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Uniform fellow traveling between surgery paths
in the sphere graph

MATT CLAY

YULAN QING

KASRA RAFI

We show that the Hausdorff distance between any forward and any backward surgery
paths in the sphere graph is at most 2 . From this it follows that the Hausdorff distance
between any two surgery paths with the same initial sphere system and same target
sphere system is at most 4 . Our proof relies on understanding how surgeries affect
the Guirardel core associated to sphere systems. We show that applying a surgery is
equivalent to performing a Rips move on the Guirardel core.
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1 Introduction

We study surgery paths in the sphere graph. Let M be the connected sum of n copies of
S1�S2 (we reserve the notation M for the universal cover of M, which is used more
frequently in the body of the paper). The vertices of the sphere graph are essential sphere
systems in M and edges encode containment (see Section 2 for precise definitions). We
denote the sphere graph by S and the associated metric with dS . It is known that the
sphere graph .S; dS/ is hyperbolic in the sense of Gromov [11; 16]. The relationship
between the optimal hyperbolicity constant and the rank of the fundamental group
of M (which is isomorphic to Fn , the free group of rank n) is unknown.

Given a pair of (filling) sphere systems S and †, there is a natural family of paths,
called surgery paths, connecting them. They are obtained by replacing larger and larger
portions of spheres in S with pieces of spheres in †. This process is not unique.
Also, families of paths that start from S with target † are different from those starting
from † with target S . It follows from Hilion and Horbez [16] that surgery paths are
quasigeodesics. Together with the hyperbolicity of the sphere graph, this implies that
different surgery paths starting with S and with target † have bounded Hausdorff
distance in the sphere graph. The bound depends on the optimal hyperbolicity constant,
which, as stated above, does not have a good qualitative estimate.
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However, in this paper we show that, in any rank, any two surgery paths are within
Hausdorff distance at most 4 of each other. This follows by comparing a surgery path
that starts from S with target † to a surgery path starting from † with target S .

Theorem 1.1 Let S and † be two filling sphere systems and let

S D S1;S2; : : : ;Sm; dS.Sm; †/� 1;

be a surgery sequence starting from S towards † and

†D†1; †2; : : : ; †�; dS.†�;S/� 1;

be a surgery sequence in the opposite direction. Then, for every Si there is a †j such
that dS.Si ; †j /� 2.

Using this, we get the bound of 4 between paths with the same initial sphere system
and same target sphere system.

Theorem 1.2 Let S and † be two filling sphere systems and let

S D S1;S2; : : : ;Sm; dS.Sm; †/� 1;

S D S 01;S
0
2; : : : ;S

0
n; dS.S

0
n; †/� 1;

be two surgery sequences starting from S towards †. Then, for every Si there is an
S 0j such that dS.Si ;S

0
j /� 4.

Proof Fix two filling sphere systems S and † and surgery paths as in the statement
of the theorem. Let

†D†1; †2; : : : ; †�; dS.†�;S/� 1;

be a surgery sequence starting at † towards S . Given Si , by Theorem 1.1, there is a
†k such that dS.Si ; †k/� 2. Applying Theorem 1.1 again, there is an S 0j such that
dS.†k ;Sj /� 2. Thus dS.Si ;S

0
j /� 4, as desired.

The sphere graph is a direct analogue of the graph of arcs on a surface with boundary.
In fact, there is an embedding of the arc graph into the sphere graph. The arc graph
is known to be uniformly hyperbolic; see Aougab [1], Bowditch [5], Clay, Rafi and
Schleimer [6], Hensel, Przytycki and Webb [15] and Przytycki and Sisto [19]. Since
the solutions of many algorithmic problems for mapping class groups or hyperbolic
3–manifold that fibers over a circle rely on the action of mapping class group on various
curve and arc complexes, the uniform hyperbolicity clarifies which constant depend
on the genus and which ones are genus-independent. The uniform hyperbolicity of
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the sphere graph (or one of the other combinatorial complexes associated to Out.Fn/)
is a central open question in the study of the group Out.Fn/, the group of outer
automorphisms of the free group. Note that Theorem 1.2 is not sufficient to prove that
the sphere graph is uniformly hyperbolic.

Summary of other results

The Guirardel core [10] is a square complex associated to two trees equipped with
isometric actions by a group, in our case Fn . This is an analogue of a quadratic
differential in the surface case; the area of the core is the intersection number between
the two associated sphere systems. Following Behrstock, Bestvina and Clay [3], in
Section 3, we describe how to compute the core using the change of marking map
between the two trees. Lemma 3.7 gives a simple condition on when a product of two
edges is in the core, which will be used in future work to study the core. Also, in
Section 4 we define the core for two sphere systems, Core.S ; †/, directly, using the
intersection pattern of the spheres and show this object is isomorphic to the Guirardel
core for the associated tree (Theorem 4.9). Much of what is contained in these two
sections is known to the experts, however, we include a self-contained exposition of
the material since it is not written in an easily accessible way in the literature.

Applying a surgery to a sphere system amounts to applying a splitting move to the
dual tree (see Example 5.6), however, not all splittings towards a given tree come
from surgeries. In general, applying a splitting move could change the associated core
in unpredictable ways potentially increasing the volume of the core. We will show
that (Theorem 5.5) applying a surgery is equivalent to performing a Rips move on the
Guirardel core. That is, there is a subset of all splitting paths between two trees that is
natural from the point of view of the Guirardel core and it matches exactly with the set
of splitting sequences that are associated to surgery paths.

Outline of the proof

Our proof of Theorem 1.1 analyses the Guirardel core Core.Si ; †j /. Generally, this
does not have to be related to Core.S ; †/. However, we show that, for small values
of i and j , the spheres Si and †j are still in normal form and Core.Si ; †j / can
be obtained from Core.S ; †/ via a sequence of vertical and horizontal Rips moves
(Proposition 5.8). For every i , there is a smallest j where this breaks down, which
is exactly the moment the surgery path from † to S passes near Si . The proof of
Theorem 1.1 is completed in Section 6: for every Si , apply enough surgery on † until
Core.Si ; †j / has a free edge, which implies dS.Si ; †j /� 2.
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2 Sphere systems and free splittings

Let M be the connected sum of n copies of S1�S2 and fix an identification of �1.M /

with Fn . There is a well-known correspondence between spheres in M and graph of
group decompositions of Fn with trivial edge groups. We explain this correspondence
now.

Definition 2.1 A sphere system S �M is a finite union of disjoint, essential (does not
bound a 3–ball), embedded 2–spheres in M. We specifically allow for the possibility
that a sphere system contains parallel, ie isotopic, spheres. A sphere system is filling if
each of the complementary regions M �S are simply connected.

We define a preorder on the set of sphere systems by S �† if every sphere in S is
isotopic to a sphere in †. This induces an equivalence relation: S �† if S �† and
†� S . The set of equivalence classes of sphere systems in M is denoted by S ; the
subset of equivalence classes of filling sphere systems is denoted by Sfill . When there
can be no confusion, we denote the equivalence class of S again by S .

The preorder induces a partial order on S that we continue to denote by �. The sphere
graph is the simplicial graph with vertex set S and edges corresponding to domination
S �†. For S ; † 2 S , we denote by dS.S ; †/ the distance between S and † in the
sphere graph. This is the fewest edges in an edge path between the two vertices.

We denote the universal cover of M by M and the lift of the sphere system S to M

by S ; we will refer to S as a sphere system in M . To simplify notation, we use S
and Sfill , respectively, to denote (equivalence classes of) sphere systems and filling
sphere systems, respectively, in M. Let Map.M /DHomeo.M /=homotopy . The natural
map

Map.M /! Out.Fn/

is surjective and has finite kernel generated by Dehn twists about embedded 2–spheres
in M [18]. Such homomorphisms act trivially on spheres systems and hence there is a
left action of Out.Fn/ by automorphisms on the sphere graph. Specifically, realize the
given outer automorphism by a homeomorphism of M and apply this homeomorphism
to the members of a given equivalence class of sphere systems.
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Definition 2.2 A free splitting G is a simplicial tree equipped with a cocompact action
of Fn by automorphisms (without inversions) such that the stabilizer of every edge is
trivial. We specifically allow for the possibility that a free splitting contains vertices of
valence two. A free splitting is filling if the stabilizer of every vertex is trivial.

We define a preorder on the set of free splittings by G �� if there is an Fn –equivariant
cellular map � ! G with connected point preimages. This induces an equivalence
relation G � � if G � � and � �G. The set of equivalence classes of free splittings
is denoted by X ; the subset of equivalence classes of filling free splittings is denoted
by Xfill .1 When there can be no confusion, we denote the equivalence class of G again
by G.

The preorder induces a partial order on X that we continue to denote by �. The free
splitting graph is the simplicial graph with vertex set X and edges corresponding to
domination G � � . For G; � 2 X , we denote by dX .G; �/ the distance between G

and � in the free splitting graph. This the fewest edges in an edge path between the
two vertices.

Suppose that G is a free splitting and let �W Fn!Aut.G/ be the action homomorphism.
Given ˆ 2 Aut.Fn/, the homomorphism � ı ˆW Fn ! Aut.G/ defines a new free
splitting, which we denote by G �ˆ. This defines a right action by Aut.Fn/ on the
free splitting graph. As Inn.Fn/ acts trivially, this induces an action of Out.Fn/ by
automorphisms on the free splitting graph.

There is a natural Out.Fn/–equivariant map from the sphere graph to the free splitting
graph. Given a sphere system S �M, we define a tree G with vertex set consisting of
the components of M �S and edges corresponding to nonempty intersection between
the closures of the components. The action of Fn on M induces a cocompact action
of Fn on G by automorphisms such that the stabilizer of every edge is trivial, ie G is
a free splitting. This map is a simplicial isomorphism [2, Lemma 2].

3 The Guirardel core

In this section we give the definition of Guirardel core of two trees as it is presented
in [10] specialized to the case of trees in Xfill .

3.1 A core for a pair of tree actions

A ray in G 2Xfill is an isometric embedding Er W RC!G. An end of G is an equivalence
class of rays under the equivalence relation of having finite Hausdorff distance. The
set of all ends is called the boundary of G and is denoted by @G.

1Experts may recognize Xfill as the vertices in the spine of the Culler–Vogtmann outer space [9].

Algebraic & Geometric Topology, Volume 17 (2017)



3756 Matt Clay, Yulan Qing and Kasra Rafi

A direction is a connected component of G�fxg, where x is a point in G. A direction
ı�G determines a subset @ı�@G consisting of all ends for which every representative
ray intersects ı in a nonempty (equivalently unbounded) subset. Given an edge e �G,
we denote by Ee the edge with a specific orientation. This determines a direction ıEe �G

by taking the component of G�fxg that contains e , where x is the initial vertex of Ee .
We will denote by Ee1 � @1G the set of ends with a representative that crosses Ee with
the specified orientation, ie Ee1 D @ıEe .

A quadrant in G �� is the product ı1 � ı2 of two directions ı1 �G and ı2 � �.

Definition 3.1 Fix a basepoint .�1;�2/2G�� and consider a quadrant QD ı1�ı2�

G ��. We say that Q is heavy if there exists a sequence gk 2 Fn such that:

(1) .gk�1;gk�2/ 2Q.

(2) dG.gk�1;�1/!1 and d�.gk�2;�2/!1 as k!1.

Otherwise, we say that Q is light.

The core of G �� is what remains when one has removed the light quadrants.

Definition 3.2 (the Guirardel core) Suppose that G; � 2Xfill and let L.G; �/ be the
collection of light quadrants of G ��. The (Guirardel) core of G and � is the subset

Core.G; �/D .G ��/�
� [

Q2L.G;�/

Q

�
:

It follows from the definition that Core.G; �/ is isomorphic to Core.�;G/ via the
swap .x;y/ 7! .y;x/. For more details and examples, see [10; 3].

3.2 Computing the core

There is an algorithm to compute the core for trees G; � 2 Xfill . This suffices to
compute the core for any free splittings G0; �0 2 X . Indeed, if the given trees are not
filling, they can be “blown up” to filling trees G; � 2 Xfill by replacing vertices with
nontrivial stabilizer in the quotient graph of groups G0=Fn and �0=Fn with roses of
the appropriate rank. There are domination maps pW G!G0 and � W �! �0 and we
have that Core.G0; �0/D .p��/.Core.G; �//. This material appears in [3, Section 2]
with slightly different terminology and notation. We provide proofs of the most relevant
parts necessary for the sequel.

Definition 3.3 Suppose that G; � 2Xfill . An Fn –equivariant map f W G!� is called
a morphism if

Algebraic & Geometric Topology, Volume 17 (2017)



Uniform fellow traveling between surgery paths in the sphere graph 3757

(1) f linearly expands every edge across a tight edge path, and

(2) at each vertex of G there are adjacent edges e and e0 such that f .e/\f .e0/ is
trivial, ie there is more than one gate at each vertex.

Such a map f induces an Fn –equivariant homeomorphism f1W @G! @� . Indeed,
this follows by bounded cancellation; for instance see [7]. Next, we state the criterion
provided in [3] regarding the existence of squares in the core.

Lemma 3.4 [3, Lemma 2.3] Let f W G ! � be a morphism between G; � 2 Xfill .
Given two edges e �G and �� � , the square e� � is in the core Core.G; �/ if and
only if for every choice of orientations of the edges e and � the subset f1.Ee1/\ E�1
is nonempty.

This condition is very natural in the following way: Given a curve ˛ on a closed
surface X , each lift ˛ of ˛ to the universal cover X determines a partition of @X
(which is homeomorphic to S1 ) into two subsets ˛C and ˛� . For two curves ˛ and ˇ
on X that intersect minimally, lifts ˛ and ˇ to X intersect if and only if for every
choice of �;�0 2 fC;�g, the set ˛�\ˇ�0 is nonempty.

Using f , it is a simple matter to determine when this condition is met for a given pair
of edges. We discuss this now. By the interior of a simplicial subtree we mean all
nonextremal edges.

Definition 3.5 Suppose that G; � 2 Xfill , f W G! � is a morphism and � 2 � is an
edge. We let Pf� be the set of edges in G whose image under f traverses �. In other
words, Pf� is the set of edges containing f �1.�/. Since f is a morphism, by bounded
cancellation, the set Pf� is finite.

Let Hf� be the interior of the convex hull of Pf� and let �Pf� D Pf� �Hf� ; see Figure 1.
Notice that the interior of the convex hull of �Pf� is also Hf� . Suppose e 2Hf� and Ee
is an orientation of e . We say that Ee can escape Pf� if there is an embedded ray of the
form Ee � Er such that Er does not cross any edge of �Pf� . Define the consolidated convex
hull CHf� of Pf� to be the set of edges in e 2Hf� such that both orientations of e can
escape Pf� .

Lemma 3.6 For every vertex v 2 G there is a ray Er originating at v that is disjoint
from Pf� .

Proof If the lemma were false, then for every edge e adjacent to v the image f .e/
would contain the initial edge in the path connecting f .v/ to �. This violates condition
(2) in Definition 3.3.
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Figure 1: A schematic of the sets Pf� (blue), �Pf� , Hf� (red) and CHf� (green)

The following simple condition tells exactly when a square is in the core.

Lemma 3.7 Let G; � 2Xfill , fix morphisms f W G! � and �W �!G and consider
a pair of edges e �G and �� � . The square e�� is in Core.G; �/ if and only if one
of the two following equivalent conditions holds:

� e � CHf� .

� �� CH�e .

Proof We prove the first of the two equivalent statements; the fact that they are
equivalent follows from the symmetry of the construction of the core. For simplicity,

Ee Ee0

Ee1

Eu0

Eu1

Eu2

Ev1

Figure 2: Rays Er0 (blue) and Er1 (red) witnessing e � CH� in Lemma 3.7
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we omit the superscript f on the various subsets from Definition 3.5 during the proof
of this lemma.

By Lemma 3.4, what needs to be shown is that e � CH� if and only if for each
orientation Ee of e and orientation E� of � there is a ray Er crossing Ee with the specified
orientation such that f1.Er / 2 E�1 .

First suppose that e � CH� and fix an orientation Ee on e ; see Figure 2. As e � CH� ,
there is a ray Er0 D Ee � Eu such that Eu is disjoint from �P� . Let e0 be the last edge on
Er0 that is in CH� and decompose Er0 D Eu0 � Ee0 � Eu1 where Eu0 may be trivial. It is easy
to verify that the ray Eu1 is disjoint from P� . As e0 �H� , there is a ray of the form
Ee0 � Eu2 , where Eu2 is not disjoint from P� . (It may be that Eu1 and Eu2 have nontrivial
intersection.) Let e1 be the first edge on Eu2 that is contained in P� and Ep the oriented
edge path from Ee to Ee1 . By Lemma 3.6, there is a ray Ev1 originating at the terminal
vertex of Ep that is disjoint from P� . Let Er1 D Ep � Ev1 . We now see that

#jEr1\P�j D #jEr0\P�jC 1:

Since Er0 and Er1 originate from the same vertex, their f1–images lie in E�1 for opposite
choices of orientation of �. By Lemma 3.4, this shows that e� �� Core.G; �/.

For the converse we suppose that e ª CH� . If, further, e ªH� , then there is a choice of
orientation Ee such that for every ray of the form Ee � Er , the ray Er misses P� . Therefore,
there is an orientation on �, say E�, such that f1.Ee1/\ E�1 D ∅. By Lemma 3.4,
e� �ª Core.G; �/.

Thus we can assume that e �H��CH� . Hence, there is a choice of orientation Ee that
cannot escape, ie for every ray form Ee � Er , the ray Er must contain some edge in �P� . By
Lemma 3.6, we see that each such ray Er can only contain a single edge of P� . Again,
there is an orientation on �, say E�, such that f1.Ee1/\ E�1 D ∅. By Lemma 3.4,
e� �ª Core.G; �/.

Since Core.G; �/ is defined without reference to the morphism f W G!� , Lemma 3.7
shows that CHf� and CH�e do not depend on the actual morphism used to compute
them. As such, we will drop the superscripts from these sets for the remainder.

4 Sphere systems and the core

In Section 2 we described an Out.Fn/–equivariant association between sphere systems
and free splittings respecting the notion of filling: .S;Sfill/$ .X ;Xfill/. In Section 3,
given a pair of free splittings G; � 2Xfill , we described how to construct their Guirardel
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core Core.G; �/. The goal of this section is, given a pair of filling sphere systems
S; † 2 Sfill , to construct a 2–dimensional square complex Core.S; †/. We then show
that when the pair of sphere systems .S; †/ is associated to the pair of free splittings
.G; �/ there is a Fn –equivariant isomorphism from Core.S; †/ ! Core.G; �/ of
square complexes. Moreover, this association is Out.Fn/–equivariant with respect to
the actions on Xfill and Sfill . This association is implicit in the proof of Proposition 2.1
in [17]. We explain the connection in more detail here and provide an alternative proof.
The in-depth description is necessary for understanding the effect of surgery on the
core that we describe in Section 5.

4.1 Hatcher’s normal form

Central to the understanding of sphere systems in M is Hatcher’s notion of normal form.
He originally defined normal form only with respect to a maximal sphere system † [12]
and extended this to filling sphere systems in subsequent work with Vogtmann [13].
We recall this definition now. The sphere system S is said to be in normal form with
respect to † if every sphere s 2 S either belongs to †, or intersects † transversely
in a collection of circles that split s into components called pieces such that for each
component …�M �† one has

(1) each piece in … meets each boundary sphere in @… in at most one circle, and

(2) no piece in … is a disk that is isotopic relative to its boundary to a disk in @….

Hatcher proved that a sphere system S can always be homotoped into normal form
with respect to the maximal sphere system † and that such a form is unique up to
homotopy [12; 13]. Hensel, Osajda and Przytycki generalized Hatcher’s definition of
normal form to nonfilling sphere systems and in a way that is obviously symmetric
with respect to the two sphere systems [14]. With their notion, two sphere systems S

and † are in normal form if for all s 2 S and � 2† one has

(1) s and � intersect transversely in at most one circle, and

(2) none of the disks in s� � is isotopic relative to its boundary to a disk in � .

These notions are equivalent when † is filling [14, Section 7.1].

4.2 A core for a pair of sphere systems

Suppose that S and † are filling sphere systems in M and that they are in normal
form. An S –piece is the closure of a component of S �†. Likewise, a †–piece is the
closure of a component of †�S . By piece, we mean either an S –piece or a †–piece
(this agrees with the use of “piece” in Section 4.1).
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Lemma 4.1 Suppose that X is the intersection of a component of M � S and a
component of M �†. Then:

(1) X is connected.

(2) @X is the union of S –pieces and †–pieces and moreover, different pieces are
subsets of different spheres.

(3) If Y is also the intersection of a component of M � S and a component of
M �†, then either X D Y , their closures are disjoint, or @X \ @Y is a piece.

Proof This follows from the description of normal form; the details are left to the
reader.

The first item in Lemma 4.1 implies that the intersection of a component of M �S

and a component of M �† is either empty or a component of M � .S [†/.

Definition 4.2 Suppose that S and † are filling sphere systems in M and that they
are in normal form. The core of S and †, denoted by Core.S; †/, is the square
complex defined as follows:

� Vertices correspond to components of M � .S [†/. Such a region corresponds
to the intersection of a component P �M �S and a component …�M �†.
We denote the vertex by .P;…/.

� There is an edge between two vertices when the closures of the corresponding
components of M � .S [†/ have nontrivial intersection. By Lemma 4.1, each
edge corresponds to a piece. If it is an S –piece, then it is the closure of s\… for
some sphere s 2 S and component …�M �†. We denote the edge by .s;…/.
Likewise, if it is an †–piece, then it is the closure of P \� for some component
P �M �S and sphere � 2†. In this case, we denote the edge by .P; �/.

� Suppose that s 2S and � 2† have nonempty intersection. Let P1;P2�M �S

be the components whose boundary contains s and let …1;…2 �M �† be
the components whose boundary contains � . Then four edges .s;…1/, .P1; �/,
.s;…2/ and .P2; �/ form the boundary of a square with vertices .P1;…1/,
.P2;…1/, .P2;…2/ and .P1;…2/, which is then filled in. The square is denoted
by s � � ; see Figure 3.

Remark 4.3 We always assume that S and † do not share a sphere. Otherwise
Theorem 1.1 is trivial. However, the core in this case would be disconnected and make
the exposition more complicated. There is a procedure to add diagonal edges resulting
in the augmented core, which is connected. See [10] for details.
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.P1;…1/.P2;…1/

.P1;…2/.P2;…2/

.s;…1/

.s;…2/

.P1; �/.P2; �/

�

s

Figure 3: Edges .s;…1/ , .P1; �/ , .s;…2/ and .P2; �/ form the boundary
of a square s � � .

Let G, � 2 Xfill be the free splittings corresponding to S and †, respectively. We will
show that the two notions of the core, Core.S; †/ and Core.G; �/, are isomorphic
as Fn –square complexes. We will do so by showing that their horizontal hyperplanes
agree. To this end we make the following definition:

Definition 4.4 The shadow of � 2† is the union of the edges e�G whose associated
sphere in S intersects � . We denote the shadow by Shadow.�/�G.

Observe that the shadow of � is isomorphic to the tree in � that is dual to the intersection
circles between � and S . Now will show how to relate the two definitions of the core.
We will make use of the following notion:

Definition 4.5 If G 2 X corresponds to a sphere system S 2 S , and �W G ,! M

is an Fn –equivariant embedding, we say �.G/ is dual to S if each sphere s 2 S

intersects exactly one edge of �.G/, namely the image of the corresponding edge, and
this intersection is transverse and a single point. We say that � is a dual embedding
( for S ).

It is a routine matter to construct a dual embedding for a given free splitting. We need
to show that we can make it in some sense normal to †.
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Lemma 4.6 There exists a dual embedding �W G ,!M for S such that, for each edge
e 2 G and sphere � 2 †, �.e/ and � are either disjoint or intersect transversely at a
single point in the interior of �.e/.

Proof Let �0W G ,!M be a dual embedding. By general position, we can assume
that �0.G/\S \†D∅ and that † is disjoint from the vertices of �0.G/.

Suppose that for some edge e � G, the image �0.e/ intersects some sphere in † in
more than one point. Let s 2 S be the sphere corresponding to e . Fix some innermost
pair of intersection points x;y 2 �0.e/ and let � 2† be the corresponding sphere. Let
I be the subsegment of �0.e/ with endpoints x and y .

Notice that any circle of intersection of S \ � that separates x and y in � must
correspond to a sphere s0 2 S such that s0 \ I ¤ ∅. Indeed, if not, since S and †
are in normal form, there would a loop consisting of I and an arc in � that intersects
some sphere in S exactly once. This is a contradiction as spheres in S are separating.

Therefore, there is an arc J � � that intersects exactly the same set of spheres of S

as I , which is either s or the empty set. We can then homotope I to J and continue
pushing in this direction to reduce the number of intersection points between �0.e/
and † by two. Equivariantly perform this process to obtain a new dual embedding
�1W G!M that has fewer Fn –orbits of intersect between the image of G and †.

Iterating this procedure we arrive at �W G!M as in the statement of the lemma.

If �W G ,!M is an Fn –equivariant embedding so that �.G/ is transverse to † we can
create a map k�W G! � by sending an edge e to the edge path in � corresponding to
the spheres in † crossed by �.e/.

Lemma 4.7 There exists a dual embedding �W G ,!M for S such that the associated
map k�W G! � is a morphism.

Proof Whenever a dual embedding �0W G ,! M satisfies Lemma 4.6, the image
of each edge e � G is a tight edge path in �. Thus the only way that such a dual
embedding �0W G!M fails to produce a morphism is if there is some vertex v 2G

with adjacent edges e1; : : : ; e` (oriented to have v as their initial vertex) and sphere
� 2† such that the first intersection point of �0.ei/\† lies in � for each i D 1; : : : ; `.
Arguing as in Lemma 4.6, we can equivariantly homotope �0 to locally reduce the
number of intersections between the image of G and † by pushing the image of v
across � and pushing subarcs of edges with both endpoints on � across � as well.

Iterating this procedure we arrive at �W G!M as in the statement of the lemma.
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A dual embedding �W G !M satisfying the conclusions of Lemmas 4.6 and 4.7 is
said to be normal to †.

Proposition 4.8 Suppose that S and † are filling sphere systems in M and that G

and � are the associated trees. Fix an edge �2� and let � 2† be the associated sphere.
If �W G ,!M is a dual embedding that is normal to †, then Shadow.�/D CH�DHk�

� .

Proof Suppose that �W G ,!M is a dual embedding that is normal to †. Let e �G

be an edge and s 2 S the sphere corresponding to e .

First suppose that e � Shadow.�/. Thus s\� is nonempty and, as the sphere systems
are in normal form, this intersection is a single circle. Let X be one of the four
components of M � .s[ �/. Decompose @X D d [ ı , where d is a subdisk of s and
ı is a subdisk of � .

We claim that ��1.X / � G contains an infinite subtree. Suppose otherwise; thus
��1.X / is a finite subforest T . At most one extremal vertex of T corresponds to an
intersection of �.e/ and s (which is in d ); the remaining extremal vertices correspond
to intersections of ı with edges in �.G/.

If T is empty or has some component contained in an edge of G then an innermost
disk of ı (with respect to the intersection circles ı \S ) is homotopic relative to its
boundary to a disk in S , violating the assumption that S and † are in normal form.
Otherwise, if for some component T0 � T we have that �.T0/ does not intersect s ,
then for any interior vertex of T , as we saw in the proof of Lemma 4.7, the map k�
only has one gate, violating the assumption that � is not normal.

Thus we may assume that T is connected and has some interior vertex v , which we
assume is adjacent to some extremal edge of T that is not contained in e . We label
the edges e0; e1; : : : ; e` adjacent to v , where �.ei/ intersects � for i D 1; : : : ; `. Let
si be the spheres of S corresponding to ei for i D 0; : : : ; `. Then � must be disjoint
from si for i D 1; : : : ; ` for otherwise there is a component of M � .si [ �/ whose
preimage in G contains a component that is contained in a single edge, which we
already ruled out. But in this case we have that � � s0 contains a disk isotopic relative
to its boundary to a disk in s0 , which again violates the assumption that S and † are
in normal form.

Hence we can find a ray Er starting with e such that �.Er/ is eventually contained in X .
Since X was arbitrary, this shows that for each orientation of Ee for e and E� for � we
can find a ray Er crossing Ee with the specified orientation such that k�.Er/ 2 E�1 . By
Lemma 3.4, we have that e� �� Core.G; �/ and so e � CH� by Lemma 3.7. Hence
Shadow.�/� CH� �Hk�

� .
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Now suppose that e �Hk�
� . Then, for each orientation Ee , there is a ray of the form Ee � Er

such that k�.Er/ intersects � and hence �.Er/ intersects � . Since s separates M and � is
connected, this shows that s intersects � , ie e�Shadow.�/. Hence Hk�

� �Shadow.�/,
completing the proof.

In other words, Proposition 4.8 states that Shadow.�/�G is the interior of the convex
hull of k�1

� .�/.

Recall the relation between a sphere system S and the corresponding free splitting G

mentioned in Section 2: vertices of G correspond to connected components M �S

and edges correspond to nonempty intersection between the closures of the components,
ie spheres in S . We can define a map Core.S; †/!G �� as follows:

� The image of a vertex .P;…/ is the vertex .v; �/ 2G��, where v is the vertex
corresponding to P �M �S and � is the vertex corresponding to …�M �†.

� The image of an edge .s;…/ is the edge .e; �/ � G ��, where e is the edge
corresponding to s 2 S and � is the vertex corresponding to … � M �†.
Likewise, the image of an edge .P; �/ is the edge .v; �/�G��, where v is the
vertex corresponding to P �M �S and � is the edge corresponding to � 2†.

� The image of the square s�� is e���G��, where e is the edge corresponding
to s 2 S and � is the edge corresponding to � 2†.

The following theorem is implicit in the proof of [17, Proposition 2.1]. There, Horbez
uses a characterization by Guirardel of the core as the minimal closed, connect, Fn –
invariant subset of G �� that has connected fibers [10, Proposition 5.1]. We avoid
using this characterization by using Lemma 3.7 and Proposition 4.8.

Theorem 4.9 If G; � 2 Xfill correspond to S; † 2 Sfill which do not share a sphere,
then the map Core.S; †/!G �� induces an Fn –equivariant isomorphism of square
complexes Core.S; †/! Core.G; �/.

Proof It is clear that the map is injective, Fn –equivariant and preserves the square
structure. We just need to show that the image is Core.G; �/. For each � 2 †, let
S�Dfs2S j s\�¤∅g. Notice that the edges in G corresponding to S� is Shadow.�/
by definition. We can decompose the core Core.S; †/ vertically into horizontal slices
C� D fs � � j s 2 S�g. Now fix a � and let � by the corresponding edges of �.
Then image of the strip C� is exactly the set of squares fe� � j e � Shadow.�/g. By
Proposition 4.8 we can also write this as fe � � j e � CH�g. By Lemma 3.7 we can
further write this as fe � � j e � �� Core.G; �/g. Hence the image of the map is as
claimed.
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5 Surgery and the core

The purpose of this section is to show how the core changes along a surgery path in
the sphere graph.

5.1 Surgery sequences

Suppose that S; † 2 S and assume that they are in normal form. We now describe a
path from S to † in S using a surgery procedure introduced by Hatcher [12]. It is
exactly these paths that appear in the main theorem of this paper.

Fix a sphere � 2† that intersects some spheres of S . The intersection circles define
a pattern of disjoint circles on � , each of which bounds two disks on � . Choose
an innermost disk ı in this collection, ie a disk that contains no other disk from this
collection, and let ˛ be its boundary circle. The sphere s 2S containing ˛ is the union
of two disks dC and d� that share the boundary circle ˛ . Briefly, surgery replaces the
sphere � with new spheres dC[ ı and d�[ ı . One problem that arises is that the new
sphere system and S are not in normal form. This happens when some innermost disk
ı0 in a sphere � 0 2† is parallel rel s to ı . To address this, we remove all such disks
at once, so that the resulting sphere system and S are in normal form (Lemma 5.1).

Let f˛ig
`
iDk

be the maximal family of intersection circles in s\† such that

(1) k � 0� `,

(2) ˛i � d� for i � 0 and ˛i � dC for i � 0 (this implies that ˛0 D ˛ ), and

(3) for k � i < `, the circles ˛i and ˛iC1 cobound an annulus Ai � s whose
interior is disjoint from †.

Related to these circles, we let fıig�iD� be the maximal family of innermost disks in †
such that

(1) � � 0� �,

(2) @ıi D ˛i , and

(3) for � � i < �, the sphere ıi [Ai [ ıiC1 bounds an embedded 3–ball, ie ıi and
ıiC1 are parallel rel s .

See Figure 4 for an example illustrating this set-up and notation.

Using this set-up we can now describe a surgery of S . Let ı� be a parallel copy of ı� rel
s such that @ı� and ˛� cobound an annulus whose interior is disjoint from † and A� .
Similarly let ıC be a parallel copy of ı� rel s such that @ıC and ˛� cobound an
annulus whose interior is disjoint from † and A� . Set yd� to be the subdisk of d� with
boundary @ı� and set ydC to be the subdisk of dC with boundary @ıC We get two new
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ı�3

˛�4

dCd�

s

Figure 4: An example illustrating the curves f˛ig and the disks fıig . The
green sphere is s , its intersection with † is in black and the red disks are
the innermost disks in † . The small black box represents an obstruction to
isotoping the disk bounded by ˛2 to ı1 relative to s . In this example, �D�3

and �D 1 .

spheres s�D yd�[ ı� and sCD ydC[ ıC . We say that yS D .S �Fnfsg/[FnfsC; s�g

is obtained from S by performing a surgery on S with respect to †.

In what follows, it is important to record the history of the portions of the new spheres
and so we introduce notion to this effect. Suppose that yS is the result of a surgery of
S with respect to † and that ys 2 yS is (a translate of) one of the newly created spheres
s� D yd� [ ı� for � 2 fC;�g. We call d� the portion of ys from S ; denote it by ysS.
Similarly, we call ı� the portion of ys from †; denote it by ys†. Thus ys D ysS [ys†.
Notice that ysS � S and also that ys† is parallel rel s to a disk in †. For all other
spheres s 2 yS , we set sS D s and s† D∅.

Our definition of surgery differs slightly from the standard in three ways: one, we do
not remove parallel spheres in yS ; two, we perform surgery along parallel innermost
disks in a single step; and three, we do not isotope S 0 to be in normal form with respect
to †. That we do not remove parallel spheres is in keeping with our definition of sphere
systems from Section 2. Justification of the latter two differences is the following
lemma, which shows that by performing surgery along the parallel innermost disks we
can eliminate the need to perform a subsequent isotopy.

Lemma 5.1 Let yS be the result of a surgery on S with respect to †. Then yS and †
are in normal form.

Proof Suppose otherwise. As S and † are in normal form by assumption and normal
form is a local condition, it must be that one of the newly created spheres is not in
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normal form with respect to †. Denote this sphere by ysD yd[ı , where yd is a subdisk of
the surgered sphere s 2S and ı is a disk parallel rel s to a disk in †. Any intersection
between ys and some sphere of † must lie in yd � s , and hence ys and a given sphere in
† intersect transversely in at most one circle, as the same held for s 2 S .

Therefore, if ys is not in normal form with respect to †, then there is a sphere � 2†
such that one of the disks in ys� � , say d , is isotopic relative to its boundary to a disk
in � , say ı0 . Without loss of generality, we can assume that this disk is innermost on ys ,
ie no subdisk of d is isotopic relative to its boundary to a disk in some sphere of †.
The disk d cannot lie entirely in yd since s and † are in normal form by assumption.
Hence d contains ı . Let A be the annulus such that d DA[ı . Since d [ı0 bounds a
3–ball, the assumptions that S and † are in normal form and that d is innermost imply
that † is disjoint from the interior of A. This contradicts the maximality assumption
on the family of disks fıig�iD� . Indeed, without loss of generality we can assume that
ı D ıC . Then A� [A is an annulus in s whose interior is disjoint from † and so
@ı0 D ˛�C1 , and further ı� [ .A� [A/[ ı0 bounds an embedded 3–ball. Hence yS
and † are in normal form.

Definition 5.2 A surgery sequence from S to † is a finite sequence of sphere systems

S D S1; : : : ;Sm

such that SiC1 is the result of a surgery of Si with respect to † and dS.†;Sm/� 1.

It is a standard fact that if dS.S; †/ � 2, then there is a surgery sequence from S ;
see for instance [16, Lemma 2.2]. Further, dS.Si ;SiC1/� 2 as both Si and SiC1 are
dominated by Si [SiC1 .

The discussion and notion regarding portions from S and from † make sense for
surgery sequences as well by induction. Indeed, suppose that SiC1 is obtained from
Si by a surgery with respect for †; specifically, assume that the (orbit of the) sphere
s 2Si is split into (the orbit of) two spheres s�D yd�[ı� and sCD ydC[ıC in SiC1 .
Then we have s D yd�[A[ ydC for some annulus A, the boundary curves of which
are parallel to circles in † rel s . By choosing A sufficiently narrow enough, we
can assume that the annuli of s witnessing the isotopy are contained in sS . We set
sS
� D

yd� \ sS and s†� D .
yd� \ s†/[ ı� for � 2 fC;�g. All other spheres in SiC1

are also in Si �fsg and, as such. the portions from S and † remain unchanged. See
Figure 5.

Lemma 5.3 Suppose that S D S1; : : : ;Sm is a surgery sequence from S to †. Then,
for every s 2 Si , the subset sS is connected.
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˛C

ıC

˛�

ı� ı5ı4ı1 ı2 ı3

sCs�

s

Figure 5: An illustration showing a decomposition of s 2Si and the resulting
spheres s�; sC 2 SiC1 into their portions from S and † . In this example,
s† D fı1; ı2; ı3; ı4; ı5g , s†� D fı1; ı2; ı3; ı�g and s†� D fı4; ı5; ıCg . The
portions from S are the complements in the respective spheres.

Proof Using induction, we can conclude that the subset s† is a union of disks, each
parallel rel s to a disk in †. Hence, sS is the complement of finitely many disks in s

and therefore connected.

We remark that parallel spheres in Si may have different histories, that is, s1; s2 2 Si

may be parallel even though sS
1

and sS
2

are not parallel. For a surgery sequence
S D S1; : : : ;Sm from S to †, we set

SS
i D

[
s2Si

sS
i and S†i D

[
s2Si

s†i :

5.2 Rips moves and surgery steps

Suppose that S and † are filling sphere systems and assume that they are in normal
form. Let S D S1; S2; : : : ;Sm be a surgery sequence from S to † and let †D†1 ,
†2; : : : ; †� be a surgery sequence from † to S . We describe Core.Si ; †j / as (in
some appropriate sense) an intersection of Core.Si ; †/ and Core.S; †j /. We start
by giving an embedding of Core.Si ; †/ and Core.S; †j / into Core.S; †/. This
embedding is constructed inductively. A single step in the construction is reminiscent
of one of the elementary moves of the Rips machine [4; 8]. We start with a definition.

Definition 5.4 Suppose that S and † are filling sphere systems in M. We define @S ,
the S –boundary of Core.S; †/, to be the subset of Core.S; †/ consisting of the
(open) edges .P; �/ that are the face of exactly one square and vertices .P;…/ that
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are the vertex of exactly 3 edges of the form .P; �/, .P; � 0/ and .s;…/. A connected
component of @S is called an S –side of Core.S; †/. Similarly, we define @† , the †–
boundary of Core.S; †/, to be the subset of Core.S; †/ consisting of the (open) edges
.s;…/ that are the face of exactly one square and vertices .P;…/ that are the vertex
of exactly 3 edges of the form .s;…/, .s0;…/ and .P; �/. A connected component of
@† is called a †–side of Core.S; †/.

The union of an S –side with the set of the (open) squares that have a face contained
in that side is called a maximal S –boundary rectangle. That is, in a S –maximal
boundary rectangle, all of the squares are of the form s0 � � for some fixed s0 2 S .
A †–maximal boundary rectangle is similarly defined from a connected component
of the †–side. A Rips move on .S; †/ is the removal of the Fn –orbit of an S – or
†–maximal boundary rectangle.

If R is a maximal boundary rectangle in Core.S; †/, we let Core.S; †/R denote the
result of the associated Rips move. We like to think of the removal of the maximal
boundary rectangle as collapsing the rectangle by pushing across the adjacent squares.

We postpone presenting an example until after the following theorem.

Theorem 5.5 Suppose that S and † are filling sphere systems in M and let yS be the
result of a surgery on S with respect to †. There is a S –maximal boundary rectangle
R� Core.S; †/ such that Core.S; †/R is isomorphic to Core. yS ; †/. Moreover, for
each S –maximal boundary rectangle R, there is a sphere � 2† and innermost disk on
� that defines a surgery S 7! yS such that Core. yS ; †/ is isomorphic to Core.S; †/R .

Proof Assume yS is obtained from S by a surgery on a sphere s0 2 S and a disk
ı that is part of the sphere system †, whose boundary ˛ lies on s and is otherwise
disjoint from S . By Lemma 5.1, yS and † are in normal form and so we can use the
combinatorics of yS and † to build Core. yS ; †/.

We make use of the notation introduced in Section 5.1. Let fıig�iD� be the maximal
family of disks in † parallel rel s , where ı0 D ı . Let A be the union of the annuli
Ai � s0 , and dC and d� the components of s0 �A. Thus ı� [A[ ı� bounds a
3–ball B . The two spheres obtained by surgery of s using this family, sC and s� , are
parallel to dC[ ı� and d�[ ı� , respectively.

Let PC 2M � S be the component that contains the interior of B and let P� be
the other component with s as a boundary. Each disk ıi is contained in some sphere
�i 2 †. For each � � i < �, there are components …i � M �† such that both
�i ; �iC1 � @…i . We claim that the collections of edges and vertices

.PC; ��/; .PC;…�/; .PC; ��C1/; : : : ; .PC; ��/
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is a side. Indeed, each edge .PC; �i/ is the face of only s��i and each vertex .PC;…i/

is only also adjacent to .s0;…i/. The first of these observations is due to the fact
that PC \ �i D ıi is a disk, the second observation due to the fact that PC \…i is
bounded by ıi [Ai [ ıiC1 . Maximality of this collection follows from maximality of
the collection fıig�iD� .

Let R be the corresponding maximal boundary rectangle of Core.S; †/. We will show
that Core. yS ; †/ is isomorphic to Core.S; †/R . To do so, we will construct an injection
of square complexes Core. yS ; †/ ,! Core.S; †/ whose image is Core.S; †/R .

Components in M �S that are not in the orbit of PC and P� are also components
of M � yS . But M � yS has 3 other components: yP� , which is obtained from P�
by adding a neighborhood of s and a neighborhood of the 3–ball B bounded by
ı� [A[ ı� , and PCC and P�C , which are contained in the two components of PC�B .
In other words, we have

M � yS D
�
.M �S/�FnfPC;P�g

�
[Fnf

yP�;P
C
C ;P

�
Cg:

There is an Fn –equivariant map �W M � yS !M � S , defined by PCC ;P
�
C 7! PC ,

yP� 7! P� and the identity on the other orbits. Also, there is a Fn –equivariant map
�W yS ! S , defined by sC; s� 7! s0 and the identity on the other orbits.

Using �, we get a map on the 0–skeleton of Core. yS ;†/, defined by .P;…/ 7!.�.P /;…/.
In order for this to be well-defined, we need to know that if P \ … ¤ ∅, then
�.P /\…¤∅ also. If P is not in the orbit of yP� , then this follows as P\…� �.P /\….
Finally, since yP� D P� [B and no component of M �† is contained in B , any
component of M �† that intersects yP� necessarily intersects P� as well.

We extend over the 1–skeleton using �W .s;…/ 7! .�.s/;…/. This map is well-defined
since any intersection between sC or s� , with a component of M �† is contained in
the portion of sC or s� , respectively, from S , ie dC or d� , respectively. Notice that
this is consistent with the mapping on the 0–skeleton. The edge .sC;…/ in Core. yS ; †/
is sent to .s0;…/. The vertices of .s0;…/ are .PCC ;…/ and . yP�;…/, which are the
images of .PCC ;…/ and . yP�;…/. Other verifications are similar.

Finally, we extend over the 2–skeleton: s � � 7! �.s/� � . Since any intersection of
sC or s� with † is contained in the portion from S , this map is well-defined. Again,
the map on the 2–skeleton is consistent with the maps on 1–skeleton and 0–skeleton
by construction.

The map Core. yS ; †/! Core.S; †/ is Fn –equivariant and preserves the square struc-
ture. The map is not surjective as no 2–cell is mapped to the squares associated with
s � �i , ie the image of the map is exactly Core.S; †/R .
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The converse is similar: if s0 � �1; : : : ; s0 � �� forms an S –maximal boundary rec-
tangle R, then one shows that there are disks ıi � �i that are parallel rel s0 and that
surgery using the family fıig�iD1

results in the sphere system yS , where Core. yS ; †/ is
isomorphic to Core.S; †/R .

Example 5.6 Here we describe a Rips move and the corresponding surgery explicitly
in an example. Consider a sphere s 2 S associated to the edge b in the dual graph G.
In the example depicted in Figure 6, s intersects 7 spheres in †, spheres �0; : : : ; �6

associated to edges �0; : : : ; �6 in � . We denote the intersection circle between s and
�i by ˛i . The slice over s in Core.S; †/ consists of squares associated to intersection
circles between s and †, that is,

Cs D fs � �i j i D 0; : : : ; 6g:

�0

�1

�2

�3

�4

�5

�6

a1
a2

a3

b c1

c2

a1
a2

a3

b1

b2

c1

c2

Figure 6: The left-hand side depicts the slice Cs and squares attached to it in
Core.S; †/ . Consider the maximal S –boundary rectangle RD b�.�4[�5/ .
A Rips move along R is associated to a surgery on the sphere s or a splitting
of the edge b in the graph G. The right side depicts the associated portion of
Core.S; †/R D Core.S 0;R/ .
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˛0

˛1

˛2

˛3 ˛4

˛5

˛6

s

Figure 7: The curves ˛0; : : : ; ˛6 are intersection circles between the sphere s

and the spheres �0; : : : ; �6 , respectively. The circles ˛2 , ˛3 , ˛4 and ˛5

bound a disk in Pl . However, the circle ˛3 and ˛4 are not parallel.

In the language of trees, Cs is associated to the slice over b , which is

b �Shadow.s/D fb � �i j i D 0; : : : ; 6g �G ��:

There are two components of M �S that have s as their boundary sphere. In this ex-
ample, the component Pl , which we call left, has 3 other boundary spheres (associated
to edges a1 , a2 and a3 ) and the component Pr on the right has two other boundary
spheres (associated to edges c1 and c2 ).

Note that Figure 6 indicates that the sphere �1 intersects spheres in S associated
to edges a1 , b and c2 since the core contains squares a1 � �1 , b � �1 and c2 � �1 .
However, the sphere �2 does not intersect spheres associated to edges a1 , a2 and a3 .
But, �2 intersects s , hence, the circle ˛2 must bound a disk ı2 that is the intersection
of �2 with Pl . Similarly, circles ˛3 , ˛4 and ˛5 bound disks ı3 , ı4 and ı5 that are,
respectively, intersections of spheres �3 , �4 and �5 with Pl (thus the squares b � �i

for i D 2; : : : ; 5 have boundary edges on their left side). The circle ˛2 also bounds a
disk in �2 in Pr (thus the square b � �2 has a boundary edge on its right side).

The disks ı2 and ı3 are parallel and the disks ı4 and ı5 are also parallel, however,
the two sets of disks are not parallel to each other (see Figure 7). Thus, there are two
maximal boundary rectangles from the left, RD b� .�2[�3/ and R0D b� .�4[�5/.
More precisely, let … be the component of M �† with �0 , �3 and �4 as its boundary
spheres. Then, referring to Definition 5.4, we see that the vertex .Pl ;…/ is not in the
S –boundary of Core.S; †/ because it is the vertex of 5 different edges. Hence, the
union of R and R0 is not a boundary rectangle.

Define S 0 to be the sphere system obtained from S by applying the surgery on the set of
parallel disks fı4; ı5g (and their Fn –orbits). The surgery results in two spheres s1 and
s2 associated to edges b1 and b2 and the removal of the maximal boundary rectangle R.
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It appears that removal of this rectangle makes the slice over b disconnected. However,
the two components are slices over the edges b1 and b2 .

To summarize, the surgery along the disks fı4; ı5g changes G by splitting the edge b

and changes Core.S;†/ by removing the maximal boundary rectangle RDb�.�4[�5/,
resulting in Core.S; †/R Š Core.S 0; †/.

A different splitting of b into b1 and b2 partitioning the a edges into fa1; a3g and
fa2g does not arise as a surgery and could potentially increase the volume of the core.

5.3 The intersection of cores

Applying Theorem 5.5 to the surgery sequence S D S1;S2; : : : ;Sm , we obtain maps,
for i D 1; : : : ;m� 1,

ki;iC1W Core.SiC1; †/! Core.Si ; †/

that are the composition of the isomorphism Core.SiC1; †/Š Core.Si ; †/R for the
corresponding maximal boundary rectangle and the natural inclusion Core.Si ; †/R ,!

Core.Si ; †/. By symmetry there are also maps, for j D 1; �� 1,

�j ;jC1W Core.S; †jC1/! Core.S; †j /:

Since these maps exist for all 1 � i � m� 1 and 1 � j � �� 1, we can define the
“inclusions” alluded to at the beginning of this section,

ki D k1;2k2;3 � � � ki�2;i�1ki�1;i W Core.Si ; †/! Core.S; †/;(5-1)

�j D �1;2�2;3 � � � �j�2;j�1�j�1;j W Core.S; †j /! Core.S; †/:(5-2)

Remark 5.7 On the level of squares, the map ki W Core.Si ; †/! Core.S; †/ is easy
to describe. For each ys 2 Si , we have that ysS � s for a unique s 2 S . The map is
defined by ys � � ! s � � .

The following is the fundamental concept essential to the proof of the main theorem.

Proposition 5.8 With the above set-up, assume

(5-3) ki.Core.Si ; †//[ �j .Core.S; †j //D Core.S; †/I

then Si and †j are in normal form. Furthermore, there exists an isomorphism

ˆW Core.Si ; †j /! ki.Core.Si ; †//\ �j .Core.S; †j //:

Proof First, we show that every intersection circle between Si and †j is in fact
in SS

i \†
†
j . This is because a square in Core.S; †/ associated to an intersection

circle in S†i \†
S
j is neither in ki.Core.Si ; †// (S†i does not intersect †) nor in
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�j .Core.S; †j // (†S
j does not intersect S ) and, by the assumption (5-3), every square

in Core.S; †/ is in the image of one of these two maps.

This observation implies that Si and †j are in fact in normal form. In fact, pick
spheres si 2 Si and �j 2 †j . We will show that si and �j intersect at most once.
Otherwise, sS

i and �†j intersect more than once. But, by Lemma 5.3, sS
i and �†j are

connected, which means there is a sphere s 2 S that contains sS
i and a sphere � 2†

that contains �†j . Hence, s and � intersect more than once. This contradicts the fact
that S and † are in normal form.

Now consider a square si � �j in Core.Si ; †j / associated to an intersection circle ˛ .
Then ˛ is an intersection circle in SS

i \†
†
j , which means it is an intersection circle

in both S \†j and Si \†, and thus there are spheres s 2 S and � 2 † for which
s \ � D ˛ and sS

i � s , �†j � � . Hence, s � � is contained in both ki.Core.Si ; †//

and �j .Core.S; †j // and so we define ˆ.si � �j /D s � � . Normal form implies that
the map is injective.

To prove that ˆ is surjective, suppose s�� is in ki.Core.Si ; †//. Then the associated
intersection circle in SS

i . Similarly, the assumption that s � � is in �j .Core.S; †j //

implies that the associated intersection circle in ††j . Therefore, it also lies in Si \†j .
Hence there are spheres si 2 Si and �j 2†j such that ˆ.si � �j /D s � � .

For future reference, we record the following corollary:

Corollary 5.9 If (5-3) is satisfied, Core.Si ; †jC1/ can be obtained from Core.Si ;†j /

by a Rips move.

Proof Let R be a maximal †j –boundary rectangle in Core.S; †j / such that

Core.S; †j /R Š Core.S; †jC1/:

Thus R consists of squares s1 � y�; : : : ; s` � y� for some y� 2 †j and s1; : : : ; s` 2 S .
Let � 2 † be such that y�† � � and consider the set C�;i of squares of the form
ys � � in Core.Si ; †/. Then ki.C�;i/\ �j .R/ corresponds via the isomorphism in
Proposition 5.8 to a maximal †j –boundary rectangle in Core.Si ; †j / whose collapse
results in Core.Si ; †jC1/.

6 Proof of Theorem 1.1

To finish the proof of the main theorem, we proceed as follows, using the set-up from
the previous section. We start with a lemma giving a necessary condition for two sphere
systems to be at a bounded distance. A free edge is an edge that does not bound any
squares.

Algebraic & Geometric Topology, Volume 17 (2017)



3776 Matt Clay, Yulan Qing and Kasra Rafi

Lemma 6.1 If Core.Si ; †j / contains a free edge, then the two sphere systems are of
distance at most 2 in the sphere graph.

Proof Edges in the core are associated to spheres in either sphere system Si or †j

and squares are associated to intersection circles between sphere systems. Hence, a
free edge in the core is associated to a sphere in either Si or †j that does not intersect
any other spheres from the other system. Thus this sphere can be added to both sphere
systems. That is, Si and †j have distance 2 in the sphere graph.

We now prove Theorem 1.1. We restate it for convenience.

Theorem 1.1 Let S and † be two filling sphere systems and let

S D S1;S2; : : : ;Sm; dS.Sm; †/� 1;

be a surgery sequence starting from S towards † and

†D†1; †2; : : : ; †�; dS.†�;S/� 1;

be a surgery sequence in the opposite direction. Then, for every Si there is a †j such
that dS.Si ; †j /� 2.

Proof Fix two filling sphere systems S and † and surgery paths as in the statement
of the theorem. For every Si we need to find †j with dS.Si ; †j / � 2. Fix an
i D 1; : : : ;m and let j be the largest index where the equality

(6-1) ki.Core.Si ; †//[ �j .Core.S; †j //D Core.S; †/

still holds. Note that the equation holds when j D 1. But, since �j .Core.S; †j //

eventually contains no squares (for instance, when j D �) and ki.Core.Si ; †// is a
proper subset of Core.S; †/ for each i > 1, there exists an index j C 1 for which
(6-1) does not hold.

We will show that Core.Si ; †j / contains a free edge. By Lemma 6.1, this will complete
the proof. Let s � � be a square in Core.S; †/ that is not contained in

ki.Core.Si ; †//[ �jC1.Core.S; †jC1//:

By (6-1), s � � is contained in �j .Core.S; †j //. Thus a surgery on †j has deleted
the intersection circle associated to this square. By Corollary 5.9, s � � is part of a
maximal †j –boundary rectangle. That is, there is a component …�M �† for which
� 2 @… and such that the edge .s;…/ is a boundary edge of s�� but not the boundary
edge of any other square in �j .Core.S; †j //.
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We also know that s � � is not contained in ki.Core.Si ; †//. Thus, if .s;…/ is an
edge in ki.Core.Si ; †// then we have that .s;…/ is a free edge in

ki.Core.Si ; †//\ �j .Core.S; †j //Š Core.Si ; †j /

(Proposition 5.8). If this is not the case, then there is some i0 < i such that .s;…/
lies between two squares s � � 0 and s � � 00 that are part of a maximal Si0

–boundary
rectangle in Core.Si0

; †/ that is collapsed in the formation of Core.Si0C1; †/. Then
neither of these squares are in ki.Core.Si ; †// and at least one of these squares is not
in �j .Core.S; †j //. However, this would contradict (6-1). Therefore, .s;…/ is a free
edge in Core.Si ; †j /.
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