singular) Soergel bimodules. The same relationship appears (and is briefly discussed)
in Cautis, Dodd and Kamnitzer [6]. More recently, Wedrich [25] examines these
constructions in the “reduced” case as well as some associated spectral sequences.

The papers Abel and Hogancamp [1] and Hogancamp [13] discuss the categorified
HOMFLY clasps for partitions with parts of size at most one (ie coloured with .1k/ for
k 2N ). As with our projectors, these are built as infinite twists. As far as I understand,
Elias and Hogancamp aim to develop a more systematic, more general construction
of such projectors. This will hopefully shed some light on the projectors P� and the
various properties they (are expected to) satisfy.

In Dunfield, Gukov and Rasmussen [11] and Rasmussen [21] it was conjectured (and
partially proved) that there exist certain differentials on triply graded link homology
which recover SL.N / link homology. In Section 6 we discuss a differential dN for
N > 0 which gives rise to an SL.N /–type link invariant. Somewhat surprisingly, the
resulting homology seems to be finite-dimensional while at the same time it categorifies
SL.N /–representations of the form Symk.CN /. A homology of this form is predicted
by the physical interpretation of knot homologies as spaces of open BPS states (see
for instance Gukov and Stošić [12]) but does not show up in our earlier work on
knot homologies (Cautis and Kamnitzer [7] and subsequent papers). In Section 8
we also speculate on defining differentials dN for N < 0 which should categorify
SL.N /–representations of the form ƒk.CN /.

The author was supported by an NSERC discovery/accelerator grant.

2 Background: .sln; �/ actions, braid group actions
and projectors

2.1 Notation

We work over an arbitrary field k. By a graded 2–category K we mean a 2–category
whose 1–morphisms are equipped with an auto-equivalence h1i (so graded means
Z–graded). We say K is idempotent complete if for any 2–morphism f with f 2 D f

the image of f exists in K .

For n� 1 we denote by Œn� the quantum integer qn�1Cqn�3C� � �Cq�nC3Cq�nC1 ,
where q is a formal variable. By convention, for negative entries we let Œ�n�D�Œn�.
Moreover, Œn�! WD Œ1�Œ2� : : : Œn� and

�
n
k

�
WD

Œn�!
Œk�!Œn�k�!

.
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If f D faqa 2NŒq; q�1� and A is a 1–morphism inside a graded 2–category K then
we write

L
f A for the direct sum

L
s2Z A˚fs hsi. For example,M

Œn�

AD Ahn� 1i˚Ahn� 3i˚ � � �˚Ah�nC 3i˚Ah�nC 1i:

We will always assume N contains 0. Moreover, we will write Endi.A/ as shorthand
for Hom.A;Ahii/, where i 2 Z.

Finally, if i W Ai! Bi is a sequence of 2–morphisms in K for i D 1; : : : ; k , we will
write 1 � � � k W A1 � � �Ak ! B1 � � �Bk for the corresponding 2–morphism. We will
denote by I the identity 2–morphism.

2.2 Categorical actions

In [4], .g; �/ actions were introduced in order to simplify some of the earlier defini-
tions from [15; 22; 10]. A .g; �/ action involves a target graded, additive, k–linear,
idempotent complete 2–category K whose objects are indexed by the weight lattice of g.

In this paper we only consider the case gD sln . The vertex set of the Dynkin diagram
of sln is indexed by I D f1; : : : ; n� 1g. However, it will be more convenient if the
objects K.k/ of K are indexed by k D .k1; : : : ; kn/ 2 Zn , which we can identify
with the weight lattice of gln . In this notation the root lattice is generated by ˛i D

.0; : : : ;�1; 1; : : : ; 0/ for i 2 I (this notation agrees with that in [5]). We equip Zn

with the standard nondegenerate bilinear form h � ; � iW Zn �Zn! Z (so that h˛i ; j̨ i

is given by the standard Cartan datum for gln ).

We require that the 2–category K is equipped with the following:

� 1–morphisms Ei1k D 1kC˛i
Ei and Fi1kC˛i

D 1kFi , where 1k is the identity
1–morphism of K.k/.

� 2–morphisms For each k 2Zn , a k–linear map spanf˛i W i 2 Ig! End2.1k/.

We abuse notation and denote by � 2End2.1k/ the image of � 2 spanf˛i W i 2 Ig under
the linear maps above. On this data we impose the following conditions.

(1) Endl.1k/ is zero if l < 0 and one-dimensional if l D 0 and 1k ¤ 0. Moreover,
the space of maps between any two 1–morphisms is finite-dimensional.

(2) Ei and Fi are left and right adjoints of each other up to specified shifts. More
precisely:
(a) .Ei1k/

R Š 1kFihhk; ˛iiC 1i,
(b) .Ei1k/

L Š 1kFih�hk; ˛ii � 1i.
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(3) We have �
EiFi1k Š FiEi1k ˚Œhk;˛i i� 1k if hk; ˛ii � 0;

FiEi1k Š EiFi1k ˚Œ�hk;˛i i� 1k if hk; ˛ii � 0:

(4) If i ¤ j 2 I , then FjEi1k Š EiFj 1k .

(5) For i 2 I we have

EiEi Š E
.2/

i h�1i˚E
.2/

i h1i

for some 1–morphism E.2/

i . Moreover, if � 2 spanf˛i W i 2 Ig then the map
I�I 2 End2.Ei1kEi/ induces a map between the summands E.2/

i h1i on either
side which is
� nonzero if h�; ˛ii ¤ 0, and
� zero if h�; ˛ii D 0.

(6) If ˛ D ˛i or ˛ D ˛i C j̨ for some i; j 2 I with ji � j j D 1, then 1kCr˛ D 0

for r � 0 or r � 0.

(7) Suppose i ¤ j 2 I . If 1kC˛i
and 1kC j̨

are nonzero, then 1k and 1kC˛iC j̨

are also nonzero.

In [4, Theorem 1.1] we showed that such an .sln; �/ action must carry an action of the
quiver Hecke algebras (KLR algebras). In particular, this gives us decompositions

Er
i Š

M
Œr �!

E
.r /

i and Fr
i Š

M
Œr �!

F
.r /

i

for certain 1–morphisms E.r /

i and F.r /

i (called divided powers). These satisfy

.E
.r /

i 1k/
R
Š 1�F

.r /

i hr.hk; ˛iiC r/i;

.E
.r /

i 1k/
L
Š 1�F

.r /

i h�r.hk; ˛iiC r/i:

2.3 (Categorical) braid group actions

The reason we are interested in .sln; �/ actions is that they can be used to define braid
group actions [8], as we now recall.

Suppose that, as above, we have an .sln; �/ action on a 2–category K . Denote by
Kom.K/ the bounded homotopy category of K (where objects are the same as in K ,
1–morphisms are complexes of 1–morphisms which are bounded from above and below
and 2–morphisms are maps of complexes). We define Ti1k 2 Kom.K/ as�
� � � ! E

.�hk;˛i iC2/
i F

.2/

i h�2i ! E
.�hk;˛i iC1/
i Fih�1i ! E

.�hk;˛i i/
i

�
1k if hk; ˛ii � 0;�

� � � ! F
.hk;˛i iC2/
i E

.2/

i h�2i ! F
.hk;˛i iC1/
i Eih�1i ! F

.hk;˛i i/
i

�
1k if hk; ˛ii � 0:
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One can show the differentials must be the unique nonzero maps. Notice that these
complexes are actually bounded on the left since 1k˙r˛i

D 0 if r� 0. The main result
of [8] states that these complexes give us a braid group action. This fact categorifies a
classical result of Lusztig [19, 5.2.1].

2.4 Categorified projectors

To obtain projectors let us first consider

T!1k WD .Tn�1/.Tn�2Tn�1/ � � � .T2 � � �Tn�1/.T1 � � �Tn�1/1k ;

corresponding to a half-twist in the braid group. In [5, Section 5.2] we constructed
a natural map 1k ! T2

!1k and showed that there is a well-defined limit P�1k WD

lim`!1 T2`
! 1k which lives in a certain subcategory Kom�� .K/ � Kom�.K/ of the

bounded-above homotopy category (see [5, Section 3.5] for more details).

Remark To illustrate, if K was the category of Z–graded k–vector spaces thenL
i�0 kŒi �h�ii would belong to Kom�� .K/ because

P
i�0.�1/iqi Œk� converges to

1
1Cq

Œk� (here Œk� is the class in K-theory of the one-dimensional vector space). On the
other hand,

L
i�0 kŒi � would not belong to Kom�� .K/ because

P
i�0.�1/i Œk� does

not converge.

Having shown that P�1k is well-defined it is then easy to see that P�1k is idempotent,
meaning that P�P�1kŠP�1k . The main result of [5] showed using an instance of skew
Howe duality that P� can be used to categorify all the clasps. The inspiration of using
infinite twists to categorify clasps goes back to Rozansky [23], who categorified Jones–
Wenzl projectors within Bar-Natan’s graphical formulation of Khovanov homology.

3 The category Kn

3.1 Categories and functors

We now define a 2–category Kn with an .sln; �/ action.

For k 2 N consider the affine space Ak WD Spec kŒx1; : : : ;xk �, where deg.x`/ D 2

for each ` (the grading is equivalent to endowing Ak with a k� action). The
quotient Ak WD Ak=Sk by the symmetric group Sk on k letters is isomorphic
to Spec kŒe1; : : : ; ek �, where the e` are the elementary symmetric functions and
deg.e`/ D 2`. For a sequence k we write Ak WD Ak1

� � � � � Akn
. Finally, we

will denote by D.Ak/ the derived category of k�–equivariant quasicoherent sheaves
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on Ak . We will denote by f � g a shift in the grading induced by the k� action. In
particular, this means that multiplication by e` induces a map OAk

!OAk
f2`g since

e` has degree 2`. This is the same convention as in earlier papers such as [7].

For n 2 N the 2–category Kn is defined as follows. The objects are the categories
D.Ak/. The 1–morphisms are all kernels on products Ak �Ak0 (with composition
given by the convolution product ?) and the 2–morphisms are morphisms between
kernels. The grading shift h1i is by definition f1g.

Note that for a; b 2N there exists a natural projection map � W Aa;b! AaCb . This
map is finite of degree

�
aCb

a

�
. More generally, we can consider correspondences such

as

(1)

A.:::;ki�r;r;kiC1;::: /

�1
ww

�2 ''

Ak AkCr˛i

where ˛i D .0; : : : ;�1; 1; : : : ; 0/ with a �1 in position i . We then define the following
data:

� 1–morphisms

Ei1k WDOA.:::;ki�1;1;kiC1;::: /
fki � 1g 2D.Ak �AkC˛i

/;

1kFi WDOA.:::;ki�1;1;kiC1;::: /
fkiC1g 2D.AkC˛i

�Ak/;

where we embed A.:::;ki�1;1;kiC1;::: / into Ak�AkC˛i
using �1 and �2 from (1)

(taking r D 1 in this case).

� A k–linear map � W spanf˛i W i 2 Ig! End2.1k/ where the image of ˛i is given
by multiplication by e.i/

1
� e

.iC1/
1

where e.i/

1
; e.i/

2
; : : : ; e.i/

ki
are the elementary

generators of the factor Aki
inside Ak .

Remark Although we use derived categories of quasicoherent sheaves, we could
restrict everything to abelian categories of coherent sheaves. This is because all the
morphisms involved are flat and finite. However, it is natural to work with these larger
categories because later we will apply Hochschild cohomology.

Theorem 3.1 The data above defines an .sln; �/ action on Kn .

Proof The fact that relations of an .sln; �/ action are satisfied is not difficult to prove
and essentially follows from [15, Section 6]. The fact that � satisfies relation (5) comes
down to the following elementary fact. Consider kŒx;y� as a kŒx;y�S2 Š kŒe1; e2�
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bimodule where S2 acts by switching x and y and (following our notation above)
e1 D xCy , e2 D xy . Then, as a bimodule,

kŒx;y�Š kŒe1; e2�˚ kŒe1; e2�f2g;

and multiplication by x (or y ) induces an endomorphism of kŒx;y� which is an
isomorphism between the summands kŒe1; e2�f2g on either side.

Perhaps one thing to note is that our choices of shifts in defining the Ei and the Fi

differ slightly from [15]. However, the specific choice of shifts is not so important and
is mainly determined by the fact that the canonical bundle of Ak is !Ak

ŠOAk
fdkg,

where dk D�
P
` k`.k`C 1/.

It is not hard to show that the divided powers E.r /

i 1k and 1kF
.r /

i are given by kernels

E .r /

i 1k WDOA.:::;ki�r;r;kiC1;::: /
fr.ki � r/g 2D.Ak �AkCr˛i

/;

1kF
.r /

i WDOA.:::;ki�r;r;kiC1;::: /
frkiC1g 2D.AkCr˛i

�Ak/;

where again we embed A.:::;ki�r;r;kiC1;::: / using (1) (we will not use this fact).

Remark There are three different gradings that show up. First, there is h1i D f1g,
which corresponds to the grading induced by the k� action. Second, there is the
cohomological grading Œ1� in Kom�� .Kn/. Third, there is the cohomological grading
ŒŒ1��, which is internal to D.Ak/. This last grading only shows up when we apply the
trace 2–functors described in Section 3.3.

3.2 The braid group action

Following Section 2.3 we define the braid group generators Ti1k 2 Kom.Kn/ as�
� � �!E.�hk;˛i iC2/

i ?F .2/

i f�2g!E.�hk;˛i iC1/
i ?Fif�1g!E.�hk;˛i i/

i

�
1k if hk;˛ii�0;�

� � �!F .hk;˛i iC2/
i ?E .2/

i f�2g!F .hk;˛i iC1/
i ?Eif�1g!F .hk;˛i i/

i

�
1k if hk;˛ii�0:

We also get the corresponding projectors P�1k 2 Kom
�
� .Kn/.

Following the construction in [5, Section 7.1] it is useful to also define the elements

T 0i 1k WD

�
Ti1k Œ�kiC1�fkiC1C kikiC1g if hk; ˛ii � 0;

Ti1k Œ�ki �fki C kikiC1g if hk; ˛ii � 0:

Notice that in contrast to [5, Section 7.1] we have an extra shift of fkikiC1g. These T 0i
also generate a braid group action but are better behaved with respect to the Ei and Fi
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since, using [5, Corollary 7.3] and [5, Corollary 4.6], we have

T 0i ?T
0

j ?Ei Š Ej ?T 0i ?T
0

j and T 0i ?T
0

j ?Fi Š Fj ?T 0i ?T
0

j if ji�j j D 1;(2)

T 0i ?Ei Š Fi ?T 0i and T 0i ?Fi Š Ei ?T 0i :(3)

3.3 Trace 2–functors

For any ` 2N we now define a 2–functor ‰`W Kn! KnC1 . This functor should be
thought of as adding a strand labeled `.

At the level of objects ‰` takes D.Ak/ to D.Ak;`/. Given a 1–morphism M 2

D.Ak �Ak0/ we define

(4) ‰`.M/ WD���
�.M/ 2D.Ak;` �Ak0;`/;

where �� and �� are pullback and pushforward with respect to the natural projection
and diagonal maps

� W Ak �A`�Ak0!Ak �Ak0 and �W Ak �A`�Ak0! .Ak �A`/� .Ak0 �A`/:

Given a 2–morphism f WM!M0 we define ‰`.f / WD����.f /. Using Corollary A.2
this defines a 2–functor ‰`W Kn!KnC1 . It is not difficult to see that ‰`.Ei1k/ŠEi1k;`

and ‰`.1kFi/Š 1k;`Fi .

We can likewise define a 2–functor ‰0
`
W KnC1! Kn . On objects it takes D.Ak;`/ to

D.Ak/. All other objects, meaning D.Ak;`0/ where `¤ `0 , are mapped to zero. On
1–morphisms it acts by

D.Ak;` �Ak0;`/!D.Ak �Ak0/; N 7!‰0`.N / WD ���
�.N /:

By Proposition A.3 we also have

(5) ‰0`.N ?‰`.M//Š‰0`.N / ?M;

where M 2D.Ak �Ak0/ and N 2D.Ak;` �Ak0;`/.

If we define � WD Spec k then D.�/ is the category of complexes of (possibly infinite-
dimensional) graded vector spaces. For any k we define

� W D.Ak �Ak/!D.�/; M 7!‰0k1
ı � � � ı‰0kn

.M/:

Note that this is just the Hochschild homology HH�.M/ of M.
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4 Link invariants

Consider an oriented link L whose components are coloured by partitions. For now
we assume that each such partition has only one part, meaning it is of the form .k/ for
some k 2N . Such a link can be given as the closure y̌ of a coloured braid ˇ , where
we visualize the strands of this braid vertically with the top and bottom labeled by the
same sequence k .

To a positive crossing exchanging strands i and iC1 (ie the strand starting at i crosses
over the one starting at i C 1) we associate the 1–morphism

T 0i 2 Kom
�
� .D.Ak �Asi �k//

as defined in Section 3.2, where si acts on k by switching ki and kiC1 . Compos-
ing these 1–morphisms gives a complex T 0

ˇ
2 Kom�� .D.Ak �Ak0//. The invariant

associated to the closure y̌ of the braid is then �.T 0
ˇ
/ 2 Kom�� .D.�//.

To deal with partitions with more than one part, we cable strands together and use the
projector P� . More precisely, given a strand labeled by a partition

k
. � /

i D .k
.1/

i � � � � � k
.p/

i /;

we replace it with p strands labeled k.1/

i ; : : : ; k
.p/

i together with the projector P�1
k

.�/

ion these strands.

Theorem 4.1 Suppose L D y̌, where ˇ is a braid whose strands are coloured by
partitions. Then, up to an overall grading shift, H.L/ WD �.T 0

ˇ
/ 2 Kom�� .D.�// defines

a triply graded link invariant.

Remark In order to obtain a homology which is invariant on the nose (not just up to
shifts) one needs to shift the functor ‰0

`
by

�
`
2

���
�
`
2

��
and the definition of a T

switching two strands labeled ` by
�
`
2

���
�
`
2

��
.

Before we can prove Theorem 4.1 we need the following lemma.

Lemma 4.2 For T1 2 Kom
�
�.D.A1;1 �A1;1// we have

‰01.T1/ŠO�ŒŒ1��f�2g and ‰01.T
�1

1 /ŠO�f2gŒ�1�

inside Kom��.D.A1 �A1//.
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Remark The key to Lemma 4.2 is the exact triangle OS!O�!OT ŒŒ1��f�2g, where
S and T are the loci inside Ak;1;1 �Ak;1;1 given by (7) on the last two strands. The
argument in the proof shows in fact that for P 2 Kom.D.Ak;1 �Ak;1// we have an
isomorphism

(6) ‰01..OS !O�/ ?‰1.P// �!� ‰01.OT ŒŒ1��f�2g?‰1.P//

inside Kom.D.Ak;1 �Ak;1//.

Proof On A1;1 �A1;1 consider the following subvarieties:

(7) � WD f.x;y;x;y/g; T WD f.x;y;y;x/g and S WD T [�:

Then T1 Š ŒOS ! O�� and T �1
1
Š ŒO� ! OSf2g�, where in both cases O� is in

cohomological degree zero. The result will follow if we can show that

Œ‰01.OS /!‰01.O�/�Š Œ0!O�ŒŒ1��f�2g�;

Œ‰01.O�/!‰01.OSf2g/�Š Œ0!O�f2g�

in the homotopy category Kom�� .D.A1 �A1//.

We will prove the first assertion (the second follows similarly). Note that S \T � T

is the divisor cut out by x D y . Thu, OT .�S \T /ŠOT f�2g and we have the exact
triangle OT f�2g !OS !O� . Recall that ‰0

1
. � /D ���

�. � /, where � and � are
the natural maps

A1 �A1
�
 �A1 �A1 �A1

�
�!A1;1 �A1;1:

Now, O� 2D.A1;1 �A1;1/ has a resolution

OA1;1�A1;1
f�2g

�.y1�y2/
������!OA1;1�A1;1

!O�;

which means that ��O� Š O�0 ˚O�0 ŒŒ1��f�2g, where �0 � A1 �A1 �A1 is the
locus .x;y;x/. Moreover, ��.O�0/ŠO�˝k kŒy� 2D.A1 �A1/. Hence

(8) ‰01.O�/D ���
�O�Š ��.O�0˚O�0 ŒŒ1��f�2g/Š .O�˚O�ŒŒ1��f�2g/˝k kŒy�:

On the other hand, ��OT ŠOf.x;x;x/g , which means that

‰01.OT f�2g/D ���
�OT f�2g Š ��Of.x;x;x/gf�2g ŠO�f�2g:

Thus, the exact triangle ‰0
1
.OS /!‰0

1
.O�/!‰0

1
.OT f�2gŒ1�/ becomes

‰01.OS /
f
�!O�˝k kŒy�˚O�ŒŒ1��f�2g˝k kŒy�!O�ŒŒ1��f�2g:
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Now H0.‰0
1
.OS //Š ��L

0��OS Š ��O�0 ŠO�˝k kŒy� and f induces an isomor-
phism in this degree. Thus, from the long exact sequence we get

(9) H�.‰01.OS //D

8<:
O�˝k kŒy� if � D 0;

O�f�4g˝k kŒy� if � D �1;

0 otherwise.

It is easy to see that on A1 �A1 we have End2.O�f�g˝k kŒy�/D 0, so

‰01.OS /Š .O�˚O�ŒŒ1��f�4g/˝k kŒy�:

Hence, using a version of the Gaussian elimination lemma [5, Lemma 3.2], we combine
(8) and (9) to obtain

(10) Œ‰01.OS /!‰01.O�/�Š Œ0!O�ŒŒ1��f�2g�:

Proof of Theorem 4.1 We already know that ˇ 7! T 0
ˇ

satisfies the braid relations. It
remains to check that �.T 0

ˇ1
?T 0

ˇ2
/Š �.T 0

ˇ2
?T 0

ˇ1
/ and the Markov move (stabilization).

The first relation is a standard property of Hochschild homology (in fact the more
general trace property �.A?B/Š �.B ?A/ holds for any kernels A, B ).

To prove the Markov move first note that since projectors P� move freely through
crossings it suffices to prove the Markov move when the extra strand is coloured by a
partition .`/. In this case, for any P 2 Kom�� .D.Ak �Ak/ we claim that

(11) �.T 0n ?‰`.P//Š �.P/Œ�`�ŒŒ`�� and �..T 0n/
�1 ?‰`.P//Š �.P/:

We prove the isomorphism on the left by induction on ` (the right one is similar). For
P 2 Kom�� .D.Ak �Ak// we have the following algebraic computation:M

Œ`�
�.T 0n?‰`.P//Š

M
Œ`�
�.T 0nC1?T

0
n?T

0
nC2?T

0
nC1?.‰0ı‰`ı‰0/.P//

Š �.T 0nC1?T
0

n?T
0

nC2?T
0

nC1?FnC2?EnC2?.‰0ı‰`ı‰0/.P//(12)

Š �.Fn?T 0nC1?T
0

n?T
0

nC2?T
0

nC1?EnC2?.‰0ı‰`ı‰0/.P//(13)

Š �.EnC2?Fn?T 0nC1?T
0

n?T
0

nC2?T
0

nC1?.‰1ı‰`�1ı‰0/.P//(14)

Š �.Fn?T 0nC1?T
0

n?T
0

nC2?T
0

nC1?En?.‰1ı‰`�1ı‰0/.P//(15)

Š �.Fn?T 0nC1?T
0

n?T
0

nC1?En?.‰`�1ı‰0/.P//Œ�1�ŒŒ1��(16)

Š �.Fn?T 0n?T
0

nC1?T
0

n?En?.‰`�1ı‰0/.P//Œ�1�ŒŒ1��(17)

Š �.Fn?T 0n?T
0

n?En?‰0.P//Œ�`�ŒŒ`��(18)

Š �.T 0n?En?Fn?T 0n?‰0.P//Œ�`�ŒŒ`��(19)

Š

M
Œ`�
�.P/Œ�`�ŒŒ`��:(20)
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Here we
� added two strands labeled 0 to obtain the first isomorphism,
� used (2) twice to obtain (13),
� used the Markov relation to obtain (14),
� used that

EnC2 ?Fn ? T 0nC1 ? T
0

n ? T
0

nC2 ? T
0

nC1 Š Fn ? EnC2 ? T 0nC1 ? T
0

nC2 ? T
0

n ? T
0

nC1

Š Fn ? T 0nC1 ? T
0

nC2 ? T
0

n ? T
0

nC1 ? En

to get (15),
� used (11) with ‰1 to obtain (16) and with ‰`�1 to obtain (18),
� applied (3) twice to obtain (20), and
� used that .T 0i /

2 is the identity if one of the strands it acts on is labeled 0 to get
(20).

Thus, (11) follows by induction if we can prove the base case `D 1. In this case we
have

�.T 0n ?‰1.P//Š �.‰01.T
0

n ?‰1.P///Š �.‰01.T
0

n/ ?P/;

so it suffices to show that ‰0
1
.T 0n/ŠO�Œ�1�ŒŒ1��. This follows from Lemma 4.2 (since

T 0n D TnŒ�1�f2g in this case).

Remark For those familiar with webs (see for instance [9]) the algebraic computation
above can be summarized as follows. First break up the strand labeled ` and then use
that “trivalent vertices” move naturally through crossings together with the Markov
move. Figure 1 illustrates this procedure, where the box denotes an arbitrary braid (we
simplify by omitting the closure of each diagram).

5 K-theory

Recall that to a link L whose strands are coloured by partitions one can associate the
coloured HOMFLY polynomial PL.q; a/ 2 k.q; a/. We now explain why the invariant
from Theorem 4.1 categorifies the coloured HOMFLY polynomial. This is normalized
so that if LD.k/ (the unknot labeled by k ) then

(21) PL.q; a/D

kY
`D1

aq�`C1� a�1q`�1

q�` � q`
:

Remark For notational convenience we use the transpose notation, meaning that what
we call � would normally be the transpose partition. For example, our partition .k/
would be instead .1k/ (and vice versa).
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On the other hand, we can consider the Poincaré polynomial PL.q; a; t/ of H.L/ from
Theorem 4.1. Here the shifts f1g; ŒŒ1�� and Œ1� are kept track of by formal variables
q;�a2; t respectively.

Proposition 5.1 For a coloured link L, the invariants PL.q; a/ and PL.q; aq;�1/

agree, up to an explicit factor amqn .

Proof In the rest of the proof we will ignore extra factors amqn . Let us first suppose
that L is the closure of a braid ˇ coloured by partitions .k/ with only one part. One can
compute PL.q; a/ from ˇ by applying a trace. Moreover, as explained (for instance)
in [9, Section 6] one can break down the crossings in L into web diagrams since
the crossing element is a linear combination of webs. This reduces the evaluation of
PL.q; a/ to evaluating this trace on diagrams.

As usual, one views the trace of a web diagram as the closure of that diagram on the
annulus. The algebra of webs on the annulus is generated (as an algebra) by unknots
labeled by one-part partitions (where multiplication is given by gluing one annulus
inside the other). This reduces the computation of PL.q; a/ to the case L D.k/

(which is described in (21)).

Similarly, the evaluation of PL.q; a;�1/ can be reduced to the case LD.k/ . This
case is computed in Section 7.1 and agrees with (21) once you replace a with aq . This
completes the proof when L contains partitions with only one part.

To deal with arbitrary partitions we will show that PL.q; q
N / D PL.q; q

NC1;�1/

for all N > 0 (ie the specializations a D qN for all N > 0). Note that PL.q; q
N /

M
Œ`�

`

`

D

`

`

`�1 1

`

D

`

`

`�1 1

`

D

`�1

`

1

1`�1

D

`�1

`

1

1`�1

D

`�1

`

1

`�1

Œ�1�ŒŒ1�� D

`�1

`

1

`�1

Œ�1�ŒŒ1�� D

`�1

`

1

Œ�`�ŒŒ`�� D
M
Œ`�

`

Œ�`�ŒŒ`��

Figure 1: The Markov move involving a strand labeled `
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recovers the corresponding SL.N / Reshetikhin–Turaev (RT) invariant and that we
know PL.q; q

N /D PL.q; q
NC1;�1/ if L is coloured by one-part partitions. On the

other hand, in [5] we showed that, when evaluating RT invariants, the projectors (clasps)
for arbitrary partitions can be constructed as infinite twists. Since this construction
only uses the braid group action it follows that PL.q; q

N /D PL.q; q
NC1;�1/ holds

for any L.

6 Some differentials

To simplify notation we will omit the f � g grading in this section. We also fix N > 0.
Note that

HH1.Ak/D Ext1Ak�Ak .��OAk ; ��OAk /Š
M

i

kŒx1; : : : ;xk �@xi
;

so that
1k WD

X
i

xN
i @xi

2 HomAk�Ak .��OAk ; ��OAk Œ1�/:

Since this element is Sk–invariant it descends to HH1.kŒe1; : : : ; ek �/. We denote by

k 2 HomAk�Ak
.��OAk

; ��OAk
Œ1�/

the corresponding element obtained from 1k1 ˝ � � �˝ 1kn by descent.

Now, given a braid ˇ with endpoints marked k , we have

�.T 0ˇ/D HH�.T 0ˇ/Š Ext�Ak�Ak
.��!

�1
Ak
ŒŒ� dim Ak ��; T 0ˇ/;

where !Ak
denotes the canonical bundle. Thus, we have an action of HH1.Ak/ coming

from precomposing on the left with

HH1.Ak/Š HomAk�Ak
.��!

�1
Ak
; ��!

�1
Ak
Œ1�/:

We denote by dN the action of k . Note that d2
N
D 0 since k belongs to HH1 .

Moreover, dN commutes with the differential d used in the definition of the complex T 0
ˇ

because composition is associative. Thus, we get a bicomplex with differentials d

and dN .

Theorem 6.1 Suppose LD y̌, where ˇ is a coloured braid. If we denote by HN .L/

the cohomology of �.T 0
ˇ
/ equipped with the total differential d C dN , then, up to an

overall grading shift, HN .L/ defines a doubly graded link invariant.
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In the remainder of this section we prove this result. Sometimes we will write HN .T 0ˇ/
instead of HN .L/, where LD y̌.

If ˇ and ˇ0 are equivalent braids, then T 0
ˇ

is homotopic to T 0
ˇ0

, which means that
HN .T 0ˇ/ŠHN .T 0ˇ0/. Next, to prove invariance under conjugation, we must show that
HN .T 0ˇ1

? T 0
ˇ2
/ Š HN .T 0ˇ2

? T 0
ˇ1
/ for any braids ˇ1 and ˇ2 . This follows as in the

proof of Theorem 4.1 together with the fact that for any braid ˇ we have

IIk D k0II 2 Hom.��OAk0
? T 0ˇ ?��OAk

; ��OAk0
? T 0ˇ ?��OAk

Œ1�/;

where k and k 0 label the bottom and top strands of ˇ (this equality follows from
Lemma 6.2).

Remark Here we use the convention mentioned at the end of Section 2.1. For
instance, IIk denotes the map induced by the identity on the first two factors of
��OAk0

? T 0
ˇ
?��OAk

and by k on the last (right) one.

Lemma 6.2 Consider E 2D.Ai�1;jC1 �Ai;j /. Then

IIi;j D i�1;jC1II

in Hom.��OAi�1;jC1
?E ?��OAi;j

; ��OAi�1;jC1
?E ?��OAi;j

Œ1�/, and likewise if
we replace E with F .

Proof E is the kernel inducing the correspondence

Ai �Aj
�1
 �Ai�1 �A1

�Aj
�2
�!Ai�1 �AjC1:

On the other hand, IIi;j is the element obtained from 1iCj by descent along the map

AiCj
!Ai�1 �A1

�Aj
�1
�!Ai �Aj :

Likewise i�1;jC1II is the map obtained from 1iCj by descent along the map

AiCj
!Ai�1 �A1

�Aj
�2
�!Ai�1 �AjC1:

The result follows.

Finally, we need invariance under the Markov move. As in the proof of Theorem 4.1,
we can significantly reduce what we must show. First, since projectors pass through
crossings, we can assume each strand is coloured by a partition .`/ with only one part.
By breaking up this strand into ` strands coloured by 1 and using Lemma 6.2 we can
further reduce to the case `D 1.
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Using the homotopy equivalence from (6) we know that

HN .‰
0
1.T
0

n ?‰1.P///DHN .‰
0
1..OS !O�/ ?‰1.P///

�!� H�N .‰
0
1.OT ŒŒ1��f�2g?‰1.P///;

where P 2 Kom.D.Ak;1 �Ak;1//. Recall that we have the standard exact sequence

OT f�2g !OS !O�;

where S , T are the varieties corresponding to the last two strands. Moreover,

‰01.OT ?‰1.P// �!� P

and Lemma 6.3 implies that HN .T 0n ?‰1.P//ŠHN .P/ (up to a grading shift). This
completes the proof of Theorem 6.1.

Lemma 6.3 For P 2 Kom.D.Ak;1 �Ak;1//, the diagram

ExtjAk;1;1�Ak;1;1
.��S

�1
Ak;1;1

;OT ?‰1.P//
k;1;1

//

'

��

ExtjC1
Ak;1;1�Ak;1;1

.��S
�1
Ak;1;1

;OT ?‰1.P//

'0

��

ExtjAk;1�Ak;1
.��S

�1
Ak;1

;P/
k;1

// ExtjC1
Ak;1�Ak;1

.��S
�1
Ak;1

;P/

commutes, where S�1
X
WD !�1

X
ŒŒ� dim X �� for a variety X and where isomorphisms '

and '0 are induced by the isomorphism ‰0
1
.OT ?‰1.P// �!� P .

Proof As before, we will ignore shifts in f � g. The left adjoint of ‰0
1
W Ak;1!Ak is

the functor
.‰01/

L. � /D��.�
�. � /˝p�S�1

A1 /;

where pW Ak �A1 �Ak !A1 is the projection. Now take

˛ 2 ExtjAk;1;1�Ak;1;1
.��S

�1
Ak;1;1

;OT ?‰1.P//

and consider the following diagram:

��S
�1
Ak;1

ŒŒ�1��
k;1

//

adj

��

��S
�1
Ak;1

adj

��

'.˛/
// ‰0

1
.OT / ?P ŒŒj ��

‰01.‰
0
1/

L.��S
�1
Ak;1

/ŒŒ�1��
‰0

1
.‰0

1
/L.k;1/

// ‰01.‰
0
1/

L.��S
�1
Ak;1

/
‰0

1
.˛/
// ‰01.OT ?‰1.P//ŒŒj ��

�

OO
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Note that .‰0
1
/L.S�1

Ak;1
/D S�1

Ak;1;1
, which explains how ‰0

1
.˛/ acts. The left square

commutes since adjunction is a natural transformation. The square on the right com-
mutes by the definition of ' .

The composition along the top is the map ˛ 7! '.˛/ ı k;1 . On the other hand, the
composition along the bottom row and up the right side is ˛ 7! '0.˛ ı .‰0

1
/L.k;1//.

So it suffices to show that

'0.˛ ı .‰01/
L.k;1//D '

0.˛ ı k;1;1/:

The difference k;1;1� .‰
0
1
/L.k;1/ is equal to xN

nC1
@xnC1

, so it remains to show that
'0.˛ ıxN

nC1
@xnC1

/ vanishes.

The map '0.˛ ıxN
nC1

@xnC1
/ is given by the composition

��S
�1
Ak;1

adj
�!‰01.‰

0
1/

L.��S
�1
Ak;1

/D‰01.��S
�1
Ak;1;1

/

‰0
1
.xN

nC1
@xnC1

/

�����������!‰01.��S
�1
Ak;1;1

ŒŒ1��/

‰0
1
.˛/

����!‰01.OT ?‰1.P//ŒŒjC1�� �!� P ŒŒjC1��:

One can check that

‰01.‰
0
1/

L.��S
�1
Ak;1

/Š
�
��S

�1
Ak;1
˝k kŒxnC1�

�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

ŒŒ�1��
�
:

Then the composition of the first two maps is given by

(22) ��S
�1
Ak;1
!
�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

ŒŒ�1��
�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�

�
!
�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�ŒŒ1��

�
;

where, considering the direct sums as column vectors, the maps are respectively�
0

id

�
and

�
0 �xN

nC1
@xnC1

0 0

�
:

On the other hand, to understand ‰0
1
.˛/, consider the isomorphisms

ExtjAk;1;1�Ak;1;1
.��S

�1
Ak;1;1

;OT ?‰1.P//

Š ExtjAk;1;1�Ak;1;1
..‰01/

L.��S
�1
Ak;1

/;OT ?‰1.P//

Š ExtjAk;1�Ak;1
.��S

�1
Ak;1

; ‰01.OT ?‰1.P///

Š ExtjAk;1�Ak;1
.��S

�1
Ak;1

;P/:
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The image of ˇW ��S�1
Ak;1
! P ŒŒj �� under these isomorphisms is the composition

.‰01/
L.��S

�1
Ak;1

/
.‰0

1
/L.ˇ/

������! .‰01/
L.P/ŒŒj ��D��p�.S�1

A1 / ?‰1.P/ŒŒj ��
h
�! .OT ?‰1.P//ŒŒj ��;

where pW Ak;1;1! A1 projects onto the last factor. Here h is induced by the map
��p

�.S�1
A1 /!OT , which comes from the standard exact sequence

OT f�2g !OS !O�

after noting that ��p�.S�1
A1 /Š O�ŒŒ�1��f2g. Thus, we can assume that ˛ is such a

composition for some ˇ . Applying ‰0
1

, we find that ‰0
1
.˛/ factors as�

��S
�1
Ak;1
˝k kŒxnC1�@xnC1

ŒŒ�1��
�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�

�
!
�
P˝k kŒxnC1�@xnC1

ŒŒj�1��
�
˚
�
P˝k kŒxnC1�ŒŒj ��

�
!‰01.OT ?‰1.P//ŒŒj ��;

where, in matrix form, the maps are respectively�
‰0

1
.‰0

1
/L.ˇ/ 0

0 ‰0
1
.‰0

1
/L.ˇ/

�
and

�
0 ‰0

1
.h/
�
:

Finally, the composition of ‰0
1
.h/ with the isomorphism ‰0

1
.OT ?‰1.P//ŒŒj ���!� P ŒŒj ��

gives a map which is zero on the summand P˝k kŒxnC1�@xnC1
ŒŒj�1�� and the natural

projection map P˝k kŒxnC1�ŒŒj ��! P ŒŒj �� on the second summand (which sends xnC1

to zero). This fact can be traced back to the map

��OA1
˝k kŒx2�ŒŒ�1��˚��OA1

˝k kŒx2�D‰
0
1.��OA1;1

/!‰01.OT /Š��OA1
;

which, as we saw in the proof of Lemma 4.2, acts by zero on the first summand and by
the natural projection map on the second summand. In conclusion, the composition

‰01.‰
0
1/

L.��S
�1
Ak;1

/ŒŒ1��
‰0

1
.˛/

����!‰01.OT ?‰1.P//ŒŒjC1�� �!� P ŒŒjC1��

is isomorphic to the composition�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�ŒŒ1��

�
!
�
P˝k kŒxnC1�@xnC1

ŒŒj ��
�
˚
�
P˝k kŒxnC1�ŒŒjC1��

�
! P ŒŒjC1��;

where, in matrix form, the maps are respectively�
‰0

1
.‰0

1
/L.ˇ/ 0

0 ‰0
1
.‰0

1
/L.ˇ/

�
and

�
0 �

�
;

and where � is the natural projection map from the second summand. The composition
of this with (22) is clearly zero and hence '0.˛ ıxN

nC1
@xnC1

/D 0.
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Remark In the proof of Lemma 6.3 above, we used the observation that the difference
k;1;1�‰1.k;1/ is of the form f @xnC1

for some function f on Ak;1;1 .

7 Examples

For a partition k D .k1; : : : ; kn/ we denote by H.k/ the triply graded homology of
the unknot labeled by k . We will compute this invariant when k D .k/ and k D .12/.
Its Poincaré polynomial is denoted by Pk

.q; a; t/, where the shifts f1g, ŒŒ1�� and Œ1�
are kept track of by q , �a2 and t , respectively.

7.1 Cohomology of .k/

If k D 1 we have

H..1//Š ���
�.O�/Š ��.OA1

˚OA1 ŒŒ1��f�2g/Š kŒx�˚ kŒx�ŒŒ1��f�2g;

where � and � are the natural maps �
�
 �A1

�
�!A1 �A1 . Hence

P.1/
.q; a; t/D .1C q�2

C q�4
C � � � /.1� a2q�2/D

1� a2q�2

1� q�2
:

Note that kŒx�Š
L

i�0 kf�2ig, which explains why it contributes .1Cq�2Cq�4C� � � /.
More generally, Ak D Spec kŒe1; : : : ; ek �, and a similar argument shows that

H..k//Š

kO
`D1

.kŒe`�˚ kŒe`�ŒŒ1��f�2`g/:

It follows that

P.k/
.q; a; t/D

kY
`D1

1� a2q�2`

1� q�2`
:(23)

7.2 Cohomology of .12/

We need to explicitly identify the projector P� , which lives in Kom�� .D.A1;1�A1;1//.
The braid element in this case is isomorphic to

TD ŒEFh�1i ! id�Š ŒOS !O��;

where S is the variety described in the proof of Lemma 4.2. If .x;y/ are the coordinates
of A1;1 , then

TD
�
kŒx;y�˝kŒe1;e2� kŒx;y�! kŒx;y�

�
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as kŒx;y�–bimodules (where e1 D x C y and e2 D xy are the usual elementary
symmetric functions). Now, squaring and simplifying gives

T2
Š ŒEFEFh�2i ! EFh�1i˚EFh�1i ! id�

Š

h
EFh�3i

OO

� �� �
OO

��
�

�������! EFh�1i
��

���! id
i

Š ŒOSf2g
x˝1�1˝x
�������!OS !O��:

The maps in the first and second lines above are encoded using the diagrammatics of [15].
The isomorphism between the first and second lines was proved in [5, Section 10.2].
The isomorphism between the second and third lines follows from the fact that

OO

� ��

corresponds to x˝ 1 and
OO

��
� to 1˝x (this follows from the action of the nilHecke

defined in [15] or indirectly from the main result in [4]). Now, if we multiply again
by T we get

T3
Š ŒEFEFh�4i ! EFh�3i˚EFEFh�2i ! EFh�1i˚EFh�1i ! id�

Š

h
EFh�5i

OO

� �� C
OO

��
� �

OO
QQ�� �
2

��

�����������������! EFh�3i

OO

� �� �
OO

��
�

�������! EFh�1i
��

���! id
i

Š ŒOSf�4g
x˝1�1˝y
�������!OSf�2g

x˝1�1˝x
�������!OS !O��:

Here the 2 beside the dot in the second line indicates that we add two dots. The second
line follows again from [5, Section 10.2] while the third isomorphism holds because

OO
QQ�� �
2

�� is given by 1˝ 1 7! .xCy/˝ 1D 1˝ .xCy/:

Continuing this way, one finds that

P� D lim
`!1

T` D
�
� � �

g
�!OSf�6g

f
�!OSf�4g

g
�!OSf�2g

f
�!OS !O�

�
;(24)

where the maps alternate between f D x˝ 1� 1˝x and g D x˝ 1� 1˝y .

We need to compute H..12//D‰
0
1
‰0

1
.P�/. Now, using (10) and arguing as in the

proof of Lemma 4.2, we find that ‰0
1
.P�/ is isomorphic to the complex

� � �
0 // O�˝k kŒy�f�4g

17!x�y
// O�˝k kŒy�f�2g

0 // O�˝k kŒy�
� // O�˝k kŒy�

˚ ˚ ˚ ˚

� � �
0 // O�˝k kŒy�f�8g

17!x�y
// O�˝k kŒy�f�6g

0 // O�˝k kŒy�f�4g
1 7!y
// O�˝k kŒy�f�2g

where, going to the left, the differentials alternate. Now, consider the exact triangle

O�˝k kŒy�f�2g
17!x�y
�����!O�˝k kŒy�!O�:
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Applying ‰0
1

leaves us with

‰01.O�˝k kŒy�f�2g/!‰01.O�˝k kŒy�/! kŒx�ŒŒ1��f�2g˚ kŒx�:

Thus, applying ‰0
1
. � / to ‰0

1
.P�/ gives us a complex isomorphic to

� � � 0 kŒx�f�6g 0 kŒx�f�2g 0 0

� � � 0 kŒx�f�8;�10g 0 kŒx�f�4;�6g 0 kŒx�f�2g

� � � 0 kŒx�f�12g 0 kŒx�f�8g 0 kŒx�f�4g

where the top right entry is in cohomology bidegree .0; 0/. The generating series is
then

P
.12/
.q; a; t/D

1

1� q�2

1

1� q�4t2
.q�2t2

� q�2a2
� q�4a2t2

C q�4a4/

D
q�2t2.1� q�2a2/.1� a2t�2/

.1� q�2/.1� q�4t2/
:

8 Some remarks and speculation

8.1 SL.N /–homologies

In order to make the differential dN homogeneous one needs to kill the ŒŒ � �� grading.
More precisely, one needs to set ŒŒ�1��Df�2.�N C1/g. Since ŒŒ1�� is recorded by �a2

and f1g by q this means that the Euler characteristic �N .L/ of HN .L/ satisfies
�N .L/D PL.q; iq

�NC1;�1/. But

P.k/
.q; iq�NC1;�1/D

kY
`D1

1� q�2NC2�2`

1� q�2`
;

which, up to sign and a factor of q , equals
�

NCk�1
k

�
. In particular, this means that

if L is a link labeled by .k/ then HN .L/ categorifies the RT invariant of SL.N /

labeled by the representation Symk.CN /. Moreover, the homology of the unknot
in this case can be shown to be finite-dimensional homology. This implies (using
conjugation-invariance of the homology) that HN .L/ is finite-dimensional for any L

labeled by partitions with only one part.

8.2 Batalin–Vilkovisky structures

In Section 6 we defined the differential dN for N > 0. This was based on the fact that
HH�.A/ acts on HH�.M/ for any algebra A and A–bimodule M. More generally,
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under fairly general hypotheses described in [18, Section 1], HH�.A/ is a Gerstenhaber
algebra and HH�.M/ is a Batalin–Vilkovisky (BV) module.

Without going into details (see [18] for more) this equips HH�.A/ with the usual cup
product as well as a graded Lie algebra structure

f � ; � gW HHpC1.A/˝k HHqC1.A/! HHpCqC1.A/;

while HH�.M/ carries the standard module structure as well as a graded Lie algebra
module structure

(25) LW HHpC1.A/˝k HHn.M/! HHn�p.M/:

When p D�1 we get a map

HH0.A/˝k HHn.M/! HHnC1.M/:

If A is commutative then HH0.A/ Š A and for f 2 A we denote by df the map
HHn.M/! HHnC1.M/ induced in (25) by f (the condition of being a BV-module
implies that d.fg/D f dgCg df ). If we take AD kŒx1; : : : ;xk � then we obtain a
map X

i

d.xN
i /W HHn.M/! HHnC1.M/

for any kŒx1; : : : ;xk �–bimodule M. One would like this map to give a differential
d�N which commutes with d and such that, as in Theorem 6.1, the total differential
dCd�N defines a doubly graded link invariant H�N .L/. This would give us a spectral
sequence which commences at H.L/ and converges to HN .L/ for any N 2 Z.

On the other hand, if we take p D 0 then we get a map

(26) HH1.A/˝k HHn.M/! HHn.M/:

Since HH1.kŒx�/ � HH1.kŒx1; : : : ;xk �/ can be identified with the so-called Witt
algebra one would hope that the resulting action from (26) agrees with the action of
the Witt algebra defined in [17] (see the introduction and Theorem 5.6 therein).

Finally, it is worth noting that in [3, Section 2.3] and [2, Corollary 1.1.3] one ob-
tains a Gerstenhaber algebra structure on Tor�X .OY ;OZ / whenever Y;Z are smooth
coisotropic subvarieties inside a smooth Poisson variety X as well as a BV-module
structure on Ext�X .OY ;OZ /. In our case each term M in the complex T 0

ˇ
is a direct

sum of the structure sheaves of nonsmooth Lagrangian subvarieties inside Ak �Ak ,
where the latter is equipped with the standard symplectic structure. This suggests that
HH�.M/ might carry the structure of a Gerstenhaber algebra and HH�.M/ that of a
BV-module over it.
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Appendix: ‰–functors

In this section we suppose all varieties are smooth. However, we work over an arbitrary
base ring and do not assume properness at any point. The results also hold if we equip
all our varieties with an action of k� and work equivariantly.

Fix a variety Z . For any two varieties Y1 , Y2 we define

� ‰Z W D.Y1 �Y2/!D..Y1 �Z/� .Y2 �Z// and

� ‰0
Z
W D..Y1 �Z/� .Y2 �Z//!D.Y1 �Y2/

via ‰Z WD���
� and ‰0

Z
WD ���

! , where � and � are the natural projection and
diagonal inclusion maps

� W Y1 �Z �Y2! Y1 �Y2 and �W Y1 �Z �Y2! .Y1 �Z/� .Y2 �Z/:

Recall that if i W Y1!Y2 is an inclusion of smooth varieties then i !. � /D i�. � /˝!i Œ�c�,
where !i D !Y1

˝!_
Y2
jY1

and c is the codimension of the inclusion.

Proposition A.1 Let Y1 , Y2 , Y3 , Z1 , Z2 , Z3 be six varieties and suppose

P 2D.Y1 �Y2/; Q 2D.Y2 �Y3/; P 0 2D.Z1 �Z2/; Q0 2D.Z2 �Z3/:

Then .Q�Q0/ ? .P �P 0/Š .Q?P/� .Q0 ?P 0/.

Proof This is a fairly straightforward exercise with kernels, which we leave up to the
reader.

Corollary A.2 Let Y1 , Y2 , Y3 be three varieties and suppose

P 2D.Y1 �Y2/ and Q 2D.Y2 �Y3/:

Then ‰Z .Q?P/Š‰Z .Q/ ?‰Z .P/.

Proof This follows from Proposition A.1 by taking Z1 DZ2 DZ and P 0 DQ0 D
��OZ because in this case ‰Z . � /Š . � /�OZ .

Proposition A.3 Let Y1 , Y2 , Y3 be three varieties and suppose

P 2D.Y1 �Y2/ and Q 2D..Y2 �Z/� .Y3 �Z//:

Then ‰0
Z
.Q?‰Z .P//Š‰0Z .Q/ ?P 2D.Y1 �Y3/.

Proof For i; j 2 f1; 2; 3g denote by pij W Y1 �Y2 �Y3! Yi �Yj and

p0ij W .Y1 �Z/� .Y2 �Z/� .Y3 �Z/! .Yi �Z/� .Yj �Z/
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the natural projections. We also denote by

�ij W Yi �Z �Yj ! Yi �Yj and �ij W Yi �Z �Yj ! .Yi �Z/� .Yj �Z/

the projection and diagonal inclusion. Then

‰0Z .Q?‰Z .P//Š �13��
�
13.Q? .�12��

�
12P//

Š �13��
�
13.p

0
13�.p

0�
12�12��

�
12P˝p0�23Q//

Š �13��
�
13.p

0
13�.�

0
12�p

00�
12�

�
12P˝p0�23Q//

Š �13��
�
13.p

0
13��

0
12�.p

00�
12�

�
12P˝�

0�
12p0�23Q//

Š �13��
�
13q13�.p

00�
12�

�
12P˝p000�23 �

�
23Q/

Š �13�q
0
13��

�
Z .p

00�
12�

�
12P˝p000�23 �

�
23Q/

where the third isomorphism follows from the commutative square

.Y1 �Z �Y2/� .Y3 �Z/

p00
12

��

�0
12

// .Y1 �Z/� .Y2 �Z/� .Y3 �Z/

p0
12

��

Y1 �Z �Y2
�12

// .Y1 �Z/� .Y2 �Z/

the fourth via the projection formula, the fifth using p0
23
�0

12
D�23p000

23
, where p000

23
is

the map

.Y1 �Z �Y2/� .Y3 �Z/! Y2 �Z �Y3; .x1; z;x2;x3; z
0/ 7! .x2; z;x3/;

and the last from the commutative square

.Y1 �Z �Y2/�Y3
�Z

//

q0
13

��

.Y1 �Z �Y2/� .Y3 �Z/

q13

��

Y1 �Z �Y3
�13

// .Y1 �Z/� .Y3 �Z/

Now, �13q0
13
D p13.�12 � idY3

/ and �12p00
12
�Z D p12.�12 � idY3

/, so we get

�13�q
0
13��

�
Z .p

00�
12�

�
12P˝p000�23 �

�
23Q/

Š p13�.�12 � idY3
/�.�

�
Z p00�12�

�
12P˝�

�
Z p000�23 �

�
23Q˝!

_
Z Œ� dim Z�/

Š p13�.�12 � idY3
/�..�12 � idY3

/�p�12P˝�
�
Z p000�23 �

�
23Q˝!

_
Z Œ� dim Z�/

Š p13�.p
�
12P˝ .�12 � idY3

/�..p
000
23 ı�Z /

�.��23Q˝!
_
Z Œ� dim Z�///

Š p13�.p
�
12P˝p�23�23��

�
23Q/

Š‰0Z .Q/�P;
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where the third isomorphism is via the projection formula and the fourth uses

.Y1 �Z �Y2/�Y3

p000
23
ı�Z

��

�12�idY3
// Y1 �Y2 �Y3

p23

��

Y2 �Z �Y3
�23

// Y2 �Y3

The result follows.
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Correction to the articles
Homotopy theory of nonsymmetric operads, I–II

FERNANDO MURO

We correct a mistake in Algebr. Geom. Topol. 11 (2011) 1541–1599 on the construc-
tion of push-outs along free morphisms of algebras over a nonsymmetric operad, and
we fix the affected results from there and a follow-up article (Algebr. Geom. Topol.
14 (2014) 229–281).

18D50, 55U35; 18D10, 18D35, 18D20

Introduction

In [10, Section 8] we give a wrong construction of push-outs along free maps in the
category of algebras over an operad. Contrary to what we intended and claimed in
the introduction, it does not generalize Harper [6, Proposition 7.32], which is the
correct construction. It does not even yield Schwede and Shipley’s description [12] of
push-outs along free maps in the category of monoids. As Donald Yau pointed out to
us, the trivial ring only maps to itself (since it is characterized by the fact that 0D 1),
but our construction yields

N
n�1Z

˝n for the coproduct of the trivial ring and the
tensor algebra on Z . Here, we fix this mistake and its consequences in Muro [10; 11].
The main results of these papers, presented in their introductions, remain true as stated,
modulo a modification in the nonsymmetric monoid axiom [10, Definition 9.1] and
a strengthening in the hypotheses of [11, Theorem 1.13 and Corollary 1.14]. These
changes do not affect the applications. Moreover, the results which are purely on
operads, not on algebras, remain completely unaffected.

1 Push-out filtrations in symmetric monoidal categories

In this section we consider operads O (always nonsymmetric) and their algebras A
in a bicomplete closed symmetric monoidal category V with tensor product ˝ and
tensor unit I , as a preliminary step to the more general case in the following section.
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http://msp.org
http://dx.doi.org/10.2140/agt.2011.11.1541
http://dx.doi.org/10.2140/agt.2014.14.229
http://dx.doi.org/10.2140/agt.2014.14.229
http://www.ams.org/mathscinet/search/mscdoc.html?code=18D50, 55U35, 18D10, 18D35, 18D20
http://dx.doi.org/10.2140/agt.2017.17.3837


3838 Fernando Muro

We start with Harper’s description of the O–algebra push-out

(1-1)

FO.Y /
FO.f /

//

g

��

push

FO.Z/

g 0

��

A
f 0

// B

Here FO is the free O–algebra functor, FO.Y /D
`
n�0O.n/˝Y ˝n , and we denote

the adjoint of g by xgW Y ! A.

The enveloping operad OA [5; 4; 3] is characterized by the fact that an operad map
OA ! P is the same as an operad map O ! P together with an O–algebra map
A! P.0/. Aritywise, OA.t/ is the (reflexive) coequalizer of the following diagram
for t � 0 — compare [6, Proposition 7.28] —

(1-2)

a
s�0

O.sC t /˝
�
†sCt

†s �†t
�FO.A/

˝s
˝ I˝t

�
����

OO

a
s�0

O.sC t /˝
�
†sCt

†s �†t
�A˝s˝ I˝t

�

Here, given a permutation � 2†n we write � �X1˝� � �˝XnDX��1.1/˝� � �˝X��1.n/ ,
given a subset S � †n we set S �X1 ˝ � � � ˝Xn D

`
�2S � �X1 ˝ � � � ˝Xn , and

†sCt=†s � †t identifies with the set of .s; t/–shuffles. The two arrows pointing
downwards are defined by the operad structure of O and the O–algebra structure of A,
respectively, and the arrow pointing upwards is given by the unit of O . For t D 0, the
previous formula reduces to the cotriple presentation of OA.0/D A.

Recall from [10, Section 4] that a map f W Y ! Z in V is the same as a functor
f W 2! V from the poset 2D f0 < 1g. Given maps fi W Yi !Zi in V for 1� i � n,
their push-out product f1ˇ � � �ˇfn is the latching map of the functor

2n
f1˝���˝fn

// C

at the final object .1; : : : ; 1/ 2 2n [7, Definition 15.2.5].

The following lemma is a special case of [6, Proposition 7.32].

Lemma 1.1 The map f 0 in (1-1) is the transfinite composition of a sequence

AD B0
'1
�!B1! � � � ! Bt�1

't
�!Bt ! � � �
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in V such that the morphism 't for t � 1 is given by the push-out square

�
OA.t/˝f

ˇt

//

 t

��

push

�

x t
��

Bt�1 't

// Bt

where the attaching map  t is defined by the following maps for 1� i � t :

OA.t/˝Z˝.i�1/˝Y ˝Z˝.t�i/!OA.t/˝Z˝.i�1/˝A˝Z˝.t�i/
ıi
�!OA.t � 1/˝Z˝.t�1/! Bt�1;

where the first map is defined by NgW Y ! A and the last is x t�1 if t > 1 and the
identity if t D 1.

This lemma is also the arity-0 part of the following one. Observe that the enveloping
operad OA is functorial on A in the obvious way. Moreover, it is a functor of the
pair .O; A/ regarded as a object in the Grothendieck construction of the categories of
algebras over all operads.

Lemma 1.2 If we have an O–algebra push-out (1-1), Of 0 W OA!OB is the transfinite
composition of a sequence of maps in the category of sequences

OA DOB;0
ˆ1
�!OB;1! � � � !OB;t�1

ˆt
�!OB;t ! � � �

such that ˆt .n/ for t � 1 and n� 0 is given by the push-out square

�
OA.tCn/˝..†tCn=.†t�†n//�f

ˇt˝I˝n/
//

‰t .n/
��

push

�

S‰t .n/
��

OB;t�1.n/
ˆt .n/

// OB;t .n/

where the attaching map ‰t .n/ is defined, as in Lemma 1.1, from xg , the composition
laws ıi W OA.t Cn/˝A!OA.t Cn� 1/, and also S‰t�1.n/ if t > 1.

The universal property of OB allows us to obtain it as the push-out in the category of
operads

(1-3)

F.Y /
F.f /

//

zg

��

push

F.Z/

��

OA // OB
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Here F is the free operad functor, f is regarded as a map of sequences concentrated
in arity 0, and zg is the adjoint of xgW Y ! A � OA . Lemma 1.2 follows from the
description of operad pushouts in [10, Section 5].

Assume now that we have a push-out square in the category of operads

(1-4)

F.U /
F.f /

//

g

��

push

F.V /

g 0

��

O
f 0

// P

and A is a P–algebra. The universal properties of P and PA show that we have a
similar push-out

(1-5)

F.U /A
F.f /A

//

gA

��

push

F.V /A
g 0A
��

OA
f 0A

// PA

The enveloping operad F.V /A of an algebra over a free operad admits a description
similar to the free operad F.V /; compare [1, Section 3; 10, Section 5]. Namely,

(1-6) F.V /A.n/D
a
T

O
v2I.T /

V .zv/:

Here V is the sequence with V .0/D A and V .m/D V.m/ for m> 0, T runs over
all (isomorphism classes of) trees (planted, planar and with leaves) with n leaves [10,
Section 3] which do not contain any forbidden configuration for m� 1,

m
� � �

and I.T / is the set of inner vertices of T . Each coproduct factor in (1-6) is usually
depicted by labeling each inner vertex v of T with V .zv/, where zv is the number of
edges adjacent to v from above, eg

(1-7) V.3/
A

A

V.2/

V.4/

The reason for the forbidden configuration is that we must take into account the F.V /–
algebra structure maps V.m/˝A˝m!A. The operad structure on F.V /A is defined
by formal tree grafting, applying (repeatedly) if necessary the previous structure maps
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whenever a forbidden configuration appears, collapsing it to
A

Hence, the push-out (1-5) admits a filtration description analogous to (1-4). The level
of a vertex v of T is the number of edges in the shortest path to the root. We say that
v is even if it has even level. Odd vertices are defined similarly. The sets of even and
odd inner vertices in T are denoted by I e.T / and I o.T /, respectively.

Lemma 1.3 Given an operad push-out (1-4) and a P–algebra A, f 0AW OA! PA is
the transfinite composition of a sequence of maps of sequences

OA D PA;0
ˆ1
�!PA;1! � � � ! PA;t�1

ˆt
�!PA;t ! � � �

such that ˆt .n/ for t � 1 and n� 0 is given by the push-out square

�

`
T

J
v2Ie.T / f .zv/˝

N
w2Io.T / OA. zw/

//

‰t .n/
��

push

�

S‰t .n/
��

PA;t�1.n/
ˆt .n/

// PA;t .n/

where T runs over the isomorphism classes of trees with n leaves concentrated in even
levels and t inner even vertices not containing

� � �

even even

odd

The attaching map ‰t .n/ is defined by the maps from

U.zu/˝
O

v2Ie.T /nfug

V.zv/˝
O

w2Io.T /

OA. zw/; u 2 I e.T /;

defined by the composite U ! O ! OA , composition in OA , the structure maps
V.m/˝A˝m! A, and the previous S‰s.n/, s < t .

Each factor of the coproduct of maps in the statement of the previous lemma is depicted
by labeling each even inner vertex v of T with f .zv/, and each odd inner vertex w
with OA. zw/, eg

(1-8)

A
OA.1/

f .2/

OA.1/
A

OA.2/

f .3/

OA.2/
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The proof of Lemma 1.3 is a slight variation of the explicit construction of the push-out
(1-4) given in [10, Section 5]. We believe that this result is new in the literature.

2 Push-out filtrations in nonsymmetric settings

We now turn to our general setting, where operads O still live in V but their algebras A
live in a bicomplete biclosed monoidal category C (possibly nonsymmetric) endowed
with a strong monoidal left adjoint zW V ! C which is central, meaning that it is
equipped with coherent isomorphisms z.X/˝ Y Š Y ˝ z.X/. Objects in V have
“underlying” objects in C via z . We will often drop z from notation. Here we indicate
how the three previous lemmas extend to this context.

Enveloping operads do not make sense in this setting since they should live in C , but
the definition of operad requires a symmetric tensor product. We must instead consider
(always nonsymmetric) functor-operads F D fF.n/gn�0 in C [9], also known as
multitensors [2]. They consist of a sequence of functors F.n/W C n! C equipped with
composition and unit natural transformations

ıi W F.p/. i�1: : : : ; F .q/; p�i: : : : /! F.pC q� 1/; 1� i � p; q � 0;

uW idC ! F.1/;

satisfying relations similar to operads. The values OA.t/.X1; : : : ; Xt / of the envelop-
ing functor-operad OA are defined by replacing I˝t with X1 ˝ � � � ˝Xt in (1-2).
Again, OA.0/, which is a functor from the discrete category on one object C 0 , identi-
fies with A. Enveloping functor-operads satisfy the same functoriality properties as
enveloping operads do when C D V .

Consider the O–algebra push-out (1-1), now in our current setting. As above, we
regard maps in C as functors 2! C . We now present our first amended statement,
where the numbering refers to the cited paper.

Lemma 8.1 [10] The map f 0 in (1-1) is the transfinite composition of a sequence

AD B0
'1
�!B1! � � � ! Bt�1

't
�!Bt ! � � �

in C such that the morphism 't for t � 1 is given by the push-out square

� //

 t

��

push

�

x t
��

Bt�1 't

// Bt
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where the top map is the latching map of OA.t/.f; : : : ; f / at the final object and the
attaching map  t is given by, for 1� i � t ,

OA.t/.Z; i�1: : : : ; Z; Y;Z; t�i: : : : ; Z/!OA.t/.Z; i�1: : : : ; Z;A;Z; t�i: : : : ; Z/
ıi
�!OA.t � 1/.Z; t�1: : : : ; Z/! Bt�1

where the first map is defined by NgW Y ! A and the last is x t�1 if t > 1 and the
identity if t D 1.

The same proof as in the case C DV [6, Proposition 7.32] works here, mutatis mutandis.
The lemma actually extends to enveloping functor-operads. Given a functor F W C n!C

and a permutation � 2†n , we let F� �.X1; : : : ; Xn/DF.X��1.1/; : : : ; X��1.n//, and
given a subset S �†n we set FS � .X1; : : : ; Xn/D

`
�2S F� � .X1; : : : ; Xn/.

Lemma 2.1 If we have an O–algebra push-out (1-1), Of 0 is the transfinite composi-
tion of a sequence of natural transformations between sequences of functors

OA DOB;0
ˆ1
�!OB;1! � � � !OB;t�1

ˆt
�!OB;t ! � � �

such that, pointwise, ˆt .n/.X1; : : : ; Xn/ for t � 1 and n� 0 is given by the push-out

� //

‰t .n/.X1;:::;Xn/
��

push

�

S‰t .n/.X1;:::;Xn/
��

OB;t�1.n/.X1; : : : ; Xn/
ˆt .n/.X1;:::;Xn/

// OB;t .n/.X1; : : : ; Xn/

where the top map is the latching map of

OA.t Cn/.†tCn=.†t �†n// � .f; t: : : ; f; X1; : : : ; Xn/

at the final object and the attaching map ‰t .n/.X1; : : : ; Xn/ is defined, as in Lemma 8.1
above, from xg , the composition laws

ıi W OA.t Cn/. : : : ; A; : : : /!OA.t Cn� 1/;

and also S‰t�1.n/.X1; : : : ; Xn/ if t > 1.

This lemma can be proved by fitting Lemma 8.1 above into the coequalizer definition
of OB .

Given a sequence V in V we identify the object V.n/ with the functor C n !

C W .X1; : : : ; Xn/ 7! V.n/˝ X1 ˝ � � � ˝ Xn . In this way, a sequence in V can be
regarded as a sequence of functors. We similarly identify a map of sequences in V

with the obvious natural transformations. An operad in V yields a functor-operad in C

through this assignment, and the natural operad map O!OA becomes a functor-operad
map when A is in C .
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Lemma 2.2 Given an operad push-out (1-4) and a P –algebra A, the map f 0AW OA!
PA is the transfinite composition of a sequence of natural transformations between
sequences of functors

OA D PA;0
ˆ1
�!PA;1! � � � ! PA;t�1

ˆt
�!PA;t ! � � �

such that ˆt .n/.X1; : : : ; Xn/ for t � 1 and n� 0 is given by the push-out square

�

`
T
ẑ

t .T /.X1;:::;Xn/
//

‰t .n/.X1;:::;Xn/
��

push

�

S‰t .n/.X1;:::;Xn/
��

PA;t�1.n/.X1; : : : ; Xn/
ˆt .n/.X1;:::;Xn/

// PA;t .n/.X1; : : : ; Xn/

where T runs over the same set of trees as in Lemma 1.3, ẑ t .T /.X1; : : : ; Xn/ is
the latching map at the final object of the functor 2t ! C obtained by compos-
ing horizontally the natural transformations f .zv/ for v 2 I e.T / and the functors
OA. zw/ for w 2 I o.T / according to the structure of the tree T (see eg (1-8)), eval-
uating at X1; : : : ; Xn in the slots indicated by the leaves, and the attaching map
‰t .n/.X1; : : : ; Xn/ is defined by the composite U ! O! OA , composition in OA ,
the structure maps V.m/˝A˝m!A, and the previous S‰s.n/.X1; : : : ; Xn/ for s < t .

For the proof of this lemma, we can fit the filtration for the bottom map in (1-4)
constructed in [10, Section 5] into the coequalizer definition of PA .

3 Corrected results

We will sometimes restrict to the following class of operads with homotopically well-
behaved enveloping (functor-)operads.

Definition 3.1 Suppose that the tensor unit of V is cofibrant. An operad O is excellent
if the functor A 7! OA takes an O–algebra A with underlying cofibrant object to a
cofibrant sequence, and a weak equivalence between O–algebras with underlying
cofibrant objects to a weak equivalence of sequences.

The meaning is clear in case C D V . In the general case we must consider sequences
of functors C n! C for n� 0 rather than objects in V . Homotopical notions in this
more general context will be defined below. When the tensor unit is not cofibrant, the
previous definition makes sense but it is not useful. We will also deal with this more
general case below.

An operad which is not excellent, with C D V the category of chain complexes over a
commutative ring, is the operad whose algebras are nonunital DG–algebras A with
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A3 D 0. This operad, which has an underlying cofibrant sequence, can be used to
construct examples showing the necessity of the excellence assumption in several
statements below.

3.2 Corrections to statements

Note that [10, Lemma 8.1] has already been amended in the previous section. We do
not repeat it here.

Proposition 9.2(2) [10] Consider the push-out diagram (1-1) in AlgC .O/.

(2) Suppose that f is a cofibration in C and either A is cofibrant in C and O is
excellent or A is cofibrant as an O–algebra in C and O.n/ is cofibrant in V for
n� 0. Then f 0W A! B is a cofibration in C .

We will modify not [10, Proposition 9.2(1)] but the definition of the nonsymmetric
monoid axiom, so that the statement will be tautologically true by Lemma 8.1 above.

Definition 9.1 [10] The monoid axiom in the V –algebra C says that relative K 0–cell
complexes are weak equivalences, where K 0 is the class of morphisms

K 0 D
n
f ˝X; X ˝f; latching map of OA.t/.f; : : : ; f / at the final object

ˇ̌
X is an object in C ; f is a trivial cofibration in C ; O is an operad in V ;

A is an O–algebra in C ; t � 1
o
:

This axiom is equivalent to Schwede and Shipley [12, Definition 3.3] if C D V .

The following two modifications are forced by the previous amendments.

(6-2) [11] Replace this equation with the latching map of OA.t/.f; : : : ; f / at the
final object.

Definition 2.3(3) [11] Replace with the new [10, Definition 9.1] above.

Now, in [11, Theorems 1.13, 8.1 and D.13, Corollaries 1.14 and 8.2 and Proposi-
tions 8.3 and D.14], we must assume in addition that the operad O is excellent.

The most general of these results is [11, Theorem D.13], which follows from Proposition
3.4.3 and, if the tensor unit is not cofibrant, the remarks in Section 3.7 below.

Note that [11, Lemmas 6.6 and D.1] are not useful any more, since the map [11, (6-2)]
plays no role after the corrections.
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Corollary D.2 [11] Suppose that C satisfies the strong unit axiom and either A is
pseudocofibrant in C and O is excellent, or A is pseudocofibrant as an O–algebra in
C and O.n/ is cofibrant in C for n� 0. Then any cofibration �W A� B in AlgC .O/
is also a cofibration in C .

3.3 Correct statements needing new proofs

The nonsymmetric monoidal category GraphS .V / of V –graphs with object set S [10,
Definition 10.1] still satisfies the amended nonsymmetric monoid axiom.

Proof of [10, Proposition 10.3] It is easy to check (using the symmetry of V ) that
the latching map of OA.t/.f; : : : ; f / at the final object is componentwise a coproduct
of maps, each of which is the tensor product of a single object in V with a push-out
product of components of f , which are trivial cofibrations in V . Such a push-out
product is again a trivial cofibration by the push-out product axiom. Hence, any K 0–cell
complex is componentwise a K–cell complex in the sense of [10, Definition 6.1], and
therefore a weak equivalence by the monoid axiom for V .

The modifications made to [10, Proposition 9.2] have no impact on [10, Lemma 9.4 and
Corollary 9.5], however [10, Lemma 9.6 and Theorem 1.3; 11, Theorems 6.7 and D.4]
require a new proof. They follow from the arity-0 part of Proposition 3.4.2 and, if the
tensor unit is not cofibrant, the remarks in 3.7 below. The modification in [11, (6-2)]
forces us to give new proofs of [11, Propositions 7.3 and D.6]. They follow from the
arity-0 part of Proposition 3.4.6 and Section 3.7.

3.4 Auxiliary results

We need the following results to prove the amended statements and to fix proofs of
correct statements affected by the amendments.

Proposition 3.4.1 Let O be an operad with underlying cofibrant sequence. For any
cofibration with cofibrant source f 0W A! B in AlgC .O/, the map Of 0 W OA!OB is
a cofibration of sequences. In particular, OA is a cofibrant sequence for any cofibrant
A in AlgC .O/.

Proposition 3.4.2 Let �W O ��!P be a weak equivalence in Op.V /. Assume that the
objects O.n/ and P.n/ are cofibrant in V for all n� 0. Given a cofibrant O–algebra
A in C , the map ��A

W OA! P��A induced by � and by the unit �AW A! ����A of
the change of operad adjunction �� a �� [10, (1)] is a weak equivalence of sequences.
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Proposition 3.4.3 If O is an excellent operad in V and

A //
 

//

' �

��

push

B

'0

��

C //
 0
// C [AB

is a push-out of O–algebras in C such that the underlying objects of A and C are
cofibrant, then '0 is a weak equivalence.

The goal of the two following results is to exhibit a huge class of excellent operads.
They are not strictly required to correct the results in [10; 11], but they are essential
for applications. We believe that these results, which imply homotopy invariance of
enveloping (functor-)operads, are new in the literature in this generality. Similar results
for chain complexes have been obtained in [4, Section 17.4].

Proposition 3.4.4 The initial operad AssV , and uAssV , are excellent.

Proposition 3.4.5 If f 0W O� P is a cofibration in Op.V / and O is an excellent
operad such that O.n/ is cofibrant for all n� 0, then so is P .

In the following result, in addition to our standing context .V ;C / we have another
one .W ;D/ satisfying the same formal properties. Both of them are related by Quillen
pairs, F W V �W WG and F W C �D WG , with colax monoidal left adjoints F and F ,
equipped with a coherent natural map �.X/W F z.X/ ! zF.X/ which is a weak
equivalence for X cofibrant [11, Section 7]. They give rise to a functor between operad
categories F operW Op.V /! Op.W / and, for each operad O in V , a functor between
algebra categories FOW AlgC .O/! AlgD.F

oper.O//. These functors are left adjoint
to the obvious functors defined by the lax monoidal functors G and G . In particular,
we obtain a map of sequences �OW F.O/! F oper.O/ and natural transformations
�O;A.n/W FOA.n/! F oper.O/F O.A/

.n/F �n between functors C n ! D for n � 0
for any O–algebra A.

Proposition 3.4.6 If F aG is a weak monoidal Quillen adjunction, V and W have
cofibrant tensor units, O is a cofibrant operad in V and A is a cofibrant O–algebra
in C , then �O;A.n/ is a weak equivalence in D when evaluated at n cofibrant objects
in C for n� 0.

3.5 Proofs for C D V and cofibrant tensor units

In this special case our results admit easier proofs which do not need the sophisticated
homotopical notions for functors introduced below.
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Proof of Proposition 9.2(2) By Lemma 1.1 and the usual inductive transfinite compo-
sition and retract argument, this boils down to proving that OA.t/˝f ˇt is a cofibration
for all t � 1. If the sequence OA is cofibrant, this follows from the push-out product
axiom. This sequence is cofibrant under the first set of hypotheses, by excellence. The
second case is the arity-0 part of Proposition 3.4.1.

Proof of Proposition 3.4.1 By Lemma 1.2, the usual transfinite composition and
retract argument, and the push-out product axiom, it suffices to notice that the map
OA.t Cn/˝f ˇt for t � 1 and n� 0 is a cofibration provided f is a cofibration and
OA is a cofibrant sequence, and the sequence OA is cofibrant if ADO.0/ is the initial
O–algebra, since OO.0/ DO .

Proof of Proposition 3.4.2 This follows from the proof of [3, Proposition 5.7], but
we here give an argument which extends to our general case. By the aforementioned
inductive argument and Lemma 1.2, it is enough to check that the statement holds
for ADO.0/ the initial O–algebra and that, assuming the result true for A, the map
��A

induces a weak equivalence of cofibrations ��A
.tCn/˝f ˇt W OA.tCn/˝f ˇt!

P��A.tCn/˝f ˇt , with cofibrant source and target, for f a cofibration as in (1-1). For
ADO.0/, ��O.0/

D �W O! P , which is a weak equivalence by hypothesis. For any
cofibrant O–algebra A, OA and P��A are cofibrant sequences by Proposition 3.4.1.
We can assume that f W Y � Z has cofibrant source, replacing it with its push-
out A� Z [Y A along xg if necessary. Hence, by the push-out product axiom,
��A

.t Cn/˝f ˇt is indeed a weak equivalence between cofibrations with cofibrant
source and target.

Proof of Proposition 3.4.3 By the previous inductive argument, we can assume
that  D f 0 in (1-1) with f a cofibration. We can also suppose as in the proof of
Proposition 3.4.2 that the source of f is cofibrant. By Lemma 1.1, it suffices to notice
that

O'.t/˝f ˇt W OA.t/˝f ˇt !OC .t/˝f ˇt

is a weak equivalence between cofibrations with cofibrant source. Here we use excel-
lence and the push-out product axiom.

Proof of Proposition 3.4.4 This follows from the fact that uAssV
A .n/DA

˝.nC1/ for
n� 0, AssV

A .0/D A and AssV
A .n/D .Aq I/˝.nC1/ for n� 1, and, for O the initial

operad, OA.0/D A, OA.1/D I and OA.n/D¿ for n� 2.

Proof of Proposition 3.4.5 As in previous proofs, we can assume that f 0 fits into a
push-out square (1-3) with f a cofibration between cofibrant sequences. Let A be an
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O–algebra with underlying cofibrant object and 'W A!B a weak equivalence between
such O–algebras. By Lemma 1.3, it is enough to notice that, a push-out product of
maps f .n/ tensored with objects OA.n/ for n� 0 is a cofibration between cofibrant
objects. Moreover, if we replace OA.n/ with O'.n/ we get a weak equivalence between
these cofibrations. We are using here the push-out product axiom and the excellence
assumption.

Proof of Proposition 3.4.6 Under the standing hypotheses of this subsection, C D V ,
D DW , and �O;AW F.OA/! F oper.O/FO.A/ is a map of sequences in W . If A is the
initial O–algebra then �O;AD �O , so the statement follows from [11, Proposition 4.2].
For general cofibrant O–algebras, using the inductive argument and Lemma 1.2, it
suffices to notice that, if the result holds for A and f is a cofibration between cofibrant
objects in V , then the map F.OA.tCn/˝f ˇt /!F oper.O/FO.A/.tCn/˝F.f /

ˇt for
t � 1 and n� 0 induced by the comultiplication of F and �O;A is a weak equivalence
between cofibrations with cofibrant source (and target). Here we are using the push-out
product axiom and the cofibrancy results in Proposition 3.4.1 and [11, Corollary 3.8
and Lemma 4.3].

3.6 Proofs for C ¤ V and cofibrant tensor units

The Reedy model structure [7, Section 15.3] on the category of diagrams indexed by 2n

can be generalized as follows.

Proposition 3.6.1 If M is a model category and S � f1; : : : ; ng, there is a model
structure M 2n

S on the diagram category M 2n

such that a map � W F !G is
� a fibration if �.x1; : : : ; xn/W F.x1; : : : ; xn/! G.x1; : : : ; xn/ is a fibration in M

for all .x1; : : : ; xn/ in 2n ,
� a weak equivalence if �.x1; : : : ;xn/ is a weak equivalence in M for all .x1; : : : ;xn/

in 2n with xi D 0 if i 2 S , and
� a cofibration if the relative latching map of � at any .x1; : : : ; xn/ in 2n is a

cofibration, and moreover a trivial cofibration if xi D 1 for some i 2 S .

Note that M 2n

S is a right Bousfield localization of the Reedy model structure M 2n

¿
.

Cofibrant diagrams take cofibrant values and have cofibrant latching objects. Moreover,
any weak equivalence between cofibrant functors induces weak equivalences between
latching objects.

Given model categories M and N , we introduce some naive homotopical notions for
functors of several variables between them. They rely on the previous model structures,
hence many facts from ordinary model categories extend to these big functor categories.
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Definition 3.6.2 A natural transformation � W F !G between functors N n!M is
a weak equivalence, fibration or cofibration if, given cofibrations between cofibrant ob-
jects g1; : : : ; gn in N , �.g1; : : : ; gn/ has that property in M 2n

S for any S �f1; : : : ; ng
such that gi is a trivial cofibration if i 2S . These notions extend aritywise to sequences
of functors F.n/W N n!M for n� 0.

Weak equivalences and fibrations can be just characterized pointwise on cofibrant
objects. The condition on cofibrations is stronger. For nD 0 we recover the original
notions in M . Cofibrant functors preserve cofibrant objects and weak equivalences
between them.

When M DN , we can horizontally compose functors of several variables M n!M ,
ie F.: : : ; G; : : : /, and natural transformations between them. Weak equivalences are
preserved by horizontal composition if source and target are cofibrant. Cofibrant
functors are also preserved, provided we compose at a colimit-preserving slot. All slots
in enveloping functor-operads preserve colimits.

The meaning of Definition 3.1 is now clear in the general case for cofibrant tensor
units. The proofs in the previous subsection extend straightforwardly, using Lemmas
8.1 above, 2.1 and 2.2 instead of Lemmas 1.1, 1.2 and 1.3, respectively.

3.7 Noncofibrant tensor units

In the proofs of Section 3.5 we have used that the tensor unit is cofibrant at some places.
This hypothesis can be relaxed using the theory of pseudocofibrant and I–cofibrant
objects developed in [11, Appendices A and B] provided our monoidal model categories
satisfy the strong unit axiom and all left Quillen functors satisfy the pseudocofibrant
and I–cofibrant axioms. These will be standing assumptions. We recently learned
that pseudocofibrant objects were previously introduced in [8], where they are called
semicofibrant.

For C D V , Definition 3.1 must be modified replacing cofibrancy with pseudocofi-
brancy. Proposition 3.4.4 holds with the same proof. Essentially the same proofs
work for Propositions 3.4.2 and 3.4.3 if we only demand underlying pseudocofibrant
objects. Moreover, if we only make pseudocofibrancy hypotheses in Propositions 3.4.1
and 3.4.5, we obtain pseudocofibrant outcomes and honest cofibrations between them.
Proposition 3.4.6 holds without I being cofibrant under our standing assumptions
(using [11, Corollary C.3 and Lemma B.14] in the proof). The proof of Corollary D.2
is similar to the proof of Proposition 9.2(2) above.

For C ¤ V , we need new and modified homotopical notions in functor categories.
Pseudocofibrant and I–cofibrant objects F in diagram categories M 2n

S are defined by
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the existence of a cofibration X�F from a constant diagram on an object X satisfying
the corresponding property in M (which must be monoidal). In Definition 3.6.2, we
allow the sources of the gi to be pseudocofibrant.

The operads in Proposition 3.4.4 are excellent since

uAssV
A .n/.X1; : : : ; Xn/D A˝

nO
iD1

.Xi ˝A/ for n� 0;

AssV
A .n/.X1; : : : ; Xn/ D .A q I/ ˝

Nn
iD1.Xi ˝ .A q I// for n � 1 and, for O

the initial operad, OA.1/.X1/ D X1 and OA.n/.X1; : : : ; Xn/ D ¿ for n � 2. In
Proposition 3.4.1, if we only demand that O is pseudocofibrant in C we obtain as
outcomes functor-operads with underlying pseudocofibrant sequences and cofibrations
between them. In Proposition 3.4.2, the map of sequences in C underlying � must be a
weak equivalence between pseudocofibrant objects. Propositions 3.4.3 and 3.4.5 are true
when the underlying objects are pseudocofibrant in C . The analog of Proposition 9.2(2)
for noncofibrant I is Corollary D.2 above.

For the proof of Proposition 3.4.6 without cofibrant tensor units, we must modify again
the homotopical notions in Definition 3.6.2, allowing the sources of the gi to be just
(I–)cofibrant. The natural transformations �O;A.n/ are weak equivalences in this
sense, ie when evaluated at (I–)cofibrant objects.
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