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3–manifolds built from injective handlebodies

JAMES COFFEY

HYAM RUBINSTEIN

This paper studies a class of closed orientable 3–manifolds constructed from a
gluing of three handlebodies, such that the inclusion of each handlebody is �1–
injective. This construction is the generalisation to handlebodies of the construction
for gluing three solid tori to produce non-Haken Seifert fibred 3–manifolds with
infinite fundamental group. It is shown that there is an efficient algorithm to decide
if a gluing of handlebodies satisfies the disk-condition. Also, an outline for the
construction of the characteristic variety (JSJ decomposition) in such manifolds is
given. Some non-Haken and atoroidal examples are given.

57N10, 57M10, 57M50

1 Introduction

This paper is concerned with the class of 3–manifolds that meet the disk-condition.
These are closed orientable 3–manifolds constructed from the gluing of three handle-
bodies, such that the induced map on the fundamental group of each of the handlebodies
is injective. Thus all manifolds that meet the disk-condition have infinite fundamental
group. The disk-condition is an extension to handlebodies of conditions for the gluing of
three solid tori to produce non-Haken Seifert fibred manifolds with infinite fundamental
group. These manifolds appear to have many nice properties. In this paper, some tools
for understanding manifolds that meet the disk-condition are investigated. A number
of constructions are given for this class, including some manifolds that are non-Haken
and some that are atoroidal. The characteristic variety of manifolds that meet the
disk-condition is also investigated. It is shown that the handlebody structure carries all
the information for building the characteristic variety.

In Section 2, standard definitions that are used throughout this paper are given. Also, the
“disk-condition” is defined and discussed. In particular, it is shown how this condition is
a generalisation of the construction of non-Haken Seifert fibred manifolds with infinite
fundamental group. We also discuss how, on an intuitive level, the class of manifolds
that meet the disk-condition contains many other non-Haken examples.
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Section 3 is divided into three subsections. The first develops some basic tools and
also shows that all 3–manifolds that meet the disk-condition have infinite fundamental
group and are irreducible. In the second subsection, a sufficient condition is given for
gluings of handlebodies to meet the disk-condition. This condition is easily checked
and useful for constructing examples. We then give a necessary and sufficient condition
and an algorithm that can be checked in bounded time. The final part gives some
constructions of manifolds that meet the disk-condition, using Dehn fillings along knots
in S3 and n–fold cyclic branched covers of knots in S3 . Some non-Haken examples
are produced.

Section 4 is concerned with the construction of the characteristic variety † in a
manifold M that satisfies the disk-condition. The main theorem proved in Section 4 is:

Theorem 1.1 Let M be a closed orientable 3–manifold that satisfies the disk-condition,
and let T be a torus. If f W T !M is a �1–injective map, then there is † �M a
Seifert fibred submanifold with essential boundary and a map gW T !M homotopic
to f such that g.T /�†.

If the characteristic variety † has nonempty boundary, then the boundary components
are essential embedded tori. Therefore, a direct corollary of the above theorem is:

Corollary 1.2 If M is a closed orientable 3–manifold that satisfies the disk-condition
and there is a �1–injective map of the torus into M , then either there is a �1–injective
embedding of a torus in M , or M is a non-Haken Seifert fibred manifold.

These are not new results. However, the aim is to examine how the characteristic variety
behaves in manifolds that meet the disk-condition. The proof of the torus theorem
(Theorem 1.1) is constructive and gives an algorithm for finding the characteristic
variety of manifolds that meet the disk-condition. In the construction of the charac-
teristic variety, the components come in two “flavours”. The intersection of all three
handlebodies in the manifold is a set of injective simple closed curves, called the triple
curves. The first flavour is a component which is disjoint from the triple curves. These
components are similar to the constructions used by W Jaco and P Shalen to prove the
torus theorem for Haken manifolds; see Jaco [6]. The intersections of the components
of the characteristic variety with each handlebody are either essential Seifert fibred
submanifolds or I–bundles. If we remove an open neighbourhood of the triple curves,
we get a manifold with incompressible boundary, which is therefore Haken. What
remains of the boundaries of the handlebodies after the triple curves are removed is a set
of disjoint spanning surfaces. Therefore, the fact that these carry all the information for
the characteristic variety components disjoint from the triple curves is not surprising.
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We will refer to the second flavour of characteristic variety as the disk components.
The intersections of these disk components with the handlebodies are regular neigh-
bourhoods of intersecting meridian disks. For this flavour of characteristic variety
components to occur, the manifold must meet a minimal disk-condition, as described
in Section 2. The two flavours of characteristic variety components are not necessarily
disjoint. If two such components intersect, their fibrings can always be made to agree.
In fact, when they intersect, the disk components are thickened compressing annuli of
the characteristic variety components disjoint from the triple curves.

Acknowledgements The authors would like to thank Ian Agol for a very helpful
comment on this project. We would also like to thank the referee for extremely diligent
work, which has greatly improved this paper. This research was partially supported by
the Australian Research Council.

2 Definitions and preliminaries

Throughout this paper, we will assume that, unless stated otherwise, we are working in
the PL category of manifolds and maps. We will use standard PL constructions, such
as regular neighbourhoods and transversality, defined by C Rourke and B Sanderson
in [12]. Other definitions relating to 3–manifolds are given by J Hempel in [5] or Jaco
in [6].

A manifold M is closed if it is compact and @M D ∅. Also, M is irreducible if
every embedded S2 bounds a ball. We will assume, unless otherwise stated, that all
3–manifolds are orientable. The reason for this is that all closed nonorientable P2–
irreducible 3–manifolds are Haken. (A manifold is P2–irreducible if it is irreducible
and does not contain any embedded 2–sided projective planes.) A main motivation for
our approach is to find constructions of non-Haken 3–manifolds.

A map f W S ! M is proper if f �1.@M/ D @S . If F W S � I ! M is a homo-
topy/isotopy such that F jS�0 is a proper map, then it is assumed, unless other-
wise stated, that F jS�t is a proper map for all t 2 I . To simplify notation, an
isotopy/homotopy of a surface S �M is used without defining the map. Here we are
assuming that there is a map f W S!M , and we are referring to an isotopy/homotopy
of f . If M is a 3–manifold and S is a compact surface which is not a sphere, disk or
projective plane, the proper map f W S !M is called �1–injective if the induced map
f�W �1.S/! �1.M/ is injective. If a �1–injective map f is not homotopic as a map
of pairs .S; @S/! .M; @M/ into @M , then the map is called essential.
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If H is a handlebody and D is a properly embedded disk in H such that @D is
essential in @H , then D is a meridian disk of H . If D is a proper singular disk in H
such that @D is essential in @H , then it is called a singular meridian disk.

In this paper, normal curve theory, as defined by S Matveev in [9], is used to list finite
classes of curves in surfaces. A triangulation of the surface is required to define normal
curves. The surfaces may have polygonal faces. However, a barycentric subdivision
will produce the required triangulation.

2.1 The disk-condition

Before we discuss the disk-condition in closed 3–manifolds, we define some useful
objects and the disk-condition in handlebodies.

Definition 2.1 Let H be a handlebody, T a set of curves in @H and D a meridian disk.
Assuming that @D and T are transverse, jDj will denote the number of intersection
points of @D and T .

Definition 2.2 If H is a handlebody and T is a set of essential disjoint simple closed
curves in @H , then T satisfies the n disk-condition in H if jDj � n for every meridian
disk D .

This seems a difficult condition to verify, for if H has genus two or higher, there are
an infinite number of meridian disks to check. However, later we give some sufficient
conditions that are easily checked and an algorithm that determines if the disk-condition
is satisfied.

Next we give a construction of 3–manifolds that meet the disk-condition. Please note
that even though this description is technically correct, it is not enlightening, so later
we discuss different ways of describing these manifolds that are much more useful.

Let H1 , H2 and H3 be three handlebodies. Let Si;j , for i 6D j , be a subsurface of
@Hi such that:

(1) @Si;j 6D∅.

(2) The induced map of �1.Si;j / into �1.Hi / is injective.

(3) Si;j [Si;k D @Hi for j 6D k .

(4) Ti D Si;j \ Si;k D @Si;j D @Si;k is a set of disjoint essential simple closed
curves that meet the ni disk-condition in Hi .

(5) Si;j � @Hi is homeomorphic to Sj;i � @Hj .
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Figure 1: Homeomorphisms between boundaries of handlebodies

Note that Si;j need not be connected. Given that the boundary of each handlebody is cut
up into �1–injective regions, we glue the handlebodies together by homeomorphisms
‰i;j W Si;j ! Sj;i that agree along the Ti ; see Figure 1. The result is a closed 3–
manifold M for which the image of each handlebody is embedded.

Definition 2.3 If M is a manifold constructed from three handlebodies as above such
that Ti satisfies the ni disk-condition in Hi and

(1)
X

iD1;2;3

1

ni
�
1

2
;

then M satisfies the .n1; n2; n3/ disk-condition. M is simply said to meet the disk-
condition if the specific .n1; n2; n3/ is understood from the context.

As said previously, the above definition is not very enlightening. Thus, from now on, we
view 3–manifolds that meet the disk-condition in the following way. Assume that M is
a manifold that satisfies the disk-condition and H1 , H2 and H3 are the images of the
handlebodies in M . Then M D

S
iD1;2;3Hi , and each Hi is embedded in M . Then

X D
S
iD1;2;3 @Hi cuts M up into handlebodies. X can be viewed as a 2–complex

by splitting up each of the surfaces forming X into cells. Also, T D
T
iD1;2;3Hi is a

set of essential disjoint simple closed curves in M that satisfies the ni disk-condition
in Hi where

P
iD1;2;3 1=ni �

1
2

.

It may seem confusing that we are using the same name for the conditions for the
construction of 3–manifolds and the curves in the boundary of handlebodies. However,
the curve condition is the restriction of the condition on closed 3–manifolds to each of
its component handlebodies. When we have an equality in (1), the result is the three
“minimal” cases for the disk-condition. These are: .6; 6; 6/, .4; 8; 8/ or .4; 6; 12/.
These three cases are of special interest since if a manifold satisfies the disk-condition,
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Figure 2: Base space of non-Haken Seifert fibred space with infinite �1

then it meets at least one of these three conditions. Therefore, these are the key cases
to consider. It is also worth noting that unlike Heegaard splittings, we don’t require the
three handlebodies to have the same genera.

Another way of viewing a 3–manifold M that satisfies the disk-condition is that
X D

S
@Hi is a 2–complex such that the triple curves T consist of essential curves

in X . Therefore, we obtain a manifold M that satisfies the disk condition by gluing
handlebodies to X such that each meridian disk of the handlebodies intersects T
enough times. In fact, the disk-condition is an extension of the construction of non-
Haken Seifert fibred 3–manifolds with infinite fundamental group. In the latter case,
if a Seifert fibred space is non-Haken with infinite fundamental group, then it has a
fibring with base space a 2–sphere, and it has three exceptional fibres of multiplicity pi ,
where

P
1=pi � 1 (*), as in Figure 2. For more details, see P Scott in [13]. If the

inequality (*) is made an equality, the exceptional fibres have indices .3; 3; 3/, .2; 4; 4/
or .2; 3; 6/. Another way of viewing this construction is if ‚ is the graph in S2 shown
in Figure 2, then ‚�S1 is a 2–complex X consisting of three annuli glued together
along two triple curves T . Then glue three solid tori Hi to X so that the boundaries
of the meridian disks meet each triple curve pi times. As there are two triple curves
in T , each meridian disk has 2pi intersections with T . Thus, as

P
1=.2pi /�

1
2

, all
non-Haken Seifert fibred manifolds with infinite �1 are in the class of manifolds that
meet the disk-condition.

Yet another way of viewing 3–manifolds that meet the disk-condition is if we glue two
handlebodies together to form a 3–manifold with a single incompressible boundary
component. Then glue a handlebody to this boundary component. A very short hierarchy
in a closed Haken manifold, as defined by I Aitchison and H Rubinstein in [1], can
be built from a set of handlebodies, gluing each handlebody to itself so that each of
the resulting manifolds has incompressible boundary. Then glue these incompressible
boundaries together to produce the closed manifold. So the incompressible boundaries
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become incompressible surfaces in the Haken manifold. This suggests that the disk-
condition is a weaker condition than the manifold being Haken. In fact, we already know
that the class of manifolds satisfying the disk-condition contains all non-Haken Seifert
fibred manifolds with infinite �1 , but it also contains examples of other non-Haken
manifolds.

The disk-condition can be easily extended to gluings of four or more handlebodies such
that all the statements in this paper follow. Construct a closed manifold M by gluing
together r � 3 handlebodies H1; : : : ;Hr such that, for i , j , k and l different,

� Hi is embedded,
� Hi \Hj � @Hi \ @Hj is a subsurface,
� Hi \Hj \Hk is a possibly empty set of pairwise disjoint curves, and
� Hi \Hj \Hk \Hl D∅.

Then X D
S
1�i<j�r Hi \Hj is a 2–complex which cuts M up into the Hi , and

T D
S
1�i<j<k�r Hi \Hj \Hk is a union of pairwise disjoint simple closed curves.

Suppose ˛ is a component of T . Let H˛1
, H˛2

and H˛3
be the three handlebodies

around ˛ and suppose that T satisfies the n˛i
disk-condition in H˛i

. Then M satisfies
the generalised disk-condition if

P
iD1;2;3 1=n˛i

�
1
2

for each ˛ 2 T . For the purposes
of this paper, we will not consider such manifolds for r � 4 as they are all Haken. To
see this, if r � 4, then we can choose Hi and Hj such that Hi \Hj ¤∅ and there
is a component M 0 of M � .Hi [Hj / that contains at least two of the handlebodies.
Let S be the boundary surface between Hi[Hj and M 0 . Then the proof of Lemma 3.2
can be modified to show that no essential simple closed curve in S bounds a disk,
and thus S is an embedded incompressible surface. Therefore, the manifold is Haken
as claimed.

3 Conditions and examples

For later use, we state a special case of Dehn’s lemma and the loop theorem:

Lemma 3.1 Let H be a handlebody and T a collection of essential curves in @H . If
there is a singular meridian disk D of H such that D has n intersections with T , then
there exists an embedded meridian disk of H that intersects T at most n times.

Let H be a handlebody and T be a set of disjoint essential simple closed curves in @H
that satisfies the n disk-condition. A direct result of this lemma is that if ˛ is a possibly
singular loop in @H that intersects T less than n times and ˛ contracts in H , then by
Lemma 3.1 it follows that ˛ is inessential in @H .
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Lemma 3.2 Let M be a manifold that satisfies the disk-condition. If f W D!M is a
map of a disk D such that f .@D/ � int.Hi / for some i , then f can be homotoped
to g , keeping the boundary fixed, so that g.D/� int.Hi /.

Proof We can assume that f .D/ is transverse to X , where X is the union of the
boundaries of the three handlebodies making up M and f is the disk map as in the
lemma. Thus � D f �1.X/ is a set of trivalent graphs and simple closed curves �j ,
1 � j � m, in D . Note that @D \ � D ∅. An innermost component of � is a
component �j such that there is a subdisk D��D where @D���j and D�\�D�j .
An easy argument shows that if � is nonempty, then it must have at least one innermost
component. The reason is that the closure of a component of the complement of �j
which does not contain @D is a subdisk D0 . Clearly we can define a partial order on
the components of � by �r < �j if �j has a complementary component which does
not meet @D and contains �r . A smallest component is then innermost.

If �j is a simple loop, then �j D @D0 and f .D0/ � Hk for k D 1; 2 or 3. By the
disk-condition, we know that f .@D0/ must be nonessential in @Hk as f .@D0/ doesn’t
intersect T and thus f .D0/ is homotopic into @Hk . We can thus homotope f so that
f .D0/� @Hk and then push f .D0/ through to remove the component �j altogether.

If �j is a graph, then as it is innermost, there is a disk D� with @D� � �j and
�j D � \D

� . Thus any face F bounded by a subset of �j in D� is an .m; n/–gon,
where F has m vertices in its boundary and is mapped by f to a handlebody Hk
such that T satisfies the n disk-condition in Hk . We can put a PL metric on D� by
assuming that all the edges are geodesic arcs of unit length, that the internal angle at
each vertex of an .m; n/–gon F is �.1� 2=n/ and all the curvature of F is at a cone
point in int.F /. For example, if Hk satisfies the 6 disk-condition, the angle at each
corner of an .m; 6/–gon will be 2�

3
. Note that as each vertex of �j in the interior

of D� is adjacent to three faces, each of these faces is mapped to a different handlebody.
Assuming that M satisfies the .6; 6; 6/, .4; 6; 12/ or .4; 8; 8/ disk-conditions, then
the total angle around each such interior vertex is 2� . If F is an .m; n/–gon, then
�.F / D 1 and the exterior angle sum is m.2�=n/. If K .F / is the curvature of the
cone point in int.F /, then by the Gauss–Bonnet theorem,

K .F /D 2� �m.2�=n/D 2�.1�m=n/:

Thus if F is an .m; n/–gon and m<n, then K .F /> 0, and if m� n, then K .F /� 0.
Let F be the set of faces of D� and v be the vertices in @D� . For v 2 v , there are two
faces F1; F2 2 F adjacent to v . Let Fi be an .mi ; ni /–gon. Let the jump angle at v
be �v D � �

P
iD1;2 �.1� 2=ni /. By the disk-condition, ni D 4; 6; 8 or 12, and it is
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� 0 � 0

mD a

mD 4

mD c

mD d mD b mD d � 2 mD b� 2

mD .aC b/� 4

Figure 3: Removing a .4; n/–gon from � 0 by homotopy

not possible to have n1 D n2 D 4. Thus �v ���6 . Then once again by Gauss–Bonnet
we know that X

F 2F

K .F /D 2� �
X
v2v

�v > 2�:

This implies that D� must always have some .m; n/–gon faces such that m< n. For
example, if the manifold satisfies the .6; 6; 6/ disk-condition, then D� would have
some .2; 6/–gons and/or some .4; 6/–gons, since m is even. If F is an .m; n/–gon
of D� such that m< n and f .F /�Hk , then by the disk-condition and Lemma 3.1,
we know that f .@F / is not essential in @Hk . Thus we can homotope f so that f .F /
lies in @Hk . We can then homotope f so f .F / is pushed off @Hk . This decreases
the total number of faces of D� , as shown in Figure 3. Thus in a finite number of
steps, �j will become a simple closed curve, and we can then homotope f to remove
the component �j entirely.

As � always contains an innermost component, we can continue this process until all
of � has been removed, and thus f .D/� int.Hi /.

This lemma yields important corollaries about 3–manifolds that meet the disk-condition.

Corollary 3.3 Let M be a 3–manifold that satisfies the disk-condition. Then, for any
1� i � 3, the induced map of �1.Hi / into �1.M/ is injective.

Remark 3.4 Note that �1.Hi / is the free group on g generators, where g > 0 is the
genus of Hi . This corollary implies that if a 3–manifold satisfies the disk-condition,
then its fundamental group is infinite.

Proof Let D be a disk and  be a simple closed curve in Hi that represents a
nontrivial element of �1.Hi /. If the element is trivial in �1.M/, then there is a map
f W D ! M such that f .@D/ D  . By Lemma 3.2, we can homotope f so that
f .D/� int.Hi /, giving us a contradiction.
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Corollary 3.5 If M is a 3–manifold that satisfies the disk-condition, it is irreducible.

Proof Let S be a 2–sphere and f W S !M be an embedding. Note that f is an
embedding and all the moves in the proof of Lemma 3.2 can be performed as isotopies.
Thus we can isotope f so that f .S/\X D∅; that is, for some i , f .S/�Hi . Then,
as handlebodies are irreducible, f .S/ must bound a 3–ball.

3.1 Test for the n disk-condition in handlebodies

It is not necessary to check every meridian disk of a handlebody H to find out if a set
of curves T in @H satisfies the n disk-condition. Let D be a set made up of a single
representative from each isotopy class of meridian disk of H .

The first test is that T must separate @H into subsurfaces that can be 2–coloured.
Therefore, all meridian disks must intersect T an even number of times. From this
point on we will assume that T is separating in @H .

Put a Riemannian metric on @H . We will assume that the loops in T are length
minimizing geodesics. Note that if T contains parallel curves, the neighbourhood
of the corresponding length minimizing geodesic can be “flattened”, so we can have
parallel length minimizing geodesics. We will also assume the boundaries of the disks
in D are length minimizing geodesics. Both of these can be done simultaneously.
From M Freedman, J Hass and Scott [2], we know that this implies that the number
of intersections between the boundary of a disk in D and T is minimal, as is the
intersection between the boundaries of any two disks in D , after possibly a small
perturbation to make these intersections transverse. For any disk D 2 D , let jDj
be the number of intersections of @D with T and for any set of meridian disks
D D fDig �D , let jDj D

P
i jDi j. From this point on, unless otherwise stated, when

discussing meridian disks, we will assume that the number of intersections between
their boundaries is minimal.

Lemma 3.6 Any two disks of D can be isotoped, leaving their boundaries fixed, so
that any curves of intersection are properly embedded arcs.

Proof This proof uses the standard innermost argument and the fact that handlebodies
are irreducible to remove all the components of intersection between two disks that are
simple closed curves.

Definition 3.7 Let H be a genus-g handlebody. We shall call D � D a system of
meridian disks if all the disks are disjoint, nonparallel and cut H up into a set of
3–balls. If @D cuts @H up into 2g � 2 pairs of pants (thrice punctured 2–spheres),
then it is a basis for H .
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bigon

bigon

bigon
�

A

Figure 4: Meridian disk cut up by arcs of intersection

If H has genus g , then a minimal system of meridian disks for H consists of g
disjoint meridian disks which cut H up into a single ball.

Definition 3.8 Let P be a punctured sphere and  be a properly embedded arc in P .
If both ends of  are in one component of @P and the arc is not isotopic into @P , then
it is called a wave.

Let H be a handlebody, T a set of essential disjoint simple closed curves in @H ,
D a system of meridian disks for H and fP1; : : : ; Plg the resulting set of punctured
spheres produced when we cut @H along @D . Also, let Ti D Pi \T . Thus Ti is a set
of properly embedded disjoint arcs in Pi .

Definition 3.9 If each Ti contains no waves, then D is said to be a waveless system
of meridian disks for H .

Definition 3.10 Let D be a waveless system of disks. If every wave in each Pi
intersects Ti at least 1

2
n times, then D is called an n–waveless system of meridian disks.

If D is an n–waveless basis, then each Ti has at least 1
2
n parallel arcs running between

each pair of boundaries in Pi .

Lemma 3.11 Let H be a handlebody, T � @H a separating set of essential simple
closed curves and D a basis for H . If D is an n–waveless basis, then T satisfies the
n disk-condition in H .

Proof From the definition of the n–waveless condition we know that T intersects each
disk in D at least 3

2
n times. If C 2D is a meridian disk not in D , then C\D 6D∅. By

Lemma 3.6, we can isotope C so that C\D is a set of disjoint properly embedded arcs.
Therefore, if we cut C along C \D the faces produced must all be disks and contain
at least two bigons, as shown in Figure 4. Therefore, the set fPi \ @C g must contain
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Pi

Ti
C

Figure 5: Bigon in a pair of pants

H H

D

E ˛

Figure 6: Boundary compressing a meridian disk

at least two waves, coming from bigons. As D satisfies the n–waveless condition, any
wave must intersect T at least 1

2
n times; see Figure 5. Therefore, @C must intersect T

at least n times.

If T intersects each disk in D exactly n times, then it must be an n–waveless basis.
The reason is that the only pattern of arcs in a pair of pants, where there are the same
number n of endpoints on each boundary curve, consists of 1

2
n arcs joining each pair

of boundary loops. This gives us the following corollary.

Corollary 3.12 Let H be a handlebody, T � @H a separating set of simple closed
curves and D a basis for H . If T intersects each disk in D exactly n times, then T
satisfies the n disk-condition in H .

This test for the n disk-condition is a significant restriction. However, it is an easy
enough condition to verify when constructing examples.

Next we describe a specific type of surgery of meridian disks. Let D be a meridian
disk of H and let E be an embedded disk in H such that @E �D[@H , @E\@D is
two points, a1 and a2 in @H , ˛ DE \ @H is an arc in @H which is not homotopic
through @H into @D and D \E is an arc properly embedded in D , as shown in
Figure 6. If we then surger D along E , we produce two disks. As ˛ is an arc which
is not homotopic through @H into @D , both resulting disks are meridian disks isotopic
to disks in D . We shall call this surgery a boundary compression of a meridian disk.
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H H

D D�

D D

Figure 7: Disk-swap move
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Di
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Figure 8: Boundary compressing a disk from a system of meridian disks

Let D be a system of disks for the handlebody H . Let D� 2 D be a meridian disk
disjoint from D such that .DnD/[D� is a system of meridian disks for some D 2D .
Then if we remove D from D and replace it with D� , this is called a disk-swap move
on D as shown in Figure 7.

Lemma 3.13 For a minimal system of meridian disks D D fD1; : : : ;Dng, if we
perform a boundary compression on any Di along a disk disjoint from D n fDig, then
one of the resulting disks can be used for a disk-swap move on D removing Di .

Remark 3.14 Note that an essential wave in @H �D defines a disk-swap move on D .

Proof Let D� be the set of all meridian disks disjoint from D . Then if a disk Di 2D

is boundary compressed along a disk E disjoint from D�Di , one of the resulting disks
will be isotopic to a disk in D[D� . If we cut H along fD1; : : : ;Di�1;DiC1; : : : ;Dng
the result is a solid torus T . Then Di is a meridian disk of T . Thus a boundary
compression on Di along E will produce two disks, one of which is a meridian disk
of T and the other is boundary parallel, as shown in Figure 8.

Let D � D be a minimal system of meridian disks for the handlebody H . That is, D

cuts H up into a single ball. Let D� � D be the set of disks disjoint from D .

Lemma 3.15 T satisfies the n disk-condition if and only if there is a minimal system
of meridian disks D such that jDj � n for all disks D 2 D [D� and there are no
disk-swap moves between D and D� that reduce jDj.
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Figure 9: Boundary compression to remove a wave

Proof In the “only if” direction, T satisfying the n disk-condition in H implies that
jDj � n for any meridian disk. Given any initial D[D� such that there are disk-swap
moves to reduce jDj, we can construct a sequence of disk-swaps that reduce jDj with
each move. If T satisfies the n disk-condition, then such a sequence must terminate,
thus giving the required basis.

For the proof in the “if” direction, the first thing to note is that if there are no disk-swap
moves to reduce jDj, then every essential wave in @H �D must intersect T at least 1

2
n

times. Let D 2 D be a meridian disk such that D 62D [D� . Then � DD\D 6D∅.
We are assuming that the intersection between the boundaries of disks is minimal. Thus
by Lemma 3.6 we can assume that � is a set of pairwise disjoint properly embedded
arcs in D , as shown in Figure 4. Thus all the faces of the meridian D , when D is
cut along � , are disks. Also, there must be at least two bigons, D1 and D2 in this
meridian disk. Di \ @H �D are essential waves in @H �D and thus intersect T at
least 1

2
n times.

Next we want to use Lemma 3.15 to produce an algorithm to determine whether a
boundary pattern satisfies the n disk-condition. Here by a boundary pattern, we mean
a family of disjoint essential closed curves in the boundary of a handlebody.

Lemma 3.16 Assume we are given a handlebody H and a set T of essential curves
in @H . There is an algorithm to find, in finite time, a waveless minimal system of
meridian disks.

Proof Suppose we start with an arbitrary minimal system of meridian disks D for H .
If T has a wave when H is cut along D , then there is a subarc  � T with both
ends in some disk D 2D and int./\D D∅. Then D has a boundary compression
disk E such that the arc E \ @H D  . Let D1 and D2 be the disks produced by
compressing D along E . Then †i jDi j � jDj�2, as shown in Figure 9. Thus when a
disk-swap move is done swapping D for one of the Di , we see that jDj will decrease
by at least two. Note also that the number of waves does not go up. If there is another
wave we can always do another boundary disk compression and a disk-swap move to
reduce jDj, thus this process must terminate in a finite number of moves.
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Figure 10: Boundary of meridian disk to add to D
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Figure 11: � and � 0

Given that it is possible to find a waveless minimal system of meridian disks D , to
show that we can find a waveless basis, we proceed as follows. Suppose we have
already found a waveless system of disks and want to add new waveless disks, until we
get a basis. We can use our initial set of boundary curves of disks to cut @H to obtain
a punctured sphere S D @H �D . Suppose that there is at least one pair of boundary
curves of S such that all the arcs of � D T \ S running between them are parallel.
Then there is a simple closed curve ˇ which is essential in S , is not boundary parallel
and each curve in � intersects ˇ at most once, as shown in Figure 10. Then we can
add a disk with boundary ˇ to enlarge our system of waveless disks.

To simplify this problem, collapse each boundary component of S to a vertex and
identify parallel copies of edges of � . This produces a graph � 0 embedded in a
2–sphere S 0 such that � 0 is connected, no two edges are parallel and no edge has both
ends at one vertex. This means that if we cut S 0 along � 0 all the resulting faces will
be disks and will have degree at least 3.

Definition 3.17 A 2–cycle in a graph is a simple closed curve that is the union of
two edges.

The problem of finding a waveless basis is now to show that we can always find two
vertices of � 0 that are joined by exactly one edge. This means finding a vertex not
contained in a 2–cycle. Let c be a 2–cycle in � 0 , thus c cuts S 0 into two disks and as
� 0 does not contain any parallel edges, the interior of both disks must contain at least
one vertex of � 0 . We now want to show that there is a vertex of � 0 that is not part of a
2–cycle. Let c and c0 be two 2–cycles in � 0 . If c\c0 is empty, a single vertex or edge,
then the interior of one of the disks produced when we cut S 0 along c must be disjoint
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from c0 . If c \ c0 is two vertices, then we can construct a third 2–cycle c00 such that
when we cut S 0 along c00 , the interior of one of the disks produced is disjoint from
both c and c0 . (We obtain c00 by taking one edge from each of c; c0 .) By induction on
the number of 2–cycles in C , the set of all 2–cycles in � 0 , it follows that there must
be a 2–cycle c 2 C such that when S 0 is cut along c we get a disk D for which there
are no 2–cycles intersecting int.D/. As there are no parallel edges in � 0 , we have
� 0\ int.D/¤∅. Therefore, � 0 has to have a vertex in int.D/ that is not in a 2–cycle.
This gives us the following lemma.

Lemma 3.18 Assume we are given a handlebody H and a set T of essential curves
in @H . There is an algorithm to find, in finite time, a waveless basis.

Note that this means that once a minimal waveless system of meridian disks has been
found, most of the work has been done and that to produce a waveless basis, suitable
meridian disks are added to the system. This lemma is not expressly used in the rest
of this paper, but waveless bases are used in Section 4 in a condition for manifolds
to be atoroidal. Thus it is nice to know that given a 3–manifold that satisfies the
disk-condition, we can always find a waveless basis for each of its handlebodies.

Lemma 3.19 Let H be a handlebody and T a set of essential curves in @H . Then
there is an algorithm to determine, in finite time, if T satisfies the n disk-condition.

Proof Once again let D be a minimal system of disks and N.D/ be a regular
neighbourhood of D . Let S D @H �N.D/ and � D T \ S . Then S is a 2g–
punctured sphere, where g is the genus of H . Also, � is a set of arcs properly
embedded in S . By Lemma 3.16, we can assume that � does not contain any waves.
Therefore, � cuts S up into polygonal disks of degree at least four. As above let
D� �D be the set of meridian disks disjoint from D . For any D� 2D� , we have that
D�\S D ˛ is a simple closed curve in int.S/. Let j˛j be the number of times that ˛
intersects � . Note that j˛j D jD�j. We have therefore reduced the question of looking
for meridian disks disjoint from D to studying essential simple closed curves in S . For
D 2D , we have that N.D/\S is two boundary curves, @D1 and @D2 , of S . Then
if  is an essential simple closed curve in S that separates @D1 from @D2 , the disk
bounded by  can be used for a disk-swap move on D . Let N DmaxfjDj WD 2Dg

and L be the set of essential simple closed curves in S of length at most N . Thus as L
is a finite set of curves and as each face of S is a polygon, we can list all the elements
of L using normal curve theory, using the polygonal disk structure or a triangular
subdivision. Therefore, to test whether D satisfies Lemma 3.15 we need to check that;
all disks in D intersect T at least n times, all the curves in L have length at least n,
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and j j � jDj for  2L and D 2D such that  separates the two curves D\S in S .
If a disk-swap move is found, then we perform the move and then test the new system.
As jDj decreases by at least two with each move, the algorithm will terminate in finite
time, either when a suitable system is found, meaning T satisfies the n disk-condition
or when a meridian disk is found that intersects T less than n times.

Note that this algorithm can be continued until a system is found which has a “locally
minimal” intersection. If nDminfjDj WD2Dg, then n is the supremum disk-condition
satisfied by T . For if there is a meridian disk that intersects T less than n times that is
not in D , then the algorithm would not have terminated. An equivalent statement is that
D is an n–waveless system of disks. Clearly if there is an essential wave in @H �D

that intersects T less than 1
2
n times, then there is a disk-swap move to reduce jDj. In

the other direction, if D is an n–waveless system and there is a meridian disk D 2 D
such that jDj< n, then clearly D\D ¤∅. Thus D gives a boundary compressing
disk for some disk in D and thus a wave in @H �D , that intersects T at less than 1

2
n

points. Therefore, there is an alternative algorithm to test the disk-condition, giving
the corollary:

Corollary 3.20 If H is a handlebody and T � @H is a set of essential curves that
meet the n disk-condition, then there is an algorithm to find an n–waveless minimal
system of meridian disks.

3.2 Examples

To construct manifolds that meet the disk-condition, we use Dehn surgery or branched
covers to build a manifold M which contains a 2–complex that cuts M up into three
injective handlebodies.

3.2.1 Dehn filling examples The first class of examples of manifolds that meet the
disk-condition are constructed by performing Dehn surgery along suitable knots in S3 .
Let K � S3 be the .3; 3; 3/–pretzel knot and F the free spanning surface shown in
Figure 12. For A� S3 , let N.A/ be a regular neighbourhood of A. Let H3 DN.K/
and H1 D N.F /�H3 , as shown in Figure 13. Then H1 is a genus-2 handlebody,
and T D @.H1 \H3/ is two copies of K . Furthermore, H1 is homeomorphic to
an I–bundle over F and T to the boundary curves of the vertical boundary of the
I–bundle structure. Given the arcs ˇ1; ˇ2; ˇ3 in Figure 12,

S
i .ˇi � I / is a basis

for H1 . Each wave in the pairs of pants produced when @H1 is cut along the basis
intersects T at least twice. Therefore, the basis is 4–waveless, and by Lemma 3.11,
T satisfies the 4 disk-condition in H1 . Also, H2 D S3� .H1[H3/ is a genus-2
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Figure 12: .3; 3; 3/–pretzel knot
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Figure 13: Handlebodies in Dehn filling construction

handlebody, and the curves 1; 2; 3 in Figure 12 bound meridian disks of a basis D

for H2 . As T is two copies of K each wave in the two pairs of pants, produced by
cutting @H2 along the i , intersects T six times. Thus D is a 12–waveless basis
for H2 , and by Lemma 3.11, T satisfies the 12 disk-condition in H2 . Therefore, if
a Dehn surgery along K is performed such that the meridian disk of the solid torus
glued back in intersects T at least six times, a manifold that satisfies the .4; 6; 12/
disk-condition is produced. U Oertel showed in [10] that all but finitely many Dehn
surgeries on such pretzel knots produce non-Haken 3–manifolds.

This construction can be generalised to any knot K � S3 , that has a free spanning
surface F , such that K satisfies the 6 disk-condition in S3�F . Then any Dehn surgery
of type .p; q/ with jpj � 6 will produce a manifold meeting the disk-condition.

3.2.2 Branched cover examples The next method for constructing manifolds which
meet the disk-condition is taking cyclic branched covers over knots in S3 . We look
at two conditions on knots that are sufficient for the resulting manifolds to meet the
disk-condition.

Let Bi , for i D 1; 2 or 3, be 3–balls and i D f1i ; : : : ; 
k
i g, for k � 2, be a set of

properly unknotted pairwise disjoint embedded arcs in Bi . Unknotted means that there
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Figure 14: Bubble construction

is a set of pairwise disjoint embedded disks, Di D fD1i ; : : : ;D
k
i g, such that


j
i � @D

j
i and @D

j
i � 

j
i DD

j
i \ @B:

Therefore, if we take the p–fold cyclic branched cover of Bi , with i as the branch set,
then the result will be a genus-.p�1/.k�1/ handlebody Hi . Let ri W Hi ! Bi be the
branched covering map and ˛i � @Bi be a simple closed curve disjoint from i such
that Ti D r�1.˛i / satisfies the ni disk-condition in Hi . Note that ˛i can be thought
of as cutting @Di up into two hemispheres.

Now glue the three balls by homeomorphisms between their hemispheres, as shown in
Figure 14, so that the resulting manifold is S3 and the endpoints of the i match up.
Thus K D

S
i is a link and C D

S
@Bi is a 2–complex of three disks glued along a

triple curve ˛ , which is the image of the ˛i . Let M be the p–fold cyclic branched
cover of S3 with K as the branch set. Let r W M ! S3 be the branched covering map.
Then X D r�1.C / is a 2–complex that cuts M up into handlebodies and T D r�1.˛/
is a set of triple curves that satisfies the ni disk-condition in Hi . Thus if

P
1=ni �

1
2

,
then M satisfies the disk-condition.

If k D 2 or 3 and the intersection of ˛i with Di is minimal under isotopy in @Bi �i ,
then a sufficient condition for the lift of i to the p–fold cyclic branched cover of Bi to
meet the n disk-condition is that any essential wave in @Bi �Di intersects \@Bi�Di
at least 1

2
n times. Note that this is a slight variation of Lemma 3.11 and the proof is

essentially the same. Given the 2–complex shown in Figure 15, it can be seen that
any p–fold cyclic branched cover over an .a1; a2; a3/–pretzel knot in S3 such that
jai j � 2 will produce a manifold that satisfies the disk-condition.
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K
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Figure 15: .3; 3; 5/–pretzel knot

Let M be a manifold that satisfies the disk-condition and can be constructed from
the gluing of three genus-2 injective handlebodies. Then a simple Euler characteristic
argument shows that all the faces of the 2–complex X must either be once punctured
tori or twice punctured disks. If all the faces are once punctured tori, then the set of
triple curves, T , is a single curve. Thus a free involution of T can be canonically
extended, up to isotopy, to an involution on each of the faces of X with three fixed
points. Using a waveless basis for each handlebody, the involution on X can be
extended to the whole of M . This means that any such manifold has a Z2 symmetry
and is the 2–fold cyclic branched cover of S3 over some knot or link. In fact, the
quotient of M by the involution is three balls glued together along hemispheres as
in Figure 14. If all the faces of X are pairs of pants, then there is no corresponding
involution of M .

The second construction involves the 3–fold cyclic branched cover of a knot that meets
essentially the same condition as in the Dehn filling construction, so that the lift of
the Seifert surface gives the 2–complex X . Let K be a knot in S3 and F be a free
Seifert surface for K . This means that S3�F is a handlebody. We construct the
3–fold cyclic branched cover over the knot K in S3 given by D Rolfsen in [11]. Let
N.K/ be a regular neighbourhood of K , ˛ � @N.K/ the meridian curve of N.K/
and N D S3�N.K/. Let zN be the 3–fold cyclic cover of N and pW zN ! N the
covering projection. That is, let G � �1.N / be the kernel of the homomorphism
mapping �1.N / onto Z3 , where the meridian of N.K/ is sent to a generator of Z3 .
Then zN is the cover corresponding to G . So zN has a single torus boundary and
z̨ D p�1.˛/ is a single curve that covers ˛ three times. Therefore, zF D p�1.F / is
a set of three properly embedded spanning surfaces in zN . As F is free, zN� zF is
three handlebodies. Let M be the 3–fold cyclic branched cover of S3 with K as the
branch set. Then M can be constructed by gluing a solid torus T to @ zN so that its
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meridian matches z̨ . Next extend each surface in zF along an annulus to the spine T
of T to produce a 2–complex X . Thus X is a 2–complex that cuts M into three
handlebodies. Thus for M to meet the disk-condition it is sufficient for K to meet the
6 disk-condition in S3�F . An obvious example of such a knot is the .3; 3; 3/ pretzel
knot in Figure 12.

The 3–fold cyclic branched cover of the .3; 3; 5/ pretzel knot K gives an example of
a manifold with two distinct splitting 2–complexes that meet the disk-condition. Let
M be the 3–fold cyclic branched cover of S3 with K as the branch set. Let X be the
2–complex produced by lifting the Seifert surface F to M and let X 0 be the 2–complex
produced by lifting the “bubble” 2–complex shown in Figure 15. X and X 0 are distinct
2–complexes meeting the disk-condition. That is there is no homeomorphism of M
that sends X to X 0 , for if there was, M would have a Z3�Z3 symmetry and thus K
would have a Z3 symmetry, which is clearly not the case. Note that if each twisted
band in K has the same number of crossings, for example the .3; 3; 3/ pretzel knot,
then the 3–fold cyclic branched cover does have a Z3 �Z3 symmetry.

4 Characteristic variety

In this section we prove the torus theorem and construct the characteristic variety
in 3–manifolds that meet the disk-condition. The first step is to look at how, in the
component handlebodies, properly embedded essential annuli disjoint from the triple
curves intersect and how meridian disks that intersect T exactly ni times intersect.
This allows us to build a picture of the characteristic variety in each of the handlebodies,
which we then use to construct the characteristic variety of the manifold.

4.1 Handlebodies, embedded annuli and meridian disks

Throughout this section, let H be a handlebody and T be a set of disjoint essential
simple closed curves in @H that meet the n disk-condition in H . We will assume that
all intersections between surfaces are transverse. Before we look at the components of
the characteristic variety in each handlebody, we need to look at some properties of
embedded essential annuli that are disjoint from T .

4.2 Essential annuli

In this section we investigate intersections between embedded essential proper annuli.

Definition 4.1 An intersection curve between two annuli is said to be vertical if it
is a properly embedded arc which is not boundary parallel in either annulus. The
intersection curve is horizontal if it is an essential simple closed curve in both annuli.
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Figure 16: Intersecting embedded annuli: horizontal (left) and vertical (right)

If there is a proper isotopy in H � T of two annuli which removes their intersections,
then the annuli will be said to have trivial intersection and if the intersection cannot
be removed, the annuli have nontrivial intersection. This means that if two embedded
annuli have nontrivial intersection they cannot be isotopically parallel. The disk-
condition restricts how properly embedded annuli can intersect.

Lemma 4.2 Let A1 and A2 be two essential properly embedded annuli in H � T .
Then there is a proper isotopy of them in H � T such that all their intersections are
either vertical or horizontal.

Remark 4.3 This means that nontrivial intersections between embedded annuli must
either be all horizontal or all vertical.

Proof This uses standard innermost curve arguments and the following observations.
Let A1 and A2 be essential properly embedded annuli in H �T and let � DA1\A2 .
First note that as the Ai are embedded they cannot have both horizontal and vertical
intersections. As H is irreducible there is an isotopy of A1 to remove components of �
that are simple closed curves and inessential in both Ai . Also, by irreducibility of H
and the disk-condition, there is an isotopy of A1 to remove components of � which are
properly embedded arcs and boundary parallel in both Ai . Let  be a component of �
which is a simple closed curve and is essential in A1 and not essential in A2 . Then the
disk in A2 bounded by  implies that A1 is not �1–injective, which is a contradiction.
Now let  be a component of � which is a properly embedded arc which has both
ends in the same boundary curve of A1 and runs between the boundary curves of A2 .
Then the disk bounded by  in A1 is a boundary compression disk for A2 and the disk
produced by compressing A2 is disjoint from T , thus implying that A2 is boundary
parallel in H � T .

Lemma 4.4 Let H be a handlebody and T a set of curves in @H that meet the n disk-
condition. Assume a properly embedded essential annulus in H�T intersects two other
properly embedded essential annuli in H � T , one vertically and the other horizontally.
Then if there is a nontrivial horizontal intersection, the vertical intersections can be
removed by an isotopy.
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Figure 17: Curves of intersection in A2

Remark 4.5 This indicates there are three types of essential embedded annuli in
H � T : those that have nontrivial horizontal intersections with other annuli, those that
have nontrivial vertical intersections with other annuli and those that have no nontrivial
intersections with other annuli. Later in this section, we will see that these types of
annuli correspond to the flavours of characteristic variety in H � T .

We could follow a least-area argument using a suitable Riemannian metric on the
handlebody but use instead a more elementary direct cut-and-paste approach.

Proof Let A1 , A2 be two properly embedded essential annuli in H � T that have
nontrivial horizontal intersection. Let A3 be a third embedded essential annulus in
H � T that intersects A1 vertically. If the vertical intersection between A1 and A3 is
nonempty, then .A1 \A2/\A3 6D ∅ and thus the intersection between A2 and A3
is nonempty. By Lemma 4.2, we can isotope A3 so that its intersection with A2 is
either vertical or horizontal and its intersection with A1 is vertical. We will assume
that the vertical intersection between A1 and A3 is still nonempty. If the intersection
between A2 and A3 is horizontal, then @A3 is disjoint from @A2 , as both A2\A1 and
A2\A3 are essential simple closed curves in A2 . There is an innermost bigon on A2
bounded by one arc from each of A2 \A1 and A2 \A3 with common endpoints;
see Figure 17. This is clear because each arc of A1 \ A3 has to have at least one
corresponding vertex of .A2\A1/\ .A2\A3/. If we assume there is a single vertical
arc of A1 \A3 which contains both vertices of the bigon, then by the irreducibility
of H there is an isotopy of A2 over a ball in H bounded by the bigon and disks in A1
and A3 to remove the bigon. It is then straightforward to see that A2 can be isotoped
so for any bigon bounded by an arc of A2\A1 and A2\A3 there are two vertical arcs
of intersection of A1\A3 which contain the two vertices of this bigon; see Figure 18.
We can then isotope A3 across this bigon to convert these two vertical arcs into two
boundary parallel arcs of A1\A3 which can be removed by a further isotopy. In this
way, eventually all the vertical arcs of A1\A3 can be removed. Thus we can assume
that A3 intersects both A1 and A2 vertically.
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Figure 18: Curves of intersection in A3
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Figure 19: Component of the pullback graph �1[�2

Let �i D A3\Ai for i 6D 3. Then �i is a set of properly embedded pairwise disjoint
spanning arcs in A3 , where each arc from �1 intersects at least one arc from �2 . The
faces produced when A3 is cut up along �1 [ �2 are all disks. As each connected
component of �1[�2 contains at least two arcs, each component will have a boundary
3–gon, D , as shown in Figure 19, such that subarcs of @A3 , �1 and �2 make up its
three edges. Then the disk D gives an isotopy of A1 that converts the corresponding
essential closed curve of A1\A2 into a boundary parallel arc. Thus there is a further
isotopy to remove the intersection altogether. This process can be repeated to remove
all the intersections of A1\A2 , giving a contradiction.

Therefore, if a proper essential annulus in H � T has a nontrivial horizontal/vertical
intersection with one annulus, then we can arrange that all its nontrivial intersections
with all other essential annuli must be horizontal/vertical.

4.3 Meridian disks

Next we want to examine intersecting meridian disks. In particular, if T satisfies the n
disk-condition in H , then there may be meridian disks that intersect T exactly n times.
These disks are important when we are considering the disk flavour of characteristic
variety.

Definition 4.6 If F is an n–gon and  is a properly embedded arc in F such that
if F is cut along  , the result is two disks that have 1

2
n intersections with T , then 

is said to be a bisecting arc of F .
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Figure 20: Two trivially intersecting 6–gons

Lemma 4.7 Let H be a handlebody and T a set of curves in @H that satisfies the n
disk-condition. If D1 and D2 are meridian disks that have n intersections with T , then
there is an isotopy of the disks such that � DD1\D2 is a set of properly embedded
disjoint bisecting arcs in both Di or the intersection � can be removed.

Proof This proof uses the usual innermost curve arguments and the following ob-
servations, to construct an isotopy to remove arcs of � that are not bisecting in both
disks. By Lemma 3.6, we can assume that all components of � are properly embedded
arcs. If such an arc is not bisecting in D1 , it is easy to see there is an arc  of �
which bounds an innermost subdisk D in D1 which intersects T less than 1

2
n times.

Then one of the disks D0 produced by surgering D2 along D must intersect T in less
than n points, as shown in Figure 20, and thus is boundary parallel in H . So there is
an isotopy of D1 to remove  .

Lemma 4.8 Let H be a handlebody, T a set of curves in @H that meet the n disk-
condition and D1 , D2 and D3 a set of meridian disks that all have n intersections
with T . Then there is an isotopy of the Di such that

T
Di D∅.

Proof By the previous lemma, we can isotope D1 and D2 so that their intersection is
a set of parallel arcs in both disks. Assume that D1 and D2 have been isotoped so that
their intersection has the least possible number of components and that D1\D2 6D∅.
Let A be a regular neighbourhood of D1[D2 and B be the frontier of A in H . As
no annulus component of B intersects T , B consists of meridian disks that intersect T
exactly n times and essential annuli whose boundary compressing disks intersect T at
least 1

2
n times.

Let D be a disk and f W D!H be an embedding such that f .D/DD3 . Then f can
be isotoped so that � D f �1.B/ is a set of properly embedded pairwise disjoint curves.
As usual there is an isotopy of f to remove components of � that are simple closed
curves. If D3 intersects an annulus of B , then from above, either the intersections are
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parallel arcs or there is an isotopy of f to remove them. Similarly from Lemma 4.7
if D3 intersects a disk of B , then either the intersections are bisecting parallel arcs
or there is an isotopy of f to remove them. Therefore, there is an isotopy of f such
that � is a set of parallel bisecting arcs. Thus f �1.A/ is a set of 4–gons. Let D0 be a
4–gon in f �1.A/. Then using the same arguments as in the final step of the proof of
Lemma 4.4, there is an isotopy of f such that D0\f �1.D2[D1/ is a set of parallel
bisecting arcs. Moreover f .D0/\D1 \D2 D ∅. This process can be repeated for
each component of f �1.A/ and thus D1\D2\D3 D∅.

4.4 Flavours of characteristic variety in the handlebodies

4.4.1 I–bundle regions Let H be a handlebody and T a set of essential simple
closed curves in @H , that meet the n disk-condition in H . Let N be a maximal, up to
isotopy, I–bundle in H disjoint from T , with its horizontal boundaries embedded in
@H �T , each component of N has nontrivial fundamental group and the induced map
on the fundamental group is injective. Thus N is an I–bundle with a base space which
is an embedded surface in H . Let S be a component of this embedded surface. If S
is orientable, then the corresponding component of N has a product structure and its
horizontal surface consists of two copies of S embedded in @H�T . Alternatively, if S
is nonorientable, then the corresponding component of N has a horizontal boundary
which is a double cover of S embedded in @H �T . In both cases the vertical boundary
is a set of essential properly embedded annuli. From this point on these surfaces will be
called frontier annuli. Also note that none of the base surfaces can be disks. This means
that N is a set of embedded handlebodies in H with genus � 1. N is not unique,
for if H contains two embedded annuli that intersect horizontally, in a nontrivial way,
then N can contain the regular neighbourhood of one or the other annulus but not both.

Definition 4.9 Let the I–bundle region, NI , be the set of all components Ni from N

which have base spaces that are not annuli or Möbius bands.

Later the I–bundle region is shown to be unique up to isotopy.

Lemma 4.10 If A is a properly embedded essential annulus in H � T that has a
nontrivial vertical intersection with another properly embedded essential annulus, then
it is isotopic into NI .

Proof Let the map fi W A!H �T , for i D 1 or 2, be an essential proper embedding
of an annulus A such that f1.A/ D A1 and f2.A/ D A2 have nontrivial vertical
intersections. Let B be the set of frontier annuli of NI . If A1 \NI ¤ ∅, then by
Lemmas 4.2 and 4.4 we know that there is an isotopy of f1 such that the intersection
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between A1 and the annuli in B is vertical. Thus the pullback �1 D f �11 .B/ is a set
of properly embedded nonboundary parallel arcs in A and, as B is separating in H ,
there must be an even number of them. Thus �1 cuts A up into quadrilaterals and every
alternate one is mapped by f1 into .H �NI /. Let A0 �A be a quadrilateral such that
f .A0/� .H �NI /. Also, let N.f1.A0// be the regular neighbourhood of f1.A0/ in
.H �NI / disjoint from T . Note that N.f1.A0// can be fibred as an I–bundle over
a quadrilateral. Then there must be an isotopy of f1 to remove the curves �1 \A0

otherwise N.f1.A0//[NI would be larger than NI , contradicting maximality. We
can repeat this process until �1 D∅, thus A1\B D∅. This process can be repeated
for A2 so that it is disjoint from B . If A1 \A2 is disjoint from NI and the annuli
have been isotoped so that their intersection is a minimal set of essential arcs, then
N.A1[A2/ can be fibred as an I–bundle and added to NI , contradicting maximality.
Thus A1[A2 �NI .

Note that in distinction to the above lemma, if an annulus A meets another annulus
horizontally, it may not be possible to isotope A into NI .

Now let MH be a regular finite-sheeted cover of H and MT be the lift of T . Thus MH
also is a handlebody with MT satisfying the n disk-condition. Now let NI � MH be the
I–bundle region, as described above. Also, let G be the group of covering translations
of MH , so MH=G DH . Let Ni , for 1� i � n, be the connected subhandlebodies of NI
and Si be the base-surface corresponding to Ni .

Lemma 4.11 If Ni is a component of NI , then g.Ni / is isotopic to a component
of NI for any g 2G .

Proof Let A be the set of frontier annuli of g.Ni / and B the set of frontier annuli
of NI . If g.Ni / and NI have a nontrivial intersection, then by Lemma 4.2 there is
an isotopy of g such that if any annuli in A and any annuli in B intersect, then the
intersection curves are all either vertical or horizontal. Now isotope g to remove all
trivial intersections between annuli in A and B .

Let B 2B be an annulus such that it intersects at least one annulus in A horizontally.
By Lemma 4.4, it can only intersect the other annuli in A horizontally. Thus B\g.Ni /
is a set of annuli properly embedded in g.Ni /. Let B 0 � B be one such annulus.

Isotope B 0 so that it is transverse to the I–bundle structure. As intersections of B with
annuli in A are minimal, B 0 either projects one-to-one onto the base space or double
covers it. This depends on whether the two boundary curves of B 0 are in different
annuli in A or in the same annulus, respectively. Therefore, the base space of g.Ni /
and thus Ni is either an annulus or a Möbius band, giving us a contradiction. This
means that all horizontal intersections between annuli in A and B can be removed.
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Therefore, all intersections between annuli in A and B that are nontrivial are vertical.
But by Lemma 4.10 we can isotope all such annuli in A into NI . Therefore, there is
an isotopy of g such that g.Ni /\NI ¤∅ and A\B D∅. Thus we know that we
can isotope g so that g.Ni / lies inside NI , otherwise g.Ni /[NI would be a larger
I–bundle than NI , contradicting maximality.

As g.Ni / is connected we know that it lies in a single component, Nk , of NI . If
g.Ni / is not isotopic to Nk , then g�1.Nk �g.Ni //[NI is a larger I–bundle region,
contradicting maximality.

From the previous lemma we get the following corollary.

Corollary 4.12 The regions NI and g.NI / are isotopic for any g 2G .

This corollary can be used to show that NI can be isotoped so that it is preserved by G .
Put a Riemannian metric on H , lift it to MH and then isotope NI so that the frontier
annuli of the NI are least area. Let g 2G and A be a frontier annulus of NI . By the
arguments used by Freedman, Hass and Scott in [3], g.A/ is either a frontier annulus
of NI or disjoint from all frontier annuli of NI . Let N 0I and N 00I be components
of NI such that g.N 0I / is isotopic to N 00I . If N 0I 6D N

00
I , then replace N 00I by g.N 0I /.

Now assume that N 0I DN
00
I . We need to look at what happens to the frontier annuli

under g . Let A and A0 be frontier annuli of N 0I such that g.A/ is isotopic to A0 .
If A 6D A0 , then replace A0 by g.A/. Now assume that AD A0 and g.A/ 6D A. As
each element of G is a periodic homeomorphism, g.N 0I / 6� int.N 0I /. Then by this
observation and maximality of NI , either g.N 0I /\N

0
I is empty or it is isotopic to N 0I .

Another way of saying this is that g.N 0I /�N
0
I and N 0I �g.N

0
I / are sets of thickened

annuli. We can then assume that g.A/ is disjoint from N 0I . Let Ui , for i 2N , be the
thickened annulus component of gi .N 0I /�g

i�1.N 0I /, where g0 is the identity. As MH
is a finite-sheeted normal cover, there is some m 2 N such that gm is the identity.
Therefore, U1 [ � � � [ Um is an annulus bundle over S1 properly embedded in MH ,
which cannot happen, thus g.A/D A. This gives us the following corollary.

Corollary 4.13 There is an isotopy of NI � MH such that it is preserved by all the
covering transformations.

Lemma 4.10 implies that if H contains two embedded annuli that have nontrivial
vertical intersection, then NI is not empty. Note this is a sufficient condition not a
necessary one. For example, if NI is an I–bundle over a twice punctured disk, then
any two embedded annuli contained in NI are parallel to frontier annuli and thus their
intersections can be removed isotopically.
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Figure 21: Extending boundary compression disk through an I–bundle component

Lemma 4.14 NI is unique up to ambient isotopy of H .

We will not give the proof for this lemma as the method is the same as Lemma 4.11,
the idea being that if we assume that we have two I–bundle regions NI and N 0I that
are not isotopic, then we get a contradiction to their maximality. Another property
of NI we need later is this lemma:

Lemma 4.15 Let H be a handlebody, T a set of pairwise disjoint essential simple
closed curves in @H that meet the n disk-condition and NI the I–bundle region in H .
Then if A is a frontier annulus of NI and D is a boundary compression disk for A,
then jDj � 1

2
n.

Proof Assume that NI has a frontier annulus A with a boundary compressing disk D
such that jDj < 1

2
n. Also, let Ni be the component of NI that has A as a frontier

annulus. If we compress A along D to get a disk E , then jEj<n. Therefore, A must
be boundary parallel, meaning there is a proper isotopy of A into @H . Note that this
does not mean there is a proper isotopy of A into @H � T . First assume that Ni has
more than one frontier annulus. Let A0 be another frontier annulus of Ni . As Ni is an
I–bundle there is a 4–gon B , properly embedded in Ni , such that B \ADD \A
and A0\B is a properly embedded arc in A0 that is not boundary parallel, as shown
in Figure 21, for suitable choice of D . Let D0 DD[B . Then jD0j< 1

2
n, and if we

compress A0 along D0 , we get a disk E 0 with jE 0j < n. Therefore, A0 is boundary
parallel through a region containing A. So A and A0 must be parallel and Ni is the
regular neighbourhood of a properly embedded annulus and thus can not be contained
in NI . If Ni has a single frontier annulus A, then similarly by the I–bundle structure,
there is a properly embedded 4–gon B � NI such that it is not boundary parallel
and A\ B is two arcs that are not parallel into @A. Then there are two boundary
compression disks for A that can be glued to B along A\B . This produces a meridian
disk that intersects T less than n times, contradicting the disk-condition.
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Figure 22: An example of an Aq

4.4.2 Tree regions Now let N D fNig be a maximal set, up to isotopy, of fibred
solid tori embedded in H � T such that Ni \Nj D ∅ for i ¤ j and @H \Ni is a
nonempty set of annuli that are �1–injective in both @Ni and @H �T , and the frontier
of Ni in H is a nonempty set of annuli essential in H � T for each i . Then N is a
maximal tree region of H �T . The reason for this name will become clearer when we
describe it further. Note that by Haken–Kneser finiteness arguments, we can see that
N has a finite number of components.

Definition 4.16 Let a simple q–tree be a tree that is the cone on q� 2 points. A vertex
of valency one is called an end vertex.

Let Q be a simple q–tree. Embed Q in R2 � R3 . Let PQ be a 2q polygon
embedded in R2 such that every alternate edge intersects Q at an end vertex. Colour
the edges of PQ containing an end vertex of Q thick and all the others thin. Then let
Aq D P

Q � Œ0; 1� and at D PQ � ftg, for t D 0 or 1. Let p̂ be a homeomorphism
between a0 and a1 that twists by 2�=p , such that it maps thick edges to thick edges
and thin to thin. This means that p D q=n for n 2 Z. Let A.p;q/ be Aq with the
faces a0 and a1 glued according to p̂ . Therefore, A.p;q/ is a solid torus fibred by S1

with an exceptional fibre of order .p; q/. For each Ni 2N , there is a unique .pi ; qi /
such that there is a fibre-preserving homeomorphism from A.pi ;qi / to Ni where the
fibring agrees with the boundary curves of the frontier annuli.

Let A1 and A2 be two properly embedded essential annuli in H � T that intersect
horizontally and N.A1[A2/ be a regular neighbourhood disjoint from T . Then the
frontier of N.A1 [A2/ in H is a set of properly embedded annuli and tori. Let T
be such a torus. The induced map on �1.T / has nontrivial image and �1.H/ does
not contain any free abelian subgroups of rank 2. Therefore, T bounds a solid torus
whose intersection with N.A1[A2/ is T . Glue solid tori to each torus in the frontier
of N.A1 [A2/ in H to produce a submanifold P . Now the frontier of P in H is
a set of properly embedded essential annuli and P is a solid torus. Note there is a
homeomorphism from P to some A.p;q/ that sends the boundary curves of P \ @H
to fibres of A.p;q/ .

Algebraic & Geometric Topology, Volume 17 (2017)



3–manifolds built from injective handlebodies 3243

Definition 4.17 Let the tree region NT be the union of all components Ni 2N such
that pi > 2.

As with the I–bundle region, we are removing the components of N that are home-
omorphic to A.1;2/ or A.2;2/ , that is, regular neighbourhoods of properly embedded
annuli or Möbius bands, to get NT . This is because if there are two annuli in H � T
that have a nontrivial vertical intersection, then a maximal tree region can contain the
regular neighbourhood of only one of the annuli. Therefore, H �T may have a number
of maximal tree regions. Later it is shown that the tree region is unique up to isotopy.

Lemma 4.18 If A is a properly embedded annulus in H � T that has at least one
nontrivial horizontal intersection with another properly embedded annulus in H � T ,
then there is an isotopy of A into NT .

This proof is similar to Lemma 4.10.

Proof Let the map fi W A! H , for i D 1 or 2, be an essential proper embedding
of an annulus A such that fi .A/D Ai is disjoint from T for each i and A1 and A2
have nontrivial horizontal intersections. Let B be the set of frontier annuli of NT . If
A1\NT ¤∅, then by Lemmas 4.2 and 4.4, we know that there is an isotopy of f1
such that the intersection curves between A1 and the annuli in B are horizontal. Thus
the pullback �1 D f �11 .B/ is a set of essential simple closed curves in A. Therefore,
�1 cuts A up into essential annuli. Let A0 � A be one of these annuli such that
f1.A

0/�H �NT and let N.f1.A0// be a regular neighbourhood of f .A0/ disjoint
from T . Then N.f1.A0// can be fibred as an A.1;2/ fibred torus. Thus there must be
an isotopy of f1 to remove the curves A0\�1 (there may be just one if @A\@A0¤∅)
otherwise NT [N.f1.A0// would be larger than NT , contradicting maximality. So
by repeating this process, there is an isotopy of f1 such that A1\B D∅. This same
process produces an isotopy of f2 so that A2\BD∅. If A1[A2 is disjoint from NT ,
then as above, the torus boundaries of N.A1[A2/ can be filled in with solid tori so
the resulting manifold P is a solid torus. Then NT [P will be a larger tree region
contradicting maximality, thus A1[A2 �NT .

Once again let MH be a finite-sheeted normal cover of H , MT the lift of T and G the
group of covering translations of MH such that MH=G DH . Also, let NT be the tree
region in MH . We then get the following lemma.

Lemma 4.19 Let Ni be a component of NT . For any g 2G , we have that g.Ni / is
isotopic to an element of NT .

Proof Assume that Ni is a component of NT and, for some g 2 G , that g.Ni / is
not isotopic to an element of NT . Let A be the set of frontier annuli of g.Ni / and B
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be the set of frontier annuli of NT . By Lemma 4.2, we know that there is an isotopy
of g such that any annuli from A and B intersect vertically or horizontally. Also, all
trivial intersections are then removed.

Let B be an annulus in B that intersects some annuli from A vertically. Then
B\g.Ni / is a set of properly embedded squares in g.Ni /. Let B 0 be one such square.
As the number of intersections between B and A has been minimized @B 0 is essential
in @g.Ni /. Therefore, g.Ni /, and thus Ni , is the regular neighbourhood of an annulus
or Möbius band. This implies that pi D 2, contradicting that Ni is a component of NT .
Then any intersections between annuli from A and B must be nontrivial and horizontal.
By Lemma 4.18, we can isotope all such annuli from A into NT .

We have now isotoped g so that A\B D ∅. We can thus isotope g so that g.Ni /
lies inside a single component of NT , otherwise g.Ni /[NT would be a larger tree
region, contradicting maximality of NT . Let g.Ni / lie in Nk 2NT . If g.Ni / is not
isotopic to Nk , then g�1.Nk �g.Ni //[NT is a larger tree region.

From the previous lemma we get the following corollary.

Corollary 4.20 For any g 2G , we have that g.NT / is isotopic to NT .

From the above corollary and using the same least area arguments as we did with
I–bundle regions we get the following corollary.

Corollary 4.21 There is an isotopy of NT in MH that is preserved by the covering
transformations.

This means that NT will project down to a nontrivial tree region in H . If H contains
two embedded annuli that have a nontrivial horizontal intersection, then H has a
nonempty tree region. Note this is a sufficient condition but not a necessary one.

Lemma 4.22 NT is unique up to ambient isotopy of H .

We will not give the proof for this lemma as the argument is the same as Lemma 4.11.
The idea is that if we assume that there are two tree regions NT and N 0T that are not
isotopic, then we get a contradiction to their maximality.

4.4.3 Annulus regions It is clear from the definitions of NI and NT that:

Lemma 4.23 If H is a handlebody and T is a set of curves in @H that meet the n
disk-condition, then there is an isotopy of NI and NT such that NI \NT D∅.
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Let AI be the set of I–bundles in a maximal I–bundle region but not in NI . That
is, they have base spaces that are either annuli or Möbius bands. Let AT be the set of
fibred solid tori that are in a maximal tree region but not in NT . That is, they are all the
components of the maximal tree region whose associated trees have two end vertices.
Let NA be those components of AT which are ambient isotopic to components of AI .
Components of NA are regular neighbourhoods of properly embedded annuli or Möbius
bands and they can be fibred by intervals or circles. The components of AI �NA
(AT �NA ) are the components of the maximal I–bundle (maximal tree region) that
cause the maximal I–bundle (maximal tree region) to be not unique and, in fact, the
components of AI �NA (AT �NA ) can be isotoped into NT (NI ).

Clearly by the definition, NA can be isotoped to be disjoint from NI and NT . Therefore,
it is contained in the set of handlebodies H 0 D H � .NI [NT /. Any annulus that
can be made to intersect another nonparallel annulus either vertically or horizontally
is isotopic into NI [NT . Thus any nonparallel annuli in H 0 cannot be isotoped to
intersect either vertically or horizontally. Therefore, by the maximality of the maximal
I–bundle region and the maximal tree region we know that NA is isotopic to the regular
neighbourhood of the maximal set of disjoint and nonparallel properly embedded annuli
in H 0 . Thus we get the following lemma.

Lemma 4.24 NA is unique up to ambient isotopy of H and can be isotoped to be
disjoint from NI [NT .

Definition 4.25 If H is a handlebody and T is a set of essential disjoint simple curves
in its boundary that satisfies the n disk-condition, then for the pair fH; T g, let the maxi-
mal annulus region be N DNI[NT[NA , where NI , NT and NA are as defined above.

4.4.4 Disk regions In this section, we want to define the building blocks for the
flavour of characteristic variety that intersects the triple curves. In each handlebody Hi ,
these blocks look like the regular neighbourhood of meridian disks that intersect the
triple curves exactly ni times, where

P
1=ni D

1
2

. Hence we will refer to them as
disk regions. Let H be a handlebody and T a set of essential curves in its boundary
that meet the n disk-condition in H . Let D be a set made up of a single representative
from each isotopy class of meridian disks that intersect T exactly n times. Let S be
the resulting punctured sphere when @H is cut along a waveless basis for T . Then
� D T \S is a set of pairwise disjoint properly embedded arcs that cut S into n–gons.
Therefore, by normal curve theory up to isotopy there is a finite number of simple
closed curves in the interior of S that have n intersections with � and waves that
have 1

2
n intersections with � . Thus D contains a finite number of disks.
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Figure 23: A component of the disk region

Assume that the disks in D have been isotoped so that the intersection between any pair
of disks is a set of bisecting arcs and the intersection between any three disks is empty.
Let N.D/ be the regular neighbourhood of D . Then the frontier of N.D/ in H is a set
of properly embedded disks that have n intersections with T and annuli that are disjoint
from T . For any of the boundary components that are either nonmeridian disks or
nonessential annuli, add the appropriate 3–cell to N.D/. The resulting submanifold P
is the disk region.

By Lemma 4.8, we can isotope the disks in D so that the intersection between any
pair of disks is a set of parallel bisecting arcs and the intersection between any three is
empty. Therefore, for any disk Di 2D , the intersection �i DDi \ .DnDi / is a set
of parallel bisecting arcs.

Then there are two innermost bisecting arcs in Di . Therefore, when Di is cut along the
innermost bisecting arcs the result is three disks: two bigons and a third quadrilateral.
Let D0i be the third disk. Let D0 be the set of disks produced when this is done to all
disks in D . Then

S
D0i is an I–bundle over a graph. This fibring can then be extended

to the “core” of each component of P . The unfibred parts of each component are the
regular neighbourhoods of disks that have 1

2
n intersections with T and which boundary

compress the frontier annuli of the core. We will call these fingers; see Figure 23.
Note that each component has at least one finger. Unlike the I–bundle regions defined
earlier, the core may have a disk as its base space. The fibring of each component is
unique, up to isotopy, except if the component is the regular neighbourhood of a single
meridian disk. In the latter case we do not fibre the core until later.

Lemma 4.26 All possibly singular meridian disks which have n intersections with T
can be homotoped into P .
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Proof Let D be a disk and f W D!H be a possibly singular map such that ADf .D/
is a meridian disk, ie has essential boundary. Let P be the maximal disk region, as
defined above and f �1.T / be n vertices in @D . Then B , the frontier of P in H , is
a set of meridian disks and annuli essential in H � T . Then � D f �1.B/ is a set of
properly embedded arcs and simple closed curves in D . As H is irreducible there
is a homotopy of f to remove all simple closed curves from � . Thus � is a set of
properly embedded disjoint simple arcs in D .

By maximality of P , any boundary compressing disks of a component of B , as
described in Section 3.1, must intersect T more than 1

2
n times. There must be an

innermost disk D1 � D such that f .D1/ intersects T at most 1
2
n times. Thus by

Dehn’s lemma and the loop theorem — see Lemma 3.1 — we can remove any arc
from � which is in the image of @D1 . We can repeat this process until A is disjoint
from B . Thus either A is contained in P or disjoint from P . If it is disjoint, then
there must be a homotopy of f such that A� P . Otherwise, using Dehn’s lemma and
the loop theorem, we get a contradiction to the maximality of P .

4.5 Handlebodies and singular annuli

In Jaco and Shalen’s [7] and K Johannson’s [8] proofs of the torus theorem, an essential
step is the annulus theorem. In fact, the torus theorem is a consequence of the annulus
theorem. Similarly, a lemma that is a slight variation of the annulus theorem is required
here. Our annulus theorem is simpler as it is restricted to handlebodies. Namely,
suppose a handlebody H has a set of curves in its boundary, T , that satisfies the n
disk-condition. Assume also there is a proper essential (possibly singular) map f
of an annulus into H � T . Then f is properly homotopic to an essential (possibly
singular) map of an annulus into the maximal annulus region. There are two main steps
to prove this lemma. The first is to show that if there is a proper singular essential map
of an annulus into H � T , then there is a similar embedded one. Next we show any
proper essential embedding of an annulus in H � T is properly isotopic into one of its
maximal annulus regions.

Lemma 4.27 Let H be a handlebody and T a set of simple closed curves in @H
that meet the n disk-condition. Let A be an annulus and f W A! H � T a proper
immersion. If f is not properly homotopic into @H � T and the curves f .@A/ are
essential in @H , then there is a properly embedded essential annulus in @H � T .

Remark 4.28 The proof for this lemma uses a simplified version of the covering space
argument used by Freedman, Hass and Scott [3]. The argument is easier, since we are
operating in a handlebody.
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Proof The first step is to find another f such that all the lifts of f .A/ in the universal
cover are embedded. We then use subgroup separability to produce a finite-sheeted
cover of H which contains a lift of f .A/ that is embedded and does not intersect any
of its translates. From this cover we find a regular cover, in which all the lifts of f .A/
are embedded. This then implies that the finite regular cover has a nontrivial annulus
region and thus so does the original handlebody.

We will assume that the map f is transverse at all times. Let G D �1.H/, f� be the
induced map on �1.A/ and f�.�1.A//D B �G . Therefore, B is a cyclic subgroup
generated by some z 2G .

Let xH be the cover of H with the projection xpW xH !H such that xp�.�1. xH//D B .
This means there is a lift, xf of f , which is an immersed annulus such that �1. xH/Š
xf��1.A/. Let xT D xp�1.T /. As f is not properly homotopic into @H � T , we have

that xf is not properly homotopic into @ xH � xT .

We now want to find an embedded annulus in xH which is �1–injective and not properly
homotopic into @ xH � xT . Let N. xf .A// be a regular neighbourhood of xf .A/ such that
N. xf .A//\ xT D∅. Then the frontier of N. xf .A// in xH is a set of embedded surfaces.
As �1. xA/Š �1. xH/, we can find two of these embedded surfaces in xH both of which
have (at least) two essential boundary curves in xH � xT . (Note that xH is a missing
boundary solid torus, ie has interior which is an open solid torus and compactifies to a
solid torus.) Let one of these surfaces be xA0 . The boundary curves of xf .A/ are not
homotopic in @ xH � xT , that is, xf is not homotopic into @ xH � xT ; thus the two essential
boundary curves of xA0 can be chosen to be not homotopic in @ xH � xT .

By Dehn’s lemma and the loop theorem, since �1. xH/ is infinite cyclic, we know that
any handles in xA0 can be compressed until xA0 is an essential embedded annulus in
x@H � xT . Now let A0 D xp. xA0/. We can assume that xp restricted to xA0 is transverse.

Let xAi , for 1 � i � n, be the lifts of A0 in xH that intersect xA0 and x̨i D xA0 \ xAi .
Thus each x̨i is a set of singular curves in xA0 .

Let zH be the universal cover of H and therefore also the universal cover of xH with
the projections pW zH!H and zpW zH! xH , such that pD xp zp . As H is a handlebody,
zH is a missing boundary ball, that is, a ball with a compact set removed from its

boundary. As A0 is �1–injective in H , each pullback to zH is a universal cover of A0 ,
an infinite strip. As xA0 is embedded in xH , each pullback to zH is embedded. Then
by applying the covering transformation group to zH we know that all the lifts of A0

in zH are infinite strips.

Let zA be a lift of xA0 in zH . Then any lift of A0 in zH , that intersects zA must be a lift
of one of the xAi in xH . Let zAi be some lift of xAi that intersects zA and z̨i D zA\ zAi .
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Note this means that zp.z̨i /D x̨i . Also, let zG be the group of deck transformations
on zH and zB � zG the stabilizer of zA. Therefore, zG ŠG and zB is the cyclic subgroup
of translations along zA. Also, let gi 2 zG where gi . zA/D zAi . This means that gi … zB
and that zBi D gi zB is the set of transformations taking zA to zAi . So for all b 2 zB ,
zp.b.z̨i //D x̨i .

By Hall [4], we know there is a finite index subgroup zLi � zG such that zB � zLi but
gi … zLi . This property is called subgroup separability. For all b 2 zB , we have that
bgi zA is a translate that intersects zA and bgi … zLi . This means for any l 2 zLi that
l. zA/¤ b. zAi /D bgi . zA/ for all b 2 zB . In other words none of the deck transformations
in zLi map zA to the lift of xAi that intersects zA. Let yHi D zH=zLi be the cover of H
with the fundamental group corresponding to zLi such that ypi W zH ! yHi . Therefore,
ypi . zA/ is an embedded annulus in yHi . Also, ypi .b zAi /\ ypi . zA/ D ∅ for any b 2 B ,
and as zLi has finite index in G , we have that zHi is a finite-sheeted cover of H .

Therefore, L D zL1 \ � � � \ zLn is a finite index subgroup of zG such that for l 2 L,
either zAD l. zA/ or zA\ l. zA/D ∅. Let zH=LD yH be the finite-sheeted cover of H
with the projection ypW zH ! yH . Then yp. zA/D yA is an embedded annulus in yH that
does not intersect any other lifts of A0 .

As L has finite index, it must have a finite number of right cosets, fLx1; : : : ; Lxng,
for x1; : : : ; xn 2G . Assume that Lx1 D L. Thus if Sn is the group of permutations
of n elements, there is a map �W G ! Sn , where �.g/, for g 2 G , is the element
of Sn that sends fLxig to fLxigg. Both �.g1/�.g2/ and �.g1g2/ send fLxig to
fLxig1g2g, so � is a homomorphism. Let K �G be the kernel of � . If g 2K , then
Lxi DLxigDLgxi , thus K �L. As Sn has a finite number of elements, the kernel
K is a finite index normal subgroup. Therefore, MH D zH=K is a finite-sheeted normal
cover of H . Let MpW MH !H be the covering projection. Then MH is a handlebody and
MT D Mp�1.T / is a set of curves in @ MH that meet the n disk-condition in MH . Also, MH is
a cover of yH ; thus all the lifts of A0 are properly embedded essential annuli in @ MH � MT .

Then by Freedman, Hass and Scott [3], if we put a Riemannian metric on H and
properly homotope A0 to be of least area, then all trivial self intersections between
lifts of A0 will be removed, and thus by Lemmas 4.2 and 4.4 all the lifts of A0 in MH
are either pairwise disjoint or intersect each other vertically or horizontally. If the
lifts of A0 are pairwise disjoint, A0 must be a properly embedded essential annulus in
@H �T . Otherwise, by Lemmas 4.10 and 4.18, we know that MH must have a nontrivial
region NI [NT . By Lemmas 4.11 and 4.19, we know that NI [NT can be isotoped
so that its frontier annuli are preserved under K and thus project to properly embedded
essential annuli in @H � T .
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Lemma 4.29 If H is a handlebody, T is a set of triple curves in its boundary that
satisfies the n disk-condition and f W A!H is a properly embedded annulus, then f
is properly isotopic into the maximal annulus region N .

Proof Let f W A ! H be a properly embedded annulus that cannot be properly
isotoped into N . By Lemmas 4.18 and 4.10, we know that if f .A/ has a nontrivial
intersection with another embedded annulus, then f can be isotoped into NI or NT .
Therefore, we can isotope f so that its image is disjoint from all the frontier annuli
of N . This contradicts maximality of N , thus we must be able to properly isotope
f .A/ into N .

Lemma 4.30 Let H be a handlebody, T a set of curves in its boundary that satisfies
the n disk-condition and N the annulus region in H . If A is an annulus and f W A!
H � T is a proper singular essential map, then there is a proper homotopy of f such
that f .A/ is in N .

Proof To save on notation, we will refer to f .A/ by A as well. Let B be the set of
frontier annuli of N and T 0 D T [ @B . Then H 0 DH �N is a set of handlebodies
such that for any component H 0j , the set of essential simple closed curves T 0 \H 0j
satisfies the 4 disk-condition in H 0j . Also, there is a proper homotopy of f such that
f �1.N / is either a set of 4–gons (case 1) or essential embedded annuli (case 2).

Case 1 All the components of N that A intersects are either in NI or NA . Assume
the singular 4–gons H 0\A are essential in H 0 . Then by Dehn’s lemma and the loop
theorem, we know that there is an embedded essential 4–gon with two boundary arcs
in the frontier annuli of N . This contradicts maximality of N .

Case 2 Here, all the components of N that A intersects are either in NT or NA .
Then by Lemma 4.27 we know that H 0 must contain an essential properly embedded
annulus, contradicting maximality of N .

Thus there must be a proper homotopy of f such that A is disjoint from B . If A is
not contained in N , then once again by Lemma 4.27, H 0 contains essential embedded
annuli, contradicting maximality of N .

4.6 Torus theorem

Let M be a 3–manifold that satisfies the .n1; n2; n3/ disk-condition. That is, Hi �M
is an embedded handlebody for 1 � i � 3 such that

S
Hi DM ,

S
@Hi D X is a

2–complex that cuts M up into the Hi , and
T
Hi D T is a set of essential simple

closed curves that meet the ni disk-condition in Hi . We will assume that .n1; n2; n3/
is either .6; 6; 6/, .4; 6; 12/ or .4; 8; 8/, for if the gluing of the three handlebodies
meets some disk-condition, it meets one of these three.
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Lemma 4.31 Let M be a closed 3–manifold that satisfies the disk-condition as de-
scribed above. Suppose T is a torus and f W T !M is an essential possibly singular
map. Then there is a homotopy of f such that either f .T / is disjoint from T and
Hi \ f .T / is a set of essential annuli for each i , or Hi \ f .T / is a set of singular
disks for each i with essential boundaries that each intersect T exactly ni times.

Proof Assume that f is transverse to X . Thus � D f �1.X/ is a set of simple closed
curves and trivalent embedded graphs which separates T . Define an .m; n/–gon to be
a face of T that is a disk, has m vertices in its boundary and is mapped by f into the
handlebody in which T satisfies the n disk-condition. Let the �j be the components
of � . Then �i is a nonessential component if there is a disk D � T such that �i �D .
So by Lemma 3.2, we know that there is a homotopy of f to remove �i and hence all
nonessential components of � .

Consequently, there are two cases. Either all faces of � are disks or � has faces which
are essential annuli. Note that f .T /\X 6D∅ as f is �1–injective and �1.Hi / doesn’t
have a free abelian subgroup of rank 2.

If � is connected, then all the faces must be .m; n/–gons and all the vertices have order
three. Let F be the set of faces of T . We can then put a metric on T , as we did in the
proof of Lemma 3.2. So all the edges are geodesics of unit length, and if F 2 F is an
.m; n/–gon, then the angle at each vertex is �.1� 2=n/ and there is a cone point in
int.F /. Once again this means that the curvature around each vertex is 2� . Let K .F /

be the curvature at the cone point in F . By the Gauss–Bonnet theorem, we know that

K .F /D 2�.1�m=n/:

Therefore, if m > n then K .F / < 0, if m D n then K .F / D 0 and if m < n then
K .F / > 0. Also, by the Gauss–Bonnet theorem, we know thatX

F 2F

K .F /D 0:

Therefore, if F contains an .m; n/–gon such that m> n, then it must also contain a
face F such that m<n. Thus by the disk-condition we know that f .@F / is not essential
in @Hk . So there is a homotopy of f such that f .F /� @Hk . We can then push F
off @Hk removing the face F from F . Note that when we do this, the order of the faces
adjacent to F either decreases by two or an .m; n/–gon and an .m0; n/–gon merge
to become an .mCm0�4; n/–gon, as shown in Figure 3. We can repeat this process
as long as F contains faces with positive curvature. Each time we do this move, we
reduce the number of faces in F by at least one. Therefore, this process must terminate
after a finite number of moves, when all the faces are .m; n/–gons such that mD n.
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Now let’s look at the case where � contains more than one component. Let �i be a
component of � . Then �i cuts T up into faces that are a single annulus and a number
of disks. Let A be the union of �i and the faces which are disks. Now we know that
the Euler characteristic of A is 0. Put a metric on A as we did above. �i must have
boundary vertices, that is vertices adjacent to less than three faces of A. Thus using
the same arguments using the Gauss–Bonnet theorem we know that A must have some
face with positive curvature. This means that such faces are boundary parallel in the
handlebody and there is a homotopy of f to remove them. As before this process can
be repeated until all the components are simple closed essential loops.

We are now ready to prove the torus theorem.

Proof of Theorem 1.1 Let Ni be the maximal annulus region for Hi and Pi be the
maximal disk region for Hi . The idea of this proof is to find submanifolds of either
the Ni or the Pi such that when glued together, the resulting embedded submanifold
can be fibred by S1 and either has essential tori boundary or the fibring can be extended
to the whole of M . In the interest of reducing notation, the image of f .T / in M
will be denoted as T . Thus when we talk about a homotopy of T , we are implying a
homotopy of f .

By Lemma 4.31, there is a homotopy such that either T is disjoint from T and for each i,
Hi \T is a set of essential singular annuli not properly homotopic into @H �T or, for
each i , Hi \T is a set of singular meridian disks that intersect T exactly ni times.

The first case is therefore that T is disjoint from the triple curves and Hi \T is a set of
singular essential annuli. We can also assume that no components of Hi\T are properly
homotopic into @Hi�T . By Lemma 4.30, we can isotope each Ni so that Hi\T �Ni .

Let Ai DX \Ni , where X D
S
@Hj . Then Ai is a set of essential surfaces in @Hi

and the boundary of the maximal annulus region Ni . Note that T \@Hi �Ai and thus
T \X �

S
i 6Dj .Ai \Aj /. We will first shrink N1 . Let Si D Ai \ .Aj [Ak/, where

i , j and k are different. Let N 01 be the maximal subset of N1 such that N 01\X � S1
and each component of the frontier of N 01 in H1 is an essential annulus parallel to
the fibring of N1 . There are three cases to discuss corresponding to components of
NI , NT and NA .

Let B be a component of N1 such that B is an I–bundle region and F is its base
space. Then let F 0 � F be the maximal subsurface such that B 0\ @H1 � S1 , where
B 0 is the I–bundle over F 0 . Then B 0 is a component of N 01 . Note that components
that do not intersect S1 are removed.

If B is a tree region, then it is a fibred solid torus and B\@H1 is a set of essential annuli.
Then there is an isotopy of B such that each annulus in B \ @H1 is either contained
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in S1 or in int.H1/. Note that some annuli in @H1 may get pushed into int.H1/. Let B 0

be the resulting fibred torus. Note that when the number of annuli in B\@H is reduced
to produce B 0 , the fibring of the torus is still parallel to the boundary curves of the
frontier annuli. Then B 0 is a component of N 01 . If B 0\H1D∅ we remove it from N 01 .

If B is a component of NA , as defined in Section 4.4.3, then either it can be isotoped
so that B \H1 � S1 or it is removed. As T \X �

S
i 6Dj .Ai \Aj / we know that

N 01 6D∅. We now let N1 DN 01 .

We now repeat this process for each Ni in turn until the process stabilises. That is, for
i 6D j , i 6D k and k 6D j , we have Ai D @Hi \ .Aj [Ak/. We know that it stabilises
before

S
Ni D∅ because T �

S
Ni .

Next we want to change the fibrings of the Ni so that all components that are regular
neighbourhoods of embedded annuli or Möbius bands are fibred by S1 . This means that
for any component B of Ni such that B\@Hi is a set of annuli, then B is a fibred solid
torus, or an I–bundle. Now when we let N D

S
Ni and all the fibrings of components

match, then N is a Seifert fibred submanifold of M and @N is a set of embedded tori.

By Lemma 4.15, if Nj is a component of N such that Hi \Nj is an I–bundle with
a base space that is not an annulus or a Möbius band, then the boundary tori of Nj are
essential in M . The final step in this case is to either make all the boundary tori of N

essential or expand N so that N DM . If Nj is a component of N and F �M is an
embedded solid torus such that @F �Nj , then either F \Nj D @F or F \Nj DNj .
If F \Nj D @F , we then add F to N and extend the fibring to it. This can always be
done as the fibres of the component are essential in M . Therefore, the meridian disk of
the solid torus being added cannot be parallel to the fibring of Nj . If Nj is contained
in F we remove Nj from N . This process is repeated until either all boundary tori
are essential or N DM . We know the process will terminate before all of N has been
removed because T �N and T is essential. Thus the component containing T cannot
be contained in a solid torus.

The next case is when Hi \T is a set of singular ni–gons. Let Pi be the disk region
in the handlebody Hi . Next we want to define a process for shrinking components
of Pi until all their boundaries coincide in X and then show that we can expand the
“core” fibring to the whole submanifold. Let Ai DX \Pi . By Lemma 4.26, we know
that we can isotope each Pi so that Hi \g.T /�Pi . Thus T \@Hi �Pi \ .Pj [Pk/,
for i 6D j , j 6D k and k 6D i .

Reduce P1 so that P1 � P2[P3 . By reducing, we mean chop off fingers that don’t
match up, reduce base spaces of the cores and possible remove entire components of P1 .
This process finishes before P1 is entirely removed as T \ @Hi � Pi \ .Pj [Pk/.
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Note that if a component of P1 is reduced to the regular neighbourhood of a single
meridian disk we forget the fibring of its core. As we reduce P1 , the frontier of P1
in H remains a set of essential annuli and meridian disks.

This process is repeated in turn for each Pi . Once again we know that the process
stabilises before all the Pi are removed as T\@Hi�Pi\.Pj[Pk/. All the components
with fibred cores obviously match up to be fibred tori in P D

S
Pi . Clearly these

do not intersect so the fibring can be extended across P . Also, P is a Seifert fibred
submanifold of M and each of the boundary tori of P is tiled by either meridian disks
or essential annuli that are essential in T . As before if any of the torus boundaries
of P are not essential, they are either filled in with a solid torus or removed.

4.7 Characteristic variety

Finally we show that both flavours of characteristic variety fit together nicely. That
is, if the flavours intersect, their S1 fibrings can always be made to agree. If either
component is a T 2 � I , this is easy. Thus we want to study the case where each
component has a unique fibring.

Let N be the maximal annulus region in M and P be the maximal disk region. By the
usual arguments, we can see that both are unique up to isotopy. We can also assume that
N is disjoint from T and that both flavours have nonempty boundary. Thus @N [ @P
is a set of essential embedded tori. If N \P D∅, then there is no problem. Therefore,
we can assume that N \P 6D∅. Let N 0 be a component of N and P 0 be a component
of P such that N 0\P 0 6D∅. It is not possible for P 0 �N 0 and if N 0 � P 0 there is
no problem. Therefore, we can assume that there is a boundary torus B � @P 0 such
that B \N 0 6D∅. As @N 0 is a set of essential tori, B \N 0 is a set of essential annuli
in N 0 . Thus Hi \ .B \N 0/, for any i , is a set of quadrilaterals. Therefore, if the
components of Hi \N 0 are fibred by S1 , then N 0 Š T 2 � I . Thus we can assume
that N 0 is fibred such that N 0\Hi is a set of I–bundles. Therefore, it just remains to
show that Hi \ .N 0\P 0/ is an I–bundle.

Let F and F 0 be two meridian disks in Hi that have ni intersections with T and have
a nontrivial intersection and A be an essential properly embedded annulus in Hi � T .
We can assume that A has been isotoped so that F \A is a set of disjoint properly
embedded arcs in F . If any of the arcs in F \A are not bisecting, then A is boundary
parallel. In this case F 0\A cannot contain any properly embedded arcs, for if it did,
this would provide an isotopy of F to remove that intersection between F and F 0 .
Thus F \A must be a set of bisecting arcs in F , similarly F 0\A is a set of properly
embedded bisecting arcs in F 0 and A is not boundary parallel. If we then let Q be the
regular neighbourhood of F [F 0 , then B , the frontier of Q in H , is a set of properly
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embedded annuli and meridian disks that intersect T exactly ni times. As in the proof
of Lemma 4.8, there is an isotopy of A such that A\B is a set of properly embedded
parallel arcs that are not boundary parallel in A. Thus there is an isotopy to remove
any triple points.

The components of P 0 \Hi can be thought of as regular neighbourhoods of a set
of meridian disks that intersect T exactly ni times. From above, if there are two
meridian disks in Hi that have a nontrivial intersection and that have ni intersections
with T , then any essential annulus can be isotoped so that it is disjoint from their
intersection. Lemma 4.15 says any boundary compressing disk of the annuli N 0\Hi
has order at least 1

2
ni . Therefore, the intersection between frontier annuli of N 0\Hi

and a meridian disk of order ni must be bisecting in the meridian disk. By these two
observations, we can see that Hi \ .N 0\P 0/ is an I–bundle.

4.8 Atoroidal manifolds

An interesting question asked us by Cameron Gordon, is to find an additional condition
that would result in manifolds satisfying the n disk-condition being atoroidal. By
Lemma 4.31, a sufficient condition for a manifold M that satisfies the disk-condition
to not contain any essential tori that intersect the triple curves, is the manifold meets
a stronger disk-condition with

P
1=ni <

1
2

. A sufficient condition that M does not
contain any essential tori disjoint from the triple curves is that in at least two of the
handlebodies, any essential annuli disjoint from T are boundary parallel.

Let H be a handlebody and T an essential set of disjoint simple closed curves in @H
that meet the n disk-condition. Let A be a properly embedded essential annulus in H
disjoint from T . Then by Lemma 3.16, H has a waveless minimal system of disks, D ;
see Definition 3.9. Let B be the 3–ball produced when H is cut along D , let S � @B
be the punctured sphere produced when @H is cut along D and let � D T \S . As in
the proof for Lemma 3.18, let � 0 � S2 be the graph produced by letting components
of @S correspond to vertices and parallel components of � correspond to single edges;
see Figure 11.

As A is a properly embedded essential annulus, B \A D fA1; : : : ; Akg is a set of
properly embedded quadrilaterals in B such that Ai \S is two properly embedded
arcs in S for any i . An equivalent statement to A being boundary parallel is that the
curves @A are parallel in @H or that for each i , the arcs Ai \S are parallel in S .

Lemma 4.32 If � 0 is maximal and contains no 2–cycles (Definition 3.17), then all
properly embedded annuli in H disjoint from T are boundary parallel.
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Proof By maximality of � 0 , the arcs of Ai \S , for all i , must be parallel to some arc
of � and as � 0 contains no 2–cycles, both arcs of Ai \S must be parallel to the same
arc of � and thus parallel. Therefore, from above, any properly embedded essential
annulus in H � T must be boundary parallel.

Let K � S3 be an .a1; a2; a3/ pretzel link such that, for each i , ai � 4 and the
spanning surface F shown in Figure 12 is orientable. As in Section 3.2.1, let M be the
manifold produced by taking the 3–fold branched cover of S3 with K as the branch
set and X be the 2–complex produced by gluing the lifts F in M . Then M satisfies
the disk-condition and X is a 2–complex that cuts it up into injective handlebodies.
As ai � 4, the basis bounded by the curves shown in Figure 12 is an 8–waveless basis
(Definition 3.10) for K in the handlebody S3�S . Therefore, all meridian disks in
the handlebody S3�S intersect K at least eight times. We can produce a waveless
minimal system of meridian disks for the handlebody S3�f by removing any one
of the disks from the basis. The associated graph � 0 , as constructed above satisfies
the conditions of Lemma 4.32. Thus the 3–fold branched cover of such a pretzel link
satisfies the disk-condition and is atoroidal.
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