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Axioms for higher twisted torsion invariants
of smooth bundles

CHRISTOPHER OHRT

This paper attempts to investigate the space of various characteristic classes for smooth
manifold bundles with local system on the total space inducing a finite holonomy
covering. These classes are known as twisted higher torsion classes. We will give a
system of axioms that we require these cohomology classes to satisfy. Higher Franz–
Reidemeister torsion and twisted versions of the higher Miller–Morita–Mumford
classes will satisfy these axioms. We will show that the space of twisted torsion
invariants is two-dimensional or one-dimensional depending on the torsion degree and
is spanned by these two classes. The proof will greatly depend on results about the
equivariant Hatcher constructions developed in Goodwillie, Igusa and Ohrt (2015).

19J10, 55R40; 57R80, 55R10

1 Introduction

Higher torsion invariants have been developed by J Wagoner, J R Klein, K Igusa,
M Bismut, J Lott, W Dwyer, M Weiss, E B Williams, S Goette and many others; see
Wagoner [12], Igusa [5], Igusa and Klein [9], Bismut and Lott [2], Dwyer, Weiss and
Williams [3] and Bismut and Goette [1].

In [7], Igusa defined a higher torsion invariant of degree 2k to be a characteristic class
�.E/ 2H 4k.BIR/ of a smooth bundle E! B satisfying an additivity and a transfer
axiom; see [7, Section 2]. He proved that the set of higher torsion invariants forms
a two-dimensional vector space spanned by the higher Reidemeister torsion and the
Miller–Morita–Mumford class.

But higher Reidemeister torsion or Igusa–Klein torsion can be defined in a more
general way: it is a characteristic class � IK.E; �/ 2H 2k.BIR/ for a smooth bundle
with an unitary representation �W �1E! U.m/ factorizing through a finite group; see
for example Igusa [5]. For our purposes it will be better to look at finite complex
local systems on E instead. After a choice of a base point, this corresponds to a
representation of the fundamental group as can be found for example in T Szamuely’s
book [11, Corollary 2.6.2]. Regarding that, we will define a twisted higher torsion
invariant in degree k to be a characteristic class �.EIF/ 2H 2k.BIR/ depending on
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a finite local complex system F on E inducing a finite holonomy covering satisfying
six axioms: the first two are versions of the original two axioms for nontwisted torsion
invariants, which will respect the local system; the remaining four axioms will determine
the dependence of the torsion class on the local system.

The goal of this paper is to show an analogous result to Igusa’s on twisted torsion
invariants. For this we will generalize Igusa’s paper [7] step by step:

In Section 2, we will define twisted higher torsion invariants.

In Section 3, we will repeat why the Igusa–Klein torsion � IK satisfies the axioms,
introduce a twisted version of the Miller–Morita–Mumford classes M 2k and show that
these also satisfy the axioms. The MMM classes will be zero in degree 4l C 2. Then
we will state our main theorem:

Theorem 1.1 (main theorem) The space of higher twisted torsion invariants in
degree 4l on bundles with simple fibers and base having a finite fundamental group is
two-dimensional and spanned by the twisted MMM class and the twisted Igusa–Klein
torsion, and one-dimensional in degree 4l C 2 and spanned by the Igusa–Klein torsion.
In other words, for any twisted torsion invariant of even degree � , there exist unique
a; b 2R such that

� D a� IK
C bM;

and for every twisted torsion invariant � of odd degree there exists a unique a 2R such
that

� D a� IK:

The scalars a and b can be calculated as follows: For torsion in degree 4l we
look at the universal line bundle �W ES1 ! CP1. Since the cohomology groups
H 2k.CP1IR/ are one-dimensional, the torsion invariant of the associated S1–bundle
S1.�/ and the associated S2–bundle S2.�/ over CP1 will determine the scalars
a and b. In degree 4l C 2 we only have to calculate a by looking at a fiberwise
quotient S1.�/=.Z=n/ of the n–action on S1. This admits a nontrivial finite complex
local system and therefore has a nontrivial higher twisted torsion.

Before we prove the main theorem, we will extend a higher twisted torsion invariant to
have values on bundles with vertical boundaries and then define a relative torsion for
bundle pairs (see Section 4), which we will use to deconstruct any bundle into easier
pieces and keep control over the torsion.

In Section 5, we will show that the main theorem holds on S1–bundles. Then we will
define the difference torsion to be

�ı WD � � a� IK
� bM;
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and we will see that �ı D 0 for every sphere bundle, disc bundle and odd-dimensional
lens space bundle. In Goodwillie, Igusa and Ohrt [4] we give an explicit base for the
space of h–cobordism bundles of a lens space, and the calculations in Section 6 of this
paper show that the difference torsion will be zero on these basis elements. From this
crucial observation we can deduce that the difference torsion will be a fiber homotopy
invariant, and in Section 7 we will show that this fiber homotopy invariant must be trivial
if it is restricted to bundles with simple fiber and base having finite fundamental group.

Acknowledgements This paper is the product of my work with Kiyoshi Igusa during
my stay at Brandeis University in the academic year 2011/2012, which led up to further
work on the equivariant Hatcher constructions with Thomas Goodwillie and Kiyoshi
Igusa in the academic year 2012/2013. I want to thank Kiyoshi for the great support,
advice, and guidance he offered me. I also want to thank Ulrich Bunke from my
home university in Regensburg, Germany, for the many comments and corrections he
contributed.

2 Axioms and definitions

2.1 Preliminaries

Throughout the whole paper, let F ,! E
p
�!B be a smooth fiber bundle, where E

and B are compact smooth manifolds, p is a smooth submersion, and F is a compact
orientable n–dimensional manifold with or without boundary. In the boundary case,
there is a subbundle @F ! @vE ! B of E. We call @vE the vertical boundary
of E. We assume that B is connected and that the action of �1B on F preserves the
orientation of F . We also assume that �1B is finite, which immediately implies that
the bundle E is unipotent (as required in [7]).

These are all similar assumptions to the ones for considering nontwisted higher torsion
classes. Additionally to those, we assume that E comes equipped with a finite complex
local system F . By “finite” we mean that there exists a finite covering zE!E such that
the pull-back of the local system is trivializable. These local systems are sometimes also
called hermitian local coefficient systems because they induce a well defined hermitian
inner product on each fiber. We will often call F just local coefficient system.

If F ,!E! B is a smooth bundle we have the transfer map

trEB W H
�.EIZ/!H�.BIZ/:

For an exact definition, one can consult [7, Section 2]. The most important property
we will need is that we always have

trBE D .�1/
n trEB ;
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where n is the dimension of the fiber F . In particular, this implies trEB D 0 if dimF

is odd and we only consider it on cohomology with real coefficients.

2.2 Higher twisted torsion invariants

We are ready to give the definition of a twisted higher torsion invariant. Most of the
axioms were proposed by Igusa in [8, Section 4].

Definition 2.1 A higher twisted torsion invariant in degree 2k with k 2N is a rule �k ,
which assigns to any bundle F ,!E! B with closed fiber F and local coefficient
system F on E a cohomology class �k.E;F/ 2 H 2k.BIR/ subject to the axioms
beneath. We will drop the degree out of the notation most of the time and just write � .

Remark 2.2 We consider higher twisted torsion invariants as real cohomology classes
(rather than rational ones) since our main example is Igusa–Klein torsion which can
only be defined with real coefficients.

Axiom 1 (naturality) �k is a characteristic class in degree 2k. That means for a map
f W B 0!B and a bundle F ,!E!B with local coefficient system F on E we have

�k.f
�.E/; f �F/D f ��.E;F/ 2H 2k.B 0IR/;

where f � denotes the pull-back along f .

Remark 2.3 The naturality axiom immediately implies triviality on trivial bundles
�k.B �F;F/D 0, if F D 1 is the constant local system. Furthermore, if B is simply
connected, a local system F on B �F will pull back from a local system FF on F
under the projection B �F ! F . So if we view F as a trivial bundle over a point,
naturality gives that �.B�F;F/D 0 for any local system F if B is simply connected.

If B is a space with finite fundamental group and B �F ! B is a trivial bundle with
local system F , we can look at the pull-back zB �F ! zB of B �F to the universal
covering space � W zB!B . By the previous paragraph we know that the twisted torsion
of zB �F is trivial with respect to any finite local system and since the � is a finite
covering the map ��W H�.BIR/!H�.BIR/ is a monomorphism. By naturality we
see that the torsion of a trivial bundle over a base with finite fundamental group is 0
with respect to any local system.

Let E1 and E2 be bundles over B with local coefficient systems F1 and F2, such
that there is an isomorphism �W @vE1! @vE2 ¤ ∅ and such that we have, for the
restrictions of the local systems,

.F1/j@vE1 Š �
�.F2/j@vE :
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Then we can glue them together to a local coefficient system F WD F1 [� F2 on
E1[� E2.

Axiom 2 (geometric additivity) In the setting from above we have, for any twisted
torsion invariant � ,

�.E1[� E2;F/D 1
2

�
�.DE1;F l1[id Fr1 /C �.DE2;F

l
2[id Fr2 /

�
;

where DEi denotes the fiberwise double Eli [idE
r
i with a left copy Eli and a right

copy Eri glued together along their isomorphic boundaries and the induced local
coefficient system F li [id Fri .

Now suppose again that pW E!B is a bundle with closed fiber F and local coefficient
system F on E. Let qW D!E be an Sn–bundle which is isomorphic to the sphere
bundle of a vector bundle. We get the local coefficient system q�F on D by pulling
back F along q.

Axiom 3 (geometric transfer) In the situation above, for a twisted torsion invariant � ,
we have the following relation between the torsion class �B.D; q�F/ 2H 2k.BIR/
of D as a bundle over B and the torsion class �E .D; q�F/ 2H 2k.EIR/ of D as a
bundle over E :

�B.D; q
�F/D �.Sn/�B.E;F/C trEB .�E .D; q

�F//;

where � denotes the Euler class, trEB W H
2k.EIR/! H 2k.BIR/ the transfer, and

�E .D; q
�F/ the twisted torsion class of D over E.

Remark 2.4 We have �.Sn/D 2 or 0 depending on whether n is even or odd.

Remark 2.5 If we take a twisted torsion class �2k with k D 2l even, we will get a
nontwisted torsion class in the sense of Igusa [7],

�nontw.E/ WD �.E; 1/ 2H 4k.BIR/;

where E! B is a bundle and 1 the constant local system on E. We will denote this
nontwisted torsion invariant simply by �.E/ without any local system in the argument.

Since according to Igusa’s definition there are no higher torsion invariants in degree
4l C 2D 2k, we also need the following axiom:

Axiom 4 (triviality) For a twisted torsion invariant in degree 4l C 2, we have, for
every bundle E! B and the constant local system 1 on E,

�.E; 1/D 0 2H 4lC2.BIR/:

These axioms so far were only modifications of the axioms for nontwisted torsion
invariants. We also need some axioms concerning the local system F on E:
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Axiom 5 (additivity for coefficients) If F D
L
i Fi for local systems Fi on E, with

E! B a bundle, then we have, for every twisted torsion invariant � ,

�.E;F/D
X
i

�.E;Fi /:

Axiom 6 (transfer/induction for coefficients) If zE!B and E!B are bundles and
� W zE!E is a finite fiberwise covering, then we have, for every local system F on zE,

�. zE;F/D �.E; ��F/;

where �� denotes the push-down operator for local systems.

Remark 2.6 Igusa [8, Section 4.7] proposed this axiom originally in the following
form, which corresponds to our formulation:

If G is a group that acts freely and fiberwise on E!B , H is a subgroup of G, and V
is a unitary representation of H , then the torsions of the orbit bundles E=G; E=H!B

are related by
�.E=G; IndGH V /D �.E=H; V /:

Lastly we need a continuity axiom. It roughly states that if we fix a bundle E! B

then the values of a twisted torsion invariant on E depend continuously on the different
local systems F we might choose. More explicitly we can look at the universal linear
S1–bundle S1!CP1. If we identify the quotient Q=Z with the roots of unity in C
we get a local system F� on S1=.Z=n/ for every � 2Q=Z of degree n. We can use
this and a fixed torsion invariant � to define a map

f� W Q=Z!H 2k.CP1;R/ŠR

given by f� .�/ WD �.S1=.Z=n/;F� /. Details will provided in Section 5 where we
need to use the following axiom:

Axiom 7 (continuity) The map f� W Q=Z!R is continuous.

3 Statement of main theorem

3.1 Examples of higher twisted torsion invariants

Our main example of higher twisted torsion is the higher Franz–Reidemeister torsion
or Igusa–Klein torsion

� IK
k .E; @0E;F/ 2H

2k.BIR/;
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which is defined for any unipotent bundle pair .F; @0F / ! .E; @0E/ ! B with
@0E � @

vE and local system F on E ; for details, see [5].

Igusa proved the following result:

Theorem 3.1 [7, Theorem 9.4; 5, Theorem 2.4.7 and Theorem 2.7.1] The Igusa–
Klein torsion invariants are higher twisted torsion invariants for bundles with closed
fibers.

Besides this torsion, we also have the Miller–Morita–Mumford classes in degree 4l
with l 2N

M 2l.E/ WD trEB ..2lŠ/ ch4l.T
vE//;

where ch4l.T vE/D 1
2

ch4l.T vE˝C/. We will consider this to be a real characteristic
class. Igusa also showed that this class is a higher nontwisted torsion invariant [7,
Proposition 9.1]. To make it a higher twisted torsion invariant we simply define, for an
m�dimensional local system F on E,

M 2l.E;F/ WDmM 2l.E/ 2H 4l.BIR/:

Furthermore we set
M 2lC1.E;F/ WD 0;

since there is no nontwisted torsion in degree 2k D 2.2l C 1/, and the twisted MMM
torsion always induces nontrivial nontwisted torsion. Knowing that the MMM class is
a nontwisted torsion invariant (and therefore fulfills the first three axioms) it is now
easy to see:

Theorem 3.2 The twisted MMM class is a higher twisted torsion invariant.

We also know that for any bundle F ! E! B with closed l–dimensional fiber F ,
twice the transfer map trEB is rationally trivial, if l is odd. Therefore we get:

Proposition 3.3 M k.E;F/D 0 for closed odd-dimensional fiber F .

3.2 The space of twisted torsion invariants

We are moving on to the space of higher twisted torsion invariants in degree 2k. We
begin with an elementary observation:

Lemma 3.4 For each k, the set of all twisted torsion invariants of degree 2k is a
vector space over R.

Of course, the same statement holds for the set of nontwisted higher torsion invariants.
Igusa proved for the space of nontwisted higher torsion invariants:
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Theorem 3.5 [7, Theorem 4.4] For any l the space of higher nontwisted torsion
invariants in degree 4l is two-dimensional and spanned by the nontwisted MMM
class M 4l and the nontwisted Igusa–Klein torsion � IK

2l
. In other words, for any

nontwisted torsion invariant � there exist unique a; b 2R such that

� D a� IK
C bM:

Now, let Topfin be the full subcategory of Top of topological spaces with finite funda-
mental group and Topsim the full subcategory of simple topological spaces. A space F
is called simple if the fundamental group �1F acts trivially on the higher homotopy
groups ��F . If we restrict a twisted torsion invariant to bundles with fibers in Topsim
and base in Topfin we get the main theorem:

Theorem 3.6 (main theorem) In the setting above, the space of higher twisted torsion
invariants in degree 2k on bundles with simple fibers and base having finite fundamental
group is two-dimensional and spanned by the twisted MMM class and the twisted Igusa–
Klein torsion, if k is even, and one-dimensional and spanned by the Igusa–Klein torsion,
if k is odd. In other words, for any twisted torsion invariant � of degree 4l , there exist
unique a; b 2R such that

� D a� IK
C bM;

and for every twisted torsion invariant � of odd degree 4l C 2 there exists a unique
a 2R such that

� D a� IK:

Remark 3.7 If k is even, we get a nontwisted torsion invariant from the twisted one
by always inserting the trivial representation. Then the numbers a and b used in both
theorems above will be the same.

The proof of the main theorem is developed in Sections 4 to 7. In the very technical
Section 4 we will introduce relative torsion of bundles with vertical boundary and we
will turn the geometric additivity axiom into two eye-pleasing formulas that will allow
us to dissect the fiber F into easier pieces meeting along a common vertical boundary.
Section 5 is devoted to investigating the higher twisted torsion of linear S1–bundles.
Concretely, we show that the continuity, geometric additivity, and geometric transfer
axioms together imply that the space of twisted torsion invariants restricted to only the
universal bundle S1! S1!CP1 is one-dimensional. This together with the results
in the untwisted case implies that the difference torsion �ı WD � �a� IK�bM is trivial
on all linear disc and sphere bundles. The goal of Section 6 is to use this to show that
�ı is a fiber homotopy invariant which will follow from �ı being trivial on any lens
space bundle. The proof of this last assertion relies on the twisted Hatcher example we

Algebraic & Geometric Topology, Volume 17 (2017)



Axioms for higher twisted torsion invariants of smooth bundles 3673

defined in [4]. Armed with the fiber homotopy invariance we then proceed in Section 7
to use homotopical tools to replace any fiber bundle E! B with another one that has
homologically trivial fibers and the same difference torsion as E and prove triviality
on those.

3.3 The scalars a and b

Before we get to the proof of the main theorem let us assume for now that it is true.
This section aims to explain how given a torsion invariant one can calculate the scalars
of the equation � D a� IKC bM . We need to distinguish between � having degree
2k D 4l or 2k D 4l C 2.

3.3.1 In degree 2k D 4l First we first look at a twisted torsion invariant in degree
2kD 4l . In this case the scalars must be the same as the ones we get for the correspond-
ing nontwisted torsion. To determine them we follow Igusa’s approach [7, Section 4.2]
and look at the universal S1 Š U.1/ Š SO.2/–bundle � over CP1 Š BU.1/. Fur-
thermore, let S1.�/ be the associated circle bundle with � and S2.�/ the S2–bundle
associated with S1.�/ (by fiberwise suspension of S1.�/). Since the cohomology
ring of CP1 is a polynomial algebra generated by c1.�/, the cohomology group
H 2k.CP1IR/ŠR is generated by ch2k.�/D ck1 =kŠ.

From this, we immediately get scalars s1; s2 2R for any twisted torsion invariant in
degree 2k D 4l with

�.S1.�//D s1 ch2k.�/ and �.S2.�//D s2 ch2k.�/:

Furthermore we have the following two propositions:

Proposition 3.8 [5, Chapter 2.7] We get

� IK
2l .S

n.�//D .�1/lCn�.2l C 1/ ch4l.�/:

Proposition 3.9 [7, Proposition 9.2] Mk.S
2.�//D 2kŠ ch2k.�/Š.

Now we are taking into account that the MMM class is trivial on odd-dimensional
fibers, and therefore we get that �.S1.�//D a� IK.S1.�//. From this we get

aD s1=..�1/
1Cl�.2l C 1//:

Looking at the S2.�/ case, we have

s2 D a.�1/
l�.2l C 1/C b2kŠD�s1C b2kŠ

and therefore
b D

s1C s2

2kŠ
:
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3.3.2 In degree 2k D 4l C 2 Now let the degree be 2k D 4l C 2. In this case �
does not define a nontrivial nontwisted torsion invariant. On the other hand we also
just need to determine a since the MMM class vanishes in this degree.

Furthermore, we cannot use the standard universal bundle for linear S1–bundles
ES1! BS1, since ES1 is contractible and therefore will not admit a nonconstant
local system. But we can replace it by a very similar construction. First, recall that
ES1 can be constructed as follows: Take S1 �C and S2N�1 �CN . Then we have
a fibration S1 ,! S2N�1 ! CPN�1. Taking the direct limit of this will yield an
S1–bundle with total space S1, which is contractible and therefore the universal
S1–principal bundle S1 ,! S1!CP1.

We can look at a Z=n–action on S1 given by multiplication with the primitive nth

root of unity e2�i=n. This will give rise to a fiberwise Z=n–action on the bundle
S1 ,! S2N�1 ! CPN�1. The action of Z=n on S2N�1 is by construction the
same as the one being taken to get a lens space L2N�1n as quotient out of S2N�1.
Therefore taking the fiberwise quotient under the given Z=n–action gives a bundle
(since S1=nŠ S1 )

S1 ,! L2N�1n !CPN�1;

which yields in the limit to

S1 ,! L1n !CP1:

We will refer to this bundle as S1.�/=n, since it has the S1–bundle associated with the
universal line bundle as its n–fold covering. The n–fold Galois covering S2N�1!
L2N�1n gives a bundle S2N�1 �C! L2N�1n where a fixed generator of Z=n acts
on C by multiplication with an nth root of unity �n. Using this we can make the
following important definition.

Definition 3.10 In the setting above, the nonconstant local system F�n on L2N�1n is
defined to be the nonconstant local system of the sections of the bundle S2N�1�C!
L2N�1n . The nonconstant local system F�n on L1n is defined as the direct limit of
these local systems on L2N�1n .

Again, we can use the fact that the cohomology of CP1 is a group ring and that
H 2k.CP1IR/ will be spanned by ch2k.�/ and therefore

�.S1.�/=n;F�n/D s1 ch2k.�/:

Furthermore we have again the following result from Igusa [6]:

Algebraic & Geometric Topology, Volume 17 (2017)



Axioms for higher twisted torsion invariants of smooth bundles 3675

Proposition 3.11 For the Igusa–Klein torsion we have

� IK.S1.�/=n;F�n/D�n
kLkC1.�n/ ch2k.�/;

where LkC1 denotes the polylogarithm

LkC1.�/ WD Re
�
1

ik

1X
lD1

�ln

nkC1

�
:

Putting this together we get

aD�s1=.n
kLkC1.�//:

We will prove later that a is independent of the choice of the local system.

4 Extension of higher twisted torsion

Now we present some easy consequences of the geometric additivity and transfer
axioms. More precisely, we introduce twisted torsion and calculations thereof for
bundles with vertical boundary and bundle pairs. This is completely parallel to the
corresponding Section 5 in [7] and all the proofs can be translated word-by-word and
will be skipped. While the material is very technical the formulas to keep in mind are
Lemma 4.2 and Example 4.7.

First we define the higher twisted torsion on bundles with vertical boundary:

Definition 4.1 (higher twisted torsion for bundles with vertical boundary) Suppose
F ,! E ! B is a bundle with vertical boundary @vE ! B and local coefficient
system F on E and � is a higher twisted torsion invariant. Then the twisted torsion of
the bundle with boundary is defined by

�.E;F/ WD 1
2

�
�.DE;F l [id Fr/C �.@vE;Fj@vE /

�
;

where DE WDEl [idE
r denotes the fiberwise double as before.

Building onto two lemmas one can prove the following formula (compare to [7],
Proposition 5.4):

Lemma 4.2 (additivity in the boundary case) Suppose E is a bundle over B and
.E1; @0/ and .E2; @0/ are bundle pairs such that E1; E2�E, @0E1D@0E2DE1\E2
and E D E1 [E2. Let F be a local system on E and F1 WD FjE1 and F2 WD FjE2 .
Then

�.E1[E2;F/D �.E1;F1/C �.E2;F2/� �.E1\E2;FjE1\E2/:

Furthermore, we get the transfer formula (compare [7], Proposition 5.5):
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Lemma 4.3 (transfer in the boundary case) Let X !D
q
�!E be an oriented disc

or sphere bundle over a bundle F !E!B with local coefficient system F on E. As
for the transfer axiom this pulls up to a local coefficient system q�F on D and we get

�B.D; q
�F/D �.X/�.E;F/C trEB .�E .D/; q

�F/:

Now we turn to bundle pairs.

Definition 4.4 A pair of bundles .F; @0/! .E; @0/! B is called a bundle pair if
the vertical boundary @vE is the union @vE D @0E [ @1E of two subbundles which
meet along their common boundary @0E \ @1E D @v@0E D @v@1E.

@0Fx Š I

@1Fx Š I

���
���
��
�
@@iFx Š f0; 1g

Figure 1: The fiber over x of a bundle pair with fiber F ŠD2

Definition 4.5 (relative torsion) For a bundle pair .F; @0/! .E; @0/!B with local
coefficient system F on E we define the relative torsion to be

�.E; @0;F/ WD �.E;F/� �.@0E;Fj@0E /:

We get the following proposition (compare [7], Proposition 5.7):

Proposition 4.6 (relative additivity) Suppose E ! B is a smooth bundle with
local coefficient system F , which can be written as the union of two subbundles
E D E1 [E2, which meet along a subbundle of their respective vertical boundaries
E1 \E2 D @0E2 � @

vE1. Let @vE1 D @0E1 [ @1E1 be a decomposition of @vE1,
so that @0E2 � @1E1 and .Ei ; @0/! B for i D 1; 2 are smooth bundle pairs. Then
.E; @0E/! B is a smooth bundle pair and

�.E1[E2; @0E1;F/D �.E1; @0;FjE1/C �.E2; @0;FjE2/:

Example 4.7 The example to keep in mind here are h–cobordism bundles. That is
bundle pairs B�M �E!B such that the fibers are h–cobordisms of M with 0–end
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the fiber of the trivial bundle. Often we have two h–cobordism bundles B�M �E!B

and B �M 0 �E 0!B and an inclusion into the 1–end B �M 0 ,!E. This is exactly
the situation in which we want to apply the relative additivity, and we get, with an
appropriate local system F ,

�.E [E 0; B �M;F/D �.E;B �M;F/C �.E 0; B �M 0;F/;

where we regard E [E 0 as the h–cobordism bundle obtained by “gluing E 0” on top
of E.

To state the transfer axiom in the relative case, we need the relative transfer:

tr.E;@0/B W H�.EIR/!H�.BIR/;

which is also introduced in [7, Section 5].

Proposition 4.8 (relative transfer; compare [7, Proposition 5.9]) Let .F; @0/ !
.E; @0/ ! B and .X; @0/ ! .D; @0/

q
�! E be bundle pairs with local system F

on E, so that the second bundle is an oriented linear Sn or Dn bundle with @0X D
Sn�1;Dn�1 or ∅. Then

�B.D; @0D[ q
�1@0E; q

�F/D �.X; @0/�.E; @0;F/C trE;@0B .�E .D; @0; q
�F//:

Remark 4.9 Note that we do not have a result analogous to the product formula [7,
Corollary 5.10]. However, we still have the following corollary.

Corollary 4.10 (stability theorem) If .E; @0/!B is a smooth bundle pair with local
system F on E, then so is .E �Dn; @0E �Dn/ and the relative torsion is the same:

�.E �Dn; @0E �D
n;F � 1/D �.E; @0;F/;

where F � 1 is the local system constant on Dn:

5 Higher twisted torsion of sphere bundles

The goal of this section is to calculate the higher twisted torsion of linear S1–bundles
only using the axioms. Before we can do this we will discuss why we can always restrict
our calculations to finite cyclic local systems on bundles with simply connected base.

5.1 Reduction of the representation

In the following we will simplify the local systems:
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Proposition 5.1 To prove the main theorem, Theorem 3.6, it is enough to only consider
bundles with simply connected base instead of base having finite fundamental group.
We can also restrict to only considering local systems (on the fiber) that induce n–fold
holonomy covers with transition group Z=n instead of just finite local systems.

Remark 5.2 Let F ,! E! B be a fiber bundle and F a finite local system on E.
This corresponds to its holonomy cover zE ! E with finite transition group G and
representation �W G ! U.m/. On the other hand every finite covering zE G

�! E

with representation �W G! U.m/ gives us a local system F� as the sections of the
bundle zE �G Cm!E where G acts on Cm via �. This construction is a one-to-one
correspondence. Now let H � G be a subgroup. From the covering zE G

�!E we
get coverings �H W zE=H ! E and zE H

�! zE=H . Suppose we have a representation
�H W H ! U.m/ and thereby get a local system F�H on zE=H . Then we can either
form the induced representation IndGH .�H /W G! U.m/ and its corresponding local
system FIndGH .�H /

on E or the local system ��F�H on E given by the push-down of
the local system F�. It follows from an easy calculation that

FIndGH .�H /
D ��F�H :

Proof of the proposition Let F be again a local system on E corresponding to a
finite covering zE G

�!E with representation �W G ! U.m/. Let H D fHig be the
finite set of cyclic subgroups Hi of G. By Artin’s induction theorem, we can write
the character of � rationally as linear combination of characters of one-dimensional
representations. Since we are working over C, we therefore can write � rationally as a
linear combination of one-dimensional representations �i W Hi ! U.1/ and inductions
thereof. Concretely we have

n�Š
M
i

ni IndGHi .�i / with n; ni 2 Z:

Let � be a twisted torsion invariant and �i W zE=H !E be a covering. Then we have,
using the transfer of coefficient axiom and the calculation above,

n�.E;F/D
X
i

ni�.E;FIndGHi .�i /
/D

X
i

ni�.E; ��F�i /

D

X
i

ni�. zE=Hi ;F�i / 2H
2k.BIR/:

Therefore it suffices for the rest of the paper to work with local systems with n–fold
holonomy covers with cyclic transition group Z=n.

Now let F !E!B be a bundle with local system F on E and the base B having a
finite fundamental group. We have the universal covering qW zB! B and pulling back
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E along q gives a bundle zE WD q�E! zB with local system zF WD q�F . Naturality
implies

�. zE; zF/D q��.E;F/ 2H 2k. zBIR/:

Furthermore we know that q�W H 2k.BIR/!H 2k. zBIR/ is injective. By this construc-
tion it suffices to prove the main theorem only on bundles with simply connected base.

5.2 Twisted torsion for S 1–bundles

We want to show the following theorem:

Theorem 5.3 For every S1–bundle S1 ,! E ! B with B simply connected and
local system F on E with Z=n–fold holonomy cover zEn!E every twisted torsion
invariant � is given by

�.E;F/D a� IK.E;F/;

where a is the scalar defined earlier.

We will follow an approach Igusa introduced in [8, Section 4]. Since BDiff.S1/ '
BSO.2/ it suffices to look at linear S1–bundles. These pull back from the universal
S1–bundle S1.�/ given by S1 ,! S1!CP1.

Let E! B be an S1–bundle with local system F on E inducing a finite holonomy
covering. At first we look at the following n–fold holonomy Galois covering:

S1

��

n
// S1

��

zEn

��

n
// E

��

B B

Now zEn is again a linear S1–bundle with fiberwise Z=n–action. This will pull back
equivariantly from the universal S1–bundle S1.�/ given by S1!CP1, which also
admits an Z=n–action. Therefore E will pull back from the quotient S1.�/=.Z=n/.
Also the local system F on E will pull back from the local system F�n on S1 for
some nth root of unity �n. We defined this earlier (Definition 3.10) to be given by the
bundle S1.�/�C! S1.�/=n where the action on C is given by multiplication by �n.
So because of naturality it is enough to show:

Theorem 5.4 For all n and �n,

�.S1.�/=n;F�n/D a�
IK.S1.�/=n;F�n/ 2H

2k.CP1IR/:
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First we prove two important lemmas already introduced in [8] (Lemmas 4.11 and 4.12).
These will isolate certain properties of �.S1.�/=n;F� / thought of as a function of �.

Lemma 5.5 Suppose we have a bundle E!B and a free fiberwise nm–action on E,
where n;m 2 N. Then we have, for any twisted torsion invariant and nth root of
unity �n,

�.E=n;F�mn /D
X
�mD1

�.E=.nm/;F��n/;

where the local systems F�n on E=n are given by the construction above.

Proof Denote the projection by � W E=n!E=.nm/. We get

��F�mn D
M
�mD1

F��n :

Now we can use the transfer of coefficients and the additivity axiom to get

�.E=n;F�mn /D �.E=.nm/; ��F�mn /D
X
�mD1

�.E=.nm/;F��n/:

Lemma 5.6 For every linear S1–bundle E ! B and any nth root of unity �n, we
have, for every twisted torsion class in degree 2k,

�.E=.nm/;F�n/Dm
k�.E=n;F�n/:

Proof Again we look at the universal circle bundle S1.�/, and by the naturality axiom
it is enough to show the lemma only on E D S1.�/. We have that S1.�/=m is again
a circle bundle over CP1 and therefore classified by a map

fmW CP1!CP1:

In degree 2 we can see (by looking at circle bundles over spheres S2 ) that this map
is multiplication by m on H 2. Then it follows that f �m is multiplication by mk

on H 2k.CP1IR/. The classifying maps for S1.�/=nm and S1.�/=n are related by

fmn D fn ıfm:

The lemma now follows from naturality.

Now let f W Q=Z!C a function. It is said to satisfy the Kubert identity if

f .x/Dms�1
m�1X
kD0

f

�
xCk

m

�
for fixed s and all integers m and all x 2Q=Z. Identifying Q=Z with the roots of
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unity in C (by x 7! e2�ix ), we can write f .x/D L.e2�ix/ and the Kubert identity
becomes

L.�m/Dms�1
X
�mD1

L.��/:

The following result can be proved by considering Fourier coefficients:

Theorem 5.7 (Milnor 1983 [10, Section 3, Theorem 1]) Let Q=Z have the quotient
topology. The space of continuous functions f W Q=Z ! C satisfying the Kubert
identity is two-dimensional and splits into two one-dimensional spaces, the first of
which contains all the functions with L.�/ D L.x�/ and the second, the ones with
L.�/D�L.x�/.

Remark 5.8 Milnor states this theorem for continuous functions R=Z!C rather than
Q=Z!C, but since Q�R is dense this does not impact the statement. Furthermore
the original theorem is formulated without identifying R=Z with the unit sphere
in C. The two one-dimensional subspaces are then formed by the functions satisfying
f .x/D�f .1� x/ and f .x/D f .1� x/, which correspond exactly to the equations
L.�/D˙L.x�/ on the unit sphere.

Proof of Theorem 5.4 To any higher twisted torsion invariant � we get, for any nth

root of unity, a coefficient s1.�; �/ defined by

�.S1.�/=n;F� /D s1.�; �/ ch2k.�/ 2H
2k.CP1IR/ŠR:

Identifying Q=Z with the roots of unity, we get a function f� W Q=Z!R defined by

f� .�/ WD
1

nk
s1.�; �/;

where �n D 1. This is well defined, since by the previous lemma we have

�.S1.�/=.nm/;F� /Dmk�.S1.�/=n;F� /;

so f� .�/ is by construction independent from the choice of n with �n D 1.

Our goal is to show that this satisfies the Kubert identity and then to use Milnor’s result
to prove our theorem. But for this, f� needs to be continuous, a fact which we cannot
prove, but must assume. Therefore we need the following last axiom:

Axiom 7 (continuity) For any twisted torsion invariant, the function f� W Q=Z!R
constructed above is continuous.

As explained earlier in the paper, this axiom basically states that for a fixed bundle
E! B the twisted torsion depends continuously on the local system F on E.

Algebraic & Geometric Topology, Volume 17 (2017)



3682 Christopher Ohrt

Continuation of the proof Now we calculate for � 2 Q=Z with �n D 1 using the
two lemmas from above:

f� .�
m/ ch2k.�/D

1

nk
�.S1.�/=nm;F�m/

D
1

nk

X
�mD1

�.S1.�/=nm;F�� /

Dmk
X
�mD1

f� .��/ ch2k.�/:

So f� satisfies the Kubert identity (with s D kC 1) for any � .

We note that the change of representation from � to x� represents a change of ori-
entation in the fiber. Therefore, it corresponds to a map gW CP1 ! CP1, giving
g�W �1S

1! �1S
1 as multiplication by �1. Using that �1S1.�/=nŠ Z=n, we get

the following commutative diagram relating the exact sequence of the homotopy groups
of the fibration S1 ,! S1.�/=n!CP1 to itself under g� :

�2CP1

g�

��

�n
// Z

�1

��

// // Z=n //

g�

��

0

�2CP1
�n
// Z // // Z=n // 0

From this one can see that g�W �2CP1! �2CP1 is multiplication by �1. Since
CP1 is simply connected, g� is also multiplication by �1 in homology of degree 2.
Since CP1 is an Eilenberg–Mac Lane space, g� must be multiplication by �1 on
degree-2 cohomology and thus multiplication by .�1/k on degree-2k cohomology.

This yields
f� .�/D .�1/

kf� .x�/

for any � with degree 2k. So f� is in one specific one-dimensional subspace of the space
of functions satisfying the Kubert identity for any torsion invariant � of degree 2k, and
therefore we have, for an arbitrary torsion invariant � and the Igusa–Klein torsion � IK,

f� D af� IK

for a certain a 2R. This translates to

�.S1.�/=n;F� /D a� IK.S1.�/=n;F� /

for any root of unity � and proves the theorem.

Remark 5.9 This also shows that the scalar a that we calculated earlier by choosing
an arbitrary local system is well-defined and does not depend on this choice.
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Remark 5.10 It is an unproven conjecture by Milnor [10] that any function satisfying
the Kubert identity is already continuous. If this conjecture was proven we could drop
the continuity axiom.

6 The difference torsion

Given a twisted torsion invariant � , we can now form the twisted difference torsion

�ı WD � � a� IK
� bM;

where the scalars a and b are the ones from Theorem 3.6 (and b is 0 if the torsion
has degree 4l C 2). Clearly, �ı is a twisted torsion invariant.

Our goal in this section and the next is to show �ı.E;F/D 0 for every bundle E!B

with every local coefficient system F on E and base B having finite fundamental
group. In this section we will show that �ı is a fiber homotopy invariant. Here is a
sketch of our approach: Given two fiber bundles E!B and E 0!B 0 with appropriate
local system F and fiber homotopy equivalence gW E!E 0 (which we can without
restriction assume to be an embedding) we can view E 0ng.E/ as a bundle with fibers
h–cobordisms (this is not necessarily an h–cobordism bundle) the torsion of which
is exactly the difference of the torsions of E and E 0. (This is done in the proof of
Theorem 6.12.) To show that the difference torsion of bundles with h–cobordisms as
fibers is trivial in Lemma 6.11 we embed one end of the bundle in a trivial lens space
bundle (we have to use lens spaces instead of discs or spheres to preserve a nontrivial
first homotopy group) making it a bundle fiber homotopy equivalent to a trivial lens
space bundle. Now we use the fiber homotopy from such a bundle to the trivial lens
space bundle to get an h–cobordism bundle of a lens space (done in Lemma 6.10).
Finally, in our paper [4] we essentially classified all h–cobordism bundles of a lens
space and showed that their Igusa–Klein torsion can be calculated only using the axioms.
So their difference torsion is zero.

6.1 Lens spaces

Any cyclic group Z=n acts on the complex numbers C by rotation. For the rest of
the paper, we will pick a generator 1 2 Z=n and have it act by multiplication with
e2�i=n on C. Then we get a componentwise action on the odd-dimensional sphere
S2NC1 �CNC2.

Definition 6.1 The odd-dimensional lens space L2NC1n is defined to be the quotient
S2NC1=.Z=n/ by the action defined above.
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It is well known that the CW–structure on L2NC1n has a cell in every dimension and
its associated chain complex is given by

0! Z 0
�!Z n

�!Z 0
�!� � �

0
�!Z n

�!Z 0
�!Z! 0:

In particular we see that L2NC1n is rationally spherical with fundamental group Z=n.
Recall that we are interested in twisted torsion invariants and thereby require our
manifolds to have nontrivial fundamental group, so the odd-dimensional lens spaces
will play the role of finite-dimensional spheres in some sense.

In Section 7 we will also need spaces with nontrivial fundamental group that are
rationally contractible to provide a twisted analogue of the infinite-dimensional sphere
S1'� or large-dimensional discs DN . The even-dimensional lens spaces are exactly
going to fulfill this condition:

Definition 6.2 The even-dimensional lens space L2Nn � L2NC1n is obtained from
the odd-dimensional one by omitting the top cell in the CW decomposition described
above.

It follows immediately that L2Nn is rationally acyclic with fundamental group Z=n.
We choose a universal covering eL2Nn ! L2Nn . This comes equipped with a .2N�1/–
connected map Qi W eL2Nn ! S2NC1.

Lastly, note that there is a chain of inclusions

� � � � L2N�2n � L2N�1n � L2Nn � L
2NC1
n � � � � :

6.2 Lens space bundles

Following the outline above, we first want to show that the difference torsion is zero
on every linear odd-dimensional lens space bundle L2NC1n ,! E2NC1n ! B with
local coefficient system F on E2NC1n . We already know from the base case that the
difference torsion is zero on every S1–bundle. Furthermore, if we take an S l–bundle
with l > 1 or disc bundle, we know that the fundamental group of the fiber is trivial and
it therefore admits no nonconstant local system. So the twisted difference torsion on
these bundles is always given by the nontwisted difference torsion. But the nontwisted
difference torsion is zero everywhere as Igusa showed in [7]. From this we get the
following lemma:

Lemma 6.3 For the difference torsion �ı associated with any higher twisted torsion
invariant, we have

�ı.E;F/D 0

for any disc or sphere bundle E! B with local system F on E.
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At first we will prove:

Lemma 6.4 The difference torsion is 0 on any linear odd-dimensional lens space
bundle L2NC1n ,! E2NC1n ! B . By linear we mean that it is covered by a linear
sphere bundle S2NC1 ,! zE2NC1! B .

Remark 6.5 The corresponding statement [7, Lemma 7.3] only deals with linear
disc bundles, the proof of which follows swiftly from the product formula for relative
torsion. Unfortunately, there is no twisted product formula, so our proof is slightly
more difficult.

Proof The covering sphere bundle zE2NC1 is a subbundle of an .NC1/–dimensional
complex vector bundle. By the splitting principle, it suffices to look at the direct sum
of NC1 complex line bundles. The sphere bundle will become the fiberwise join of
the circle bundles associated with the line bundles:

S1 � � � � �S1 ,! zE11 � � � � �
zE1NC1! B:

Now we have

L2NC1n Š .S2N�1 �S1/=n

D .S2N�1 �D2/=n[.S2N�1�S1/=n .D
2N
�S1/=n:

Fiberwise, this gives us
E2NC1n DH 2N�1

n [H 1
n ;

where H 2N�1
n !B is an .S2N�1�D2/=n–bundle and H 1

n !B is a .D2N�S1/=n–
bundle, both meeting along their common vertical boundary, which is given by an
.S2N�1�S1/=n–bundle Gn. The Z=n–action is given by the simultaneous action on
each component of the products. While the Z=n–action on any disc is not free, the
simultaneous action will guarantee that it is free on the product. We can restrict every
local coefficient system F on E2NC1n to H 2N�1

n , H 1
n and Gn and use the additivity

axiom.

Now we will continue the proof by induction. We know that the difference torsion
is 0 on every L1nŠS

1–bundle. Let us then assume that the difference torsion is 0 on
any linear L2N�1n –bundle with any representation of the fundamental group. Given a
linear L2NC1n –bundle E2NC1n ! B with local coefficient system F , the construction
above yield, by Lemma 4.2,

�ı.E2NC1n ;F/D �ı.H 2N�1
n ;F

jH2N�1
n

/C �ı.H 1
n ;FjH1

n
/� �ı.Gn;FjGn/:

We have nontrivial fibrations

D2 ,! .S2N�1 �D2/=n! L2N�1n ;
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D2N ,! .D2N �S1/=n ! L1n;

S1 ! .S2N�1 �S1/=n ! L2N�1n :

The first of these splits the bundle H 2N�1
n in the following manner:

D2
� � // .S2N�1 �D2/=n //

� _

��

L2N�1n
mM

||

D2
� � // H 2N�1

n
//

��

Jn

xx
B

where Jn! B is an L2N�1n –bundle and H 2N�1
n ! Jn is a D2–bundle. Since D2

is contractible, we get a local system FJ on Jn the pull-back of which to H 2N�1
n is

isomorphic to F
jH2N�1
n

. Now we can use the geometric transfer and the fact that we
already determined the difference torsion to be 0 on L2N�1n –bundles and D2–bundles
to show

�ı.H 2N�1
n ;F

jH2N�1
n

/D �.D2/�.Jn;FJ /C trJnB .�Jn.H
2N�1
n ;F

jH2N�1
n

//D 0:

A similar argument holds for H 1
n and Gn, and this completes the proof.

6.3 Difference torsion as a fiber homotopy invariant

In this section, we will prove that the difference torsion �ı is a fiber homotopy invariant.
By this we mean that for any two bundles F1 ,! E1! B and F2 ,! E2! B and
fiber homotopy equivalence f W E1! E2 with local coefficient systems F2 on E2
and f �F2 Š F1 on E1, we have

�ı.E1;F1/D �ı.E2;F2/ 2H 2k.BIR/:

This section will greatly rely on the construction of the equivariant Hatcher examples
from [4]. We will especially use some techniques involving h–cobordism bundles, for
a basic depiction of which the reader is also referred to [4, Section 1].

First we show the following lemmas:

Lemma 6.6 For any linear disc bundle D q
�!E and any bundle pair .E; @0/! B

with local coefficient system F we have

�ıB.D; @0; q
�F/D �ıB.E; @0;F/;

where we pull the system up to D and @0D D q�1@0E as usual.
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Proof By geometric transfer (Proposition 4.8) we have

�ıB.D; @0; q
�F/D �ı.E; @0;F/C trEB .�

ı
E .D; q

�F//

and �ıE .D; q
�F/D 0 because D is a disc bundle over E.

Remark 6.7 The same statement still holds in the nonrelative case.

We will now need to prove three subsequent lemmas before we can prove the fiber
homotopy invariance.

Remark 6.8 As before (Proposition 5.1) it is enough to look at local systems that
induce holonomy covers with cyclic transformation group. So we will always assume
that.

Lemma 6.9 Let B be a space with finite fundamental group. Then for sufficiently large
integers N the difference torsion �ı is zero on any h–cobordism bundle of L2N�1n

over B for a given n.

Proof Since we can assume that B is simply connected, all local systems on an
h–cobordism bundle of L2N�1n �DM inducing an n–fold cyclic holonomy are iso-
morphic to the local systems of the form F� , where � is an nth root of unity. We will
now fix such a �.

We will follow Igusa [7, Lemma 7.11] closely in his discussion of the untwisted version
of this crucial proof. By the stability of higher torsion (Corollary 4.10) we can view
the difference torsion as a map

�ı. ;F� /W ŒB; BP.L2N�1n /�D ŒB; B.colimM C.L2N�1n �DM //�!H�.BIR/

sending an h–cobordism bundle h! B to �ı.h;F� /. Here C.M/ is the concordance
space and P.M/ is the stable concordance space; for details see [4, Section 1]. We
can give the set ŒB; BP.L2N�1n /� a group structure by the fiberwise gluing together of
the h–cobordisms as explained in [7]. From the additivity properties of higher twisted
torsion (in particular Example 4.7) it follows that �ı. ;F� / is a group homomorphism.
So it is enough to give rational generators of ŒB; BP.L2N�1n /� and show that the
difference torsion is zero on these generators.

For N large enough (N � dimB ) we have

ŒB; BP.L2N�1n /�D ŒB;H.L2N�1n /�Š ŒB;H.BZ=n/�;

where H denotes the classifying space of h–cobordism bundles. In [4, Section 3.2], we
define the twisted Hatcher maps �i W Gn=U!H.BZ=n/ and the main theorem thereof
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uses those to show that the space Q˝ ŒB;H.BZ=n/� is spanned by various Hatcher
constructions (also defined in [4]) of one nontrivial vector bundle � over B with fiber
a homotopically trivial sphere bundle. The calculations in [4, Section 4.1] only rely
on the axioms and ensure that the difference torsion of these Hatcher constructions is
zero. This is because the nontrivial Igusa–Klein torsion of those bundles arises from
the torsion of sphere bundles and linear lens space bundles.

Lemma 6.10 Let N be an sufficiently large integer and E ! B a bundle with
local system F on E inducing an n–fold cyclic holonomy covering. Then we have
�ı.E;F/D 0 if there is a fiber homotopy equivalence:

E
�
//

��

L2N�1n �B

��

B
D

// B

Proof Denote the fiber homotopy equivalence H W E ! L2N�1n �B . We can take
the product of L2N�1n �B with a large-dimensional disc DM and make H into an
embedding

H W E �,�!DM �L2N�1n �B:

Then we can take a tubular neighborhood of H.E/ � DM � L2N�1n � B to get a
codimension-0 embedding of an M 0–dimensional disc bundle D.E/ over E

GW D.E/ �,�!DM �L2N�1n �B:

Then .DM �L2N�1n �B/nG.Dı.E// is an h–cobordism bundle of L2N�1n �SM�1

over B and by Lemma 4.2 its difference torsion is given by

�ı..DM �L2N�1n �B/nG.Dı.E//;F/C �ı.D.E/;F/� �ı.S.E/;F/

D �ı.DM �L2N�1n �B;F/

D 0;

since the last bundle is trivial. S.E/ denotes the sphere bundle given as the vertical
boundary of D.E/. We can use the transfer axiom to show that

�ı.D.E/;F/D �ı.E;F/;

and, given that M 0 is even,

�ı.S.E/;F/D �.SM
0�1/�ıB.E;F/C trEB �

ı
E .S.E/;F/D 0;

because the difference torsion is zero on any disc and sphere bundles. Therefore
it suffices to show that the difference torsion is zero on any h–cobordism bundle
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of L2N�1n �SM�1 over B for arbitrarily large N . Such a bundle can easily be reduced
to an h–cobordism bundle of L2N�1n without changing its torsion: Let H ! B be
an h–cobordism bundle of L2N�1n � SM�1. We can embed SM�1 � I as a tubular
neighborhood of SM�1 into DM and thereby get

H � L2N�1n �SM�1 �B ,! L2N�1n �DM � 1�B � L2N�1n �DM � I �B;

and we can define the h–cobordism bundle of L2N�1n �DM (and thereby of L2N�1n

by stability)

H 0 WDH [L2N�1n �SM�1�B L
2N�1
n �DM � I �B:

Intuitively, we get H 0 by gluing the h–cobordism bundle H of L2N�1n �SM�1 on top
of a trivial h–cobordism bundle of L2N�1n �DM along the inclusion SM�1 ,!DM .

We calculate, using the relative additivity properties of higher torsion (Example 4.7), for
any local system F in L2N�1n extended naturally to H , H 0 and L2N�1n �DM �I �B ,

�ı.H 0;F/D �ı.H 0; Ln �DM � 0�B;F/

D �ı.H;L2N�1n �SM�1 �B;F/
C �ı.L2N�1n �Dm � I �B;L2N�1n �Dm � 0�B;F/

D �ı.H;F/:

With this construction on h–cobordism bundles the proof now follows from the previous
lemma.

Lemma 6.11 The difference torsion �ı is 0 on any bundle pair .E; @0/! B the
fibers .F; @0/ of which are h-cobordisms and have a local system F inducing a cyclic
n–fold holonomy covering.

Proof This proof can be translated directly from the proof of Lemma 8.3 in [7] by
replacing the high-dimensional discs DN with high-dimensional lens spaces L2Nn .

Theorem 6.12 The difference torsion �ı is a fiber homotopy invariant of smooth
bundle pairs with local systems.

Proof Same as for Theorem 8.4 in [7].

Remark 6.13 Since �ı is a fiber homotopy equivalence, it is well defined on any
fibration .Z; C /!B with fiber .X;A/ and local system F on X which is smoothable
in the sense that it is fiber homotopy equivalent to a smooth bundle pair .E; @0/ with
compact manifold fiber .F; @0/.
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7 Triviality of the difference torsion

Using the fiber homotopy invariance of the difference torsion we will first show that
we can replace any bundle E! B with another one with the same torsion and real
acyclic fiber. Then we will show that the difference torsion (or more general any torsion
invariant that is fiber homotopy invariant) must be zero on any bundle with acyclic fibers.

7.1 Lens space suspensions

As outlined above, our first goal is to eliminate the real homology groups of the
fiber F of a bundle E ! B . We will use the fact that the stable homotopy groups
of F are rationally equivalent to the rational homology groups. This means that
sufficiently large k and for an element ˛ 2 HmCk.†kF IR/ Š Hm.F IR/ there is
a map SmCk ! †kF representing ˛ as an element of �mCk.†kF /˝R. We then
can glue in an .mCkC1/–cell along this map to effectively kill off the element ˛
and continue inductively. Unfortunately, this naive construction has a big problem for
us: even just one suspension destroys the first homotopy group of F leaving us with
only the trivial local system which is not very interesting (or helpful). So we need an
alternative suspension construction that shifts up the rational homology groups, exhibits
the isomorphism to stable homotopy groups after sufficiently many suspensions and
preserves the first homotopy group. We achieve all of this by suspending via a push-out
along two high-dimensional (even) lens spaces rather than discs.

Let us recall that the usual suspension †F is defined by the (homotopy) push-out:

F //

��

DN

��

DN // †F

Since DN is contractible, we know that �1†F D 0, and therefore this construction
cannot give us a nonconstant local system on †F . Now we make the following
definition:

Definition 7.1 (lens space suspension) Let F be a topological space with local
system F on F inducing an n–fold holonomy cover zF ! F with finite cyclic
transition group. The cover gives us a mapping F !L2Nn for a large N 2N (because
L1n ŠK.Z=n; 1/). Using this map, we can define the lens space suspension †nF as
the homotopy push-out:

F //

��

L2Nn

��

L2Nn
// †n.N /F
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Remark 7.2 We will drop N from the notation and consider it to be very large.

We have the earlier introduced local systems F� on L2Nn for an nth root of unity �. By
choosing the map i W F ! L2Nn properly, we can assume F D i�Fe2�i=n . So we get
a local system †F D Fe2�i=n [F Fe2�i=n on †nF . From this we get the holonomy
covering A†nF n

�!†nF ; but we also have the holonomy covering zF n
�!F . These

two covering spaces are related by the following lemma:

Lemma 7.3 In the setting above, we have

�iA†nF Š �i† zF
in low degrees i (smaller than 2N ).

Proof Let †.N/ zF be the suspension of zF along S2N (instead of S1 ). This forms
an n–fold covering †.N/ zF !†n.N /F , which must be homotopy equivalent to the
universal covering of C†n.N /F !†n.N /F .

For the usual suspension, it is well known that HkC1.†F IR/ŠHk.F IR/ for all k�1.
For the lens space suspension this becomes:

Lemma 7.4 For every topological space F with local system inducing an n–fold
holonomy covering, we have, for k � 1,

HkC1.†nF IR/ŠHk.F IR/:

Proof Using the Mayer–Vietoris sequence for the defining push-out of the lens space
suspension, we get:

� � � !HkC1.L
2N
n IR/˚HkC1.L

2N
n IR/!HkC1.†nF IR/

!Hk.F IR/!Hk.L
2N
n IR/˚Hk.L

2N
n IR/! � � �

The fact that L2Nn is rationally homologically trivial now yields the desired isomor-
phism.

Furthermore, we know for the usual suspension that �Sm.F /˝RŠHm.F IR/, where
�Sm.F / WD�m.colimk �k†kF / denotes the stabilized homotopy group. This becomes:

Lemma 7.5 If k 2N is large enough, and F is a space with local system inducing an
n–fold holonomy covering, we have an isomorphism

�mCk.†
k
nF /˝RŠHmCk.†

k zF IR/

for mC k < N .
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Proof We get the n–fold holonomy covering zF ! F . Using Lemma 7.3 several
times, we get in low degrees i

�i
A
†knF Š �i†.

B
†k�1n F /Š � � � Š �i†

k zF :

Thus we have, for N >mC k > 1,

�mCk.†
k
nF /˝RŠ �mCk.†

k zF /˝R

Š �Sm.
zF /˝R for k large

ŠHm. zF IR/

ŠHmCk.†
k zF IR/:

Remark 7.6 Although we require k to be large in the last lemma, it does not depend
on N at all, meaning that we can still choose N to be much larger than k.

We will need the following definition and proposition:

Definition 7.7 A topological space F is called simple if �1F is abelian and acts
trivially on every �iF for i � 2.

Proposition 7.8 Let F be a path connected, simple space and zF n
�! F an n–fold

Galois covering. Then the transition group Z=n will act trivially on H�. zF IR/

Proof Let fF lg be the Postnikov tower for F ; that is a sequence of spaces with
liml F l Š F and �iF l Š �iF for 0 � i � l and �iF l Š 0 for i > l . Since we
have �1F l Š �1F for every l > 0, we have n–fold coverings zF l n

�!F l . We will
prove by induction that Z=n acts trivially on H�. zF l IR/. The sequence f zF lg will
clearly provide a Postnikov tower for zF , and since the real homology of the stages of
a Postnikov tower stabilizes in every degree, this will prove the proposition.

To start the induction we look at F 1 ' K.�1F; 1/, which will only have the first
homotopy group �1F 1 Š �1F . The covering zF n

�!F gives a map ˛W �1F ! Z=n.
Using this, we see that the covering zF 1 n

�!F 1 will be an Eilenberg–Mac Lane space:

zF 1 'K.ker˛; 1/:

The group Z=n acts trivially on ker˛ � �1F because �1F is abelian, and therefore
Z=n acts trivially on zF 1 'K.ker˛; 1/ and H�. zF 1IR/. This starts the induction.

Now assume that Z=n acts trivially on H�. zF l�1IR/ with l > 1. We have the fibration

K.�l zF ; l/! zF
l
! zF l�1:

Since we know �lF Š �l zF , the group Z=n will act trivially on �l zF and thereby also
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trivially on K.�l zF ; l/ and H�.K.�l zF ; l/IR/. By induction assumption it must also
act trivially on

Hi . zF
l�1
IHk.K.�l. zF /; l/IR//;

and thereby it acts trivially on the whole Leray–Serre spectral sequence for the fi-
bration K.�l zF ; l/! zF l ! zF l�1. From this it follows that Z=n acts unipotently
on H�. zFl IR/, and since RŒZ=n� is semisimple, this includes that Z=n acts trivially
on H�. zF IR/.

From this we get the following important corollary.

Corollary 7.9 If F is a simple topological space with local system inducing an n–fold
holonomy covering zF n

�!F , then we have

Hl.†.N /
k zF IR/ŠHl.†

k
nF IR/

for all l <2N . (Recall that †.N/ zF is the suspension of zF along S2N instead of S1.)

Proof Since F is simple, the group Z=n will act trivially on H�. zF IR/. It is well
known that this implies

H�.F IR/ŠH�. zF IR/:

The inclusion S2N!S1 gives a map †.N/ zF!† zF that is evidently 2N–connected.
By using Lemma 7.4 we see

H�.†.N /
k zF IR/ŠH��k. zF IR/ŠH��k.F IR/ŠH�.†

k
nF IR/

up to degree 2N .

Now we are turning back to bundles. For a fiber bundle F ,! E ! B with local
system F on F inducing a finite cyclic n–fold holonomy covering, we get a fiberwise
map E! B �L2Nn and can use this to define the fiberwise lens space suspension as
the (homotopy) push-out:

E //

��

B �L2Nn

��

B �L2Nn
// †n;BE

It is easy to see that †n;BE!B is a bundle with fiber †nF and as before we get a local
system †F on †n;BE. We have the following lemma analogous to [7, Lemma 8.7]:

Lemma 7.10 The bundle †n;BE is smoothable (ie fiber homotopy equivalent to a
smooth bundle) if E is smoothable, and we have

�ı.E;F/D��ı.†n;BE;†F/:
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7.2 Reducing the homology of the fiber

We now attempt to make the fiber of a bundle F ,!E!B with a local system on F ,
simply connected base B , and simple fiber F rationally homologically trivial without
changing the difference torsion. This is the general strategy: Assume that m is the
largest integer such that Hm.F IR/ is nontrivial. Picking an element ˛ 2Hl.F IR/,
Lemma 7.12 asserts that we can find a representative of ˛

B �LmCkn !†kn;BE;

and then Lemma 7.11 uses this to create a new fiber bundle E1! B with the same
difference torsion as E and the fiber F1 having overall one dimension lower homology
than F . Then Lemma 7.13 puts everything together inductively. The basic ideas
reflect what has been done by Igusa in [7], yet the fact that we need to preserve the
representation of a fundamental group poses some challenges. In the following, let N
always be a sufficiently large integer.

Lemma 7.11 Suppose F ,!E!B is a fibration with local system F on F inducing
a finite cyclic n–fold holonomy covering. Let m2N denote the largest integer for which
Hm.F IR/¤ 0. Suppose that we have Hl.F IR/ŠHl. zF IR/ for 0 < l <mCdimB .
Suppose further that m is odd and let ˛ be a map

˛W B �Lmn !E

with the following properties: on each fiber we have ˛�F Š F� for some nth root of
unity � and ˛�W Hm.L

m
n IR/!Hm.F IR/ is nontrivial. Then if we look at the bundle

E1 DE [B�Lmn B �L
2N
n

with fiber F1 with local system F1 WDF[F�F� and corresponding covering zF1 n
�!F1,

we have
dimRH�.F1IR/ < dimRH�.F IR/

and
Hl.F1IR/ŠHl. zF1IR/ for 0 < l < mC dimB:

Proof Assume that we have a map ˛W B �Lmn !E such that the induced map

˛�W Hm.L
m
n IR/!Hm.F IR/

is nontrivial. Note this implies that the integer m is odd. Then the homology of the fiber
F1 D F [Lmn L

2N
n will be given by the Mayer–Vietoris sequence as (where i < 2N )

Hi .L
m
N IR/

˛��!Hi .F IR/˚ 0!Hi .F1IR/! 0

and therefore we have dimRH�.F1IR/ < dimRH�.F IR/. This also shows that
Hi .F1IR/ŠHi .F IR/ for i ¤m.
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To show that this F1 will satisfy the second property, we can use a similar sequence
and show Hi . zF1IR/ŠHi . zF IR/.

Lemma 7.12 Suppose F ,!E!B is a fibration with simply connected base B and
local system F on F inducing a finite cyclic n–fold holonomy covering. As before
let m 2 N denote the largest integer for which Hm.F IR/¤ 0 and suppose that we
have Hl.F IR/ŠHl. zF IR/ for 0< l <mCdimB . Then there exists an integer k 2N
and a map

˛W B �LmCkn !†kn;BE

such that ˛�†kF Š F� for some nth root of unity � and ˛�W HmCk.L
mCk
n IR/!

HmCk.†
k
nF IR/ is nontrivial.

Proof Note that in the following, m and n are fixed, already determined integers,
whereas k is an sufficiently large integer bounded by the sufficiently large integer N .
Furthermore mCk must be odd, such that LmCkn has a nonvanishing rational homology
group in degree mC k, but we can choose k in such a way that this is satisfied.

Such a map ˛ will correspond to a section s of the bundle

Map.LmCkn ; †knF / ,!MapB.B �L
mCk
n ; †kn;BE/! B;

which is a homologically nontrivial map in each fiber. In this context the notation
MapB.B �L

mCk
n ; †En;b/ will always mean the space of fiberwise maps between

B �LmCkn and †kn;BE. We will construct this section using obstruction theory. Let Bl
denote the l–skeleton of B . Firstly, we will give s1W B1!MapB.B �L

mCk
n ; †kn;BE/.

By the choice of m we have a nonzero element

z 2HmCk.†.N /
k zF IR/ŠHmCk.†

k
nF IR/ŠHm.F IR/:

Since the reduced homology is isomorphic to rationalized stabilized homotopy, we can
view z as an element of �mCk.†.N /k zF /˝R, if k is large enough. Now choose a
representative z̨1W SmCk!†.N/k zF of z . The map z̨1 will clearly be nontrivial on
homology.

Our goal is now to modify z̨1 to z̨W SmCk ! †.N/k zF such that it covers an
˛W LmCkn ! †knF . Since HmCk.†.N /k zF IR/ Š HmCk.†knF IR/, the map ˛ will
be nontrivial on homology. Furthermore the covering will ensure ˛�F Š F� for some
nth root of unity �. To begin, we have from the last lens space suspension an inclusion

i W LmCkn ,!†knF

trivial on homology. This will be covered by a homologically trivial equivariant
inclusion

Qi W SmCk ,!
A
†knF :
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Qi

SmCk

Q
Q
Q

DmCk

�
�
��

pDmCk

e†knF
��
�

   
 

z̨1.S
mCk/

p z̨1.S
mCk/

Figure 2: Modifying the inclusion Qi W SmCk ,! e†knF

The idea now is to take a small disc DmCk in SmCk �A†knF and connect it to the
image z̨1.SmCk/. Then we can map SmCk to this new image instead and this map
will be nontrivial on homology because z̨1 is nontrivial on homology. To make it
equivariant we do the same construction equivariantly to every disc piDmCk in the
orbit of DmCk under the Z=n action on SmCk . Here p 2 Z=n denotes a generator.
This is illustrated in Figure 2.

The formal construction is the following: Choose a small disc DmCk � SmCk . By
doing this in a slightly bigger disc, we can modify the inclusion such that it factorizes

DmCk!� ,!
A
†knF :

Using DmCk=@DmCk ' SmCk , we can glue in z̨1 and modify the inclusion again so
that it factorizes

DmCk
z̨1
�!

A
†knF :

Now let p 2Z=n be a generator. If we make DmCk small enough, it will not intersect
with any of the piDmCk � SmCk for 0 < i < n. Doing the same construction to
every piDmCk using pi z̨1, we can modify the inclusion to a map

z̨W SmCk!
A
†knF ;

which will clearly be n–equivariant and thus cover a map

˛W LmCkn !†nF:

The corresponding rationalized homotopy class of z̨ in �mCk.†knF /˝R is given by

Œz̨�D Œz̨1�CpŒz̨1�C � � �Cp
n�1Œz̨1�D nŒz̨1�¤ 0;
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since �1F acts trivially on

�mCk
A
†knF ˝RŠ �mCk.†.N /

k zF /˝RŠHmCk.†.N /
k zF IR/

ŠHm. zF IR/ŠHm.F IR/

(otherwise the map Hm.F IR/ ,! Hm. zF IR/ would not be an isomorphism and
thereby Hm.F IR/ would not be isomorphic to Hm. zF IR/ either). So ˛ will be
nontrivial in rational homology.

With this we can define s0W B0 ' �!MapB.B �L
mCk
n ; †kn;BE/ nontrivial in the

homology of the fiber. Since B is simply connected, this section, defined over a point
of B , can be extended to a section s1W B1!MapB.B �L

mCk
n ; †kn;BE/.

Let us now continue inductively. Suppose we already have a section sl W Bl !

MapB.B �L
mCk
n ; †kn;BE/ with 1� l < dimB . By restriction, we will get sections

sl;i W Bl !MapB.B �L
i
n; †

k
n;BE/:

Let us first extend sl;1 to slC1;1W BlC1!MapB.B �L
1
n; †

k
nE/: This depends on the

obstruction class

�.sl ; 1/ 2H
lC1.B;Bl I�l.Map.L1n; †

k
nF ///ŠH

lC1.B;Bl I�lC1.†
k
nF //;

because L1n ' S
1. So �.sl;1/ is rationally trivial, if k is large enough (larger than

l C 1). This is enough to extend sl;1 as Igusa showed in the nontwisted version [7,
Lemma 8.9] of this lemma.

We now want to extend slC1;1 to slC1;2 relative to sl;2. For this we look at the
cofibration sequence

L1n ,! L2n! S2;

which gives us the fibration sequence

�2.†knF / ,!MapB.B �L
2
n; †

k
n;BE/!MapB.B �L

1
n; †

k
n;BE/:

From this we get the commutative diagram

�2.†knF /� _

��

Bl� _

��

sl;2
// MapB.B �L

2
n; †

k
n;BE/

��

BlC1

slC1;2

66

slC1;1
// MapB.B �L

1
n; †

k
n;BE/
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where the right column is a fibration sequence. Consequently the extension from slC1;1
to slC1;2 depends on the obstruction class

�.sl;1/ 2H
lC1.B;Bl I�l.�

2.†knF ///ŠH
lC1.B;Bl I�lC2.†

k
nF //;

which is, again, rationally trivial for large k.

Now assume that we have already constructed slC1;i with i 2N even. Next, look at
the cofibration

Lin ,! LiC2n !M.Zn; i/;

where

M.Zn; i/ WD cof.S i n
�!S i /

is the Moore space. Directly from the definition of the Moore space, we get that
�l.Map.M.Zn; i/; X// is finite for any space X . Using the fibration

Map.M.Zn; i/; †knF / ,!MapB.B �L
iC2
n ; †kn;BE/!MapB.B �L

i
n;B†

k
nE/;

the commutative diagram

Map.M.Zn; i/; †knF /� _

��

Bl� _

��

sl;iC2
// MapB.B �L

iC2
n ; †kn;BE/

��

BlC1

slC1;iC2

55

slC1;i
// MapB.B �L

i
n; †

k
n;BE/

tells us that extending slC1;i to slC1;iC2 depends on the obstruction class

�.slC1;i / 2H
lC1.B;Bl I�l.Map.M.Zn; i/; †knF ///;

which is rationally trivial.

Using this inductively, we get slC1;kCm�1. To extend this to slC1;kCm D slC1, we
use again the cofibration sequence

LkCm�1n ,! LkCmN ! SkCm;

the induced fibration sequence

�kCm.†knF / ,!MapB.B �L
kCm
n ; †kn;BE/!MapB.B �L

kCm�1
n ; †kn;BE/
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and the commutative diagram

�kCm.†knF /� _

��

Bl� _

��

sl;kCm
// MapB.B �L

kCm
n ; †kn;BE/

��

BlC1

slC1;kCm

44

slC1;kCm�1
// MapB.B �L

kCm�1
n ; †kn;BE/

making the obstruction class

�.slC1;kCm�1/ 2H
lC1.B;Bl I�kCmCl.†

k
nF //:

However, if k is large enough, we have

�kCmCl.†
k
nF /˝RŠ �kCmCl.†.N /

k zF /˝R

ŠHkCmCl.†.N /
k zF IR/

ŠHkCmCl.†
k
nF IR/

ŠHmCl.F IR/Š 0

by assumption because mC l < mC dimB . This guarantees that we can extend
slC1;kCm�1 to slC1 and completes the proof.

Lemma 7.13 Let F ,!E!B be a fibration with simply connected base B and local
system F on F inducing a finite cyclic n–fold holonomy covering. Suppose further
that F is simple. Then there exists a bundle F 0 ,! E 0 ! B with local coefficient
system F 0 on F 0, where F 0 is rationally homologically trivial such that

�ı.E;F/D˙�ı.E 0;F 0/:

Proof Let again m be the largest integer such that Hm.F IR/ is nontrivial. Since F
is simple we get H�.F IR/ŠH�. zF IR/ by Corollary 7.9, and we can use Lemma 7.12
to get, for an integer k, a bundle map

˛W B �LmCkn !†kn;BE

nontrivial on the .mCk/th homology. By Lemma 7.3 the n–fold covering of †knF
is given in low degrees by †.N/k zF . Since both †kn and †.N/k only shift rational
homology up by k degrees we have

Hl.†
k
nF IR/ŠHl.†.N /

k zF IR/ŠHl.
A
†knF IR/
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for all 0 < l < mC kC dimB . Furthermore the highest nontrivial homology group
of †knF is in degree mC k and we also have

dimRH�.†
k
nF IR/D dimRH�.F IR/:

Now we can apply the construction of Lemma 7.11 to get a bundle F1 ,! E1! B

such that

dimRH�.F1;R/ < dimRH�.†
k
nF IR/D dimRH�.F IR/:

By definition of E1, and since the torsion of trivial bundles is zero, we get with
additivity and Lemma 7.10

�ı.E1;F1/D �ı.†kn;BE;†
kF/D .�1/k�ı.E;F/:

Since Lemma 7.11 guarantees that Hl.F1IR/ŠHl. zF1IR/ for 0< l <mCkCdimB

we now can repeat this process and decrease the dimension of the rational homology
until we will get the bundle F 0 ,!E 0! B with local system F 0 on F such that

�ı.E;F/D˙�ı.E 0;F 0/

and F 0 is rationally homologically trivial.

We are now finally in the position to prove the main theorem. As a consequence of
Lemma 7.13 it suffices to only determine �ı on bundles with rationally trivial fiber, so
we conclude with the following lemma.

Lemma 7.14 We have �ı.Z;F/ D 0 for any torsion invariant, smoothable bundle
X ,! Z ! B with H�.X IR/ D 0, simply connected base B and local system F
inducing an n–fold holonomy covering.

Proof This is completely analogous to the proof of Lemma 8.11 in [7]. We will only
explain the main points. We replace the bundle by a manifold bundle M ,!E! B

and its universal covering zM ! zE ! B . Choosing a section of E ! B gives disc
bundles D �E! B and zD � zE! B . Now there is a universal torsion class

�ı 2H 2k.BDiffn. zM rel zD/IR/;

where BDiffn. zM rel zD/ is the classifying space of Z=n–equivariant diffeomorphisms
of zM relative to zD.

In the original paper [7], one only has to consider BDiff.M relD/, but luckily in the
end we are only interested in maps that leave a certain base point fixed and we have

BDiff0;n. zM rel zD/Š BDiff0.M relD/;

where the subscript 0 indicates the identity component. From here on the proof is
parallel to the proof in [7].
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