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Generalized augmented alternating links
and hyperbolic volumes

COLIN ADAMS

Augmented alternating links are links obtained by adding trivial components that
bound twice-punctured disks to nonsplit reduced non-2–braid prime alternating
projections. These links are known to be hyperbolic. Here, we extend to show that
generalized augmented alternating links, which allow for new trivial components
that bound n–punctured disks, are also hyperbolic. As an application we consider
generalized belted sums of links and compute their volumes.

57M50; 57M25

1 Introduction

By the work of W Thurston [15], a nonsplit link in S3 is known to be either hyperbolic
or to contain an essential torus or annulus in its complement. When the link is hyperbolic,
its complement admits a hyperbolic metric that is uniquely determined and, hence,
the hyperbolic volume of its complement becomes an invariant that can be used to
distinguish it from other links.

Menasco [9] proved that prime alternating non-2–braid links are hyperbolic. In
Adams [2], it was further proven that augmented alternating links are hyperbolic.
These links are obtained from a prime non-2–braid alternating link projection by
adding trivial “vertical” components perpendicular to the projection plane that bound
a disk punctured twice by the alternating link. These augmented alternating links
have proved useful in a variety of contexts. In particular, they appear as the geometric
limits of alternating links that correspond to twisting the two strands around which
the augmenting components wrap. As such, together with the alternating links, they
form the closure of the collection of alternating links in the geometric topology (see
Corollaries 2 and 3 of Lackenby [8]). In particular, the volumes of the links in such a
sequence must approach the volume of the augmented link from below.

If a link is not alternating, one can augment it at a subset of the crossings that would
need to be changed to make it alternating, and then the result has the same complement
as an augmented alternating link, since a full twist along one of the twice-punctured
disks can reverse that crossing.
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Augmented alternating links are useful in a variety of settings. See for instance Blair,
Futer and Tomova [4], Dasbach and Tsvietkova [5], Futer, Kalfagianni and Purcell [6],
Lackenby [8] and Purcell [10; 13]. In some papers, the links considered are fully
augmented. That is to say, every crossing in the original knot is in a twist sequence
around which a vertical component has been added. In that case, one can use Andreev’s
theorem to prove hyperbolicity (see [13]).

In this paper, we extend the results of [2] to allow the vertical components to bound
disks that are punctured more than twice by the alternating link in the projection plane.
These new links are called generalized augmented alternating links. A precise definition
appears in Section 2. Our main theorem is to prove that, indeed, their complements are
always hyperbolic.

In particular, since .1; q/–Dehn filling of a vertical component corresponds to adding
q full twists to the strands of the original link, Thurston’s hyperbolic Dehn surgery
theorem and the fact the augmented link is hyperbolic imply that the resulting links are
always hyperbolic for high enough values of q .

Note that in several papers, authors have considered generalized augmented links
that were also obtained by adding vertical components to a projection, but in this
case, a not necessarily alternating projection such that the projection breaks up into
generalized twist regions as in Figure 1. But here again, each twist region has to receive
a crossing circle. These links have a variety of interesting properties, as discussed in
Futer, Kalfagianni and Purcell [6] and Purcell [11; 12; 13].

Figure 1: A traditional twist region and a generalized twist region

The presence of twice-punctured disks in link complements and the fact that twice-
punctured disks are totally geodesic with a unique hyperbolic structure (see Adams [1])
implies that one can take belted sums of the links, which is the operation depicted
in Figure 2, top row. The resulting link L1 #b L2 has volume equal to the sum of
the volumes of the two links L1 and L2 that are summed. Note that a belt is any
component bounding a twice-punctured disk in a hyperbolic link complement.

In Section 3, we generalize the notion of belted sum, and find an explicit formula
between the volumes of the two links and their summand. Specifically, we show
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Figure 2: Generalized belted sums of links
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/� 8.3:6638 : : : /. In this case, there are two distinct options for the

central belt, wrapping either lower left to upper right or lower right to upper left.

More generally, let L1 and L2 be two links, each with a 2n–string tangle at center,
with n belts around adjacent pairs of the exiting strings and n� 3 belts around the
central tangle in the same pattern, as for instance appears in Figure 3 in the case nD 5.
Then vol.L1 #b L2/ D vol.L1/C voll.L2/� 4.n� 2/3:6638 : : : . This construction

T

Figure 3: A potential generalized belted sum factor link
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answers a question asked by Oliver Dasbach about the behavior of the volumes in
Figure 2, center row, and was motivated by that question.

Of course, given a specific link, we would like to add vertical components to obtain
either a link that can be decomposed via belted sum into simpler links or composed via
belted sum into more complicated links. But we need to know that the resulting link is
hyperbolic. This is what the main theorem provides when the initial link is alternating.

In the case of augmented alternating links, twisting a half-twist on the twice-punctured
disk bounded by a vertical component, which adds or subtracts a crossing, will yield
a new link complement that is hyperbolic with the same volume as the original link.
This follows because the links are hyperbolic and the twice-punctured disks are totally
geodesic with a unique hyperbolic structure (see Adams [1]). However, in the case of
generalized augmented alternating links, if we twist a half-twist on an n–punctured
disk bounded by a vertical component for n� 3, the result need not be hyperbolic, and
even if it is, the volume is generally not preserved. As an example, adding one vertical
component bounding a thrice-punctured disk in the figure-eight knot complement
and then twisting a half-twist yields a Seifert fibered space. Further applications of
generalized augmented alternating links to volume bounds for links appear in Adams [3].

2 Hyperbolicity

Given an alternating link J in a reduced alternating projection P , we will often consider
it as a 4–regular graph on the projection sphere. That graph cuts the sphere up into
complementary regions.

Let J be a prime nonsplit non-2–braid alternating link. Let P be a reduced alternating
projection of J . Note that by results of Menasco [9], the projection is connected
and there are no simple closed curves in the plane that intersect the projection trans-
versely twice such that there are crossings to either side of the curve. Choose two
complementary regions in the projection plane that do not share an edge. Take a trivial
component C that intersects the projection sphere in precisely one point in each of
the complementary regions. Then we say that J 0 D J [ C is a generalized singly
augmented alternating link. We call the additional component a vertical component.

In the projection plane, we keep track of the vertical component as a gray arc  . While
fixing endpoints, we can isotope  to minimize the number of intersections with the
link J . This corresponds to an isotopy of the vertical component in the complement
of J . We will assume that such an isotopy has already taken place, and call the
corresponding vertical component a minimal representative of the isotopy class.
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For any other pair of nonadjacent complementary regions, we allow the introduction
of additional vertical components, as long as there are minimal representations of
all the individual vertical components that are disjoint as arcs in the plane. We call
the resulting link a generalized augmented alternating link. Note that for any pair
of nonadjacent regions there can be at most one corresponding vertical component.
There can be quite a few vertical components, as for instance occurs in the generalized
augmented figure-eight knot in Figure 4. This link is maximally augmented in the sense
that every pair of possible nonadjacent regions corresponds to a vertical component.
Note that for the figure-eight knot, there is more than one option for the maximally
augmented link that results.

Figure 4: A generalized augmented projection of the figure-eight knot with
the maximum possible number of vertical components

It should be noted that there are reduced alternating projections such that not all of the
possible vertical components can be added since minimal representations overlap, as in
Figure 5.

Figure 5: These two vertical components on this alternating grid cannot be
made to avoid intersecting while in minimal representations.

Theorem 2.1 Let J be a prime non-2–braid nonsplit alternating link. Then any
generalized augmented alternating link J 0 constructed from a reduced alternating
projection of J is hyperbolic.

In fact, even in the case of a 2–braid link in a reduced alternating projection, if we add
a vertical component that does not correspond to the axis around which the knot is
braided, the result is hyperbolic. However, we will not include that case here.
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It was proved in [9] that J is hyperbolic. Here, we are proving that the addition of
these new vertical component preserves hyperbolicity. We use the machinery developed
in [9], as described below.

We consider the projection plane P as a subspace of the projection sphere obtained
by the 1–point compactification. We will move from the plane to the sphere without
comment.

Let L be a link in a projection. At each crossing of the projection, a bubble is inserted,
with the overstrand going over the top of the bubble and the understrand going under
the bubble. We let SC be the sphere obtained by replacing each equatorial disk of a
bubble in the projection sphere with the top hemisphere of the corresponding bubble.
We define BC to be the ball bounded by SC . Similarly, we define S� and B� , using
the bottom hemispheres. In Lemma 1 of [9], Menasco showed that for any projection,
and any closed surface that is incompressible and not boundary parallel, the surface can
be isotoped so that it intersects bubbles in saddles and each intersection curve with S˙
intersects each bubble at most once and intersects at least one bubble. We will use a
version of this that applies to surfaces with boundary, as appears below. We begin with
the following lemma.

Lemma 2.2 If C is a vertical component in a generalized augmented alternating
link J 0 such that C is a minimal representative of its isotopy class, then the vertical
punctured disk D that is bounded by C is incompressible.

Proof We can treat D as a surface in either S3� .J [C / or S3�J 0. If there are no
compression disks for D in S3 � .J [C /, then there are certainly no compression
disks in S3�J 0. Hence we can drop all the vertical components except for C , since
incompressibility of D in S3� .J [C / implies incompressibility in S3�J 0. Let 
denote the arc in the projection plane that is the projection of C .

Suppose that D compresses. Let E be a compressing disk, in general position with
respect to the projection of J , chosen to have the minimum possible number of saddles
for such a compressing disk. We will show, as Menasco did with closed and punctured
surfaces in alternating knot and link complements, that the disk E behaves appropriately
with respect to the bubbles inserted at each crossing.

As in [9], we isotope E to be transverse to a vertical edge in each bubble, and then
push E out from that edge so that E only intersects each bubble in a possibly empty
collection of saddle disks. We assume that E has the minimum number of saddles
for a compressing disk of D . If the intersection of E with either BC or B� , say BC
for the argument, contains a subsurface W of E0 other than a disk, then there is a
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nontrivial curve in E0 (take an innermost boundary component of W ) that bounds
a disk in BC . We can perform surgery on E using this disk to lower the number of
saddles in E , contradicting our assumption that E has a minimal number of saddles.
Thus, we can assume that the intersections of E with the bubbles and spheres SC and
S� decomposes E into saddle disks corresponding to where it intersects bubbles, and
over-disks which have interior above SC and boundary on SC and under-disks, which
have interior below S� and boundary on S� . We call the resultant graph on E , where
saddles are treated as vertices, the intersection graph.

We can immediately eliminate any simple closed curves that do not intersect a bubble.
Such a curve must bound a disk in either BC or B� and again we can perform surgery
on E to eliminate all such curves.

As in Lemma 1 of [9], we show that no intersection arc intersects a bubble more
than once. For, if an intersection curve hits both sides of a bubble, we can choose an
innermost such intersection curve ˛ on that bubble, which must hit both sides of a
single saddle. By taking an arc crossing the saddle and an arc on the disk bounded
by the intersection curve, we obtain a closed curve ı on E bounding a disk E0 on
E , whose boundary can be isotoped to a meridian of J as in Figure 6, left. But this
creates a once-punctured sphere in the complement of J , a contradiction.

If an intersection curve hits the same side of a bubble twice, we can again take an
innermost such curve ˛ and then perform an isotopy to eliminate the two saddles that
touch the curve in this bubble as in Figure 6, right, pulling the blue band through the
bubble, again contradicting the minimality of the number of saddles in E . Thus, no
intersection curve hits a bubble more than once.

ı

˛

Figure 6: Intersection curves intersecting a bubble more than once

Suppose now that there is a simple closed intersection curve ˛ on E . By this we
mean a simple closed curve in the intersection graph that avoids @E and that forms a
component of the boundary of a region containing no other intersection curves on E .
Then it is also a simple closed curve on either SC or S� ; for convenience, assume SC .
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Note that all intersection arcs that begin and end on @E must begin and end on the
same side of  in the projection plane since the boundary of E must occur on only one
of the two sides of D . Since a simple closed intersection curve does not intersect  ,
in SC all the intersection arcs lie to the side of ˛ containing  . Take an innermost
intersection curve ˛0 to the other side of ˛ . If there are none, take ˛ itself considered
innermost to the outside. Since the projection is alternating, each intersection curve
must intersect bubbles such that the overstrand of the bubble is alternately on the left
and right of the curve. As in [9], this forces ˛0 to hit a bubble twice, a contradiction.
Thus, any such simple closed curve must avoid all bubbles. But then we could replace
the disk it bounds on E with the disk it bounds on SC , and push off to lower the
number of intersection curves.

Hence, there are no simple closed intersection curves on E . All intersection curves are
arcs that begin and end on @E . Note that when viewed in the plane, no such intersection
arc crosses  but all intersection arcs start and end on  , all coming out one side of it.
See Figure 7 for the picture.

A fork of the intersection graph is a vertex with at least three edges ending on @E ,
keeping in mind that all interior vertices are 4–valent. We show that every intersection
graph has at least one fork. Since every complementary region must intersect @E in
its boundary, the graph obtained by throwing away all edges with an endpoint on the
boundary of E is a collection of trees. Every tree of two or more vertices always has
at least two leaves, and those leaves will have three edges that must all end on the
boundary. So in this case, there are at least two forks. The one exception is if there
is only one vertex to one tree, which coincides with the case of there being only one
saddle in E . However, then we still have a fork.

We consider what a fork tells us about the projection P . See Figure 7. The two disks
bounded by the one saddle and the three curves ending on the boundary of E cause
there to be exactly two arcs of the knot that come out of the crossing in question
and then pass through E as punctures, without crossing any other arcs of the knot in
between. By Theorem 1(b) of [9], which shows that an alternating knot is prime if and
only if it is obviously so in any alternating projection, these arcs cannot contain any
crossings between when they puncture E and when they pass through the crossing in
question.

Fixing its endpoints, we can isotope  past the resultant crossing. There is a corre-
sponding isotopy of C , D and E , changing the pattern of intersections on E and
eliminating at least one saddle on E . We repeat this process until either all saddles are
eliminated from E , leaving only simple arcs of intersection, or there is only one saddle
remaining. In the first case, taking an outermost arc ˛00 on E , we cut off a disk E00
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Figure 7: A fork in the compression disk allows us to isotope  past a crossing.

which intersects the projection plane in an arc that does not intersect a bubble. Hence
we can either isotope an arc on  to this arc, and lower the number of intersections in
 \J , a contradiction to  corresponding to a minimal representative of C , or if no
part of J lies in the region in the projection plane cut off by  [˛00, we can isotope
E to lower the number of intersection arcs. In either case, repeating the process if
necessary, we obtain a contradiction.

In the second case, if only one saddle remains, then, as in Figure 8, the arc  can be
isotoped with endpoints fixed to lower its number of punctures, and it is therefore not a
minimal representative.

E



D

Figure 8: A single saddle in the compression disk implies  is not a minimal representative.

The following results will put us in position to prove Theorem 2.1. Throughout the
rest of this section, J is a prime non-2–braid nonsplit alternating link, and J 0 is a
generalized augmented alternating link complement obtained from J .

Lemma 2.3 The link complement S3�J 0 is irreducible.

Proof Proving irreducibility is equivalent to showing that S3 � J 0 is not splittable.
Since the alternating projection of J is connected, Theorem 1(a) from [9] shows that
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J is nonsplittable. Hence, if J 0 is splittable, there must be a sphere with J to one
side and at least one vertical component C to the other side. Let D be the vertical
punctured disk bounded by C . Discarding the other vertical components, we work with
just this one vertical component. But if C is contained in a sphere, it bounds a disk
in the sphere. We can use this disk to obtain a compression disk for D , contradicting
Lemma 2.2. Hence, J 0 is nonsplittable.

Lemma 2.4 Any essential torus T in S3�J 0 is meridionally compressible.

Proof By definition, T is incompressible and not boundary-parallel. To prove merid-
ional compressibility, we must show there is a nontrivial simple closed curve on T

that bounds a disk punctured once by the link J 0. So suppose T is meridionally
incompressible.

We again apply the techniques of [9], which Menasco utilized to prove a similar result
for alternating links. First, we flatten each vertical component into the projection plane
as in Figure 9.

Figure 9: Projecting the vertical components

Since T is incompressible and meridionally incompressible, Lemma 1 of [9] tells us
there exists a realization of T such that the intersection curves with SC and S� do
not intersect the same crossing bubble more than once. Moreover, every curve must
intersect at least one bubble.

We now eliminate the vertical components, without isotoping the surface T . Saddles
that appeared in crossing bubbles involving the vertical components disappear and
the intersection curves that entered a dotted region as in Figure 9 now connect to one
another.

There are two fundamental changes in the system of intersection curves. First of all,
each intersection curve need no longer bound a disk above SC in the case of BC and
below S� in the case of B� . Instead, a collection of intersection curves can bound a
subsurface of T above SC or below S� . Second, for each of the resulting intersection
curves on SC and S� , it can either be the case that the curve does or does not intersect
a bubble more than once.
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We add the vertical components back in, but now they are once again vertical, perpen-
dicular to the projection plane, each puncturing the projection plane in two points. For
convenience, we consider intersection curves on SC , but everything works just as well
for intersection curves on S� . We assume that T is chosen to minimize the resultant
number of saddles.

The collection of intersection curves and saddles decompose T into squares on its
surface corresponding to the saddles, and the components of intersections with BC
and B� . We first show that, with the possible exception of a single n–punctured torus,
all of these components are either disks or annuli.

Let R be a planar component of T \BC . Suppose an intersection curve ˛ that forms
one of the boundaries of R on SC bounds a disk F on T . We show that then R is a
disk. Let D0 be the disk bounded by ˛ on SC . It may or may not contain additional
intersection curves. If there are no vertical components with endpoints in D0, then
we can isotope the disk F bounded by ˛ on T to D0, pushing any other parts of T

out of the way in the process. After this isotopy, we have either eliminated ˛ as an
intersection curve, simplifying the intersection graph, or R was a disk in T \SC . If
D0 is punctured by some vertical component once, then that vertical component will
be nontrivially linked with ˛ , contradicting the fact that ˛ bounds F . Hence, any
vertical component C that intersects D0 must do so with both of its endpoints. No
other vertical components can be linked with this one above the projection plane, as in
Figure 10, since if they were, they would also have to be similarly linked below the
projection plane, which the existence of F prevents.

R

C C 0

F

SC

Figure 10: Vertical components cannot be linked above the projection plane
when an intersection curve bounds a disk on T .

We can then take a disk D00 that is horizontal and has boundary in R that is a curve
parallel to ˛ and slightly above it. Then we can isotope F to D0, eliminating the
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intersection curve ˛ and any saddles that it touches, a contradiction to minimality.
Note we are using the fact J 0 is nonsplittable here. So, the only planar components of
T \SC are disks and annuli, with all boundary components of the annuli appearing as
parallel nontrivial curves on the torus, as in Figure 11, right.

Figure 11: Islands as on the left can only occur on T if there is a component
in T \B˙ that is an n–punctured torus. Annular regions appear as on the
right.

We first show that there are no innermost curves on SC that bound disks in BC . An
innermost curve is one that bounds a disk R in SC that contains no other intersection
curves. A bubble that intersects an innermost curve is called an inner (outer) bubble if
its overstrand lies inside (outside) of R.

Such an innermost curve ˛ bounding a disk G in T \BC must intersect bubbles more
than once, as J is alternating, so the bubbles must alternate between bubbles with their
overstrand to the right and bubbles with their overstrand to the left as we travel around
the curve. Since there are no other curves inside ˛ , the other side of each inner bubble
must be hit by ˛ , as in Figure 12.

Figure 12: Inner bubbles must be intersected on both sides by ˛ .

There are three types of bubble intersections with ˛ . A bubble of type I intersects ˛
on both sides of the bubble and the overstrand lies to the inside of ˛ . A type II bubble
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is one that is intersected by ˛ at least twice on one side and the overstrand lies to
the outside of ˛ . A bubble of type III intersects ˛ once and has its overstrand to the
outside of ˛ . If a bubble is of type II or III, we consider only multiple intersections
of that bubble occurring to the inside of the curve. We do not care if distinct bubbles
appearing inside ˛ are in fact the same bubble when also considered outside ˛ .

Choosing an innermost pair of intersections of ˛ with a bubble of type I, one on each
side of the bubble, we can form a loop ı out of an arc on the corresponding saddle and
an arc on G that forms the boundary for a meridional compression to the overstrand of
the bubble. Since there are no meridional compressions, it must be the case that one or
more vertical components C block this meridional compression, as in Figure 13, left.

G

C

ı

˛

G

C

˛

Figure 13: A vertical component blocking meridional compressions and
saddle-reducing isotopies

Similarly, for a bubble of type II, we can isotope a band on the disk bounded by
˛ to eliminate two saddles unless the isotopy is blocked by one or more vertical
components C , as in Figure 13, right.

Relative to the vertical components, the intersection curve ˛ can wind around the
curves, as in Figure 14, so when ˛ is drawn uncomplicated, it could be the case that
the vertical components are tangled with one another, as if in a plat.

Figure 14: The intersection curve ˛ can wind around the vertical components.

We note the following pairing property: Consider all intersection curves on SC that
intersect a vertical disk D bounded by vertical component C , which is not necessarily
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in a minimal representation. In BC , they must form the boundaries of surfaces in
T \BC . Then T \BC\D is a collection of arcs that pair the points in ˛\D , some
potentially nested. However, there must be an innermost arc such that it cuts a disk from
D\BC that contains no other such arcs. Hence two adjacent intersection curves are
connected by an innermost arc on D . We consider those two curves an innermost pair.

We now utilize the pairing property. Suppose C is a vertical component bounding a
vertical punctured disk D that blocks one or more meridional compressions or saddle-
reducing isotopies caused by bubbles to the inside of the innermost curve ˛ bounding
the disk G in T \SC .

Choose any vertical component C with endpoints in ˛ that blocks crossings from
generating either a meridional compression or an isotopy lowering the number of
saddles. Regions between bubbles inside ˛ fall into six types, denoted by H , K , L,
M , N and P in Figure 15. A region of type H has two bubbles on its boundary, one
of type I and one of type III. A region of type K has two bubbles of type I and two
bubbles of type III, appearing alternately around its boundary. A region of type L has
a bubble of type I, a bubble of type II and a bubble of type III around its boundary. A
region of type M has only one bubble of type II on its boundary. A region of type N

has two bubbles of type II on its boundary. A region of type P, which we call a juncture,
has three or more type II bubbles on its boundary (four in the case of Figure 15).

Notice that regions H and M must each have at least one vertical component that
has exactly one endpoint in the region, since only two adjacent complementary regions
of the projection intersect a region H and only one complementary region of the
projection intersects a region of type M. Isotope C so that the arc that represents its
projection follows ˛ as closely as possible, as in Figure 15, and let D be the punctured
disk that it bounds. Note that we may have to carry along other vertical components
with which it is entangled.

Shifting from the intersection curves on SC to the corresponding intersection curves
on S� . we find that each pair of adjacent intersection curves passing through D share
a bubble. See Figure 16. In every such diagram, each of the six types of regions will
have exactly the same pattern of intersection curves shown here, with only a juncture
region that could look different, depending on the number of type II crossing around
its boundary. If we had left our arc representing the vertical component going straight
across a juncture, there would have been a pair of adjacent curves passing under the
vertical component that would not have shared a bubble. But, instead, we have C

follow ˛ around the outside. This ensures that all pairs of adjacent curves passing
through D share a bubble.
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H K L P

N

M

Figure 15: A vertical component blocking a meridional compression

So there exists an innermost pair of adjacent curves passing through D . They must share
a bubble. That bubble cannot be blocked by a vertical component because the disk G pre-
vents any such vertical component. Thus, we obtain either a meridional compression if

H K L P

N

M

Figure 16: The view from S� , where all adjacent curves passing under the
vertical component share a bubble.
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the bubble is a type I or type III bubble, or a saddle reducing isotopy if the bubble is a type
II bubble. Hence, there can be no innermost intersection curve bounding a disk in BC .

Figure 17: Two intersection curves share both a bubble and a surface, yielding
a meridional compression.

We now prove there are no annular components in T \BC . Suppose there were such
an annulus A. Note that the existence of A precludes the possibility of a punctured
torus component in either T \BC or T \B� . Each of its boundary components
bounds a disjoint disk in SC and those disks, together with A bound a ball in BC .
Choose an annulus that is innermost in the sense that its ball contains no other ball
corresponding to such an annulus. Note that T then bounds a solid torus V to the
ball side of A. Because T is incompressible and meridionally incompressible, there
must be a set C of at least two vertical components that together prevent A from
being compressible or meridionally compressible in V . One possibility is that one or
more of these components intersect the projection plane in the distinct disks bounded
by @A. But it could also be the case that two or more vertical components are linked
together above the projection plane inside the ball bounded by A. In this case, the
same vertical components must be similarly linked beneath the projection plane, since
ultimately these vertical components form an unlink when considered as a whole. In
either case, the solid torus V must be unknotted, as C intersects every meridional disk
in V and, if V were knotted, this would make C a nontrivial link by itself, when all
other components are dropped, which is a contradiction to how we constructed J 0.

Again, in either case, there is a compression disk for A that intersects only vertical
components. Dropping all vertical components momentarily, that compression yields
a sphere and, since J is nonsplittable, it must lie to one or the other side of that sphere.
Hence, J lies to one or the other side of T . If J is in V , then to avoid compressions
and meridional compressions, there must be vertical components to the other side.
However, then again, we find that by dropping J temporarily, the collection of vertical
components forms a nontrivial link, a contradiction.
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Hence, it must be the case that J lies to the outside of V . Let A0 be any other annulus
in T \BC . Then its ball must also intersect C , since C is the only collection of vertical
components that together wrap all the way around V . Hence the curves @A0 must be
parallel to the curves in @A. This implies that there are no disk components in T \BC ,
as, if there were such, there would need to be an annular component to each side of
its boundary on SC to not be innermost, which the existence of C prevents.

Hence, we have only annular components remaining in either T \BC or T \B� .
However, as in Figure 11, right, if any intersection curve bounding an annulus intersects
a bubble, there must be disk components, since each vertex is 4–valent, so an annular
boundary hitting a saddle cannot also be an annular boundary of a second annulus.
Hence, all intersection curves avoid bubbles. But then the boundaries of the annuli
separate the projection of J . We could isotope any annuli away that are not parallel to A,
so it must be the case that all annuli are parallel to A. Similarly in B� , all annuli must
be parallel. Hence, there can be only one annulus to either side for T to be connected.
Since J is to the outside of V , each disjoint disk on SC bounded by @A lies in a single
complementary region of J . But, since the endpoints of the vertical components in C
lie in these two disks, each such component either has both of its endpoints in the same
complementary region or its two endpoints share the same complementary regions as
another vertical component. In either case, this contradicts our construction of J 0.

The last case to consider is when there is a component of T \BC that is an n–punctured
torus. In this case, all other components of T\BC and T\B� must be disks. However,
then all components to the B� side are disks, a possibility we have eliminated.

Thus, we have shown that an essential torus T is meridionally compressible.

Lemma 2.5 The link J 0 is prime.

Proof That is to say, we show that there are no essential annuli with both boundaries
appearing as meridional curves for link components.

We first suppose that the boundary components of A are meridians on @N.J /. So we
think of A as a twice-punctured sphere. Then A demonstrates that J 0 is a composite
link. Since J 0 is not composite, it must be that the addition of the vertical components
prevents A from being boundary-parallel. We assume that A is not meridionally
compressible by doing any compressions first and taking only one of the resultant
annuli to consider. As we did with T , we use the results of [9] to put the punctured
sphere in standard position relative to SC and S� so that no intersection curve intersects
a bubble more than once and every curve either has a puncture or a bubble on it. We
assume that A has been chosen to minimize the number of saddles in crossing bubbles

Algebraic & Geometric Topology, Volume 17 (2017)



3392 Colin Adams

only involving J . We again throw away the vertical components and obtain intersection
curves that no longer need to bound disks in SC and S� , and that can intersect a
given bubble more than once. As in .�/ preceding the proof of Theorem 2 in [9], since
J is alternating, a curve that crosses a bubble with its overstrand to one side of the
curve must pass through an odd number of punctures (there are only two total) if it
subsequently passes through another bubble with its overstrand to the same side.

The same proof we used in the case of an essential meridionally incompressible torus
shows that no components of A\B˙ can be other than disks and also annuli with
nontrivial boundaries on A. In fact, no component of A\B˙ can be such an annulus,
as any compression disk for such an annulus would intersect only vertical components,
but every compression disk for an essential annulus in A must intersect J , since J

punctures the sphere corresponding to A twice.

We could have up to four disks in A\B˙ with punctures on their boundaries, which,
in addition to the types of regions depicted in Figure 15, also allow for regions Q, R

and S , depicted in Figure 18, where the intersection curve (in red) crosses the link
at a puncture, and a shaded disk represents a tangle. But again, the argument given
previously applies to show that there are no disks innermost on S˙ in A\B˙ that
intersect bubbles, either with or without punctures on their boundary.

Q

R
S

Figure 18: Additional possible regions for an innermost disk with a puncture
on its boundary

But then A intersects SC and S� in the same pair of arcs from the first puncture to
the second puncture, each of which does not intersect the projection of J . So, to one
side, the projection of J is a trivial arc. There can be no vertical components to this
side of A since there are only two adjacent regions of the projection plane to this side.
This shows that A cannot be an essential annulus with both boundaries meridional
on N.J /.

We now consider an essential annulus A with both boundary components meridians on
boundaries of neighborhoods of the vertical components. It is appropriate to consider
A as a twice-punctured sphere. But then both punctures must be from one vertical
component C , and J must lie to one side. To the other side is a trivial arc of C
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and additional vertical components that prevent A from being boundary-parallel. But
individual vertical components inside this twice-punctured sphere bound disks there,
contradicting the fact that the n–punctured disks they bound are incompressible.

Note that there can be no annulus with one boundary a meridian on J and another
boundary a meridian on a vertical component, as a sphere in S3 cannot be punctured
once by a simple closed curve. Thus, there can be no essential annuli with meridional
boundary components in S3�J 0 and J 0 is prime.

Corollary 2.6 There are no essential tori in S3�J 0.

Proof If an essential torus T exists, Lemma 2.4 implies we can meridionally compress
it to obtain a twice-punctured sphere. Since T is not boundary-parallel, this twice-
punctured sphere shows that the link J 0 is composite, contradicting Lemma 2.5.

Lemma 2.7 There are no essential annuli in S3�J 0.

Proof Although we have eliminated essential annuli with both boundaries meridians,
we now consider the possibility of other essential annuli. Lemma 1.16 of [7] implies
that if there is an essential annulus at all, then S3 � J 0 is Seifert fibered, with the
boundaries of the annulus as fibers. Moreover, there are either a total of one, two
or three torus boundary components in S3 � N.J 0/. If one boundary of A is a
meridian on a vertical component C , and the other is not, then if we fill C in, the
annulus becomes a compressing disk on the boundary of the resulting link. If the other
boundary component lies on the boundary of a neighborhood of J , this contradicts
the hyperbolicity of J . If the other boundary is on a boundary of a neighborhood of a
different vertical component, we have that a nontrivial curve on its boundary is trivial
in the complement of J . However, this can never occur for a trivial link component
unless the curve is a longitude, but then we are contradicting the incompressibility of
the vertical disk bounded by the component.

If a boundary component of A is a nonmeridian on a vertical component C , then
we can fill in C and extend the Seifert fibration to the solid torus that we filled in,
making the result Seifert fibered, which is a contradiction to the hyperbolicity of S3�J

unless there is a second vertical component. If there is a second vertical component
and the other boundary of A is a nonmeridian upon it (as it must be by our previous
considerations), then we can fill it in also, and we obtain a Seifert fibration for S3�J ,
a contradiction to its hyperbolicity.

The only possibility left is that the boundaries of A is a nonmeridian upon both C1 and
a component K of J , which is all of J , and there is a second vertical component C2 .
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Then S3 � J 0 is a twice-punctured disk crossed with a circle obtained by taking a
regular neighborhood of A[ @N.K/. This is embedded in S3 so that each boundary
torus bounds a solid torus to the exterior, which is a neighborhood of the corresponding
link component. But then the component corresponding to the outer boundary of the
disk, which is one of the vertical components, links both of the other components,
one of which is also vertical. However, then two vertical components are linked, a
contradiction to the construction of J 0.

We now consider an essential annulus A with both boundary components on N.J /

but not meridians. Then they must both be on the same component or else A would
be essential in the complement of J , a contradiction. In this case, each boundary of
A is a .p; q/–curve on the boundary of a neighborhood of the link component K ,
with jqj � 1. Hence, C is a .p; q/–cable of K . But then there is an essential annulus
with one boundary on @N.C / and a second boundary on N.K/, a possibility we have
already eliminated.

Proof of Theorem 2.1 By work of Thurston [15], in order to prove that S3�J 0 is
hyperbolic, it is enough to show that S3�J 0 is irreducible, and to show there are no
essential tori or annuli in S3�J 0. This is the content of Lemma 2.3, Corollary 2.6 and
Lemma 2.7.

3 Generalized belted sums

In this section, we consider generalized belted sums as in Figure 2. We show that if
L1 #b L2 is constructed from two links with a 2n–string tangle at center, with n belts
around adjacent pairs of the exiting strings and n�3 belts around the central tangle, no
two of which are parallel, then vol.L1#bL2/Dvol.L1/Cvol.L2/�4.n�2/3:6638 : : : .
To see this, we utilize the thrice-punctured spheres that appear in the link complement.
Thrice-punctured spheres are known to be totally geodesic with a rigid structure in
a hyperbolic 3–manifold (see for instance [1]). In particular, any two are isometric.
In the case of a 2n–string tangle T1 as in Figure 3, there is a collection of thrice-
punctured spheres that shield the part of the manifold corresponding to the 2n–string
tangle from the rest of the manifold. Cutting the manifold open along this collection
of thrice-punctured spheres and then for each resulting piece, doubling across the
thrice-punctured spheres yields two link complements, one with the 2n–string tangle
appearing twice, once reflected, and the other an untwisted daisy chain with additional
components, as appear in Figure 19. Further examples of the untwisted daisy chain with
additional components appear in Figure 20. The two halves of the original manifold
must have volume exactly half of these, since reflecting across totally geodesic surfaces
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(the thrice-punctured spheres; see [1]) doubles the volume. So the original manifold has
volume exactly half the sum of these two volumes. The same is true for the link with
2n–string tangle T2 . Now, when we take the two link complements, cut them both
open along the collection of thrice-punctured spheres, and throw away the two halves of
the untwisted daisy chain, we obtain the volume of the first link plus the volume of the
second link minus the volume of the untwisted daisy chain with additional components.

T1

T1 T1

Figure 19: Cutting and doubling

In the case n D 3, the volume of the untwisted daisy chain is 4.3:6638 : : : /, where
3:6638 : : : is the volume of an ideal regular octahedron. The manifold is commensurable
with the Whitehead link. (See Example 6.8.7 of [14].) For n> 3, we can cut the link
complement open along the twice-punctured disks bounded by components that are not
in the untwisted daisy chain to obtain n� 2 pieces, each of volume 1

2
.4.3:6638 : : : //,

as in Figure 20. When we take the belted sum of the two links, we discard all of these
pieces from both link complements, meaning we lose a volume of 4.n� 2/3:6638 : : : .

nD 3 nD 4 nD 5

: : :

Figure 20: Links of volume 4.n� 2/3:6638 : : :
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We can further start with any link and add components to decompose it into pieces,
each of which has a volume we can determine as in the case of a generalized belted
sum, to obtain the volume of the augmented link, which will bound the volume of the
original link since hyperbolic Dehn filling always decreases volume. In the case of
an alternating link, Theorem 2.1 tells us that the generalized augmented link that we
produce will be hyperbolic, which we need to know for the procedure to apply. As an
example, consider the link appearing in Figure 21. We denote the link obtained from a
2n–tangle Ti by completing it as in Figure 3 by Li .

T1 T2 T3 T4

T5

Figure 21: Finding the volume of this link

We can cut along the various thrice-punctured spheres, and realize each of the result-
ing pieces as a link of the appropriate type, where we have thrown away a volume
.n�2/3:6638 : : : . In this case, we decompose the link complement into three 8–tangles,
one 6–tangle and one 10–tangle. There is also another piece remaining which is a
copy of the Borromean rings. Hence the volume is vol.L1/C vol.L2/C vol.L3/C

vol.L4/C vol.L5/� 20.3:6638 : : : /C 7:32772 : : : .
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