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Nine generators of the skein space of the 3–torus

ALESSIO CARREGA

We show that the skein vector space of the 3–torus is finitely generated. We show
that it is generated by nine elements: the empty set, some simple closed curves
representing the nonzero elements of the first homology group with coefficients in Z2 ,
and a link consisting of two parallel copies of one of the previous nonempty knots.
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1 Introduction

An alternative approach to representation theory for quantum invariants is provided by
skein theory. The word “skein” and the notion were introduced by Conway in 1970 for
his model of the Alexander polynomial. This idea became quite useful after the work of
Kauffman [10] which redefined the Jones polynomial in a very simple and combinatorial
way passing through the Kauffman bracket. These combinatorial techniques allow us to
reproduce all quantum invariants arising from the representations of Uq.sl2/ without
any reference to representation theory. This also leads to many interesting and quite
easy computations. This skein method was used by Blanchet, Habegger, Masbaum and
Vogel [1], Kauffman and Lins [11] and Lickorish [12; 13; 15; 14] to reinterpret and
extend some of the methods of representation theory.

The first notion in skein theory is that of a “skein vector space” (or skein module). These
are vector spaces (R–modules) associated to oriented 3–manifolds, where the base field
is equipped with a fixed invertible element A. These were introduced independently
in 1988 by Turaev [24] and in 1991 by Przytycki [20]. We can think of them as an
attempt to get an algebraic topology for knots: they can be seen as homology spaces
obtained using isotopy classes instead of homotopy or homology classes. In fact, they
are defined taking a vector space generated by subobjects (framed links) and then
quotienting them by some relations. In this framework, the following questions arise
naturally and are still open in general:

Question 1.1 � Are skein spaces (modules) computable?

� How powerful are they to distinguish 3–manifolds and links?
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� Do the vector spaces (modules) reflect the topology/geometry of the 3–manifolds
(eg surfaces, geometric decomposition)?

� Does this theory have a functorial aspect? Can it be extended to a functor
from a category of cobordisms to the category of vector spaces (modules) and
linear maps?

Skein spaces (modules) can also be seen as deformations of the ring of the SL2.C/–
character variety of the 3–manifold; see Bullock [3]. Moreover, they are useful to
generalize the Kauffman bracket, hence the Jones polynomial, to manifolds other
than S3 . Thanks to Hoste and Przytycki [9], Przytycki [22] and (with different
techniques) Costantino [4], now we can define the Kauffman bracket also in the
connected sum #g.S

1 �S2/ of g � 0 copies of S1 �S2 .

Currently, there are only few 3–manifolds whose skein space (module) is known; see for
instance Bullock [2], Hoste and Przytycki [7; 8; 9], Marché [16], Mroczkowski [18; 17],
Mroczkowski and Dabkowski [19] and Przytycki [21; 22; 23]. Another natural ques-
tion is:

Question 1.2 Is the skein vector space of a closed oriented 3–manifold always finitely
generated?

In this paper, we take as base field the set Q.A/ of all rational functions with rational
coefficients and abstract variable A, and we note that every result in this work holds
also for the field C of complex numbers with A 2 C a nonzero number such that
A2n ¤ 1 for every n> 0.

Theorem 1.3 The skein space K.T 3/ of the 3–torus T 3 D S1 �S1 �S1 is finitely
generated.

A set of nine generators is given by the empty set ¿, some simple closed curves
representing the nonzero elements of the first homology group H1.T

3IZ2/Š .Z2/
3

with coefficients in Z2 , and a skein element ˛ that is equal to the link consisting of
two parallel copies of any previous nonempty knots.

Our main tool is the algebraic work of Frohman and Gelca [5]. The skein space
(module) of a (thickened) surface has a natural algebra structure obtained by overlap of
framed links. In their work, Frohman and Gelca gave a nice formula that describes the
product in the skein space (algebra) K.T 2/ of the 2–torus T 2 D S1�S1 . A standard
embedding of T 2 in T 3 makes this product commutative; hence we can get further
relations from the formula of Frohman and Gelca.

A natural question is the following:

Question 1.4 Is 9 the dimension of the skein vector space K.T 3/ of the 3–torus?

Algebraic & Geometric Topology, Volume 17 (2017)



Nine generators of the skein space of the 3–torus 3451

After this paper was submitted, P Gilmer [6] answered this question positively.

Acknowledgements The author is warmly grateful to Bruno Martelli for his constant
support and encouragement.

2 The result

2.1 Definition of skein module

Let M be an oriented 3–manifold, R a commutative ring with unit and A 2 R an
invertible element of R. Let V be the abstract free R–module generated by all framed
links in M (considered up to isotopies) including the empty set ¿.

Definition 2.1 The .R;A/–Kauffman bracket skein module of M , or the R–skein
module, or simply the KBSM, sometimes indicated with KM.M IR;A/, is the quotient
of V by all the possible skein relations:

DA CA�1 ;

Lt D .�A2
�A�2/D;

D .�A2
�A�2/¿:

These are local relations where the framed links in an equation differ just in the pictured
3–ball that is equipped with a positive trivialization. An element of KM.M IR;A/ is
called a skein or a skein element. If M is the oriented I–bundle over a surface S (that
is, M D S � Œ�1; 1� if S is oriented), we simply write KM.S IR;A/ and call it the
skein module of S .

Let Q.A/ be field of all rational function with rational coefficients and abstract vari-
able A. We set

K.M / WD KM.M IQ.A/;A/;

and we call it the skein vector space, or simply the skein space, of M .

Remark 2.2 It is easy to verify that if we modify the framing of a component of a
framed link, the skein changes by the multiplication of an integer power of �A3 :

D�A3 ; D�A�3 :

2.2 The skein algebra of the 2–torus

Definition 2.3 Let S be a surface; the skein module KM.S IR;A/ has a natural
structure of an R–algebra that is given by the linear extension of the multiplication
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defined on framed links. Given two framed links L1;L2 � S � Œ�1; 1�, the product
L1 �L2�S� Œ�1; 1� is obtained by putting L1 above L2 , so L1 �L2\S� Œ0; 1�DL1

and L1 �L2\S � Œ�1; 0�DL2 .

Consider the 2–torus T 2 as the quotient of R2 modulo the standard lattice of trans-
lations generated by .1; 0/ and .0; 1/; hence for any nonzero pair .p; q/ of integers,
we have the notion of .p; q/–curve: the simple closed curve in the 2–torus that is the
quotient of the line passing trough .0; 0/ and .p; q/.

Definition 2.4 Let p and q be two coprime integers; hence .p; q/ ¤ .0; 0/. We
denote by .p; q/T the .p; q/–curve in the 2–torus T 2 equipped with the blackboard
framing. Given a framed knot 
 in an oriented 3–manifold M and an integer n� 0,
we denote by Tn.
 / the skein element defined by induction as follows:

T0.
 / WD 2 �¿;
T1.
 / WD 
;

TnC1.
 / WD 
 �Tn.
 /�Tn�1.
 /;

where 
 �Tn.
 / is the skein element obtained adding a copy of 
 to all the framed
links that compose the skein Tn.
 /. For p; q 2Z such that .p; q/¤ .0; 0/, we denote
by .p; q/T the skein element

.p; q/T WD TMCD.p;q/

��
p

MCD.p; q/
;

q

MCD.p; q/

�
T

�
;

where MCD.p; q/ is the maximum common divisor of p and q . Finally, we set

.0; 0/T WD 2 �¿:

It is easy to show that the set of all the skein elements .p; q/T with p; q 2Z generates
KM.T 2IR;A/ as R–module.

This is not the standard way to color framed links in a skein module. The colorings
JWn.
 /, n� 0, with the Jones–Wenzl projectors are defined in the same way as Tn.
 /,
but at the 0–level we have JW0.
 /D¿.

Theorem 2.5 (Frohman and Gelca [5]) For any p; q; r; s 2Z, the following holds in
the skein module KM.T 2IR;A/ of the 2–torus T 2 :

.p; q/T � .r; s/T DA

ˇ̌
p q
r s

ˇ̌
.pC r; qC s/T CA

�

ˇ̌
p q
r s

ˇ̌
.p� r; q� s/T ;

where
ˇ̌
p q
r s

ˇ̌
is the determinant ps� qr .
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2.3 The abelianization

Definition 2.6 Let B be a R–algebra for a commutative ring with unity R. We denote
by C.B/ the R–module defined as the quotient

C.B/ WD
B

ŒB;B�
;

where ŒB;B� is the submodule of B generated by all the elements of the form ab�ba

for a; b 2 B . We call C.B/ the abelianization of B .

Remark 2.7 Usually in noncommutative algebra, the abelianization is the R–algebra
defined as the quotient of B modulo the subalgebra (submodule and ideal) generated
by all the elements of the form ab � ba. In our definition, the denominator is just a
submodule and we only get an R–module. We use the word “abelianization” anyway.

Now we work with C.K.T 2//, and we still use .p; q/T and .p; q/T �.r; s/T to denote
the class of .p; q/T 2K.T 2/ and .p; q/T � .r; s/T 2K.T 2/ in C.K.T 2//.

Lemma 2.8 Let .p; q/ be a pair of integers different from .0; 0/. Then in the abelian-
ization C.K.T 2// of the skein algebra K.T 2/ of the 2–torus T 2 , we have

.p; q/T D

8̂̂̂<̂
ˆ̂:
.1; 0/T if p 2 2ZC 1 and q 2 2Z;

.0; 1/T if p 2 2Z and q 2 2ZC 1;

.1; 1/T if p; q 2 2ZC 1;

.2; 0/T if p; q 2 2Z:

Hence C.K.T 2// is generated as a Q.A/–vector space by the empty set ¿, the framed
knots .1; 0/T , .0; 1/T , .1; 1/T , and a framed link consisting of two parallel copies
of .1; 0/T .

Proof By Theorem 2.5, for every p; q 2 Z, we have

A�q.pC 2; q/T CAq.p; q/T D .pC 1; q/T � .1; 0/T

D .1; 0/T � .pC 1; q/T

DAq.pC 2; q/T CA�q.�p;�q/T :

Since .p; q/T D .�p;�q/T , we have .Aq �A�q/.p; q/T D .A
q �A�q/.pC2; q/T .

Hence if q ¤ 0, we get .p; q/T D .pC 2; q/T (here we use the fact that the base ring
is a field and that A2n ¤ 1 for every n> 0). Thus

.p; q/T D

�
.0; q/T if p 2 2Z and q ¤ 0;

.1; q/T if p 2 2ZC 1 and q ¤ 0:
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Analogously, by using .0; 1/T instead of .1; 0/T for p ¤ 0, we get

.p; q/T D

�
.p; 0/T if q 2 2Z and q ¤ 0;

.p; 1/T if q 2 2ZC 1 and q ¤ 0:

Therefore, if p; q 2 2ZC 1, we have .p; q/T D .1; 1/T . If p ¤ 0, we get

.p; 0/T D .p; 2/T D

�
.0; 2/T if p 2 2Z;

.1; 2/T D .1; 0/T if p 2 2ZC 1:

In the same way for q ¤ 0, we get

.0; q/T D .2; q/T D

�
.2; 0/T if p 2 2Z;

.2; 1/T D .0; 1/T if p 2 2ZC 1:

In particular, we have

.2; 0/T D .2; 2/T D .2;�2/T D .0; 2/T D .p; q/T for .p; q/¤ .0; 0/; p; q22Z:

2.4 The .p; q; r/–type curves

As for the 2–torus T 2 , we look at the 3–torus T 3 as the quotient of R3 modulo the
standard lattice of translations generated by .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/.

Definition 2.9 Let .p; q; r/ be a triple of coprime integers; that means we have
MCD.p; q; r/ D 1, where MCD.p; q; r/ is the maximum common divisor of p , q

and r , and in particular, we have .p; q; r/ ¤ .0; 0; 0/. The .p; q; r/–curve is the
simple closed curve in the 3–torus that is the quotient (under the standard lattice) of the
line passing through .0; 0; 0/ and .p; q; r/. We denote by Œp; q; r � the .p; q; r/–curve
equipped with the framing that is the collar of the curve in the quotient of any plane con-
taining .0; 0; 0/ and .p; q; r/. The framing does not depend on the choice of the plane.

Definition 2.10 An embedding eW T 2! T 3 of the 2–torus in the 3–torus is standard
if it is the quotient (under the standard lattice) of a plane in R3 that is the image of
the plane generated by .1; 0; 0/ and .0; 1; 0/ under a linear map defined by a matrix of
SL3.Z/ (a 3� 3 matrix with integer entries and determinant 1).

Remark 2.11 There are infinitely many standard embeddings, even up to isotopies.
A standard embedding of T 2 in T 3 is the quotient under the standard lattice of the
plane generated by two columns of a matrix of SL3.Z/.

Lemma 2.12 Let .p; q; r/ be a triple of coprime integers. Then the skein element
Œp; q; r �2K.T 3/ is equal to Œx;y; z�, where x;y; z 2 f0; 1g and they have respectively
the same parities as p , q and r .
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Proof Every embedding eW T 2! T 3 of the 2–torus defines a linear map between
the skein spaces

e�W K.T
2/!K.T 3/:

The map e� factorizes with the quotient map K.T 2/! C.K.T 2//. In fact, we can
slide the framed links in e.T 2 � Œ�1; 1�/ from above to below, getting e�.L1 �L2/D

e�.L2 � L1/ for every two framed links, L1 and L2 , in T 2 � Œ�1; 1�. As said in
Remark 2.11, a standard embedding eW T 2 ! T 3 corresponds to the plane gener-
ated by two columns .p1; q1; r1/; .p2; q2; r2/ 2 Z3 of a matrix in SL3.Z/. In this
correspondence, e�..a; b/T /D Œap1C bp2; aq1C bq2; ar1C br2� for every coprime
a; b 2 Z. Therefore, by Lemma 2.8, we get

Œa0p1C b0p2; a
0q1C b0q2; a

0r1C b0r2�D e�..a
0; b0/T /

D e�..a; b/T /

D Œap1C bp2; aq1C bq2; ar1C br2�

for every two pairs .a; b/; .a0; b0/2Z2 of coprime integers such that aCa0; bCb0 22Z.

Let .p; q; r/ be a triple of coprime integers. By permuting p , q and r , we get either
.p; q; r/ D .1; 0; 0/ or p; q ¤ 0. Consider the case where p; q ¤ 0. Let d be the
maximum common divisor of p and q , and let �;� 2Z such that �pC�q D d . The
following matrix belongs in SL3.Z/:

M1 WD

0@p=d �� 0
q=d � 0

0 0 1

1A :
Let v .1/

1
and v .1/

3
be the first and the third columns of M1 . We have .p; q; r/ D

dv.1/

1
C rv.1/

3
. Hence

Œp; q; r �D

8̂<̂
:
�p

d
; q

d
; 0
�

if d 2 2ZC 1 and r 2 2Z;

Œ0; 0; 1� if d 2 2Z and r 2 2ZC 1;�p
d
; q

d
; 1
�

if d; r 2 2ZC 1:

The integers p; q; r cannot be all even because they are coprime; hence d and r cannot
be both even. Therefore, we just need to study the cases where r 2 f0; 1g.

If r D 0, we consider the trivial embedding of T 2 in T 3 . The corresponding matrix
of SL3.Z/ is the identity. We have

�p
d
; q

d
; 0
�
D

p
d
.1; 0; 0/C q

d
.0; 1; 0/; hence

Œp; q; 0�D
�p

d
; q

d
; 0
�
D

8̂<̂
:
Œ1; 0; 0� if p

d
2 2ZC 1 and q

d
2 2Z;

Œ0; 1; 0� if p
d
2 2Z and q

d
2 2ZC 1;

Œ1; 1; 0� if p
d
; q

d
2 2ZC 1:
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If r D 1, we take the matrix of SL3.Z/

M2 WD

0@0 0 1

q �1 0

1 0 0

1A :
Let v .2/

1
and v .2/

3
be the first and the third columns of M2 . We have .p; q; 1/ D

pv .2/

3
C v .2/

1
; hence

Œp; q; 1�D

�
Œ1; q; 1� if p 2 2ZC 1;

Œ0; q; 1� if p 2 2Z:

By permuting p , q and r , we reduce the case .p; q; r/D .0; q; 1/ to the case p; q¤ 0,
r D 0 that we studied before.

It remains to consider the case p D r D 1. We consider the matrix of SL3.Z/

M3 WD

0@1 0 0

0 1 0

1 0 1

1A :
Let v .3/

1
and v .3/

2
be the first and the second columns of M3 . We have .1; q; 1/ D

v .3/

1
C qv .3/

2
. Hence

Œ1; q; 1�D

�
Œ1; 0; 1� if q 2 2Z;

Œ1; 1; 1� if q 2 2ZC 1:

Lemma 2.13 The intersection of any two different standardly embedded 2–tori in T 3

contains a .p; q; r/–type curve.

Proof Let T1 and T2 be two standardly embedded tori in the 3–torus, and let �1

and �2 be two planes in R3 whose projections under the standard lattice are respec-
tively T1 and T2 . The intersection T1\T2 contains the projection of �1\�2 . We
just need to prove that in �1 \ �2 , there is a point .p; q; r/ ¤ .0; 0; 0/ with integer
coordinates p; q; r 2Z. Every plane defining a standardly embedded torus is generated
by two vectors with integer coordinates, and hence it is described by an equation
ax C by C cz D 0 with integer coefficients a; b; c 2 Z. Applying a linear map
described by a matrix of SL3.Z/, we can suppose that �1 is the trivial plane fz D 0g.
Let a; b; c 2 Z such that �2 D faxC byC cz D 0g. The vector .�b; a; 0/ is nonzero
and lies on �1\�2 .
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C
�

T

Figure 1: Diagrams of framed links in T 3 . The plane is a part of the stan-
dardly embedded torus T � T 3 where the links project. If we look at the
framed links in T 3 as framed tangles in T � Œ�1; 1� , the two strands that get
out vertically from the plane end in the boundary points .x; 1/ and .x;�1/

for some x 2 T .

2.5 Diagrams

Framed links in T 3 can be represented by diagrams in the 2–torus T 2 . These diagrams
are like the usual link diagrams but with further oriented signs on the edges; see
Figure 1 (left). Fix a standardly embedded 2–torus T in T 3 . After a cut along
a parallel copy T 0 of T , the 3–torus becomes diffeomorphic to T � Œ�1; 1�, and
framed links in T 3 correspond to framed tangles of T � Œ�1; 1�. These diagrams are
generic projections on T of the framed tangles in T � Œ�1; 1� via the natural projection
.x; t/ 7! x . The further signs on the diagrams represent the intersection of the framed
links with the boundary T �f�1; 1g. In other words, they represent the passages of the
links along the .p; q; r/–type curve that, in the Euclidean metric, is orthogonal to T ;
see Figure 1 (right). If T is the trivial torus S1�S1�fxg, the further signs represent the
passages through the third S1–factor. We use the proper notion of blackboard framing.

2.6 Generators for the 3–torus

The following is the main theorem proved in this paper. We use all the previous lemmas
to get a set of nine generators of K.T 3/.

Theorem 2.14 The skein space K.T 3/ of the 3–torus T 3 is generated by the empty
set ¿, Œ1; 0; 0�, Œ0; 1; 0�, Œ0; 0; 1�, Œ1; 1; 0�, Œ1; 0; 1�, Œ0; 1; 1�, Œ1; 1; 1� and a skein ˛ that
is equal to the framed link consisting of two parallel copies of any .p; q; r/–type curve.

Proof Let T be the trivial embedded 2–torus: the one containing the .p; q; r/–type
curves with r D 0. Use T to project the framed links and make diagrams. By using
the first skein relation on these diagrams, we can see that K.T 3/ is generated by
the framed links described by diagrams on T without crossings. These diagrams are
unions of simple closed curves on T equipped with some signs as the one with C
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and � in Figure 1. These simple closed curves are either parallel to a .p; q/–curve
or homotopically trivial. The framed links described by these diagrams lie in the
standardly embedded tori that are the projections (under the standard lattice) of the
planes generated by .0; 0; 1/ and .p; q; 0/ for some p and q . Therefore, K.T 3/ is
generated by the images of K.T 2/ under the linear maps induced by the standard
embeddings of T 2 in T 3 .

As said in the proof of Lemma 2.12, the linear map e� induced by any standard
embedding eW T 2 ! T 3 factorizes with the quotient map K.T 2/ ! C.K.T 2//.
Lemma 2.8 applied to the standard embedding e shows that the image e�.K.T

2// is
generated by ¿, three .p; q; r/–type curves lying on e.T 2/, and the skein ˛e that is
equal to the framed link consisting of two parallel copies of any .p; q; r/–type curve
lying on e.T 2/.

Let e1; e2W T
2! T 3 be two standard embeddings. By Lemma 2.13, e1.T

2/\e2.T
2/

contains a .p; q; r/–type curve 
 ; hence ˛e1
and ˛e2

coincide with the framed link
that is two parallel copies of 
 . Therefore, the skein element ˛e does not depend on
the embedding e .

We conclude by using Lemma 2.12, which says that the skein of any .p; q; r/–type
curve is equal to the one of a standard representative of a nonzero element of the first
homology group H1.T

3IZ2/ with coefficient in Z2 , namely a .p; q; r/–type curve
with p; q; r 2 f0; 1g.

Remark 2.15 Theorem 2.14, Lemma 2.8 and Lemma 2.12 work for every base pair
.R;A/ such that A2n� 1 is an invertible element of R for any n > 0. In particular,
they work for .C;A/, where A2n ¤ 1 for any n> 0. Unfortunately, we do not know
what happens with the base pair .C;˙1/, which is the one used for the connection
with the SL2.C/–character variety [3]. In fact, in Lemma 2.8, we would get just trivial
equalities if AD˙1.

2.7 Linear independence

Here we talk about the linear independence of our generators of K.T 2/. The following
proposition shows a direct sum decomposition of K.T 3/.

Proposition 2.16 The skein space K.T 3/ is the direct sum of eight subspaces,

K.T 3/D V0˚V1˚ � � �˚V7;

such that

(1) V0 is generated by the empty set ¿ and the skein ˛ (see Theorem 2.14);
(2) every .p; q; r/–type curve generates a Vj with j > 0, and every Vj with j > 0

is generated by one such curve.
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Proof The skein relations relate framed links in the same Z2–homology class. Hence
for every oriented 3–manifold M , we have a direct sum decomposition

KM.M IR;A/D
M

h2H1.M IZ2/

Vh;

where Vh is generated by the framed links whose Z2–homology class is h. The state-
ment follows by this observation and the fact that if Œp; q; r � and Œp0; q0; r 0� represent
the same Z2–homology class, then Œp; q; r �D Œp0; q0; r 0� 2K.T 3/.

Remark 2.17 Given a triple of integers .x;y; z/¤ .0; 0; 0/ such that x;y; z 2 f0; 1g,
we can easily find an orientation-preserving diffeomorphism of the 3–torus T 3 sending
Œx;y; z� to Œ1; 0; 0�. Hence if the skein of one such curve Œx;y; z� is null, then also all
the other skein elements of such curves are null. Therefore, by Proposition 2.16, the
possible dimensions of the skein space K.T 3/ are 0, 1, 2, 7, 8 and 9.

After the submission of this paper, P Gilmer [6] showed that the skein of the .1; 0; 0/–
curve is not null and that the empty set and the skein ˛ are linear independent. This
answers Question 1.4 in the affirmative by proving that the set of nine generators is
actually a basis for the skein space.
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