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Gorenstein duality for real spectra
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Following Hu and Kriz, we study the C2 –spectra BPRhni and ER.n/ that refine
the usual truncated Brown–Peterson and the Johnson–Wilson spectra. In particular,
we show that they satisfy Gorenstein duality with a representation grading shift and
identify their Anderson duals. We also compute the associated local cohomology
spectral sequence in the cases nD 1 and 2 .
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1 Introduction

1A Background

Philosophy For us, real spectrum is a loose term for a C2 –spectrum built from the
C2 –spectrum M R of real bordism, considered by Araki [2], Araki and Murayama [3],
Landweber [22], and Hu and Kriz [18]. The present article shows that bringing together
real spectra and Gorenstein duality reveals rich and interesting structures.

It is part of our philosophy that theorems about real spectra can often be shown in the
same style as theorems for the underlying complex oriented spectra, although the details
might be more difficult, and groups needed to be graded over the real representation
ring RO.C2/ (indicated by F) rather than over the integers (indicated by �). This
extends a well known phenomenon: complex orientability of equivariant spectra makes
it easy to reduce questions to integer gradings, and we show that even in the absence
of complex orientability, good behaviour of coefficients can be seen by grading with
representations.

Bordism with reality In studying these spectra, the real regular representation �D
RC2 plays a special role. We write � for the sign representation on R, so �D 1C � .
One of the crucial features of M R is that it is strongly even in the sense of Meier and
Hill [27], ie

(1) the restriction functor �C2
k�

M R!�2kMU is an isomorphism for all k 2Z, and

(2) the groups �C2
k��1

M R are zero for all k 2 Z.

We now localize at 2, and (with two exceptions) all spectra and abelian groups will
henceforth be 2–local. The Quillen idempotent has a C2 –equivariant refinement, and
this defines the C2 –spectrum BPR as a summand of M R.2/ . The isomorphism (1)
allows us to lift the usual vi to classes vi 2 �

C2

.2i�1/�
BPR. The real spectra we are

interested in are quotients of BPR by sequences of vi and localizations thereof. For
example, we can follow [18] and Hu [17] and define

BPRhni D BPR=.vnC1; vnC2; : : : / and ER.n/D BPRhniŒv�1
n �:

These spectra are still strongly even, as we will show. Apart from the extensive literature
on K-theory with reality (eg Atiyah [4], Dugger [8] and Bruner and Greenlees [7]), real
spectra have been studied by Hu and Kriz, in a series of papers by Kitchloo and Wilson
(see eg [21] for one of the latest instalments), by Banerjee [5], by Ricka [28] and by
Lorman [24]. A crucial point is that a morphism between strongly even C2 –spectra is
an equivalence if it is an equivalence of underlying spectra [27, Lemma 3.4].

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3549

We are interested in two dualities for real spectra: Anderson duality and Gorenstein
duality. These are closely related (see Greenlees and Stojanoska [13]) but apply to
different classes of spectra.

Anderson duality The Anderson dual ZX of a spectrum X is an integral version of
its Brown–Comenetz dual (in accordance with our general principle, Z denotes the 2–
local integers). The homotopy groups of the Anderson dual lie in a short exact sequence

0! Ext1Z.����1X;Z/! ��.Z
X /! HomZ.���X;Z/! 0:(1.1)

One reason to be interested in the computation of Anderson duals is that they show
up in universal coefficient sequences; see Anderson [1] or Section 3B. The situation
is nicest for spectra that are Anderson self-dual in the sense that ZX is a suspension
of X . Many important spectra like KU , KO, Tmf (see Stojanoska [31]) or Tmf1.3/
are indeed Anderson self-dual. These examples are all unbounded as the sequence (1.1)
nearly forces them to be.

Anderson duality also works C2 –equivariantly as first explored in [28]; the only change
in the above short exact sequence is that equivariant homotopy groups are used. The
C2 –spectra KR (see Heard and Stojanoska [14]) and Tmf1.3/ [27] are also C2 –
equivariantly Anderson self-dual, at least if we allow suspensions by representation
spheres.

One simpler example is essential background: if Z denotes the constant Mackey functor
(ie with restriction being the identity and induction being multiplication by 2) then
the Anderson dual of its Eilenberg–Mac Lane spectrum is the Eilenberg–Mac Lane
spectrum for the dual Mackey functor Z� D HomZ.Z;Z/ (ie with restriction being
multiplication by 2 and induction being the identity). It is then easy to check that in fact
H.Z�/'†2.1��/HZ. (From one point of view this is the fact that RP1DS.2�/=C2

is equivalent to the circle). The dualities we find are in a sense all dependent on this one.

Gorenstein duality By contrast with Anderson self-duality, many connective ring
spectra are Gorenstein in the sense of Dwyer, Greenlees and Iyengar [9]. We sketch
the theory here, explaining it more fully in Sections 6 and 7.

The starting point is a connective commutative ring C2 –spectrum R, whose 0th homo-
topy Mackey functor is constant at Z:

�C2
0 .R/Š Z:

This gives us a map R ! HZ of commutative ring spectra by killing homotopy
groups. We say that R is Gorenstein of shift a 2 RO.C2/ if there is an equivalence of
R–modules

HomR.HZ;R/'†aHZ:
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We are interested in the duality this often entails. Note that the Anderson dual ZR

obviously has the Matlis lifting property

HomR.HZ;ZR/'HZ�;

where Z�DHomZ.Z;Z/ as above. Thus if R is Gorenstein, in view of the equivalence
H.Z�/'†2.1��/HZ, we have equivalences

HomR.HZ;CellH ZR/' HomR.HZ;R/

'†aHZ

'†a�2.1��/H.Z�/

' HomR.HZ; †a�2.1��/ZR/:

Here, CellH Z denotes the HZ-R–cellularization as in Section 2B. We would like to
remove the HomR.HZ; � / from the composite equivalence above.

Definition 1.2 We say that R has Gorenstein duality of shift b if we have an equiva-
lence of R–modules

CellH ZR'†bZR:

As in the nonequivariant setting, the passage from Gorenstein to Gorenstein duality
requires showing that the above composite equivalence is compatible with the right
action of E D HomR.HZ;HZ/. This turns out to be considerably more delicate than
the nonequivariant counterpart because connectivity is harder to control; but if one can
lift the R–equivalence to an E –equivalence, the conclusion is that if R is Gorenstein
of shift a, then it has Gorenstein duality of shift b D a� 2.1� �/.

Local cohomology The duality statement becomes more interesting when the cellu-
larization can be constructed algebraically. For any finitely generated ideal J of the
RO.C2/–graded coefficient ring RC2

? , we may form the stable Koszul complex �J R,
which only depends on the radical of J . In our examples, this applies to the augmenta-
tion ideal J D ker.RC2

? !HZC2
? /, which may be radically generated by finitely many

elements vi in degrees which are multiples of � . Adapting the usual proof to the real
context, Proposition 3.8 shows that �J R!R is an HZ-R–cellularization:

CellH ZR' �J R:

The RO.C2/–graded homotopy groups of �J R can be computed using a spectral
sequence involving local cohomology.

Algebraic & Geometric Topology, Volume 17 (2017)
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Conclusion In favourable cases, the Gorenstein condition on a ring spectrum R

implies Gorenstein duality for R; this in turn establishes a strong duality property on
the RO.C2/–graded coefficient ring, expressed using local cohomology.

1B Results

Our main theorems establish Gorenstein duality for a large family of real spectra. We
present in this introduction the particular cases of BPRhni and ER.n/, deferring the
more general theorem to Section 5. Let again � denote the nontrivial representation
of C2 on the real line and �D 1C � the real regular representation. Furthermore, set
Dn D 2nC1�n� 2 so that Dn�D jv1jC � � �C jvnj. Other terms in the statement will
be explained in Section 3.

Theorem 1.3 For each n � 1, the C2 –spectrum BPRhni is Gorenstein of shift
�Dn�� n, and has Gorenstein duality of shift �Dn�� n� 2.1� �/. This means that

ZBPRhni
.2/

'†Dn�CnC2.1��/� xJn
BPRhni;

where xJn D .v1; : : : ; vn/. This induces a local cohomology spectral sequence

H�xJn
.BPRhniC2

? / H) �C2
? .†�Dn��n�2.1��/ZBPRhni

.2/
/:

Theorem 1.4 For each n � 1, the C2 –spectrum ER.n/ has Gorenstein duality of
shift �Dn�� .n� 1/� 2.1� �/. This means that

ZER.n/
.2/

'†Dn�C.n�1/C2.1��/� xJn�1
ER.n/

'†.nC2/.22nC1�2nC2/CnC3�Jn�1
ER.n/

for Jn�1 D
xJn�1 \ �

C2
� ER.n/. This induces likewise a local cohomology spectral

sequence.

We note that this has implications for the C2 –fixed point spectrum .BPRhni/C2 D

BPRhni. The graded ring

��.BPRhni/D �C2
� .BPRhni/

is the integer part of the RO.C2/–graded coefficient ring �C2
? .BPRhni/. However,

since the ideal xJn is not generated in integer degrees, the statement for BPRhni is
usually rather complicated, and one of our main messages is that working with the
equivariant spectra gives more insight. On the other hand, ER.n/ D ER.n/C2 has
integral Gorenstein duality because one can use the additional periodicity to move the
representation suspension and the ideal xJn to integral degrees.
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We will discuss the general result in more detail later, but the two first cases are about
familiar ring spectra.

Example 1.5 (see Sections 6 and 11) For nD1, connective K-theory with reality kR
is 2–locally a form of BPRh1i. For this example, we can work without 2–localization,
so that Z means the integers. Our first theorem states that kR is Gorenstein of shift
���1D�2�� and that it has Gorenstein duality of shift �4C� . This just means that

ZkR
'†4�� fib.kR!KR/:

The local cohomology spectral sequence collapses to a short exact sequence associated
to the fibre sequence just mentioned. We will see in Section 11 that the sequence is
not split, even as abelian groups.

Theorem 1.4 recovers the main result of [14], ie that ZKR ' †4KR, which also
implies ZKO '†4KO. It is a special feature of the case nD 1 that we also get a nice
duality statement for the fixed points in the connective case. Indeed, by considering
the RO.C2/–graded homotopy groups of kR, one sees [7, Corollary 3.4.2] that

.kR˝S�� /C2 '†1ko:

This implies that connective ko has untwisted Gorenstein duality of shift �5, ie that

Zko
'†5 fib.ko! KO/:

This admits a closely related nonequivariant proof, combining the fact that ku is
Gorenstein (clear from coefficients) and the fact that complexification ko ! ku is
relatively Gorenstein (connective version of Wood’s theorem [7, Lemma 4.1.2]).

Example 1.6 (see Examples 4.13 and 5.12 or Lemma 7.1 and Corollary 7.5) The 2–
localization of the C2 –spectrum tmf1.3/ is a form of BPRh2i, and the theorem is closely
related to results in [27]. It states that tmf1.3/ is Gorenstein of shift �4��2D�6�4�

and has Gorenstein duality of shift �8� 2� . We show in Section 13 that there are
nontrivial differentials in the local cohomology spectral sequence.

Passing to fixed points, we obtain the 2–local equivalence

BPRh2i D .BPRh2i/C2 D tmf0.3/:

By contrast with the nD 1 case, as observed in [27], tmf0.3/ does not have untwisted
Gorenstein duality of any integer degree.

A variant of Theorem 1.4 also computes the C2 –equivariant Anderson dual of TMF1.3/,
and the computation of the Anderson dual of Tmf1.3/ from [27] follows as well.
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The results apply to tmf1.3/ and TMF1.3/ themselves (ie with just 3 inverted, and not
all other odd primes).

Our main theorem also recovers the main result of [28] about the Anderson self-duality
of integral real Morava K-theory.

1C Guide to the reader

While the basic structure of this paper is easily visible from the table of contents, we
want to comment on a few features.

The precise statements of our main results can be found in Section 5. We will give
two different proofs of them. One (Part III) might be called “the hands-on approach”
which is elementary and explicit, and one (Part II) uses Gorenstein techniques inspired
by commutative algebra. The intricacy and dependence on specific calculations in the
explicit approach make the conceptual approach valuable. The subtlety of the structural
requirements of the conceptual approach make the reassurance of the explicit approach
valuable. The results from the latter approach are also a bit more general: In Part III,
we prove a version of Gorenstein duality for a quite general class of quotients of BPR,
but we treat only BPRhni itself in Part II.

While the Gorenstein approach only relies on the knowledge of the homotopy groups
of HZ and the reduction theorem Corollary 4.7, we need detailed information about
the homotopy groups of quotients of BPR for the hands-on approach. In the appendix,
we give a streamlined version of the computation of �C2

? BPR (which appeared first
in [18]). In Section 4, we give a rather self-contained account of the homotopy groups
of BPRhni and of other quotients of BPR, which can also be read independently of the
rest of the paper. While some of this is rather technical, most of the time we just have
to use Corollary 4.6 whose statement (though not proof, perhaps) is easy to understand.

We give separate arguments for the computation of the Anderson dual of kR so that
this easier case might illustrate the more complicated arguments of our more general
theorems. Thus, if the reader is only interested in kR, he or she might ignore most of
this paper. More precisely, under this assumption one might proceed as follows: First
one looks at Section 11B for a quick reminder on �C2

? kR, then one skims through
Sections 2 and 3 to pick up the relevant definitions, and then one proceeds directly to
Section 6 or Section 8 to get the proof of the main result in the case of kR. Afterwards,
one may look at the pictures and computations in the rest of Section 11 to see what
happens behind the scenes of Gorenstein duality.

Acknowledgements We are grateful to the Hausdorff Institute of Mathematics in
Bonn for providing us the opportunity in Summer 2015 for the discussions starting this
work. We also thank Vitaly Lorman and Nicolas Ricka for helpful discussions.

Algebraic & Geometric Topology, Volume 17 (2017)



3554 J P C Greenlees and Lennart Meier

Part I Preliminaries and results

2 Basics and conventions about C2–spectra

2A Basics and conventions

We will work in the homotopy category of genuine G –spectra (ie stable for suspensions
by SV for any finite dimensional representation V ) for G D C2 , the group of order 2.
We will denote by ˝ the derived smash product of spectra.

We may combine the equivariant and nonequivariant homotopy groups of a C2 –
spectrum into a Mackey functor, which we denote by �C2

� X and denote C2 –equivariant
and underlying homotopy groups correspondingly by �C2

� X and �e
�X . For an abelian

group A, we write A for the constant Mackey functor (ie restriction maps are the
identity), and A� for its dual (ie induction maps are the identity). We write HM for
the Eilenberg–Mac Lane spectrum associated to a Mackey functor M .

Another C2 –spectrum of interest to us is kR, the C2 –equivariant connective cover of
Atiyah’s K-theory with reality [4]. The term “real spectra” derives from this example.
The examples of real bordism and the other C2 –spectra derived from it will be discussed
in Section 4.

We will usually grade our homotopy groups by the real representation ring RO.C2/,
and we write M? for RO.C2/–graded groups. In addition to the real sign representa-
tion � and the regular representation � , the virtual representation ı D 1� � is also
significant. Examples of RO.C2/–graded homotopy classes are the geometric Euler
classes aV W S

0! SV ; in particular, aD a� will play a central role. In addition to a,
we will also often have a class uD u2� of degree 2ı .

We often want to be able to discuss gradings by certain subsets of RO.C2/. To start
with, we often want to refer to gradings by multiples of the regular representation
(where we write M�� ), but we also need to discuss gradings of the form k�� 1. For
this, we use the notation

���D fk� j k 2 Zg[ fk�� 1 j k 2 Zg:

Following [27], we call an RO.C2/–graded object M even if Mk��1 D 0 for all k .
An RO.C2/–graded Mackey functor is strongly even if it is even and all the Mackey
functors in gradings k� are constant. We call a C2 –spectrum (strongly) even if its
homotopy groups are (strongly) even.

If X is a strongly even C2 –spectrum and x 2 �2kX , we denote by xx its counterpart
in �C2

k�X . If we want to stress that we consider a certain spectrum as a C2 –spectrum,
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we will also sometimes indicate this by a bar; for example, we may write tmf1.3/ if
we want to stress the C2 –structure of tmf1.3/.

2B Cellularity

In a general triangulated category, it is conventional to say M is K–cellular if M

is in the localizing subcategory generated by K (or equivalently by all integer sus-
pensions of K ). A reference in the case of spectra is [9, Section 4.1]. We say that
a C2 –spectrum M is K-R–cellular (for a C2 –spectrum K ) if it is in the localizing
subcategory generated by the suspensions Sk�˝K for all integers k . We note that
this is the same as the localizing subcategory generated by integer suspensions of K

and .C2/C˝K because of the cofibre sequence

.C2/C! S0
! S� :

We say that a map N !M is a K-R–cellularization if N is K-R–cellular and the
induced map

Hom.K;N /! Hom.K;M /

is an equivalence of C2 –spectra. The K-R–cellularization is clearly unique up to
equivalence.

We note that cellularity and R–cellularity are definitely different. For example, .C2/C
is not S0 –cellular, but it is S0-R–cellular.

In this article, we will only use R–cellularity.

2C The slice filtration

Recall from [16, Section 4.1] or [15] that the slice cells are the C2 –spectra of the form

� Sk� of dimension 2k ,

� Sk��1 of dimension 2k � 1, and

� Sk ˝ .C2/C of dimension k .

A C2 –spectrum X is � k if for every slice cell W of dimension � k C 1, the
mapping space �1HomS.W;X / is equivariantly contractible. As explained in [16,
Section 4.2], this leads to the definition of X !PkX , which is the universal map into
a C2 –spectrum that is � k . The fibre of

X ! PkX
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3556 J P C Greenlees and Lennart Meier

is denoted by PkC1X . The k -slice Pk
k

X is defined as the fibre of

PkX ! Pk�1X;

or equivalently, as the cofibre of the map PkC1X !PkX . We have the following two
useful propositions:

Proposition 2.1 [15, Corollary 2.12, Theorem 2.18] If X is an even C2 –spectrum,
then P2k�1

2k�1
X D 0 for all k 2 Z.

Proposition 2.2 [15, Corollary 2.16, Theorem 2.18] If X is a C2 –spectrum such
that the restriction map in �C2

k�
is injective, then P2k

2k
X is equivalent to the Eilenberg–

Mac Lane spectrum �C2
k�

X .

This allows us to give a characterization of an Eilenberg–Mac Lane spectrum based on
regular representation degrees.

Corollary 2.3 Any even C2 –spectrum X with

�C2

k�
.X /D

�
A if k D 0;

0 otherwise;

for an abelian group A, is equivalent to HA.

Proof By the last two propositions, we have

Pk
k X '

�
HA if k D 0;

0 otherwise:

By convergence of the slice spectral sequence [16, Theorem 4.42], the result follows.

3 Anderson duality, Koszul complexes and
Gorenstein duality

3A Duality for abelian groups

It is convenient to establish some conventions for abelian groups to start with, so as to
fix notation.

Pontrjagin duality is defined for all graded abelian groups A by

A_ D HomZ.A;Q=Z/:

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3557

Similarly, the rational dual is defined by

A_Q
D HomZ.A;Q/:

Since Q and Q=Z are injective abelian groups these two dualities are homotopy
invariant and pass to the derived category. Finally the Anderson dual A� is defined by
applying HomZ.A; � / to the exact sequence

0! Z!Q!Q=Z! 0;

so we have a triangle
A�!A_Q

!A_:

If M is a free abelian group, then the Anderson dual is simply calculated by

M �
D HomZ.M;Z/

(since M is free, the Hom need not be derived).

If M is a graded abelian group which is an F2 –vector space then up to suspension the
Anderson dual is the vector space dual:

M_
D HomF2

.M;F2/'†
�1M �

(since vector spaces are free, Hom need not be derived).

3B Anderson duality

Anderson duality is the attempt to topologically realize the algebraic duality from
the last subsection. It appears that it was invented by Anderson (only published
in mimeographed notes [1]) and Kainen [19], with similar ideas by Brown and
Comenetz [6]. For brevity and consistency, we will only use the term Anderson
duality instead of Anderson–Kainen duality or Anderson–Brown–Comenetz duality
throughout. We will work in the category of C2 –spectra, where Anderson duality was
first explored by Ricka in [28].

Let I be an injective abelian group. Then we let IS denote the C2 –spectrum repre-
senting the functor

X 7! Hom.�C2
� X; I/:

For an arbitrary C2 –spectrum, we define IX as the function spectrum F.X; IS/. For
a general abelian group A, we choose an injective resolution

A! I ! J
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and define AX as the fibre of the map IX !J X . For example, we get a fibre sequence

ZX
!QX

! .Q=Z/X :

In general, we get a short exact sequence of homotopy groups

0! ExtZ.�C2

�k�1
.X /;A/! �C2

k
.AX /! Hom.�C2

�k
.X /;A/! 0:

The analogous exact sequence is true for RO.C2/–graded Mackey functor valued
homotopy groups by replacing X by .C2=H /C ^†

V X . Our most common choices
will be AD Z and AD Z.2/ .

From time to time we use the following property of Anderson duality: If R is a strictly
commutative C2 –ring spectrum and M an R–module, then HomR.M;AR/'AM

as R–modules as can easily be seen by adjunction.

One of the reasons to consider Anderson duality is that it provides universal coef-
ficient sequences. In the C2 –equivariant world, this takes the following form [28,
Proposition 3.11]:

0! Ext1Z.E
C2

˛�1
.X /;A/! .AE/C2

˛ .X /! HomZ.E
C2
˛ .X /;A/! 0;

where E and X are C2 –spectra, ˛ 2 RO.C2/ and A is an abelian group.

Our first computation is the Anderson dual of the Eilenberg–Mac Lane spectrum of the
constant Mackey functor Z.

Lemma 3.1 The Anderson dual of the Eilenberg–Mac Lane spectrum HZ (as an
S–module) is given by the following, where ı D 1� � :

ZH Z
'HZ� '†2ıHZ:

Proof The first equivalence follows from the isomorphisms

�C2
� .Z

H Z/Š HomZ.�
C2
��HZ;Z/Š Z�:

Since
�C2
� .S

2�2�
˝HZ/DH�C2

.S2��2
IZ/DH�.S2��2=C2IZ/;

and S2� D S0 �S.2�/ is the unreduced suspension of S.2�/, the second equivalence
is a calculation of the cohomology of RP1 .

Remark 3.2 This proof shows that if C2 is replaced by a cyclic group of any order,
we still have

ZH Z
DHZ� '†�HZ;

Algebraic & Geometric Topology, Volume 17 (2017)
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where �D ��˛ (with � the trivial one dimensional complex representation and ˛ a
faithful one dimensional representation).

Anderson duality works, of course, also for nonequivariant spectra. We learnt the follow-
ing proposition comparing the equivariant and nonequivariant version in a conversation
with Nicolas Ricka.

Proposition 3.3 Let A be an abelian group. We have .AX /C2 ' A.X
C2 / for every

C2 –spectrum X .

Proof Let inf C2
e Y denote the inflation of a spectrum Y to a C2 –spectrum with “trivial

action”, ie the left derived functor of first regarding it as a naive C2 –spectrum with
trivial action and then changing the universe. This is the (derived) left adjoint for the
fixed point functor [25, Proposition 3.4].

Let I be an injective abelian group. Then there is for every spectrum Y a natural
isomorphism

ŒY; .IX /C2 �Š Œinf C2
e Y; IX �C2

Š Hom.�C2
0 .inf C2

e Y ˝X /; I/

Š Hom.�0.Y ˝X C2/; I/

Š ŒY; I .X
C2 /�:

Here, we use that fixed points commute with filtered homotopy colimits and cofibre
sequences and therefore also with smashing with a spectrum with trivial action. Thus,
there is a canonical isomorphism in the homotopy category of spectra between I .X

C2 /

and .IX /C2 that is also functorial in I (by Yoneda). For a general abelian group A,
we can write A.X

C2 / as the fibre of .I0/X
C2
! .I1/X

C2 (and similarly for the other
side) for an injective resolution 0! A! I0 ! I1 . Thus, we obtain a (possibly
noncanonical) equivalence between A.X

C2 / and .AX /C2 .

Remark 3.4 An analogous result holds, of course, for every finite group G .

3C Koszul complexes and derived power torsion

Let R be a nonequivariantly E1 C2 –ring spectrum and M an R–module. In this
section, we will recall two versions of stable Koszul complexes. Among their merits is
that they provide models for cellularization or R–cellularization in cases of interest for
us. A basic reference for the material in this section is [11].

As classically, the r –power torsion in a module N can be defined as the kernel of
N !N Œ1=r �, we define the derived J –power torsion of M with respect to an ideal
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J D .x1; : : : ;xn/� �
C2
? .R/ as

�J M D fib
�
R!R

h
1

x1

i�
˝R � � � ˝R fib

�
R!R

h
1

xn

i�
˝R M:

This is also sometimes called the stable Koszul complex, also denoted by K.x1; : : : ;xn/.
As shown in [11, Section 3], this only depends on the ideal J and not on the chosen
generators. As algebraically, the derived functors of J –power torsion are the local
cohomology groups, we might expect a spectral sequence computing the homotopy
groups of �J M in terms of local cohomology. As in [11, Section 3], this takes the form

H s
J .�

C2

?CV
M / H) �C2

V�s
.�J M /:(3.5)

Our second version of the Koszul complex can be defined in the one-generator case as

�R.x/D holim
!

†.1�l/jxjR=xl

for x 2 �C2
? .R/. Here, the map R=xl !†�jxjR=xlC1 is induced by the diagram of

cofibre sequences:

†jx
l jR

xl
//

D

��

R //

x

��

R=xl

��

†jx
l jR

xlC1
// †�jxjR // †�jxjR=xlC1

More generally, we can make, for a sequence xD.x1; : : : ;xn/ in �C2
? .R/, the definition

�R.xIM / WD �R.x1/˝R � � � ˝R �R.xn/˝R M

' holim
!

†�..l1�1/C���C.ln�1//jxjM=.x
l1

1
; : : : ;xln

n /:

The spectrum �R.x/ comes with an obvious filtration by †.1�l/jxjR=xl with filtration
quotients †�ljxjR=x . We can smash these filtrations together to obtain a filtration
of �R.x/ with filtration quotients wedges of summands of the form

†�l1jx1j�����lnjxnjR=.x1; : : : ;xn/I

see [32, Definition 1.3.11, Proposition 12] or [33, Remark 2.8, Lemma 2.12]. Using
the following lemma, we obtain also a corresponding filtration on �J R.

Lemma 3.6 For x as above, we have

�R.x/'†
jx1jC���CjxnjCn �J R:

Proof See [11, Lemma 3.6].
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We can also define �R.xIM / (and likewise the other versions of Koszul complexes)
for an infinite sequence of xi by just taking the filtered homotopy colimit over all finite
subsequences. Usually Lemma 3.6 breaks down in the infinite case.

Remark 3.7 The homotopy colimit defining �R.xIM / has a directed cofinal sub-
system, both in the finite and in the infinite case. Indeed, the colimit ranges over
all sequences .l1; l2; : : : / with only finitely many entries nonzero. For the directed
subsystem, we start with .0; 0; : : : / and raise in the nth step the first n entries by 1.
Directed homotopy colimit are well known to be weak colimits in the homotopy category
of R–modules, ie every system of compatible maps induces a (possibly nonunique)
map from the homotopy colimit [26, Section 3.1; 29, Section II.5].

One of the reasons for introducing �J M is that it provides a model for the R–
cellularization of M with respect to R=J D .R=x1/˝R � � � ˝R .R=xn/ in the sense
of Section 2B.

Proposition 3.8 Suppose that x1; : : : ;xn 2 �
C2
��R, and set J D .x1; : : : ;xn/. Then

�J M !M is an R–cellularization with respect to R=J in the (triangulated ) category
of R–modules.

Proof Clearly, �R.x1; : : : ;xnIM / is R–cellular with respect to M=J ; furthermore
M=J is R=J -R–cellular as clearly M is R–cellular. To finish the proof, we have to
show that

HomR.R=J; �J M /! HomR.R=J;M /

is an equivalence. Note that �J M D �xn
.�.x1;:::;xn�1/M /. Thus, it suffices by

induction to show that

HomR.A=x; �xB/! HomR.A=x;B/

is an equivalence for all R–modules A;B . This is equivalent to

HomR.A=x;BŒx
�1�/D 0;

which is true as multiplication by x induces an equivalence

HomR.A;BŒx
�1�/

x�

��! HomR.†
jxjA;BŒx�1�/:

Corollary 3.9 Let M be a connective R–module and A an abelian group. Then the
Anderson dual AM is R–cellular with respect to R=J for every ideal J ��C2

? finitely
generated in degrees aC b� with a� 1 and aC b � 1.
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Proof By the last proposition, we have to show that �J AM ' AM . For this, it
suffices to show that AM Œx�1� is contractible for every generator x of J . As M is
connective, we know that �aCb�M D 0 if a < 0 and aC b < 0 (this follows, for
example, using the cofibre sequence .C2/C! S0! S� ). Thus, �aCb�AM D 0 if
a> 0 and aC b > 0. The result follows.

4 Real bordism and the spectra BPRhni

4A Basics and homotopy fixed points

The C2 –spectrum M R of real bordism was originally defined by Araki and Landweber.
In the naive model of C2 –spectra, where a C2 –spectrum is just given as a sequence .Xn/

of pointed C2 –spaces together with maps

†�Xn!XnC1;

it is just given by the Thom spaces M Rn D BU.n/n with complex conjugation as
C2 –action. Defining it as a strictly commutative C2 –orthogonal spectrum requires
more care and was done in [30, Example 2.14] and [16, Section B.12]. An important
fact is that the geometric fixed points of M R are equivalent to MO (first proven in [3]
and reproven in [16, Proposition B.253]).

As shown in [2] and [18, Theorem 2.33], there is a splitting

M R.2/ '
M

i

†mi�BPR;

where the underlying spectrum of BPR agrees with BP . This splitting corresponds on
geometric fixed points to the splitting

MO'
M

i

†mi HF2:

As shown in [18] (see also the appendix), the restriction map

�C2
�� BPR! �2�BP

is an isomorphism. Choose now arbitrary indecomposables vi 2 �2.2i�1/BP and
denote their lifts to �C2

.2i�1/�
BPR and their images in �C2

.2i�1/�
M R by vi . We denote

by BPRhni the quotient
BPR=.vnC1; vnC2; : : : /

in the homotopy category of M R–modules. At least a priori, this depends on the
choice of vi .
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We want to understand the homotopy groups of BPRhni. This was first done by Hu
in [17] (beware though that Theorem 2.2 is not correct as stated there) and partially
redone in [20]. For the convenience of the reader, we will give the computation again.
Note that our proofs are similar but not identical to the ones in the literature. The main
difference is that we do not use ascending induction and prior knowledge of HZ to
compute ˆC2BPRhni, but precise knowledge about �C2

? BPR; this is not simpler than
the original approach, but gives extra information about other quotients of BPR, which
we will need later. We recommend that the reader looks at the appendix for a complete
understanding of the results that follow.

We will use the Tate square [12] and consider the following diagram in which the rows
are cofibre sequences:

BPRhni˝.EC2/C //

'

��

BPRhni //

��

BPRhni˝ zEC2

��

// †BPRhni˝.EC2/C

��

BPRhni.EC2/C˝.EC2/C // BPRhni.EC2/C // BPRhni.EC2/C˝ zEC2
// †BPRhni˝.EC2/C

After taking fixed points, this becomes the diagram:

BPRhnihC2
//

D

��

BPRhniC2 //

��

BPRhniˆC2

��

// †BPRhnihC2

��

BPRhnihC2
// BPRhnihC2 // BPRhnitC2 // †BPRhnihC2

First, we compute the homotopy groups of the homotopy fixed points. For this, we use
the RO.C2/–graded homotopy fixed point spectral sequence, described for example in
[27, Section 2.3].

Proposition 4.1 The RO.C2/–graded homotopy fixed point spectral sequence

E2DH�.C2I�
e
?BPRhni/ŠZ.2/Œv1; : : : ; vn;u

˙1; a�=2a H) �C2
? .BPRhni.EC2/C/

has differentials generated by d2iC1�1.u
2i�1

/Da2iC1�1vi for i � n and E2nC1DE1.

Proof The description of E2nC1 is entirely analogous to the proof of A.2, using
that a2iC1�1vi D 0 in �C2

? BPRhni.EC2/C . Now we need to show that there are no
further differentials: As every element in filtration f is divisible by af in E2nC1

, the
existence of a nonzero dm (with m � 2nC1 ) implies the existence of a nonzero dm

with source in the 0–line. Moreover, a nonzero dm of some element ulv (for v a
polynomial in the vi ) on the 0–line implies a nonzero dm on ul as v is a permanent
cycle (in the image from BPR). The image of such a differential must be of the
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form amul 0v0 , where v0 is a polynomial in v1; : : : ; vn . As amvi D 0 for 1 � i � n

in E2nC1

, the polynomial v0 must be constant. Counting degrees, we see that

.2l � 1/� 2l� D jul
j � 1D jamul 0

j D 2l 0� .2l 0Cm/�;

and thus mD 2l � 2l 0 D 1. This is clearly a contradiction.

Corollary 4.2 We have

�C2
?
�
BPRhni.EC2/C ˝ zEC2

�
Š F2Œu

˙2n

; a˙1�:

In particular, we get ��BPRhnitC2 ŠF2Œx
˙1�, where xDu2n

a�2nC1

and jxjD 2nC1 .
These are understood to be additive isomorphisms.

Proof Recall that

�C2
?
�
BPRhni.EC2/C ˝ zEC2

�
D �C2

?
�
BPRhni.EC2/C

�
Œa�1�:

as S1� is a model of zEC2 . The result follows as all vi are a–power torsion, but
u2nm is not.

4B The homotopy groups of BPRhni

Computing the homotopy groups of the fixed points is more delicate than the com-
putation of the homotopy fixed points. We first have to use our detailed knowledge
about the homotopy groups of BPR. Given a sequence l D .l1; : : : /, we denote by
BPR=v l the spectrum BPR=.v li1

i1
; v li2

i2
; : : : /, where ij runs over all indices such that

lij ¤ 0. Similarly BPR=vj
i is understood to be BPR if j D 0. We use the analogous

convention when we have algebraic quotients of homotopy groups.

We recommend the reader skips the proof of the following result for first reading, as
the technical detail is not particularly illuminating.

Proposition 4.3 Let k � 1 and let l D .l1; l2; : : : / be a sequence of nonnegative
integers with lk D 0. Then the element vk acts injectively on .�C2

���cBPR/=v l if
0� c � 2kC1C 1, with a splitting on the level of Z.2/–modules.

Proof Recall from the appendix that �C2
? BPR is isomorphic to the subalgebra of

P=.2a; via
2iC1�1/

(where i runs over all positive integers) generated by vi.j /Du2ijvi (with i; j 2Z and
i � 0) and a, where P DZ.2/Œa; vi ;u

˙1�. The degrees of the elements are jaj D 1��

and
jvi.j /j D .2

i
� 1/�C 2ij .4� 2�/D .2i

� 1� 2iC1j /�C 2iC2j:
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We add the relations vli

i D 0 if li ¤ 0.

We will first show that the ideal of vk –torsion elements in .�C2
? BPR/=v l is contained

in the ideal generated by a2kC1�1 and vls�1
s vs.j / for s with ls ¤ 0 and j divisible

by 2k�s if s < k . Indeed, because the ideal .2a; via
2iC1�1; v l/ � P is generated

by monomials, a polynomial in P defines a vk –torsion element in .�C2
? BPR/=v l if

and only if each of its monomials define vk –torsion elements. A monomial xP in P

can only define a nonzero vk –torsion element in .�C2
? BPR/=v l if it is divisible by

a2kC1�1 or vls
s . In the latter case, xP is of the form vv

ls
s um , where v is a polynomial

in the vi . This is divisible by vls
s in �C2

? BPR if and only if m is divisible by 2i for
some vi in v . Thus, xP defines a nonzero element x in .�C2

? BPR/=v l such that vkx

defines 0 only if 2k jm, which corresponds to the condition above.

Let x be a nonzero vk –torsion element in .�C2
? BPR/=v l , represented by a monomial

in P . First assume that x is divisible by an with n� 2kC1�1, but not by anC1 . Then,
x is not divisible by any vi.j / with i � k as anvi.j /D 0. We demand that x is in
degree ���c with c�0; in particular, x¤an . Let vi.j / a divisor of x with minimal i .
Thus, the degree of x must be of the form ��C2iC2mCn. We know that n� 2iC1�2.
The largest negative value the non-�-part can take is �2iC2C 2iC1� 2D�2iC1� 2.
The statement about injectivity follows in this case as i > k .

Now assume that x is a vk –torsion element not divisible by an for n�2kC1�1. Then x

must be of the form v
ls�1
s vs.j /, where j is divisible by 2k�s if s < k . Observe that

vls�1
s vs.j /v t .m/D v

ls
s v t .2

s�tj Cm/D 0 2 .�C2
? BPR/=v l

for t < s , so y is not divisible by any v t .m/ for t < s . Likewise observe that if
s � t � k , then

vls�1
s vs.j /v t .m/D v

ls
s v t .mC 2k�tj 0/D 0 2 .�C2

? BPR/=v l ;

where j D 2k�sj 0 . Thus, y is also not divisible by any v t .m/ with s � t � k . As
jvs.j /j D ��C d , where d is divisible by 2kC2 , and the same is true for jv t .j /j

with t > k , we see that if jxj is of the form ��� c with c � 0, then we have

c � 2kC2
� .2kC1

� 2/D 2kC1
C 2:

The statement about injectivity follows also in this case.

We still have to show the split injectivity. If vky D 2z , but y is not divisible by 2,
then y must be of the form 2vu2kj in P , where v is a polynomial in the vi . Thus,
jyjD 2kC2jC�� , so we are fine in degree ���c for 0� c� 2kC1C1� 2kC2�1.

Remark 4.4 The exact bounds in the preceding proposition are not very important.
The only important part for later inductive arguments is that the bound grows with k .
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Corollary 4.5 Let l D .l1; l2; : : : / be a sequence with only finitely many nonzero
entries, and let j be the smallest index such that lj ¤ 0. Then the map

.�C2
���cBPR/=v l

! �C2
���c.BPR=v l/

is an isomorphism for 0� c � 2jC1 .

Proof We use induction on the number n of nonzero indices in l . If n D 0 (and
j D1), the statement is clear.

For the step, define l 0 to be the sequence obtained from l by setting lj D 0. Consider
the short exact sequence

0!
�
�C2
���c.B=v

l 0/
�
=v

lj
j ! �C2

���c.B=v
l/!

˚
�C2
���.cC1/.B=v

l 0/
	
v

lj

j

! 0:

Here, the notation fX gz denotes the elements in X killed by z .

Assume c � 2jC1 . By the induction hypothesis, �C2
���c.B=v

l 0/Š .�C2
���cB/=v l 0 as

c � 2jC2 , so .�C2
���c.B=v

l 0//=v
lj
j Š .�

C2
���cB/=v l . Furthermore,˚

�C2
���.cC1/.B=v

l 0/
	
v

lj

j

Š
˚
.�C2
���.cC1/B/=v

l 0
	
v

lj

j

Š 0;

as follows from cC 1� 2jC2 and cC 1� 2jC1C 1 by the induction hypothesis and
Proposition 4.3. Thus .�C2

���cB/=v l ! �C2
���c.B=v

l/ is an isomorphism.

The following corollary is crucial:

Corollary 4.6 Let I � Z.2/Œv1; : : : � be an ideal generated by powers of the vi . Then
BPR=I is strongly even.

Proof As being strongly even is a property closed under filtered homotopy colimits,
we are reduced to the case that I is finitely generated. By the last corollary, it suffices to
show that BPR itself is strongly even. That the Mackey functor �C2

��.BPR/ is constant
is clear from Theorem A.4.

Assume that x is a nonzero element in �C2
���1BPR. We can assume that x is represented

by akulv in the E2 –term of the homotopy fixed point spectral sequence for BPR,
where v is a monomial in the vi (with v0 D 2), k � 0 and l 2Z. The element x is in
degree kC4lC�� . Let j � 0 be the minimal number such that vj jv . Then 2j jl and
k � 2jC1� 2. This is clearly in contradiction with kC 4l D�1.

We recover the C2 –case of the reduction theorem of [18, Proposition 4.9] and [16,
Theorem 6.5].
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Corollary 4.7 There is an equivalence BPR=.v1; v2; : : : /'HZ.2/ .

Proof This follows directly from the last corollary and Corollary 2.3.

Corollary 4.8 Let I � Z.2/Œv1; : : : � be an ideal generated by powers of the vi . Then

�C2
��C1BPR=I Š F2fag˝Z.2/Œv1; v2; : : : �=I:

Proof As BPR=I is strongly even, this follows from [27, Lemma 2.15].

This allows us to compute �C2
? BPRhni.

Proposition 4.9 The spectrum BPRhni is the connective cover of its Borel completion
BPRhni.EC2/C . The cofibre C of BPRhni ! BPRhni.EC2/C has homotopy groups

�C2
? C Š F2Œa

˙1;u�2n

�u�2n

;

with the naming of the elements indicating the map �C2
? BPRhni.EC2/C ! �C2

? C .

Proof This is clear on underlying homotopy groups. Thus, we have only to show that
BPRhniC2! BPRhnihC2 is a connective cover. For that purpose, it is enough to show
that BPRhniˆC2 is connective and that the fibre of BPRhniˆC2 ! BPRhnitC2 has
homotopy groups only in negative degrees.

We have BPRhniˆC2'BPRˆC2=.vnC1; : : : /. As noted in the proof of Proposition A.1,
the image of vi in M R�C2 is 0. As the quotient BPRˆC2=.vnC1; : : : / can be taken in
the category of M RˆC2 –modules, we are only quotienting out by 0. It follows easily
that .BPR=.vnC1; : : : ; vnCm//

ˆC2 has in the homotopy groups an F2 in all degrees
of the form

PnCm
iDnC1"i.jvi jC1/D

PnCm
iDnC1"i2

i with "i D 0 or 1. As geometric fixed
point commute with homotopy colimits, we see that ��BPRhniˆC2ŠF2Œy� (additively)
with jyj D 2nC1 . It remains to show that yk maps nonzero to ��BPRhnitC2 (and
hence maps to xk/.

It is enough to show that a�jy
k j�1yk maps nonzero to �C2

? †BPRhni˝ .EC2/C in
the sequence coming from the Tate square, ie that a�jy

k j�1yk is not in the image
from (the fixed points of) BPRhni. But a�jy

k j�1yk is in degree .jyk jC 1/�� 1 and
�C2
.jyk jC1/��1

BPRhni D 0 by Corollary 4.6.

Let us describe the homotopy groups of BPRhni in more detail. We set v0 D 2 for
convenience. Denote by BB (for basic block) the Z.2/Œa; v1; : : : ; vn�=2a–submodule of

Z.2/Œv1; : : : ; vn�=.a
2kC1�1vk/0�k�n
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generated by 1 and by vk.m/ D u2kmvk for 0 � k < n and 0 < m < 2n�k . By
Proposition 4.1, we see that

�C2
? BPRhni.EC2/C Š BB ŒU˙1�

with U Du2n

. Note that this isomorphism is not claimed to be multiplicative; in general,
BPRhni is not even known to have any kind of (homotopy unital) multiplication.

Define BB 0 to be the kernel of the map BB!F2Œa� given by sending all vk and vk.m/

to zero. Set NBD†��1F2Œa�
_˚BB 0 , where NB stands for negative block. Then it is

easy to see from the last proposition that

�C2
? BPRhni Š BB ŒU �˚U�1NB ŒU�1�;

where this isomorphism is again only meant additively. We will be a little bit more
explicit about the homotopy groups of BPRhni in the cases nD 1 and 2 in Part IV.

4C Forms of BPRhni

Our next goal is to identify certain spectra as forms of BPRhni. We take the following
definition from [27]:

Definition 4.10 Let E be an even 2–local commutative and associative C2 –ring
spectrum up to homotopy. By [27, Lemma 3.3], E has a real orientation, and after
choosing one, we obtain a formal group law on �C2

��E . The 2–typification of this
formal group law defines a map �e

2�
BP Š �C2

�� BPR! �C2
��E . We call E a form of

BPRhni if the map
Z.2/Œv1; : : : ; vn�� ���BPR! ���E

is an isomorphism of constant Mackey functors.

This depends neither on the choice of vi nor on the chosen real orientation, as can be
seen using that vi is well defined modulo .2; v1; : : : ; vi�1/.

Equivalently, one can say that E is a form of BPRhni if and only if E is strongly even
and its underlying spectrum is a form of BP hni. We want to show that every form of
BPRhni is also of the form BPR=.vnC1; vnC2; : : : / for some choice of elements vi .
For this, we need the following lemma from [27, Lemma 3.4]:

Lemma 4.11 Let f W E ! F be a map of C2 –spectra. Assume that f induces
isomorphisms

�C2
k�E! �C2

k�E and �kE! �kF

for all k 2 Z. Assume furthermore that �C2
k��1E ! �C2

k��1F is an injection for all
k 2 Z (for example, if �C2

k��1E D 0). Then f is an equivalence of C2 –spectra.
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Proposition 4.12 Let E be a form of BPRhni. Then one can choose indecomposables
vi 2 �

C2

.2i�1/�
BPR for i � nC 1 such that E ' BPR=.vnC1; vnC2; : : : /.

Proof First choose any system of vi . Also choose a real orientation f W BPR!E

and denote f .vi/ by xi . Define a multiplicative section

sW �C2
��E! �C2

�� BPR

by s.xi/D vi for 1� i � n.

Now define a new system of vi by

vnew
i D vi � s.f�.vi//

for i � nC1. As these agree with vi mod .v1; : : : ; vn/, they are still indecomposable.
Furthermore, the vnew

i are for i � nC 1 clearly in the kernel of f� . Thus, we obtain a
map BPRhni=.vnew

nC1
; vnew

nC2
; : : : /!E that is an isomorphism on �C2

�� . By Corollary 4.6,
the source is strongly even. By Lemma 4.11, the map is an equivalence.

Examples 4.13 We consider real versions of the classical examples ku and tmf1.3/.

(1) The connective real K-theory spectrum kR.2/ is a form of BPRh1i. Indeed,
the underlying spectrum ku.2/ is well known to be a form of BP h1i and kR.2/ is
also strongly even (as can be seen by the results from [7, Section 3.7.D] or from the
computation in Section 11).

(2) Define tmf1.3/ as the equivariant connective cover of the spectrum Tmf1.3/, ie
Tmf1.3/ with the algebro-geometrically defined C2 –action (see [27, Section 4.1]
for details). As shown in [27, Corollary 4.17], tmf1.3/.2/ is a form of BPRh2i.
By Proposition 4.12, we can construct tmf1.3/.2/ by killing a sequence v2; v3; : : :

in BPR. This construction is used in [23] to define a C2 –equivariant version of
tmf1.3/.2/ . In particular, we see (using the discussion before Proposition 4.23 in [27])
that TMF1.3/.2/ (with the algebro-geometrically defined C2 –action) agrees with the
TMF1.3/.2/ of [23].

5 Results and consequences

In this section, we want to discuss our main results in more detail than in the introduction
and we will also derive some consequences and give some examples. Recall to that
purpose the notation from Sections 3C and 4A. Furthermore, we will implicitly localize
everything at 2, so Z means Z.2/ , etc. Our main theorem is the following:
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Theorem 5.1 Let .m1;m2; : : : / be a sequence of nonnegative integers with only
finitely many entries bigger than 1, and let M be the quotient BPR=.vm1

1
; v

m2

2
; : : : /,

where we only quotient by the positive powers of vi . Denote by v the sequence of vi

in �C2
? M R such that mi D 0, by jvj the sum of their degrees and by m0 the sum of all

.mi � 1/jvi j for mi > 1. Then

ZM
'†�m0C4�2��MR.vIM /:

The most important case is where mnC1 DmnC2 D � � � D 1, so

M D BPRhni=.vm1

1
; : : : ; vmn

n /:

If k is the number of elements in v , we also get

ZM
'†�m0CkCjvjC4�2��vM;

where we view M as an M R–module.

The first form will be proved as Theorem 10.1 and the second follows from it using
Lemma 3.6. The second form also follows from Corollary 7.5 (using that �v preserves
cofibre sequences to pass to quotients of BPRhni).

Example 5.2 ZBPRhni'†nCDn�C4�2��.v1;:::;vn/BPRhni for DnDjv1jC� � �Cjvnj.
This says BPRhni has Gorenstein duality with respect to HZ'BPRhni=.v1; : : : ; vn/.
(The last equivalence follows from Corollary 4.7.)

Example 5.3 Set kR.n/ D BPRhni=.v1; : : : ; vn�1/ to be connective integral real
Morava K-theory and KR.n/D kR.n/Œv�1

n � its periodic version. Then

ZkR.n/
'†1CjvnjC4�2��vn

kR.n/

'†.2
n�3/�C4 cof.kR.n/!KR.n//:

This includes for nD 1 the case of usual (2–local) connective real K-theory.

Example 5.4 To have a slightly stranger example, take M D BPRh3i=.v4
1
; v2

3
/. Then

ZM
'†5�9��v2

M:

So far, we have only talked about quotients of BPR. This does not include important
real spectra like the real Johnson–Wilson theories ER.n/ D BPRhniŒv�1

n � or the
(integral) real Morava K-theories KR.n/. For this, we have to study the behaviour of
our constructions under localizations.
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Let M be an RO.C2/–graded ZŒv�–module, where v has some degree jvj 2 RO.C2/.
We say that M has bounded v–divisibility if for every degree aC b� , there is a k

such that
vk
W MaCb��jvk j!MaCb�

is zero. We will also apply the concept to modules that are just Zjvj–graded.

Lemma 5.5 The class of RO.C2/–graded ZŒv�–modules of bounded v–divisibility is
closed under submodules, quotients and extensions.

Proof This is clear for submodules and quotients. Let

0!K!M !N ! 0

be a short exact sequence of ZŒv�–modules where K and N are of bounded v–
divisibility. For a given degree ˛ 2 RO.C2/, we know that there is a k such that vk

maps trivially into K˛ . Furthermore, there is an n such that vn maps trivially into
N˛�kjvj . Thus, multiplication by vnCk is the zero map M˛�.kCn/jvj!M˛ .

Let M be an M R–module. We say that M is of bounded vn –divisibility if both
�C2
? M and �e

�M are of bounded vn –divisibility. This is, for example, true if M is
connective.

Lemma 5.6 We have the following two properties of vn –divisibility.

(1) Being of bounded vn –divisibility is closed under cofibres and suspensions.

(2) An M R–module M is of bounded vn –divisibility if and only if �C2
��M and

�e
�M are of bounded vn –divisibility.

Proof Both statements follow from the last lemma. For the second item, we addition-
ally use the exact sequence

�e
aCbC1M ! �C2

aC.bC1/�
M ! �C2

aCb�
M ! �e

aCbM

induced by the cofibre sequence

.C2/C! S0
! S� :

Lemma 5.7 If M has bounded vn –divisibility, then there is a natural equivalence

M Œv�1
n �'† holim

 
.� � � !†jvnj�vn

M
vn
�! �vn

M /

of M R–modules.
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Proof We apply the endofunctor H W N 7! holim
 

.� � � ! †jvnjN
vn
�! N / of M R–

modules to the cofibre sequence

�vn
M !M !M Œv�1

n �:

Clearly H.M Œv�1
n �/ 'M Œv�1

n �. Thus, we just have to show that H.M / ' 0. This
follows by the lim1 –sequence and bounded vn –divisibility.

Lemma 5.8 Let B be a quotient of BPR by powers of the vi . Then BŒv�1� has
bounded vn –divisibility if v is a product of vi not containing vn . Hence, the same
is also true for the stable Koszul complex �vB , where v is a sequence of vi not
containing vn .

Proof By Lemma 5.6, it is enough to check the first statement on �C2
�� and on �e

� . On
the latter, it is clear and the former is isomorphic to it by Corollary 4.6. For the second
statement, we use that �vB is the fibre of B! LC .vIB/, where LC .vIB/ has a filtration
with subquotients M R–modules of the form †?BŒx�1� for some x 2 �C2

? M R [11,
Lemma 3.7]. Thus, the second statement follows from Lemma 5.6.

Theorem 5.9 Let the notation be as in Theorem 5.1, and assume for simplicity that
only finitely many mi are zero and that mn D 0. Then

ZM Œv�1
n �
'†�m0CjvjC.k�1/C4�2��vnvn

M:

Here v n vn denotes the sequence of all vi such that mi D 0 and i ¤ n.

Proof The preceding lemmas imply the following chain of equivalences:

ZM Œv�1
n �
' Z

holim
!

.M
vn
�!†�jvnjM

vn
�!��� /

' holim
 

.� � �
vn
�! ZM /

'†�m0CjvjCkC4�2�holim
 

.� � �
vn
�! �vM /

'†�m0CjvjCkC4�2�holim
 

.� � �
vn
�! �vn

.�vnvn
M //

'†�m0CjvjC.k�1/C4�2�.�vnvn
M /Œv�1

n �

'†�m0CjvjC.k�1/C4�2��vnvn
.M Œv�1

n �/:

Example 5.10 We recover the following result by Ricka [28]:

ZKR.n/
'†4�2�KR.n/:

Here, KR.n/ denotes integral Morava K-theory ER.n/=.v1; : : : ; vn�1/.
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Example 5.11 In the following, we will use the fact that there are invertible classes
x; vn 2 �

C2
? ER.n/ of degree �22nC1C 2nC2� � and .2n� 1/� , respectively, where

x D v1�2n

n u2n.1�2n�1/ :

ZER.n/
'†Dn�1�C.n�1/C4�2��.v1;:::;vn�1/ER.n/

'†�.nC2/�C.nC3/�.v1;:::;vn�1/ER.n/

'†.nC2/.22nC1�2nC2/CnC3�.v1;:::;vn�1/ER.n/:

This says that ER.n/ has Gorenstein duality with respect to ER.n/=.v1; : : : ; vn�1/D

KR.n/. Note that we can replace the ideal .v1; : : : ; vn�1/ by an ideal generated in
integral degrees, namely .v1x; : : : ; vn�1x2n�1�1/.

Example 5.12 Recall from [27] the spectra tmf1.3/, Tmf1.3/ and TMF1.3/ and
the corresponding C2 –spectra tmf1.3/, Tmf1.3/ and TMF1.3/. Recall that we have
��tmf1.3/ D ZŒa1; a3�, where a1 and a3 can be identified with the images of the
Hazewinkel generators v1 and v2 , and that tmf1.3/ is a form of BPRh2i (as already
discussed in Examples 4.13). This gives the Anderson dual of tmf1.3/. Tweaking the
last theorem a little bit allows us also to show that

ZTMF1.3/ '†5C2��v1
TMF1.3/:

We can also recover one of the main results of [27], namely that

ZTmf1.3/ '†5C2�Tmf1.3/:

Indeed, Tmf1.3/ is by [27, Section 4.3] the cofibre of the map

�v1;v2
tmf1.3/! tmf1.3/:

As the source is equivalent to †�6�2�Ztmf1.3/ , applying Anderson duality shows that
ZTmf1.3/ is the fibre of

†6C2�tmf1.3/!†6C2��v1;v2
tmf1.3/:

This is equivalent to †5C2�Tmf1.3/. This example does not require 2–localization,
only that 3 is inverted.

Remark 5.13 By Proposition 3.3, all the results in this section have direct implications
for the Anderson duals of the fixed point spectra. These are easiest to understand in
the case of ER.n/D .ER.n//C2 , where we get

ZER.n/
'†.nC2/.22nC1�2nC2/CnC3�.v1x;:::;vn�1x2n�1/ER.n/:
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Part II The Gorenstein approach

In this part, we explain the Gorenstein approach to prove Gorenstein duality, first
for kR and then for BPRhni.

6 Connective K-theory with reality

The present section considers K-theory with reality, which is more familiar than BPRhni
for general n, and no 2–localization is necessary. The arguments are especially simple,
firstly because kR is a commutative ring spectrum, and secondly because we only
need to consider principal ideals. Simple as the argument is, we see in Section 11 that
the consequences for coefficient rings are interesting.

6A Gorenstein condition and Matlis lift

It is well known that there is a cofibre sequence

†�ku
v
�! ku!HZ:

If one knows the coefficient ring ku� D ZŒv�, this is easy to construct, since we can
identify ku=v as the Eilenberg–Mac Lane spectrum from its homotopy groups.

There is a version with reality [8]. Indeed, we may construct the cofibre sequence

†�kR
v
�! kR!HZ;

where kR=v is identified using Corollary 2.3

Since the Dugger sequence is self dual we immediately deduce that kR is Gorenstein.

Lemma 6.1 HomkR.HZ; kR/D†���1HZ;

and kR!HZ is Gorenstein.

Proof Apply HomkR. � ; kR/ to the Dugger sequence.

To actually get Gorenstein duality we need to construct a Matlis lift (adapted from [9,
Section 6]), which is a counterpart in topology of the injective hull of the residue field.

Definition 6.2 If M is an HZ–module, we say that a kR–module �M is a Matlis lift
of M if �M is HZ-R–cellular, and

HomkR.T; �M /' HomH Z.T;M /

for all HZ–modules T .
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The Anderson dual provides one such example.

Lemma 6.3 The kR–module †�2.1��/ZkR is a Matlis lift of HZ. Indeed,

(i) ZkR is HZ-R–cellular, and

(ii) there is an equivalence

†2ıHZ'HZ� D HomkR.HZ;ZkR/;

where ı D 1� � .

Proof One could prove the first part from the slice tower, but it also follows directly
from Corollary 3.9.

The second statement is immediate from Lemma 3.1.

6B Gorenstein duality

We next want to move on to Gorenstein duality, so we write

E D HomkR.HZ;HZ/:

Combining Lemmas 6.1 and 6.3, we have

(6.4) HomkR.HZ; kR/'†���1HZ' HomkR.HZ; †�4C�ZkR/:

We now want to remove the HomkR.HZ; � / from this equivalence.

Lemma 6.5 (effective constructibility) The evaluation map

HomkR.HZ;M /˝E HZ!M

is an HZ-R–cellularization for every left kR–module M .

Proof Since the domain is clearly HZ-R–cellular, it is enough to show the map is an
equivalence for all cellular modules M .

This is clear for M D HZ. The class of M for which the statement is true is
closed under (i) triangles, (ii) coproducts (since HZ is small) and (iii) suspensions by
representations. This gives all R–cellular modules.

Local cohomology gives an alternative approach to cellularization. Recall that we
define the v–power torsion of a kR–module M by the fibre sequence

�vM !M !M Œ1=v�:

The following lemma is a special case of Proposition 3.8.
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Lemma 6.6 The map
�vM !M

is an HZ-R–cellularization.

It remains to check that the two E –actions on HZ coincide.

Lemma 6.7 There is a unique right E –module structure on HZ.

Proof Suppose that HZ0 is a right E –module whose underlying C2 –spectrum is
equivalent to the Eilenberg–Mac Lane spectrum HZ. We first claim that HZ0 can be
constructed as an E –module with cells in degrees k� for k � 0:

HZ0 'E S0
E [ e

��
E [ e

�2�
E [ � � � :

Once that is proved, we argue as follows. If HZ00 is another right E –module with
underlying C2 –spectrum HZ, we may construct a map HZ0 ! HZ00 skeleton by
skeleton in the usual way. We start with the E –module map E D .HZ0/.0/! HZ0

giving the unit, and successively extend the map over the cells of HZ0 . At each stage
the obstruction to the existence of an extension over .HZ0/�k� lies in �C2

�k��1.HZ00/.
These groups are zero. We end with a map which is an isomorphism on 0th homotopy
Mackey functors and therefore an equivalence.

For the cell-structure, it is enough to show that for every right E –module HZ0 of the
homotopy type of the Eilenberg–Mac Lane spectrum HZ, there is a map E!HZ0 of
right E –modules whose fibre has the homotopy type of †���1HZ. Indeed, suppose
we have already constructed a right E –module .HZ0/.n/ with an E –map to HZ0

with fibre of the homotopy type †�.nC1/��1HZ. Then it is easy to see that the
cofibre .HZ0/.nC1/ of the map †�.nC1/��1E!†�.nC1/��1HZ! .HZ0/.n/ has the
analogous property. Taking the homotopy colimit, we get a map holim

!
.HZ0/.n/!HZ0

with fibre holim
!

†�.nC1/��1HZ, which is clearly zero (eg by Lemma 4.11 and the
fact that HZ is even; we refer to [28, Section 3.4] for a table of �C2

? HZ).

We choose the map f W E!HZ0 representing 1 2 �C2
0 HZ0 and call the fibre F . We

want to show that f agrees with the canonical map E !HZ on homotopy groups
of the form �C2

k��
for k 2 Z. Indeed, the only nonzero class in HZ0 in these degrees

is a 2 �C2
��HZ0 , which has to be hit by a 2 �C2

��E as it comes from the sphere. Thus,
�C2

k��
F Š �C2

k��
†�1��HZ for all k and hence F ' †�1��HZ as C2 –spectra, as

we needed to show.

From this the required statement follows.

Corollary 6.8 (Gorenstein duality) There is an equivalence of kR–modules

�vkR'†�4C�ZkR:

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3577

Proof By (6.4) and Lemma 6.7, we know that

HomkR.HZ; kR/˝E HZ' HomkR.HZ; †�4C�ZkR/˝E HZ:

By Lemma 6.5, the two sides are the cellularizations of kR and †�4C�ZkR respec-
tively. By Lemmas 6.6 and 6.3, the former is �vkR and the latter is †�4C�ZkR

itself.

The implications of this equivalence for the coefficient ring are investigated in Section 11.

7 BPhni with reality

We now turn to the case of BPRhni for a general n. The counterpart of the argument of
Section 6 is a little simpler when BPRhni is a commutative ring spectrum. For nD 1

and n D 2, the spectra kR, and tmf1.3/, are both known to be a commutative ring
spectra, and their 2–localizations give BPRhni when nD 1 and nD 2 respectively.
However for higher n it is not known that BPRhni is a commutative ring spectrum. This
is a significant technical issue, but one that is familiar when working with nonequivariant
BP –related theories since BP is not known to be a commutative ring. The established
method for getting around this is to use the fact that BP and BPhni are modules over
the commutative ring MU . We will adopt precisely the same method by working with
M R–modules. The only real complication is that we are forced to work with spectra
whose homotopy groups are bigger than we might like, but if we focus on the relevant
part, it causes no real difficulties.

7A Gorenstein condition and Matlis lift

As mentioned in the introduction of this section, we will work in the setting of M R–
modules. More precisely, we will always (implicitly) localize at 2 and set S DM R.2/ .
As discussed in Section 4A, we can define S –modules BPRhni, once we have chosen
a sequence of vi (for example, the Hazewinkel or Araki generators).

The ideal
xJn D .xv1; : : : ; xvn/

plays a prominent role, and we will abuse notation by writing

S= xJn WD cof.S
xv1
�! S/˝S cof.S

xv2
�! S/˝S � � � ˝S cof.S

xvn
�! S/;

and then
M= xJn WDM ˝S S= xJn:
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In particular,
BPRhni= xJn D BPRhni=xvn=xvn�1= � � � =xv1 'HZ

by the C2 –case of the reduction theorem, here proved as Corollary 4.7.

If BPRhni is a ring spectrum,

HomBPRhni.HZ;M /D HomBPRhni.BPRhni˝S S= xJn;M /D HomS .S= xJn;M /:

The right-hand side gives a way for us to express the fact that certain BPRhni–modules
(such as BPRhni and ZBPRhni ) are Matlis lifts, using only module structures over S .

Applying this when M D BPRhni, we obtain the Gorenstein condition.

Lemma 7.1 The map BPRhni!HZ is Gorenstein of shift �Dn��n in the sense that

HomS .S= xJn;BPRhni/'†�Dn��nHZ;

where
Dn�D jxvnjC jxvn�1jC � � �C jxv1j D Œ2

nC1
� n� 2��:

Proof Since each of the maps xvi W †
jxvi jS ! S is self-dual, for any S –module M ,

we have
HomS .S= xJn;M /'†�Dm��nS= xJn˝S M:

Applying this when M D ZBPRhni , we obtain the Anderson Matlis lift.

Lemma 7.2 The Anderson dual of BPRhni is a Matlis lift of HZ� in the sense that

(i) ZBPRhni is HZ-R–cellular, and

(ii) there is an equivalence

†2�2�HZ'HZ� ' HomS .S= xJn;Z
BPRhni/:

Proof One could prove the first part from the slice tower, but it also follows directly
from Corollary 3.9.

For the second statement, observe that

HomS .S= xJn;Z
BPRhni/' HomS .S= xJn˝S BPRhni;ZS /' ZH Z:

Thus, Lemma 3.1 implies the statement.
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7B Gorenstein duality

Throughout this section, we will write RD BPRhni for brevity. Combining Lemmas
7.1 and 7.2, we have an equivalence of S –modules

HomS .S= xJn;R/'†
�Dn��nHZ' HomS .S= xJn; †

�.DnCnC2/�.Dn�2/�ZR/:

We want to remove the HomS .S= xJn; � / from this equivalence. The endomorphism ring

zEn D HomS .S= xJn;S= xJn/

of the small S –module S= xJn , replaces En D HomR.HZ;HZ/ from the case that
RD BPRhni is a ring spectrum. We note that

zEn˝S RD HomS .S= xJn;S= xJn/˝S R' HomS .S= xJn;S= xJn/˝S R/:

If R D BPRhni were a commutative ring, then this would be a ring equivalent to
HomR.HZ;HZ/.

In any case, the following is proved exactly like Lemma 6.5.

Lemma 7.3 (effective constructibility) The evaluation map

HomS .S= xJn;M /˝zEn
S= xJn!M

is an S= xJn-R–cellularization.

Of course local cohomology gives an alternative approach to cellularization. Recall
that we define

� xJn
M D �xv1

S ˝S �xv2
S ˝S � � � ˝S �xvn

S ˝S M:

Then Proposition 3.8 gives the following lemma.

Lemma 7.4 � xJn
M !M

is an HZ-R–cellularization.

It remains to check that the two zEn actions on HZ coincide. For kR (ie nD 1), we
showed there was a unique right En –module structure on HZ. This may be true for
zEn –module structures, but we will instead just prove in the next subsection that the two
particular zEn –modules that arose from the left and right-hand ends of the first display
of this subsection are equivalent.

The required Gorenstein duality statement follows. Its implications for the coefficient
ring for nD 2 are investigated explicitly in Section 13.
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Corollary 7.5 (Gorenstein duality) There is an equivalence of M R–modules

� xJn
R'†�.DnCnC2/�.Dn�2/�ZR

with RD BPRhni.

Proof We will argue in Section 7C that the equivalence

HomS .S= xJn;R/' HomS .S= xJn; †
�Dn��n�2ıZR/;

is in fact an equivalence of right modules over zEn . By Lemma 7.3, we see that R

and †�.DnCnC2/�.Dn�2/�ZR have equivalent S= xJn cellularizations. We have seen
above that the cellularization of R is � xJn

BPRhni and that †�Dn��n�2ıZR itself is
cellular.

7C The equivalence of induced and coinduced Matlis lifts of H Z

For brevity, we will still write RDBPRhni, and note that we have a map S DM R!
BPRhni DR. The two S –modules that concern us are of a very special sort, one looks
as if it is obtained from an S –module by “extension of scalars from S to R” and one
looks as if it is obtained by “coextension of scalars from S to R”.

Lemma 7.6 We have equivalences of right zEn –modules

HomS .S= xJn;R/' HomS .S= xJn;S/˝S R;

HomS .S= xJn;Z
R/D HomS .R;HomS .S= xJn;Z

S //:

Proof The first equivalence is immediate from the smallness of S= xJn .

The second equivalence is a consequence of the following equivalence of S –modules:

ZR
' HomS .R;Z

S /:

Suspending the equivalences from Lemma 7.6 so that we are comparing two zEn –
modules equivalent to HZ (see Lemma 7.2), we have

Y1 D HomS .S= xJn; †
Dn�CnR/' HomS .S= xJn; †

Dn�CnS/˝S RDX1˝S R

and

Y2 D HomS .S= xJn; †
2ıZR/' HomS .S;HomS .S= xJn; †

2ıZS //D HomS .R;X2/:

In Section 7D, we will construct an zEn –map ˛ WX1! Y2 and then argue in Section 7E
that this extends along X1 DX1˝S S !X1˝S RD Y1 to give a map z̨W Y1! Y2
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which is easily seen to be an equivalence: it is clearly a ��� isomorphism and hence
an equivalence by Lemma 4.11.

To see our strategy, note that the extension problem

X1

��

˛
// HomS .S= xJn;HomS .R;Z

S //

X1˝S R

z̨

55

in the category of zEn –modules is equivalent to the extension problem

X1˝zEn
S= xJn˝S R

��

˛0
// ZS

X1˝zEn
S= xJn˝S R˝S R

z̨0

66

in the category of S –modules. The point is that by the defining property of the
Anderson dual, this latter extension problem can be tackled by looking in �C2

0 . The
0th homotopy groups of the spectra on the left are easily calculated from the known
ring �C2

? .HZ/.

7D Construction of the map ˛

We construct the map ˛ using a similar method as in the proof of Lemma 6.7.

Lemma 7.7 There is a map
˛W X1! Y2

of right zEn –modules that takes the image of 12�C2
0 .S/ to a generator of �C2

0 .HZ/DZ.

Proof First we claim that X1 has a zEn –cell structures with one 0–cell and other cells
in dimensions which are negative multiples of � . More precisely, there is a filtration

zEn 'X
Œ0�
1
!X

Œ1�
1
!X

Œ2�
1
! � � � !X1

such that X1 ' holim
!

dX
Œd �
1

, and there are cofibre sequences

X
Œd�1�
1

!X
Œd �
1
!

W
†�d� zEn:

By definition, X1 D HomS .S= xJn; †
Dn�CnS/. By Proposition 3.8 and Lemma 3.6,

this is equivalent to

HomS .S= xJn; †
Dn�Cn� xJn

S/' HomS .S= xJn; �S .v1; : : : ; vn//
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because � xJn
S! S is an S= xJn-R–cellularization. The usual construction of the stable

Koszul complex from the unstable Koszul complex recalled in Section 3C, shows that

�S .v1; : : : ; vn/

has a filtration with subquotients sums of .�k�/–fold suspensions of S= xJn . This
induces a corresponding filtration on X1 .

As in Lemma 6.7 we may construct ˛ by obstruction theory. Indeed, we start by
choosing a map zEn DX Œ0�

1
! Y Œ0�

2
taking the unit to a generator. At the d th stage we

have a problem:

X
Œd�1�
1

//

��

Y2

X
Œd �
1

==

The obstruction to extension is in a finite product of groups

Œ†�d��1zEn;Y2�
zEn D �C2

�d��1
.HZ/D 0;

where the vanishing is from the known value of �C2
? .HZ/.

7E The map z̨

Referring to the second extension problem diagram above, we note S= xJn˝S R'HZ
as S –modules. Thus, we have to solve the lifting problem

X1˝zEn
HZ˝S S

1˝1˝�

��

˛0
// ZS

X1˝zEn
HZ˝S R

z̨0

88

where HZ is equipped with some zEn –module structure. Denote the upper left corner
by T . The map T ! T ˝S R is a split inclusion on underlying MU–modules. Indeed,

T 'X1˝zEn
S= xJn˝S R;

and the map R!R˝S R is a split inclusion on underlying spectra because BP hni

has the structure of a homotopy unital MU–algebra [10, Theorem V.2.6].
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By the definition of Anderson duals, we have a diagram of short exact sequences:

0 // Ext1Z.�
C2
�1
.T˝SR/;Z/

��

// ŒT˝SR;ZS �S

��

// HomZ.�
C2
0 .T˝SR/;Z/

��

// 0

0 // Ext1Z.�
C2
�1
.T /;Z/ // ŒT;ZS �S // HomZ.�

C2
0 .T /;Z/ // 0

We want to show that the maps �C2
k T !�C2

k T ˝S R are split injections for kD 0;�1,
which solves the problem. For the computation of �C2

� T , recall from the last section
that X1 has a filtration starting with X Œx�

1
D zEn and with subquotients sums of terms

of the form †�d� zEn . Thus, T obtains a filtration starting with T Œ1� DHZ and with
subquotients sums of terms of the form †�d�HZ. The map HZD T Œ1�! T clearly
induces isomorphisms on �C2

k
for k D 0;�1 by the known homotopy groups of HZ;

see eg [28, Section 3.4] for a table. Thus, �C2
�1

T D 0 and �C2
0 T D Z.

If we have a map Z!M from the constant Mackey functor, it is a split injection on
.C2=C2/ if it is one on .C2=e/. But we have already seen above that on underlying
spectra T ! T ˝S R is a split inclusion. Thus, we have shown that �C2

k
T !

�C2
k
.T ˝S R/ is split injective, which provides the map z̨0 .

Part III The hands-on approach

In this part, we give a different way to compute the Anderson dual of BPRhni by first
computing the Anderson dual of BPR itself. Again, we will first do the case of kR.

8 The case of kR again

To illustrate our strategy, we give an alternative calculation of the Anderson dual of kR.
This can also be deduced from our main theorem below, but it might be helpful to
see the proof in this simpler case first. General references for the RO.C2/–graded
homotopy groups of kR are [7, Section 3.7] or Section 11B.

We want to show the following proposition:

Proposition 8.1 There is an equivalence �kR.v/!†2��4ZkR .

Recall here that v 2 �C2
� kR is the Bott element for real K-theory, and

�kR.v/D hocolim
n

†�.n�1/�kR=vn:

Our idea is simple: to get a map from the homotopy colimit, we have just to give maps

†�.n�1/�kR=vn
!†2��4ZkR
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that are compatible in the homotopy category (see Remark 3.7). We will show in the next
lemma that these maps are essentially unique: the Mackey functor of homotopy classes
of kR–linear maps †�.n�1/�kR=vn!†2��4ZkR is isomorphic to Z and the precom-
position with the map †�.n�1/�kR=vn!†�n�kR=vnC1 induces the identity on Z.

Choosing the C2 –equivariant map �kR.v/!†2��4ZkR that corresponds to 1 2 Z
for every n induces an equivalence on underlying homotopy groups. By Lemma 4.11,
the result follows as soon as we have established that �kR.v/ is strongly even and that
the Mackey functor ���†2��4ZkR is constant. These two facts will also be shown in
the following lemma, finishing the proof of the proposition.

Lemma 8.2 For a ZŒv� module M , denote by fM gvn its vn –torsion. Then we have:

(1) kR=vn is strongly even, and hence the same is true for �kR.v/.

(2) �C2
n�†

2��4ZkR Š �C2
.n�2/�C4

ZkR is constant for all n 2 Z.

(3) Œ†�.n�1/�kR=vn; †2��4ZkR�
C2

kR Š
˚
�C2

�.n�1/�
†2��4ZkR

	
vn Š Z.

Proof The first part follows as

�C2
k��i.kR=vn/D �C2

k��i.kR/=vn

for i D 0; 1 because �C2
k��ikRD 0 for i D 1; 2.

For the second part, consider the short exact sequence

0! Ext.�C2
k��5kR;Z/! �C2

�k�C4
ZkR

! Hom.�C2
k��4kR;Z/! 0:

We have �C2
k��5kR D 0 for all k 2 Z. For k < 2, the Mackey functor �C2

k��4kR
vanishes as well and for k � 2, we have �C2

k��4kR Š Z� , generated by vk�2 and
2vk�2u. Thus,

�C2

�k�C4
ZkR

Š

�
0 if k < 2;

Z if k � 2:

This shows part (2). As multiplication by vn does not hit �C2
.nC1/��4

kR, the whole
Mackey functor �C2

�.nC1/�C4
ZkR is vn –torsion. This gives the second isomorphism

of the third part.

For the remaining isomorphism, note that the cofibre sequence

†�kR
vn

�!†�.n�1/�kR!†�.n�1/�kR=vn
!†�C1kR

induces a short exact sequence

0! .�C2
�C1†

2��4ZkR/=vn! Œ†�.n�1/�kR=vn; †2��4ZkR�
C2

kR

!
˚
�C2

�.n�1/�
†2��4ZkR	

vn ! 0:

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3585

We have �C2
�C1

†2��4ZkR Š �C2
5��Z

kR , which sits in a short exact sequence

0! ExtZ.�C2
��6kR;Z/! �C2

5��Z
kR
! HomZ.�

C2
��5kR;Z/! 0:

But because of connectivity, �C2
��ckRD 0 for c � 3.

9 Duality for BPR

We will use throughout the abbreviation B D BPR and will furthermore implicitly
localize everything at 2, so Z D Z.2/ etc, and all Hom and Ext groups are over
ZD Z.2/ unless marked otherwise. Denote by v a sequence of indecomposable ele-
ments vi 2�

C2

.2i�1/�
B . The aim of this section is to show that †2��4ZB' �MR.vIB/.

Recall that �M R.vIB/ is defined as follows: Given a sequence l D .l1; l2; : : : / with
li � 0, we denote by B=v l the spectrum B=.v li1

i1
; v li2

i2
; : : : /, where ij runs over all

indices such that lij > 0. Set

jl j D l1jv1jC l2jv2jC � � � :

Then
�MR.vIB/D hocolim

l
†�jl�1jB=v l ;

where l runs over all sequences such that all but finitely many li are zero, and 1

denotes the constant sequence of ones. Furthermore, the i th entry of l �1 is defined to
be the maximum of 0 and li � 1.

Thus, to get a map �MR.vIB/! †2��4ZB , we have to understand the homotopy
classes of maps B=v l !†2��4ZB . This will be the content of the next subsection.

9A Preparation

Recall the Mackey functor Z� defined by

Z�.C2=C2/Š Z�.C2=e/Š Z

with transfer equalling 1 while restriction is multiplication by 2.

Lemma 9.1 As ZŒv1; v2; : : : �–modules, we have the following isomorphisms:

(1) �C2
���4B Š Z�˝Z ZŒv1; v2; : : : �, where Z� is generated by 1 on underlying

and by 2u�1 on C2 –equivariant homotopy groups.

(2) �C2
���5B D 0.

(3) �C2
���6B Š F2fa

2v1.�1/g˝Z ZŒv1; v2; : : : �.
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Proof By Theorem A.4, the groups �C2
���cB are additively generated by nonzero

elements of the form x D alv with v a monomial in the vi.j /. Let vi.j / be the
one occurring with minimal i , where j is chosen such that v D vi.j /v

0 with v0 a
monomial in the vk (this is possible by the third relation in Theorem A.4). Then
jxj D ��C j 2iC2C l and 0� l < 2iC1� 1.

For c D 4, this implies j D�1, i D 0 and l D 0. Thus, x is of the form v0.�1/v0 .
As the restriction of v0.�1/ to �e

0
B equals 2, the result follows.

For c D 5, we must have l � 2iC2 � 5, which implies l � 2iC1 � 1 or i D 0; in the
latter case l must be zero, which is not possible.

For c D 6, we must have l D�j 2iC2� 6, which implies l � 2iC1� 1 or i � 1 and
j D�1. As i D 0 is again not possible, x D a2v1.�1/v0 with v0 2 �C2

�� .

Lemma 9.2 For a sequence l D .l1; l2; : : : /, the map

�C2
��C4ZB=v l

! Hom.�C2
����4B=v l ;Z/Š Z˝Z .ZŒv1; v2; : : : �=v

l/�

is an isomorphism, where ZŒv1; v2; : : : �
�DHomZ.ZŒv1; v2; : : : �;Z/ (so that the grad-

ings become nonpositive). Here, the second map is the dual of the map

Z�˝Z ZŒv1; v2; : : : �=v
l
! �C2

����4B=v l

sending 1 2 Z�.C2=C2/ to the image of u�1 under the map B! B=v l and sending
1 2 Z�.C2=e/ to 1.

Proof We have a short exact sequence

0! Ext.�C2
����5B=v l ;Z/! �C2

���4ZB=v l

! Hom.�C2
����4B=v l ;Z/! 0:

If l1 D 0, then Corollary 4.5 and Lemma 9.1 directly imply the statement. If l1 ¤ 0,
Corollary 4.5 only allows us to identify the homotopy Mackey functor in degree
����4, but not the one in degree ����5. We give a separate argument in this case.

If l1 ¤ 0, consider the sequence l 0 D .0; l2; l3; : : : / and the corresponding cofibre
sequence

†l1�B=v l 0
vl1

1
��! B=v l 0

! B=v l
!†l1�C1B=v l 0 :

This induces a short exact sequence

0! .�C2
���5B=v l 0/=v

l1

1
! �C2

���5B=v l
! f�C2

���6B=v l 0
gvl1

1
! 0:

Here the last term denotes the Mackey subfunctor of �C2
���6B=v l 0 killed by v l1

1 . By
Corollary 4.5 and Lemma 9.1, we see that �C2

���5B=v l D 0.
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As BDBPR is not known to have an E1–structure, we have to work with M R–linear
maps instead, for which the following lemma is useful:

Lemma 9.3 The map

ZB
' HomMR.M R;ZB/! HomMR.B;Z

B/

is an equivalence.

Proof Let eW M R!M R be the Quillen–Araki idempotent. Recall that

B D hocolim.M R
e
�!M R

e
�! � � � /:

Thus,

ZB
' holim

 
.� � �

e�

�! ZMR e�

�! ZMR/:

Hence,

HomMR.B;Z
B/' holim

 

�
� � �

e�

�! HomMR.B;Z
MR/

e�

�! HomMR.B;Z
MR/

�
:

As every HomMR.B;Z
MR/ is equivalent to a holim over

HomM R.M R;ZMR/' ZMR

connected by e�, we get that HomM R.B;Z
B/ is the homotopy limit holimZ��Z�ZMR,

where Z� denotes the poset of negative numbers and all connecting maps are e� . This
is equivalent to the homotopy limit indexed over the diagonal, which in turn is equivalent
to the homotopy limit indexed over a vertical.

Recall that we want to show that X D †2��4ZB is equivalent to �MR.v;B/. The
reason for the choice of suspension is essentially (as before) that HZ'†2��4HZ� .

Proposition 9.4 For a sequence l D .l1; l2; : : : /, we have an isomorphism

Œ†��B=v l ;X �
C2

MR Š Z˝Z .ZŒv1; v2; : : : �=v
l/�;

natural with respect to the maps B=v l ! †�jl
0�lj�B=v l 0 in the defining homotopy

colimit for �MR.vIB/ for l 0 D .l 0
1
; l 0

2
; : : : / a sequence with l 0i � li for all i � 1.

Proof The last lemma implies that we also have

ZB=v l

' HomMR.B=v
l ;ZB/

as the functors Z? and HomMR.?;Z
B/ behave the same way with respect to cofibre

sequences and (filtered) homotopy colimits. Then we just have to apply Lemma 9.2.
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9B The theorem

We first describe the homotopy groups of X D†2��4ZB with B D BPR as before.
By Lemma 9.2, we get

�C2
��X Š Hom.�C2

.�C2/��4B;Z/Š Z˝Z ZŒv1; v2; : : : �
�:

Let l be a sequence with only finitely many nonzero entries. By Proposition 9.4, the
element .v l�1/� induces a corresponding M R–linear map †�jl�1jB=v l!X , which
is unique up to homotopy. By this uniqueness, these maps are also compatible for
comparable l . By Remark 3.7, this induces a map

�MR.v;B/D hocolim
l

.†�jl�1jB=v l/
h
�!X;

where l ranges over all sequences where only finitely many li are nonzero.

Theorem 9.5 The map hW �MR.vIB/!X is an equivalence of C2 –spectra.

Proof By Corollary 4.6, we get on ���–level

colim
l

†�jl�1jZŒv1; v2; : : : �=.v
l1

1
; : : : /! Z˝Z ZŒv1; : : : �

�;

which is an isomorphism. The odd underlying homotopy groups of both sides are
zero. To apply Lemma 4.11, it is left to show that �C2

k��1�MR.vIB/D 0 for all k 2Z.
Again by Corollary 4.6, it is even true that �C2

k��1.B=v
l/ is zero for all k 2 Z and all

sequences l .

10 Duality for regular quotients

The goal of this section is to prove our main result Theorem 5.1:

Theorem 10.1 Let .m1;m2; : : : / be a sequence of nonnegative integers with only
finitely many entries bigger than 1. Denote by v0 the sequence of vi in �C2

? M R
such that mi D 0 and by m0 the sum of all .mi � 1/jvi j for mi > 1. Then there is an
equivalence

ZB=vm

'†�m0C4�2��MR.v
0
IB=vm/:

Here and for the rest of the section we will implicitly localize everything at 2 again.
Before we prove the theorem, we need some preparation.

Lemma 10.2 Let mD .m1; : : : / be a sequence of nonnegative integers with a finite
number n of nonzero entries. Then

ZB=vm

'†�jmj�n.ZB/=vm:
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Proof Let Y be an arbitrary (C2 –)spectrum and †jvjY
v
�! Y ! Y=v be a cofibre

sequence. Then we have an induced cofibre sequence

ZY=v
! ZY v

�!†�jvjZY
!†ZY=v

'†�jvj.ZY /=v:

Thus, ZY=v '†�jvj�1.ZY /=v . The claim follows by induction.

Lemma 10.3 The element v3k
i acts trivially on B=vk

i for every i � 1 and k � 1.

Proof By the commutativity of the diagram

†kjvi jB

vk
i

��

q
// †kjvi jB=vk

i

vk
i
����

B // B=vk
i

we see that the composite vk
i q is zero, and so the vk

i on the right factors over an
M R–linear map †2kjvi jC1B ! B=vk

i . As Œ†2kjvi jC1B;B=vk
i �MR is a retract of

Œ†2kjvi jC1M R;B=vk
i �MRŠ �

C2

2kjvi jC1
B=vk

i , we just have to show that v2k
i xD 0 for

every x 2 �2kjvi jC1B=vk
i .

We have a short exact sequence

0! .�C2
? B/=vk

i ! �C2
? .B=vk

i /!
˚
�C2
?�kjvi j�1B

	
vk

i

! 0:

As vk
i x clearly maps to zero, it is the image of a y 2 .�C2

? B/=vk
i . But vk

i y D 0.

Lemma 10.4 We have

B=vl
i ˝MR B=vm

j ' B=.vl
i ; v

m
j /:

Furthermore, there is an equivalence

hocolim
l

†�.l�1/jvi jB=vl
i ˝MR B=vm

i '†
jvi jC1B=vm

i

of M R–modules if m� 1.

Proof We have

B˝MR B ' hocolim.B
e
�! B

e
�! � � � /' B;

where e denotes again the Quillen–Araki idempotent, and thus also

B=vl
i ˝MR B=vm

j ' B=.vl
i ; v

m
j /:
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Thus, the maps in the homotopy colimit in the lemma are induced by the following
diagram of cofibre sequences:

†jvi jB=vm
i

vl
i
//

id
��

†�.l�1/jvi jB=vm
i

//

vi
��

†�.l�1/jvi jB=vl
i ˝MR B=vm

i

��

†jvi jB=vm
i

v
lC1
i

// †�ljvi jB=vm
i

// †�ljvi jB=vlC1
i ˝MR B=vm

i

We can assume that the homotopy colimit only runs over l � 3m so that, by the last
lemma, the two cofibre sequences split, and we get

†�.l�1/jvi jB=vl
i ˝MR B=vm

i '†
�.l�1/jvi jB=vm

i ˚†
jvi jC1B=vm

i :

The corresponding map

†�.l�1/jvi jB=vm
i ˚†

jvi jC1B=vm
i !†�ljvi jB=vm

i ˚†
jvi jC1B=vm

i

induces multiplication by vi on the first summand, the identity on the second plus
possibly a map from the second summand to the first.

Using this decomposition, it is easy to show that

hocolim
l

†�.l�1/jvi jB=vl
i ˝MR B=vm

i !†jvi jC1B=vm
i

(defined by the projection on the second summand for l � 3m) is an equivalence.
Indeed, on homotopy groups the map is clearly surjective. And if

.x;y/ 2 �C2
? †�ljvi jB=vm

i ˚�
C2
? †jvi jC1B=vm

i

maps to 0 2 �C2
? †jvi jC1B=vm

i , then y D 0 and .x; 0/ represents 0 in the colimit
because vi acts nilpotently.

Proof of Theorem 10.1 As in the theorem, let v0 be the sequence of vi such that
mi D 0 and also denote by v00 D .vi1

; vi2
; : : : / the sequence of vi such that mi ¤ 0.

We begin with the case that m has only finitely many nonzero entries (say n). By
Lemma 10.2, we see that

ZB=vm

'†�jmj�n.ZB/=vm:

Combining this with Theorem 9.5, we obtain

ZB=vm

'†�jmj�nC4�2��MR.v;B/=v
m

'†�jmj�nC4�2��MR.v
0; �MR.v

00;B=vm//:

Thus, we have to show that �MR.v
00;B=vm/'†jvi1

jC���Cjvin jCnB=vm .
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By Lemma 10.4, we have an equivalence

.B=vm/=.vli1
i1
; : : : ;vlin

in
/'.B=vli1

1 ˝MRB=vmi1
1 /˝MR: : :˝M R.B=v

lin
n ˝MRB=vmin

n /:

If we let now the homotopy colimit run over the sequences .li1
; : : : ; lin

/, we can do it
separately for each tensor factor. Hence, we obtain again by Lemma 10.4 an equivalence

�MR.v
00;B=vm/'†jvi1

jC���Cjvin jCnB=vm:

Thus, we have shown the theorem when m has only finitely many nonzero entries.

We prove the case that m has possibly infinitely many nonzero entries by a colimit ar-
gument. Define m�k to be the sequence obtained from m by setting mkC1;mkC2; : : :

to zero. Then B=m' hocolimk B=m�k and thus ZB=m ' holimk ZB=m�k . Denote
by v0�k the sequence of vi such that miD0 or i >k and by m0

k
the quantity jm�k�1j;

note that m0
k
Dm0 for k large.

We have to show that the map

hW †�m0�M R.v
0;B=vm/! holim

k
†�m0

k�MR.v
0
�k ;B=v

m�k /

is an equivalence. This map is defined as follows: We know that

�MR.v
0;B=vm/' hocolim

k
�M R.v

0;B=vm�k /:

Using this, we get a map induced from the maps

�MR.v
0;B=vm�k /! �MR.v

0
�k ;B=v

m�k /

for k large.

By Corollary 4.6, we can describe what happens on �C2
�� : The left-hand side has as

Z–basis monomials of the form vn with only finitely many ni nonzero, ni � 0 and
ni � �mi C 1 if mi ¤ 0. Likewise,

�C2
��

�
†m0

k�MR.v
0
�k ;B=v

m�k /
�

has as Z–basis monomials of the form vn with only finitely many ni nonzero, ni � 0

and ni � �mi C 1 if mi ¤ 0 and i � k . The maps in the homotopy limit induce the
obvious inclusion maps. Thus, clearly the map

�C2
��

�
†m0�MR.v

0;B=vm/
�
! lim

k
�C2
��

�
†m0

k�MR.v
0
�k ;B=v

m�k /
�

is an isomorphism.

It remains to show lim1
k �

C2
��C1

�
†m0

k�MR.v
0
�k ;B=v

m�k /
�

vanishes. By Corollary 4.8,
every term has as F2 –basis monomials of the form avn with only finitely many ni

nonzero, ni � 0 and ni � �mi C 1 if mi ¤ 0 and i � k . The system becomes
stationary in every degree, more precisely if �>�2kC1 . Thus, the lim1 –term vanishes.
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A similar lim1 –argument also shows that the odd underlying homotopy groups of
holimk †

�m0
k�MR.v

0
�k ;B=v

m�k / vanish.

As the source of h is strongly even by Corollary 4.6 and by the arguments we just gave
the morphism h induces an isomorphism on �C2

�� and on (odd) underlying homotopy
groups, Lemma 4.11 implies that h is an equivalence.

Part IV Local cohomology computations

In Part IV, we will describe the local cohomology spectral sequence in some detail,
and use it to understand the structure of the HZ–cellularization of BPRhni. The
calculation is not difficult, but on the other hand it is quite hard to follow because it is
made up of a large number of easy calculations which interact a little, and because one
needs to find a helpful way to follow the RO.C2/–graded calculations.

In contrast, the case of kR is simple enough to be explained fully without further
scaffolding, and it introduces many of the structures that we will want to highlight.
Since it may also be of wider interest than the general case of BPRhni we devote
Section 11 to it before returning to the general case in Section 12. Section 13 will then
give a more detailed account in the interesting case nD 2.

Let us also recall some notation used throughout this part. As in the rest of the paper we
work 2–locally, except when speaking about kR or tmf1.3/ when fewer primes need
be inverted. We often write ıD 1�� 2RO.C2/. We also recall the duality conventions
from Section 3A; in particular, for an F2 –vector space V _ equals the dual vector space
HomF2

.V;F2/ and for a torsion-free Z–module M , we set M � D Hom.M;Z/.

If R is a C2 –spectrum, we will use the notation RC2
? for its RO.C2/–graded homotopy

groups. We will also write RhC2
? D �C2

? .R.EC2/C/ and similarly for geometric fixed
points and the Tate construction.

11 The local cohomology spectral sequence for kR

This section focuses entirely on the classical case of kR, where there are already a
number of features of interest. This gives a chance to introduce some of the structures
we will use for the general case.

11A The local cohomology spectral sequence

Gorenstein duality for kR (Corollary 6.8) has interesting implications for the coefficient
ring, both computationally and structurally. Writing F for RO.C2/–grading as usual,
the local cohomology spectral sequence [11, Section 3] takes the following form.
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Proposition 11.1 There is a spectral sequence of kRC2
? –modules

H�.v/.kRC2
? / H) †�4C��C2

? .ZkR/:

The homotopy of the Anderson dual in an arbitrary degree ˛ 2 RO.C2/ lies in an exact
sequence

0! ExtZ.kRC2

�˛�1
;Z/! �C2

˛ .ZkR/! HomZ.kRC2
�˛;Z/! 0:

Since local cohomology is entirely in cohomological degrees 0 and 1, the spectral
sequence collapses to a short exact sequence

0!†�1H 1
.v/.kRC2

? /!†�4C��C2
? .ZkR/!H 0

.v/.kRC2
? /! 0:

This sequence is not split, even as abelian groups.

One should not view Proposition 11.1 as an algebraic formality: it embodies the fact
that kRC2

? is a very special ring. To illustrate this, we recall the calculation of kRC2
? in

Section 11B. In Section 11C, we calculate its local cohomology, and how the Gorenstein
duality isomorphism with the known homotopy of the Anderson dual works.

11B The ring kRC2
?

One may easily calculate kRC2
? . This has already been done in [7], but we sketch

a slightly different method. We will first calculate kRhC2
? and then use the Tate

square [12].

In the homotopy fixed point spectral sequence

ZŒv; a;u˙1�=2a H) kRhC2
? ;

all differentials are generated by d3.u/D va3 . Indeed, this differential is forced by
�4 D 0 and there is no room for further ones. It follows that U D u2 is an infinite
cycle, and so the whole ring is U –periodic:

kRhC2
? D BB ŒU;U�1�;

where BB is a certain “basic block”. This basic block is a sum

BBD BR˚ .2u/ �ZŒv�

as BR–modules, where
BRD ZŒv; a�=.2a; va3/:

It is worth illustrating BB in the plane (with BBaCb� placed at the point .a; b/);
see Figure 1. The squares and circles represent copies of Z, and the dots represent
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BB

a1

a2

a3

a4

a5

a6

1

v1

v2

v3

v4

v5

v6

2u

Figure 1: The basic block BB

copies of F2 . The left-hand vertical column consists of 1 (at the origin, .0; 0/) and
the powers of a, but the feature to concentrate on is the diagonal lines representing
ZŒv�–submodules. These are either copies of ZŒv� or of F2Œv� or simply copies of F2 .

Proceeding with the calculation, we may invert a to find the homotopy of the Tate
spectrum kRt D F.E.C2/C; kR/^S1� :

kRtC2
? D F2Œa; a

�1�ŒU;U�1�:

One also sees that the homotopy of the geometric fixed points (the equivariant homotopy
of kRˆ D kR^S1� ) is

kRˆC2
? D F2Œa; a

�1�ŒU �

using the following lemma:

Lemma 11.2 Let X be a C2 –spectrum which is nonequivariantly connective and such
that X C2 !X hC2 is a connective cover. Then XˆC2 !X tC2 is a connective cover
as well.

Proof This follows from the diagram of long exact sequences

�kXhC2
//

��

�kX C2 //

��

�kXˆC2 //

��

�k�1XhC2
//

��

�k�1X C2

��

�kXhC2
// �kX hC2 // �kX tC2 // �k�1XhC2

// �k�1X hC2

the fact that XhC2
is connective, and the five lemma.
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NB

2

v1

v2

v3

v4

v5

v6

2u

Figure 2: The negative block NB

Now the Tate square

kR //

��

kR^S1�

��

kR.EC2/C // kR.EC2/C ^S1�

gives kRC2
? .

It is convenient to observe that the two rows are of the form M !M Œ1=a�, so the
fibre is �aM . Since the two rows have equivalent fibres, we calculate the homotopy
of the second and obtain

kR?hC2
D NB ŒU;U�1�;

where NB is quickly calculated as the .a/–local cohomology H�.a/.BB/ (and named
NB for “negative block”). The element a acts vertically and we can immediately read
off the answer: the tower ZŒa�=.2a/ gives some H 1 , and the rest is a–power torsion:

NBD BB 0˚†�ıF2Œa�
_;

where BB 0 � BB is the BR–submodule generated by 2, v and 2u (informally, we
may say that BB 0 omits from BB all monomials ak for k � 1 and the generator 1).
Note that NB is placed so that its element 2 is in degree 0 for ease of comparison
to BB; all occurrences of NB in kRC2

? involve nontrivial suspensions.

Again, it is helpful to display the negative block; see Figure 2. This differs from BB
in that the powers of a have been deleted, and replaced by a new left-hand column
†�ıF2Œa�

_ . The other new feature is that the copy of ZŒv� generated by 1 has been
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replaced by the kernel .2; v/ of ZŒv�! F2 , as indicated by the circle at the origin,
labelled by its generator 2.

The Tate square then lets us read off

kRC2
? D

M
k��1

NB � fU k
g˚

M
k�0

BB � fU k
g D .U�1

�NB ŒU�1�/˚BB ŒU �:

The ZŒU � module structure is given by letting U act in the obvious way on the NB
and BB parts, and by the maps

NB! BB 0! BB

in passage from the U�1 factor of NB to the U 0 factor of BB.

Perhaps it is helpful to note that with the exception of the towers U�k†�ıF2Œa�
_ , we

have a subring of BB ŒU;U�1�, which consists of blocks BB �U i for i � 0 and blocks
BB 0 �U i for i < 0.

11C Local cohomology

Recall that we are calculating local cohomology with respect to the principal ideal .v/
so that we only need to consider kRC2

? as a ZŒv�–module. As such it is a sum of
suspensions of the blocks BB and NB, so we just need to calculate the local cohomology
of these.

More significantly, ZŒv� is graded over multiples of the regular representation, so local
cohomology calculations may be performed on one diagonal at a time (ie we fix n and
consider gradings nC��). The only modules that occur are

ZŒv�; F2Œv�; F2 and the ideal .2; v/� ZŒv�;

each of which has local cohomology that is very easily calculated.

Lemma 11.3 The local cohomology of the basic block BB is as follows:

H 0
.v/.BB/D a3F2Œa�;

H 1
.v/.BB/D†��ZŒv��˚†��C2ıZŒv��˚†����F2Œv�

_
˚†���2�F2Œv�

_:

Proof The local cohomology is the cohomology of the complex

BB! BB Œ1=v�:
It is clear that

BB Œ1=v�D ZŒv; v�1�˚u �ZŒv; v�1�˚ a �F2Œv; v
�1�˚ a2

�F2Œv; v
�1�:

Algebraic & Geometric Topology, Volume 17 (2017)



Gorenstein duality for real spectra 3597

Turning to NB, we recall that NB D BB 0 ˚†�ıF2Œa�
_ , and we have a short exact

sequence
0! BB 0! BB! F2Œa�! 0:

The local cohomology is thus easily deduced from that of BB.

Lemma 11.4 The local cohomology of the negative block NB is as follows:

H 0
.v/.NB/D†�ıF2Œa�

_;

H 1
.v/.NB/D†��ZŒv��˚F2˚†

��C2ıZŒv��˚†��F2Œv�
_
˚†�2�F2Œv�

_:

More properly, the ZŒv�–module structure of the sum of the first two terms is

†��ZŒv��˚F2 Š ZŒv��=.2 � 1�/:

Proof The local cohomology is the cohomology of the complex

NB! NB Œ1=v�:

It is clear that NB Œ1=v�D BB Œ1=v�, which makes the part coming from the 2–torsion
clear. For the Z–torsion free part, it is helpful to consider the exact sequence

0! .2; v/! ZŒv�! F2! 0

and then consider the long exact sequence in local cohomology.

Immediately from the defining cofibre sequence �vkR! kR! kRŒ1=v� we see that
there is a short exact sequence

0!H 1
.v/.†

�1kRC2
? /! �C2

? .�.v/kR/!H 0
.v/.kRC2

? /! 0:

This gives �C2
? .�.v/kR/ up to extension. The Gorenstein duality isomorphism can

be used to resolve the remaining extension issues, and the answer is recorded in the
proposition below.

The diagram Figure 3 should help the reader interpret the statement and proof of the
calculation of the homotopy of �.v/kR. We have omitted dots, circles and boxes except
at the ends of diagonals or where an additional generator is required. The vertical
lines denote multiplication by a and the dashed vertical line is an exotic multiplication
by a that is not visible on the level of local cohomology. The green diamond does
not denote a class, but marks the point one has to reflect (nontorsion classes) at to see
Anderson duality. Torsion classes are shifted by �1 after reflection (ie shifted one step
horizontally to the left).
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BB

1

2u

a1

a2

NB

.2; xv1/P

GBB

a3

a4

a5

a6

a7

a8

a9

a10

a12

a13

a14

a15

GNB

Figure 3: Gorenstein duality for kR

Proposition 11.5 The homotopy of the derived v–power torsion is given by

�C2
? .�.v/kR/Š .U�1

�GNB ŒU�1�/˚GBB ŒU �;

where GBB and GNB are based on the local cohomology of BB and NB respectively,
and described as follows. We have

GBBD†�2��
�
ZŒv��˚ a �F2Œv�

_
˚ a2

�F2Œv�
_
˚u �N

�
;

where N (with top in degree 0) is given by an exact sequence nonsplit in degree 0:

0! ZŒv��!N ! F2Œa�! 0:
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Similarly,

GNBD†�1
�
ZŒv��=.2 � .1�//˚ a �F2Œv�

_
˚ a2

�F2Œv�
_
˚†1�3�ZŒv��˚†�F2Œa�

_
�
;

where the action of a is as suggested by the sum decomposition except that multiplica-
tion by a is nontrivial wherever possible (ie when one dot is vertically above another,
or where a box is vertically above a dot).

Proof We first note that the contributions from the different blocks do not interact.
Indeed, the only time that different blocks give contributions in the same degree come
from the F2Œa� towers of BB: one class in that degree is v–divisible (and not killed
by v ) and the other class is annihilated by v . We may therefore consider the blocks
entirely separately.

The block GBB comes from the local cohomology of BB and therefore lives in a short
exact sequence

0!H 1
.v/.†

�1BB/! GBB!H 0
.v/.BB/! 0:

The block GNB comes from the local cohomology of NB and therefore lives in a short
exact sequence

0!H 1
.v/.†

�1NB/! GNB!H 0
.v/.NB/! 0:

Most questions about module structure over BB ŒU � are resolved by degree, but there
are two which remain. These can be resolved by Gorenstein duality (Corollary 6.8)
and the known module structure in ZkR .

In GBB, the additive extension in �C2
�3�

is nontrivial:

�C2

�3�
.�.v/kR/Š Z:

Also the multiplication by a

F2 Š GNB�1C� ! GNB�1 Š F2

is nonzero (where GNB�1C� corresponds to �C2

�5C5�
.�.v/kR/ in the U�1 –shift).

Remark 11.6 It is striking that the duality relates the top BB to the bottom NB (ie
Anderson duality takes the part of �vkR coming from the local cohomology of BB
to NB), and it takes the bottom NB to the top BB (ie Anderson duality takes the part
of �vkR coming from the local cohomology of NB to BB). Indeed, as commented
after Lemma 11.2, since NBD �.a/BB, we have

†2C� �.v/BB' .�.a/BB/� and �.v;a/BB'†�2��BB�;

with the second stating that BB is Gorenstein of shift �2� � for the ideal .a; v/.
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By extension, Anderson duality takes the part of �vkR coming from the local coho-
mology of all copies of BB to all copies of NB and vice versa. This might suggest
separating kR into a part with homotopy BB ŒU �, giving a cofibre sequence

hBB ŒU �i ! kR! hU�1NB ŒU�1�i;

where the angle brackets refer to a spectrum with the indicated homotopy. However one
may see that there is no C2 –spectrum with homotopy the Mackey functor corresponding
to BB ŒU � (considering the b� and .bC 1/� rows one sees that the nonequivariant
homotopy of the spectrum would be zero up to about degree 2b ; taking all rows
together it would have to be nonequivariantly contractible and hence a–periodic).
Similarly, there is no spectrum with homotopy U�1NB ŒU�1�, so these dualities are
purely algebraic.

12 The local cohomology spectral sequence for BPRhni

Gorenstein duality for BPRhni (Example 5.2) has interesting implications for the
coefficient ring, both computationally and structurally. Writing F for RO.C2/–grading
as usual, the local cohomology spectral sequence [11, Section 3] takes the form
described in the following proposition. We now revert to our standard assumption of
working 2–locally, so Z means the 2–local integers.

Proposition 12.1 There is a spectral sequence of BPRhniC2
? –modules

H�xJn
.BPRhniC2

? / H) †�.DnCnC2/�.Dn�2/��C2
? .ZBPRhni/

for xJn D .v1; : : : ; vn/. The homotopy of the Anderson dual in an arbitrary degree
˛ 2 RO.C2/ is easily calculated:

0! ExtZ.BPRhniC2

�˛�1
;Z/! �C2

˛ ZBPRhni
! HomZ.BPRhniC2

�˛;Z/! 0:

For n� 2, the local cohomology spectral sequence has some nontrivial differentials.

One should not view Proposition 12.1 as an algebraic formality: it embodies the fact
that BPRhniC2

? is a very special ring.

In the present section, we will discuss the implications of this for the coefficient ring
for general n. The perspective is a bit distant so the reader is encouraged to refer back
to kR (ie the case nD 1) in Section 11 to anchor the generalities.

However the case nD 1 is too simple to show some of what happens, so we will also
illustrate the case tmf1.3/ (ie the case nD 2) in Section 13.
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12A Reduction to diagonals

For brevity, we write R? D BPRhniC2
? . Because the ideal xJn D .xv1; : : : ; xvn/ is gener-

ated by elements whose degrees are a multiple of � , we can do xJn –local cohomology
calculations over the subring R�� of elements in degrees which are multiples of � .

Thus, for an R?–module M? we have a direct sum decomposition

M? D
M

d

MdC��

as R��–modules, where we refer to the gradings d C�� as the d –diagonal. Hence,
we also have

H i
xJn
.M?/D

M
d

H i
xJn
.MdC��/:

(We have abused notation by also writing xJn for the ideal of R�� generated by
xv1; : : : ; xvn .)

12B The general shape of BPRhniC2
?

By the description at the end of Section 4B, we have an isomorphism

R? D U�1
�NB ŒU�1�˚BB ŒU �

with BB and NB as described there. It is easy to see that BB and NB decompose as
R��–modules into modules of a certain form we will describe now. We will implicitly
2–localize everywhere.

The modules BB and NB decompose into are

P DR�� D ZŒxv1; : : : ; xvn� and xPs D P=.xv0; : : : ; xvs/D F2ŒxvsC1; : : : ; xvn�

for s � 0 and the ideals expressed by the exact sequences

0! .2; xv1; : : : ; xvt /! P ! xPt ! 0 or 0! .xvsC1; : : : ; xvt /! xPs!
xPt ! 0

with s � 0.

Their local cohomology is easily calculated. In the first two cases, the modules only
have local cohomology in a single degree:

H�xJn
.P /DH n

xJn
.P /D P�.�Dn�/;

H�xJn
. xPs/DH n�s

xJn
. xPs/D xP

_
s ..Ds �Dn/�/:

The top nonzero degree of P� is zero, so 1� 2 P�.�Dn�/ is in degree �Dn� D

�jv1j � � � � � jvnj. We alert the reader to the fact that star is used in two ways:
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occasionally in H� to mean cohomological grading and rather frequently here in P�

to mean the Z–dual of P .

Now we turn to the ideal .xvsC1; : : : ; xvt /. If t D s C 1 the ideal is principal and
.xvsC1/Š xPs..sC 1/�/; thus we get a single local cohomology group

H n�s
xJn
..xvsC1/ xPs/D xP

_
s ..Ds �DnC sC 1/�/

as can be seen from the long exact sequence of local cohomology.

Otherwise we get two local cohomology groups

H n�s
xJn
..xvsC1; : : : ; xvt / xPs/D xP

_
s ..Dn�Ds/�/

and
H n�tC1
xJn

..xvsC1; : : : ; xvt / xPs/D xP
_
t ..Dn�Dt /�/:

The case of .2; xv1; : : : ; xvt / is similar but with an extra case. The case t D 0 is easy
since then .2/Š P so the local cohomology is all in cohomological degree n where it
is P�.�Dn�/. If t D 1 we again get a single local cohomology group

H n
xJn
..2; xv1/P /D P�.�Dn�/˚ xP

_
1 ..D1�Dn/�/:

Otherwise we get two local cohomology groups

H n
xJn
..2; : : : ; xvt /P /DP�.�Dn�/ and H n�tC1

xJn

..2; : : : ; xvt /P /D xP
_
t ..Dt�Dn/�/:

12C The special case n D 1

The best way to make the patterns apparent is to look at the simplest cases. In this
section, we begin with kRC2

? as treated in Section 11 above, and we encourage the
reader to relate the calculations here to the diagrams in Section 11. In that case,

P D kRC2
�� D ZŒxv1�; xP0 D F2Œxv1� and xP1 D F2:

Table 1 (left) displayes BB by d –diagonal. The position of the modules along the
d –diagonal can be inferred from the label at the top of the column. Thus the first
column has generators in degree �d� , and the second column similarly, but in the
column of u (namely the 2–column). Noting that u is on the 4–diagonal, the d th row
has generators in juj � .d � 4/� D 2� .d � 2/� . For example, along the 4–diagonal
we have a4 xP1˚ .2u/P .

Taking local cohomology, and shifting H
s
xJn

down by s (as in the local cohomology
spectral sequence), we have Table 1 (right). Note that shifting down by s both lowers d

by s and adds a shift by �s� . For example, considering the 3–diagonal of this table,
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BB

d 1 u

0 P

1 xP0

2 xP0

3 xP1

4 xP1 .2/P

5 xP1

6 xP1

7 xP1

8 xP1

H�.v1/
.BB/

d 1 u

� 1 P�.�2�/

0 xP_
0
.�2�/

1 xP_
0
.�2�/

2

3 xP1 P�.�2�/

4 xP1

5 xP1

6 xP1

7 xP1

8 xP1

Table 1: BB (left) and the local cohomology (right) by d -diagonal for nD 1 .
The H 1 –groups are coloured brown.

the xP1 comes directly from the 3–diagonal of BB, whilst the P�.�2�/ comes from
the .2/P on the 4–diagonal of BB; the local cohomology is P�.��/, but its diagonal
is shifted by �1 since it is a first local cohomology, and because it is by reference to
the 2–column the shift is �� . The top of this module is calculated by reference to the
column of juj (ie the 2–column), and has top in degree 2� .3� 2/� � 2�D�3� .

We saw in Section 11 that the two modules on the 3–diagonal give a nontrivial additive
extension (in degree �3� ) after running the spectral sequence.

12D The special case n D 2

Continuing our effort to make patterns visible, we consider tmf1.3/
C2
? in this subsection

(ie the case nD 2). With Z denoting the integers with 3 inverted here, this has

P D tmf1.3/
C2
�� D ZŒxv1; xv2�; xP0 D F2Œxv1; xv2�; xP1 D F2Œxv2� and xP2 D F2:

See Table 2. Once again, the column labelled ui is the 2i th column, and shifts along
the diagonal have as reference point where this column meets the relevant diagonal.

We take local cohomology, again remembering that H
s
xJn

is shifted down by s , which
changes the diagonal by s . For example, on the 7–diagonal, xP2 comes from the
7–diagonal in BB, whereas the xP_

0
.�5�/ comes from the 2nd local cohomology of

the entry .xv1/ xP0 on the 9–diagonal; the local cohomology of xP0 is xP_
0
.�4�/, this is

shifted by a further �2� from the change of diagonal, and C� because of the xv1 .
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BB

d 1 u u2 u3

0 P

1 xP0

2 xP0

3 xP1

4 xP1 .2/

5 xP1

6 xP1

7 xP2

8 xP2 .2; xv1/P

9 xP2 .xv1/ xP0

10 xP2 .xv1/ xP0

11 xP2

12 xP2 .2/

13 xP2

H�.v1;v2/
.BB/

d 1 u u2 u3

� 2 P�.�6�/

�1 xP_
0
.�6�/

0 xP_
0
.�6�/

1

2 xP_
1
.�4�/ P�.�6�/

3 xP_
1
.�4�/

4 xP_
1
.�4�/

5 xP_
1
.�4�/

6 xP_
1
.�5�/˚P�.�6�/

7 xP2
xP_

0
.�5�/

8 xP2
xP_

0
.�5�/

9 xP2

10 xP2 P�.�6�/

11 xP2

12 xP2

13 xP2

Table 2: BB (left) and the local cohomology (right) by d -diagonal for nD 2 .
The H 1 –groups are coloured in brown and the H 2 –groups in teal.

We will see below that there are nontrivial extensions on the 2– and 10–diagonals, and
that there are differentials in the local cohomology spectral sequence from the 7–, 8–
and 9–diagonals (differentials go from the d –diagonal to the .d�1/–diagonal).

12E Moving from the basic block BB to the negative block NB

Moving from BB to NB only affects the 0 column, where in each case M is replaced
by ker.M ! F2/ D .2/M . In effect, this replaces xPn by 0. It also adds on a new
.�1/–column of xPnDF2 going up from the � row. We resist the temptation to display
a table for NB explicitly, but note that NBD �.a/BB as for kR.

12F Gorenstein duality

With the above data in mind, we may consider the d –diagonal BBd , where the lowest
value of d is 0 and the highest is N D 4.2n� 1/. If we ignore the difference between
BB and NB (which is at most F2 in any degree) we find approximately that BBd has a
relationship to BBN�d , namely something like an equality

H n
xJn
.BBd /

�
D BBN�d :
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There are various ways in which this is inaccurate and needs to be modified. Firstly, if
the local cohomology of BBd is entirely in cohomological degree n�� with �¤0, there
will be a shift of � (if it is in several degrees there is a further complication). Secondly,
Anderson duality introduces a shift of one diagonal if applied to torsion modules.
Thirdly, we have seen that there may be extensions between these local cohomology
groups, sometimes removing Z–torsion. Finally, there may be differentials.

In fact, all of these effects are “small” in the sense that the growth rate along a diagonal
is bounded by a polynomial of degree n� 1. Encouraged by this, if we ignore all of
these effects, we see that BB is a Gorenstein module in the sense that the reverse-graded
version is equivalent to the dual of its local cohomology:

H n
xJn
.BB/� D rev.BB/:

This is rather as if there is a cofibre sequence

S ! BPRhni !Q

where S is Gorenstein and Q is a Poincaré duality algebra of formal dimension
N D 2.1� �/.2n� 1/.

13 The local cohomology spectral sequence for tmf1.3/

We examine the local cohomology spectral sequence and Gorenstein duality in more
detail for tmf1.3/. Actually, our calculations are equally valid for all forms of BPRh2i,
but we prefer the more evocative name tmf1.3/ of the most prominent example. More
of the general features are visible for tmf1.3/ than for kR.

As usual we will implicitly localize everywhere at 2 (although for tmf1.3/ itself it
would actually suffice to just invert 3).

13A The local cohomology spectral sequence

We make explicit the implications for the coefficient ring, both computationally and
structurally. Writing F for RO.C2/–grading as usual, the spectral sequence takes the
following form.

Proposition 13.1 There is a spectral sequence of tmf1.3/
C2
? –modules

H�xJn
.tmf1.3/

C2
? / H) †�8�2��C2

? .Ztmf1.3//:

The homotopy of the Anderson dual is easily calculated:

0! ExtZ.tmf1.3/
C2

�˛�1
;Z/! �C2

˛ Ztmf1.3/! HomZ.tmf1.3/
C2
�˛;Z/! 0:

The local cohomology spectral sequence has some nontrivial differentials.
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tmf 1.3/
C2

F

1

U 1

U 2

U 3

U 4

2 �U�7

2 �U�6

2 �U�5

2 �U�4

2 �U�2

2 �U�1

2 �U�3

Figure 4: The homotopy of tmf1.3/

13B The ring tmf1.3/
C2
?

The ring tmf1.3/
C2
? is approximately calculated in [27] and more precisely described as

BB ŒU �˚U�1NB ŒU�1�

as at the end of Section 4B with n D 2. We already tabulated BB in Section 12D,
but we want also want to display a bigger chart of �C2

? tmf1.3/ as Figure 4 to give the
reader a feeling of how the blocks piece together.

A black diagonal line means a copy of P when it starts in a box, a copy of .2/P when
it starts in a small circle, a copy of .2; v1/P when it starts in a dot and a copy of
.2; v1; v2/ when it starts in a big circle. In Figure 4, a red diagonal line means a copy
of xP0 and a green diagonal line a copy of xP1 . A red dot is a copy of F2 D

xP2 .
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BB

1

M1

2u2

u2xv1

2u3

a1

a2

a3

a4

a5

a6

NB

.2; xv1; xv2/P .2; xv1/P

GBB

a7

a8

a9

a10

a11

a12

a13

a14

a15

GNB

d2

d2

d2

2u

.xv1; xv2/ xP0

.xv1; xv2/ xP0

Figure 5: Gorenstein duality for tmf1.3/

13C Local cohomology

We are calculating local cohomology with respect to the ideal xJ2 D .xv1; xv2/ so that
we only need to consider tmf1.3/

C2
? as a ZŒxv1; xv2�–module. As such it is a sum of
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suspensions of the blocks BB and NB, so we just need to calculate the local cohomology
of these. This was described in Section 12 above. Here we will simply describe the
extensions and the behaviour of the local cohomology spectral sequence.

The basis of this discussion are the tables of BB and GBB from Section 12D together
with the analogues for NB and GNB. Although these are organized by diagonal,
Figure 5 displaying BB;GBB;U�1NB and U�1GNB may help visualize the way the
modules are distributed along each diagonal. The vertical lines denote multiplication
by a and the dashed vertical line is an exotic multiplication by a that is not visible on
the level of local cohomology. The green diamond does not denote a class, but marks
the point one has to reflect (nontorsion classes) at to see Anderson duality. Torsion
classes are shifted after reflection by �1 (ie one step horizontally to the left).

The strategy is to take the known subquotients from the local cohomology calculation,
and resolve the extension problems using Gorenstein duality.

Proposition 13.2 We have an isomorphism

�C2
? � xJ2

tmf1.3/Š GBB ŒU �˚U�1GNB ŒU�1�;

where GBB and GNB are described in the following. We will simultaneously describe
what differentials and extensions in the local cohomology spectral sequence caused the
passage from H�

xJ2

.BB/ and H�
xJ2

.NB/ to GBB and GNB respectively.

(i) The ZŒxv1; xv2�–modules along the diagonals in GBB are as in Table 3 (left). There
are three nontrivial differentials

d2W H
0
xJ2
.BB/!H 2

xJ2
.BB/

from the groups at �7�;�8�;�9� to the groups at �7� �1;�8� �1;�9� �1, which
have affected the values on the 6–, 7–, 8– and 9–diagonals in Table 3 (left).

The extensions
0! P�! Œ.2; xv1/P �

�
! F2Œv2�

_
! 0

on the 2–diagonal and the 6–diagonal are Anderson dual to the defining short exact
sequence

0! .2; xv1/P ! P ! F2Œv2�! 0

in the following sense: The Anderson dual of the latter exact sequence is a triangle

F2Œv2�
�
! P�! Œ.2; xv1/P �

�
!†F2Œv2�

�
Š F2Œv2�

_

which induces (on homology) the extensions above. The extension

0! P�! Œ.2; xv1; xv2/P �
�
! F2! 0
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GBB

d module top degree

�2 P� �6�4�

�1 xP_
0

�6�5�

0 xP_
0

�6�6�

1 0

2 Œ.2;xv1/P �
� �4�6�

3 xP_
1

�4�7�

4 xP_
1

�4�8�

5 xP_
1

�4�9�

6 Œ.2;xv1/P �
� �2�8�

7 .xv1;xv2/ xP0 �2�9�

8 .xv1;xv2/ xP0 �2�10�

9 0

10 Œ.2;xv1;xv2/P �
� 0�10�

10Ck � 11 F2 0�.10Ck/�

GNB

d module top degree

�k � �3 F2 �1�k�

�2 P�;F2 �6�4�;�1C�

�1 xP_
0
;F2 �6�5�;�1C0�

0 xP_
0
;F2 �6�6�;�1��

1 F2 �1�2�

2 P�; xP_
1
�4�6�;�1�3�

3 xP_
1

�1�4�

4 xP_
1

�1�5�

5 xP_
1

�1�6�

6 Œ.2;xv1/P �
� �1�7�

7 xP_
0

�1�8�

8 xP_
0

�1�9�

9 0

10 P� 0�10�

Table 3: ZŒxv1;xv2�–modules as described in Proposition 13.2

on the 10–diagonal is Anderson dual to the short exact sequence

0! .2; xv1; xv2/P ! P ! F2! 0:

(ii) The ZŒxv1; xv2�–modules along the diagonals in GNB are as in Table 3 (right) (take
the direct sum of the two entries for the .�2/–, .�1/–, 0– and 2–diagonals). The
extension

0! P�! Œ.2; xv1/P �
�
! F2Œv2�

_
! 0

on the 6–diagonal is Anderson dual to the short exact sequence

0! .2; xv1/P ! P ! F2Œv2�! 0:

Proof We first note that the contributions from the different blocks do not interact.
Indeed, the only time that different blocks give contributions in the same degree comes
from the F2Œa� towers of BB, and one class in that degree is divisible by xv1 or xv2 and
not killed by both xv1 and xv2 . We may therefore consider the blocks entirely separately.

The block GBB comes from the local cohomology of BB in the sense that there is a
spectral sequence

H�xJ2
.BB/ H) GBB:
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H
�
xJ2
.NB/

d 1 u2 u4 u6

� 2 P�.�6�/

�1 xP_
0
.�6�/˚ xP2

0 xP_
0
.�6�/˚ xP2

1 xP2

2 xP_
1
.�4�/ P�.�6�/

3 xP_
1
.�4�/

4 xP_
1
.�4�/

5 xP_
1
.�4�/

6 xP_
1
.�5�/˚P�.�6�/

7 xP_
0
.�5�/

8 xP_
0
.�5�/

9

10 P�.�6�/

11

12

13

Table 4: Local cohomology for n D 2 from the proof of Proposition 13.2.
Again, the H 1 –groups are coloured in brown and the H 2 –groups in teal.

Thus there is a filtration

GBBD GBB0
� GBB1

� GBB2
� GBB3

D 0

with

0! GBB0=GBB1
!H 0

xJ2
.BB/

d2
�!†�1H 2

xJ2
.BB/!†1GBB2

! 0

and
GBB1=GBB2

Š†�1H 1
xJ2
.BB/:

The block GNB comes from the local cohomology of NB in a precisely analogous way.

Most questions about module structure over BB ŒU � are resolved by degree. The
remaining issues are resolved by using Gorenstein duality.

Referring to the table for H
�
xJ2
.BB/ in Section 12D, the first potential extension is on

the 2–diagonal. Using Gorenstein duality to compare with NBıD8 we see that the
actual extension on the 2–diagonal of GBB is

0! P�! Œ.2; v1/P �
�
! xP_1 ! 0;
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ı ı0 s.t. H
�
xJ2
.BBı/� � NBı0 ı ı0 s.t. H

�
xJ2
.NBı/� � BBı0

0 12 0 12

1 10 1 10

2 9 2 9

3 8 3 8

4 8; 6 4 8; 6

5 5 5 5

6 4 6 4

7 2 7 :

8 4; 3 8 4

9 2 9 2

10 1; 0 10 1

11 0 11 :

12 0 12 0

Table 5: Diagonal contributions from Remark 13.3(i)

where we have shifted the modules so they all have top degree 0. There is an additive
extension on the 10–diagonal by reference to the Anderson dual. Finally the three
nonzero d2 differentials from �1�k� for kD7; 8 and 9 are necessary for connectivity
(this removes the need to discuss the possible extensions on the 7– and 8–diagonals).

The situation is rather similar for GNB. We will not explicitly display NB since the
only effect (apart from the addition of F2Œa�

_ ) is on the first column, where a module
is replaced by the kernel of a surjection to F2 . It is perhaps worth displaying H

2
xJ2
.NB/,

where we leave out the big F2Œa�
_–tower in H

0
xJ2

NB. See Table 4. In this case, all
extensions are split, except for the one on the 6–diagonal and there are no differentials.
The a multiplications in the F2Œa�

_ tower are clear from Gorenstein duality and the
a–tower F2Œa� in BB.

Remark 13.3 (i) In Table 5, we summarize the way a diagonal BBı contributes
to NB as in

H�xJ2
.BBı/

�
� NBı0

as sketched in Section 12F. Because most of the modules are 2–torsion the most
common pairing is between ı and 11� ı rather than between ı and 12� ı as happens
for the main U –power diagonals.

(ii) We also note as before that since NBD �.a/BB, we have

†6C4��.v1;v2/BB� .�.a/BB/�

Algebraic & Geometric Topology, Volume 17 (2017)



3612 J P C Greenlees and Lennart Meier

(where we have written � rather than ' in recognition of the differentials) and

†6C4��.v1;v2;a/BB' BB�;

with the second stating that BB is Gorenstein of shift �6�4� for the ideal .v1; v2; a/.

Appendix: The computation of �C2
? BPR

Our main goal in this appendix is to compute the homotopy fixed point spectral
sequence for BPR and hence for M R. All the results in this appendix and the
essential idea of the argument for Proposition A.2 are contained in [18] (see especially
Formula 4.16). We just rearranged their arguments and added some details. Our
argument for the multiplicative extensions might be considered new though. We
have strived for elementary and short proofs though they retain some computational
complexity. We hope this is helpful for the reader to understand this crucial computation.
Note that even before Hu and Kriz, the computation of �C2

? BPR was announced in [3].

We will work throughout 2–locally. As before, we denote by � the regular real C2 –
representation and by � the sign representation. We need a few facts, first proven by
Araki:

(1) If E is a real-oriented spectrum, then E?C2
.CP1/ Š E?C2

JuK with juj D ��
and E?C2

.CP1 �CP1/ Š E?C2
J1˝ u;u˝ 1K. This induces a formal group

law on �C2
��E and the forgetful map �C2

��E! �e
2�

E maps it to the usual formal
group law from the complex orientation of E . [18, Theorem 2.10]

(2) Thus, we get a ring map �e
2�

MU! �C2
��M R from the Lazard ring such that

�e
2�

MU is a retract of �C2
��M R. For every class in x 2 �2�MU , we have thus a

corresponding class xx 2 �C2
��M R. [18, Proposition 2.27]

(3) There is a splitting M R.2/ '
L

mi
†mi�BPR, where the underlying spectrum

of BPR agrees with BP . This splitting corresponds on geometric fixed points
to the splitting MO'

L
mi
†mi HF2 . [18, Theorem 2.33]

Define aW S0 ! S� as before to be the inclusion of the points 0 and 1; we will
denote the image of a in �?M R and �?BPR by the same symbol. The class a has
degree �� D 1� � .

Proposition A.1 We have a2nC1�1vn D 0 in �C2
? M R.

Proof We have a fibre sequence

.EC2/C˝M R!M R! zEC2˝M R:
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First, we claim that the image of vn under M R! zEC2˝M R is zero. Indeed, as a

is invertible on zEC2˝M R, the formal group law on �C2
�� .
zEC2˝M R/ agrees with

that on �C2
� .
zEC2˝M R/D ��MO, which is additive. Therefore, the map

MU2�! �C2
��M R! �C2

��
zEC2˝M R

sends all vn to zero. Thus, vn and hence also a2nC1�1vn are in the image of the map

.EC2/C˝M R!M R:

Observe that

ja2nC1�1vnj D �.2
nC1
� 1/� C .2n

� 1/.1C �/D 2n
� 1� 2n�:

We claim that �C2

2n�1�2n�
..EC2/C˝M R/ is zero. Indeed, we have

�C2

2n�1�2n�
..EC2/C˝M R/Š �2n�1.†

2n�M R/hC2
:

This can be computed by the homotopy orbit spectral sequence

Hp.C2I�q†
2n�M R/ H) �pCq.†

2n�M R/hC2
:

But �q†
2n�M R D 0 for q < 2n , so �2n�1.†

2n�M R/hC2
D 0. Thus, we see that

a2nC1�1vn D 0 in �C2
? M R.

For a C2 –spectrum X , the RO.C2/ graded homotopy fixed point spectral sequence is
defined by combining the homotopy fixed point spectral sequences

E
p;q
2
.r/DH q.C2; �pCq.X^S�r� //H) �C2

p ..X^S�r� /hC2/Š�C2
pCr� .X

.EC2/C//

into a single spectral sequence with differential

dnW E
p;q
n .r/!Ep�1;qCn

n .r/:

Note that we use an Adams grading convention here. We will often call pC r� the
degree of an element.

The RO.C2/–graded homotopy fixed point spectral sequence (HFPSS) for BPR has
E2 –term

Z.2/Œa;u
˙1; v1; v2; : : : �=2a

with
jaj D .��; 1/; juj D .2� 2�; 0/ and jvi j D ..2

i
� 1/�; 0/:

This can be seen, for example, by the identification with the Bockstein spectral sequence
for a discussed in [27, Lemma 4.8]. As BPR is a retract of M R.2/ , it has the structure
of a (homotopy) ring spectrum and thus the RO.C2/–graded homotopy fixed point
spectral sequence is multiplicative by [27, Section 2.3].
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By the discussion above, a and the vi are permanent cycles. As a2nC1�1vn is zero, it
must be hit by a differential. This is the crucial ingredient for the following central
proposition. It is fully formal in the sense that we do not need any other input in
addition to the things we already discussed; we argue just with the form of the spectral
sequence. We will set v0 D 2 for convenience.

Proposition A.2 In the HFPSS for BPR, we have E2n D E2nC1�1 , and it is the
subalgebra of

E2=.a
3v1; : : : ; a

2n�1vn�1/

generated by a, u˙2n�1

, the vi for i � 0 and by the viu
2ij for i < n� 1 and j 2 Z.

Proof We prove it by induction. It is obviously true for nD 1 by the checkerboard
phenomenon; indeed, for all generators of the E2 –term in degree .aC b�; q/ we have
aC q even.

Now assume it to be true for a given n. First, we will show that d2nC1�1.u
2n�1

/D

a2nC1�1vn . Indeed, as a2nC1�1vn is nonzero in E2nC1�1 , it must be hit by a d2nC1�1 .
Its source x is in the zero-line in degree 2nC1�2n� . As the zero-line in E2 is generated
by u of degree 4� 2� and by the vi in regular representation degrees, we see that
the exponent of u in x must be 2n�1 , so there is no room for further vi . Thus,
d2nC1�1.u

2n�1

/D a2nC1�1vn .

Next, we want to show that dq.viu
2ij /D 0 for 2nC1� 1� q < 2nC2� 1 and i < n.

Write dq.viu
2ij /D aqx . The degree of x is

.2i
� 1/�C 2ij .4� 2�/� q.1� �/� 1D .2iC2j � q� 1/C .2i

� 2iC1j C q� 1/�:

Thus, x D u2ij�.qC1/=4v , where v is a polynomial in the v� . The degree of v is
.2i � 2C 1

2
.qC 1//� . As 1

2
.qC 1/ < 2nC1 , we have

jvj< jv2
nC1j< jvr j

for r � nC 2. Thus, no monomial in v is divisible by v2
nC1 or vr . Assume that

jvj D jvnC1j. Then 1
2
.qC 1/D 2nC1� 1C 2� 2i D 2nC1� 2iC 1, which is odd; but

then 1
4
.qC 1/ 62 Z, which is a contradiction. Thus, every monomial in v is divisible

by some vk for some k � n as v ¤ 1 for degree reasons. But aqvk D 0 in Eq . Thus,
also aqx D 0 in Eq .

Similarly, write dq.u
2n

/D aqx for 2nC1� 1� q < 2nC2� 1 and assume that this is
nonzero. The degree of x is

2n.4� 2�/� q.1� �/� 1D .2nC2
� q� 1/C .q� 2nC1/�:
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Thus, we can write x in E2 as u2n�.qC1/=4v , where v is a polynomial in the v� . The
degree of v is 1

2
.q� 1/ < 2nC1� 1. Thus, no monomial in v can be divisible by vr

for r � nC 1. Thus, every monomial in v is divisible by some vk for some k � n as
v ¤ 1 for degree reasons. But aqvk D 0 in Eq . Thus, dq.u

2n

/D 0.

By the Leibniz rule, this implies the proposition.

Before we solve the multiplicative extension issues, we need a technical lemma.

Lemma A.3 Assume that there is an element akulv ¤ 0 above the zero line in the
E1–term of the RO.C2/–graded HFPSS for BPR with v a monomial in the v� and
in the same degree as vivmu2mj . Let p be the minimal index such that vp divides v
(which we will show to exist). Then i > pCm.

Proof The degree of vivmu2mj is

2mj .4� 2�/C .2i
� 1C 2m

� 1/�D 2mC2j C .2i
C 2m

� 2mC1j � 2/�:

Let akulv ¤ 0 be an element in E1 in this degree with v a monomial in the v�
of degree n� and assume that k > 0. (In the following, we will use the notation
kvpk D jvpj=� so that kvk D n.) We get

4l C k D 2mC2j ;

n� 2l � k D 2i
C 2m

� 2mC1j � 2:

This implies nD 2i C 2m� 2C 1
2
k . We see that n¤ 0. Let p be the minimal index

such that vpjv . Then 2pjl and we set c D l=2p . Then k D 2mC2j � 2pC2c . Due
to the relation a2pC1�1vp D 0, we have k � 2pC1 � 2 and thus mC 2 � p (as else
2pC1jk and thus k � 2pC1 ). In particular, 2mC1 divides 1

2
k . Now observe that

n� kvpk D 2p � 1, so
2i
C 2m

� 1� 2p
�

1
2
k:

As k � 2pC1� 2, the right-hand side is positive; as it is also divisible by 2mC1 it is
thus it is at least 2mC1 . We see that i � mC 1. Thus n � 2m � 2 mod 2mC1 . As
kvqk ��1 mod 2mC1 for q � p >mC1, we see that the total exponent of v (ie the
degree of v as a monomial in the v� ) must be � 2mC 2 mod 2mC1 . In particular,
n� kvpk.2

mC 2/D .2p � 1/.2mC 2/. Thus,

1
2
k D n� 2i

� 2m
C 2� 2pCm

� 2i
C .2pC1

� 2mC1/:

If pCm� i , then the right-hand side is at least 2p , which would be a contradiction.
Thus i > pCm.
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Now, we are ready to prove the main result of the appendix. Note that [18, Theorem 4.11]
gives a different relation than our last one; our relation implies their relation, but not
vice versa. Note also that our arguments for the multiplicative relations are completely
algebraic (using the form of the spectral sequence), while [18] uses additionally a
C2 –equivariant Adams spectral sequence.

Theorem A.4 The ring �C2
? BPR is isomorphic to the E1–term of the homotopy

fixed point spectral sequence above, ie to the subalgebra of

Z.2/Œa; vi ;u
˙1�=.2a; via

2iC1�1/

(where i runs over all positive integers) generated by vm.n/D u2mnvm (with m; n2Z
and m� 0) and a with v0 D 2. Consequently, it is the quotient R of the ring

Z.2/Œa; vm.n/ jm� 0; n 2 Z�

by the relations

v0.0/D 2;

a2mC1�1vm.n/D 0;

vi.j /vm.n/D vivm.2
i�mj C n/ for i �m;

with vi D vi.0/. Here, jaj D 1� � and jvm.n/j D 2mC2nC .2m� 1� 2mC1n/� .

Proof It suffices to show that the expression above computes the homotopy fixed points
�C2
? BPR.EC2/C. Indeed, Proposition A.2 implies that .a�1BPR.EC2/C/C2 'HF2 , so

the map BPRˆC2 ! BPRtC2 is an equivalence and hence also BPR! BPR.EC2/C

by the Tate square.

Set v0.0/ D 2. By Proposition A.2, the classes u2mnvm are permanent cycles in
the HFPSS; choose element vm.n/ 2 �

C2
? BPR.EC2/C representing them. Again by

Proposition A.2, the vm.n/ generate together with a the E1–term of the HFPSS.
Thus, we get a surjective map R!E1 . The third relation defining R allows to define
a normal form: Every monomial in the vi.j / equals in R an element of the form
v vm.k/, where v is a monomial in the vi and m was the smallest index of all vi.j /.
Thus, two monomials in the vi.j / are equal in R if they are equal in E1 ; hence, the
map R!E1 is also injective.

We now check that the relations are also satisfied in �C2
? BPR.EC2/C . This is clear or

was already shown for the first two relations. Let now i be the least number such that
m� i and

vi.j /vm.n/¤ vivm.2
i�mj C n/

Algebraic & Geometric Topology, Volume 17 (2017)
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for some j ;m; n if such an i exists. The difference must be detected by a class akulv ,
where v is a polynomial in the v� . Let p the minimal index such that every monomial
in v is divisible by a vr with r � p . From Lemma A.3, we know that p � i � 1 (and
in particular i � 1). Thus,

vi.j /vm.n/vi�1 ¤ vivm.2
i�mj C n/vi�1

as their difference is detected by a nonzero class akulvvi�1 (indeed, this could only
be zero if k � 2i � 1, but k < 2pC1� 1). By the minimality of i , we have

vm.2
i�mj C n/vi�1 D vi�1.2j /vm.n/:

In addition, vivi�1.2j /D vi.j /vi�1 because there is no element of higher filtration
in the same degree as vi�1vi.j / by Lemma A.3. The last two equations combine to
the chain of equalities

vi.j /vm.n/vi�1 D vivi�1.2j /vm.n/

D vivm.2
i�mj C n/vi�1:

This is a contradiction to the inequality above. Thus,

vi.j /vm.n/D vivm.2
i�mj C n/

is always true for i �m.

Remark A.5 We remark that all the work above for the multiplicative extensions
was actually necessary. For example, we get from the homotopy fixed point spectral
sequence only that v5v1.1/� v5.1/v1.�15/ has filtration at least 1. But there are
indeed classes in this degree of higher filtration, for example, a8v3

3
v4 .
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