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Slice implies mutant ribbon for odd 5–stranded pretzel knots

KATHRYN BRYANT

A pretzel knot K is called odd if all its twist parameters are odd and mutant ribbon
if it is mutant to a simple ribbon knot. We prove that the family of odd 5–stranded
pretzel knots satisfies a weaker version of the slice-ribbon conjecture: all slice odd
5–stranded pretzel knots are mutant ribbon, meaning they are mutant to a ribbon
knot. We do this in stages by first showing that 5–stranded pretzel knots having twist
parameters with all the same sign or with exactly one parameter of a different sign
have infinite order in the topological knot concordance group and thus in the smooth
knot concordance group as well. Next, we show that any odd 5–stranded pretzel knot
with zero pairs or with exactly one pair of canceling twist parameters is not slice.

32S55, 57-XX

1 Introduction

A knot K � S3 is smoothly slice if it bounds a smoothly embedded disk in the 4–ball.
Similarly, a knot K � S3 is said to be topologically slice if it bounds a locally flat
embedded disk D � B4 , where D is a locally flat submanifold of B4 , if for every
point x 2D there exists a neighborhood U � B4 of x such that the pair .U;U \D/

is homeomorphic to the pair .R4;R2/. The notions of smoothly slice and topologically
slice knots can be used to define the smooth and topological knot concordance groups
C and T , respectively, under the operation of connected sum. These are widely studied
groups for which the corresponding slice knot represents the identity element. For
explicit information about the concordance relations, see Livingston [12]. Fine details
of the group structure of C and T continue to elude mathematicians, but concordance
order is one small way of gaining insights into these groups. The topic of determining
smoothly slice knots and concordance order for knots within families of pretzel knots
has also been studied with increasing frequency over the past 30 years and various
results can be found in Greene and Jabuka [3], Lecuona [10], Miller [14], Herald, Kirk
and Livingston [4] and Long [13]. This work will focus almost entirely on slice knots
and concordance in the smooth case, except where “topological” is explicitly stated.

The slice-ribbon conjecture hypothesizes that if a knot is slice then it is also ribbon.
Given that ribbon knots are easily seen to be slice, this is ultimately a conjecture about
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the equivalence of the notions “slice” and “ribbon”. Previous work by Joshua Greene
and Stanislav Jabuka in [3] on the slice-ribbon conjecture for odd 3–stranded pretzel
knots and work by Ana Lecuona in [10] on even pretzel knots inspired this project.
This paper studies sliceness and concordance order for odd 5–stranded pretzel knots.

A k–stranded pretzel link, denoted by P .p1;p2; : : : ;pk/, where the pi 2 Z� f0g
are called the twist parameters, is a knot in two cases: when exactly one of the twist
parameters is even, or when k is odd and all the twist parameters are odd. A pretzel
knot will be called even in the former case and odd in the latter. A 0–pair pretzel knot
is a pretzel knot for which there are no canceling pairs of twist parameters satisfying
pi D�pj . A 1–pair pretzel knot is a pretzel knot for which there exists a canceling pair
of twist parameters, but when the pair is removed from the k–tuple defining the knot,
the resulting .k�2/–stranded knot is 0–pair. Generally, a t –pair pretzel knot is one
for which removing a single canceling pair of twist parameters results in a .t�1/–pair
pretzel knot with two fewer strands. With this definition, 5–stranded pretzel knots
P .a; b; c; d; e/ can be 0–pair, 1–pair or 2–pair. See Figure 1.

Figure 1: Pretzel knot P .3; 5; 7;�3;�5/

When proving statements about pretzel knots, it is often necessary to differentiate
between the knots that contain twist parameters equal to ˙1 and those that do not. If
for K D P .p1; : : : ;pk/ there exists i 2 f1; : : : ; kg such that pi D˙1, then we say
K is a pretzel knot with single-twists; otherwise, we say K is a pretzel knot without
single-twists.

The classification of pretzel knots appears in Zieschang [20], a work that classifies the
much larger class of Montesinos knots of which pretzel knots are a special case. The
classification gives that two pretzel knots without single-twists are smoothly isotopic if
their twist parameters differ by cyclic permutations, reflections, or compositions thereof.
Two pretzel knots with single-twists are smoothly isotopic if their twist parameters
differ by cyclic permutations, reflections and/or transpositions involving ˙1–twisted
strands. Two k–stranded pretzel knots whose twist parameters are equal as unordered
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k–tuples but not equal as ordered k–tuples are called pretzel knot mutants. This specific
kind of mutation is the only type considered here, so “mutation” from this point on
will always mean “pretzel knot mutation”.

Mutation is a crucial topic for the problem of determining sliceness for k–stranded
pretzel knots when k � 4 because many knot invariants used to obstruct sliceness are
unable to detect pretzel knot mutants. In fact, any knot invariant based on the double
branched cover of S3 along the knot will fail to detect pretzel knot mutants; Bedient
shows in [2] that any two pretzel knots defined by the same unordered k–tuple of twist
parameters have the same double branched cover. Given a k–tuple .p1; : : : ;pk/ of twist
parameters, Pfp1; : : : ;pkg will denote the set of pretzel knots having fp1; : : : ;pkg

as twist parameters, and also all mirrors of such knots.

Among pretzel knots is a subset of knots we will call simple ribbon. A simple ribbon
move on a pretzel knot is the ribbon move shown in Figure 2, performed always on
the topmost twist of two adjacent strands of K having canceling numbers of twists.
We say a pretzel knot K is simple ribbon if there exists a sequence of simple ribbon
moves that reduces K to a 1–stranded pretzel knot (if K is odd) or to a 2–stranded
pretzel knot P .a; b/ where a D �b � 1 (if K is even). A prerequisite for a pretzel
knot to be simple ribbon is that if K is k–stranded, then K must be 1

2
.k�1/–pair. But,

while all 1–pair 3–stranded pretzel knots are simple ribbon, not all 2–pair 5–stranded
pretzel knots are simple ribbon. For example, the 2–pair knot P .3; 5;�3;�5; 7/ is
not simple ribbon because no two adjacent strands have canceling numbers of twists.
This phenomenon extends for all k � 4.

Figure 2: Simple ribbon move on pretzel knot P .�3;�5; 5; 3;�5/

The remainder of this paper is structured as follows: Section 2 presents our main results,
the strongest of which is Corollary 2.5, a weak version of the slice-ribbon conjecture
for generic odd 5–stranded pretzel knots. Section 3 gives foundational information
on branched covers, framed links, weighted graphs and plumbings in the specific
context of 4–dimensional topology. Section 4 describes a classical slice obstruction,
the signature condition, and it gives the proof of Theorem 2.1. Section 5 gives details
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about Donaldson’s diagonalization theorem and a resulting slice obstruction we call the
lattice embedding condition. Section 6 addresses the final slice obstructions utilized in
this work, d–invariants and the coset counting conditions. The proofs of the main results
following Theorem 2.1 are given in Sections 7–10 and are organized by increasing
number of slice obstructions needed to obtain the desired result.

Acknowledgements The author would like to thank her advisor Paul Melvin for his
patience and guidance throughout this project. She is forever indebted to him for not
only passing along his knowledge of this subject, but also for his invaluable edits of
her work, both in style and content. She would also like to thank the referee for helpful
suggestions and great attention to detail.

2 Results

As previously mentioned, this project was motivated by work of Greene and Jabuka
in [3] on the slice-ribbon conjecture for odd 3–stranded pretzel knots and by work
of Ana Lecuona in [10] on even pretzel knots. Lecuona writes down the following
conjecture:

Pretzel ribbon conjecture (Lecuona) Let K be a pretzel knot whose twist parame-
ters are all greater than 1 in absolute value. If K is ribbon, then K is simple ribbon.

For odd 3–stranded pretzel knots, the pretzel ribbon conjecture posits that the only
ribbon knots are the simple ribbon knots, ie the 1–pairs. Similarly for odd 5–stranded
pretzel knots, it says that the only ribbon knots are the simple ribbon knots which are
2–pairs for which at least one of the canceling pairs is adjacent. Greene and Jabuka
show in [3] that odd 3–stranded pretzel knots satisfy both the pretzel ribbon conjecture
and the slice-ribbon conjecture by proving that a knot of this type is slice if and only if
it is 1–pair. This result, which proves the two aforementioned conjectures in a particular
case, hints to the following possible strengthening of the slice-ribbon conjecture in the
specific case of pretzel knots:

Pretzel slice-ribbon conjecture If K is a slice pretzel knot, then K is simple ribbon.

Of course, if the pretzel ribbon conjecture is true then the above is equivalent to
the original version of the slice-ribbon conjecture. There is evidence that supports
the pretzel slice-ribbon conjecture in the odd 5–stranded case. Herald, Kirk and
Livingston [4] prove that P .3; 5;�3;�5; 7/ is not slice despite being mutant to the
two simple ribbon knots P .3;�3; 5;�5; 7/ and P .3; 5;�5;�3; 7/. See Figure 2 for
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an illustration of the ribbon move on two adjacent strands in a 5–stranded pretzel knot
whose twist numbers cancel.

This present work applies the techniques used by Jabuka and Greene on odd 3–stranded
pretzel knots to odd 5–stranded pretzel knots, in the hope of showing that this new
class of knots also satisfies the pretzel slice-ribbon conjecture as well. It should be
noted that Greene and Jabuka went a step farther and proved that all nonslice odd
3–stranded pretzel knots have infinite order in C . To obtain these results, they used
three tools: the knot signature from classical knot theory, Donaldson’s diagonalization
theorem from gauge theory, and the d–invariant from Heegaard Floer theory.

The main results of this project are given below, accompanied by brief explanations
as to where each of the above three tools comes into play. In Theorem 2.1 and its
corollary, �.K/ denotes the signature of K; s is the difference between the number
of positive twist parameters and the number of negative twist parameters of K; ye is
the orbifold Euler characteristic of K given by the sum of the reciprocals of the twist
parameters; and sgn. / is the function returning �1, 0, or C1 according to whether
the input is negative, zero, or positive, respectively. The first result is about the class of
odd pretzel knots:

Theorem 2.1 If K is an odd pretzel knot, then �.K/ D s � sgn.ye/. In particular,
�.K/D 0 if and only if s D sgn.ye/.

Corollary 2.2 All odd pretzel knots with s ¤ sgn.ye/ have infinite order in the topo-
logical knot concordance group T .

The corollary follows from the fact that � is a homomorphism from T ! Z, and it
implies infinite order in the smooth knot concordance group C as well. It is a well-
known fact that we call on later that if a knot K is slice, then �.K/D 0. An implicit
implication of Theorem 2.1 is that all odd pretzel knots for which s ¤ ˙1 are not
slice, which is particularly easy to read off from the k–tuple defining the knot. For odd
5–stranded pretzel knots this tells us that if all or all but one of the twist parameters
have the same sign, then K is not slice.

Powerful as the signature is as a concordance invariant, the signature alone is insufficient
for determining sliceness in odd pretzel knots for which s D ˙1. For example, the
pretzel knot K D P .�3;�5;�7; 9; 27/ has vanishing signature, but the pretzel slice-
ribbon conjecture gives us reason to think that K may not be slice. Such occurrences
in the odd 3–stranded case prompted Jabuka and Greene to turn to an obstruction
based on Donaldson’s diagonalization theorem, which is ultimately phrased as a lattice
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embedding condition necessary for sliceness. This same obstruction was originally
used by Paolo Lisca in [11] to classify slice knots within the family of 2–bridge knots.

The use of Donaldson’s diagonalization theorem to define a “lattice embedding condi-
tion” for sliceness is based on the construction of a (potentially hypothetical) closed,
definite 4–manifold X , created as follows: Assume K is a slice knot. Let Y be the
double branched cover of S3 along K; let W be the double branched cover of the
4–ball with branching set the slice disk for K , so that W is a rational homology 4–ball
with @W D Y ; let P be a canonical definite 4–dimensional plumbing1 with @P D Y .
Define X D P [Y .�W /. The lattice embedding condition arises by applying the
diagonalization theorem to X , for which it is necessary to verify that the intersection
form on X , QX , can in fact be diagonalized over the integers. We do this in Section 5.

The lattice embedding condition for sliceness puts great restrictions on the possible
k–tuples that can define a slice odd pretzel knot, so it enables us to conclude that
all but a very select subset of such knots are not slice. Unfortunately, the knots that
satisfy both the vanishing signature condition and the lattice embedding condition are
not easily differentiated from the knots satisfying the signature condition but not the
lattice embedding condition. For example, sliceness is obstructed for P .�3;�17; 27/

and P .�3;�7;�19; 17; 55/ by the lattice embedding condition, but not obstructed for
P .�3;�17; 29/ and P .�3;�7;�19; 19; 55/.

For this reason Jabuka and Greene introduced a third slice obstruction based on the
d–invariant from Heegaard Floer theory. It assumes the same construction used above
involving K , Y , W , P , and X , but it boils down to a comparison of two different
“counts” obtained by analysis on the homology long exact sequences of the pairs
.X;W / and .P;Y /. We refer to it here as “coset condition I”. Combining the signature
obstruction, the lattice embedding condition, and coset condition I, Jabuka and Greene
were able to prove their full result. With these same tools, we obtain the following
results for odd 5–stranded pretzel knots with signature zero:

Theorem 2.3 If K is a 0–pair odd 5–stranded pretzel knot, then K is not slice.

Coset condition I fails to obstruct sliceness in t–pair odd k–stranded pretzel knots K

if t � 1, k is odd, and �.K/D 0, so yet another tool is required to prove analogous
results in the present case. When k � 5, the increased number of twist parameters
introduces complexity not present when k D 3, requiring a more refined “count” than
Jabuka and Greene needed when implementing the d–invariant obstruction. With just

1A canonical definite plumbing P is one for which the weights of the vertices in the corresponding
plumbing graph are either all � 2 or ��2 . It should be noted that not all knots have such plumbings, but
that pretzel knots do.
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a little bit of work we derive a stronger version of coset condition I and uncreatively
call it coset condition II. Combining the signature obstruction, the lattice embedding
condition, and coset condition II, we prove:

Theorem 2.4 If K is a 1–pair odd 5–stranded pretzel knot without single-twists, then
K is not slice.

Theorem 2.4 avoids mention of odd 5–stranded pretzel knots with single-twists because
they behave slightly differently from those without single-twists for the following
reason: any strand with exactly one positive or negative half twist can be transposed
with an adjacent strand through a flype as in Figure 3. Such a move preserves the
smooth knot type thus, for example, P .1; 3;�5; 1;�7/ and P .1; 1; 3;�5;�7/ are not
only mutants of one another but also members of the same smooth isotopy class.

Figure 3: Transposition of a single-twist strand, turning P .3; 1; 5;�3;�5/

into P .3; 5; 1;�3;�3/

Furthermore, by flyping we can always “collect” all strands with ˙1 twists so that
they occur in succession. This has the greatest impact on 1– and 2–pair pretzel knots
for which at least one of the pairs is f�1; 1g. If K is defined by f�1; 1; b; c; dg,
then K is not only concordant to P .b; c; d/ but also smoothly isotopic, regardless
of the initial locations of 1 and �1 in the 5–tuple. It follows that every 2–pair odd
5–stranded pretzel knot containing the pair f�1; 1g is simple ribbon. To contrast, if
K 2Pf�a; a; b; c; dg with jaj� 3, then K is smoothly concordant to P .b; c; d/ if and
only if the pair f�a; ag is adjacent; it is precisely this that leads to P .3; 5;�3;�5; 7/

and P .3;�3; 5;�5; 7/ having different smooth concordance order.

Theorems 2.3 and 2.4 together imply that odd 5–stranded pretzel knots without single-
twists satisfy a weaker version of the slice-ribbon conjecture:

Corollary 2.5 If K is a slice odd 5–stranded pretzel knot without single-twists, then
K is mutant to a simple ribbon knot.

For 2–pair, odd, 5–stranded pretzel knots (with or without single-twists) not containing
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the pair f�1; 1g and for 1–pairs with single-twists and pair f�a; ag ¤ f�1; 1g, the
signature condition, the lattice embedding condition, and coset conditions I and II all
fail to obstruct sliceness in the knots that are not simple ribbon because these slice
obstructions, at their cores, obstruct the double branched covers of the knots from having
certain properties. As previously mentioned, all mutants of a given pretzel knot share
the same double branched cover and hence there is no hope of obstructing sliceness
for a knot K 2Pfa; b; c; d; eg if any member of Pfa; b; c; d; eg is slice. Since 2–pair
knots of the form P .a;�a; b;�b; c; / and P .a; b;�b;�a; c/ are simple ribbon and
therefore slice, we cannot use the aforementioned tools to say that P .a; b;�a;�b; c/

is not slice. Similarly, Remark 1.3 in [3] gives that the 1–pair knots with single-twists
and pair f�a; ag ¤ f�1; 1g of the form P .a;�a; 1; b; c/ with bC c D 4 are slice, and
therefore again there is no way to distinguish between slice and suspected nonslice
members of Pfa;�a; 1; b; cg.

In [4], Herald, Kirk and Livingston used twisted Alexander polynomials to show that
the 2–pair knot P .3; 5;�3;�5; 7/ is not slice, despite being mutant to the simple
ribbon knot P .3;�3; 5;�5; 7/. Twisted Alexander polynomials are able to distinguish
mutants and, in fact, they can reveal when a knot is not topologically slice. The issue in
using twisted Alexander polynomials to show that pretzel knots satisfy the slice-ribbon
conjecture is that their computation relies on number-theoretic choices that often make
it difficult to find general formulas for infinite families of knots. Of the examples
computed for pretzel knots to date, there is only one infinite family of pretzel knots
whose slice status has been determined using twisted Alexander polynomials. It is a
subfamily of the 4–stranded family K D P .2n;m;�2n˙ 1;�m/, done by Allison
Miller in [14].

3 Branched covers, framed links, weighted graphs
and plumbings

Let K D P .a1; : : : ; ap;�b1; : : : ;�bn/ be an odd k–stranded pretzel knot with k D

pC n odd, ai ; bj > 0, and let Y be the double branched cover of S3 along K . As
a 3–manifold, we will describe Y by two framed links L0 and LC which differ by
a sequence of moves in the Kirby calculus for framed links. The links L0 and LC
are equivalently represented by weighted star-shaped graphs �0 and �C , shown in
Figure 4. In �0 and �C , each vertex vi with weight w.vi/ represents an unknot
component Ki with framing ri Dw.vi/; two components Ki and Kj link once in L0

(resp. LC ) if the corresponding vertices vi and vj share an edge in �0 (resp. �C ).

To obtain the double cover of S3 branched along a pretzel knot, we use the following
algorithm of Montesinos: start with an unknot in S3 and the double cover of S3
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Figure 4: Weighted plumbing graphs �L0
(left) and �LC (right)

branched along the unknot. Recall that the double cover of S3 branched along the
unknot is, again, S3 , which can be described as surgery on an unknot with 0–framing.
The unknot can be turned into a P .p1; : : : ;pk/ pretzel knot by replacing a 0–tangle in
the unknot by a pi–tangle for each i and replacing a single 1–tangle by a 0–tangle,
as shown in Figure 5 for a 5–stranded pretzel knot. Determining the double branched

0–tangle

pi–tangle

1–tangle

0–tangle

P .3; 5; 7;�3;�5/

.
unknot

Figure 5: Obtaining a 5–stranded pretzel knot by replacing tangles
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Figure 6: Double covers of B3 branched along the 1–tangle and over the 1
2

–tangle

cover of S3 along P .p1; : : : ;pk/ now amounts to accounting for the changes affected
in the cover above by the tangle replacements in the knot below.

The double cover of B3 branched along a pi–tangle is a solid torus Tpi
parametrized

by S1 �B2 such that the lift zd of the disk d in B3 separating the two arcs of the
tangle satisfies (i) @ zd \ .f0g �B2/D 1 and (ii) lk.@ zd ;S1 � f0g/D pi . See Figure 6.
As such, the effect in the double branched cover of replacing a 0–tangle by a pi–tangle
is pi–surgery on an unknot in S3; the effect in the cover of replacing the 1–tangle
with the 0–tangle is 0–surgery on an unknot in S3 that links once with each of the
other unknots. Considering all surgeries as being done simultaneously, the double
cover of S3 branched along the pretzel knot P .p1; : : : ;pk/ is thus obtained by surgery
on S3 described by this framed link:2

0

p1 p2 pk�1 pk

2From this construction, we see that any two pretzel knots defined by the same unordered k–tuple of
twist parameters have the same double branched cover. As a result, any knot invariant based on the double
branched cover of S3 along the knot will fail to detect pretzel knot mutants.
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Figure 7: “Slam dunk” shortcut

n m n m n˙ 1 m˙ 1blow up
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Figure 8: “Kirby twist” shortcut

To transform L0 into LC via Kirby moves, we operate on the negatively framed
components of L0 using the shortcuts shown in Figures 7 and 8. The course of Kirby
moves needed to change L0 into LC is described in Figure 9. The accompanying
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Figure 9: Kirby calculus sequence L0!LC . The asterisk on Step 2 indicates
that it will be repeated until the bottommost component has framing �1 .
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weighted graphs are shown as well. If the prescribed sequence of moves is performed
on a component with framing �bi , then Step 2 is repeated bi�3 times and the original
component is ultimately replaced by bi � 1 new components, all of which are unknots
with framing 2. In the corresponding weighted graphs, this translates into replacing
a single arm of length one, whose lone vertex has weight �bi , by an arm of length
bi � 1 containing all weight-2 vertices; the weight of the central vertex increases by 1

for each arm altered.

Any sequence of Kirby moves used to transform one framed link into another is
mimicked in the corresponding graphs by adding (resp. deleting) vertices and edges to
the graph at the expense of subtracting 1 (resp. adding 1) to the weights of the vertices
sharing an edge with the added (resp. deleted) vertex.

In addition to describing the double branched cover Y of S3 along a pretzel knot,
the framed links L0 and LC and weighted graphs �0 and �C define 4–dimensional
plumbings P0 and PC (respectively) bounded by Y . The plumbings P0 and PC
can be viewed as 4–dimensional handlebodies whose handle decompositions consist
entirely of a single zero handle and a collection of 2–handles. For P0 , each component
Ci � L0 corresponds to a 4–dimensional 2–handle Gi that is attached to B4 (the
single 0–handle) by a map f W

S
i.
zGi/! @B4 , where zGi D S1 �B2 is the attaching

region of Gi . The map f identifies zGi with a tubular neighborhood Ni of Ci , such
that the core of zGi lies along Ci and a meridian of @ zGi is identified with a curve in Ni

that links ni times with Ci . Plumbing PC is given similarly.

The effect on @B4D S3 of attaching 2–handles to B4 corresponds exactly to perform-
ing surgery on S3 by viewing the identification of zGi with Ni instead as removing Ni

and replacing it with the zGi according to the framing. Since P0 and PC are described
by L0 and LC as plumbings/4–dimensional handlebodies and Y is described by L0

and LC as surgery on S3 , it follows that @P0 D @PC D Y .

The intersection form QP0
for P0 , represented as a matrix with basis equal to the set

of classes represented by the zero-section of each plumbed disk bundle, is equal to the
incidence matrix for �0 . Likewise, with an analogous choice of basis the intersection
form of PC is equal to the incidence matrix for �C . Knowing an exact sequence of
Kirby moves between L0 and LC allows one to compute the overall change in the
signature from P0 to PC by analyzing how the signature changes with each step.

At this point, it is worth detailing a labeling scheme for the vertices of �0 and �C so that
the bases for the incidence matrices are ordered consistently. Given the vertex labelings
pictured in Figure 10, �0 will have ordered basis fv0; v1; : : : ; vp; vpC1; : : : ; vpCng

and �C will have ordered basis fs0; s1; : : : ; sp; s1;1; : : : ; s1;r1
; : : : ; sn;1; : : : ; sn;rn

g.
Written succinctly, the basis for �C can be written fsi ; sj ;rj

g where 0 � i � p ,
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Figure 10: Vertex labeling scheme for �0 (left) and �C (right)

1� j � n, and rj is equal to one less than the number of vertices in the j th arm of �C .
It is with these ordered bases for �0 and �C that the matrices for QP0

and QPC are
given later.

4 The signature condition and proof of Theorem 2.1

The signature of a symmetric matrix Q, denoted �.Q/, is the difference between
the number of positive diagonal entries and the number of negative diagonal entries
of Q, after Q has been diagonalized over R. The signature of a knot K is defined
as �.K/D �.V T CV /, where V is a Seifert matrix for K . Given a 4–manifold X

with intersection form QX , the signature of X is defined as the signature of QX :
�.X /D �.QX /. The signature is an abelian invariant based on the double branched
cover of the knot, and therefore it cannot detect pretzel mutants.

The signature is a homomorphism � W T !Z, where T is the topological knot concor-
dance group. Hence

(1) �.�K/D��.K/, where �K is the mirror of K , and

(2) �.K1 # K2/D �.K1/C �.K2/.

The signature is also invariant under mutation; see [8]. For pretzel knots, if we combine
this fact with (1) we see that computation of the signature of K D P .p1; : : : ;pk/ may
be obtained using any knot in Pfp1; : : : ;pkg. Often, a specific K is chosen in order
to simplify computations. Homomorphism property (2) implies that if �.K/ > 0, then
the knot K will have infinite order in the topological (and therefore smooth) knot
concordance group. A classical theorem (a proof of which can be found in [18]) states
that any slice knot has signature zero.

With this result we are now ready to prove Theorem 2.1.
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Proof of Theorem 2.1 Let KDP .a1; : : : ; ap;�b1; : : : ;�bn/ be an odd pretzel knot.
For simplicity throughout this proof, we will make two notational simplifications:
First, we will call a framed link and the 4–manifold it describes by the same name; in
particular, we will use the framed link L0 and the corresponding plumbing manifold P0

from Section 3 in this proof but we will resort to using P0 to describe both, letting
context dictate whether we are referring to the framed link or the 4–manifold. This
notational simplification will be implicit in all other framed links and 4–manifolds
defined within this proof. The second notational simplification we will make is to write
�.M / rather than �.QM / for the signature of a 4–manifold M ; in fact, this is less
of an idiosyncrasy in notation and more appropriately an understated definition of the
signature of a 4–manifold as the signature of its intersection form.

Kauffman and Taylor prove in [7] that �.K/D �.T /, where T is the double branched
cover of B4 along any pushed-in Seifert surface of K . In [1], Akbulut and Kirby
give an algorithm for computing the p–fold (p � 2) cyclic cover of B4 branched
along a pushed-in Seifert surface for a given knot, where the Seifert surface used is
one that can be described as a disk with possibly twisted and possibly knotted bands
attached. Such a Seifert surface F can be obtained for a pretzel knot by an isotopy of
the “standard” Seifert surface, ie the Seifert surface obtained from Seifert’s algorithm
via the standard pretzel knot diagram. Using this particular Seifert surface F for K

together with Akbulut and Kirby’s algorithm for the double branched cover of B4 , we
get a framed link that describes the handlebody structure of the 2–fold cover of B4

branched along F pushed-in. We call this particular cover T . See Figure 11 for an
example of F and T for the pretzel knot P .3; 5;�5;�3;�5/.

Rather than compute �.T / D �.K/ directly, we will instead show that �.T / D
�.T # .S2 z�S2//D �.P0/, where P0 is the plumbing manifold from Section 3. By
choosing the basis for QP0

to be the set of spheres obtained from the cores of the
attaching 2–handles together with hemispheres in B4 (alternatively, the spheres are
the 0–sections of the disk bundles used to create P0 ), QP0

is given by the incidence
matrix of the plumbing graph �0 from Section 3. A straightforward diagonalization
of QP0

shows that

QP0
D

266666666664

0 1 1 1 1 1 1

1 a1 0 0 0 0 0
:::
:::
: : :

:::
:::

:::
:::

1 0 0 ap 0 0 0

1 0 0 0 �b1 0 0
:::
:::

:::
:::

:::
: : :

:::

1 0 0 0 0 0 �bn

377777777775
�

266666666664

�ye 0 0 0 0 0 0

0 a1 0 0 0 0 0
:::

:::
: : :

:::
:::

:::
:::

0 0 0 ap 0 0 0

0 0 0 0 �b1 0 0
:::

:::
:::

:::
:::

: : :
:::

0 0 0 0 0 0 �bn

377777777775
:
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F T

3C5 5C.�5/ �5C.�3/ �3C.�5/

Figure 11: The Seifert surface F and the double cover T of B4 branched
along F pushed-in for the pretzel knot P .3; 5;�5;�3;�5/ according to
Akbulut and Kirby’s algorithm.

Therefore, �.P0/D s� sgn.ye/.

Now, P0 can be seen to be equivalent to T #.S2 z�S2/ by performing handle slides: for
each adjacent pair of nonzero framed handles ..hi ; ˛i/; .hiC1; ˛iC1// of P0 , where hi

is the i th nonzero-framed handle3 and ai its framing, we slide hi over hiC1 . The result
is a new pair of adjacent handles ..zhi ; ˛iC˛iC1/; .hiC1; ˛iC1// that link ˛iC1 times.
This is performed for the pairs of handles ..hi ; ai/; .hiC1; aiC1// for 1� i �p�1, for
the pair ..hp; ap/; .hpC1; b1//, and lastly for the pairs ..hpCj ; bj /; .hpCjC1; bjC1//

for 1� j � n�1. The result of performing these handle slides is a framed link diagram
of T linked with a Hopf link, where one component of the Hopf link has framing 0
and the other has odd framing. This entire process is summarized in Figure 12.

By Lemma 4.4 in [9], a Hopf link with such framings is equivalent to a Hopf link H

with a single 0–framed component and a single 1–framed component, which gives a
description of the twisted sphere bundle S2 z�S2 . By Lemma 4.5 in [9], H can be

3Handles ordered from left to right in the standard diagram of P0 .
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a1 a2 a3 bn�1 bn

0

0

a1Ca2

a2

a2 a3 bn�1 bn

0

a1Ca2

a2

a2Ca3

a3

a3Ca4

bn�2

bn�2

bn�1

bn�1 bn

a1Ca2

a2

a2Ca3

a3

a3Ca4 bn�2 bn�1

bn�1
0

1

Figure 12: The sequence of handle slides showing that P0 is equivalent
to T # .S2 z�S2/ as 4–manifolds
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unlinked from T through handle slides to yield T tH , which describes the 4–manifold
T # .S2 z�S2/. Given that we moved from P0 to T # .S2 z�S2/ exclusively through
handle slides (no blow-ups or blow-downs), P0 and T # .S2 z� S2/ are the same
4–manifold and thus �.P0/D �.T # .S2 z�S2//.

To finish, recall that the signature is additive under connected sums and �.S2 z�S2/D 0.
Hence

�.K/D �.T /D �.T /C 0D �.T /C �.S2
z�S2/

D �.T # .S2
z�S2//

D �.P0/

D s� sgn.ye/:

Let a; b; c; d; e � 3. As mentioned in Section 2, Theorem 2.1 shows nonsliceness for
all odd 5–stranded pretzel knots K in Pfa; b; c; d; eg and in Pfa; b; c; d;�eg, since
s fails to equal ˙1. But, it also shows nonsliceness for all K in Pfa; b; c;�d;�eg

for which 1=aC 1=bC 1=c > 1=d C 1=e . For example, K D P .5; 5; 5;�3;�3/ has
nonvanishing signature by Theorem 2.1 and is therefore not slice.

5 Donaldson’s diagonalization theorem and the lattice
embedding condition

Donaldson’s diagonalization theorem constitutes a small piece of the larger topic of
Yang–Mills gauge theory. It remains one of the most significant results in 4–manifold
topology, and it has useful applications in many other areas of low-dimensional topology.
Donaldson’s diagonalization theorem can be used to obstruct knot sliceness and it is with
this goal in mind that we call on it here. Recall that a closed, oriented 4–manifold X

has a unimodular intersection form4

QX W H2.X /=Tor˝H2.X /=Tor! Z;

and that QX is definite if j�.QX /j D rk.QX /. Then:

Theorem (Donaldson 1987) Let X be a smooth, closed, oriented, 4–manifold with
positive definite intersection form QX . Then QX is equivalent over the integers to the
standard diagonal form, so in some base,

QX .u1;u2; : : : ;ur /D u2
1Cu2

2C � � �Cu2
r :

4Here, Tor denotes the torsion part of H2.X / .
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Remark Donaldson’s diagonalization theorem was originally phrased for QX nega-
tive definite, making all the u2

i terms negative. Also, QX being definite and diagonal-
izable means that the pair .Zb2.X /;QX / can be viewed geometrically as a lattice that
is isomorphic to Zb2.X / with the standard dot product.

Donaldson’s diagonalization theorem is used to obstruct sliceness of a knot in the
following way: Assume the knot K � S3 is slice and that Y is the 2–fold branched
cover of S3 along K . Let P be a canonical definite 4–dimensional plumbing manifold
satisfying @P D Y , and let W be the double branched cover of B4 along a slicing disk
for K . Since K is a knot, Y is a rational homology 3–sphere. Furthermore, W is a
rational homology 4–ball with @W DY , which follows from the more general fact that
the double branched cover of a Z=2Z–homology ball branched along a codimension-2
Z=2Z–homology ball is again a Z=2Z–homology ball. For a proof of this, see [6,
Lemma 17.2]. A new 4–manifold X is formed by gluing P and W together along their
common boundary Y in the usual, orientation-preserving way. This new manifold X

will be compact, smooth, oriented, and have definite intersection form, and thus the
diagonalization theorem applies. This gives that .Zb2.X /;QX / is lattice isomorphic
to .Zb2.X /; Id/, the standard n–dimensional integer lattice.

The Mayer–Vietoris sequence involving X D P [Y .�W / with rational coefficients
shows that H2.P / includes into H2.X /, and therefore .Zb2.P/;QP / must embed
into .Zb2.X /;QX / as a sublattice of full rank. Algebraically, .Zb2.P/;QP / embeds
into .Zb2.X /; Id/ if there exists an injection ˛W Zb2.P/!Zb2.X / such that QP .a; b/D

Id.˛.a/; ˛.b// [3]. If this embedding does not exist then the conclusion is that X ,
as constructed, does not exist. The only assumption made in this construction was
that K is slice; therefore the contradiction implies this cannot be the case. Thus,
the existence of an embedding ˛ of the lattice .Zb2.P/;QP / into .Zb2.X /;QX / is a
necessary condition for the knot K to be slice, which is precisely the obstruction to
sliceness utilized in [11] and [3]. We call this the lattice embedding condition.

In practice, showing the embedding ˛ exists amounts to writing down a matrix A for ˛
that satisfies ATADQP . This requires a choice basis for H2.P / and for H2.X /=Tor.
The basis fsig chosen for H2.P /=Tor is the set of classes represented by the zero-
sections in the disk bundles used to create P ; the basis feig for H2.X /=Tor is chosen
to be one that makes QX diagonal by Donaldson’s theorem. As such, each column
of A corresponds to one of those 2–spheres in P whose intersection information is
recorded by the plumbing graph of P . That is, the columns of A must have standard
dot products consistent with the information given by the plumbing graph for P .

In an attempt to use Donaldson’s diagonalization theorem to obstruct sliceness of an
odd pretzel knot K , we refer back to the Section 3 and take P D PC , which has
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plumbing graph �C and intersection form QPC , with matrix equal to the incidence
matrix for �C with respect to the above bases. By the signature obstruction to sliceness,
we need only consider odd pretzel knots K for which �.K/D 0. In order to utilize
the positive definite version of Donaldson’s diagonalization theorem, we need to prove
that QX is positive definite for X D PC[Y .�W /. This is done with the help of the
following lemma:

Lemma 5.1 If K is an odd k–stranded pretzel knot with k odd and �.K/D 0, then
either QPC.K/ or QPC.�K/ is positive definite.

Proof From Theorem 2.1, we know that ye ¤ 0 for pretzel knots K with �.K/D 0.
Then, Theorem 5.2 in [15] tells us that QPC is either positive definite or negative
definite, according to whether ye > 0 or ye < 0, respectively. Taking the mirror �K of
a knot K will change QPC from positive definite to negative definite, or vice versa.
Thus after mirroring if necessary, it is always possible to choose K so that QPC is
positive definite.

With our eye on applying the diagonalization theorem to X and the help of Lemma 5.1,
we argue that QX is also positive definite for X D PC [Y .�W /. Consider the
following portion of the Mayer–Vietoris sequence for X with rational coefficients:

0 // Qn˚ 0
i�
// H2.X IQ/ // 0:

The map i� is an isomorphism, which implies every element x 2H2.X / is a Q–linear
combination of basis elements fsig for H2.PC/ and torsion elements of H2.W /.
Bilinearity of QX and positive-definiteness of QPC yield that QX is positive definite.
Thus, we are free to utilize the previously described construction using Donaldson’s
diagonalization theorem, with P DPC , to obtain the embedding criterion for sliceness
on odd, 5–stranded pretzel knots.

In all the results that follow, we use Theorem 2.1 to immediately reduce to considering
only those odd, 5–stranded pretzel knots of the form P .�a;�b;�c; d; e/ for which
sgn.ye/ D �1. We use P .�a;�b;�c; d; e/ rather than its mirror in order to use the
positive definite formulation of Donaldson’s theorem. As stated in the explanation
of the lattice embedding condition, we wish to write down a matrix A satisfying
ATA D QPC . This condition can be phrased as a collection of conditions on the
column vectors of A:

Embedding conditions For a slice odd 5–stranded pretzel knot K of the form
P .�a;�b;�c; d; e/, there exist vectors vi ; vj ;r 2Zm , with mD aCbCc , satisfying
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(0) v0 � v0 D 3; (1) v1 � v0 D 1;

(2) v2 � v0 D 1; (3) v1 � v2 D 0;

(4) v1 � v1 D d; (5) v2 � v2 D e;

(6) vj ;1 � v0 D 1; (7) vj ;r � vj ;r D 2;

(8) vj ;r � vj ;r˙1 D 1 for r � 2;

(9) vj ;r � v� D 0 for r � 2 and all vectors v� ¤ vj ;r˙1.

The embedding conditions impose severe restrictions on the form each vi and vj ;rj

can take. Condition (0) for example, implies that v0 must have exactly three entries
equal to ˙1 and zeros otherwise; similarly, condition (7) implies that each vector vj ;rj

must have exactly two entries equal to ˙1 and zeros otherwise. It can be verified
using conditions (0)–(7) that up to a change of basis, A will have the following form,
with ˛; ˇ; ;x;y; z 2 Z:2666666666666666666666666666666666666666666664

v0 v1 v2 va;1 va;2 � � � va;a�1 vb;1 vb;2 � � � vb;b�1 vc;1 vc;2 � � � vc;c�1

1 ˛ x 1 0 � � � 0

0 ˛ x �1 �1 0

0 ˛ x 0 1 0

0 ˛ x 0 0 � � � 0 0 0
:::

:::
: : :

:::

0 ˛ x 0 0 � � � �1

0 ˛ x 0 0 � � � 1

1 ˇ y 1 0 � � � 0

0 ˇ y �1 �1 0

0 ˇ y 0 1 0

0 ˇ y 0 0 0 � � � 0 0
:::

:::
: : :

:::

0 ˇ y 0 0 � � � �1

0 ˇ y 0 0 � � � 1

1  z 1 0 � � � 0

0  z �1 �1 0

0  z 0 1 0

0  z 0 0 0 0 � � � 0
:::

:::
: : :

:::

0  z 0 0 � � � �1

0  z 0 0 � � � 1

3777777777777777777777777777777777777777777775
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Having A in this explicit form allows us to put restrictions on the unordered 5–tuples
fa; b; c; d; eg ensuring the embedding conditions are satisfied. For fixed a, b , and c , we
enumerate the embedding conditions in terms of the entries of the column vectors of A,
which reduces the problem of finding the desired embedding to the problem of finding
integers ˛ , ˇ ,  , x , y , z that satisfy the following system of nonlinear equations.
Each new condition is numbered to correspond to the original embedding condition that
implies it. In references by number, no distinction is made between the original and
updated conditions since the updated conditions are direct implications of the originals.

(Updated) embedding conditions For a slice odd 5–stranded pretzel knot K of the
form P .�a;�b;�c; d; e/, there exist integers ˛ , ˇ ,  , x , y , z satisfying

(1) ˛CˇC  D 1,

(2) xCyC z D 1,

(3) a˛xC bˇyC c z D 0,

(4) a˛2C bˇ2C c 2 D d ,

(5) ax2C by2C cz2 D e .

In fact, these updated embedding conditions are exactly the contents of Theorem 4.1.6
in [13], so a more detailed account of these facts can be found there.5

6 The d–invariants and the coset conditions

Peter Ozsváth and Zoltán Szabó defined the d–invariant d.Y; s/ 2 Q in the setting
of Heegaard Floer homology for a rational homology 3–sphere Y equipped with a
Spinc structure s. While the d–invariant has an important function as a correction
term for the grading in Heegaard Floer homology, it is significant in 4–manifold
topology because it is a Spinc rational homology bordism invariant. As stated in [16],
if .Y1; s1/ and .Y2; s2/ are two pairs such that Yi is a rational homology 3–sphere
and si is a Spinc structure on Yi , then if there exists a connected, oriented, smooth
cobordism W from Y1 to Y2 with Hi.W IQ/D 0 for i D 1; 2 which can be endowed
with a Spinc structure t whose restriction to Yi is si , then d.Y1; s1/D d.Y2; s2/. The
proof of this highly nontrivial fact is given in Proposition 9.9 of [16], and it has the
following corollary:

5Warning: Long’s approach to the problem of sliceness in 5–stranded pretzel knots uses a negative
definite convention rather than the positive definite convention of this paper.
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Corollary 6.1 (Ozsváth and Szabó) Let Y be a rational homology 3–sphere with
Spinc structure s, and let W be a rational homology 4–ball with @W D Y and Spinc

structure t. If s can be extended over W so that tjY D s, then d.Y; s/D 0.

In general d.Y; s/ may be hard to compute, but in [17] Ozsváth and Szabó give a
formula for d.Y; s/ when Y is the boundary of a 4–dimensional plumbing manifold P .
Their formula holds in more generality than the version presented below, but the formula
is stated here in the special case relevant to the present situation of determining sliceness
of pretzel knots. Throughout this section, we refer to K , Y , P , W , and X as defined
in Section 5. To remind the reader of these definitions: K is assumed to be a slice
odd pretzel knot; Y is the double branched cover of S3 along K; W is the double
branched cover of B4 along a fixed slice disk for K with @W D Y ; P D PC is a
positive definite plumbing manifold with @P D Y ; and X D P [Y .�W / is a closed
positive definite manifold. Under these assumptions, W is a rational homology 4–ball
and Y is a rational homology 3–sphere. To state the aforementioned formula easily
and to give a more geometric flavor to the material that follows, we first discuss an
identification of Spinc.Y / with H1.Y /.

If Y is a 3–manifold such that H1.Y / is odd torsion, then there is a natural identification
of Spinc.Y / with H1.Y /. In our current work Y is the double branched cover of S3

along a knot K and a bit of straightforward algebraic topology reveals that H1.Y / is
always odd torsion in this case. The first step in the identification shows a one-to-one
correspondence between Spinc.Y / and vect.Y /, the set of Euler structures on Y . An
Euler structure on a smooth closed connected oriented 3–manifold Y is an equivalence
class of nonsingular tangent vector fields on Y , where two vector fields u and v on Y

are deemed equivalent if u and v are homotopic as nonsingular vector fields outside
of some closed 3–dimensional ball. This particular identification of Spinc.Y / with
vect.Y / is due to Vladimir Turaev and constitutes Lemma 1.4 in [19], so the reader is
directed there for details. The salient feature of this step is that it allows us to view a
Spinc structure on Y as a vector field over Y under some notion of equivalence.

Assuming Turaev’s identification of Spinc.Y / with vect.Y /, the second step is to iden-
tify vect.Y / with H1.Y /. Start by fixing a trivialization � of the tangent bundle TY .
Since H1.Y / has only odd torsion, � is unique off a 3–ball up to homotopy. Let ŒY;S2�

denote the space of smooth maps from Y to S2 up to homotopy. The identification
of vect.Y / with H1.Y / will be done via a composition vect.Y /! ŒY;S2�!H1.Y /.

For each equivalence class of nonvanishing vector fields on Y , we choose a representa-
tive vector field V . By a straight line homotopy, we can assume that each vector in V
is a unit vector, where the length is measured according to the trivialization � . For
each point p 2 Y , the tangent space TpY at p is isomorphic to R3 and thus provides
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a way to give Euclidean coordinates to vp 2 V , the vector based at p . Let .xp;yp; zp/

be the Euclidean coordinates for vp obtained from � . With this we define a smooth
map �V W Y ! S2 by sending p 2 Y to the vector .xp;yp; zp/ 2 S2 . The map
gW vect.Y /! ŒY;S2� is then defined as g.ŒV �/D �V .

For the second map, recall that any map � 2 ŒY;S2� has the property that the preimage
��1.z/ of a regular value z 2S2 will be a submanifold of Y of codimension 2, namely,
a curve  . From this fact, define hW ŒY;S2�!H1.Y / by h.�/D Œ �, where  is the
preimage of any regular value of � . The Pontryagin–Thom construction shows that
this map is well defined. It follows that Spinc is identified with H1.Y / via Turaev’s
identification of Spinc with vect.Y / followed by the composition h ıg ıf .

A second topic necessary to discuss before stating the d–invariant formula is that of
characteristic elements of H2.X /=Tor, H2.P /, and H2.P;Y /. These definitions
involve intersection numbers, and in all cases we will abbreviate the intersection
number of two elements a, b in H2.X /=Tor, H2.P /, or H2.P;Y / by a � b and let
the definition of a �b be given by context. As before, QX and QP are the intersection
forms on X and P , respectively. The map Q�1

P
is the relative intersection form

on .P;Y / given as the inverse of QP over Q. We define:

� a � b DQX .a; b/ if a; b 2H2.X /=Tor.

� a � b DQP .a; b/ if a; b 2H2.P /.

� a � b DQP .x; b/ if a 2H2.P;Y / and b 2H2.P /, where x DQ�1
P
.a/ 2H2.P /.

� a � b D QP .x;y/ if a; b 2 H2.P;Y /, where again x D Q�1
P
.a/ 2 H2.P / and

y DQ�1
P
.b/ 2H2.P /.

By choosing bases for H2.X /=Tor, H2.P /, and H2.P;Y /, homology classes in these
groups can be represented by column vectors and the intersection forms QX and QP

can be represented by matrices. We choose bases as follows: the basis feig for
H2.X /=Tor is the one that makes QX diagonal by Donaldson’s theorem; the basis fsig

for H2.P / is the set of homology classes represented by the zero-sections of the disk
bundles used to create P ; lastly, the basis fdig for H2.P;Y / is the set of classes
represented by single fiber disks in each of the disk bundles of P . Note that the fiber
disks fdig are the Hom-duals of the fsig.

With fixed bases the above intersection numbers can be computed using column vector
representatives for homology classes and the matrix representatives for QX and QP .
As matrices with the above bases, recall that QP is equal to the incidence matrix of the
weighted graph representing P and QX is equal to the identity matrix of rank b2.X /.
By an abuse of notation, we use QP to denote both the intersection form for P and
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its matrix representative in this case. This allows us to write and compute the above
intersection numbers in terms of column vectors a, b as follows:

� If a; b 2H2.X /=Tor, then a � b D aTb .

� If a; b 2H2.P /, then a � b D aTQP b .

� If a2H2.P;Y / and b2H2.P /, then a � bDxTQP b , where xDQ�1
P
.a/2H2.P /.

This simplifies to a � b D aTb .

� If a; b 2 H2.P;Y /, then a � b D QP .x;y/, where again x D Q�1
P
.a/ 2 H2.P /

and y DQ�1
P
.b/ 2H2.P /. This simplifies to a � b D aTQ�1

P
b .

Now, we say that an absolute class w 2 H2.X /=Tor is a characteristic class of X

if w � x � x � x .mod 2/, for all x 2H2.X /=Tor; we say a characteristic class w is
minimal if w �w � z � z for all characteristic classes z . Characteristic and minimal
characteristic elements of H2.P / are defined similarly. A relative class w 2H2.P;Y /

is characteristic in X with respect to s, where s is regarded as an element of H1.Y /, if
@wD s and w �u� u �u .mod 2/, for all u2H2.P /. The set of characteristic elements
in H2.P;Y / relative to s is denoted by Chars.P /, which makes an appearance in the
formula below.

We are now ready to state Ozsváth and Szabó’s formula for d.Y; s/ in the case that Y

bounds a certain type of 4–dimensional plumbing:

Theorem 6.2 (Ozsváth and Szabó) Let P be a 4–dimensional plumbing with positive
definite intersection form QP , such that the weighted graph of P has at most two
vertices whose weights are less than their valences. Then under the identification
Spinc.Y /!H1.Y /,

(1) d.Y; s/D min
w2Chars.P/

w �w��.P /

4
:

In [3], Greene and Jabuka use Theorem 6.2 and Corollary 6.1 to give an obstruction to
sliceness for odd pretzel knots through some analysis of the cohomology long exact
sequences of the pairs .P;Y / and .X;W /. Here, we derive their results in terms of
homology and obtain the following commutative diagram at the top of the next page.
In the diagram the horizontal maps arise from the long exact sequences of the pairs
.P;Y / and .X;W /; the vertical maps r and  are induced by inclusions; ˇ is an
isomorphism due to excision; and q is the usual quotient map.
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0 H2.P / H2.P;Y / H1.Y / 0 0

� � � H2.X / H2.X;W / H1.W / H1.X / 0

� � � H2.X /=Tor

� @

r Šˇ 

g

q �

Because H2.P / is free and r is a homomorphism, the image of r lies entirely in
the free part of H2.X /. Let ˛ D qr and ˛� D ˇ�1�; this allows us to use the first
isomorphism theorem to eliminate H2.X / from the diagram. By commutativity, � can
be seen to have the factorization �D ˛�˛ , converting the previous diagram into:

0 H2.P / H2.P;Y / H1.Y / 0 0

� � � H2.X /=Tor H2.X;W / H1.W / H1.X / 0

� @

˛ Šˇ 
˛�

� �

To use this diagram in conjunction with the lattice embedding condition, it is advan-
tageous to work with matrix representatives of the maps ˛ , ˛� , and �. We choose
the bases for H2.P /, H2.P;Y /, and H2.X /=Tor as before, we let A be the matrix
representative for the map ˛ (induced by the embedding of P into X ), and we let A�

be the matrix for ˛� .

The columns of A express the basis elements feig of H2.X /=Tor in terms of the
basis disks fdig for H2.P;Y /. Consequently, the rows of AT express the spheres fsig

in terms of the feig, which implies that the ij th entry in ATA gives the intersection
number between the spheres si and sj . Thus ATA is the matrix of the intersection
formQP of P with respect to the basis fsig.

Recall that each basis element di of H2.P;Y / is the Hom-dual of the basis element si

of H2.P /, and therefore �.si/D
P

j .si � sj /dj . This implies that with respect to the
chosen bases, � (as a linear map from H2.P / to H2.P;Y /) is represented by the same
matrix as is QP (regarded as a bilinear map from H2.P /�H2.P / to Z). Namely,
� is also represented by ATA. Given that �D ˛�˛ , it follows that A�AD ATA as
matrices. Since QP is invertible over Q, so is A; whence A� DAT . By reinstating
the abuse in notation whereby we use QP to denote both the intersection form on P
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and its matrix representative in this case, we let the matrix QP represent � with respect
to the chosen bases.

Dropping the less relevant maps, the previous commutative diagram becomes:

0 H2.P / H2.P;Y / H1.Y / 0 0

� � � H2.X /=Tor H2.X;W / H1.W / H1.X / 0

QP

A Š 
AT

We use this to restate and reprove — in a homological setting — Greene and Jabuka’s
d–invariant obstruction to sliceness in odd pretzel knots:

Theorem 6.3 (Greene and Jabuka) Let K be a slice odd pretzel knot with Y , W ,
P D PC , and X as in the above commutative diagram. Then every coset of coker.˛/
contains a minimal characteristic class of H2.X /=Tor.

Proof Under the assumption that K is slice, it follows that K satisfies the embedding
conditions and �.P / D rk.QP / D rk.QX / D b2.X / WD m. It also follows from
Corollary 6.1 that d.Y; s/D 0 for every s that extends over W . In general, the Spinc

structures on a rational homology 3–sphere Y that extend over a rational homology
4–ball W are identified with precisely those elements in H1.Y / that bound relative
homology classes in H2.W;Y /. As such, they are in one-to-one correspondence with
the elements of ker. /, where  W H1.Y /!H1.W / is induced by inclusion.

Theorem 6.2 applies to Y since the plumbing graph of P will have exactly one vertex
whose weight is less than its valence, namely, the central node. Ozsváth and Szabó’s
formula

d.Y; s/D min
w2Chars.P/

w �w��.P /

4

implies that d.Y; s/D 0 if and only if there exists w 2 Chars.P / such that w �wDm.
A straightforward diagram chase shows that for each w 2 Chars.P / there exists an
element x 2H2.X /=Tor such that ˛�.x/D w . In addition, x is characteristic in X

and x �x D w �w , so in general the characteristic classes of P relative to s correspond
to absolute characteristic classes of X with equal intersection number. This fact,
which is verified below, allows us to compute w �w , which appears in formula (1), by
using x �x instead.

Fix the bases for H2.P /, H2.P;Y /, and H2.X /=Tor as before, and let AD .aij /

again be the matrix representative of ˛ with respect to these bases. Let w 2 Chars.P /
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and x D .x1; : : : ;xm/ 2H2.X /=Tor such that ˛�.x/D w . Recall that ˛� is repre-
sented by the matrix AT with respect to these bases. To show that x is characteristic
in X , it suffices to show that x � ej � ej � ej .mod 2/, for all basis elements ej . Since
ej � ej D 1, one need only show that x � ej — that is, the j th component of x — is odd
for all j . Stated differently, it must be shown that every component of x is odd.

By definition of Chars.P /, w �u� u �u .mod 2/ for all u2H2.P /, in particular for u

equal to a basis element sj for H2.P /: w �sj � sj �sj .mod 2/. Observe that for all j ,

w � sj DATx � sj D xTAsj D

X
i

xiaij ;

sj � sj D .QP /jj D .A
TA/jj D

X
i

aij aij �

X
i

aij .mod 2/:

Hence,
P

i xiaij �
P

i aij .mod 2/ for all j . Letting xi�1 .mod 2/ yields a solution
to this equation, which in fact is the unique solution since A is invertible modulo 2.
Given that this holds for all j , it has thus been shown that x has all odd entries and
is therefore characteristic in X . Furthermore, since w 2H2.P;Y /, it follows from
above that w �w D wTQ�1

P
w . Making the substitutions QP D ATA and w D ATx

shows that w �w D x �x .

In addition, the diagram chase from before shows that ker. /Š coker.˛/. Combining
this with the preceding information implies that d.Y; s/D 0 for all s 2 ker. / with
corresponding k 2 coker.˛/ if and only if there exists w 2Chars.P / and x 2Char.X /
such that wDATx , x �xDm, and xC im.˛/D k . Clearly, x �xDm only if xi D˙1

for all i , which implies that x is a minimal characteristic class of X . Hence, K slice
implies that every element of coker.˛/, ie every coset of im.˛/, contains a minimal
characteristic class of X .

Theorem 6.3 gives a necessary condition for sliceness for odd 5–stranded pretzel knots
that can be rephrased in a simpler, more geometric way by analyzing the quotient
coker.˛/ D .H2.X /=Tor/= im.˛/. We will reduce the problem of finding minimal
characteristic vectors in each coset of im.˛/ to a more visualizable problem of finding
lattice points in Z2 with certain properties.

Since H2.X /=TorŠZm , it follows that coker.˛/ŠZm= im.˛/. Given that the image
of ˛ with the chosen bases is equal to the span of the columns of A, coker.˛/ is
isomorphic to the quotient of Zm by the columns of A. Let U D fvj ;rj

g be the set of
column vectors of A with standard dot product, where 1� j � n and 1� rj � j � 1.
Then the columns of A, as vectors, are given by fv0; v1; v2; Ug.
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Define BW Zm! Z2 by

.x1; : : : ;xa;y1; : : : ;yb; z1; : : : ; zc/
T
7!

� aX
iD1

xi �

cX
kD1

zk ;

bX
jD1

yj �

cX
kD1

zk

�T

:

It is straightforward to see that ker.B/ D hv0;Ui and that B is onto, so by the first
isomorphism theorem Z2 Š Zm=hv0;Ui. It follows that

coker.˛/Š Zm=hv0; v1; v2;Ui Š Z2=hB.v1/;B.v2/i:

Let xv1 WD B.v1/ and xv2 WD B.v2/. Using the above isomorphisms, the slice condition
in Theorem 6.3 can now be rephrased to say that every coset in Z2=hxv1; xv2i must have
a representative in B.f˙1gm/. Thus, Z2=hxv1; xv2i and B.f˙1gm/ are analyzed:

xv1 D B..˛; : : : ; ˛; ˇ; : : : ; ˇ; ; : : : ;  //T D .a˛� c; bˇ� c /T ;

xv2 D B..x; : : : ;x;y; : : : ;y; z; : : : ; z//T D .ax� cz; by � cz/T ;

B.f˙1gm/D f.q� s; r � s/ j �a� c � q� s � aC c and � b� c � r � s � bC cg:

The vectors fxv1; xv2g define a fundamental domain R�R2 . Let R be the set of lattice
points in R that represent unique cosets of im.˛/ coming from coker.˛/. Note that
R � Z2 and R � R. Also, let H WD B.f˙1gm/. Then H is a collection of lattice
points .x;y/ satisfying �a�c � x � aCc and �b�c � y � bCc . Since a, b , and c

are odd and positive, every element of H is an element of 2Z2 and collectively these
points lie in a hexagonal region H �R2 . Hence, H� 2Z2 and H�H .

Greene and Jabuka observed that Theorem 6.3, which gives the slice condition that every
element of coker.˛/ contains a minimal characteristic vector of the form .f˙1gn/, is
equivalent to the condition that every lattice point of R can be translated onto a lattice
point of H by a linear combination of xv1 and xv2 . Hence, a knot K cannot be slice
if there exists an element of coker.˛/ that does not contain a minimal characteristic
vector of X by Theorem 6.3. The correspondence between cosets of im.˛/, minimal
characteristic vectors of X , and lattice points implies that K is not slice if there exists
a lattice point in R that can not be translated onto a lattice point in H by a linear
combination of xv1 and xv2 . By the definition of R, every element of R represents a
distinct coset in the quotient Z2=hxv1; xv2i, and thus if there are more lattice points in R
than there are in H for a knot K , then K is not slice. This proves the following:

Coset condition I If P .a; b; c; d; e/ is a slice odd 5–stranded pretzel knot, then
jRj � jHj.

It is possible, however, for many points in H to belong to the same coset in Z2=hxv1; xv2i.
Let H WD H=hxv1; xv2i, so that jHj is the number of hxv1; xv2i–cosets in H . With this

Algebraic & Geometric Topology, Volume 17 (2017)



Slice implies mutant ribbon for odd 5–stranded pretzel knots 3649

observation and Theorem 6.3 and the above observation, K is not slice if jRj> jHj.
This condition is a refinement of coset condition I, which the author unimaginatively
calls coset condition II:

Coset condition II If P .a; b; c; d; e/ is a slice odd 5–stranded pretzel knot, then
jRj � jHj.

7 Proof of Theorem 2.3

Due to the slightly different nature of pretzel knots with single-twists versus those
without, the proof of Theorem 2.3 is divided according to this distinction. A technical
lemma, Lemma 7.1, is given first and then it is shown that all 0–pair odd 5–stranded
pretzel knots without single-twists are not slice. Lemma 9.1 refines Lemma 7.1 and is
then used to show that all 0–pair odd 5–stranded pretzel knots with single-twists are
not slice.

Recall from Section 4 that a knot K is slice if and only if its mirror �K is slice.
To make the computations in the proof easier, the knot K D P .�a;�b;�c; d; e/

in Pfa; b; c;�d;�eg will be used rather than its mirror P .a; b; c;�d;�e/. Lemma 7.1,
which is given next, states the conditions on ˛ , ˇ ,  , x , y , and z under which
P .�a;�b;�c; d; e/ will be a 0–pair pretzel knot. Without loss of generality, assume
throughout that a� b � c .

Lemma 7.1 If K 2 Pfa; b; c;�d;�eg is 0–pair and satisfies the embedding con-
ditions, then at most one of ˛ , ˇ ,  , x , y , z is zero. Furthermore, if the set
f˛; ˇ; ;x;y; zg contains 0, then d � 4aC b and e � aC b C c; otherwise, both
d and e are greater than or equal to aC bC c .

Proof Choose K D P .�a;�b;�c; d; e/. First it will be shown that if any two
of ˛ , ˇ ,  are zero or if any two of x , y , z are zero, then K is not 0–pair. By the
symmetry of the embedding conditions on f˛; ˇ;  g and fx;y; zg, it suffices to prove
this only for f˛; ˇ;  g. Suppose two of the parameters ˛ , ˇ ,  are zero. Then the
third parameter is equal to 1 by embedding condition (1), and thus d 2 fa; b; cg by
embedding condition (4). Consequently, K has at least one pair of canceling twist
parameters, a contradiction. It follows that at most one of ˛ , ˇ ,  is zero and at most
one of x , y , z is zero. The remainder of the proof consists in showing the stronger
statement that the sets f˛; ˇ;  g and fx;y; zg cannot both contain 0.

Without loss of generality, suppose ˛ D 0 and ˇ ¤  ¤ 0. It will be shown that if any
of x , y , z is zero, then either K is not 0–pair or there is a contradiction to x;y; z 2Z.
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With the assumptions on ˛ , ˇ , and  , embedding conditions (1) and (4) immediately
yield d D bˇ2C c 2 � 4bC c � 4aC b , and embedding condition (3) implies

(2) bˇy D�c z:

From (2), if either one of y or z is 0, then so is the other. Thus, K is not 0–pair by
the first paragraph of the proof and therefore y and z are both nonzero.

If x D 0, embedding condition (2) implies that z D 1� y . Substituting this into (2)
and solving for y yields

(3) y D
c

c � bˇ
:

Since ˛ D 0, embedding condition (1) implies that ˇC  D 1. If either one of ˇ or 
is equal to 1, then the other vanishes. This violates the assumption that ˇ ¤  ¤ 0;
therefore ˇ;  62 f0; 1g. Note that ˇ and  always have different signs. If  � 2, then
ˇ � �1 and thus �bˇ > 0. Thus, (3) takes on the form

(4) y D
p

pC q
;

where p; q 2ZC . Thus y cannot be an integer, contradicting the embedding conditions.
If instead  ��1, then ˇ � 2. In this case, one can take (2) and solve for z instead of
y , yielding

(5) z D
bˇ

bˇ� c
:

By the same argument given for  � 2, if ˇ � 2 it follows that z cannot be an integer
and the embedding conditions are again contradicted. Thus if ˛ D 0, each of x , y , z

must be nonzero and e D ax2C by2C cz2 � aC bC c by embedding condition (5).

If ˇD 0, the proof follows similarly with d D a˛2Cc 2 � 4aCc � 4aCb; if  D 0,
then again the proof follows similarly with d D a˛2Cbˇ2 � 4aCb . In all three cases,
e D ax2C by2C cz2 � aC bC c . Lastly, if none of ˛ , ˇ ,  , x , y , z is zero, then
embedding conditions (4) and (5) imply that d D a˛2C bˇ2C c 2 � aC bC c and
e D ax2C by2C cz2 � aC bC c , since c � b � a� 1.

8 Proof of Theorem 2.3 without single-twists

The proof of Theorem 2.3 will now proceed by showing that if K is a 0–pair odd
5–stranded pretzel knot without single-twists, then coset condition I is violated. Assume
K is slice. It follows that K satisfies the signature condition and the lattice embedding
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condition. Furthermore, it may also be assumed that K D P .�a;�b;�c; d; e/ with
a� b � c . Let R and H be as in coset condition I.

The fact that K is 0–pair implies that d � 4aC b and e � aC bC c by Lemma 7.1.
Given that ker. /Š coker.˛/ (where  and ˛ here refer to the maps in Section 6) and
jker. /j D

p
jH1.Y /j D

p
jdet.K/j, it follows that jRj D jcoker.˛/j D

p
jdet.K/j.

Theorem 1.4 in [5] gives the following formula for the determinant of odd pretzel knots
P .p1; : : : ;pk/:

det.K/D
kX

iD1

p1 � � �pi�1 ypipiC1 � � �pk :

Using this with the above choice of K , one gets

det.K/D�abcd � abceC abdeC acdeC bcde:

To compute jHj, a direct computation shows that the closed hexagonal region H in
which H is contained is a region in R2 defined by the 2.aC c/� 2.bC c/ rectangle
centered at the origin, minus the lower-right and upper-left half-square triangular regions
with side lengths 2c . See Figure 13. The set H contains all lattice points in 2Z2 in
the interior of H and on the boundary of H . These can be counted in many different
ways but are counted here by observing that there are aC bC 1 even lattice points
in the perpendicular boundary components of H lying in the third quadrant of R2 ,
and there are cC 1 copies of this L-shaped collection of even lattice points repeated
throughout H ; furthermore, H includes a a�b rectangle of even lattice points. Hence

jHj D .aC bC 1/.cC 1/C ab D abC acC bcC aC bC cC 1:

To violate coset condition I, it will be argued that jRj2 > jHj2 using the facts that

(1) 3� a� b � c ,

(2) d � 4aC b and e � aC bC c or d; e � aC bC c , and

(3) ab > aC bC 1
2

for a; b � 3.

By [13, Theorem 2.0.3], 0–pair odd 5–stranded pretzel knots P .�a;�b;�c; d; e/

are not slice if d; e � aC bC c , thus that case is omitted here. Hence, we assume
d � 4aC b and e � aC bC c . First consider jHj2 :

jHj2 D .abC acC bcC aC bC cC 1/2 DLCM CN CS;
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H

Figure 13: H for P .�3;�7;�19; d; e/

where
LD a2b2

C a2c2
C b2c2

C 2.a2bcC ab2cC abc2/;

M D 2.a2bC a2cC ab2
C b2c/;

N D 2c2
�
aC bC 1

2

�
C 6abcC 4.abC ac/C 3bc;

S D a2
C b2

C bcC 2.aC bC c/C 1:

It will be shown that jRj2 > jHj2 by proving equivalently that

jRj2�L�M �N > jHj2�L�M �N:

Consider jRj2 :

jRj2 D jdet.K/j D j�abcd �abceCabdeCacdeC bcdej

D abd.e� c/C bce.d �a/Cacde

� 5a2b2
C 4a2c2

C b2c2
C 8a2bcC 5ab2cC 4abc2

C 4a3.bC c/C b3.aC c/

DWE3;

where the inequality follows from making the substitutions d �4aCb and e�aCbCc .
Thus

jRj2�L�E3�L:

Next we have
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E3�LD 4a.a2bCa2c/Cb.ab2
Cb2c/C4a2b2

C3a2c2
C6a2bcC3ab2cC2abc2

� 12.a2bCa2c/C3.ab2
Cb2c/C4a2b2

C3a2c2
C6a2bcC3ab2cC2abc2

DWE2;

where the inequality comes from the fact that 4a � 12 since a � 3. Therefore
jRj2�L�E3�L>E2 , and so

jRj2�L�M �E3�L�M >E2�M:

Next we have

E2�M D 10.a2bCa2c/C.ab2
Cb2c/C4a2b2

C3a2c2
C6a2bcC3ab2cC2abc2

> 2c2
�
aCbC 1

2

�
C6abcC4.abCac/C3bcC4a2b2

C3a2c2

C3ab2cC6.a2bCa2c/Cab2

DWE1;

where the inequality comes from the following four facts, obtained from the assumption
that c � b � a� 3:

� 2abc2
D 2c2.ab/ > 2c2

�
aC bC 1

2

�
;

� b2c > 3bc;

� 6a2bc > 6abc;

� 10.a2bC a2c/D 6.a2bC a2c/C 4.a2bC a2c/ > 6.a2bC a2c/C 4.abC ac/:

This shows that E2�M >E1 , so it follows that

jRj2�L�M �N �E3�L�M �N >E2�M �N >E1�N:

Now observe that

E1�N D 4a2b2
C 3a2c2

C 3ab2cC 6.a2bC a2c/C ab2

D 6a2bC ab2
C 3a2c2

C .4a2b2
C 3ab2cC 6a2c/

> a2
C b2

C bcC 2.aC bC c/C 1

D S D jHj2�L�M �N;

where the inequality comes from the following six facts, again obtained from the
assumption that c � b � a� 3:

6a2b> a2; ab2> b; 3ab2c> bc; 3a2c2> 2a; 4a2b2> 2b; 6a2c> 2cC1:

Combining everything, one sees that

jRj2�L�M �N > jHj2�L�M �N;
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which implies that jRj2 > jHj2 , as desired. This completes the proof that all 0–pair
odd 5–stranded pretzel knots without single-twists are not slice.

9 Proof of Theorem 2.3 with single-twists

Next, the knots with single-twists are addressed. As before, assume all knots in question
are slice and therefore satisfy the signature condition, the lattice embedding condition,
and both coset conditions. Just a bit of thought reveals that, possibly after mirroring,
the signature condition yields only three cases to consider for 0–pair odd 5–stranded
pretzel knots with single-twists. Note that d; e � a in all cases due to embedding
conditions (1), (2), (4), and (5). For K 2 Pf�a;�b;�c; d; eg, the cases are

(1) aD b D c D 1 and d; e � 3,

(2) aD b D 1 and c; d; e � 3,

(3) aD 1 and b; c; d; e � 3.

Since the lattice embedding conditions hold, there exist ˛ , ˇ ,  , x , y , z 2Z satisfying
the system of equations given in Section 5. Thus, this proof for nonsliceness of 0–pair
pretzel knots with single-twists has the same starting point as the previous proof for
nonsliceness of 0–pair knots without single-twists. Lemma 7.1 still applies here for
all three cases of 0–pair pretzel knots with single-twists. To obstruct sliceness for
0–pair knots P .�a;�b;�c; d; e/ with single twists, however, it is necessary to get
more precise lower bounds on d and e than are obtained in Lemma 9.1.

Lemma 9.1 If K 2 Pf�a;�b;�c; d; eg is 0–pair and d is equal to its lower bound
(either d D 4aC b or d D aC bC c ), then e � 4aC 4bC c .

Proof First, suppose d D 4aC b and e D aC bC c . By the embedding conditions,
it follows that ˛ D 2; ˇ D �1, and  D 0, and jxj D jyj D jzj D 1. Embedding
condition (3) says a˛xCbˇyCc zD 0, which reduces to ˙2aD b after substitutions.
But, b is odd so this is a contradiction. If instead one supposes that eD aCbCc , then
by the embedding conditions, j˛jD jˇjD j jD jxjD jyjD jzjD 1. After substitutions,
embedding condition (3) becomes c D˙a˙ b , which is again a contradiction since
all three of a; b; c are odd.

Hence when d D 4aC b or d D aC bC c , we have e ¤ aC bC c . In words, both
d and e cannot simultaneously achieve their lower bounds as given in Lemma 7.1. It
follows that at least one of jxj, jyj, or jzj must be � 2. But, in fact, it will be shown
presently that at least two of jxj, jyj, and jzj must be � 2. If x D 2, embedding
condition (2) implies that yC z D�1; if x D�2, then yC z D 3. In both cases, it
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is impossible for both jyj D 1 and jzj D 1, and therefore jyj � 2 or jzj � 2. By the
symmetry in x;y; z of embedding condition (2), similar results follow if y D˙2 or
if z D˙2. Hence, at least two of jxj, jyj, or jzj must be � 2.

The choices of jxj; jyj; jzj that satisfy the above discovery and that minimize e are
jxj D jyj D 2 and jzj D 1, which yields e D ax2C by2C cz2 D 4aC 4bC c . Thus,
if d is equal to a lower bound then e � 4aC 4bC c .

The proof of Theorem 2.3 will now proceed. The goal in each of the following cases is
to arrive at a contradiction to coset condition I by showing that jRj2 > jHj2 .

Case 1 K 2 Pf�a;�b;�c; d; eg with aD b D c D 1.

By Lemma 7.1, d � 4aCbD 5 or d � aCbCcD 3. Assume d D 3. By Lemma 7.1,
it follows that e � 4aC 4bC c D 9. Then

jRj2 D jdet.K/j D j� abcd � abceC abdeC acdeC bcdej

D d.e� 1/C e.d � 1/C de � 69

> 49D .abC acC bcC aC bC cC 1/2

D jHj2;

as desired.

Case 2 K 2 Pf�a;�b;�c; d; eg with aD b D 1 and c � 3.

By Lemma 7.1, d � 4aC b D 5 or d � aC bC c D 2C c . But, c � 3 so in any case
we have d � 5 and thus e � 4aC 4bC c D 8C c by Lemma 9.1. Then

jRj2 D jdet.K/j D j� abcd � abceC abdeC acdeC bcdej

D d.e� c/C ce.d � 1/C cde

� 5.8C c � c/C c.8C c/.5� 1/C 5c.8C c/D 9c2
C 72cC 40

> 9c2
C 24cC 16D .3cC 4/2

D .abC acC bcC aC bC cC 1/2

D jHj2;

as desired.

Case 3 K 2 Pf�a;�b;�c; d; eg with aD 1 and b; c � 3.

By Lemma 7.1, d � 4aC b D 4C b or d � aC bC c D 1C bC c . Assuming that
d � bC4 accounts for both situations. By Lemma 9.1, e � 4aC4bC c D 4C4bC c .
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Then

jRj2 D jdet.K/j D j�abcd �abceCabdeCacdeCbcdej

D bd.e�c/Cbce.d �1/Ccde

� b.bC4/.4C4bCc�c/Cbc.4C4bCc/.bC4�1/Cc.bC4/.4C4bCc/

D 4b3cCb2c2
C4b3

C20b2cC4bc2
C20b2

C32bcC4c2
C16bC16c:

Also

jHj2 D .abC acC bcC aC bC cC 1/2

D b2c2
C 4b2cC 4bc2

C 4b2
C 12bcC 4c2

C 8bC 8cC 4:

Let LD b2c2C 4b2cC 4bc2C 4b2C 12bcC 4c2C 8bC 8c . Then

jRj2� jHj2 D 4b3cC 16b2cC 20bcC 8cC 4b3
C 16b2

C 8b� 4> 0

Thus, jRj2 > jHj2 . This concludes the proof that 0–pair odd pretzel knots with single-
twists are not slice, and therefore all 0–pair odd 5–stranded pretzel knots are not
slice.

10 Proof of Theorem 2.4

Theorem 2.4 asserts that if K is a 1–pair odd 5–stranded pretzel knot without single-
twists, then K is not slice. This will be shown by proving that coset condition II
is violated for the knots in question. It suffices to consider only the 1–pair pretzel
knots P .a; b; c; d; e/ for which the signature vanishes and both the lattice embedding
condition and coset condition I are satisfied. Let a; b; c; d; e > 0 such that a� b � c ,
and assume that K D P .�a;�b;�c; d; e/ throughout. Let Y , P D PC , W , X , and
the embedding map ˛W H2.P /!H2.X /=Tor be as usual.

Theorem 6.3 gives that if K is slice, then every coset of im.˛/ coming from coker.˛/
has a coset representative in the set f˙1gm , where mD aC bC c . Let v1 and v2 be
the second and third columns (respectively) in the matrix A of ˛ with respect to the
bases chosen in Sections 5 and 6; lastly, let B be the map outlined in Section 6.

Recall from the coset conditions the sets R and H associated with A. The set R
consists of the integer lattice points in a fundamental region R � R2 defined by
xv1 and xv2 that correspond to unique cosets of im.˛/; H is the set of lattice points
.x;y/ 2 2R2 such that �a � c � x � aC c and �b � c � y � b C c , lying in a
hexagonal region H �R2 . The argument now reduces to determining jRj and jHj,
where HDH=hxv1; xv2i. An important note is that the computation of jRj will be done
differently here from how it is done in Chapter 7.
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Observe that R consists of all lattice points in the interior of R as well as all lattice
points on the boundary of R modulo xv1 and xv2 . The action of modding out the
boundary of R by xv1 and xv2 has the effect of removing half of all boundary lattice
points, plus one more. The extra lattice point that must be removed is, without loss of
generality, the one at the tip of xv1 that gets identified with .0; 0/. Hence, if i is the
number of interior lattice points of R and b is the total number of lattice points lying
on the boundary, then

jRj D i C
b

2
� 1:

In a lucky turn of events, Pick’s theorem equates the right hand side of this expression
with the area of R. In it’s general form, Pick’s theorem states that the area A of any
polygon P in R2 with vertices at integer lattice points is given by

A.P /D i C
b

2
� 1;

where i is the number of integer lattice points in the interior of the polygon and b is
the number of integer lattices points lying on the boundary of the polygon. Thus,

jRj D i C
b

2
� 1DA.R/:

Given that R is a parallelogram in R2 defined by xv1; xv2 2 Z2 , its area A.R/ — and
thus jRj— is equal to the absolute value of the determinant of the 2� 2 matrix whose
column vectors are xv1 and xv2 :

jRj DA.R/D

ˇ̌̌̌
a˛� c ax� cz

bˇ� c by � cz

ˇ̌̌̌
:

Also, recall from Section 8 that

jHj D .aC bC 1/.cC 1/C ab D abC acC bcC aC bC cC 1:

In obstructing sliceness for 1–pair pretzel knots (still under the assumption a� b � c ),
three cases must be considered: (1) when the pair is fa;�ag, (2) when the pair
is fb;�bg, and (3) when the pair is fc;�cg. By assumption, the twist parameters in
all three cases satisfy the embedding criterion.

Case 1 K 2 Pf�a;�b;�c; a; eg with e 62 fb; cg.

When the twist parameters contain the pair fa;�ag, we obtain ˛D 1, ˇD  D xD 0,
and that y and z are nonzero. This yields xv1D .a; 0/ and xv2D .�cz; by� cz/, hence

jRj D
ˇ̌̌̌
a �cz

0 by � cz

ˇ̌̌̌
D ajby � czj:
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As y !1, it follows that z ! �1 by embedding condition (2) which says that
1 D xC yC z D 0C yC z; thus jRj ! 1. Similarly, as y !�1 (and z!1),
jRj !1. For this reason, jRj is minimized when y and z are both small in absolute
value, ie when xv2 is short. Given that b < c , we have xv2 shortest when y D 2 and
z D�1. In this case

(6) jRj D aj2bC cj D 2abC ac:

An upper bound for jHj will now be computed. Due to the shape and dimensions of H ,
we can see that many of the lattice points of H lie in the same hxv1; xv2i–coset because
any two lattice points in H that differ by multiple of xv1 D .a; 0/ will be identified.
Furthermore, modding out by xv2 would only result in more identification among the
lattice points of H . Hence

jHj D jH=hxv1; xv2i �H=hxv1i:

Note: Figures 14–19 show the lattice points in 2Z2 , that is, each grid square is 2� 2.

From Figure 14, we see that each of the bC cC 1 rows in H has a distinct hxv1; xv2i–
cosets. The result of eliminating repeated representatives from each coset to obtain H

.�aC c; bC c/ .aC c; bC c/

.aC c;�bC c/

H
c�b

2

b

a

Figure 14: H and its R–cosets for P .�3;�7;�19; 3; 47/ . Points of the
same color with the same y–coordinate represent the same R–coset.
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H
c�b

2

b

a

Figure 15: H and its R–cosets for P .�3;�7;�19; 3; 47/ , repeat represen-
tatives removed

is shown in Figure 15. Thus, an upper bound for jHj is given by

jHj �H=hxv1i D a.bC cC 1/D abC acC a:

Comparing this to (6), the desired result is achieved:

jHj � abC acC a< 2abC ac D jRj;

since a � b � c . Hence, an odd 5–stranded pretzel knot K 2 Pf�a;�b;�c; a; dg,
with a; b; c; d � 3, is not slice by coset condition I.

Case 2 K 2 Pf�a;�b;�c; b; dg with e 62 fa; cg.

When the twist parameters contain the pair fb;�bg, we obtain ˇD 1, ˛D  D y D 0,
and that x and z are nonzero. With this, xv1 D .0; b/ and xv2 D .�cz; by � cz/, hence

jRj D
ˇ̌̌̌
0 ax� cz

b �cz

ˇ̌̌̌
D bjax� czj:

Following the logic of Case 1, it suffices to show that jRj> jHj when the length of xv2
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.�aC c; bC c/ .aC c; bC c/

.aC c;�bC c/

H

b

a c�a
2

Figure 16: H and its R–cosets for P .�3;�7;�19; 7; 31/ . Points of the
same color with the same x–coordinate represent the same R–coset.

is minimized. Since a< c , we have xv2 shortest when x D 2 and z D�1, so

(7) jRj D b j2aC cj D 2abC bc:

The upper bound for jHj is computed for Case 2 in a similar manner as for Case 1,
the only difference being that xv1 D .0; b/, and thus lattice points in H=hxv1i are in the
same coset when they differ by multiple of .0; b/ (vertical translations), as seen in
Figure 16. Each of the aC cC 1 columns in H always has b distinct R–cosets. The
result of eliminating repeated representatives from each coset to obtain H is shown in
Figure 17. Thus, an upper bound for jHj is given by

jHj �H=hxv1i D b.aC cC 1/D abC bcC b:

Comparing this to (7), again the desired result is achieved:

jHj � abC bcC b < 2abC bc D jRj;

since b � a � 3. Hence, 5–stranded pretzel knots K 2 Pf�a;�b;�c; b; d/g, with
a; b; c; d � 3, are not slice.

Case 3 K 2 Pf�a;�b;�c; c; dg with e 62 fa; bg.
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H

b

a c�a
2

Figure 17: H and its R–cosets for P .�3;�7; 19; 7; 31/ , repeat representa-
tives removed.

The final case of 5–stranded odd 1–pair pretzel knots has fc;�cg as the pair in the twist
parameters. Unlike for the 1–pair cases where the pair of canceling twist parameters
is fa;�ag or fb;�bg, the case with fc;�cg does not necessarily imply that  D 1,
˛ D ˇ D z D 0, with x and y nonzero. Since c � b � a, it is possible that both
˛ and ˇ are nonzero and embedding condition (4) is satisfied by c D a˛2C bˇ2 . In
this case, however, the proof of Lemma 9.1 shows we would have c � 4aC b and
eD ax2Cby2C cz2 � aCbC c , which implies that P .�a;�b;�c; c; d/ is not slice
by the proof of Theorem 2.3.

Hence, the only case that need be considered is the case in which  D 1, ˛DˇD zD 0,
with x and y nonzero. Under these conditions, xv1 D .�c;�c/ and xv2 D .ax; by/,
and therefore

jRj D
ˇ̌̌̌
�c ax

�c by

ˇ̌̌̌
D c jax� byj:

Again by following the logic from Case 1 and Case 2, it suffices to show that jRj> jHj
when xv2 is at its shortest. Since a< b , the length of xv2 is minimized when x D 2 and
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.�aC c; bC c/ .aC c; bC c/

.aC c;�bC c/

H

bC 1

aC 1

Figure 18: H and its R–cosets for P .�3;�7;�19; 19; 55/ . Each white
point represents a distinct R–coset; colored points lying along the same
45–degree diagonal represent the same R–coset.

y D�1. In this case,

(8) jRj D c j2aC bj D 2acC bc:

The computation of an upper bound for jHj in Case 3 is similar to those in Cases
1 and 2. Namely, it is computed by identifying lattice points in H via multiples of
xv1 D .�c;�c/ (45–degree diagonal translations). The computations are also done as
before using the well-understood region H , however it is more efficient now to subtract
off the number of repeat hxv1i–coset representatives from jHj, rather than count the
cosets directly as in Cases 1 and 2. Figure 18 indicates that

jHj � jHj � .aC 1/.bC 1/

D abC acC bcC aC bC cC 1� .abC aC bC 1/

D acC bcC c:

Since c � a� 3, comparing this result with (8) gives the result

jHj � acC bcC c < 2acC bc D jRj:
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H

bC 1

aC 1

Figure 19: H and its R–cosets for P .�3;�7; 19; 19; 55/ , repeat representa-
tives removed.

Refer to Figure 19 for H in this case. Thus, 5–stranded odd pretzel knots of the form
P .�a;�b;�c; c; d/, with a; b; c; d � 3, are not slice. The proof is complete.

References
[1] S Akbulut, R Kirby, Branched covers of surfaces in 4–manifolds, Math. Ann. 252

(1979/80) 111–131 MR

[2] R E Bedient, Double branched covers and pretzel knots, Pacific J. Math. 112 (1984)
265–272 MR

[3] J Greene, S Jabuka, The slice-ribbon conjecture for 3–stranded pretzel knots, Amer.
J. Math. 133 (2011) 555–580 MR

[4] C Herald, P Kirk, C Livingston, Metabelian representations, twisted Alexander
polynomials, knot slicing, and mutation, Math. Z. 265 (2010) 925–949 MR

[5] S Jabuka, Rational Witt classes of pretzel knots, Osaka J. Math. 47 (2010) 977–1027
MR

[6] L H Kauffman, On knots, Annals of Mathematics Studies 115, Princeton Univ. Press,
Princeton, NJ (1987) MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1007/BF01420118
http://msp.org/idx/mr/593626
http://dx.doi.org/10.2140/pjm.1984.112.265
http://msp.org/idx/mr/743984
http://dx.doi.org/10.1353/ajm.2011.0022
http://msp.org/idx/mr/2808326
http://dx.doi.org/10.1007/s00209-009-0548-1
http://dx.doi.org/10.1007/s00209-009-0548-1
http://msp.org/idx/mr/2652542
http://projecteuclid.org/euclid.ojm/1292854315
http://msp.org/idx/mr/2791566
http://msp.org/idx/mr/907872


3664 Kathryn Bryant

[7] L H Kauffman, L R Taylor, Signature of links, Trans. Amer. Math. Soc. 216 (1976)
351–365 MR

[8] C Kearton, Mutation of knots, Proc. Amer. Math. Soc. 105 (1989) 206–208 MR

[9] R C Kirby, The topology of 4–manifolds, Lecture Notes in Mathematics 1374, Springer
(1989) MR

[10] A G Lecuona, On the slice-ribbon conjecture for Montesinos knots, Trans. Amer. Math.
Soc. 364 (2012) 233–285 MR

[11] P Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007)
429–472 MR

[12] C Livingston, A survey of classical knot concordance, from “Handbook of knot theory”
(W Menasco, M Thistlethwaite, editors), Elsevier B. V., Amsterdam (2005) 319–347
MR

[13] L Long, Slice ribbon conjecture, pretzel knots and mutation, PhD thesis, University of
Texas at Austin (2014) Available at http://hdl.handle.net/2152/27145

[14] A N Miller, Distinguishing mutant pretzel knots in concordance, J. Knot Theory Rami-
fications 26 (2017) art. id. 1750041, 24 pp. MR

[15] W D Neumann, F Raymond, Seifert manifolds, plumbing, �–invariant and orienta-
tion reversing maps, from “Algebraic and geometric topology” (K C Millett, editor),
Lecture Notes in Math. 664, Springer (1978) 163–196 MR

[16] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR

[17] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol.
7 (2003) 185–224 MR

[18] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berkeley,
CA (1976) MR

[19] V Turaev, Torsion invariants of Spinc–structures on 3–manifolds, Math. Res. Lett. 4
(1997) 679–695 MR

[20] H Zieschang, Classification of Montesinos knots, from “Topology” (L D Faddeev, A A
Mal’cev, editors), Lecture Notes in Math. 1060, Springer (1984) 378–389 MR

Department of Mathematics and Computer Science, Colorado College
Colorado Springs, CO, United States

kathryn.bryant@coloradocollege.edu

Received: 21 September 2016 Revised: 7 February 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/1997704
http://msp.org/idx/mr/0388373
http://dx.doi.org/10.2307/2046757
http://msp.org/idx/mr/929430
http://dx.doi.org/10.1007/BFb0089031
http://msp.org/idx/mr/1001966
http://dx.doi.org/10.1090/S0002-9947-2011-05385-7
http://msp.org/idx/mr/2833583
http://dx.doi.org/10.2140/gt.2007.11.429
http://msp.org/idx/mr/2302495
http://dx.doi.org/10.1016/B978-044451452-3/50008-3
http://msp.org/idx/mr/2179265
http://hdl.handle.net/2152/27145
http://dx.doi.org/10.1142/S0218216517500419
http://msp.org/idx/mr/3660096
http://dx.doi.org/10.1007/BFb0061699
http://dx.doi.org/10.1007/BFb0061699
http://msp.org/idx/mr/518415
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://msp.org/idx/mr/1957829
http://dx.doi.org/10.2140/gt.2003.7.185
http://msp.org/idx/mr/1988284
http://msp.org/idx/mr/0515288
http://dx.doi.org/10.4310/MRL.1997.v4.n5.a6
http://msp.org/idx/mr/1484699
http://dx.doi.org/10.1007/BFb0099953
http://msp.org/idx/mr/770257
mailto:kathryn.bryant@coloradocollege.edu
http://msp.org
http://msp.org

	1. Introduction
	2. Results
	3. Branched covers, framed links, weighted graphs and plumbings
	4. The signature condition and proof of Theorem 2.1
	5. Donaldson's diagonalization theorem and the lattice embedding condition
	6. The d–invariants and the coset conditions
	7. Proof of Theorem 2.3
	8. Proof of Theorem 2.3 without single-twists
	9. Proof of Theorem 2.3 with single-twists
	10. Proof of Theorem 2.4
	References

