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Cosimplicial groups and spaces of homomorphisms

BERNARDO VILLARREAL

Let G be a real linear algebraic group and L a finitely generated cosimplicial group.
We prove that the space of homomorphisms Hom.Ln;G/ has a homotopy stable
decomposition for each n � 1 . When G is a compact Lie group, we show that the
decomposition is G –equivariant with respect to the induced action of conjugation by
elements of G . In particular, under these hypotheses on G , we obtain stable decom-
positions for Hom.Fn=�

q
n ;G/ and Rep.Fn=�

q
n ;G/ , respectively, where Fn=�

q
n

are the finitely generated free nilpotent groups of nilpotency class q� 1 .

The spaces Hom.Ln;G/ assemble into a simplicial space Hom.L;G/ . When GDU

we show that its geometric realization B.L;U / , has a nonunital E1–ring space
structure whenever Hom.L0;U.m// is path connected for all m� 1 .

22E15; 55U10, 20G05

1 Introduction

Let G be a topological group and � a finitely generated group. The set of homo-
morphisms Hom.�;G/ can be identified with the ordered tuples .�.a1/; : : : ; �.ar //

in Gr, where �W � ! G is a homomorphism and a1; : : : ; ar is a generating set
for � . Computing the homotopy type of Hom.�;G/ has proven to be rather com-
plicated. Nevertheless, there has been recognition of the stable homotopy type in
several cases. When G � GLn.C/ is a closed subgroup, A Adem and F Cohen [2]
gave a homotopy stable decomposition for Hom.Zn;G/ as wedges of the quotient
spaces Hom.Zk ;G/=S1.Z

k ;G/ with 1 � k � n. Here S1.Z
k ;G/ stands for the

k –tuples with at least one entry equal to the identity matrix I in G . For an arbitrary
finitely generated abelian group � , Adem and J M Gómez [5] gave a similar stable
decomposition for Hom.�;G/, but in this case, G is a finite product of the compact
Lie groups SU.r/;Sp.k/ and U.m/. We show that the homotopy stable decomposition
in [2] (in general, a version of it) still holds if we replace the family fZngn�1 with a
broader object, namely, a finitely generated cosimplicial group L, that is, for every
n � 0, we have a finitely generated group Ln with its coface and codegeneracy
homomorphisms. A specific example of L comes from the finitely generated free
nilpotent groups Fn=�

q
n . Here Fn denotes the free group on n–generators and �q

n
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is the qth stage of its descending central series. We work under the assumption
that G is a real linear algebraic group, and with it we can prove that the inclusions
SkC1.Fn=�

q
n ;G/ ,!Sk.Fn=�

q
n ;G/ are closed cofibrations for every 0�k�n, where

Sk.Fn=�
q
n ;G/ denotes the subspace of Hom.Fn=�

q
n ;G/ with at least k entries equal

to the identity element in G . This condition, as stated by Adem, Cohen and E Torres-
Giese [4, page 102], says that real linear algebraic groups have cofibrantly filtered
elements, and they show that this implies Hom.Fn=�

q
n ;G/ splits after one suspension

as wedges of Hom.Fk=�
q

k
;G/=S1.Fk=�

q

k
;G/, where 0�k�n. This decomposition

was known before for some compact and connected Lie groups G (see for example
Cohen and M Stafa [11, Remark 1, page 387 and Theorem 2.13, page 388]).

In a more general setting, let � stand for the category whose objects are the natural
numbers and morphisms are order-preserving maps. If LW � ! Grp is a finitely
generated cosimplicial group and G is a topological group, we get the simplicial
space Hom.L;G/W �op ! Top, where Hom.L;G/n WD Hom.Ln;G/. We give a
homotopy stable decomposition for the n–simplices of Hom.L;G/ as follows. Let
X be a simplicial space. Define S t .Xn/ as the subspace of Xn in which any element
is in the image of the composition of at least t degeneracy maps. We say X is
simplicially NDR when all pairs .S t�1.Xn/;S

t .Xn// are neighborhood deformation
retracts. It was proven by Adem, A Bahri, M Bendersky, Cohen, and S Gitler [1]
that when X is simplicially NDR, each Xn is homotopy stable equivalent to wedges
of S t .Xn/=S

tC1.Xn/ with 0 � t � n. When G is a real linear algebraic group, the
simplicial space X D Hom.L;G/ is simplicially NDR. We prove this by showing that
the subspaces S t .Xn/ are real affine subvarieties of Xn for all 0� t � n and therefore
can be simultaneously triangulated. Define St .Ln;G/ WD S t .Hom.Ln;G//.

Theorem 1.1 Let G be a real linear algebraic group, and L a finitely generated
cosimplicial group. For each n, there are natural homotopy equivalences

‚.n/W †Hom.Ln;G/'
W

0�k�n†.Sk.Ln;G/=SkC1.Ln;G//:

The free groups Fn assemble into a cosimplicial group, which we denote by F . In this
case Hom.F;G/ is NG , the nerve of G seen as a topological category with one object,
which is also the underlying simplicial space of a model of the classifying space BG .
For each n, we take quotients Fn=Kn by normal subgroups Kn that are compatible with
coface and codegeneracy homomorphisms of F to get finitely generated cosimplicial
groups, denoted by F=K . The induced simplicial spaces are more easily described
since there is a simplicial inclusion Hom.F=K;G/�NG . Fixing q > 0, the family of
subgroups �q

n arising from the descending central series of Fn is compatible with F ,
and induces the finitely generated cosimplicial group F=�q . Adem, Cohen and Torres-
Giese [4] conjectured that the closed subgroups of GLn.C/ have cofibrantly filtered
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elements and thus the homotopy stable decomposition holds. Applying Theorem 1.1 to
F=�q allows us to prove the following version of the conjecture.

Corollary 1.2 If G is a Zariski closed subgroup of GLn.C/, then there are homotopy
equivalences for the cosimplicial group F=�q ,

†Hom.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Hom.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
for all n and q .

For any finitely generated cosimplicial group L, conjugation under elements of G gives
Hom.Ln;G/ a G –space structure. Moreover, if G is a real algebraic linear group, then
it has a G –variety structure. The subspaces S t .Hom.Ln;G// are subvarieties that are
invariant under the action of G for all 0 � t � n. Using techniques from D H Park
and D Y Suh [21], when G is a compact Lie group, we show that Hom.Ln;G/ has a
G–CW–complex structure, where each S t .Hom.Ln;G// is a G–subcomplex. This
allows us to prove the equivariant version of the previous theorem. Let Rep.Ln;G/ and
S t .Ln;G/ denote the orbit spaces of Hom.Ln;G/ and S t .Hom.Ln;G//, respectively.

Theorem 1.3 Let G be a compact Lie group. Then, for each n, ‚.n/ in Theorem 1.1
is a G –equivariant homotopy equivalence, and in particular we get homotopy equiva-
lences

†Rep.Ln;G/'
W

1�k�n†.Sk.Ln;G/=SkC1.Ln;G//:

Applying this to the cosimplicial group F=�q as in Corollary 1.2, we obtain

†Rep.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Rep.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
:

In the second part of this paper we study the geometric realization of Hom.L;G/ for
a finitely generated cosimplicial group, which we denote by B.L;G/. We show that
the set of 1–cocycles of L, denoted by Z1.L/, is in one-to-one correspondence with
cosimplicial morphisms F !L. With this we show that any 1–cocycle of L defines
a principal G –bundle over B.L;G/.

When GDU D colimm U.m/ we show that B.L;U / has an I–rig structure, that is, if
I stands for the category of finite sets and injections, the functor B.L;U._//W I!Top
is symmetric monoidal with respect to both symmetric monoidal structures on I . Using
the machinery developed in [7] by Adem, Gómez, J Lind and U Tillman, we prove:

Theorem 1.4 Let L be a finitely generated cosimplicial group and suppose that the
space Hom.L0;U.m// is path connected for all m� 1. Then B.L;U / is a nonunital
E1–ring space.

This theorem is also true if we replace U by SU, Sp, SO or O .
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2 Homotopy stable decompositions

2.1 Spaces of homomorphisms

Let G be a topological group and � a finitely generated group. Any homomorphism
�W �! G is uniquely determined by .�.1/; : : : ; �.n// 2 Gn when 1; : : : ; n 2 �

is a set of generators. On the other hand, if we fix a presentation of � , then an n–tuple
.g1; : : : ;gn/2Gn will induce an element in Hom.�;G/ whenever fgig

n
iD1

satisfy the
relations in the presentation of � . Thus, there is a one-to-one correspondence between
the subset of such n–tuples in Gn and Hom.�;G/. Topologize Hom.�;G/ with the
subspace topology on Gn .

Lemma 2.1 Let 'W �! � 0 be a homomorphism of finitely generated groups. If G

is a topological group, then '�W Hom.� 0;G/! Hom.�;G/ is continuous.

Proof Suppose � D ha1; : : : ; ar j Ri and � 0 D hb1; : : : ; bm j R
0i. Recall that the

induced map '�W Hom.� 0;G/! Hom.�;G/ is given by

.�.b1/; : : : ; �.bm// 7!
�
�.'.a1//; : : : ; �.'.ar //

�
for �W � 0!G . For any i , '.ai/D b

ni1

i1
� � � b

niqi

iqi

. By fixing one presentation for each
'.ai/ we get that '� is given by

.�.b1/; : : : ; �.bm// 7! .�.b
n11

11
� � � b

n1q1

1q1

/; : : : ; �.b
nr1
r1
� � � b

nrqr
rqr

//

D .�.b11
/n11 � � � �.b1q1

/
n1q1 ; : : : ; �.br1

/nr1 � � � �.brqr
/nrqr /:

Therefore '� is the restriction of the map Gm!Gr given by

.g1; : : : ;gm/ 7! .g
n11

11
� � �g

n1q1

1q1

; : : : ;g
nr1
r1
� � �g

nrqr
rqr

/;

which is continuous.

In particular, this lemma tells us that given any two presentations of � , we get an
isomorphism 'W �! � and hence a homeomorphism '� between the induced spaces

Algebraic & Geometric Topology, Volume 17 (2017)



Cosimplicial groups and spaces of homomorphisms 3523

of homomorphisms. Therefore the topology on the space of homomorphisms does not
depend on the choice of presentations.

Recall that an affine variety is the zero locus in kn of a family of polynomials on
n variables over a field k . Throughout this paper we will focus only on k DR. An
affine variety that has a group structure with group operations given by polynomial
maps, ie maps f D .f1; : : : ; fn/, where each fi is a polynomial, is called a linear
algebraic group. For example, consider any matrix group. It is easy to check that matrix
multiplication is in fact a polynomial map. For the inverse operation of matrices, it is
easier to think of matrix groups as subgroups of SL.n;R/. Any matrix A in SL.n;R/
satisfies A�1 D C t , the transpose of the cofactor matrix C of A. Since the cofactor
matrix is described only in terms of minors of A, the map A 7! C t is a polynomial
map. In fact, this is the general example, since it can be shown that any linear algebraic
group is isomorphic to a group of matrices (see for example [15, page 63]).

Lemma 2.2 Let G be a linear algebraic group; then for any finitely generated group � ,
Hom.�;G/ is an affine variety. Moreover, if ' is a homomorphism of finitely generated
groups, then '� is a polynomial map.

Proof Suppose � is generated by 1; 2; : : : ; r and has a presentation fp˛g˛2ƒ .
Each p˛ is of the form 

n1

k1
� � � 

nq

kq
D e with nj 2 Z and kl

2 f1; : : : ; r g for all
1� j � q . For any homomorphism �W �!G and any such relation p˛ , we have

�.p˛/D �.
n1

i1
� � � 

nq

iq
/D �.i1

/n1 � � � �.iq
/nq D I;

the identity matrix in G . Since products and inverses in G are given in terms of poly-
nomials, this sets up a family of polynomial relations fy˛;i;j g˛;i;j , where each y˛;i;j
is induced by �.p˛/i;j D ıij , the .i; j /–entry of the matrix equality �.p˛/D I . These
relations do not depend on � , only on p˛ , in the sense that any r –tuple .g1; : : : ;gr /2G

satisfying fy˛;i;j g˛;i;j , ie
.g

n1

i1
� � �g

nq

iq
/i;j D ıij

for all ˛ 2ƒ and 1� i; j � n, is an element of Hom.�;G/. Adding the polynomial
relations fy˛;i;j g˛2ƒ to the ones describing Gr defines Hom.�;G/ as an affine variety.

For the second part, recall from the proof of Lemma 2.1, that '� is defined in terms of
products and inverses of matrices and thus is a polynomial map.

Similarly, this lemma tells us that the affine variety structure on Hom.�;G/ does not
depend on the presentation of � . Indeed, any isomorphism of groups will induce an
isomorphism of affine varieties.
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2.2 Triangulation of semialgebraic sets

Definition 2.3 A real semialgebraic set is a finite union of subsets of the form

fx 2Rn
j fi.x/ > 0 and gj .x/D 0 for all i and j g;

where fi.x/ and gj .x/ are a finite number of polynomials with real coefficients.

Using Hilbert’s basis theorem, all affine varieties over R are real semialgebraic sets.
Indeed, the zero locus ideal of an affine variety will be finitely generated and thus the
affine variety can be carved out by finitely many polynomials.

What makes semialgebraic sets more interesting is that images of semialgebraic sets
in Rn under a polynomial map Rn ! Rm are semialgebraic sets in Rm (see [14,
page 167]), as opposed to affine varieties and regular maps.

Let M and N be semialgebraic subsets of Rm and Rn , respectively. A continuous
map f W M ! N is said to be semialgebraic if its graph is a semialgebraic set in
Rm �Rn . The next result is proven in [14, page 170].

Proposition 2.4 Given a finite system of bounded semialgebraic sets Mi in Rn , there
is a simplicial complex K in Rn and a semialgebraic homeomorphism kW jKj!

S
M i ,

where each Mi is a finite union of sets k.int j� j/ with � 2K .

Remark 2.5 Proposition 2.4 can be stated without the boundedness condition and the
details can be found in [21, Theorem 2.12], where they add the hypothesis that

S
Mi

is closed in Rn .

In the next sections, we will be using this last result in its full power, but a first application
is that any affine variety Z can be triangulated, that is, there exists a simplicial complex
K and a homeomorphism jKj ŠZ . With Lemma 2.2 and Proposition 2.4 we prove
the following.

Corollary 2.6 Let � be a finitely generated group and G a real linear algebraic group.
Then Hom.�;G/ is a triangulated space.

2.3 Simplicial spaces and homotopy stable decompositions

Let � be the category of finite sets Œn�Df0; 1; : : : ; ng with morphisms order preserving
maps f W Œn�! Œm�. It can be shown that all morphisms in this category are generated by
composition of maps, denoted by d i W Œn�1�! Œn� and si W ŒnC1�! Œn� for 0� i � n.
These maps are determined by the relations
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dj d i
D d idj�1 if i < j ;

sj si
D si�1sj if i > j ;

sj d i
D

8<:
d isj�1 if i < j ;

Id if i D j or i D j C 1;

d i�1sj if i > j C 1;

which are called cosimplicial identities. For any category C , let C op denote its opposite
category. A functor

X W �op
! Top

is called a simplicial space. Here Top stands for k –spaces, ie topological spaces
where each compactly closed subset is closed. We write Xn WDX.Œn�/ and the maps
di DX.d i/ and si DX.si/ are called face and degeneracy maps, respectively.

Fix n. Define S0.Xn/DXn and, for 0< t � n,

S t .Xn/D
[
Jn;t

si1
ı � � � ı sit

.Xn�t /;

where sij W Xn�j !Xn�jC1 is a degeneracy map, 1� i1 < � � �< it � n is a sequence
of t numbers between 1 and n, and Jn;t stands for all possible sequences. This defines
a decreasing filtration of Xn ,

Sn.Xn/� Sn�1.Xn/� � � � � S0.Xn/DXn:

For each n there is a homotopy decomposition of †Xn in terms of the quotient spaces
Sk.Xn/=S

kC1.Xn/ with k � n. To do this we need the following.

Let A � Z be topological spaces. Recall that .Z;A/ is an NDR pair if there exist
continuous functions

hW Z � Œ0; 1�!Z; uW Z! Œ0; 1�

such that the following conditions are satisfied:

1. AD u�1.0/.

2. h.z; 0/D z for all z 2Z .

3. h.a; t/D a for all a 2A and all t 2 Œ0; 1�.

4. h.z; 1/ 2A for all z 2 u�1.Œ0; 1//.

Examples of NDR pairs are pairs consisting of CW–complexes and subcomplexes.
Indeed, if Z is a CW–complex and A�Z a subcomplex, then the inclusion A ,!Z

is a cofibration, which is equivalent to a retraction X � I to A� I [X � f0g relative
to A� f0g.
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When X is a simplicial space, we call X simplicially NDR if .S t�1.Xn/;S
t .Xn//

is an NDR pair for every n and t � 1. The following result can be found in [1,
Theorem 1.6].

Proposition 2.7 Let X be a simplicial space, and suppose X is simplicially NDR.
Then for every n� 0 there is a natural homotopy equivalence

‚.n/W †Xn '
W

0�k�n†.S
k.Xn/=S

kC1.Xn//:

For each n, the map ‚.n/ is natural with respect to morphisms of simplicial spaces,
that is, natural transformations X ! Y .

2.4 Cosimplicial groups, 1–cocycles and Hom.L; G /

Definition 2.8 Let Grp denote the category of groups. A functor LW �! Grp is
called a cosimplicial group. The homomorphisms d i D L.d i/ and si D L.si/ are
called coface and codegeneracy homomorphisms, respectively. We say that L is a
finitely generated cosimplicial group if each Ln is finitely generated.

There are two canonical finitely generated cosimplicial groups that arise from finitely
generated free groups.

Definition 2.9 Define F W � ! Grp as follows: set F0 D feg and for n � 1 let
Fn D ha1; : : : ; ani, the free group on n generators. The coface homomorphisms
d i W Fn�1! Fn are given on the generators by

d0.aj /D ajC1;

d i.aj /D

8<:
aj if j < i;

aj ajC1 if j D i;

ajC1 if j > i;

for 1� i � n� 1;

dn.aj /D aj I

and the codegeneracy homomorphisms si W FnC1! Fn by

si.aj /D

8<:
aj if j � i;

e if j D i C 1;

aj�1 if j > i C 1;

for 0� i � n.
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Definition 2.10 Define F W �! Grp as Fn WD ha0; : : : ; ani for any n � 0; coface
and codegeneracy homomorphisms xd i W Fn�1!Fn and xsi W FnC1!Fn , respectively,
are given on the generators by

xd i.aj /D

�
aj if j < i;

ajC1 if j � i;
and xsi.aj /D

�
aj if j � i;

aj�1 if j > i;

for all 0� i � n.

Definition 2.11 We will say that a family of normal subgroups Kn�Fn is compatible
with F if d i.Kn�1/ � Kn and si.KnC1/ � Kn for all n and all i . Similarly we
define compatible families of F .

Given fKngn�0 a compatible family with F , we get induced homomorphisms

Fn�1
d i

//

��

Fn

��

Fn�1=Kn�1
d i

// Fn=Kn

FnC1
si

//

��

Fn

��

FnC1=KnC1
si

// Fn=Kn

Define
F=KW �!Grp

as .F=K/nDFn=Kn with coface and codegeneracy maps the quotient homomorphisms
d i and si , respectively. This way F=K is a finitely generated cosimplicial group.
Similarly, with a compatible family fKngn�0 of F , we can define F=KW �!Grp.

Example 2.12 We describe two families of finitely generated cosimplicial groups that
can be constructed using F=K and F=K through the commutator subgroup.

� Let A be a group, define inductively �1.A/DA and �qC1.A/D Œ�q.A/;A� for
q > 1. The descending central series of A is

�q.A/E � � �E �2.A/E �1.A/DA:

Given a homomorphism of groups �W A!B , we have �Œa; a0�D Œ�.a/; �.a0/� for all
a; a0 2A, so that

�.�q.A//� �q.B/:

Taking A D Fn , and writing �
q
n WD �q.Fn/, we have that the family of normal

subgroups f�q
n gn�0 is compatible with di and si . Thus we can define F=�q as

.F=�q/n D Fn=�
q
n for all q and 1 � i � n. In particular, for q D 2, we obtain

Fn=�
2
n D Zn for all n� 0.
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� Another example using the commutator is the derived series of a group A,

A.q/ E � � �E A.1/ E A.0/ DA;

where A.iC1/D ŒA.i/;A.i/�. Again, �.A.q//�B.q/ for any homomorphism �W A!B .
Thus F=F .q/ , where .F=F .q//n D Fn=F

.q/
n defines a finitely generated cosimplicial

group.

Similarly, F
.q/
nC1

; �
q
nC1
�Fn define compatible families of F and we obtain the finitely

generated cosimplicial groups F=�
q
�C1

and F=F
.q/
�C1

.

Example 2.13 Here is one example of a cosimplicial group that does not come from
a compatible family. Let L0 D†2 D h�i and L1 D†3 D h�1; �2i and define coface
homomorphisms

L0
d i

�!L1 for i D 0; 1

by d0.�/D �2 and d1.�/D �1 . The codegeneracy homomorphism s0W L1!L0 is
given by s0.�1/D s0.�2/D � . This defines a 1–truncated cosimplicial group, which
we denote by †2;3 , that is, a functor †2;3W ��1! Grp. Here ��1 stands for the
full subcategory of � with objects Œ0� and Œ1�. We can extend †2;3 to � by using its
left Kan extension.

For our purposes we describe the second stage of this extension: We have that

L2 D ha; b; c j a
2
D b2

D c2; abaD bab; acaD cac; bcb D cbci;

coface homomorphisms
L1

d i

�!L2 for i D 0; 1; 2

are given by
d0.�1/D a; d1.�1/D c; d2.�1/D c;

d0.�2/D b; d1.�2/D b; d2.�2/D a;

and codegeneracy homomorphisms

L1
si

 �L2 for i D 0; 1

by
s0.a/D s0.c/D �1; s1.a/D s1.b/D �2

s0.b/D �2; s1.c/D �1:

Remark 2.14 The symmetric groups †n can not be assembled all together as a
cosimplicial group. This is because there are no surjective homomorphisms †n!†n�1

for n � 5 to use as codegeneracy homomorphisms. Indeed, given a homomorphism
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'W †n!†n�1 , ker' is a normal subgroup of †n , that is, An or †n . Thus the image
of ' is either the identity element or a subgroup of order 2.

We describe another method of constructing new cosimplicial groups that arise from
a given one. To do this, we recall a concept that was originally introduced in [10,
page 284] to define cohomotopy groups (and pointed sets) for a cosimplicial group.

Definition 2.15 Let L be a cosimplicial group. The elements b in L1 satisfying

d2.b/d0.b/D d1.b/(1)

are called 1–cocycles of L. The set of 1–cocycles is denoted by Z1.L/.

If b is a 1–cocycle, then applying s0 to (1), we obtain s0d2.b/D e and, using the
cosimplicial identities, d1s0.b/ D e , which implies b 2 ker s0 . Define inductively
bn 2Ln as bnC1 D dnC1.bn/, where b1 WD b . These elements will satisfy

d2.bn/d
0.bn/D d1.bn/;(2)

bn 2 ker s0(3)

for all n� 1. Given a 1–cocycle b , we build a new cosimplicial group.

Construction of Lb Define LbW �!Grp as follows. For each n�0, Lb
n WDF0�Ln

with codegeneracy homomorphisms si
b
WD Id�si , i�0. The coface homomorphisms are

d i
b
WD Id�d i for i > 0. To define d0

b
consider the homomorphism knW F0!F0�Ln

given by kn.a0/ D a0bn for all n � 0, then d0
b
WD kn � d0 . There is a canonical

inclusion
�bW L ,!Lb

induced by the inclusions Ln ,! F0 �Ln .

Example 2.16 � When b D e , Le D F0 �L, where F0 represents the constant
cosimplicial group with value F0 .

� Consider the finitely generated free cosimplicial group F . The codegeneracy
homomorphism s0W F1! F0 is the constant map and thus ker s0 D F1 D ha1i. Also

d1.a1/D a1a2 D d2.a1/d
0.a1/;

and hence a1 2Z1.F /. Note that any other power of a1 will fail to satisfy the cocycle
condition (1), that is Z1.F / D fe; a1g. Let FC D Fa1 . We denote the canonical
inclusion by �CW F ,! FC . A similar argument shows that Z1.F=�q/D fe; a1g for
q > 2. We also let .F=�q/a1 D F=�qC and �CW F=�q ,! F=�qC .
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� Consider F=�2 . As in the previous example, ker s0Dha1i, but since F2=�
2
2
DZ2

all powers of a1 will satisfy the cocycle condition, that is, Z1.F=�2/ D Z. Thus
for each positive m 2 Z we get nonisomorphic cosimplicial groups .F=�2/m and
inclusions �mW F=�2 ,! .F=�2/m . When mD 1, we write .F=�2/1 D F=�2C .

� Consider †2;3 , defined in Example 2.13. The product �1�2 2 .†2;3/1 satisfies

d2.�1�2/d
0.�1�2/D caab D cb D d1.�1�2/

and thus �1�2 is a 1–cocycle and we get the cosimplicial group †�1�2

2;3
.

Now we turn our attention to spaces of homomorphisms. For any topological group G ,
its underlying group structure defines the functor

HomGrp._;G/W Grpop
! Set:

If L is a cosimplicial group, the composition of functors HomGrp._;G/L, which we
denote by Hom.L;G/, defines a simplicial set. Whenever L is finitely generated, for
each n we can topologize Hom.Ln;G/ in a way that the induced face and degeneracy
maps are continuous. Therefore we get the simplicial space Hom.L;G/W �op! Top.
We list some known simplicial spaces:

� Hom.F;G/DNG , the nerve of G as a category with one object.

� Hom.FC;G/D .EG/� , Steenrod’s model for the total space of the universal
principal G –bundle pW EG! BG , where p is induced by the simplicial map
��CW Hom.FC;G/! Hom.F;G/.

� Hom.F=�q;G/D .B.q;G//� , the underlying simplicial space of the classifying
space B.q;G/ defined in [4], [6] (for q D 2) and [7].

� Hom.F=�qC;G/ D .E.q;G//� , the underlying simplicial space of the total
space of the universal bundle pW E.q;G/!B.q;G/ also defined in [4], [6] (for
qD2) and [7]. Again, p is induced by ��CW Hom.F=�qC;G/!Hom.F=�q;G/.

� Hom.F ;G/DN G , the nerve of the category G that has G as space of objects
and a unique morphism between any two objects.

Remark 2.17 Consider the morphism of cosimplicial groups  W F ! F given on
generators by  n.ai/ D ai�1a�1

i , where  nW Fn ! Fn . Let G be a topological
group. The induced map  W N G!NG is the underlying simplicial map of Segal’s
fat geometric realization model for the universal G –bundle. A detailed version of this
can be seen in [13, page 66].
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2.5 Homotopy stable decomposition of Hom.Ln; G /

Lemma 2.18 Let G be a linear algebraic group and L a finitely generated cosimplicial
group. Let si W LnC1 ! Ln be a codegeneracy map. Then, the image of si WD

.si/�W Hom.Ln;G/! Hom.LnC1;G/ is a subvariety for all 0� i � n.

Proof Suppose LnC1 D ha1; : : : ; ar i. The homomorphism si W LnC1! Ln is sur-
jective, so Ln ŠLnC1= ker si . We can describe ker si D hfb˛g˛2ƒi, where each b˛
is a fixed product of powers of generators ak . Let �W LnC1!G be a homomorphism.
Then .�.a1/; : : : ; �.ar // is in si.Hom.Ln;G// if and only if �.b˛/D I for all ˛ 2ƒ.
That is, these r –tuples in Hom.LnC1;G/ are determined by the polynomial equations
f�.b˛/D Ig˛2ƒ and hence they build up an affine variety.

For a cosimplicial group L, write St .Lk ;G/ WD S t .Hom.Lk ;G//.

Theorem 2.19 Let G be a real algebraic linear group, and L a finitely generated
cosimplicial group. Then for each n we have homotopy equivalences

‚.n/W †Hom.Ln;G/'
W

0�k�n†.Sk.Ln;G/=SkC1.Ln;G//:

Proof Fix n. Using Proposition 2.7, we only need to show that

.St�1.Ln;G/;St .Ln;G//

is a strong NDR pair for all 0� t � n. By Lemma 2.18, each sj .Hom.Lk ;G// is an
affine variety for all 0� j ; k � n. Then, for all t � 1, the finite union

St .Ln;G/D
[
Jn;t

si1
ı � � � ı sit

.Hom.Ln�t ;G//

is also an affine variety. Consider the natural filtration

Sn.Ln;G/� Sn�1.Ln;G/� � � � � S0.Ln;G/D Hom.Ln;G/:

The union
S

t St .Ln;G/DHom.Ln;G/ is an affine variety, and therefore is a closed
subspace of some euclidean space. By Remark 2.5, Hom.Ln;G/ can be triangulated in
a way that each St .Ln;G/ is a finite union of interiors of simplices. Since St .Ln;G/

are closed subspaces, it follows that under the triangulation they are subcomplexes.
This way the inclusions St .Ln;G/� St�1.Ln;G/ are cofibrations and hence NDR
pairs. Therefore Hom.L;G/ is simplicially NDR.

Lemma 2.20 Let G be a topological group and consider the cosimplicial group F=�q .
Then

Sk.Fn=�
q
n ;G/=SkC1.Fn=�

q
n ;G/Š

W.n
k/Hom.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

for all 1� k � n.
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Proof Let 1� i1 < � � �< in�k � n. Consider the projections

Pi1;:::;im
W Gn

!Gn�k

given by .x1; : : : ;xn/ 7!.xi1
; : : : ;xin�k

/. We claim that the image of Hom.Fn=�
q
n ;G/

under this projection lies on Hom.Fn�k=�
q

n�k
;G/. Indeed, each projection Pi1;:::;im

is induced by the homomorphism 'W Fn�k ! Fn given on generators by aj D aij .
Since '.�q

n�k
/ � �

q
n we get the homomorphism x'W Fn�k=�

q

n�k
! Fn=�

q
n which

proves our claim. Assemble the restrictions of Pi1;:::;im
to Hom.Fn=�

q
n ;G/ so that

we build up a continuous map

�nW Hom.Fn=�
q
n ;G/!

Y
Jn;k

Hom.Fn�k=�
q

n�k
;G/

given by
.x1; : : : ;xn/ 7! fPi1;:::;im

.x1; : : : ;xn/g.i1;:::;in�k/2Jn;k
;

where Jn;k runs over all possible sequences 1� i1 < � � �< in�k � n of length n� k .
Since all sequences .i1; : : : ; in�k/ 2 Jn;k are disjoint, the restriction

�njk W Sk.Fn=�
q
n ;G/!

W
Jn;k

Hom.Fn�k=�
q

n�k
;G/=S1.Fk=�

q

k
;G/

has a continuous inverse
W

Jn;k
sj1
ı � � � ı sjk

, where 1 � j1 < � � � < jk � n and
fj1; : : : ; jkg\ fi1; : : : ; in�kg D∅. Therefore �njk is a homeomorphism for every k .
Finally, note that SkC1.Fn=Kn;G/ is mapped to

W
S1.Fn�k=�

q

n�k
;G/. Taking

quotients we get the desired homeomorphism.

The next corollary was first conjectured in [4, page 12] for closed subgroups of GLn.C/.
Since any real linear algebraic group is Zariski closed we have the following version
of the conjecture, which follows from Theorem 2.19 and Lemma 2.20.

Corollary 2.21 If G is a Zariski closed subgroup of GLn.C/, then there are homo-
topy equivalences for the cosimplicial group F=�q ,

‚.n/W †Hom.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Hom.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
for all n and q .

Example 2.22 Let G D SU.2/ and consider F=�q .

� The case q D 2 .Fn=�
2
n D Zn/ has been largely studied (for example [3; 9; 12]).

In this example we follow [3, pages 482–484]. First a few preliminaries. Let T be
the maximal torus of G that consists of all diagonal matrices

�
�
0

0
x�

�
with � 2 S1 and

W DN.T /=T DfŒw�; eg its Weyl group, where wD
�

0
1
�1

0

�
. The group W acts on T
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via Œw��tDwtw�1D t�1 and using left translation on G=T we get a diagonal action on
G=T �T n . Let tŠ iR be the Lie algebra of T with the induced action of W . There is
an equivariant homeomorphism t!T �fIg so that G=T �W .T �fIg/nŠG=T �W tn .
The quotient map G=T ! .G=T /=W ŠRP2 is a principal W –bundle and we can
take the associated vector bundle pnW G=T �W tn!RP2 . Let �2 be the canonical
vector bundle over RP2 ; then we can identify pn with n�2 , the Whitney sum of n

copies of �2 . The pieces in the homotopy stable decomposition before suspending are

Hom.Zn;SU.2//=S1.Z
n;SU.2//Š

�
S3 if nD 1;

.RP2/n�2=sn.RP2/ if n� 2;

where .RP /n�2 is the associated Thom space of n�2 and sn is its zero section. There-
fore,

†Hom.Zn;SU.2//'†
W

nS3
_
W

2�k�n†
�W.n

k/.RP2/k�2=sk.RP2/
�
:

� Let q D 3. An n–tuple .g1; : : : ;gn/ lies in Hom.Fn=�
3
n ;SU.2// if and only if

ŒŒgi ;gj �;gk � D I for all 1 � i; j ; k � n, ie the commutators Œgi ;gj � are central in
the subgroup generated by g1; : : : ;gn . We claim that the center of every nonabelian
subgroup of SU.2/ sits inside f˙Ig. Suppose a and b are two elements in SU.2/
such that Œa; b�¤ I . Then, the cyclic groups hai and hbi are contained in different
tori, say T1 and T2 , respectively. Since the center of ha; bi is abelian it must lie in
the intersection T1\T2 . These two circles can only intersect at f˙Ig, which proves
our claim. Therefore the central elements Œgi ;gj � are in f˙Ig for all 1 � i; j � n.
Consider

Bn.SU.2/; f˙Ig/D
˚
.g1; : : : ;gn/ 2 SU.2/n j Œgi ;gj � 2 f˙Ig

	
;

the space of almost commuting tuples in SU.2/. By the previous observation,

Hom.Fn=�
3
n ;SU.2//D Bn.SU.2/; f˙Ig/:

In [3, pages 485–486], they show that

Bn.SU.2/; f˙Ig/=S1.SU.2/; f˙Ig/

Š Hom.Zn;SU.2//=S1.Z
n;SU.2//_

W
K.n/PU.2/C;

where K.1/ D 0 and K.n/ D 7n

24
�

3n

8
C

1
12

for n � 2. Here S1.SU.2/; f˙Ig/ are
the n–tuples in Bn.SU.2/; f˙Ig/ with at least one coordinate equal to I . Since
PU.2/ŠRP3 and S1.SU.2/; f˙Ig/D S1.Fn=�

3
n ;SU.2// we conclude that

†Hom.Fn=�
3
n ;SU.2//
'†

W
nS3
_
W

2�k�n†
�W.n

k/.RP2/k�2=sk.RP2/_
W

K.k/RP3
C

�
:
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Remark 2.23 For q � 4 we can find nilpotent subgroups of SU.2/ of class q . Indeed,
if �n is a representative in SU.2/ of a primitive nth root of unity, then the subgroup
generated by the set f�2q; wg with w as above, is of nilpotency class q . With this
we can show that the spaces Hom.Fn=�

q
n ;SU.2// for q � 4 have more connected

components than Hom.Fn=�
3
n ;SU.2//. See [8] for more details.

2.6 Equivariant homotopy stable decomposition of Hom.Ln; G /

Let G and H be topological groups and f W G!H a continuous homomorphism. If
L is a finitely generated cosimplicial group then for each n, we have the commutative
diagrams

Hom.Ln;G/
di
//

f�
��

Hom.Ln�1;G/

f�
��

Hom.Ln;H /
di
// Hom.Ln�1;H /

Hom.Ln;G/
si
//

f�
��

Hom.LnC1;G/

f�
��

Hom.Ln;H /
si
// Hom.LnC1;H /

for all n� 0 and all 0� i � n, so that f� is a simplicial map. Conjugation by elements
of G defines a homomorphism G!G , so that Hom.Ln;G/ is a G –space and each
St .Ln;G/ is a G –subspace.

Definition 2.24 Let M be a G–space. We say that M has a G–CW–structure if
there exists a pair .X; �/ such that X is a G–CW–complex and �W X ! M is a
G –equivariant homeomorphism.

We want to show that for all n, Hom.Ln;G/ has a G–CW–complex structure for
which Sn.Ln;G/ � Sn�1.Ln;G/ � � � � � Hom.Ln;G/ are G–subcomplexes. To
show this we slightly generalize some results in [21].

We continue using the techniques of the previous section, so we require G to be a
real linear algebraic group. It is known that any compact Lie group has a unique
algebraic group structure (see [19, page 247]). Assuming G is a compact Lie group,
every representation space of G has finite orbit types (see [20]), so when M is an
algebraic G –variety, the equivariant algebraic embedding theorem [21, Proposition 3.2]
implies that M has finite orbit types. Also, this theorem guarantees the existence of
a G–invariant algebraic map f W M ! Rd for some d such that the induced map
xf W M=G ! f .M / is a homeomorphism and f .M / is a closed semialgebraic set

in Rd [21, Lemma 3.4]. If � W jKj ! M=G is a triangulation, we say that � is
compatible with a family of subsets fDig of M if �.Di/ is a union of some �.int j� j/,
where � 2K and � W M !M=G is the quotient map.
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Proposition 2.25 Let G be a compact Lie group, M0 an algebraic G–variety and
fMj g

n
jD1

a finite system of G –subvarieties of M0 . Then there exists a semialgebraic
triangulation � W jKj !M=G compatible with the collection

fMj .H / jH is a subgroup of GgnjD0;

where Mj .H / D fx 2Mj jGx D gHg�1 for some g 2Gg.

Proof Let H1; : : : ;Hs �G be the orbit types of G on M and f W M !Rd as above.
By [21, Lemma 3.3], all Mj .Hi /

are semialgebraic sets, and therefore all f .Mj .Hi /
/

are also semialgebraic. Since i and j vary on finite sets, we can use Remark 2.5 and
obtain a semialgebraic triangulation

�W jKj ! f .M /D
[
ij

f .Mj .Hi /
/

such that each f .Mj .Hi /
/ is a finite union of some �.int j� j/, where � 2 K . Take

� D xf �1 ı�.

Proposition 2.26 Let G be a compact Lie group. Let M0 be an algebraic G –variety
and fMj g

k
jD1

a finite system of G–subvarieties. Then M0 has a G–CW–complex
structure such that each Mj is a G –subcomplex of M .

Proof Let � W jKj ! M=G be as in Proposition 2.25 and � W M ! M=G the or-
bit map. Let K0 be a barycentric subdivision of K , which guarantees that, for
any simplex �n of K0, ��1.�.�n � �n�1// � Mj .Hn/

for some Hn � G and
0� j � k . Since � jW ��1.�.�n//=G!�n is a homeomorphism and the orbit type of
��1.�.�n��n�1// is constant, by [16, Lemma 4.4] there exists a continuous section
sW �.�n/! Mj such that s ı �.�n ��n�1/ has a constant isotropy subgroup Hn .
Consequently there is an equivariant homeomorphism

��1�.�n
��n�1/ŠG=Hn � .�

n
��n�1/:

Collecting G –cells Gs ı �.�n/ for all simplices of K0 we get a G –CW–structure over
all Mj for 0� j � k .

For a finitely generated cosimplicial group L, let Rep.Ln;G/ WDHom.Ln;G/=G and
S t .Ln;G/ WD St .Ln;G/=G .

Theorem 2.27 Let G be a compact Lie group and L a finitely generated cosimplicial
group. Then, for each n, ‚.n/ from Theorem 2.19 is a G–equivariant homotopy
equivalence, and in particular we get homotopy equivalences

†Rep.Ln;G/'
W

1�k�n†.Sk.Ln;G/=SkC1.Ln;G//:
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Proof Assume G �GLN .R/. Under conjugation by elements of G , Hom.Ln;G/ is
an affine G –variety and by Lemma 2.18 the subspaces Sj .Ln;G/ are G –subvarieties
for all 1� j � n. Hence, by Proposition 2.26, Hom.Ln;G/ can be given a G–CW–
complex structure, where each Sj .Ln;G/ is a G –subcomplex. Similarly, the quotient
Sk.Ln;G/=SkC1.Ln;G/ has a G –CW–complex structure.

To prove that the map ‚.n/ is a G–equivariant homotopy equivalence, first recall
that conjugation by elements of G defines a simplicial action on Hom.L;G/, and by
the naturality of each ‚.n/, the G–equivariance follows. Let H � G be a closed
subgroup. The fixed point spaces Hom.Ln;G/

H and Sk.Ln;G/
H inherit a CW–

complex structure, so that Hom.L;G/H is simplicially NDR. By Proposition 2.7, we
have homotopy equivalences

‚.n;H /W †.Hom.Ln;G/
H /!

W
0�k�n†.Sk.Ln;G/

H =SkC1.Ln;G/
H /

for each n� 1. The fixed points map ‚.n/H agrees by naturality with ‚.n;H / and
thus is a homotopy equivalence. The result now follows from the equivariant Whitehead
theorem.

Corollary 2.28 Let G be a compact Lie group. Then the homotopy equivalences in
Corollary 2.21 are G –equivariant homotopy equivalences, and in particular we get

†Rep.Fn=�
q
n ;G/'

W
1�k�n†

�W.n
k/Rep.Fk=�

q

k
;G/=S1.Fk=�

q

k
;G/

�
:

Example 2.29 Let G D SU.2/ and LD F=�q .

� For q D 2, it was proven in [3, page 484] that

Rep.Zn;SU.2//=S1.Z
n;SU.2//' T ^n=W D Sn=†2;

where the action of the generating element on †2 is given by

.x0;x1; : : : ;xn/ 7! .x0;�x1; : : : ;�xn/

for any .x0;x1; : : : ;xn/. Identifying SnD†Sn�1 , we can see the orbit space Sn=†2

as first taking antipodes, and then suspending, that is, Sn=†2 Š†RPn�1 . Thus

†Rep.Zn;SU.2//'
W

1�k�n†
�W.n

k/†RPk�1
�
:

� Let q D 3. We have shown that Rep.Fn=�
3
n ;SU.2//D Bn.SU.2/; f˙Ig/=G and

using the description of these spaces given in [3, p. 486], the stable pieces are

Rep.Fn=�
3
n ;SU.2//=S1.Fn=�

3
n ;SU.2//'

�W
K.n/S

0
�
_†RPn�1;

where K.n/ is as in Example 2.22. Therefore

†Rep.Fn=�
3
n ;SU.2//'

W
1�k�n†

�W.n
k/
�W

K.k/S
0
�
_†RPk�1

�
:

Algebraic & Geometric Topology, Volume 17 (2017)



Cosimplicial groups and spaces of homomorphisms 3537

3 Homotopy properties of B.L; G /

3.1 Geometric realization of Hom.L; G /

Definition 3.1 Let L be a finitely generated cosimplicial group and G a topological
group. Let

B.L;G/ WD jHom.L;G/j:

For the cosimplicial groups F=�q we get that B.F=�q;G/DB.q;G/, the classifying
space for G–bundles of transitional nilpotency class less than q . A natural question
is whether or not the space B.L;G/ is a classifying space for a specific class of
G –bundles.

Lemma 3.2 Let L be a cosimplicial group. The 1–cocycles of L are in one-to-one
correspondence with cosimplicial morphisms F !L.

Proof Suppose b is a 1–cocycle. Any generator aj 2 Fn is in the image of a1 2 F1

under composition of coface homomorphisms, eg aj D .d
0/j�1.d2/n�j .a1/ for all

j � 1. Define hnW Fn ! Ln as hn.aj / D .d
0/j�1.d2/n�j .b/. To show that h is

cosimplicial, consider the diagrams

Fn�1

hn�1

//

d i

��

Ln�1

d i

��

Fn

hn

// Ln

FnC1

hnC1

//

si

��

LnC1

si

��

Fn

hn

// Ln

We prove the case of coface homomorphisms. Let aj 2 Fn�1 . On one side we get

hnd i.aj /D

8<:
.d0/j�1.d2/n�j .b/ if j < i;

.d0/j�1.d2/n�j .b/.d0/j .d2/n�j�1.b/ if j D i;

.d0/j .d2/n�j�1.b/ if j > i;

and applying the cosimplicial identity dkd l D d ldk�1 , where k > l , we obtain

d ihn�1.aj /D

8<:
.d0/j�1.d i�jC1/.d2/n�j�1.b/ if j < i;

.d0/j�1.d1/.d2/n�j�1.b/ if j D i;

.d0/j .d2/n�j�1.b/ if j > i:

We need to analyze two cases:

� j < i implies that i � j C 1� 2, thus d i�jC1.d2/n�j�1 D .d2/n�j .

� j D i . Then the equality follows from (2) applied to .d2/n�j�1.b/D bn�j .
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Commutativity for the codegeneracy homomorphisms is similar, but using the cosimpli-
cial identity skd l D d lsk�1 with k > l and condition (3) above. Hence h is uniquely
determined by b . Given a morphism F !L, the element b is given by the image of
a1 2 F1 .

Proposition 3.3 Let L be a cosimplicial group and hbW F ! L be the morphism
defined on F1!L1 as a1 7! b . Then the diagram

F
� � �C //

hb

��

FC

Id�hb
��

L
� � �b // Lb

is a pushout of cosimplicial groups.

Proof Suppose f W FC!K and gW L!K are morphisms such that f ı �D g ıhb .
Define hW Lb!K on each Lb

nDF0�Ln as hn.a0/D f
n.a0/ (here f n is evaluated

on a0 2 F0 � Fn ) and hn.x/ D gn.x/ for any x 2 Ln . To check that h is in fact
a cosimplicial homomorphism, by construction of Lb and h, we just need to verify
commutativity with coface maps at level i D 0. Consider

Lb
n�1

hn�1

//

d0
b
��

Kn�1

d0

��

Lb
n

hn

// Kn

We only need to see what happens at a0 2Lb
n�1

:

d0hn�1.a0/D d0f n�1.a0/D f
nd0
C.a0/D f

n.a0a1/D f
n.a0/f

n.a1/;

hnd0
C.a0/D hn.a0bn/D f

n.a0/g
n.bn/:

Let b D b1 . By hypothesis, g1.b1/D f
1.a1/. Since

gn.bn/D .d
2/n�1g1.b1/ and f n.a1/D .d

2/n�1f 1.a1/;

the desired equality holds.

Corollary 3.4 Let G be a well-based topological group and L a finitely generated
cosimplicial group. Using the notation above, suppose hbW F!L is a morphism. Then
the inclusion �bW L ,!Lb defines a principal G –bundle j��

b
jW B.Lb;G/! B.L;G/.
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Proof From the pushout diagram in Proposition 3.3, and applying the functors
Hom._;G/ and geometric realization, we obtain the pullback diagram

B.Lb;G/ //

j��
b
j

��

EG

��

B.L;G/
jh�

b
j
// BG

and hence j��
b
j is a principal G –bundle.

Example 3.5 We have seen that there is only one nonconstant homomorphism ha1
D

IdW F ! F . For q > 2 it can be shown that the same is true for L D F=�q ,
where ha1

W F ! F=�q at each n is the quotient homomorphism. The corresponding
B..F=�q/C;G/ is the space E.q;G/ defined in [4, page 94], and jh�a1

jW B.q;G/!

BG is the inclusion. The bundle E.q;G/!B.q;G/ classifies transitionally nilpotent
bundles of class less than q (see [7, Section 5]). The case qD2 is more interesting since
Z1.F=�2/DZ. For mD 1 we obtain B..F=�2/C;G/DE.2;G/ and E.2;G/!

B.2;G/ classifies transitionally commutative bundles (see [6, Section 2]). Since
multiplication by �1 induces a cosimplicial automorphism of F=�2 , all constructions
are equivalent for mD�1. Now let m> 1. The bundle B..F=�2/m;G/! B.2;G/

will classify G –bundles whose transition functions g˛ˇW U˛\Uˇ!G factor through

U˛ \Uˇ
�˛;ˇ

//

g˛ˇ
##

G

m

��

G

where the �˛ˇ are transitionally commutative and m denotes taking the mth power of
elements in G .

3.2 Relation between commutative I–monoids and infinite loop spaces

In this section we recall briefly the notion of I–monoid and how it is related to infinite
loop spaces. This is more widely covered in [7]. Our goal is to use this machinery to
show that, for a finitely generated cosimplicial group L, B.L;U /Dcolimn B.L;U.n//

is a nonunital E1–ring space when Hom.L0;U / is path connected.

Let I stand for the category whose objects are the sets Œ0�D∅ and Œn�Df1; : : : ; ng for
each n� 1, and morphisms are injective functions. Any morphism j W Œn�! Œm� in I
can be factored as a canonical inclusion Œn� ,! Œm� and a permutation � 2†m . This
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category is symmetric monoidal under two different operations. One is concatenation
Œn�t Œm�D ŒnCm� with symmetry morphism the permutation �m;n 2†nCm defined as

�m;n.i/D

�
nC i if i �m;

i �m if i >m;

and identity object Œ0�. The second operation is the Cartesian product Œm�� Œn�D Œmn�

with ��m;n 2†mn given by

��m;n..i � 1/nC j /D .j � 1/mC i;

where 1 � i � m and 1 � j � n. In this case the identity object is Œ1�. Cartesian
product is distributive under concatenation (both left and right).

Definition 3.6 An I–space is a functor X W I! Top. This functor is determined by
the following:

1. A family of spaces fX Œn�gn�0 , where each X Œn� is a †n –space;

2. †n –equivariant structural maps jnW X Œn�!X ŒnC1� (here we consider X ŒnC1�

is a †n –space under the restriction of the †nC1 –action to the canonical inclusion
†n ,!†nC1 ) with the property: for any j W Œn�! Œm� and any �; � 0 2†m whose
restrictions in †n are equal, we have � �x D � 0 �x 2X.j /.X Œn�/.

We say that an I–space X is a commutative I–monoid if it is a symmetric monoidal
functor X W .I;t; Œ0�/! .Top;�; fptg/. Additionally, we say that X is a commutative
I–rig if X is also symmetric monoidal with respect to .I;�; Œ1�/. For the latter
definition we also require X to preserve distributivity.

Definition 3.7 Let C be a small category and Y W C ! Top a functor. Denote by
C Ë Y the category of elements of Y , that is, objects are pairs .c;x/ consisting of an
object c of C and a point x 2 Y .c/. A morphism in C Ë Y from .c;x/ to .c0;x0/ is
a morphism ˛W c! c0 in C satisfying the equation Y .˛/.x/D x0 .

Given Y W C ! Top, with the notation above, if we consider C Ë Y as a topological
category whose space of objects and space of morphisms areG

c2obj.C /

Y .c/ and
G

f 2mor.C /

Y .f /;

respectively, then we have that the homotopy colimit of Y is the classifying space
B.C Ë Y /D hocolimC Y , that is, the realization of the nerve of the category C Ë Y .

Let X denote a commutative I–monoid. The category of elements I Ë X is a permu-
tative category, that is, a symmetric monoidal category where associativity and unit
relations hold strictly. According to [18], the classifying space of a permutative category
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has an E1–space structure, and so we get that hocolimIX has an E1–space structure.
Here we think of an E1–space as a space with an operation that is associative and
commutative up to a system of coherent homotopies. Thus, the group completion
�B.hocolimIX / is an infinite loop space. If X is a commutative I–rig, then I ËX is
a bipermutative category and its classifying space is an E1–ring space (as explained
in [7]), that is, an E1–space with an operation that is associative and commutative (up
to coherent homotopy) and distributive (up to coherent homotopy) over the E1–space
operation.

Consider the subcategory of I consisting of the same set of objects and all isomorphisms.
We denote it by P . The (bi)permutative structure on I Ë X restricts to P Ë X , so
that hocolimP X is also an E1–space (E1–ring space) and its group completion
�B.hocolimP X / is an infinite loop space (E1–ring space). The maps X Œn�! �

induce a map of (bi)permutative categories P Ë X ! P Ë � and therefore a map of
infinite loop spaces (E1–ring spaces)

�X
W �B.hocolimP X /!�B.hocolimP�/:

It follows that the homotopy fiber hofib �X is an infinite loop space (nonunital E1–
ring space). Let X1 WD hocolimNX , where N denotes the subcategory of I with
same set of objects and as arrows the canonical inclusions, and XC1 its Quillen plus
construction applied with respect to the maximal perfect subgroup of �1.X1/. The
following proposition is proved in [7, Theorem 3.1].

Proposition 3.8 Let X W I! Top be a commutative I–monoid. Assume that
� the action of †1 on H�.X1/ is trivial;
� the inclusions induce natural isomorphisms �0.X Œn�/ ' �0.X1/ of finitely

generated abelian groups with multiplication compatible with the Pontrjagin
product and in the center of the homology Pontrjagin ring;

� the commutator subgroup of �1.X1/ is perfect (for each component) and XC1
is abelian.

Then hofib �X 'XC1 , and in particular XC1 is an infinite loop space.

Note that the last two conditions of the previous Proposition are satisfied when each
X Œn� is connected and X1 is abelian. Under these hypothesis X1 has an infinite loop
space structure.

3.3 Nonunital E1–ring space structure of B.L; U /

Our first example and application of the machinery described in the previous section is
showing the classical result

colim
m

U.m/D U
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has an infinite loop space structure. This will allow us to prove nonunital E1–ring
space structures on our spaces of interest.

First, we show that U._/ is a commutative I–rig. Recall that †m �U.m/ as permuta-
tion matrices, so that U.m/ has a †m action. Consider the inclusions

imW U.m/! U.mC 1/; A 7!

�
A 0

0 1

�
;

which are continuous and preserve group structure. The maps im restrict to the canonical
inclusions †m ,!†mC1 , therefore

im.� �A/D im.�/im.A/im.�/
�1
D � � im.A/;

where � 2†m , A 2 U.m/ and on the right-hand side � 2†mC1 . Now let �; � 0 2†r

with m < r and suppose both restrictions to the subset f1; : : : ;mg determine equal
permutations in †m . Let i D ir ı ir�1 ı � � � ı im . Then, for A 2 U.m/,

� � i.A/D

�
.� jm/A.� j

�1
m / 0

0 Ir�m

�
D

�
.� 0jm/A.�

0j�1
m / 0

0 Ir�m

�
D � 0 � i.A/:

Therefore U._/W I!Top is a functor. This I–space has a commutative I–rig structure
as follows. Let ˚m;nW U.m/�U.n/! U.mC n/ denote the block sum of matrices,
which is a group homomorphism. The .m; n/ shuffle map U.nCm/! U.nCm/ is
given by A 7! �m;n �A. We have the commutative diagram

U.m/�U.n/

�

��

˚m;n
// U.mC n/

�m;n

��

U.n/�U.m/
˚n;m

// U.mC n/

where �.A;B/ D .B;A/. Therefore U._/ is a commutative I–monoid. The other
monoidal structure is given by ˝m;nW U.m/�U.n/! U.mn/ the tensor product of
matrices. Indeed, by definition ��m;n � ˝m;n.A;B/D˝n;m�.A;B/, where A 2 U.m/

and B 2 U.n/. Since the image ˚m;n.U.m/�U.n// correspond to direct sum, then
associativity, left and right distributivity over ˝m;n hold.

Now we check the conditions of Proposition 3.8: the action of †m on U.m/ is
homologically trivial since conjugation action on U.m/ is trivial up to homotopy,
U.m/ being path connected. The inclusions im are cellular and hence U._/1 ' U

and since U is an H –space under block sum of matrices, it is abelian. Therefore
U._/1 ' U is an infinite loop space (nonunital E1–ring space).
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Lemma 3.9 Let L be a finitely generated cosimplicial group and G;H real algebraic
linear groups. Let p1W G �H !G and p2W G �H !H be the projections. Then

B.L;p1/�B.L;p2/W B.L;G �H /! B.L;G/�B.L;H /

is a natural homeomorphism.

Proof Since G �H is a direct product, p1 and p2 are continuous homomorphism
and therefore

p D .p1/� � .p2/�W Hom.L;G �H /! Hom.L;G/�Hom.L;H /

is a simplicial map. Its easy to check that in fact p is a simplicial isomorphism.
Both G and H being real algebraic imply that Hom.Ln;G/ and Hom.Ln;H / have
a CW–complex structure, and therefore are k –spaces. By [17, Theorem 11.5], the
composition

B.L;G �H /
jpj
�!Hom.L;G/�Hom.L;H /j

j�1j�j�2j
�����!B.L;G/�B.L;H /

is a natural homeomorphism, where j�1 ıpj � j�2 ıpj D B.L;p1/�B.L;p2/.

Proposition 3.10 Let L be a finitely generated cosimplicial group; then B.L;U._//
is a commutative I–rig.

Proof Consider the I–rig U._/. Both the structural maps im and the action by
elements of †m are continuous group homomorphisms and hence B.L;U._// D
B.L; _/U._/ is an I–space. Also, block sum of matrices and tensor product are
topological group morphisms, so that with Lemma 3.9 we can define

�m;n D B.L;˚m;n/ ı .B.L;p1/�B.L;p2//
�1;

�m;n D B.L;˝m;n/ ı .B.L;p1/�B.L;p2//
�1;

where p1W U.m/�U.n/! U.m/ and p2W U.m/�U.n/! U.n/ are the projections.
Let p0

1
W U.n/�U.m/!U.n/ and p0

2
W U.n/�U.m/!U.m/ also denote projections.

Notice that

� ıB.L;p02/�B.L;p01/D B.L;p1/�B.L;p2/ ıB.L; �/

(where � , as before, is the symmetry morphism in Top). This implies that all properties
satisfied by ˚m;n and ˝m;n will be preserved by �m;n and �m;n .

Theorem 3.11 Let L be a finitely generated cosimplicial group and suppose that the
space Hom.L0;U.m// is path connected for all m� 1. Then B.L;U / is a nonunital
E1–ring space.
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Proof By Proposition 3.10, B.L;U._// is a commutative I–rig. It remains to
check the conditions of Proposition 3.8. Note that the conjugation action of †n

is homologically trivial since it factors through conjugation action on U.m/. Since
all Hom.L0;U.m// are path connected, jHom.L;U.m//j D B.L;U.m// is path
connected for all m� 1. The colimit B.L;U / is also an H –space under block sum
of matrices, and therefore abelian.

Example 3.12 The property �0

�
Hom.L0;U.m//

�
D 0 for all m � 1 is satisfied by

the following cosimplicial groups:

� LD F=�q and LD F=F .q/ since L0 D feg in both cases.

� LD F=�q and LD F=F .q/ since Hom.L0;U.m//D U.m/ in both cases.

� Consider †2;3 , and the cosimplicial morphism h�1�2
W F !†2;3 . The image

h�1�2
.F / defines a cosimplicial subgroup of †2;3 , such that h�1�2

.F /0 D feg.

Remark 3.13 The results in this section also apply to the groups SU and Sp. For
SO and O the proofs are not exactly similar, but still true. The arguments used in [7,
Theorem 4.1] also apply in our case.
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