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Quasistabilization and basepoint moving maps
in link Floer homology

IAN ZEMKE

We analyze the effect of adding, removing, and moving basepoints on link Floer
homology. We prove that adding or removing basepoints via a procedure called
quasistabilization is a natural operation on a certain version of link Floer homology,
which we call CFL1U V . We consider the effect on the full link Floer complex of
moving basepoints, and develop a simple calculus for moving basepoints on the
link Floer complexes. We apply it to compute the effect of several diffeomorphisms
corresponding to moving basepoints. Using these techniques we prove a conjecture
of Sarkar about the map on the full link Floer complex induced by a finger move
along a link component.

57M25, 57M27, 57R58

1 Introduction

Introduced by Ozsváth and Szabó, Heegaard Floer homology associates algebraic invari-
ants to closed three-manifolds. To a three-manifold Y with embedded nullhomologous
knot K , there is a refinement of Heegaard Floer homology called knot Floer homology,
introduced by Ozsváth and Szabó [8] and independently by Rasmussen [11]. A similar
invariant was defined by Ozsváth and Szabó for links [10].

To a nullhomologous knot K � Y with two basepoints z and w and a relative
Spinc structure t 2 Spinc.Y;K/, Ozsváth and Szabó [8] define a Z ˚ Z–filtered
chain complex CFK1.Y;K; w; z; t/. The Z˚ Z–filtered chain homotopy type of
CFK1.Y;K; w; z; t/ is an invariant of the data .Y;K; w; z; t/.

One of the nuances of Heegaard Floer homology is the dependence on basepoints. In
the case of closed three-manifolds, if w� Y is a collection of basepoints, w 2w and

 is a curve in �1.Y; w/, then one can consider the diffeomorphism �
 resulting from
a finger move along 
 . According to Juhász and Thurston [4], the based mapping class
group MCG.Y; w/ acts on CFı.Y;w; s/ and hence there is an induced map .�
 /� on
the closed three-manifold invariant CFı.Y;w; s/, which is a Z2ŒU �–equivariant chain
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homotopy type. In [14], the author computes the equivariant chain homotopy type of
.�
 /� to be

.�
 /� ' idCŒ
 � ıˆw;

where Œ
 � is the ƒ�.H1.Y IZ/=Tors/ action and ˆw is an analogue of a map appearing
also on link Floer homology, which we describe below.

In this paper, we consider the analogous question about basepoint dependence for
link Floer homology. In link Floer homology, the basepoints are constrained to be
on the link component, so the analogous operation is to consider the map on link
Floer homology induced by a finger move & around a link component, in the positive
direction according to the link’s orientation. Using grid diagrams, Sarkar [13] computes
the map associated to the diffeomorphism & on a certain version of link Floer homology
(the associated graded complex) for links in S3 . For links in arbitrary three-manifolds,
and for the induced map on the full link Floer complex, he conjectures the formula.
We prove his formula in full generality (Theorem B), but before we state that theorem
we will provide a brief description of the complexes and maps which appear.

We will work with a slightly different version of CFL1 than the one which most often
appears in the literature. For a multibased link LD .L;w; z/ inside of Y and a Spinc

structure s 2 Spinc.Y /, we construct a chain complex

CFL1U V .Y;L; s/;

which is a module over the polynomial ring Z2ŒUw;Vz �, generated by variables Uw
with w 2 w and Vz with z 2 z . The module CFL1U V .Y;L; s/ has generators of the
form

x �U I
wV J

z D x �U i1
w1
� � �U in

wn
V j1

z1
� � �V jn

zn

for multi-indices I D .i1; : : : ; in/ and J D .j1; : : : ; jn/, though we identify two vari-
ables Vz and Vz0 if z and z0 are on the same link component. Thus, CFL1U V .Y;L; s/
has a filtration by Zjwj˚ZjLj given by filtering over powers of the variables, where
jLj denotes the set of components of L.

As with the free stabilization maps from [14], to define functorial maps corresponding
to adding or removing basepoints in link Floer homology, we must work with colored
complexes. A coloring .�;P/ of a link with basepoints, .L;w; z/, is a set P indexing
a collection of formal variables, together with a map � W w[ z!P which maps all
z–basepoints on a component of L to the same color. Given a coloring .�;P/ of a
link LD .L;w; z/, we create a Z2ŒUP�–chain complex

CFL1U V .Y;L; �;P; s/:

The powers of the UP variables yield a filtration by ZP , which we call the P–filtration.
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In the context of link Floer homology, analogously to adding or removing a free
basepoint in a closed 3–manifold, one can add or remove a pair of adjacent basepoints,
w and z , on a link component. Some authors refer to this operation as a “special stabi-
lization”. Manolescu and Ozsváth [6] consider certain questions about the operation,
calling it “quasistabilization”, which is the phrase we will use. A full description and
proof of naturality of the operation has not been completed, so we do that in this paper:

Theorem A Suppose z and w are new basepoints on a link LD .L;w; z/, ordered
so that w comes after z , which aren’t separated by any basepoints in w or z . If
� W w[ z!P is a coloring which is extended by � 0W w[ z[fw; zg !P, then there
are P–filtered Z2ŒUP�–chain maps

SCw;z W CFL1U V .Y;L;w; z; �;P; s/! CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/

and

S�w;z W CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/! CFL1U V .Y;L;w; z; �;P; s/;

which are well-defined invariants, up to P–filtered, Z2ŒUP�–equivariant chain homo-
topy. If z comes after w , there are maps SCz;w and S�z;w defined analogously.

Following Sarkar [13], we consider endomorphisms ˆw and ‰z of CFL1U V .Y;L; s/
(ˆi;j and ‰i;j in his notation). We can think of the maps ˆw and ‰z as formal
derivatives of the differential @ with respect to the variables Uw and Vz , respectively.
The maps ˆw and ‰z are invariants of CFL1U V .Y;L; �;P; s/ up to P–filtered chain
homotopy.

The maps ‰z can be thought of as analogues of the relative homology maps A� defined
in [14] for the closed three-manifold invariants, since they play the role in the basepoint
moving maps for link Floer homology that the relative homology maps introduced
in [14] played in the basepoint moving maps for the closed three-manifolds invariants.
Indeed the objects CFL1U V .Y;L; s/ and the maps ‰z and S˙w;z fit into the framework
of a “graph TQFT” for surfaces embedded in four-manifolds with some extra decoration,
similar to the TQFT for bHFL constructed using sutured Floer homology by Juhász [2]
and considered further by Juhász and Marengon [3] for concordances. Such a TQFT
construction for CFL1U V will appear in a future paper.

We finally state Sarkar’s conjecture, cast into the framework of CFL1U V .Y;L; �;P; s/:

Theorem B Suppose that L D .L;w; z/ is a multibased link in an arbitrary 3–
manifold Y and K is a component of L. Suppose that the basepoints on K are
z1; w1; : : : ; zn; wn . Letting & denote the diffeomorphism resulting from a finger move
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around a link component K , the induced map &� on CFL1U V .Y;L; �;P; s/ has the
P–filtered equivariant chain homotopy type

&� ' idCˆK‰K ;

where

ˆK D

nX
jD1

ˆwj and ‰K D

nX
jD1

‰zj :

Sarkar’s conjecture for the effect on the filtered link Floer complex, which we will denote
by CFL1.Y;L; t/ for t a relative Spinc.Y;L/ structure, follows by setting .�;P/ to
be the trivial coloring (ie PDw[ jLj and � W .w[ z/! .w[ jLj/ the natural map)
since the complex CFL1.Y;L; t/ becomes a Z2–subcomplex of CFL1U V .Y;L; �;P; s/
which is preserved by &� , where s is the underlying Spinc structure associated to the
relative Spinc structure t.

There are several other formulations of this conjecture for different versions of link Floer
homology. For example, the conjectured formula for &� on CFK1.S3;K/ for K�S3

is useful for computations in the involutive Heegaard Floer homology theory developed
by Hendricks and Manolescu (see [1, Section 6]). In their notation, for a choice of
diagrams, the complex CFK1.S3;K/ for a knot K � S3 is generated by elements of
the form Œx; i; j � where i and j satisfy A.x/D i � j , and A denotes the Alexander
grading. In their notation, the U map takes the form U � Œx; i; j �D Œx; i � 1; j � 1�.
Again, the complex CFK1.S3;K/ is a Z2–subcomplex

CFK1.S3;K/� CFL1U V .S
3;K; w; z; s0/

which is preserved by &� . Recasting Theorem B into this notation and recalling that
we are using coefficients in Z2 , we arrive at the following:

Corollary C For a knot K�S3 , the involution &� on CFK1.S3;K/ takes the form

&� ' 1CU�1

� X
i;j�0
i odd

@ij

�
ı

� X
i;j�0
j odd

@ij

�
;

if we write the differential @D
P

i;j�0 @ij . Here @ij decreases the first filtration by i

and the second filtration by j .

For other flavors, such as bCFL or CFL� , the formula conjectured by Sarkar also
follows, since those cases correspond to setting various variables equal to zero in the
formula for &� .
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In addition, we consider the effect of another diffeomorphism obtained by twisting
a link component. Suppose that K is a component of a link L and suppose that the
basepoints of K are z1; w1; : : : ; zn and wn , appearing in that order. We can consider
the diffeomorphism � W .Y;L/! .Y;L/ which twists .1=n/th of the way around K .
The diffeomorphism � maps zi and wi to ziC1 and wiC1 , respectively, with indices
taken modulo n. If .�;P/ is a coloring of L which sends all of the w–basepoints on
K to the same color, then � naturally induces an automorphism of

CFL1U V .Y;L; �;P; s/:

Using the techniques of this paper, we can compute the following:

Theorem D Suppose that L is an embedded link in Y , and K is a component of L
with basepoints z1; w1; : : : ; zn and wn , appearing in that order. Assume that n> 1. If
� denotes the diffeomorphism induced by twisting .1=n/th of the way around K , then
for a coloring where all w–basepoints on K have the same color, we have

�� ' .‰z1
ˆw1

‰z2
ˆw2
� � �ˆwn�1

‰zn
ˆwn

/C .ˆw1
‰z2

ˆw2
� � �ˆwn�1

‰zn
/:

Organization In Section 2 we define the complexes which will appear in this paper,
as well as their algebraic structures as P–filtered chain complexes over certain modules.
In Section 3 we define the maps ˆw and ‰z which feature prominently in this paper. In
Sections 5–7 we define quasistabilization maps S˙w;z and show that they are independent
of the choice of diagrams and auxiliary data, proving Theorem A. In Sections 8 and
9 we prove useful relations amongst the maps ‰z , ˆw and S˙w;z . In Section 10 we
compute several maps associated with moving basepoints, proving Theorems B and D.

Acknowledgments I would like to thank my advisor, Ciprian Manolescu, for helpful
conversations, especially about quasistabilization. I would also like to thank Faramarz
Vafaee and Robert Lipshitz for helpful conversations.

2 Background, the complexes CFL1UV , and P–filtrations

In this section we provide some background and describe the complexes CFL1U V .Y;L;s/
which will appear.

2.1 Spinc structures and relative Spinc structures

Ozsváth and Szabó [9] define a Spinc structure on Y to be a homology class of
nonvanishing vector fields on Y . For a Heegaard diagram H D .†;˛;ˇ;w/ they
define a map

swW T˛ \Tˇ! Spinc.Y /:

Algebraic & Geometric Topology, Volume 17 (2017)
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The vector field sw.x/ is obtained by taking an upward gradient-like vector field
associated to a Morse function yielding H , and modifying it in a neighborhood of
the flowlines passing through the points in w and x to obtain a nonvanishing vector
field. Ozsváth and Szabó [10] provide a notion of relative Spinc structures for a link in
a 3–manifold. These are homology classes of vector fields on Y nN.L/ which are
tangent to the torus @N.L/. They define a map

sw;zW T˛ \Tˇ! Spinc.Y;L/:

We note that in general there are two natural ways to obtain an absolute Spinc structure
from a relative Spinc structure. We take the convention that the filling map covers the
map sw (compare [10, Section 3.7]). In more generality, one has sw.x/� sz.x/ D

PDŒL�, so if we restrict to links whose total homology class vanishes, then there is no
distinction. Since we include the versions of link Floer homology which use relative
Spinc structures only for the sake of comparison, whenever we consider relative Spinc

structures, we will assume that Y is a integer homology sphere. We will primarily be
interested in working with the version CFL1U V , which uses absolute Spinc structures.

2.2 The complex CFL1

U V
.Y;L; s/

Here we describe the uncolored complex CFL1U V .Y;L; s/. We first describe an inter-
mediate object, CFL1U V;0.Y;L; s/.

Let Z2ŒUw;U
�1
w ;Vz;V

�1
z � denote the ring generated by variables Uw;Vz and their

inverses U�1
w ;V �1

z for w 2 w and z 2 z . Given a diagram H D .†;˛;ˇ;w; z/ for
.Y;L;w; z/, we define CFL1U V;0.H; s/ to be the free Z2ŒUw;U

�1
w ;Vz;V

�1
z �–module

generated by x 2 T˛ \Tˇ with sw.x/ D s. We refer the reader to eg [10] for the
definition of a Heegaard diagram for a link, though we emphasize that in light of the
results of [4], we must assume that

w[ z�†� Y

and that the embedding of † in Y is part of the data of a Heegaard splitting.

We now define a map

@W CFL1U V;0.H; s/! CFL1U V;0.H; s/

by
@.x/D

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

# �M.�/U
nw.�/
w V

nz.�/
z �y :

The map @ does not square to zero, but we do have the following:

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 2.1 The map @W CFL1U V;0.H; s/! CFL1U V;0.H; s/ satisfies

@2
D

X
K2jLj

.UwK;1
VzK;1

CVzK;1
UwK;2

CUwK;2
VzK;2

C � � �CVzK;nK
UwK;1

/;

where wK ;1; zK ;1; : : : ; wK ;nK
; zK ;nK

are the basepoints on the link component K , in
the order that they appear on K .

Proof This follows from the usual proof that the differential squares to zero, now
just counting boundary degenerations carefully. If there are exactly two basepoints,
there are no boundary degenerations by [10, Theorem 5.5], and the above formula is
satisfied. If there are more than two, then each ˛– and ˇ–degeneration has a unique
holomorphic representative by [10, Theorem 5.5] and each crosses over a w–basepoint
and a z–basepoint. The formula follows.

To get a chain complex, we must color CFL1U V;0.Y;L; s/ by setting certain variables
equal. Let CL denote the ideal generated by elements of the form Vzi

�Vzj , where zi

and zj are in the same link component. We let LD Z2ŒUw;U
�1
w ;Vz;V

�1
z �=CL .

We now define

CFL1U V .H; s/D CFL1U V;0.H; s/˝Z2ŒUw;U
�1
w ;Vz;V

�1
z � L:

We have the following:

Lemma 2.2 The map @ defined above is a differential on CFL1U V .H; s/, ie @2 D 0.

Proof This follows from the formula in Lemma 2.1 since the module L simply
identifies all Vz variables for z which lie in the same link component.

Remark 2.3 There are other modules that we could tensor with to make the differential
square to zero. The module L is actually a quite natural choice. As we will see in the
proof of Proposition 5.3, terms of the form Vz C Vz0 appear in the differential after
quasistabilization, and these terms must be zero for S˙w;z to be chain maps.

The Z2ŒUw;Vz �–module CFL1U V .H; s/ has a natural Zjwj˚ZjLj filtration given by
filtering over powers of the variables Uw and Vz .

There are of course many different Heegaard diagrams H for a given multibased link
.L;w; z/. As in the case of closed three-manifolds, using [4], given two diagrams H
and H0 , there is a Zjwj˚ZjLj–filtered map

ˆH!H0 W CFL1U V .H; s/! CFL1U V .H
0; s/
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which is a filtered chain homotopy equivalence, and is an invariant up to Zjwj˚ZjLj–
filtered chain homotopy. The maps ˆH!H0 are functorial in the sense that if H;H0

and H00 are three diagrams, then

ˆH0!H00 ıˆH!H0 'ˆH!H00 :

The strongest invariant, which we will occasionally refer to as the coherent filtered
chain homotopy type, is the collection of all of the complexes CFL1U V .H; s/ for all
admissible diagrams H for .Y;L;w; z/, as well as the maps ˆH!H0 . We let

CFL1U V .Y;L; s/

denote this invariant. Note that since we are working with embedded Heegaard surfaces,
the set of Heegaard diagrams for a link is a set, and not a proper class.

Remark 2.4 As we remarked earlier, since CFL1U V .Y;L; s/ is generated by intersec-
tion points with sw.x/D s, there is some asymmetry between the w and z basepoints
in the construction of CFL1U V . We note that sw.x/ � sz.x/ D PDŒL�, so if L is
null-homologous, this doesn’t affect the chain complexes. As a toy example, one can
consider .S1�S2;S1�fptg/ to see how the modules change over different choices of s.

2.3 Other versions of the link Floer complex

Supposing for simplicity that Y is an integer homology sphere, we briefly describe
a complex CFL1.Y;L; t/, for a relative Spinc structure t 2 Spinc.Y;L/. It will not
feature in any of the sections after this, but we describe it as a comparison with CFL1U V .
Let �i be a positive meridian of the i th link component. The complex CFL1.Y;L; t/
is defined as the subcomplex of CFL1U V .H; s/ generated over Z2 by elements of the
form x �U I

wV J
z , where

(1) J �PDŒM �D .t� sw;z.x//C I �PDŒM �;

where PD denotes Poincaré duality. Here, if J D .j1; : : : ; j`/, then J � PDŒM � is
defined to be j1 �PDŒ�1�C � � �C j` �PDŒ�`�, and I �PDŒM � is defined similarly.

In the case that L D .K; w; z/ is a knot with exactly two basepoints, we see that
CFL1.Y;K; w; z; t/ is generated by elements of the form x �U i

wV
j

z with

j �PDŒ��D .t� sw;z.x//C i �PDŒ��;

which is exactly the complex CFK1.K; t/ found in [8]. More often one writes Œx; i; j �
for what we write x � U�i

w V
�j

z . Most authors also write U for the action defined
by U � Œx; i; j � D Œx; i � 1; j � 1�, though in our notation this action corresponds
to multiplication by UwVz . It’s also common to consider an object CFK1.Y;K/,
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generated by monomials U i
wV

j
z �x satisfying A.x/D i�j , where A is the symmetrized

Alexander grading.

Given a relative Spinc structure t 2 Spinc.Y;L/, we write

�tW CFL1.Y;L; t/ ,! CFL1U V .Y;L; s/

for inclusion.

As a direct sum of Z2–modules, we have

CFL1U V .H; s/D
M

t2Spinc.Y;L/

CFL1.H; t/:

Write �tW CFL1U V .H; s/! CFL1.H; t/ for the projection onto CFL1.H; t/.

Finally, we note that in CFL1.Y;L; t/ the multi-index J in a monomial U I
wV J

z �x 2

CFL1.Y;L; t/ is determined by the multi-index I , as well as the choice of t. Thus
the full link Floer complex in [10] is described instead as the module generated by
monomials U I

w �x , but with a filtration by Spinc.Y;L/. Given a t 2 Spinc.Y;L/, it is
straightforward to write down an isomorphism of filtered chain complexes between
these two objects.

2.4 Colorings and P–filtrations

As was the case in [14], to define functorial maps it is important to work in a category
of chain complexes over a fixed ring. As the link Floer complexes are modules over a
ring which depends on the link, we need to formally “color” the complexes to make
them modules over a fixed ring. Different choices of base rings will be useful for
different applications, but for a single computation, a single ring must be fixed.

If P is a finite set, we let Z2ŒUP;U
�1
P � denote the ring generated by the formal

variables Up and their inverses U�1
p for p 2P.

Definition 2.5 If P is a finite set, a P–filtered chain complex is a chain complex
with a filtration of ZP , ie if C is a chain complex, then a P–filtration is a collection
of subcomplexes FI � C ranging over I 2 ZP such that if I � I 0 , then FI 0 � FI .
A P–filtered homomorphism is a homomorphism �W C ! C 0 where C and C 0 are
P–filtered with filtrations FI and F 0

I
such that

�.FI /� F 0I :

Definition 2.6 A coloring of a multibased link LD .L;w; z/ in Y is a pair .�;P/
where P is a finite set and � W w[z!P is a map which sends all of the z basepoints
on a given link component to the same color (this condition ensures that the differential
squares to zero).
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If .�;P/ is a coloring of a link LD .L;w; z/, let C�;P denote the module

Z2ŒUw;U
�1
w ;Vz;V

�1
z ;UP;U

�1
P �=I�;P;

where I�;P is the submodule generated by elements of the form Uw � U�.w/ and
Vz �U�.z/ . The colored complex is then defined as

CFL1U V .H; �;P; s/D CFL1U V;0.H; �/˝Z2ŒUw;U
�1
w ;Vz;V

�1
z � C�;P:

Given a coloring .�;P/ of w[z of a link LD .L;w; z/ in Y , the colored complexes
CFL1U V .Y;L; �;P; s/ naturally obtain a P–filtration by powers of the variables Up .
An element of CFL1U V .Y;L; �;P; s/ is uniquely written as a sum of elements of
the form x �U I

P , and given an I 2 ZP we define FI to be the Z2ŒUP�–submodule
generated by x �U J

P with J � I .

Remark 2.7 Asking that a Z2ŒUP�–equivariant map

F W CFL1U V .H; �;P; s/! CFL1U V .H
0; � 0;P; s0/

be P–filtered is just asking that F can be written as

F.x/D
X
I�0

U I
P �HI .x/;

where the maps HI do not involve the UP variables. Most maps which appear in
Heegaard Floer homology are P–filtered. The differential, the triangle maps, the
quadrilateral maps, and the maps ˆw , ˆz and S˙w;z are all P–filtered.

Given an arbitrary coloring .�;P/ of basepoints w[ z , we may not always be able to
define submodules corresponding to relative Spinc structures t. However, if no two
basepoints from distinct link components are given the same color, then one can use
a modification of (1) to define a P–filtered Z2–submodule CFL1.Y;L; �;P; t/. For
our purposes, we just observe that in the case that .�;P/ is the trivial coloring (ie
PDw[ jLj and � is the map sending w 2w to w and z 2 z to the link component
containing it), then CFL1U V .H; �;P; s/ is equal to just CFL1U V .H; s/ and the maps �t
and �t are still defined. The following lemma is essentially trivial, though it is useful for
relating endomorphisms of CFL1U V .Y;L; s/ to endomorphisms of the subcomplexes
CFL1.Y;L; t/:

Lemma 2.8 Suppose that .L;w; z/ is a link in an integer homology sphere Y and
that .�;P/ is the trivial coloring. Suppose f and g are P–filtered Z2ŒUP�–module
endomorphisms of CFL1U V .Y;L; �;P; s/ such that f and g are chain homotopic via
a chain homotopy which is P–filtered on CFL1U V .Y;L; �;P; s/. Then �t ıf ı �t and
�t ıg ı �t are Zjwj˚ZjLj–filtered Z2Œ xUw�–chain homotopic.
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Proof First note that the filtration on CFL1.H; t/ is just the pullback under �t of the
P–filtration on CFL1U V .H; �;P; s/. If f and g are P–filtered chain homotopic, we
have that

f �g D @H CH@

for a P–filtered map H . Pre- and postcomposing with the P–filtered maps �t and �t
yields a Zjwj˚ZjLj–filtered chain homotopy between �tıf ı �t and �tıgı �t because
�t and �t are P–filtered chain maps. The chain homotopy is Z2Œ xUw�–equivariant since
�t and �t are Z2Œ xUw�–equivariant, as we mentioned above (recall that xUw D UwVz ,
where z is any base point on the link component containing z ).

2.5 Why we use the larger CFL1

U V
.Y;L; s/ instead of other versions

We briefly explain why we use the object CFL1U V .Y;L; s/ to prove formulas for
basepoint moving maps, instead of other versions of link Floer homology. In the next sec-
tions, we will define maps ˆw and ‰z , which are endomorphisms of CFL1U V .Y;L; s/.
However, due to the extra factors of U�1

w or V �1
z in the definitions, these do not

preserve CFL1.Y;L; t/ for a relative Spinc structure. Instead they change the relative
Spinc structure by ˙PDŒ��, where � is the meridian of the component containing w
and z (note, however, that the composition ˆw‰z does actually preserve relative Spinc

structure). Although this is not insurmountable, what’s worse is that the maps SCw;z and
S�w;z are not even endomorphisms of the same complex, and since SCw;zS�w;z 'ˆw ,
we know that they can’t preserve relative Spinc structures. Similarly, one could try to
use the version of link Floer homology described in [10] as a Spinc.Y;L/–filtration on
CF1.Y /, but we have the same problem since the map ˆw is not Spinc.Y;L/–filtered.

The solution is clearly to work with the larger complexes CFL1U V .Y;L; s/.

There are also other algebraic advantages to working with CFL1U V .Y;L; s/. For
instance, we can think of ˆw and ‰z as formal derivatives of the differential. Using
our expression for @2 , we can quickly derive many relations between various ˆw and
‰z maps.

3 The maps ˆw and ‰z

We now define maps ˆw and ‰z , which are endomorphisms of CFL1U V .Y;L; �;P; s/.
These are denoted by ˆi;j and ‰i;j in [13]. We define ˆw W CFL1U V .H; �;P; s/!
CFL1U V .H; �;P; s/ by the formula

ˆw.x/D U�1
w

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nw.�/# �M.�/U
nw.�/
w V

nz.�/
z �y ;
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which we can alternatively think of as .d@=dUw/. Similarly we define

‰z.x/D V �1
z

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nz.�/# �M.�/U
nw.�/
w V

nz.�/
z �y ;

which we can alternatively write as .d@=dVz/, where the derivative is taken on CFL1U V;0

(ie before tensoring with the module L and thus setting all of the Vz on a link component
equal to each other).

We have the following (compare [13, Lemma 4.1]):

Lemma 3.1 On CFL1U V .H; s/, we have ˆw@ C @ˆw D 0. Also ‰z@ C @‰z D

UwCUw0 , where w and w0 are the w basepoints adjacent to z .

Proof One takes the derivative of @ ı @ with respect to either Vz or Uw , before one
tensors CFL1U V;0 with L. The map @2 is computed in Lemma 2.1. After tensoring
with L, one immediately arrives at the equalities described above.

In addition, we have the following (compare [13, Theorem 4.2]):

Lemma 3.2 The maps ˆw and ‰z commute with change of diagram maps ˆH1!H2

up to P–filtered, Z2ŒUP�–chain homotopy.

Proof Consider the complex CFL1U V;0 (ie the complex before we set all of the Vz

variables on each link component equal to each other). The differential doesn’t square
to zero, though we can still consider the maps ˆH1!H2

. These can be written as a
composition of maps associated to changing the almost complex structure, triangle
maps (corresponding to ˛– or ˇ–isotopies or handleslides), .1; 2/–stabilization maps,
and maps corresponding to isotoping the Heegaard surface inside of Y via an isotopy
which fixes L. We claim that the maps ˆH1!H2

satisfy

ˆH1!H2
@C @ˆH1!H2

D 0;

even before tensoring with L. The maps ˆH1!H2
are defined as a composition of maps

which count holomorphic triangles (handleslides or isotopy maps), holomorphic disks
with dynamic almost complex structure (change of almost complex structure maps) or
maps which are defined via simple, explicit formulas (stabilization and diffeomorphism).
The maps which associated to .1; 2/–stabilizations and diffeomorphisms obviously
satisfy @�C �@D 0 before tensoring with L. The maps induced by counting disks
with dynamic almost complex structure also satisfy @� C �@ D 0 before tensoring

Algebraic & Geometric Topology, Volume 17 (2017)



Quasistabilization and basepoint moving maps in link Floer homology 3473

with @, since that follows from a Gromov compactness argument. Maps induced by
handleslides or isotopies of the ˛–curves take the form

x 7! F˛0˛ˇ.‚˝x/;

where ‚ is the top-degree generator of a complex CFL�U V .†;˛
0;˛;w; z/ and F˛0˛ˇ

is the map which counts holomorphic triangles. For this to be a chain map before
tensoring with L, it is sufficient that @‚ D 0 before tensoring with L, since the
triangle map

F˛0˛ˇ W CFL�U V;0.†;˛
0;˛;w; z/˝CFL1U V;0.†;˛;ˇ;w; z/

! CFL1U V;0.†;˛
0;ˇ;w; z/

is a chain map by a Gromov compactness argument. We note now that the diagram
.†;˛0;˛;w; z/ represents an unlink embedded in .S1 �S2/#n for some n, and this
unlink has exactly two basepoints per link component. By the differential computation
in Lemma 2.1, the complex

CFL�U V;0.†;˛
0;˛;w; z/

is a chain complex before tensoring with anything, and in particular the homology
group HFL�U V;0.†;˛

0;˛;w; z/, is well defined even before tensoring with anything.
An easy computation shows that if HFL�U V;0;max denotes the subset of maximal homo-
logical grading (here the homological grading is obtained by ignoring the z–basepoints,
and assigning U variables degree �2, and V variables degree 0), then we have an
isomorphism

HFL�U V;0;max.†;˛
0;˛;w; z/Š Z2ŒVz �;

and in particular HFL�U V;0.†;˛
0;˛;w; z/ admits a “generator” ‚ which is distin-

guished by the property of generating the maximally graded subset as a Z2ŒVz �–module.
In particular, @‚D 0 even before tensoring with L, as we needed.

Hence
ˆH1!H2

@C @ˆH1!H2
D 0;

even before tensoring with L. Differentiating with respect to Uw yields that

ˆ0H1!H2
@CˆH1!H2

ˆwCˆwˆH1!H2
C @ˆ0H1!H2

D 0;

immediately implying that ˆH1!H2
ˆwCˆwˆH1!H2

' 0. The only point to check
is that the chain homotopy H Dˆ0H1!H2

is P–filtered and Z2ŒUP�–equivariant. The
equivariance condition is trivial. The filtration condition is also easy to check, since
whenever F has a decomposition with only nonnegative powers of Uw and Vz , the
map .dF=dUw/ also has a decomposition with nonnegative powers of Uw and Vz .
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Remark 3.3 Using the Leibniz rule, we have that

ˆw D
d

dUw
ı @C @ ı

d

dUw
;

as long as Uw doesn’t share the same color as any other basepoint. Similarly ‰z ' 0 if
z doesn’t share the same color with any other basepoint, though in both cases the chain
homotopy H D d=dUw or H D d=dVz is neither P–filtered nor Z2ŒUP�–equivariant.

4 Cylindrical boundary degenerations

We consider holomorphic curves whose boundary is mapped to only the ˛–curves,
or only the ˇ curves. These will be called cylindrical ˛–boundary degenerations or
cylindrical ˇ–boundary degenerations.

We now define cylindrical ˛–boundary degenerations. Suppose that S is a Riemann
surface with d punctures fp1; : : : ;pdg on its boundary. We consider holomorphic
maps

uW S !†� .�1; 1��R

such that the following hold:

(1) u is smooth;

(2) u.@S/� .˛� f1g �R/;

(3) �D ıu is nonconstant on each component of S ;

(4) u�1.˛i �f1g�R/ consists of exactly one component of @S n fp1; : : : ;pdg, for
each i ;

(5) the energy of u is finite;

(6) u is an embedding;

(7) if zi 2 S is a sequence of points approaching a puncture pj , then .�D ıu/.zi/

approaches �1 in the compactification of .�1; 1��R as the unit complex disk
(with the point at 1 identified with �1).

We organize such curves into moduli spaces N .�/ for � 2 �˛
2
.x/, modding out by

automorphisms of the source, as usual. There is an action of PSL2.R/ on N .�/, which
is just the action on the .�1; 1��R coordinate of a disk u, and we denote the quotient
space yN .�/. One defines cylindrical ˇ–boundary degenerations analogously. We now
discuss transversality. In the original setup (singly pointed diagrams and disks mapped
into Symg.†/), a generic almost complex structure J on Symg.†/ in a neighborhood
of Symg.j/ achieves transversality for Maslov index 2 holomorphic ˛–degenerate
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disks [9, Proposition 3.14]. In the cylindrical setup, if a sequence of holomorphic
strips for the almost complex structures considered in [5] has a cylindrical boundary
degeneration in its limit, the boundary degeneration will be j† � jD–holomorphic.
Thus we need transversality for cylindrical boundary degenerations for split almost
complex structures. For the standard proof that @2 D 0 and for the purposes of this
paper, we only need transversality for Maslov index 2 boundary degenerations. Each
of these domains has multiplicity 1 in one component of † n˛, and zero everywhere
else. If uW S !†� .�1; 1��R is a component of a holomorphic curve representing
an element of N .�/ for a � 2 �˛

2
.x/ such that �† ı u is nonconstant, then by easy

complex analysis ujC is injective, where C � @S is the part of S mapping to @D.�/.
Adapting the strategy of perturbing boundary conditions instead of almost complex
structures, as in [5, Proposition 3.9], [9, Proposition 3.9] or [7], for generic choice of
˛–curves, we can thus achieve transversality for Maslov index 2 cylindrical boundary
degenerations.

An important result for our purposes is a count of Maslov index 2 boundary degenera-
tions produced by Ozsváth and Szabó:

Theorem 4.1 [10, Theorem 5.5] Consider a surface † of genus g equipped with a
set of attaching circles ˛D f˛1; : : : ; ˛gC`�1g which span a g–dimensional lattice in
H1.†IZ/. If D.�/� 0 and �.�/D 2, then D.�/DAi for some i , and indeed

# yN .�/D
�

0 .mod 2/ if `D 1;

1 .mod 2/ if ` > 1:

Here Ai denotes a component of † n˛.

5 Preliminaries on the quasistabilization operation

Suppose that LD .L;w; z/ is an oriented link in Y and that w and z are two points,
both in a single component of Ln.w[z/, such that .L;w[fwg; z[fzg/ has basepoints
which alternate between w and z as one traverses the link. We assume that the point
w comes after z according to the orientation of L. In Section 7 we prove invariance
for quasistabilization maps

SCw;z W CFL1U V .Y;L;w; z; �;P; s/! CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/

and

S�w;z W CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/! CFL1U V .Y;L;w; z; �;P; s/;

which are defined up to P–filtered Z2ŒUP�–chain homotopy. Here � 0 is a coloring
which extends � .
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Though it will take several sections to construct the maps and prove they are well
defined, we now summarize that the maps will be defined by the formulas

SCw;z.x/D x� �C

and
S�w;z.x� �

C/D 0; S�w;z.x� �
�/D x;

for suitable choices of Heegaard diagrams and almost complex structures.

To define the quasistabilization map, we use the special connected sum operation
from [6]. There, Manolescu and Ozsváth describe a way of adding new w and z

basepoints to Heegaard multidiagrams. They prove that for multidiagrams with at
least three sets of attaching curves (eg Heegaard triples or quadruples), there is an
identification of certain moduli spaces of holomorphic curves on the unstabilized
diagram and certain moduli spaces of holomorphic curves on the stabilized diagram.
They conjecture an analogous result for the holomorphic curves on a Heegaard diagram
with two sets of attaching curves (ie for the differentials of quasistabilized diagrams),
but only prove the result for grid diagrams using somewhat ad hoc techniques, since
in general they run into transversality issues. We will soon prove Proposition 5.3,
computing the differential on quasistabilized diagrams for appropriate almost complex
structures, showing how to avoid any transversality issues and using no more gluing
technology than is used in showing that @2 D 0 on multipointed diagrams.

5.1 Topological preliminaries on quasistabilization

Suppose that HD .†;˛;ˇ;w; z/ is a diagram for .Y;L;w; z/. Given new basepoints
w; z in the same component of L n .w [ z/, such that w occurs after z , we now
describe a new diagram xHp;˛s

, which depends on a choice of point p 2† and curve
˛s �† n˛ which passes through the point p . For fixed ˛s and p , the diagram xHp;˛s

will be defined up to an isotopy of Y which fixes w[ z[fw; zg and maps L to L.

Given a diagram HD .†;˛;ˇ;w; z/ as above, let A denote the component of † n˛
which contains the basepoints adjacent to w and z on L. Let p2An.˛[ˇ[w[z/ be a
point. If U˛ denotes the handlebody component of Y n† such that the ˛–curves bound
compressing disks in U˛ , then there is a path � in U˛ from p to a point on L between
w and z . Such a curve � is specified up to an isotopy fixing w[ z[ fw; zg which
maps L to L by requiring that � be isotopic in xU˛ to a segment of L concatenated
with an embedded arc on † n˛.

Let N.�/ denote a regular neighborhood of � inside of U˛ such that @N.�/, the
boundary of N.�/ inside of U˛ , satisfies

@N.�/\LD fw; zg:
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Topologically @N.�/ is just a disk, which we denote by D1 . Also let D2 denote
N.�/\†, which we note is also a disk. We can assume that D2\.˛[ˇ[w[z/D¿.
Define

†p D .† nD2/[D1:

The surface †p is specified up to an isotopy which fixes .˛[ˇ [w[ z/. Figure 1
shows the situation schematically.

z w

L

� p
†

z w

L

†p

Figure 1: The path � and the surfaces † and †p

We wish to extend the arc ˛s nD2 over all of D1 to get a curve x̨s on †p . As is
demonstrated in Figure 2, there is not an isotopically unique way to do this relative to
the new basepoints w and z .

z w z w

Figure 2: Different choices of x̨s curve on D1 interpolating ˛s nD2 . There
is a unique isotopy class of such curves such that the resulting x̨s curve on †p

bounds a compressing disk which doesn’t intersect L .

The set of such curves is easily seen to consist of those generated by the images of the
curve on the left in Figure 2 under finger moves of w around z . Fortunately, the arc
˛s nD2 can be extended over D1 uniquely (up to isotopy) by requiring the resulting
curve x̨s �†p to bound a compressing disk in Ux̨ which doesn’t intersect L, where
here Ux̨ denotes the component of Y n†p in which the ˛–curves bound compressing
disks.

Suppose H D .†;˛;ˇ;w; z/ is a diagram, and p 2 † n ˛ is a chosen point, and
let N.p0/ denote a neighborhood of the connected sum point p0 on S2 , which
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intersects ˛0 in an arc and doesn’t intersect ˇ0 . Given a diffeomorphism  W †!†p

which is the identity outside of D2 and an embedding �W S2 nN.p0/! D1 which
sends ˛0 nN.p0/ to x̨s , we can form a diagram

xHp;˛s
D .†p; x̨; x̌;w[fwg; z[fzg/;

where x̨ D ˛[fx̨sg and x̌ D ˇ [f�.ˇ0/g. Such a choice of  and � will be part of
a larger collection of data J which we will consider in the next section and will call
“gluing data”. If we need to emphasize the distinction, we will write x̨ for ˛[fx̨sg,
the curves on †p , and we will write ˛C for ˛[ f˛sg, the curves on †. By abuse
of notation, we will often write ˛s to denote both ˛s � † and x̨s � †p . Similarly,
when no confusion will arise, we will write ˇ0 for both the curve ˇ0 on S2 and the
curve �.ˇ0/ on †p .

p0

˛0

ˇ0

�C

��

w0 z0

m2

m1

n1 n2

Figure 3: The diagram H0 used for quasistabilization, with multiplicities
labeled. The dashed circle denotes where we will perform the neck stretching
in the special connected sum.

5.2 Gluing data and almost complex structures

In [14] the author describes a systematic way of constructing and proving invariance of
maps corresponding to adding or removing a basepoint from a closed 3–manifold. A
key ingredient was a choice of auxiliary data which we call “gluing data” for patching
two almost complex structures together in a systematic way. Here we introduce the
analogous idea for quasistabilization.

Suppose that HD .†;˛;ˇ;w; z/ is a diagram for LD .L;w; z/ and w; z are two new
consecutive basepoints on L with z following w . Suppose p 2An .w[z[˛[ˇ/ is
a distinguished point, where here A denotes the component of † n˛ containing the
basepoints on L adjacent to w and z . Let †p denote the Heegaard surface described
in the previous subsection.
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Definition 5.1 We define gluing data to be a collection

J D . ;Js;Js;0;B;B0; r; r0;p0; �; �/;

where

(1)  W †! †p is a diffeomorphism which is fixed outside of D2 and maps ˛s

to x̨s ;

(2) B �† is a closed ball containing p which doesn’t intersect .w[ z[˛[ˇ/
and such that ˛s \B is a closed arc;

(3) the point p0 2 ˛0 nˇ0 is the connected sum point;

(4) B0 � S2 is a closed ball containing p0 which doesn’t intersect ˇ0 and such
that B0\˛0 is a closed arc;

(5) Js is an almost complex structure on †� Œ0; 1��R which is split on B ;

(6) Js;0 is an almost complex structure on S2 � Œ0; 1��R which is split on B0 ;

(7) r and r0 are real numbers such that 0< r; r0 < 1;

(8) using the unique (up to rotation) conformal identifications of .B;p/ and .B0;p0/

as .D; 0/, where D denotes the unit complex disk, � is an embedding of
S2 n r0 �B0 into r �B �† such that

�.˛0/� ˛s; . ı �/.z0/D z; . ı �/.w0/D w;

and
.r �B/ n �.S2

n r0 �B0/

is a closed annulus;

(9) letting zA;A and A0 denote the closures of the annuli B n �.S2 nB0/, B n r �B

and B0 n r0 �B0 , respectively,

�W zA! S1
� Œ�a; 1C b�

is a diffeomorphism which sends the annulus A to Œ�a; 0� and �.A0/ to Œ1; 1Cb�

and is conformal on A and A0 .

The space of embeddings � is connected since if a denotes the arc on the left side of
Figure 2, the space of diffeomorphisms f W B!B mapping @B[a to itself and fixing
fz; wg is connected. That the space of diffeomorphisms  W †!†p in the definition
is also connected follows for similar reasons.

Gluing data J and a choice of neck length T determines an almost complex structure
J .T / on †p � Œ0; 1��R.
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5.3 Computing the quasistabilized differential

We now wish to compute the differential after performing quasistabilization. We have
the following Maslov index computation:

Lemma 5.2 If �0 is a homology class of disks on H0 , then using the multiplicities in
Figure 3, we have

�.�0/D .n1C n2Cm1Cm2/.�0/:

Proof The formula is easily verified for the constant disk and respects splicing in any
of the Maslov index 1 strips.

Let J denote gluing data as in the previous section, and let J .T / denote the almost
complex structure on xHp;˛s

determined by J for a choice of neck length T . We have
the following:

Proposition 5.3 Suppose that H is a strongly s–admissible diagram and that J is
gluing data with almost complex structure Js on †� Œ0; 1��R. Then xHp;˛s

is also
strongly s–admissible and for sufficiently large T there is an identification of uncolored
differentials (ie before we tensor with L)

@ xHp;˛s ;J .T / D

�
@H;Js

UwCUw0

VzCVz0 @H;Js

�
;

where the basepoints w and z are placed between w0 and z0 on L.

Proof Suppose that ui is a sequence of Maslov index 1 holomorphic curves on xHp;˛s

in a fixed homology class for the almost complex structure J .Ti/ for a sequence
of Ti with Ti!1. From the sequence ui we can extract a weak limit of curves on
the diagrams .†;˛C;ˇ;w; z/ and H0 . Let U† , and U0 denote these collections of
curves. The curves in U† consist of flowlines on .†;˛C;ˇ;w; z/ as well as ˛– and
ˇ–boundary degenerations on .†;˛C/ and .†;ˇ/, and closed surfaces mapped into †.
The holomorphic curves are now allowed to have a puncture along the ˛–boundary
which is mapped asymptotically to p .

We first note that any flowline in the limit (ie a map uW S ! † � Œ0; 1� �R which
maps @S to .ˇ �f0g[˛C�f1g�R such that each component of S has both ˛C and
ˇ components) on the diagram HC D .†;˛C;ˇ;w; z/ must actually be a legitimate
flow line on .†;˛;ˇ;w; z/. This is because if u is any holomorphic curve which is
part of a weak limit of the curves uTi

, then u cannot have a puncture asymptotic to an
intersection point ˛s \ ǰ for ǰ 2 ˇ . Hence if u is part of the weak limit of ui , and
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if S denotes the source of u, then if @S has any points mapped to ˛s , then S must
have boundary component with a single puncture which is mapped to ˛s . Projecting
to Œ0; 1��R, we note that either uj@S attains a local extremum, or u is asymptotic to
both C1 and �1 as one approaches the puncture. If uj@S attains a local extremum,
then one can use the doubling trick to create an analytic function mapping D into D
(where here D D fz W jzj< 1g) which maps D\fim.z/� 0g to D\fim.z/� 0g but
which satisfies f 0.z/ D 0 for some z 2 R, which is impossible by writing down a
local model. The case that u is asymptotic to both C1 and �1 at the puncture is
impossible since u must extend to a continuous function over the punctures. Hence
any such u must be constant in the Œ0; 1��R component, which implies that u cannot
have any portion of @S mapped onto a ˇ–curve. Hence the curves in the weak limit
can be taken to be holomorphic disks on .†;˛;ˇ;w; z/, ˛C– or ˇ–degenerations, or
closed surfaces.

Though not essential for our argument, to avoid “annoying” curves (ie maps into
†� Œ0; 1��R which are constant in the Œ0; 1��R–component) among the ˇ– or ˛C–
degenerations, we observe that by rescaling the Œ0; 1��R component, we could instead
get curves that map into †� .�1; 1��R or †�S2 such that the .�1; 1��R or S2

components are nonconstant. Maps into †�.�1; 1��R are cylindrical ˛C–boundary
degenerations.

We now wish to compute exactly which of the above degenerations can occur in a
weak limit of the sequence ui of Maslov index 1 J .Ti/–holomorphic curves. Assume
without loss of generality that all of the ui are in the same homology class � .

Suppose that U† consists of a collection U 0
†

of curves on .†;˛;ˇ/ (flowlines, bound-
ary degenerations, closed surfaces) and a collection of curves A in .†;˛C;ˇ/ which
have a boundary component which maps to ˛s . As we’ve already remarked, the
collection A consists exactly of cylindrical ˛C–boundary degenerations. Letting �0

†

denote the underlying homology class of U 0
†

, we define a combinatorial Maslov index
for U† by

�.U†/D �.�
0
†/Cm1.A/Cm2.A/C 2

X
D2C.†n˛/;
˛s\DD¿

nD.A/;

where C.† n ˛/ denotes the connected components of † n ˛. By Lemma 5.2 the
Maslov index of U0 satisfies

�.U0/Dm1.�/Cm2.�/C n1.�/C n2.�/:

The formula for �.U†/ does not necessarily count the expected dimension of anything
since we’ve only defined it combinatorially, though we can compute the Maslov index
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�.�/ using these formulas, as follows:

(2) �.�/D �.U†/C�.U0/�m1.�/�m2.�/

D �.�0†/C n1.�/C n2.�/Cm1.A/Cm2.A/C 2
X

D2C.†n˛/
˛s\DD¿

nD.A/:

Each term in this sum is nonnegative, and by assumption the total sum is equal to 1. If
�.�/D 1, we immediately have that nD.A/D 0 for D 2 C.†n˛/, with ˛s \DD¿.
Now �.�0

†
/ does actually count the expected dimension of the moduli space of �0

†
,

and in particular if �0
†

has a representative as a broken curve, we must have �.�0
†
/� 0

with equality if and only if �0
†

is the constant disk.

As a consequence we see that if �.�/D 1, we have that exactly one of �.�0
†
/, n1.�/,

n2.�/, m1.A/ or m2.A/ is equal to 1, and the rest are zero. The cases where n1.�/D1

or n2.�/D 1 are easy to analyze, and those possibilities contribute summands of�
0 Uw
0 0

�
and

�
0 0

Vz 0

�
;

respectively, to @ xHp;˛s
.

We now consider broken curves in the limit with �.�0
†
/D 1 and the remaining terms

zero. In this case we have that m1.A/Dm2.A/D0 (so AD0) and n1.�/Dn2.�/D0.
In this case, we observe that �0

†
is represented by U† and �.�0

†
/D 1, so the limit

cannot contain any boundary degenerations or closed surfaces. Furthermore, by Maslov
index considerations we have that U† consists of a single Maslov index 1 flowline,
which we denote by u† .

We now consider the curves in U0 . There must be a component of U0 which satisfies
a matching condition with u† . Note also that since U† consists only of a single disk
on .†;˛;ˇ/, there cannot be any curves in U0 which have a point on the boundary
mapped to p0 or have a puncture along their boundary which is asymptotic to p0 .

Let u0 denote the component of U0 which satisfies the matching condition

�p.u†/D �
p0.u0/:

In particular, this forces m1.u0/Dm2.u0/. We also have n1.u0/D n2.u0/D 0. Here,
if uW S !†� Œ0; 1��R is a holomorphic disk, �q.u/ is the divisor

.�D ıu/.�† ıu/�1.q/ 2 Symnq.u/.D/:

Any additional components u0
0

of U0 must also satisfy n1.u
0
0
/ D n2.u

0
0
/ D 0 and

also can’t have an interior point or boundary point mapped to p0 , and hence must be
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constant. Hence U0 consists exactly of a holomorphic strip u0 with m2.u0/Dm1.u0/

which satisfies a matching condition with u† , ie .u†;u0/ are prematched strips.

We thus have shown that if �.�0
†
/ D 1, then the weak limit of the curves ui is a

prematched strip, so following standard gluing arguments (see eg [5, Appendix A]),
the count of �MJ .T /.�/ is equal to the count of prematched strips with total homology
class � , for sufficiently large T . If �0 is a homology class of disks in �2.�

C; �C/ or
�2.�

�; ��/, let M.�0;d/ denote the set of holomorphic strips u representing �0 with
�p0.u/ D d . Note that there is a unique homology class of disks �0 2 �2.�

C; �C/

with m1.�0/Dm2.�0/D jd j and n1.�0/D n2.�0/D 0.

We claim that
M.�0;d/� 1 .mod 2/

if m1.�0/Dm2.�0/D jd j and n1.�0/D n2.�0/D 0. We consider a path dt between
two divisors d0 and d1 and consider the 1–dimensional space

MD
G

t2Œ0;1�

M.�0;dt /:

We count the ends of M. There are ends corresponding to M.�0;d0/ and M.�0;d1/.
On the other hand, there are ends corresponding to strip breaking or other types of
degenerations. No curve in the degeneration can have p0 in its boundary, which
constrains any degeneration to be into disks of the form �2.�

C; �C/ or �2.�
�; ��/.

But if any nontrivial strip breaking occurs, the Maslov index of the matching component
drops, contradicting the formula for the Maslov index. Hence the only ends of M
correspond to M.�0;d0/ and M.�0;d1/, implying that

#M.�0;d0/� #M.�0;d1/ .mod 2/:

We now consider a path of divisors dT consisting of k points in Œ0; 1��R spaced at
least T apart which approach the line f0g�R as T !1. Letting T !1, since p0

is not on ˇ0 , we know that the Gromov limit of the curves in M.�0;dT / consists of
k cylindrical ˇ0–degenerations, and a single constant holomorphic strip. Applying
Theorem 4.1, we get that the total count of the boundary ofG

T

M.�0;dT /

is #M.�0;d1/C 1, implying the claim.

Disks which consist of preglued flowlines .u†;u0/ glued together thus provide a total
contribution of �

@H;Js
0

0 @H;Js

�
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to the differential.

We now consider the last contributions to the differential. These correspond to having
D.�0

1
/ D 0 and n1 D n2 D 0, and m1.A/Cm2.A/ D 1. In this case A is an ˛C–

boundary degeneration on .†;˛C;ˇ/. SinceX
D2C.†n˛/
˛s\DD¿

nD.A/D 0;

we have that D.A/ is constrained to one of two domains. For each of the two possible
domains of D.A/, there is exactly one corresponding choice of domain for �0 , the
homology class of U0 , which is just the domain with exactly one of m1 and m2 equal
to 1, and the other equal to zero, and n1 and n2 also zero.

On xHp;˛s
these correspond to exactly two homology classes of disks. We now describe

two strategies to count such disks. The first would be to perform a gluing argument to
glue holomorphic representatives of the bigon on H0 to Maslov index 2 ˛–boundary
degeneration on .†;˛C/ at punctures along their boundaries. As we remarked, one
could rescale the curves so that they were genuine cylindrical ˛C , and by perturbing
the ˛C curves we could achieve transversality since the domains of such curves are
˛–injective. By a gluing argument, one could prove that the count on xHp;˛s

was
equal to the product of the counts for the two pieces, for a sufficiently stretched neck.
Although the author isn’t aware of any obstruction to do this, we will describe another
approach which uses more established gluing results and a nice trick.

Let x be an intersection point on the unstabilized diagram. By our work up to now, there
are two homology classes we have left to count: a disk �z0 2�2.x��

C;x���/ which
goes over z0 once, and a disk �w0 2 �2.x��

�;x��C/, which goes over w0 once. To
count the number of representatives of �w0 and �z0 , we consider the ends of the moduli
spaces associated to certain Maslov index 2 homology classes in �2.x � �

C;x � �C/.
On xHp;˛s

, we consider the two components of †p n x̨ which have boundary along ˛s .
For an intersection point x on the unstabilized diagram, each of these two domains
yields a homotopy class �2.x� �

C;x� �C/. Let us call these homotopy classes Aw0

and Az0 , depending on whether they go over w0 or z0 . Let us consider the ends of the
1–dimensional space of holomorphic disks �M.Aw0/. The ends correspond to boundary
degenerations and strip breaking. By our work so far, for sufficiently stretched almost
complex structure, there is a single domain which can appear as the domain of a Maslov
index 1 homology class with n1 ¤ 0 and which admits a holomorphic representative,
namely the bigon going over w once. Let us call this bigon bw . Hence if a 1-parameter
family of holomorphic disks in �M.Az0/ breaks into a pair of holomorphic disks, one of
them must be have domain equal to bw . This forces the other to have domain Az0�bw ,
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ie the homology class must be �z0 . As no other homotopy classes can appear in strip
breaking, due to our degenerated almost complex structure, we conclude that

# yN .Az0/C # �M.�z0/# �M.bw/D 0;

as the latter count is the number of ends of �M.Az0/. Since # yN .Az0/D1 by Theorem 4.1,
and the bigon certainly has a unique holomorphic representative, we conclude that�M.�z0/D 1 2 Z2 . By an analogous argument, we conclude that �M.�w0/D 1, as well.

With the above count we see that such curves make contributions of�
0 Uw0

0 0

�
and

�
0 0

Vz0 0

�
:

Summing together all of the contributions, we see that the differential takes the form

@ xHp;˛s ;J .T / D

�
@H;Js

UwCUw0

VzCVz0 @H;Js

�
:

Note that we tensor CFL1U V;0.H; s/ with L so that the differential squares to zero.
When we do this, we set Vz DVz0 , and the bottom left entry of the differential vanishes.

Example 5.4 We now briefly give an example which helps to illustrate the technique
we used to count some of the disks appearing in the off-diagonal entries of the differen-
tial. We consider a nested quasistabilization, shown in Figure 4, where we stretch along
the dashed curve on the inside quasistabilization. We haven’t drawn any basepoints in
the figure. We’ve illustrated a homology class A 2 �2.x � �;x � �/ whose domain
is just a component of † n .x̨/ and the ends of �M.A/. We’ve illustrated how the
homology class can split into either pairs of Maslov index 1 disks, or a boundary
degeneration. When we stretch the neck sufficiently, the weak limits argument from
the previous proposition prohibits the middle pair of homology disks from both having
a representative. Hence the boundary of �M.�/ consists of exactly yN .A/ (which has a
unique representative) and �M.b/� �M.�/, where b is a bigon and � 2�2.x��;x��

0/

is one of the disks we were trying to count at the end of the previous proposition.

5.4 Dependence of quasistabilization on gluing data

In this subsection we prove some initial results about quasistabilization and change
of almost complex structure maps. The reader should compare this to [14, Section 6],
where the analogous arguments are presented for free stabilization.
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˛ ˇ

˛s

ˇ0

# yN .A/
(prohibited by degen.)

# �M.b/ � # �M.�/ 0

�M.A/

C C D 0

�
b

Figure 4: An example of the possible strip breaking which can occur for the
homology class A . By degenerating the almost complex structure, our weak
limits argument in the previous proposition rules out the middle degeneration.
This allows us to count the representatives for the Maslov index 1 homology
class � , appearing on the left, which is otherwise hard to count.

Lemma 5.5 Suppose that J is gluing data. Then there is an N such that if T;T 0>N

and if J .T / and J .T 0/ achieve transversality, then

ˆJ .T /!J .T 0/ '

�
1 0

0 1

�
:

The proof is analogous to the proof of [14, Lemma 6.8], using the techniques of
Proposition 5.3. Note that in [14], the upper right entry appeared as a �. Due to the
Maslov index computation in (2), both off-diagonal entries are forced to be zero in our
case. Philosophically this is because quasistabilization is a stronger degeneration than
free stabilization. As in [14], we make the following definition:

Definition 5.6 We say that N is sufficiently large for gluing data J if ˆJ .T /!J .T 0/
is of the form in the previous lemma for all T;T 0 �N . We say T is large enough to
compute S˙w;z for the gluing data J if T >N for some N which is sufficiently large.

Adapting the proofs of [14, Lemmas 6.10–6.16], we have the following:
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Lemma 5.7 If J and xJ are two choices of gluing data with almost complex structures
Js and xJs on †� Œ0; 1��R, respectively, then there is an N such that if T >N and
if J .T / and xJ .T / achieve transversality, then

ˆJ .T /! xJ .T / '

�
Ĵs! xJs

0

0 Ĵs! xJs

�
:

The previous lemma will be used to show that the quasistabilization maps are indepen-
dent of the choice of gluing data.

6 Quasistabilization and triangle maps

In this section we prove several results about quasistabilizing Heegaard triples, which
we will use to prove invariance of the quasistabilization maps. The results for quasista-
bilization of Heegaard triples along a single ˛s curve are established in [6], so we focus
on quasistabilizing a Heegaard triple along two curves, ˛s and ˇs . To compute the
quasistabilization maps S˙w;z , we pick a curve ˛s in the surface †, but there are many
choices of such an ˛s curve, so in order to address invariance of the quasistabilization
maps, we need to show that the maps S˙w;z commute with the change of diagram map
corresponding to moving ˛s to ˛0s , which can be computed using a Heegaard triple
which has been quasistabilized along two curves. Our main result is Theorem 6.5,
which is an analogue of our computation of the differential after quasistabilizing in
Proposition 5.3, but for certain Heegaard triples which we have quasistabilized along
two curves which are allowed to travel throughout the diagram.

6.1 Quasistabilizing Heegaard triples along a single curve

We now consider Heegaard triples which are quasistabilized along a single ˛s curve
which is allowed to run through the diagram. This was first considered in [6]. We
state a result from that paper, which considers the quasistabilized configuration shown
in Figure 5. The result will be useful in showing that the quasistabilization maps are
invariant under ˇ–handleslides and ˇ–isotopies.

Lemma 6.1 [6, Proposition 5.2] Suppose that T D .†;˛;ˇ;
;w; z/ is a strongly
s–admissible triple and suppose that ˛s is a new ˛–curve, passing through the point
p 2†. Let ST˛s ;p denote the Heegaard triple resulting from quasistabilizing along ˛s

at p , as in Figure 5. If J is gluing data, then for sufficiently large T , with the almost
complex structure J .T / we have the following identifications:

FST˛s ;p;xs
.x� � ;y �yC/D

�
FT ;s.x;y/ 0

0 FT ;s.x;y/

�
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where � 2 fxC;x�g D ˛s \ˇ0 and the matrix on the right denotes the expansion into
the upper and lower generator components of ˛s \ˇ0 and ˛s \ 
0 .

˛s

w

z

ˇ0 
0

Figure 5: The version of quasistabilization discussed in Lemma 6.1

6.2 Strong positivity condition for diagrams of .S 1 �S 2/#k

In this subsection we describe a class of simple diagrams for .S1 �S2/#k which we
will use in a technical condition in Theorem 6.5 for quasistabilizing Heegaard triples
along two curves, ˛s and ˇs , passing through a Heegaard triple.

Suppose that .†;˛;ˇ;w/ is a diagram for .S1 �S2/#k such that

j˛i \ ǰ j D

�
1 or 2 if i D j ;

0 if i ¤ j

and that if ˛i\ˇiDfp
�
i ;p

C
i g, then p�i and pCi differ by Maslov grading 1. We do not

assume that the ˛i curves are small isotopies of the ǰ curves. Let �CDpC
1
�� � ��pC

n�1

denote the top graded (partial) intersection point. Assume that j˛n\ˇnj D 2 and write
p�n and pCn for the two points of ˛n\ˇn .

Definition 6.2 Under the same assumptions as the previous paragraph, we say that
.†;˛;ˇ;w/ is strongly positive with respect to pCn if for every nonnegative disk
� 2 �2.�

C �pCn ;y �pCn / we have that

.�� .m1Cm2//.�/D .�� .n1C n2//.�/� 0;

with equality to zero if and only if � is the constant disk. Here m1 , m2 , n1 , n2 denote
the multiplicities adjacent to the point pCn , appearing in the following counterclockwise
order: n1 , m1 , n2 , then m2 .

Note that m1Cm2 D n1C n2 for any disk � 2 �2.x �pCn ;y �pCn /, by the vertex
relations.

We now describe a class of diagrams which are strongly positive at an intersection
point, which will be sufficient for our purposes:
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˛0 ˇ0

w w0

pC
0

p�
0

m1

n1m2
n2

Figure 6: The diagram H0 D .S2; ˛0; ˇ0; w;w
0/ in Lemma 6.3 which is

strongly positive at pC0 , and the multiplicities m1 , n1 , m2 and n2

Lemma 6.3 The diagram H0 D .S
2; ˛0; ˇ0; w;w

0/ in Figure 6 is strongly positive
with respect to pC

0
, the intersection point of ˛0 and ˇ0 with higher relative grading. If

HD .†;˛;ˇ;w/ is a diagram with a distinguished intersection point pCn 2 ˛n \ˇn

where j˛n \ ˇnj D 2, and H0 D .†0;˛0;ˇ 0;w0/ is the result of any of the following
moves, then H0 is strongly positive with respect to pCn if and only if H is strongly
positive with respect to pCn :

(1) .1; 2/–stabilization1;
(2) taking the disjoint union of H with the standard diagram .T2; ˛0; ˇ0; w/ for

.S3; w/;
(3) performing surgery on an embedded 0–sphere fq1; q2g�†n.˛[ˇ/ by removing

small disks from †, and connecting the resulting boundary components with an
annulus with new ˛0 and ˇ0 curves with j˛0\ˇ0j D 2, and which are isotopic
to each other, and homotopically nontrivial in the annulus.

Proof We first note that H0 is strongly positive with respect to pC
0

, because the
Maslov index of any disk is given by

�.�/D .m1Cm2C n1C n2/.�/;

by Lemma 5.2, where m1 , m2 , n1 , n2 are multiplicities appearing in the counter-
clockwise order m1 , n1 , m2 , n2 around pC

0
, as in Figure 6. Hence for any disk � ,

we have
.�� .n1C n2//.�/D .m1Cm2/.�/;

which is certainly nonnegative. For a disk � 2 �2.p
C

0
;pC

0
/ we also have

.m1Cm2/.�/D .n1C n2/.�/;

so the above quantity is positive if and only if � has positive multiplicities.

1If H D .†;˛;ˇ;w/ is a Heegaard diagram for Y , a .1; 2/–stabilization of H is obtained by
taking an embedded torus T2 inside of a 3–ball in Y n † , together with curves ˛0 and ˇ0 with
j˛0 \ ˇ0j D 1 , which bound compressing disks with boundary on † , and letting H0 be the diagram
.† # T2;˛[f˛0g;ˇ [fˇ0g;w/ , where † # T2 is the internal connected sum.
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We now address moves (1)–(3).

Move (1) If H is a diagram, and H0 is the result of .1; 2/–stabilization, there is an
isomorphism

��W �
H
2 .x�pCn ;y �pCn /! �H0

2 .x� c �pCn ;y � c �pCn /;

where c is the intersection of the new ˛– and ˇ–curves. Furthermore,

.�� .n1C n2//.�/D .�� .n1C n2//.���/;

from which the claim follows easily.

Move (2) Suppose H0 is formed from H by taking the disjoint union of H with a
diagram .T2; ˛0; ˇ0; w/. Homology classes on H0 are of the form �tk � ŒT2�, where
� is a homology disk on H . One has

�.� t k � ŒT2�/D �.�/C 2k;

from which the claim follows easily.

Move (3) This move corresponds to surgering on an embedded 0–sphere fq1; q2g �

†n .˛[ˇ[w/. Write ˛0 and ˇ0 for the new curves on the annulus, and f�C
0
; ��

0
g D

˛0 \ ˇ0 . Suppose that y 2 ˛0 \ ˇ0 is a choice of intersection point. We can define
(noncanonically) an injection

�y W �
H
2 .�

C
�pCn ;y �pCn /! �H0

2 .�C � �C
0
�pCn ;y �y �pCn /:

For y D �C
0

, we define ��C
0
.�/ to be the disk on the surgered diagram which has no

change across the curve ˇ0 , but which agrees with the disk � away from the ˛0 and
ˇ0 curves. For y D ��

0
, a map ���

0
can be defined by defining it to be the map �

�
C

0

,
defined above, composed with the map on disks obtained by splicing in a choice of
one of the bigons from �C

0
to ��

0
. An easy computation shows that

.�� .m1Cm2//.��C
0

.�//D .�� .m1Cm2//.�/;

while
.�� .m1Cm2//.���

0
.�//D .�� .m1Cm2//.�/C 1:

Any disk in �2.�
C � �C

0
� pCn ;y � y � pCn / is equal to one which is in the image

of �y , with n �P spliced in, where P is the periodic domain which is C1 in one of the
small strips between ˛0 and ˇ0 , and �1 in the other. We note that

�.P/Dm1.P/Dm2.P/D 0:

From these observations it follows easily that H is strongly positive with respect to pCn
if and only if H0 is.
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Remark 6.4 Suppose HD .†;˛0;˛;w/ is obtained by taking attaching curves ˛ and
letting ˛0 be small Hamiltonian isotopies of the curves in ˛. Let ˛s be a new curve in
† n˛ which doesn’t intersect any ˛0–curves. If ˛0s is the result of handlesliding ˛s

across a curve in ˛, then .†;˛0[f˛0sg;˛[f˛sg;w[fwg/ is strongly positive at pC ,
the intersection point of ˛0s \ ˛s with higher grading. Here w is a new basepoint in
one of the regions adjacent to pC .

Similarly, if HD .†;˛0;˛;w/ is the result of handlesliding a curve in ˛ across another
curve in ˛, and ˛s and ˛0s are two new curves which are Hamiltonian isotopies of
each other, then .†;˛0[f˛0sg;˛[f˛sg;w[fwg/ is strongly positive with respect to
the intersection point of ˛0s \˛s of higher relative grading.

Note that a diagram .†g;˛
0;˛; w/ where the curves in ˛0 are small isotopies of the

curves in ˛ with g.†g/ D j˛
0j D j˛j D g is not a strongly positive diagram at any

point, since Œ†g� represents a positive homology class in �2.�
C; �C/ with

�.Œ†g�/�m1�m2 D 2� 1� 1D 0:

Strongly positive diagrams always have multiple basepoints. The prototypical example
is the one resulting from handlesliding a quasistabilization curve ˛s across an ˛–curve,
as in Figure 7.

†
pC

˛s ˇs

†
pC˛s ˇs

Figure 7: The diagram on the top is strongly positive with respect to the
point pC . The curves ˛s and ˇs are curves on which one could perform
the quasistabilization operation of triangles in Theorem 6.5. The diagram
on the bottom is not, and the nonzero, nonnegative domain of a disk � with
�.�/� .n1C n2/.�/D 0 is shown.
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A more interesting example of a diagram which doesn’t satisfy the strong positiv-
ity condition would be the pair .†;˛0 [ f˛0sg;˛ [ f˛sg;w/ that arises in a triple
.†;˛0[f˛0sg;˛[f˛sg;ˇ [fˇ0g;w/ for handlesliding an ˛ curve across ˛s . Fortu-
nately, such a move is not required in the proof of invariance of the quasistabilization
maps.

6.3 Quasistabilizing Heegaard triples along two curves

We now consider the effect on the triangle maps of quasistabilizing along two curves.
Our analysis follows a similar spirit to the proof of [6, Proposition 5.2]. Suppose that
.†;˛;ˇ;
;w; z/ is a Heegaard triple with a distinguished point

pC 2† n .˛[ˇ [
 [w[ z/:

Suppose also that ˛s and ˇs are choices of curves in †n.˛[w[z/ and .†n.ˇ[w[z/,
respectively, which intersect only at pC and another point p� 2†. We can form the
diagram ST˛s ;ˇs ;pC

, obtained by quasistabilizing along both ˛s and ˇs , simultaneously,
at the point pC . This corresponds to removing a small disk containing pC , and
inserting the diagram shown in Figure 8, with a disk centered around p�

0
removed.

˛0 ˇ0


0

pC0

p�
0

z

w

Figure 8: The diagram we insert into a Heegaard triple diagram T along the
curves ˛s and ˇs to form the diagram ST˛s ;ˇs ;pC

. We cut out the solid circle
marked with p�0 and stretch the almost complex structure along the dashed circle.

Theorem 6.5 Suppose that T D .†;˛;ˇ;
;w; z/ is a Heegaard triple with curves ˛s

and ˇs , intersecting at two points pC and p� , and let ST˛s ;ˇs ;pC
be the Heegaard triple

resulting from quasistabilization, as described above. If .†;˛[f˛sg;ˇ[fˇsg;w[fwg/

is a strongly positive diagram for .S1�S2/#k with respect to pC (Definition 6.2), and
J is gluing data for stretching along the dashed circle, then for sufficiently large T ,
with respect to the almost complex structure J .T /, there are identifications
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FT C
˛s ;ˇs ;pC

;xs;J .T /.‚
C

˛ˇ
�pC

0
;x� � /D

�
FT ;s;J .‚

C

˛ˇ
;x/ 0

0 FT ;s;J .‚
C

˛ˇ
;x/

�
;

where � denotes x˙ 2 ˇ0\ 
0 and the matrix on the right denotes the matrix decompo-
sition of the map based on the decompositions given x˙ and y˙ .

As usual, the argument proceeds by a Maslov index calculation, which we use to put
constraints on the homology classes of holomorphic curves which can appear in a weak
limit as we let the parameter T approach C1. Once we determine which homology
classes of triangles can appear, we can use standard gluing results to explicitly count
holomorphic curves.

˛0 ˇ0


0

m1

m2

n1n2

N1

N2
pC

0

A B

Figure 9: Multiplicities for a triangle on the diagram .S2; ˛0; ˇ0; 
0; w; z/

Lemma 6.6 Suppose  2 �2.x;y; z/ is a homology disk on .S2; ˛0; ˇ0; 
0; w; z/,
shown in Figure 9. Then

�. /D n1C n2CN1CN2:

Proof The formula is easily checked for any of the Maslov index 0 small triangles,
and respects splicing in any Maslov index 1 strip. Since any two triangles on this
diagram differ by splicing in some number of the Maslov index 1 strips, the formula
follows in full generality.

We can now prove Theorem 6.5.

Proof of Theorem 6.5 Suppose that ui is a sequence of holomorphic triangles of
Maslov index 0 representing a class  2 �2.‚

C

˛ˇ
� pC

0
;x � x;y � y/, for almost

complex structure J .Ti/, where Ti is a sequence of neck lengths approaching C1.
Adapting the proof of Proposition 5.3, the limiting curves which appear can be arranged
into three classes of broken holomorphic curves:
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(1) a broken holomorphic triangle u† which represents a homology class  † on
.†;˛;ˇ;
/ which has no boundary components on ˛s or ˇs ;

(2) a broken holomorphic disk u˛ˇ on .†;˛[f˛sg;ˇ [fˇsg/ which represents a
class �˛ˇ 2 �2.‚

C

˛ˇ
�pC;y �pC/, for some y 2 T˛ \T
 ;

(3) a broken holomorphic triangle u0 on .S2; ˛0; ˇ0; 
0/ which represents a ho-
mology triangle  0 2 �2.p

C

0
;x;y/.

We now wish to write down the Maslov index of  in terms of the Maslov indices
and multiplicities of  †;  0 and �˛ˇ . Let m1. � /, m2. � /, n1. � / and n2. � / denote
the multiplicities of a homology curve in the regions surrounding pC or p�

0
, as in

Figure 9. In [12], Sarkar derives a formula for the Maslov index of a homology triangle
� 2 �2.x;y ; z/ which can be computed entirely from the domain D.�/. Writing
DD D.�/, the formula reads

�.�/D e.D/C nx.D/C ny.D/C a.D/:c.D/� 1
2
d;

where d D j˛j D jˇj D j
j. Here a.D/ is defined to be the intersection @D \ ˛
(viewed as a 1–chain), and c.D/ is defined similarly, using the 
–curves. The quantity
a.D/:c.D/ is defined as the average of the four algebraic intersection numbers of a0.D/
and c.D/, where a0.D/ is a translate of a.D/ in any of the four “diagonal directions”. If
s 2 ˛i\ ǰ , then ns.D/ is the average of the multiplicities in the regions surrounding s ,
and if s is a set of such intersection points, then ns.D/ is the sum of the ns.D/ ranging
over s 2 s .

For a homology triangle  2 �2.‚
C

˛ˇ
�pC

0
;x �x;y �y/ which can be decomposed

into homology classes  † , �˛ˇ and  0 as above (as any homology class admitting
holomorphic representatives for arbitrarily large neck length can) we observe that
�. / can be computed by adding up �. †/, �.�˛ˇ/ and �. 0/, then subtracting
the quantities which are over-counted. This corresponds to subtracting

1
2
.m1Cm2C n1C n2/. /;

which is the excess of Euler measure resulting from removing balls centered at pC

and at p�
0

�
note that the Euler measure of a quarter disk is 1

4

�
, and subtracting

2npC.�˛ˇ/D
1
2
.n1C n2Cm1Cm2/.�˛ˇ/;

which is the quantity in the expression

�.�˛ˇ/D e.D.�˛ˇ//C n
‚
C

˛ˇ
�pC

.�˛ˇ/C ny�pC.�˛ˇ/

D e.D.�˛ˇ//C n
‚
C

˛ˇ

.�˛ˇ/C ny.�˛ˇ/C
1
2
.n1C n2Cm1Cm2/.�˛ˇ/
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which does not contribute to �. /. Adding these contributions, we get

(3) �. /D �. †/C�. 0/C�.�˛ˇ/

�
1
2
.n1C n2Cm1Cm2/. /�

1
2
.n1C n2Cm1Cm2/.�˛ˇ/:

Writing  0 2 �2.p
C

0
;x;y/, using the vertex multiplicity relations around p�

0
, it is an

easy computation that

.m1Cm2/. /D .n1C n2/. /:

Note also that mi. 0/Dmi. / and similarly for the multiplicities ni , since we are
grouping all holomorphic curves on .S2; ˛0; ˇ0; 
0/ appearing in the weak limit into
the homology class  0 . Using the Maslov index formula from Lemma 6.6 for  0 , we
get from (3) that

�. /D �. †/C�.�˛ˇ/C .m1Cm2CN1CN2/. 0/

�
1
2
.m1Cm2C n1C n2/. 0/�

1
2
.n1C n2Cm1Cm2/.�˛ˇ/;

which reduces to

(4) �. /D �. †/C .N1CN2/. 0/C�.�˛ˇ/�
1
2
.n1C n2Cm1Cm2/.�˛ˇ/;

since  0 does not have pC as a vertex, so the vertex relations at pC yield

1
2
.n1C n2Cm1Cm2/. 0/D .n1C n2/. 0/D .m1Cm2/. 0/:

We now use the assumption that .†;˛[f˛sg;ˇ [fˇsg;w/ is strongly positive with
respect to pC , and hence

�.�˛ˇ/�
1
2
.n1C n2Cm1Cm2/.�˛ˇ/� 0;

with equality if and only if �˛ˇ is a constant disk. We note that �. †/ � 0, since
 † admits a broken holomorphic representative. Hence the formula for �. / in (4)
can be written as a sum of nonnegative expressions, and hence each must be zero if
�. /D 0. Thus

0D �. /D �. †/D �.�˛ˇ/DN1 DN2:

Note first that this implies that �˛ˇ is a constant disk, since generically there are no
nonconstant, Maslov index 0 disks which admit broken holomorphic representatives.
From here the argument proceeds in a familiar manner. Note that  † is a Maslov
index 0 broken holomorphic triangle, and hence must be a genuine holomorphic triangle,
as nonconstant holomorphic disks, boundary degenerations, and closed surfaces all
have strictly positive Maslov index. Hence, since  † is represented by a holomorphic
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triangle with no boundary components mapped to ˛s or ˇs , we must have m1. /D

m2. /D n1. /D n2. /.

We now claim that this implies that the off-diagonal entries of the matrix representing
the triangle map in the statement are zero. Writing  0 2 �2.p

C

0
;x;y/, and using the

multiplicities in Figure 9, the vertex relations at pC
0

read

ACB D 1;

and hence exactly one of A and B is 1, and the other is 0, since A;B � 0. Since
n1 D n2 D m1 D m2 , we know that by subtracting some number of copies of the

0–boundary degeneration of Maslov index 2 with N1 DN2 D 0, we get a homology
triangle in �2.p

C

0
;x;y/ with N1 , N2 , m1 , m2 , n1 and n2 all zero. There are only

two homology triangles satisfying that condition. One is in �2.p
C

0
;xC;yC/ and the

other is in �2.p
C

0
;x�;y�/, implying that  0 itself must be in one of those sets. Hence

the off-diagonal entries of the matrix are zero.

Since u† is a genuine Maslov index 0 holomorphic triangle, there must be a curve
in u0

0
in the broken holomorphic triangle u0 which matches, ie which satisfies

�pC.u†/D �
p0.u00/:

Recall that if uW S !†�� is a holomorphic map and q 2† is a point, we define

�q.u/D .�� ıu/.�† ıu/�1.q/ 2 Symnq.u/.�/:

Since this in particular forces npC.u†/D np�
0
.u0

0
/, it is easy to see that there can be no

other curves in the broken curve u0 since there are no multiplicities on .S2; ˛0; ˇ0; 
0/

which could be increased without increasing n1 , m1 , n2 , m2 , N1 and N2 while still
preserving the vertex relations. By standard gluing arguments (see eg [5, Appendix A])
the count of prematched triangles2 is equal to the count of holomorphic triangles in
#MJ .T /. † # 0/ for sufficiently large T .

For x and y of the same relative grading (both the top intersection points or both
the lower intersection points), for each k there is a unique homology class  k on
.S2; ˛0; ˇ0; 
0/ in �2.p

C

0
;x;y/ with n1 D n2 D m1 D m2 D k . Thus, adapt-

ing the proof of Proposition 5.3, it is sufficient to count holomorphic triangles on
.S2; ˛0; ˇ0; 
0/ of homology class  k which match a fixed divisor d 2 Symk.�/.
The count of such holomorphic triangles matching d is generically 1 .mod 2/, as can
be seen from a Gromov compactness argument nearly identical to the one done at the

2Recall that a prematched triangle is a pair .u†;u0/ where u† and u0 are holomorphic triangles
representing  † and  0 on .†;˛;ˇ;
/ and .S2; ˛0; ˇ0; 
0/ respectively and �pC.u†/D �

p0.u0
0
/ .
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end of Proposition 5.3. Hence the diagonal entries of the triangle map matrix are as
claimed, completing the proof.

Remark 6.7 Without the “strongly positive” condition, the counts of the previous
theorem are false. The bottom of Figure 7 shows a diagram which is not strongly
positive, along with a Maslov index 1 disk which could appear on .†;˛0;˛/ when we
degenerate. Fortunately such pairs .†;˛0;˛/ don’t appear when proving invariance of
the quasistabilization maps, as we don’t need to handleslide other ˛ curves across ˛s .

7 Invariance of the quasistabilization maps

In this section, we combine the results of the previous section to prove invariance of
the quasistabilization maps:

Theorem A Assume that .�;P/ is a coloring of the basepoints w [ z which is
extended by the coloring .� 0;P/ of the basepoints w[z[fw; zg. The quasistabilization
operation induces well-defined maps

SCw;z W CFL1U V .Y;L;w; z; �;P; s/! CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/

and

S�w;z W CFL1U V .Y;L;w[fwg; z[fzg; �
0;P; s/! CFL1U V .Y;L;w; z; �;P; s/;

which are well-defined invariants up to P–filtered Z2ŒUP�–chain homotopy.

The proof is to construct the maps for choices of Heegaard diagram and auxiliary data,
and show that the maps we describe are independent of that auxiliary data and the
choice of diagram.

If HD .†;˛;ˇ;w; z/ is a diagram for LD .L;w; z/, recall from Section 5.1 that if
A denotes the component of † n ˛ containing the basepoints of .L;w; z/ adjacent
to w and z , then we pick a point p 2A n .˛[ˇ [w[ z/ and a simple closed curve
˛s �A n˛ to form a diagram xHp;˛s

. Let J denote gluing data (see Section 5.2) for
performing the special connected sum operation at p 2 † and p0 2 S2 and gluing
almost complex structures on H and H0 together.

We now define maps

SC
w;z;H;p;˛s ;J ;T W CFL1U V;Js

.H; s/! CFL1U V;J .T /.
xHp;˛s

; s/

and
S�w;z;H;p;˛s ;J ;T W CFL1U V;J .T /.

xHp;˛s
; s/! CFL1U V;Js

.H; s/
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by the formulas
SCw;z;H;p;˛s ;J .x/D x� �C

and
S�w;z;H;p;˛s ;J .x� �

C/D 0; SCw;z;H;p;˛s ;J .x� �
�/D x;

where Js denotes the almost complex structure on † associated to the gluing data J
and T is sufficiently large. Here �C denotes the top-degree intersection point with
respect to the Maslov grading (the grading obtained by using the w–basepoints and
ignoring the z–basepoints).

The maps S˙
w;z;H;p;˛s ;J ;T can be extended to the entire P–filtered chain homotopy-

type invariant by pre- and postcomposing with change of diagram maps and change of
almost complex structure maps. By functoriality of the change of diagrams maps, we get
well-defined maps S˙

w;z;H;p;˛s ;J ;T between the coherent chain homotopy type invari-
ants CFL1U V .Y;L;w; z; �;P; s/ and CFL1U V .Y;L;w[fwg; z[fzg; �

0;P; s/, though
of course we need to show independence from the choices of H , p , ˛s , J and T .

Any diagram xH for .Y;L;w[fwg; z[fzg/ can be connected to one of the form xHp;˛s

for a diagram H and a choice of p and ˛s by a sequence of handleslides and isotopies
of the attaching curves, .1; 2/–stabilizations, and isotopies of Y relative the basepoints
and preserving the link, since we can always find a diagram for the unstabilized link and
quasistabilize it, and any two diagrams for the same multibased link can be connected by
a sequence of Heegaard moves by [4, Proposition 2.37], for example. This is somewhat
unsatisfying since it would be nice to have an actual algorithm for reducing an arbitrary
Heegaard diagram for the quasistabilized link to a quasistabilized diagram, but for our
purposes it is sufficient to know that such a path exists.

We now begin our proof of invariance of the maps S˙w;z . We first address independence
from J and the parameter T . Recalling Lemma 5.5, there is an N such that if
T;T 0 >N we have

ˆJ .T /!J .T 0/ '

�
id 0

0 id

�
:

Hence, as with the free stabilization maps from [14], we define the maps S˙w;z;H;p;˛s ;J
to be between the complexes CFL1Js ;U V .H; s/ and CFL1J .T /;U V .

xHp;˛s
; s/ for any T

greater than any such N .

Lemma 7.1 The maps S˙w;z;H;p;˛s ;J are independent of J and the parameter T .

Proof Lemma 5.5 implies that S˙
w;z;H;p;˛s ;J ;T is independent of T for any T which

is sufficiently large. Let S˙w;z;H;p;˛s ;J denote the common map. Lemma 5.7 implies
that the maps S˙w;z;H;p;˛s ;J are independent of J . We denote the common map from
now on by S˙w;z;H;p;˛s

.
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Lemma 7.2 For a fixed diagram H with fixed p 2 †, the maps S˙w;z;H;p;˛s
are

independent of ˛s .

Proof This follows from the triangle map computation in Theorem 6.5, which allows
one to change the ˛s curve through a sequence of isotopies of the ˛s curve, and
handleslides of the ˛s curve over other ˛–curves, each of which can be realized by
quasistabilizing a Heegaard triple .†;˛0;˛;ˇ;w; z/ along two curves ˛0s and ˛s with
˛0s \˛s D fp

C;p�g, such that .†;˛0[f˛0sg;˛[f˛sg;w/ is strongly positive at pC

(see Remark 6.4). For each of these moves, by Theorem 6.5 the change of diagrams
map can be written as

ˆ
˛[f˛sg!˛

0[f˛0sg

ˇ[fˇsg
D

 
ˆ˛!˛

0

ˇ
0

0 ˆ˛!˛
0

ˇ

!
;

where the curves in ˛0 are small Hamiltonian isotopies of the curves in ˛. Similarly,
by Theorem 6.5 we also have

ˆ
˛[f˛sg!˛

0[f˛sg

ˇ[fˇsg
D

 
ˆ˛!˛

0

ˇ
0

0 ˆ˛!˛
0

ˇ

!
;

completing the proof.

We now let S˙w;z;H;p denote the map S˙w;z;H;p;˛s
for any choice of ˛s . We now prove

independence from the choice of point p 2†.

Lemma 7.3 Given a fixed diagram H , the maps S˙w;z;H;p are independent of the
choice of point p 2†.

Proof Let A denote the component of † n˛ containing the basepoints on L which
are adjacent to w and z . Let p and p0 be two choices of points in A n .ˇ [w[ z/.
Let �t be an isotopy �t W †! † which fixes † nA and maps p to p0 . Recall that
the surfaces †p were well defined up to an isotopy fixing ˛[ˇ [w[ z and mapping
L to L. Extend � D �1 to an isotopy of Y which fixes .† nA/[w[ z[fw; zg and
maps L to L. By definition

.�/�.†p/D†p0 ;

as embedded surfaces. The diffeomorphism � fixes all the curves in ˛, but moves
some of the ˇ–curves which pass through the region A.

Observe the factorizations

(5) ˆ.†;˛;ˇ;Js/!.†;˛;ˇ;��Js/ 'ˆ
˛
��ˇ!ˇ

ı��
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and similarly

ˆ.†p;˛[f˛sg;ˇ[fˇ0g;J .T //!.†p0 ;˛[f��˛sg;ˇ[f��ˇ0g;��J .T //

'ˆ
˛[f��˛sg

.��ˇ/[f��ˇ0g!ˇ[f��ˇ0g
ı��:

Using Theorem 6.5, for sufficiently stretched almost complex structure we can write

ˆ
˛[f��˛sg

.��ˇ/[f��ˇ0g!ˇ[f��ˇ0g
'

 
ˆ˛
��ˇ!ˇ

0

0 ˆ˛
��ˇ!ˇ

!
;

and hence

ˆ
˛[f��˛sg

.��ˇ/[f��ˇ0g!ˇ[f��ˇ0g
ı�� '

 
ˆ˛
��ˇ!ˇ

ı�� 0

0 ˆ˛
��ˇ!ˇ

ı��

!
:

Combining this with (5), we see that for sufficiently large T , we have

ˆ.†p;˛[f˛sg;ˇ[fˇ0g;J .T //!.†p0 ;˛[f��˛sg;ˇ[f��ˇ0g;��J .T //

'

�
ˆ.†;˛;ˇ;Js/!.†;˛;ˇ;��Js/ 0

0 ˆ.†;˛;ˇ;Js/!.†;˛;ˇ;��Js/

�
:

Since this map is upper triangular with diagonal entries equal to the change of diagrams
maps, the change of diagrams maps commute with the maps S˙w;z;H;p and S˙w;z;H;p0
in the appropriate sense. Since any two choices of points p and p0 at which we can
perform quasistabilization are in the region A, we know that the maps on the filtered
chain homotopy invariant CFL1U V induced by S˙w;z;H;p;˛sJ and S˙

w;z;H;p0;��˛s ;��J
are equal. Since we proved invariance from the gluing data J in Lemma 5.7, and we
proved invariance from the curve ˛s in Lemma 7.2, the proof is thus complete.

We let S˙w;z;H denote the map S˙w;z;H;p for any choice of p in the component of †n˛
containing the basepoints of L adjacent to w and z .

Lemma 7.4 If H and H0 are two diagrams for LD .L;w; z/, then the maps S˙w;z;H
and S˙w;z;H0 are filtered chain homotopic.

Proof Suppose that HD .†;˛;ˇ;w; z/ and H0D .†0;˛0;ˇ 0;w; z/ are two diagrams
for .L;w; z/. The diagrams H and H0 are related by a sequence of the following
moves:

(1) ˛– and ˇ–handleslides and isotopies;

(2) (1,2)–stabilizations away from L;

(3) isotopies of † inside of Y which fix w[ z , and map L to L.
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The maps corresponding to ˛– and ˇ–handleslides on the unstabilized diagram H
can be computed using triangle maps. For moves of the ˇ–curves, we simply apply
Lemma 6.1 to see that the maps S˙w;z;H are invariant under ˇ–isotopies and handle-
slides. Theorem 6.5 implies independence under ˛–moves of H for which there are
curves ˛s and ˛0s in †, with top graded intersection point p 2 ˛0s \ ˛s , such that
.†;˛0[f˛0sg;˛[f˛sg;w/ is strongly positive with respect to p . An arbitrary ˛–move
can be realized as a sequence of such moves, along with moves of the point p inside of
the region of † n˛. Since we’ve already shown invariance under each of these smaller
moves, the maps S˙w;z;H are unchanged by handleslides and isotopies of the ˛– and
ˇ–curves.

The maps S˙w;z;H obviously commute with the .1; 2/–stabilization maps.

We now consider isotopies �t W Y ! Y which fix w[ z and map L to L. We note
that tautologically we have that

�� ıS˙w;z;H;p;J D S˙w;z;��H;��p;��J ı��:

Since we already know that S˙w;z;H;p;J is independent from p and J , we thus conclude
that S˙w;z;H and S˙

w;z;��H
agree.

We can now write S˙w;z for the quasistabilization maps, completing the proof of
Theorem A.

Remark 7.5 Given that the triangle map computations in Lemma 6.1 and Theorem 6.5
showed that change of diagrams maps were not only upper triangular, but diagonal,
one may ask why it is natural to define SCw;z by x 7! x � �C and not x 7! x � �� .
We remark that x 7! x� �� is only a chain map when w is given the same color as
the other w–basepoint adjacent to z , and indeed x 7! x��� is equal to ‰zSCw;z . The
map ‰z is only a chain map if the w–basepoints adjacent to z have the same color.

Remark 7.6 We have defined quasistabilization maps S˙w;z in the case that w comes
after z and showed that such maps were invariants, ie that they yielded well-defined
maps S˙w;z on the coherent filtered chain homotopy type invariant. These maps were
only constructed if w came after z on the link component. In the case that z comes
after w , we can define quasistabilization maps S˙z;w analogously, picking a choice
of ˇs . We could call such an operation ˇ quasistabilization. There is no ambiguity
between ˛ quasistabilizations or ˇ quasistabilizations because S˙w;z is always an ˛
quasistabilization and S˙z;w is always a ˇ quasistabilization.
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8 Commutation of quasistabilization maps

In this section we show that if fw; zg\ fw0; z0g D¿, then the maps S˙w;z and S˙w0;z0
all commute. In [14] we showed that the free stabilization maps commute, though
commutation was easier to show in that setting, since we could just pick a diagram and an
almost complex structure where both free stabilization maps could be computed, and by
simply looking at the formulas, one could observe that the maps commuted. In the case
of quasistabilization, we cannot always pick an almost complex structure which can be
used to compute both maps. Nevertheless, we can compute enough components of the
change of almost complex structure map to show that quasistabilization maps commute:

Theorem 8.1 Suppose that .L;w; z/ is a multibased link in Y 3 and that w; z; w0

and z0 are new basepoints such that .w; z/ and .w0; z0/ are each pairs of adjacent
basepoints on .L;w[fw;w0g; z[fz; z0g/. Then

Sı1w;z ıS
ı2
w0;z0 ' S

ı2
w0;z0 ıSı1w;z

for any ı1; ı2 2 fC;�g.

Pick a diagram .†;˛;ˇ;w; z/ for .L;w; z/, and let ˛s and ˛0s be curves in † n ˛
along which we can perform quasistabilization for .w; z/ and .w0; z0/, respectively.
Let ˇ0 and ˇ0

0
denote the new ˇ–curves. Let J denote gluing data for stretching along

circles bounding ˇ0 and ˇ0
0

. There are two distinct cases to consider, corresponding
to whether the pairs .w; z/ and .w0; z0/ are adjacent or not: either ˛s and ˛0s lie in the
same component of † n˛ (this case corresponds to having the pair .w; z/ be adjacent
to the pair .w0; z0/), or ˛s and ˛0s lie in different components of † n ˛ (this case
corresponds to the pair .w; z/ not being adjacent to .w0; z0/).

The first case is the easier to consider. In this case, we now show that we can pick an
almost complex structure which computes both quasistabilization maps. To this end,
we have the following lemma:

Lemma 8.2 Suppose that .†;˛;ˇ;w; z/ is a diagram as in the previous paragraph
with new curves ˛s and ˛0s for quasistabilizing at .w; z/ and .w0; z0/, respectively. If
˛s and ˛0s are not in the same component of † n˛, then for all sufficiently large T1 ,
T 0

1
, T2 , T 0

2
, we have

ˆJ .T1;T
0
1
/!J .T2;T

0
2
/ ' id

with respect to the obvious identification between the two complexes.
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Proof To show this, we will perform a computation similar to the one in Proposition 5.3,
but for Maslov index 0 disks. Let A be the component of † n˛ which contains ˛s

and let A0 denote the component of †n˛ which contains ˛0s . By assumption A¤A0 .
Let A1 and A2 denote the two components of A n ˛s . Let A0

1
and A0

2
denote the

components of A0 n ˛0s . Suppose that � is a Maslov index 0 homology disk on the
doubly quasistabilized diagram

.†;˛[f˛s; ˛
0
sg;ˇ [fˇ0; ˇ

0
0g;w[fw;w

0
g; z[fz; z0g/:

Write � D �† #�0 #�0
0

, where �† is a homology class on .†;˛[f˛s; ˛
0
sg;ˇ;w; z/,

�0 is a homology class on .S2; ˛0; ˇ0; w; z/ and .S2; ˛0
0
; ˇ0

0
; w; z/. Suppose that

T1;n , T 0
1;n

, T2;n and T 0
2;n

are sequences of neck lengths all approaching C1 and
let �Jn denote interpolating almost complex structures between J .T1;n;T

0
1;n
/ and

J .T2;n;T
0
2;n
/. Pick �Jn so that as n!1 the almost complex structures �Jn split into

Js_JS2_JS2 on .†_S2_S2/�Œ0; 1��R. If un is a sequence of Maslov index 0 �Jn–
holomorphic curves representing � , we can extract a weak limit to broken curves U† ,
U0 and U 0

0
on .†;˛[f˛s; ˛

0
sg;ˇ;w; z/, .S

2; ˛0; ˇ0/ and .S2; ˛0
0
; ˇ0

0
/ representing

�†; �0 and �0
0

respectively. As in Proposition 5.3, the curves in U† consist of a broken
holomorphic strip U 0

†
on .†;˛;ˇ/ and a collection A of cylindrical .˛[f˛sg[f˛

0
sg/–

boundary degenerations. Let �0
†

denote the underlying homology class of U 0
†

. Let
m1 , m2 , n1 , n2 , m0

1
, m0

2
, n0

1
and n0

2
be multiplicities as in Figure 10.

˛s ˛0s

ˇ0 ˇ0
0

w z w0 z0

n1 n2 n0
1

n0
2

m1 m2 m0
1

m0
2

Figure 10: Multiplicities of a disk � near new basepoints w; z; w0 and z0 on
a diagram which has been quasistabilized twice

Adapting the Maslov index computation from Proposition 5.3, we see that

�.�/D �.�0†/C n1.�/C n2.�/C n01.�/C n02.�/

Cm1.A/Cm2.A/Cm01.A/Cm02.A/C 2
X

D2C.†n˛/
D¤A

nD.A/;

where C.† n˛/ denotes the connected components of † n˛.
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Since U 0
†

is a broken holomorphic curve for an R–invariant almost complex structure,
we conclude that U 0

†
consists only of constant flowlines. Since all of the other sum-

mands are zero, it’s easy to see that this forces all multiplicities to be zero. Hence only
constant disks are counted by the change of almost complex structures map, concluding
the proof of the lemma.

In the case that ˛s and ˛0s are in the same component, the change of almost complex
structure maps will often be nontrivial. Nevertheless, we have the following:

Lemma 8.3 Suppose .w0; z0/ and .w; z/ are adjacent on .L;w[fw;w0g; z[fz; z0g/
and that .w0; z0/ comes after .w; z/. Let �˙ and .� 0/˙ denote the intersection points
corresponding to quasistabilization. If T1 , T 0

1
, T2 , T 0

2
are all sufficiently large, then,

writing F DˆJ .T1;T
0
1
/!J .T2;T

0
2
/ , we have

F.x� �C � .� 0/C/D x� �C � .� 0/C;

F.x� �C � .� 0/�/D x� �C � .� 0/�CC �x� �� � .� 0/C;

F.x� �� � .� 0/C/D x� �� � .� 0/C;

F.x� �� � .� 0/�/D x� �� � .� 0/�

for some C (which is not independent of Ti and T 0i ).

Proof We proceed similarly to the previous lemma. Now a single component, which
we denote by A, of †n˛ contains both ˛s and ˛0s . Write A1;A2 and A3 for the three
different components of A n .˛s [ ˛

0
s/. Two of the Ai share boundary with exactly

one of the other Aj , and one of the Ai shares boundary with both of the other Ai .
Without loss of generality assume that A1 shares boundary with A2 , and that A2 also
shares boundary with A3 .

As before, as we simultaneously stretch the necks, a sequence of Maslov index 0
disks ui has a weak limit as before. Now, however, the Maslov index computation is
different. Let ai.A/ denote the multiplicity of the .˛[f˛sg[ f˛

0
sg/–degeneration A

in the region Ai . One computes that the Maslov index now satisfies

�.�/D�.�0†/Cn1.�/Cn2.�/Cn01.�/Cn02.�/Ca1.A/Ca3.A/C2
X

D2C.†n˛/
D¤A

nD.A/:

As usual, this implies that all of the terms above are zero. Hence �0
†

, which has a
broken representative for a cylindrical almost complex structure, must be the constant
disk by transversality. The only multiplicities which may be nonzero are a2.A/,
mi.�/ and m0i.�/, none of which appear in the sum above. As is easily observed, this
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constrains the disk � to be in �2.x � �
C � .� 0/�;x � �� � .� 0/C/, completing the

proof. An example of a disk which might appear in the change of almost complex
structure map is shown in Figure 11.

�C

ˇ0

˛s

ˇ00

˛0s
.� 0/C

z0 w0 z00z w

Figure 11: An example of a Maslov index 0 disk which might be counted by
ˆJ .T1;T

0
1
/!J .T2;T

0
2
/ in Lemma 8.3 for arbitrarily large Ti and T 0i

Proof of Theorem 8.1 The proof is easy algebra in all cases using Lemmas 8.2
and 8.3.

9 Further relations between the maps ‰z;ˆw and S˙w;z

In this section we prove several relations between the maps S˙w;z , ‰z and ˆw . We
highlight the convenience of viewing ˆw and ‰z as formal derivatives of the differen-
tial, since basically all of the relations in this section are derived by either formally
differentiating the expression for @ ı @ from Lemma 2.1, or by differentiating our
expression of the quasistabilized differential in Proposition 5.3.

Lemma 9.1 If w and z are not adjacent, or if w and z are the only basepoints on a
link component, then

ˆw‰zC‰zˆw ' 0:

If w and z are adjacent and there are other basepoints on the link component, then

ˆw‰zC‰zˆw ' id :

Proof Take the expression for @2 from Lemma 2.1 and differentiate it with respect
to Uw . We obtain

@ˆwCˆw@D Vz0 CVz00 ;
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where z0 and z00 are the variables adjacent to w on its link component. Suppose first
that z0 ¤ z00 , ie that w and z are not the only basepoints on their link component.

Differentiating the expression above with respect to Vz , we see that

‰zˆwCˆw‰z '

�
id if w is adjacent to z;

0 if w is not adjacent to z;

from which the claim follows as long as w and z are not the only basepoints on their
link component.

If w and z are the only basepoints on their link component, then z D z0 D z00 and the
argument above is easily modified to give the stated result.

Lemma 9.2 We have

‰z‰z0 C‰z0‰z ' 0 and ˆwˆw0 Cˆw0ˆw ' 0

for any choice of z , z0 , w and w0 .

Proof This is proven identically to the previous lemma.

As with the free stabilization maps in [14], we have the following:

Lemma 9.3 The following relation holds:

SCw;zS�w;z Dˆw:

Proof The differential on the uncolored quasistabilized diagram takes the form

@ xH D

�
@H UwCUw0

VzCVz0 @H

�
where @H is the differential on the unstabilized diagram. After taking the Uw derivative
we get

ˆw D

�
0 id
0 0

�
;

which is exactly SCw;zS�w;z .

We now consider commutators of the quasistabilization maps and the maps ˆw and ‰z .

Lemma 9.4 Suppose that w and z are two new basepoints for a link. If w is not
adjacent to z0 , then

S˙w;z‰z0 C‰z0S
˙
w;z ' 0:

With no assumptions on adjacency, we have

S˙w;zˆw0 Cˆw0S
˙
w;z ' 0:
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Proof Suppose that w and z are inserted between basepoints z00 and w00 on the
link L. The quasistabilized differential takes the form

@ xH D

�
@H UwCUw00

VzCVz00 @H

�
;

by Proposition 5.3. By assumption z0 ¤ z00 . Differentiating with respect to Vz0 thus
yields

z‰z0 D

�
‰z0 0

0 ‰z0

�
;

where z‰z0 denotes the map on the stabilized diagram and ‰z0 denotes the map on the
unstabilized diagram. In matrix notation, the maps S˙w;z take the form

(6) SCw;z D

�
id
0

�
and S�w;z D

�
0 id

�
:

The stated equality involving ‰z0 now follows from matrix multiplication.

The equality involving ˆw0 follows similarly.

We also have the following:

Lemma 9.5 Suppose that z0 is adjacent to w and that z0 ¤ z . Then we have

SCw;z‰z0 ' .‰z0 C‰z/S
C
w;z and ‰z0S

�
w;z ' S�w;z.‰z0 C‰z/:

Proof Once again we consider the quasistabilized differential, which is

@ xH D

�
@H UwCUw0

VzCVz0 @H

�
:

Differentiating with respect to z0 yields

z‰z0 D

�
‰z0 0

id ‰z0

�
and z‰z D

�
0 0

id 0

�
:

Here z‰z denotes the map on the complex after quasistabilization, and ‰z denotes the
map on the complex before quasistabilization. Using the matrix notation from (6), the
desired relations follow from matrix multiplication.

The reader can compare the following lemma to [14, Lemma 7.7], the analogous result
for the closed three-manifold invariants.
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Lemma 9.6 Suppose that LD .L;w; z/ is a multibased link in Y 3 and w and z are
two new, consecutive basepoints on L such that w follows z . If z0 is one of the two
z–basepoints adjacent to w , then we have

S�w;z‰z0S
C
w;z ' id :

Proof This follows from our usual strategy. Pick a diagram H for .L;w; z/ and let
xH denote a diagram which has been quasistabilized at w and z . Let z00 and w00 denote
the basepoints adjacent to w and z on L. Using Proposition 5.3, we have that

@ xH D

�
@H UwCUw00

VzCVz00 @H

�
:

By assumption, either z0 D z or z0 D z00 (but not both). In both cases, we have that

‰z0 D

�
d

dVz0
@ xH

�
D

�
� �

id �

�
;

where the � terms are unimportant. Using the matrix notation from (6), we get the
desired equality immediately from matrix multiplication.

The reader should compare the following to [13, Lemma 4.4].

Lemma 9.7 We have ‰2
z ' 0 and ˆ2

w ' 0 as P–filtered maps of Z2ŒUP�–modules.

Proof The proof follows identically to the proof of [14, Lemma 14.19].

10 Basepoint moving maps

In this section, we compute several basepoint moving maps. The procedure for comput-
ing maps induced by moving basepoints is in a similar spirit to the author’s computation
of the �1–action on the Heegaard Floer homology of a closed three-manifold in [14].
We first compute the effect of moving basepoints along a small arc on a link component
via a model computation. We then use this to prove Theorem B, the effect of moving
all of the basepoints on a link component in one full loop. The final computation is
Theorem D, where we compute the effect on certain colored complexes of moving
each w–basepoint to the next w–basepoint, and moving each z–basepoint to the next
z–basepoint.

10.1 Moving basepoints along an arc

Suppose that Y 3 is a three-manifold with embedded multipointed link L0D.L;w0; z0/,
though we allow the case that one of the components of L0 has no basepoints. Suppose
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that z; w; z0; w0 are all points on a single component of L n .w0[ z0/, appearing in
that order according to the orientation of L. Let

wDw0[fwg; zD z0[fzg; w0 Dw0[fw
0
g; z0 D z0[fz

0
g:

Finally, assume that .L;w; z/ has basepoints in each component of L. There is an
isotopically unique diffeomorphism of Y which maps L to itself and fixes w0[z0 and
maps w to w0 and z to z0 , which is isotopic to the identity relative to w0[z0 through
isotopies which map L to itself. Let &0 denote this diffeomorphism. It induces a map

.&0/�W CFL1U V .Y;L;w; z; s/! CFL1U V .Y;L;w
0; z0; s/:

The map .&0/� is defined as a tautology. That is, if HD .†;˛;ˇ;w; z/ is a diagram
for .Y;L;w; z/ with almost complex structure Js , we just apply the map &0 to the
diagram H to get a new diagram

&0.H/D .&0.†/; &0.˛/; &0.ˇ/; &0.w/; &0.z//;

with almost complex structure .&0/�Js . The diffeomorphism &0 tautologically deter-
mines a chain map

.&0/�W CFL1U V;Js
.H; s/! CFL1U V;&0.Js/

.&0.H/; s/

defined by
.&0/�.x/D &0.x/:

By the naturality results of [4], this yields a well-defined morphism on the coherent
chain homotopy type invariants (ie it commutes with change of diagrams maps, in the
appropriate sense).

Note that .&0/� “appears” like the identity map since it just maps an intersection
point x to its image under &0 . With this in mind, we prove the following:

Lemma 10.1 The induced map .&0/� is filtered chain homotopic to

.&0/� ' S�w;z‰z0S
C
w0;z0 :

Proof We first prove the result in the case that the link component containing w
and z has at least one extra pair of basepoints. Let z00 denote the basepoint occurring
immediately after w0 . In this case, we can pick a diagram like the one shown in
Figure 12, where the dashed lines show two circles along which the almost complex
structure will be stretched. In this diagram, we assume that ˛s and ˛0s each bound disks
on † and that ˛s , ˛0s , ˇ0 and ˇ0

0
do not intersect any other ˛– or ˇ–curves. With this

diagram, we can compute all of the maps ‰z0 ;S
�
w;z , and SCw0;z0 explicitly. We must be
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careful, though, since we cannot use the same almost complex structure for all of the
maps. Instead we will need to use the change of almost complex structure computation
from Lemma 8.3. Let Js be an almost complex structure which is sufficiently stretched
along c to compute S˙w;z , and let J 0s be an almost complex structure which is sufficiently
stretched along c0 to compute S˙w0;z0 , and assume that both are stretched sufficiently
so that the change of almost complex structure map ˆJ 0s!Js

takes the form described
in Lemma 8.3. We wish to compute S�w;z ı‰z0 ıˆJ 0s!Js

ıSCw0;z0 .

Let �˙ denote the intersection points of ˛s \ˇ0 and let .� 0/˙ denote the intersection
points of ˛0s and ˇ0

0
.

˛s

˛0s
ˇ0

ˇ0
0

.� 0/C

�C

z w z0 w0 z00

c c0

Figure 12: A diagram for Lemma 10.1 when we have another basepoint z00

on the link component containing w; z; w0 and z0 . The curves ˛s and ˛0s
each bound disks, and ˛s; ˛

0
s; ˇ0; ˇ

0
0

do not intersect any other ˛– or ˇ–
curves.

Using the analysis in Proposition 5.3, we see that for Js there are exactly two domains
which are the domain of Maslov index 1 disks � which support holomorphic represen-
tatives with nz0.�/ > 0. These domains are shown in Figure 13. Also every homology
disk � which has one of these domains has # �MJs

.�/D 1.

We wish to show that S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0 D .&0/� , where &0 is the diffeo-

morphism induced by simply pushing w and z to w0 and z0 , respectively. To this end,
it is sufficient to show that

.S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0/.x� �

˙/D x� .� 0/˙;

since .&0/�.x� �
˙/D x� .� 0/˙ .

Homology disks with the left domain in Figure 13 yield a contribution to ‰z0 of

x� �˙ � .� 0/C �! x� �˙ � .� 0/�:

Homology disks with the right domain in Figure 13 yield a contribution to ‰z0 of

x� �C � .� 0/˙ �! x� �� � .� 0/˙:
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˛s

˛0s
ˇ0

ˇ0
0

.� 0/C
�C

z w z0 w0 z00

c

˛0s

˛s

ˇ0

ˇ00

.� 0/C
�C

z w z0 w0 z00

c

Figure 13: The two domains contributing to ‰z0 in Lemma 10.1 for the
almost complex structure Js stretched first on c0 , and then stretched on c

(possibly much more than on c0 ). Also drawn in are two examples of holo-
morphic disks with those domains.

We first compute .S�w;z ı‰z0 ıˆJ 0s!Js
ı SCw0;z0/.x � �

C/. Using the computation
of ‰z0 above and the computation of ˆJ 0s!Js

from Lemma 8.3, we have that

.S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0/.x� �

C/D .S�w;z ı‰z0 ıˆJ 0s!Js
/.x� �C � .� 0/C/

D .S�w;z ı‰z0/.x� �
C
� .� 0/C/

D S�w;z.x� �
C
� .� 0/�Cx� �� � .� 0/C/

D x� .� 0/C:

We now compute .S�w;z ı ‰z0 ı ˆJ 0s!Js
ı SCw0;z0/.x � �

�/. Once again using our
previous computation of ‰z0 and Lemma 8.3, we have that

.S�w;z ı‰z0 ıˆJ 0s!Js
ıSCw0;z0/.x� �

�/D .S�w;z ı‰z0 ıˆJ 0s!Js
/.x� �� � .� 0/C/

D .S�w;z ı‰z0/.x� �
�
� .� 0/C/

D S�w;z.x� �
�
� .� 0/�/

D x� .� 0/�;

completing the proof of the claim if w and z each have at least two basepoints on L.
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We now consider the case that L doesn’t have any basepoints other than w and z . In
this case we just introduce two new basepoints w00; z00 which are on the component of
L n fw;w0; z; z0g which goes from w0 to z . Note that &0 is isotopic relative to fw; zg
to a diffeomorphism which fixes w00 and z00 . Hence .&0/�S

�
w00;z00 D S�w00;z00.&0/� . We

just compute that

.&0/� ' .&0/�.S
�
w00;z00‰z00S

C
w00;z00/ (Lemma 9.6)

' S�w00;z00.&0/�‰z00S
C
w00;z00 (observation above)

' S�w00;z00.S
�
w;z‰z0S

C
w0;z0/‰z00S

C
w00;z00 (previous case)

' .S�w;z‰z0S
C
w0;z0/.S

�
w00;z00‰z00S

C
w00;z00/ (Theorem 8.1, Lemma 9.4)

' S�w;z‰z0S
C
w0;z0 (Lemma 9.6)

as we wanted.

10.2 Sarkar’s formula for moving basepoints in a full twist around
a link component

In this section, we prove Theorem B, which is Sarkar’s conjectured formula for the effect
of moving basepoints on a link component in a full twist around the link component for
the full link Floer complex. The main technical tool is Lemma 10.1, which computes
the effect of moving basepoints on a small arc on a link component. By writing the
diffeomorphism of a full twist as a composition of many smaller moves of the previous
form, we will obtain Sarkar’s formula.

Theorem B Suppose & is the diffeomorphism corresponding to a positive Dehn
twist around a link component K of L. Suppose that the basepoints on K are
w1; z1; : : : ; wn; zn . The induced map &� on CFL1U V .Y;L; �;P; s/ has the P–filtered
Z2ŒUP� chain homotopy type

&� ' idCˆK‰K ;

where

ˆK D

nX
jD1

ˆwj and ‰K D

nX
jD1

‰zj :

To the reader who is not interested in colorings, we note that one can just take PD

w[ jLj, where jLj denotes the components of L.

In this section, we also introduce some new formalism to make the computation easier.
The maps ‰z0 and S˙w;z interact strangely (eg Lemma 9.5), which leads to challenging
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and messy algebra if we are not careful. Suppose that A is an arc on L between two
w–basepoints which share the same color. We define the map

‰A D

X
z2A\z

‰z :

The maps ‰A can be thought of as defining an action of

ƒ�H1.L=.w; �/IZ/

on CFL1U V .Y;L; �;P; s/, where L=.w; �/ denotes the space obtained by identifying
two w–basepoints if they share the same color. This formalism is intriguing, but we
will only have use for maps ‰A for arcs A between w–basepoints of the same color.

Given an arc A between two w–basepoints, we define an endpoint of A to be a
basepoint w such that the sets K nA and xA both contain w (so A has no endpoints if
ADK ).

We now proceed to prove some basic properties of the maps ‰A , all of which are
recastings of previous lemmas proven about the maps ‰z .

Lemma 10.2 We have
S˙w;z‰AC‰AS˙w;z ' 0

as long as w is not an endpoint of A.

Proof This follows immediately from Lemmas 9.4 and 9.5.

Lemma 10.3 If A and A0 are two arcs between w–basepoints, then

‰A‰A0 C‰A0‰A ' 0:

Proof This follows from Lemma 9.2.

Lemma 10.4 If A is an arc on L, then we have

‰2
A ' 0

as filtered equivariant maps.

Proof Simply write ‰A D
P

z2A\z ‰z , multiply out ‰2
A

, then apply Lemmas 9.2
and 9.7.

Lemma 10.5 Suppose A�K is an arc between w–basepoints and let c.A/ denote
the arc K nA. Then

‰K‰A D‰c.A/‰A:
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Proof Write ‰K D‰AC‰c.A/ and then use the previous lemma to compute that

‰K‰A D .‰AC‰c.A//‰A D‰
2
AC‰c.A/‰A D‰c.A/‰A:

Lemma 10.6 If w is an endpoint of A then we have

‰AˆwCˆw‰A ' id :

If w is not an endpoint of A, then we have

‰AˆwCˆw‰A ' 0:

Proof The first claim follows from Lemma 9.1. The second claim follows from
Lemma 10.2 since we can always write ˆwDSCw;zS�w;z for z the basepoint immediately
preceding w on L.

We can now prove Theorem B:

Proof of Theorem B Let w1; z1; : : : wn; zn be the basepoints on K , in the reverse
order that they appear on K according to the orientation of K . Let w0

1
; z0

1
; : : : ; w0n; z

0
n

be new basepoints on K in the interval between zn and w1 . Let Aj be the arc on K

from wj to w0j , as in Figure 14.

K

zn

wn

z2
w2

z1 w1

z0n

w0n

z0
1

w0
1

A1

Figure 14: The basepoints z1; w1; : : : ; zn; wn and z01; w
0
1; : : : z

0
n; w

0
n , and the

arcs Ai

Write

wD fw1; : : : ; wng; zD fz1; : : : ; zng; w0 D fw01; : : : ; w
0
ng; z0 D fz01; : : : ; z

0
ng:

As usual, we write & as a composition of two diffeomorphisms & D &2 ı&1 , where &1

moves the basepoints w and z to w0 and z0 , respectively, and &2 moves the basepoints
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w0 and z0 to w and z , respectively. Let c.Ai/DK nAi . By Lemma 9.6 we have

(7)
nY

jD1

.S�
w0
j
;z0
j

‰AjSC
w0
j
;z0
j

/' id :

Write S˙w;z for
Qn

jD1 S˙wj ;zj , and similarly for S˙w0;z0 . We compute as follows:

&� D .&2/� ı .&1/�

D

� nY
jD1

S�
w0
j
;z0
j

‰c.Aj /S
C
wj ;zj

�� nY
jD1

S�wj ;zj‰AjSC
w0
j
;z0
j

�
(Lemma 10.1)

D S�w0;z0

� nY
jD1

‰c.Aj /

�
SCw;zS

�
w;z

� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 10.2, 8.1)

D S�w0;z0

� nY
jD1

‰c.Aj /

�� nY
jD1

ˆwj

�� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 9.3, 8.1)

D S�w0;z0
X

s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
c.Aj /

�� nY
jD1

‰Aj

�
SCw0;z0 (Lemma 10.6)

D S�w0;z0
X

s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
K

�� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 10.3, 10.5)

D

X
s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
K

�
S�w0;z0

� nY
jD1

‰Aj

�
SCw0;z0 (Lemmas 10.2, 9.4)

D

X
s2f0;1gn

� nY
jD1

ˆ
sj
wj

�� nY
jD1

‰
sj
K

�
(Equation (7)):

By Lemma 10.4, if s 2 f0; 1gn then� nY
jD1

‰
sj
K

�
' 0

if sj is nonzero for more than one j . Hence the above sum reduces to

&� ' idC
nX

jD1

ˆwi
‰K D idCˆK‰K ;

completing the proof.
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10.3 The map associated to a partial twist around a link component

In this section, we perform an additional basepoint moving map computation and prove
Theorem D. Suppose that L is a multibased link and K is a component with basepoints
z1 , w1 , z2 , w2; : : : ; zn and wn , appearing in that order. Let � be the diffeomorphism
induced by twisting .1=n/th of the way around K , sending zi to ziC1 and wi to wiC1

(with indices taken modulo n). In the case that we pick a coloring .�;P/ where all of
the w–basepoints have the same color, the map � induces a map on the complex

CFL1U V .Y;L; �;P; s/:

We have the following:

Theorem D Suppose that L is an embedded multibased link in Y and K is a compo-
nent of L with basepoints z1; w1; : : : ; zn and wn , appearing in that order. Assume that
n> 1. If � denotes the .1=n/th–twist map, then for a coloring where all w–basepoints
on K have the same color, we have

�� ' .‰z1
ˆw1

‰z2
ˆw2
� � �ˆwn�1

‰zn
ˆwn

/C .ˆw1
‰z2

ˆw2
� � �ˆwn�1

‰zn
/:

Proof Let Ai be the arc from wi to wiC1 , respecting the orientation of K . Let w0

and z0 be new basepoints in the region between zn and w1 . Let A0 denote the arc from
wn to w0 and let A00 denote the arc from w0 to w1 . This is illustrated in Figure 15.

z1
w1

z2

w2

znwn

z0

w0
A1

A0

A00

An

K

Figure 15: The basepoints z1; w1; : : : ; zn; wn; z
0; w0 , and the arcs Ai , A0

and A00 from Theorem D

Using Lemma 10.1 repeatedly, we have that

�� ' .S
�
w0‰A00S

C
w1
/.S�w1

‰A1
SCw2

/ � � � .S�wn�1
‰An�1

SCwn
/.S�wn

‰A0S
C
w0/:
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Using this, we perform the following computation:

�� ' S�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
ˆwn

‰A0S
C
w0 (Lemma 9.3)

' S�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
.‰A0ˆwn

C 1/SCw0 (Lemma 10.6)

' S�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
‰A0ˆwn

SCw0

CS�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
SCw0

' S�w0.‰A00‰A0/ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
ˆwn

SCw0

CS�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
SCw0 (Lemmas 10.6, 10.3)

' S�w0.‰A00‰An
/ˆw1

‰A1
ˆw2
� � �ˆwn�1

‰An�1
ˆwn

SCw0

CS�w0‰A00ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
SCw0 (Lemma 10.4)

' .S�w0‰A00S
C
w0/‰An

ˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
ˆwn

C .S�w0‰A00S
C
w0/ˆw1

‰A1
ˆw2
� � �ˆwn�1

‰An�1
(Lemma 10.2)

'‰An
ˆw1

‰A1
ˆw2
� � �ˆwn�1

‰An�1
ˆwn

Cˆw1
‰A1

ˆw2
� � �ˆwn�1

‰An�1
(Lemma 9.6);

completing the proof since ‰Ai
D ‰ziC1

on the complex CFL1U V .Y;L; �;P; s/, by
definition.
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