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On the integral cohomology ring of toric orbifolds
and singular toric varieties
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We examine the integral cohomology rings of certain families of 2n–dimensional
orbifolds X that are equipped with a well-behaved action of the n–dimensional
real torus. These orbifolds arise from two distinct but closely related combinatorial
sources, namely from characteristic pairs .Q; �/ , where Q is a simple convex n–
polytope and � a labeling of its facets, and from n–dimensional fans † . In the
literature, they are referred as toric orbifolds and singular toric varieties, respectively.
Our first main result provides combinatorial conditions on .Q; �/ or on † which
ensure that the integral cohomology groups H�.X/ of the associated orbifolds are
concentrated in even degrees. Our second main result assumes these conditions to be
true, and expresses the graded ring H�.X/ as a quotient of an algebra of polynomials
that satisfy an integrality condition arising from the underlying combinatorial data.
Also, we compute several examples.
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1 Introduction

There are several advantages to studying topological spaces whose integral cohomology
groups H�.X/ are torsion-free and concentrated in even degrees; for example, their
complex K–theory and complex cobordism groups may be deduced immediately,
because the appropriate Atiyah–Hirzebruch spectral sequences collapse for dimensional
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reasons. For convenience, we call such spaces even, where integral coefficients are
understood unless otherwise stated. Our fundamental aim is to identify certain families
of even spaces within the realms of toric topology, and to explain how their evenness
leads to a description of the Borel equivariant cohomology rings H�T .X/, and thence
to the multiplicative structure of H�.X/.

Many even spaces arise from complex geometry, and have been of major importance
since the early 20th century. They range from complex projective spaces and Grass-
mannian manifolds to Thom spaces of complex vector bundles over other even spaces.
Examples of the latter include stunted projective spaces, which play an influential and
enduring role in homotopy theory, and certain restricted families of weighted projective
spaces. In fact every weighted projective space is even, thanks to a beautiful and
somewhat surprising result of Kawasaki [18], whose calculations lie behind one of our
main works in Section 4. In the literature, weighted projective spaces have been viewed
as singular toric varieties or as toric orbifolds, which we shall define in Section 3, and
our results may be interpreted as an investigation of their generalizations within either
context.

We begin in Section 2 by introducing a sequence fBkg of polytopal complexes whose
initial term is a simple polytope Q and final term is a vertex of Q . We define the
sequence inductively by the rule stated as 2 in Section 2, which is motivated by several
spaces called invariant subspaces, and orbifold lens spaces sitting inside the given toric
orbifold.

In Section 3, we summarize the theory of toric orbifolds X DX.Q; �/,1 as constructed
from an n–dimensional simple convex polytope Q and an R–characteristic function �
from its facets to Zn. The combinatorial data .Q; �/ is called an R–characteristic pair
associated to the given toric orbifold. The notion of invariant subspaces and orbifold
lens spaces follow from .Q; �/, which we shall explain in the following subsections.
Moreover, for each polytopal complex B which appears in a retraction sequence, the
R–characteristic function � may be used to associate a finite group GB.v/ — see
(4-8) — to certain vertices v , called free vertices in B , and to define the collection

(1-1)
˚
jGB.v/j W v is a free vertex in B

	
:

Interest in toric orbifolds was stimulated by Davis and Januszkiewicz [9], who saw
them as natural extensions to their own smooth toric manifolds.2 They proved that toric
manifolds are always even; however, the best comparable statement for toric orbifolds
is due to Poddar and the second author [20], who showed that, in general, they are only

1In the literature, these orbifolds are sometimes called quasitoric orbifolds.
2They are renamed in Buchstaber and Panov [4] as quasitoric manifolds.
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even over the rationals. We introduce our main result of the first part of this paper in
Section 4, as follows.

Theorem 1.1 Given any toric orbifold X.Q; �/, assume that the gcd of the collection
(1-1) is 1 for each B which appears in a retraction sequence with dimB > 1; then X
is even.

The proof employs a cofiber sequence involving orbifold lens spaces, which are a gen-
eralization of lens complexes, introduced by Kawasaki [18]. Furthermore, Theorem 1.1
automatically applies to weighted projective spaces.

In Section 5, we restrict our emphasis to projective toric orbifolds, which are realized
as toric varieties whose details are admirably presented by Cox, Little and Schenck in
their encyclopedic book [6]. Every such variety X† is encoded by a fan † in Rn, and
admits a canonical action by the n–dimensional real torus T n. If † is smooth, then
the underlying geometry guarantees that X† is always even. Moreover, it is true that
the Borel equivariant cohomology ring H�T .X†/ is isomorphic to the Stanley–Reisner
ring SRŒ†�, which is also concentrated in even degrees, and H�.X†/ is its quotient
by a linear ideal determined by (5-2). It is important to note that SRŒ†� is isomorphic
to the ring PPŒ†� of integral piecewise polynomials on † for any smooth fan.

For a particular class of singular examples, a comparable description of the ring
H�.X†/ was given in Bahri, Franz and Ray [1], as follows. If ˙ is polytopal and X†
is even, then H�.X†/ is the quotient of PPŒ†� by the ideal generated by all global
polynomials. It is no longer possible to use the Stanley–Reisner ring, which only agrees
with PPŒ†� over the rationals. In these circumstances, when X† is a toric variety
over a polytopal fan, we have a major incentive to develop criteria which test whether
or not it is even. There also remains the significant problem of presenting PPŒ†� by
generators and relations, as exemplified by the calculation for the weighted projective
space CP3.1;2;3;4/ in [1, Section 4]. So the aim of Section 5 is to find an alternative
description for the ring of piecewise polynomials. It is accomplished by defining the
weighted Stanley–Reisner ring wSRŒ†�, which turns out to be a subring of SRŒ†�,
consisting of polynomials that satisfy an integrality condition; see Definition 5.2. The
main result of Section 5 combines Theorems 1.1 and 5.3, as follows.

Theorem 1.2 Given any polytopal fan † in Rn, assume that the corresponding R–
characteristic pair .Q; �/ satisfies the hypothesis of Theorem 1.1; then X† is even, and
there exists an isomorphism

H�.X˙ /Š wSRŒ†�=J

of graded rings, where J is an ideal of linear relations determined by the generators of
rays of †.
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So our combinatorial condition on the fan allows us to give an explicit description of
the integral cohomology ring of X† .

Several natural questions present themselves for future discussion. For example, Sec-
tions 3 and 5 may be linked more closely by establishing a common framework for toric
orbifolds and toric varieties over nonsmooth polytopal fans. The theory of multifans
is an obvious candidate, but we have been unable to identify an associated ring of
piecewise polynomials with sufficient clarity. However, the third author with Darby and
Kuroki [8] has recently proposed a definition of piecewise polynomials on an orbifold
torus graph, which does allow those two objects to be dealt with simultaneously.

In view of our opening remarks, another reasonable challenge is to extend our study
to the complex K–theory and complex cobordism of toric orbifolds. This program
was suggested by work of Harada, Henriques and Holm [13], and begun in Harada,
Holm, Ray and Williams [14] by the adoption of a categorical approach to piecewise
structures; but overall progress has been limited to a small subfamily of weighted
projective spaces, and much further work is required. However, some progress has
made by the second author and Uma [22].

Acknowledgments We extend our sincere gratitude to Nigel Ray. Most properly,
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2 A retraction of simple polytopes

In this section, we introduce a natural way of retracting a simple polytope Q to a point,
which we call a retraction sequence. For each polytope, there are finitely many such
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retractions, enabling us to develop a sufficient condition for torsion-freeness in the
homology of toric orbifolds in the following section. The operation itself is motivated
by several spaces which arise in a toric orbifold by decomposing the orbit space. We
shall explain this topological interpretation in Section 3. This section is devoted to
giving the combinatorial definition and properties of retraction sequences. We begin by
introducing the definition of a polytopal complex.

Definition 2.1 [23, Definition 5.1] A polytopal complex C is a finite collection of
polytopes in Rn satisfying:

(1) If E is a face of F and F 2 C then E 2 C .

(2) If E;F 2 C then E \F is a face of both E and F .

Let jCj D
S
F 2C F be the underlying set of C .

The elements of C are called faces and the zero-dimensional faces of C are called
vertices. We denote the set of vertices of C by V.jCj/. The dimension of C or jCj is the
maximum of the dimension of its faces. Given a simple polytope Q , let C.Q/ be the
collection of all faces of Q and F .Q/ the collection of all facets of Q . Then C.Q/
is a polytopal complex and jC.Q/j is homeomorphic to Q as manifolds with corners.
Throughout this paper, we always write ` WD jV.Q/j for the number of vertices of Q ,
m WD jF .Q/j for the number of facets of Q and n WD dimQ .

Now, given an n–dimensional simple polytope Q , we construct a sequence of triples
f.Bk; Ek; bk/g

`
kD1

, which we call a retraction sequence of Q . First, we define B1 D
QDE1 and b12V.B1/. The second term .B2; E2; b2/ is defined as follows. Consider
a subcollection

C2 D fE 2 C.Q/ j b1 … V.E/g

of C.Q/. Then C2 is an .n�1/–dimensional polytopal complex. We define B2 by the
underlying set jC2j of C2 . We choose a vertex b2 of B2 such that b2 has a neighborhood
diffeomorphic to RN

�0 as manifolds with corners for some 1 � N � dimB2 and let
E2 be the unique N –dimensional face of B2 containing b2 . Notice that, in this case,
N D n� 1 and we have n different choices of b2 because Q is an n–dimensional
simple polytope.

Next we construct the sequence of triples inductively. Given .Bk; Ek; bk/, the next
term .BkC1; EkC1; bkC1/ is defined as follows. First we consider a polytopal complex

CkC1 D fE 2 Ck j bk … V.E/g:

Then BkC1 is defined by its underlying set jCkC1j. We choose a vertex bkC1 in
V.BkC1/ satisfying the condition
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(}) bkC1 has a neighborhood homeomorphic to RN
�0 as manifolds with corners for

some N 2 f1; : : : ; dimBkC1g,

and EkC1 defined to be a unique face of BkC1 containing bkC1 with dimEkC1DN .

Definition 2.2 We call a vertex v in Bk a free vertex if it has a neighborhood in Bk
that is diffeomorphic to RN

�0 as manifolds with corners for some N 2 f1; : : : ; dimBkg.
We denote the set of free vertices in Bk by FV.Bk/.

Finally, the sequence stops if the sequence reaches a vertex, ie B` DE` D b` 2 V.Q/.
Essentially, we can think of a retraction sequence as an iterated choice of free vertices
at each step. Figure 1 shows an example of retraction sequence for the vertex cut of a
cube, where the colored face of each Bk indicates Ek for k D 1; : : : ; 10.

Proposition 2.3 Every simple polytope has at least one retraction sequence.

Proof We begin by following the argument of [9, Proposition 3.1]. First, we realize
Q as a convex polytope in Rn and choose a vector u 2Rn such that

hu; vi ¤ hu;wi whenever v ¤ w 2 V.Q/�Rn;

with respect to the Euclidean inner product h ; i. Let e WD e.vw/ be the oriented edge
with the initial vertex i.e/D v and the terminal vertex t .e/D w . Here the direction
of e.vw/ is given by the rule

i.e/D v and t .e/D w if and only if hu; vi< hu;wi;

which makes the one-skeleton of Q into a directed graph.

Let ind.v/ be the number of inward edges at v and we call ind.v/ the index of v (with
respect to the choice of generic vector u). Then, for each face E �Q , there exists a
unique vertex v of E having the maximal index among the vertices in E . Moreover,
E is locally diffeomorphic to Rind.v/

�0 around v . Conversely, given a vertex v 2 V.Q/,
there exists a unique face Ev such that dimEv D ind.v/.

b1

B1

b2

B2

b3

B3

b4

B4

b5

B5

b6

B6

b7

B7

b8

B8

b9

B9

b10

B10

Figure 1: A retraction sequence of a vertex cut of the cube
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Let fbkg`kD1 be a sequence of vertices in Q determined by

hu; b1i> hu; b2i> � � �> hu; b`i:

Notice that ind.b1/D nD dimQ , and ind.b`/D 0. Now we claim that the sequence��
Bk WD

[
j�k

Ebj ; Ebk ; bk

��
kD1;:::;`

;

where Ebk is a unique face containing bk with dimEbk D ind.bk/, is a retraction
sequence of Q . Indeed, for each k 2 f1; : : : ; `� 1g, we have hu; bki> hu; vi for all
v 2 V.Bk/ n fbkg. Hence, there are no outgoing edges from bk in Bk , which implies
that bk has a neighborhood in Ebk �Bk homeomorphic to Rind.bk/

�0 as manifolds with
corners.

We denote by R.Q/ the set of all retraction sequences of Q and by B.Q/ the set of
all possible Bi which appear in R.Q/. Evidently, both R.Q/ and B.Q/ are finite
sets, because we have finitely many choices of free vertices at each step.

Remark The retraction sequence has a strong relation with shelling of a simplicial
complex. We are preparing an independent article [2] about the exact correspondence
and some other interesting properties.

3 Toric orbifolds and orbifold lens spaces

In this section we recall the characteristic pairs .Q; �/ of [9; 20], and explain the way
in which they are used to construct toric orbifolds X D X.Q; �/. If � obeys Davis
and Januszkiewicz’s condition .�/ (see [9, page 423]), then X is smooth and even;
so one of the main goals of this paper is to establish Theorem 1.1, which focuses on
singular cases, and states a sufficient condition for the orbifold X to be even. In this
section, to complete the proof of Theorem 1.1, we commandeer two additional types of
spaces, namely the invariant subspaces of X which arise as the preimage of faces via
the orbit map, and the orbifold lens spaces that arise as quotients of odd-dimensional
spheres by the actions of certain finite groups associated to �.

3.1 Toric orbifolds

In this subsection, we discuss a combinatorial definition of toric orbifolds. Let Q
be an n–dimensional simple convex polytope in Rn and F .Q/D fF1; : : : ; Fmg the
codimension-one faces of Q , which are called facets.
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Definition 3.1 A function �W F .Q/!Zn is called a rational characteristic function
(or R–characteristic function) for Q if it satisfies the following condition:

(3-1) f�.Fi1/; : : : ; �.Fik /g is linearly independent whenever
k\

jD1

Fij ¤¿:

We write �i D �.Fi / and call it an R–characteristic vector assigned to the facet Fi .
The pair .Q; �/ is called an R–characteristic pair.

Remark (1) In the literature about toric manifolds, the pair .Q; �/ satisfying the
condition .�/ in [9, page 423] is called a characteristic pair.

(2) For convenience, we usually express an R–characteristic function � as an n�m
matrix ƒ by listing the �i as column vectors. We call ƒ an R–characteristic
matrix associated to �.

(3) It is easy to check that it suffices to satisfy the linearly independence at each
vertex which is an intersection of n facets.

One canonical example of such functions can be given by a simple lattice polytope,
which is a convex hull of finitely many points in the integer lattice Zn�Rn and simple.
Namely, we can naturally assign as an R–characteristic vector the primitive normal
vector on each facet of a simple lattice polytope. In Section 5, we shall see this again
as primitive vectors of 1–dimensional cones in a normal fan associated to a simple
lattice polytope.

For x 2Q , we denote by E.x/ the face of Q which contains x in its interior. If E.x/
is a face of codimension k , then it is a unique intersection of k facets Fi1 ; : : : ; Fik . We
also denote by TE.x/ the subtorus of the standard n–dimensional torus T n determined
by �i1 ; : : : ; �ik . To be more precise, we may regard the target space Zn of � as
the Z–submodule of the Lie algebra of T n, and TE.x/ is the torus generated by the
exponential image of the lines determined by the R–characteristic vectors �i1 ; : : : ; �ik .

Now we define an equivalence relation �� on the product T n �Q by

(3-2) .t; x/�� .s; y/ if and only if x D y and t�1s 2 TE.x/:

The quotient space
X.Q; �/D .T n �Q/=��

has an orbifold structure with a natural T n–action induced by the group operation; see
Section 2 in [20]. Clearly, the orbit space of the T n–action on X.Q; �/ is Q . Let

(3-3) � W X.Q; �/!Q; �.Œt; x���/D x;
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be the orbit map, where Œt; x��� is the equivalence class of .t; x/ with respect
to �� . The space X.Q; �/ is called the toric orbifold associated to the combinatorial
pair .Q; �/.

In analyzing the orbifold structure of X.Q; �/, Poddar and Sarkar [20, Section 2.2],
gave an axiomatic definition of toric orbifolds, which generalizes the axiomatic defini-
tion of toric manifolds of [9].

3.2 Invariant subspaces

In this subsection, we study the R–characteristic pair of some invariant subspaces
of X.Q; �/. Let E D Fi1 \ � � � \Fik be a face of Q , where Fi1 ; : : : ; Fik are facets.
We can define a natural projection

(3-4) �E W Z
n
! Zn=

�
.spanf�i1 ; : : : ; �ikg˝Z R/\Zn

�
;

where the target space is isomorphic to Zn�k, because .spanf�i1 ; : : : ; �ikg˝Z R/\Zn

is a rank-k direct summand of Zn. Notice that the rank of the target space of �E is
the same as the dimension of E . We consider E as an independent simple polytope,
and denote the set of facets of E by

F .E/D fE \Fj j Fj 2F .Q/ and j ¤ i1; : : : ; ik and E \Fj ¤¿g:

Now the map �E , together with �, yields an R–characteristic function

(3-5) �E W F .E/! Zn�k

on E , defined so that �E .E\Fj / is the primitive vector of .�E ı�/.Fj /. Indeed, the
condition (3-1) naturally follows from �.

Hence, we get an R–characteristic pair .E; �E / from .Q; �/, which yields another
toric orbifold

X.E; �E / WD .T
n�k
�E/=��E ;

where the equivalence relation ��E is defined in a manner similar to (3-2).

Proposition 3.2 [20, Section 2.3] Let � W X.Q; �/!Q and .E; �E / be as above.
Then ��1.E/ is a T n–invariant suborbifold. Moreover, it is a toric orbifold homeo-
morphic to X.E; �E / as a topological space.

The second assertion of the above proposition follows from the fact that the circle
subgroups determined by �E .E \Fj / and .�E ı�/.Fj /, respectively, are identical.
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v124 v134

v123

v245 v345

v235

F2 F3

F1

F4

F5

ƒD

�1 �2 �3 �4 �524 352 2 �1 �1 0

3 �1 �1 2 0

5 0 �2 2 1

Figure 2

We also remark that the torus T n�k acting on X.E; �E / can be identified with the
image of the map

(3-6) x�E W T
n
! T n�k;

which is induced from the map �E .

Example 3.3 Suppose we have an R–characteristic pair .Q; �/ as described in
Figure 2. Notice that Q is a 3–dimensional polytope with 5 facets, say F .Q/ D

fF1; : : : ; F5g. Here we assume that the target space Z3 of � is generated by the
standard basis fe1; e2; e3g. We choose E to be the facet F5 . So k D 1 and n�k D 2.
Then the projection

�E W Z
3
! Z3=he3i D he1; e2; e3i=he3i Š Z2

is onto the first two coordinates. The facets of E are F2 \E , F3 \E and F4 \E .
Hence, the map

�E W fF2\E; F3\E; F4\Eg ! Z2

is defined by

�E .F2\E/D �E .�.F2//D .2;�1/D 2e1� e2;

�E .F3\E/D �E .�.F3//D .�1;�1/D�e1� e2;

�E .F4\E/D �E .�.F4//D .�1; 2/D�e1C 2e2:

The orbifold corresponding to .E; �E / is known to be a fake weighted projective space
with weight .1; 1; 1/. We refer to [5; 17] for the details of fake weighted projective
space.

3.3 Orbifold lens spaces

Here we introduce a generalization of lens complexes and study their homology groups.
Let �n�1 be the .n�1/–dimensional simplex and F .�n�1/DfF1; : : : ; Fng the facets
of �n�1. We begin by introducing the following definition.

Algebraic & Geometric Topology, Volume 17 (2017)
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Definition 3.4 A function �W F .�n�1/! Zn is called an L–characteristic function
on �n�1 if f�.F1/; : : : ; �.Fn/g is linearly independent. We set �i WD �.Fi / for
i D 1; : : : ; n.

Now we define an equivalence relation �� on T n ��n�1 as follows:

(3-7) .t; x/�� .s; y/ if and only if x D y and t�1s 2 TF.x/;

where F.x/ is the face containing x in its interior and TF.x/ denotes the subtorus of
T n determined by �i1 ; : : : ; �ik if F.x/DFi1\� � �\Fik . The pair .�n�1; �/, together
with the equivalence relation �� , yields the quotient space

L.�n�1; �/ WD T n ��n�1=�� ;

which we call the orbifold lens space associated to .�n�1; �/.

Proposition 3.5 The orbifold lens space L.�n�1; �/ is homeomorphic to the quotient
space of the .2n�1/–dimensional sphere S2n�1 by the action of a finite group G� WD
Zn=spanf�1; : : : ; �ng.

Proof The proof is essentially same as the proof of [21, Proposition 2.3].

Remark (1) In [21], the function � is called a hypercharacteristic function if the
submodule generated by f�.Fi1/; : : : ; �.Fik /g is a direct summand of ZnC1 of
rank k whenever Fi1\� � �\Fik is nonempty. In particular, if f�.Fi1/; : : : ; �.Fin/g
is a linearly independent set, then it becomes an L–characteristic function.

(2) The action of G� is induced from the standard T n–action on S2n�1 �Cn.

(3) The order jG� j of G� is exactly same as the determinant of the n� n matrix
Œ�1 j � � � j �n�.

Proposition 3.5 leads us to the following lemma.

Lemma 3.6 Let p1; : : : ; pr be the prime factors of jG� j. Then

Hj .L.�
n�1; �//D

�
Z if j D 0; 2n� 1;
Gj if 1� j � 2n� 2;

where Gj D .Z=p
aj1
1 Z/˚� � �˚ .Z=p

ajr
r Z/ for some nonnegative integers a1; : : : ; ar .

Proof We see H0.L.�n�1; �//ŠZ trivially. The isomorphism H2n�1.L.�
n; �//Š

Z follows because the G� –action on S2n�1 is induced from the standard action of T n

on S2n�1 �Cn , which is orientation-preserving. For j 2 f1; : : : ; 2n� 2g, recall the
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following isomorphism, which can be obtained from the classical result for an action
of a finite group G on a locally compact Hausdorff space X :

(3-8) H�.X=GIk/ŠH�.X Ik/G ;

where k is a field of characteristic zero or prime to jGj; see [3, III.2].

We apply the isomorphism (3-8) to the orbifold lens space L.�n�1; �/Š S2n�1=G� .
Since H j .S2n�1Ik/G� D 0 for j D 1; : : : 2n�2, the claim is proved by the universal
coefficient theorem.

Toric orbifolds, invariant subspaces and orbifold lens spaces motivate the definition
of retraction sequences which we introduced in the previous section. For a vertex
v 2 V.Q/, let B2 be the union of all faces in Q which do not contain v . Next we
consider a hyperplane

(3-9) H.v/ WD fx 2Rn j hx; pvi D qvg;

where h ; i denotes the Euclidean inner product and pv 2Rn and qv 2R are chosen
in such a way that

� fx 2Rn j hx; pviC qv � 0g\V.Q/D fvg,

� fx 2Rn j hx; pviC qv � 0g\V.Q/D V.Q/ n fvg.

Then �Q.v/ WDQ\H.v/ is an .n�1/–dimensional simplex, because Q is a simple
polytope of dimension n; see Figure 3.

An L–characteristic pair arises naturally from an R–characteristic pair .Q; �/ for each
vertex v of Q . Indeed, if vDFj1\� � �\Fjn , we denote the set of facets of �Q.v/ by

F .�Q.v//D f�Q.v/\Fj1 ; : : : ; �Q.v/\Fjng:

Now we define a function

(3-10) �Q;vW F .�Q.v//! Zn

by �Q;v.�Q.v/\Fjr /D �.Fjr / for r D 1; : : : ; n. Notice that dim�Q.v/D n� 1,
but the rank of target space is n. Since f�.Fi1/ : : : ; �.Fin/g is a linearly independent
set, the function �Q;v is an L–characteristic function on �Q.v/.

4 Vanishing odd degree homology and torsion-freeness

Now we combine the ingredients which we introduced in the previous sections to
derive a sufficient condition for vanishing odd degree cohomology of toric orbifolds.
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x

hb1.x/
B2

b1
�Q.b1/

hb2.x/

hb2.y/

b2

x
y

�E2.b2/

Figure 3: The geometric interpretation of a retraction sequence

In particular, let X.Q; �/ be a toric orbifold and the triple f.Bk; Ek; bk/g`kD1 be a
retraction sequence of Q . Given an n–dimensional polytope Q , we begin by defining
the map

(4-1) hb1 W �Q.b1/! B2 D
[
fE jE is a face of Q; b1 … V.E/g

by hb1.x/ D B2 \ .line passing through x and b1/, where �Q.b1/ is an .n�1/–
dimensional simplex. The map hb1 is well-defined, because Q is convex. The left
picture of Figure 3 shows the map hb1 when Q is a prism.

Define a map

(4-2) fb1 W T
n
��Q.b1/!

[
E a face of B2

T dimE
�E

by fb1.t; x/D .x�E .t/; hb1.x//, where x�E is as defined in (3-6). This induces the map

(4-3) xfb1 W L.�Q.b1/; �Q;b1/!
[

E a face of B2

X.E; �E /;

where �Q;b1 is the L–characteristic function defined in (3-10). This map is well-defined
by the proof of the following proposition.

Proposition 4.1 The following diagram commutes:

(4-4)

T n ��Q.b1/
fb1

//

=��Q;b1
��

S
E a face of B2.T

dimE �E/

=��E
��

L.�Q.b1/; �Q;b1/
xfb1
//
S
E a face of B2 X.E; �E /

� � // X.Q; �/

where the equivalence relations ��Q;b1 and ��E are defined similarly as in (3-7) and
(3-2), respectively. Moreover, the bottom row is a cofiber sequence, ie X.Q; �/ is
homotopy equivalent to the mapping cone c. xfb1/ of the map xfb1 .
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Proof We first show that the map xfb1 is well-defined. Suppose we choose two different
representatives, say Œt; x���Q;b1

and Œs; y���Q;b1 in L.�Q.b1/; �Q;b1/. Then x D y ,
so hb1.x/ D hb1.y/. Moreover, if x 2 �Q.b1/ \ F for some face F of Q , then
hb1.x/ 2 F \E for some face E of B2 . Hence the map x�E sends the subtorus TF.x/
of T n to TE.hb1 .x// the subtorus of T dimE. Since the map x�E is a homomorphism, if
t�1s 2 TF.x/ , then

x�E .t/
�1
x�E .s/D x�E .t

�1s/ 2 TE.hb1 .x//
:

Let C�Q.b1/ be the cone on �Q.b1/ in Q with the cone point b1 . Then we can
decompose Q into two parts as follows:

(4-5) QD C�Q.b1/[�Q.b1/Q nC�Q.b1/:

Now we define a continuous surjective map

gb1 W Q nC�Q.b1/! B2

in a manner similar to (4-1). We use it to define a straight line homotopy by

�W Q nC�Q.b1/� I !Q nC�Q.b1/; .x; u/ 7! .1�u/xCu �gb1.x/;

which preserves the face structure. Thus, � induces a homotopy

y�W .T n �Q nC�Q.b1//=�� � I ! .T n �Q nC�Q.b1//=��;

defined by
.Œt; x��� ; u/ 7! Œt; �.x; u/��� :

Note that at uD 0 the map y� is the identity and at uD 1 the image of y� is ��1.B2/.

Then

X.Q; �/D ��1.C�Q.b1//[L.�Q.b1/;�Q;b1 /
��1.Q nC�Q.b1//

' C
�
L.�Q.b1/; �Q;b1/

�
[L.�Q.b1/;�Q;b1 /

��1.B2/

' c. xfb1/:

Hence, the result follows.

Now the following isomorphisms are straightforward from the cofiber sequence

H�.X.Q; �/; �
�1.B2//ŠH�

�
C
�
L.�Q.b1/; �Q;b1/

�
; ��1.B2/

�
Š zH��1

�
L.�Q.b1/; �Q;b1/

�
:

Those two isomorphisms come from the excision and the long exact sequence of the
pair, respectively.
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So far, we have considered B1 DQ and B2 , which is the second term of a retraction
sequence starting by choosing b1 2 FV.Q/D V.Q/. However, we can apply similar
arguments to each pair Bi and BiC1 in a retraction sequence. This leads us to
the following lemma, whose proof is essentially same as that of Proposition 4.1.
Before we state the lemma, we first set up the notations: Given a retraction sequence
f.Bk; Ek; bk/g

`
kD1

of Q :

� �Ek .bk/ WDEk \H.bk/D Bk \H.bk/ is the simplex obtained by cutting the
vertex bk from Bk .

� �Ek ;bk is an L–characteristic function on �Ek .bk/ defined in a similar manner
to (3-10) induced from �Ek .

� The map
xfbk W L.�Ek .bk/; �Ek ;bk /!

[
E a face of BkC1

X.E; �E /D �
�1.BkC1/

is defined similarly to (4-3) by regarding Ek as a simple polytope.

The right-hand side of Figure 3 illustrates the case of the 3–dimensional prism. The
argument above extends to prove the following lemma.

Lemma 4.2 The sequence

(4-6) L.�Ek .bk/; �Ek ;bk /
xfbk
��!��1.BkC1/ ,!��1.Bk/

is a cofiber sequence. Moreover,

H�.�
�1.Bk/; �

�1.BkC1//Š zH��1
�
L.�Ek .bk/; �bk /

�
:

Recall from Proposition 3.5 that an L–characteristic function

�W F .�n�1/! Zn

defines a finite abelian group Zn=im.�/. An R–characteristic pair .Q; �/ induces
an R–characteristic pair .E; �E / as in (3-5) for any face E of Q . Let E be a k–
dimensional face of Q for some k � n and v 2 V.E/. Then �E .v/ WDE \H.v/ is
a .k�1/–simplex. These give us an L–characteristic function

�E;vW F .�E .v//! Zk;

which is defined in a similar manner to (3-10) associated to �E W F .E/! Zk and
v 2 V.E/. This L–characteristic function defines the finite group

(4-7) GE .v/ WD Zk=im.�E;v/:

If GE .v/ is trivial, we call a point ��1.v/ in ��1.E/Š X.E; �E / a smooth point,
and otherwise a singular point, where � W X.Q; �/ ! Q is the orbit map defined
in (3-3).
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Furthermore, for each B 2B.Q/ and a free vertex v 2 FV.B/, there exists a unique
maximal face, say Ev , of B containing v . Hence, for each B 2B.Q/, we write

(4-8) GB.v/ WDGEv .v/

whenever v is a free vertex in B .

Proposition 4.3 Given a vertex v 2 V.Q/, let E and E 0 be two faces containing v
such that E is a face of E 0. Then jGE .v/j divides jGE 0.v/j.

Proof From Proposition 3.2, we may assume that E 0 DQ without loss of generality.
Suppose that E is a face of Q with codimension k . For convenience, we further
assume that E D F1\ � � � \Fk and v D F1\ � � � \Fk \FkC1\ � � � \Fn , where the
Fi are facets of Q .

From (3-10) and (4-7), we have GQ.v/ D Zn=h�.F1/; : : : ; �.Fn/i and GE .v/ D

Zk=h�E .E \FkC1/; : : : ; �E .E \Fn/i. Now we consider the composition

Zn
�E
��Zk�Zk=h�E .E \FkC1/; : : : ; �E .E \Fn/i;

where the map �E is defined in (3-4) and the second map is the natural surjection
determined by (3-5). Observe that the kernel of the previous composition contains
h�.F1/; : : : ; �.Fn/i. Hence, we get a surjective group homomorphism from GQ.v/ to
GE .v/. The result follows from Lagrange’s theorem in group theory.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 We prove the claim by the induction on the number of vertices
of B 2B.Q/. First, notice that when the retraction sequence reaches an edge or a
union of edges, say Bs , then ��1.Bs/ is CP1 or homotopic to a finite wedge of CP1,
which implies that H�.��1.Bs// is torsion-free and concentrated in even degrees.
Therefore, if jV.B/j � 2 for B 2B.Q/, then the claim is true.

Now we assume that ��1.B/ is even for B 2B.Q/ with jV.B/j � i�1. To complete
the induction, we shall prove that the same holds for B 0 2B.Q/ with jV.B 0/j D i .
Given such B 0, there exists B 2B.Q/ such that B is obtained from B 0 by deleting all
faces containing a free vertex of B 0. To be more precise, let FV.B 0/Dfvi1 ; : : : ; vir g be
the set of free vertices in B 0. Notice that, regarding B 0 as a generic step of a retraction
sequence in R.Q/, we can produce r many different B 2B.Q/ with jV.B/j D i � 1
from B 0. According to the induction hypothesis, we assume that for each t D 1; : : : ; r ,
the group H�.��1.B.vit /// is concentrated in even degrees and torsion-free, where
B.vit / 2B.Q/ is obtained from B 0 by deleting faces containing vit . This assumption
makes sense, because any retraction sequence reaches a union of edges.

For simplicity, we fix the following notation: For each free vertex vit 2 FV.B 0/:
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� X 0 WD ��1.B 0/ and dimB 0 D d 0 D 1
2

dimRX
0.

� X.vit / WD �
�1.B.vit // and dimB.vit /D d D

1
2

dimRX.vit /.

� L.vit / WD L.�Eit .vit /; �Eit ;vit /, where Eit denotes the maximal face of B 0

containing vit .

Notice that dimL.vit /� 2d
0� 1 and d � d 0.

Now we consider the long exact sequence of the homology for the pair .X 0; X.vit //D�
��1.B 0/; ��1.B.vit //

�
(4-9) � � � !HjC1.X

0/!HjC1.X
0; X.vit //!Hj .X.vit //

!Hj .X
0/!Hj .X

0; X.vit //! � � � :

Suppose that j is odd. By the induction hypothesis and Lemma 4.2, the sequence (4-9)
becomes

(4-10) 0!Hj .X
0/! zHj�1.L.vit //

0
�!Hj�1.X.vit //:

The rightmost map is the zero map because the domain is a torsion group but the target
space is free by assumption. Hence, Hj .X 0/ is isomorphic to zHj�1.L.vit //, and the
latter is zero if j � 1 > dimL.vit / or a torsion group determined by the prime factors
of jGB 0.vit /j if j � 1� dimL.vit / by Lemma 3.6. This argument holds for each free
vertex vi1 ; : : : ; vir . Hence we have r many different exact sequences like (4-10). Now
the assumption of Theorem 1.1 tells us that

gcd
˚
j zHj�1.L.vi1//j; : : : ; j

zHj�1.L.vir //j
	
D 1;

but Hj .X 0/ stays same. Hence, we conclude that Hj .X 0/D 0 if j is odd. Moreover,
zHj�1.L.vit //D 0 for all t D 1; : : : ; r because of the exactness of (4-10).

Next we assume that j is even. Then the exact sequence (4-9) gives us

(4-11) zHj .L.vit //
0
�!Hj .X.vit //!Hj .X

0/! zHj�1.L.vit //! 0:

Then we have the following three cases:

� � �
0
�!Hj .X.vit //!Hj .X

0/! 0 if j � 1 > dimL.vit /;

� � �
0
�!Hj .X.vit //!Hj .X

0/! Z! 0 if j � 1D dimL.vit /;

� � �
0
�!Hj .X.vit //!Hj .X

0/!Gj�1! 0 if j � 1 < dimL.vit /;

where Gj�1 is as defined in Lemma 3.6 and Hj .X.vit // is free by the induction
hypothesis. The free vertices vi1 ; : : : ; vir in B 0 gives us r many exact sequences, and
each of them is one of the above three cases. If one of the free vertices gives the first
or the second type of exact sequence, then Hj .X 0/ cannot have a torsion subgroup
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because of the exactness. If all of the sequences are of the third type, then Hj .X 0/ has
no torsion because of the assumption of the theorem and arguments similar to those
used in the case when j is odd. This completes the induction.

Notice that Kawasaki [18] has shown that the cohomology ring of weighted projec-
tive space CPn� with weight � D .�0; : : : ; �n/ is concentrated in even degrees and
torsion-free, if gcd.�0; : : : ; �n/D 1. Theorem 1.1 extends Kawasaki’s theorem to the
category of toric orbifolds which contains the weighted projective spaces. The following
Example 4.4 shows how we can apply this result to a polygon, and Example 4.5 is a
practical computation on a higher-dimensional weighed projective space.

Example 4.4 Consider the 4–dimensional toric orbifold X over Q whose R–char-
acteristic pair is described in Figure 4. Let H.v/ be an affine hyperplane as defined
in (3-9). Then H.v/\Q is an 1–simplex. The induced L–characteristic function

�Q;vW fH.v/\F1; H.v/\Fmg ! Z2

is defined by �Q;v.H.v/\F1/D �.F1/D .a1; b1/ and �Q;v.H.v/\Fm/D �.Fm/D
.am; bm/. Therefore, the orbifold lens space L.�Q.v/; �Q;v/ is homeomorphic to
S3=GQ.v/, where GQ.v/ is a finite abelian group of order ja1bm � b1amj; see
Proposition 3.5. Moreover, the prime factors of the order of a torsion element in
H�.L.�Q.v/; �Q;v// is a subset of the prime factors of ja1bm�b1amj by Lemma 3.6.

Now we consider a retraction sequence fBk; Ek; bkg`kD1 starting at v . The second
space B2 is the union F2[� � �[Fm�1 of edges whose preimage ��1.B2/ is homotopic
to the wedge of m � 2 copies of CP1. Hence, H�.��1.B2// is torsion-free and
Hodd.�

�1.B2// vanishes. A cofibration

L.�Q.v/; �Q;v/! ��1.B2/!X

gives an isomorphism Hj .X; �
�1.B2//Š zHj�1.L.�Q.v/; �Q;v//. Hence, the long

exact sequence of pair .X; ��1.B2// yields

� � � ! zHj .L.�Q.v/; �Q;v//!Hj .�
�1.B2//

!Hj .X/! zHj�1.L.�Q.v/; �Q;v//! � � � ;

and this shows that, if Hj .X/ has a torsion part, then its prime factors must divide
ja1bm� b1amj. But the same argument can be applied to all the other vertices in Q .
Finally, we may conclude that H�.X/ is torsion-free and concentrated in even degrees
if

(4-12) gcd
˚
ja1b2� b1a2j; : : : ; jam�1bm� bm�1amj; ja1bm� b1amj

	
D 1;

which is the assumption of Theorem 1.1.
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Figure 4: An R–characteristic function on a polygon

Example 4.5 We consider an R–characteristic pair .�4; �/, where �W F .�4/!Z4

is defined by
�1 �2 �3 �4 �52664

3775
�1 1 0 0 0

�2 0 1 0 0

�2 0 0 1 0

�2 0 0 0 1

:

The column vectors satisfies the relation �1C�2C 2�3C 2�4C 2�5 D 0. Then the
resulting toric orbifold is a weighted projective space CP4.1;1;2;2;2/ . We refer to [6,
Example 3.1.17] or [12, Section 2.2] for more details.

To check the assumption in Theorem 1.1, it suffices to consider all faces of �4 of
dimension greater than 1, because the set B.�4/ coincides with the set of all faces
of �4. First of all, for �4 itself, it is easy to see that

gcd
˚
jG�4.v/j W v 2 V.�

4/
	
D gcdf2; 2; 2; 1; 1g D 1:

Since the process is essentially the same, we choose E D F1\F2 D�2 as a sample.
Observe that

.h�1; �2i˝Z R/\Z4D .h�e1�2e2�2e3�2e4; e1i˝Z R/\Z4Šhe2Ce3Ce4; e1i:

Hence, we may decompose the target space Z4 Š he2C e3C e4i˚he1i˚he3i˚he4i.
This derives an R–characteristic function

�E W fE \F3; E \F4; E \F5g ! Z2 Š he3i˚ he4i;

defined by �E .E\F3/D .�1;�1/, �E .E\F4/D .1; 0/ and �E .E\F5/D .0; 1/.
Hence, ��1.E/DX.�2; �E /ŠCP2.1;1;1/ . Hence, we have

gcd
˚
jGE .v/j W v 2 V.E/

	
D gcdf1; 1; 1g D 1:

Sometimes, if the polytope has sufficiently many symmetries, we can analyze all
possible retraction sequences efficiently. Proposition 4.3 can then be used to ensure the
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Figure 5: A retraction sequence of a prism

gcd assumption of Theorem 1.1 holds. The main features of the following example
are that the polytope has at least two free vertices at each B 2 B.Q/, and that the
collection fjGQ.v/j W v 2 V.Q/g consists of mutually different prime numbers; in
particular, they are pairwise relatively prime.

Example 4.6 Let Q be the 3–dimensional cube whose facets and vertices are il-
lustrated in Figure 5. We assign an R–characteristic function �W F .Q/ ! Z3 as
follows:

�.F1/D .p1; p2; p3/; �.F5/D .p4; p5; p6/;

�.F2/D e1; �.F3/D e2; �.F4/D e3;

where the pi are all prime numbers with pi ¤ pj whenever i ¤ j , and ei is the i th

standard unit vector in Z3. Then it is easy to see that jGQ.vi /j D pi for i D 1; : : : ; 6.
Hence, we have

gcd
˚
jGQ.v/j W v 2 V.Q/

	
D gcdfp1; : : : ; p6g D 1:

The same property holds for other polytopal complex B 2B.Q/ from Proposition 4.3.
Indeed, for instance,

gcd
˚
jGB2.v/j W v 2 FV.B2/

	
D gcd

˚
jGB2.v1/j; jGB2.v3/j; jGB2.v5/j

	
D 1

because gcdfp1; p3; p5g D 1.

5 Cohomology ring of toric orbifolds

The integral equivariant cohomology ring of certain projective toric varieties is given by
a ring determined by the fan data. This ring is called the ring of piecewise polynomials,
which we denote by PPŒ†�. For a smooth fan, it uses the fan’s combinatorial data only
and coincides with the Stanley–Reisner ring SRŒ†� of the fan †. In general, however,
the ring of piecewise polynomials uses all the geometric data in a fan.
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To be more precise, let † be a fan in Rn and f�1; : : : ; �mg � Zn the set of primitive
vectors generating 1–dimensional rays in †. Then the Stanley–Reisner ring SRŒ†� is
defined by the quotient ZŒx1; : : : ; xm�=I of polynomial ring with m variables by the
following ideal generated by squarefree monomials:

(5-1) I D hxi1 � � � xik j conef�i1 ; : : : ; �ikg …†i;

where conef�i1 ; : : : ; �ikg denotes the cone generated by f�i1 ; : : : ; �ikg. For the case
of smooth toric varieties, their odd-degree cohomology always vanishes, which leads
us to the following description of the cohomology ring.

Theorem 5.1 [7; 16] Let X† be a smooth toric variety. Then there exists a ring
isomorphism H�.X†/ Š SRŒ†�=J , where J is the ideal generated by the linear
relations

(5-2)
mX
iD1

h�i ; ej ixi D 0; j D 1; : : : ; n;

where ej denotes the j th standard unit vector in Zn.

Notice that, for toric orbifolds, the theorem holds only for Q–coefficients; see for
instance [6, Section 12.4]. In order to make the singular theory better resemble the
smooth case, we introduce an intermediate ring, which models the Stanley–Reisner
ring but is based on a fan �† in Rm defined from the combinatorial data of †, which
has m one-dimensional rays. The ring of piecewise polynomials on the original fan †
is recovered by imposing an integrality condition, which leads us to the notion of the
weighted Stanley–Reisner ring wSRŒ†� of †.

5.1 Weighted Stanley–Reisner ring

Let † be a simplicial fan in Rn, ie each top-dimensional cone of † is generated by n
linearly independent primitive vectors in the lattice Zn. In particular, a simplicial fan †
is called a polytopal fan if it is the normal fan of a simple lattice polytope in Rn ; see [6,
Chapter 2] or [12, Section 1.5] for more details. Hence, the determinant of generators
of each top-dimensional cone is nonzero but not necessarily ˙1, so the corresponding
fixed point might be singular. Let †.j / denotes the set of j –dimensional cones in †.
To record the singularity of each fixed point in an efficient way, we assign a vector

z� WD .z�1 ; : : : ; z
�
m/ 2

M
m

QŒu1; : : : ; un�

to each top-dimensional cone � D conef�i1 ; : : : ; �ing 2†
.n/ by the following rule:
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(C1) z�j D 0 if j … fi1; : : : ; ing.

(C2)

264z
�
i1
:::

z�in

375D
24 �i1 � � � �in

35�1 �
264u1:::
un

375.

The inverse matrix in the condition (C2) may have rational entries. The following
definition is motivated by this observation.

Definition 5.2 Given a fan † in Rn with m one-dimensional rays, we say a poly-
nomial h.x1; : : : ; xm/ 2 ZŒx1; : : : ; xm� satisfies the integrality condition with respect
to † if h.z� / 2 ZŒu1; : : : ; un� for all � 2†.n/ .

Notice that the collection of polynomials satisfying the integrality condition is closed
under addition and multiplication, which induces the natural ring structure on it inherited
from that of ZŒx1; : : : ; xm�. Moreover, the polynomials in I defined in (5-1) satisfy
the integrality condition, obviously. Indeed, the condition (C1) leads h.z� / to be the
zero polynomial for all � 2†.n/ whenever h.x1; : : : ; xm/ 2 I .

Finally, we define the weighted Stanley–Reisner ring wSRŒ†� as follows:

(5-3) wSRŒ†� WD fh 2 ZŒx1; : : : ; xm� j h satisfies the integrality conditiong=I:

Remark When the fan † is smooth, wSRŒ†� D SRŒ†�. Indeed, the determinant
of a smooth top-dimensional cone is ˙1, which implies that its inverse has integer
entries.

Now we introduce the second main theorem of this paper. The proof will be given in
the next subsection.

Theorem 5.3 Let X† be a projective toric orbifold over a polytopal fan † with
H odd.X/D 0. Then there is a ring isomorphism

H�.X†/Š wSRŒ†�=J ;

where J is the ideal generated by the linear relations (5-2).

Consider a simple lattice polytope Q in Rn whose normal fan is †. Then the normal
vectors of each facet define an R–characteristic function �W F .Q/! Zn. Now we
have a natural R–characteristic pair .Q; �/ from †, which allows us to apply the
results of Sections 2 and 4. Hence, we have a concrete statement, which is Theorem 1.2,
with a sufficient condition for H odd.X†/D 0.

We complete this subsection by applying Theorem 1.2 to a weighted projective space
CP2.1;a;b/ . We shall recover Kawasaki’s result [18, Theorem 1].
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Example 5.4 Let † be a fan in R2 generated by

(5-4) �1 D .a; b/; �2 D .�1; 0/; �3 D .0;�1/ 2 Z2;

where a and b are relatively prime. The 2–dimensional cones are �12 , �13 and �23 ,
where �ij D conef�i ; �j g. Since f�1; �2; �3g generates the lattice Z2 and satisfies
�1C a�2C b�3 D .0; 0/, the toric variety X† is isomorphic to the weighed projec-
tive space CP2.1;a;b/ . We refer to [6, Example 3.1.17] or [12, Section 2.2] for the
characterization of a fan corresponding to weighted projective spaces.

The direct computation of inverse matrices for Œ�i j �j � gives us the following list of
vectors:

z�12 D
�
1

b
u2; �u1C

a

b
u2; 0

�
;

z�13 D
�
1

a
u1; 0;

b

a
u1�u2

�
;

z�23 D .0; �u1; �u2/:

Hence, we have

(5-5) wSRŒ†�D˚
h.x1; x2; x3/ 2 ZŒx1; x2; x3� j h.z

�ij / 2 ZŒu1; u2� for 1� i < j � 3
	
=I:

Finding elements at each degree is straightforward. For instance, for a degree-2 poly-
nomial, k1x1Ck2x2Ck3x3 2wSRŒ†� if and only if the following three polynomials
have integer coefficients:

�k2u1C
�
1

b
k1C

a

b
k2

�
u2;

�
1

a
k1C

b

a
k3

�
u1� k3u2; �k2u1� k2u2;

which is exactly the case when k1C ak2 2 bZ and k1C bk3 2 aZ. Hence, one can
show that the integers .k1; k2; k3/ are

.a;�1; 0/; .b; 0;�1/; .ab; 0; 0/; .0; b; 0/; .0; 0; a/;

and Z–linear combinations of them. They give us the following degree-2 elements in
wSRŒ†�:

(5-6) ax1� x2; bx1� x3; abx1; bx2; ax3;

and Z–linear combinations of them. Similarly, we can find the degree-4 elements:

(5-7) a2b2x21 ; b2x22 ; a2x23 ; abx1x2; a2x1x3; x2x3;

and Z–linear combinations of them.

We continue to calculate the ring structure of H�.CP2.1;a;b// using Theorem 1.2.
Indeed, the R–characteristic pair .�2; �/ induced from † satisfies the assumption
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of Theorem 1.1; see Example 4.4. Hence, we conclude that CP2.1;a;b/ is even, which
implies that the rank of the integral cohomology group is 1 in each even degree and 0
otherwise.

Remark In general, the integral Betti numbers of a toric manifold or the rational Betti
numbers of a toric orbifold are given by the h–vector of its underlying polytope; see
[9, Section 3] or [20, Section 4]. Hence, if a toric orbifold is even, then its integral
Betti numbers are obtained by the h–vector of the underlying polytope.

Now the characteristic vectors (5-4) and the relation (5-2) determine the ideal J D
hax1�x2; bx1�x3i whose generators are first two items in (5-6). Hence, the elements
in (5-6) except the first two are are the same modulo J . Hence, they represent the
same element in H�.CP2.1;a;b//. We put

w1 WD abx1 D bx2 D ax3:

Since rankH 4.CP2.1;a;b//D 1, we choose an element in (5-7) which has the minimal
divisibility. In this case, we pick

w2 WD x2x3:

Then we have the multiplicative structure w21Dabw2 . Finally, we have the presentation

H�.CP2.1;a;b//Š ZŒw1; w2�=hw
2
1 � abw2; w1w2i;

where degw1 D 2 and degw2 D 4. Notice that the monomial w1w2 comes from the
Stanley–Reisner ideal x1x2x3 .

Remark Even if we can find elements in wSRŒ†� by the direct computation of
the integrality condition, finding the minimal set of generators in wSRŒ†� for an
arbitrary simplicial fan is not obvious, in general. However, when X† is a weighted
projective space, a result of [1] allows us to find generators of the ring of piecewise
polynomials PPŒ†� and, hence, generators in wSRŒ†�, by a method in the next
subsection. Moreover, the identification result, Corollary 5.8, tells us how to interpret
those generators in terms of elements in wSRŒ†�.

5.2 Piecewise algebra and cohomology ring

We introduce now the ring of piecewise polynomials, which is determined by a fan and
describes the equivariant cohomology of a large class of toric orbifolds. As mentioned
above, unlike the Stanley–Reisner ring, which encodes combinatorial data only, the
ring of piecewise polynomials depends on the full geometric information in a fan.

We begin by introducing piecewise polynomials. Let † be a fan in Rn. A function
f W Zn ! Z is called a piecewise polynomial on † if, for each cone � 2 †, the
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restriction f j� is a polynomial function on � \Zn. Such a function can be interpreted
as a collection ff�g�2†.n/ , which we denote by ff�g for simplicity, such that

(5-8) f� j�\�0 D f� 0 j�\�0 :

In other words, it is enough to consider the polynomials on each top-dimensional cone.
The polynomials on lower-dimensional cones are determined by (5-8).

The set PPŒ†� of piecewise polynomial functions on † with integer coefficients on †
has a ring structure under pointwise addition and multiplication. Moreover, the natural
inclusion of global polynomials ZŒu1; : : : ; un� into PPŒ†� induces a ZŒu1; : : : ; un�–
algebra structure on PPŒ†�. Furthermore, by considering Qn instead of Zn, we
can define piecewise polynomial functions with rational coefficients f W Qn ! Q,
and we denote the ring of piecewise polynomial functions with rational coefficients
by PPŒ†IQ�.

It is well known that the equivariant cohomology ring with rational coefficients of a
toric variety over a simplicial fan is isomorphic to PPŒ†IQ�; see [6]. On the other
hand, for the case of polytopal fans, Bahri, Franz and Ray [1] proved the following
proposition over Z.

Proposition 5.5 [1, Proposition 2.2] Let † be a polytopal fan in Rn, X† the
associated compact projective toric variety with H odd.X†/ D 0, and T D T n the
n–dimensional torus acting on X† . Then H�T .X†/ is isomorphic to PPŒ†� as an
H�.BT /–algebra.

Here H�.BT /–algebra structure on PPŒ†� is obtained by identifying H�.BT / with
the global polynomials ZŒu1; : : : ; un�, where ui is the first Chern class of the canonical
line bundle given by the i th projection T ! S1 .

On the other hand, the combinatorial structure of † determines a canonical fan in a
higher-dimensional lattice as follows: Let †.1/ D f�1; : : : ; �mg be the set of primitive
vectors generating 1–dimensional rays in †. We define a linear map ƒW Zm! Zn

by ƒ.ei / D �i , where e1; : : : ; em denote the standard unit vectors in Zm. By the
pull-back of † through ƒ, we can define a fan�†D fy� WDƒ�1.�/ j � 2†g
in Rm. To be more precise, if � is the cone generated by �i1 ; : : : ; �ik , then y� is the
cone generated by ei1 ; : : : ; eik . Moreover, for a commutative ring k, a linear map ƒ
induces a ring homomorphism

(5-9) ƒ�W PPŒ†Ik�! PPŒ�†Ik�
Algebraic & Geometric Topology, Volume 17 (2017)
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of piecewise polynomial rings, where the map is defined by

ƒ�.ff�g/D
˚
gy� .xi1 ; : : : ; xin/ WD f� .ƒ� � Œxi1 ; : : : ; xin �

T /
	
y�2�†.n/ ;

where ƒ� D Œ�i1 j � � � j �in � is a square matrix and ƒ� � Œxi1 ; : : : ; xin �
T is the usual

matrix multiplication of n�n and n� 1 matrices.

Indeed, the map ƒ� is well-defined, since gy� jy�\y�0 D gy� 0 jy�\y�0 .

Lemma 5.6 Given a polytopal fan †, as H�.BT Ik/–algebras:

(1) When kDQ, PPŒ†IQ� is isomorphic to PPŒ�†IQ�.
(2) When kD Z, there is a monomorphism from PPŒ†� to PPŒ�†�.

Proof For each top-dimensional cone � D conef�i1 ; : : : ; �ing 2 †
.n/ , we set the

following notation:

� f� .u1; : : : ; un/, gy� .xi1 ; : : : ; xin/ are polynomial functions defined on � 2 †
and y� 2 �†, respectively.

� ff�g WD ff� .u1; : : : ; un/ j � 2†
.n/g 2 PPŒ†�.

� fgy�g WD fgy� .xi1 ; : : : ; xin/ j y� 2
�†.n/g 2 PPŒ�†�.

� ƒ� WD Œ�i1 j � � � j �in � is an n�n matrix with column vectors �i1 ; : : : ; �in .

Recall the ring homomorphism ƒ� introduced in (5-9). If we restrict k to Q, the map
ƒ� has the natural inverse

(5-10) ‚W PPŒ�†Ik�! PPŒ†Ik�;

defined by

‚.fgy�g/D
˚
f� .u1; : : : ; un/ WD gy� .ƒ

�1
� � Œu1; : : : ; un�

T / j � 2†.n/
	
;

where ƒ�1� is regarded as a linear automorphism of Qn. Indeed,

.‚ ıƒ�/.ff�g/D
˚
f� .ƒ� �ƒ

�1
� � Œu1; : : : ; un�

T / j � 2†.n/
	

D ff� .u1; : : : ; un/ j � 2†
.n/
g D ff�g:

In particular, ƒ� is a monomorphism in Z–coefficients. Finally, the H�.BT Ik/–
algebra structure on PPŒ�†Ik� is naturally inherited from that of PPŒ†Ik� via the
map ƒ�.
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Recall that the Stanley–Reisner ring SRŒ†Ik� has combinatorial data only, while
PPŒ†Ik� contains both combinatorial and geometric data. However, PPŒ�†Ik� has
only combinatorics, but looks like PPŒ†Ik�. In this point of view, PPŒ�†Ik� is an
intermediate object between SRŒ†Ik� and PPŒ†Ik�. The following lemma, together
with Lemma 5.6, concludes the relations among those three objects.

Lemma 5.7 As an H�.BT Ik/–algebra, PPŒ�†Ik� is isomorphic to SRŒ†Ik� for
kD Z or Q.

Proof We construct an isomorphism between PPŒ�†Ik� and SRŒ†Ik�, where kD

Z or Q. Assume that j†.1/j Dm. Define a map

(5-11) �W kŒx1; : : : ; xm�! PPŒ�†Ik�
by restriction to each cone of �†. Then this map � is a surjective ring homomorphism.
Indeed, given fgy�g 2 PPŒ�†Ik�, we can apply the inclusion–exclusion principle to
obtain

(5-12) h.x1; : : : ; xm/D

n�1X
jD0

�
.�1/j

X
y�2�†

dim y�Dn�j

gy� .xi1 ; : : : ; xin�j /

�

which is the desired global function h satisfying �.h/D fgy�g, where y� 2 �†.n/.
Moreover, since the zero element in PPŒ�†Ik� is fgy� D 0 j y� 2 �†.n/g, the kernel is

ker� D span
� kY
jD1

xij

ˇ̌̌
conefei1 ; : : : ; eikg … �†�;

which is exactly the Stanley–Reisner ideal I of †. Hence, the result follows.

Corollary 5.8 There is an isomorphism PPŒ†�Š wSRŒ†� (see (5-3)) as H�.BT /–
algebras.

Proof Consider the composition of ring homomorphisms

PPŒ†� ƒ
�

,�!PPŒ�†� ˆ�1�!SRŒ†�;

where ˆW SRŒ†�! PPŒ�†� is the isomorphism induced by � . With Z–coefficients,
the map ƒ� is injective by Lemma 5.6. Hence, PPŒ†� is isomorphic to its image in
SRŒ†� via the composition ˆ�1 ıƒ�.

Recall that the composition ˆ�1 ı ƒ� is an isomorphism over Q, whose inverse
‚ ıˆ�1 maps an element Œh� 2 SRŒ†IQ� to fh.z� /g�2†.n/ 2 PPŒ†IQ�. Therefore,
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over integer coefficients, Œh� 2 im.ˆ�1 ıƒ�/ if and only if the polynomial h satisfies
the integrality condition. Hence, the result follows.

Finally, we conclude this subsection with a proof of Theorem 5.3.

Proof of Theorem 5.3 Since H�.X†IZ/ concentrated in even degrees, the Serre
spectral sequence for the fibration

X†!ET �T X†
�
�!BT

degenerates at the E2 level. By the result from Franz and Puppe [11, Theorem 1.1],
we get isomorphisms of H�.BT /–algebras,

H�.X†/ŠH
�
T .X†/˝H�.BT /ZŠH�T .X†/=Im.��W H�.BT /!H�T .X†//:

By Proposition 5.5 and Corollary 5.8, we have H�T .X†/Š wSRŒ†�. Moreover, for
each uj 2 ZŒu1; : : : ; un�ŠH�.BT /,

.ˆ ıƒ�/.uj /D

mX
iD1

h�i ; ej ixi :

Hence, we conclude that im.��W H�.BT /!H�T .X†//D J .

6 Example: orbifold Hirzebruch varieties

We finish this paper by illustrating the results of the previous sections with a con-
crete example which is not a weighted projective space. Consider a primitive vector
.a; b/ 2 Z2 with a > 0. Together with .�1; 0/, .0; 1/ and .0;�1/, we can make a
complete fan † in R2 which gives us a compact toric variety with two singular points.
We denote this toric variety by H.a;b/ . See Figure 6 for the fan and corresponding
R–characteristic pair .Q; �/. When aD 1, the toric variety is known as a Hirzebruch
surface, say Hb . In this point of view, let us call H.a;b/ an orbifold Hirzebruch variety.

�3 D .�1; 0/

�2 D .0; 1/

�4 D .0;�1/

�1 D .1; b/

Hb

�3 D .�1; 0/

�2 D .0; 1/

�4 D .0;�1/

�1 D .a; b/

H.a;b/

Figure 6: A Hirzebruch surface and an orbifold Hirzebruch variety
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Since the collection in (1-1) becomes fjGQ.v/j W v 2 V.Q/g D f1; 1; a; ag when
B1 DQ , its gcd is 1. Moreover, in any retraction sequence, B2 is given by a union
of edges, which guarantees that .Q; �/ satisfies the assumption of Theorem 1.1; see
Example 4.4. Moreover, since the underlying polytope is a square, the integral Betti
numbers are given by ˇ0 D ˇ4 D 1 and ˇ2 D 2 by the remark on page 3802.

Remark We may compute the (co)homology groups of low-dimensional toric orb-
ifolds by the spectral sequence whose E1 page is described by the fan data; see [10; 15].
More generally, the low-dimensional calculations of Kuwata, Masuda and Zeng [19]
apply to the category of torus orbifolds.

Let �ij D conef�i ; �j g, where �1; : : : ; �4 are described in the right-hand side of
Figure 6. Then the integrality condition of Definition 5.2 is given by the vectors

z�12 D
�
1

a
u1; �

b

a
u1Cu2; 0; 0

�
;

z�14 D
�
1

a
u1; 0; 0;

b

a
u1�u2

�
;

z�23 D .0; u2; �u1; 0/;

z�34 D .0; 0; �u1; �u2/:

Notice that the last two vectors, z�23 and z�34 , don’t contribute to the integrality
condition, because their entries have integral coefficients.

A similar computation to Example 5.4 shows that the following polynomials are
elements of degree 2 in wSRŒ†�:

(6-1) ax1� x3; bx1C x2� x4; ax1; ax2; x3; ax4;

as are Z–linear combinations of them. The first two elements are actually the linear
relations in J , which means that they come from the global polynomials in PPŒ†�.
Since rankH 2.H.a;b//D 2, we choose two linearly independent elements as follows:

w1 WD ax1 and w2 WD ax4:

Next, degree-4 elements in wSRŒ†� are

(6-2) a2x21 ; a2x22 ; x23 ; a2x24 ; a2x1x2; a2x1x4; x2x3 and x3x4;

and their Z–linear combination. The first four of (6-2) are just the square of degree-2
elements. The remaining four monomials are

� a2x1x2 D ax1ax2 D ax1a.�bx1C x4/D w1.�bw1Cw2/,

� a2x1x4 D ax1ax4 D w
2
1 ,
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Notice that the final two monomials x2x3 and x3x4 cannot come from degree-2
elements. Hence, we put

w3 WD x3x4:

Then
x2x3 D .�bx1C x4/x3 D x3x4 D ax1x4 D w3:

The second equality holds because of the Stanley–Reisner ideal I D hx1x3; x2x4i.
Finally, the ideal I and J determine the multiplicative structures as follows:

w21 D .ax1/
2
D .ax1/.x3/D 0;

w1w2 D .ax1/.ax4/D x3.ax4/D aw3;

w22 D .ax4/.ax4/D a.bx1C x2/.ax4/D abx3x4 D abw3;

w1w3 D .ax1/.x3x4/D 0;

w2w3 D .ax4/.x3x4/D ax4x3.bx1C x2/D 0;

w23 D .x3x4/
2
D x23x

2
4 D .ax1x3/.x

2
4/D 0:

Therefore, we get the following presentation for the cohomology ring of orbifold
Hirzebruch varieties:

(6-3) H�.H.a;b//

Š ZŒw1; w2; w3�=hw
2
1 ; w1w2� aw3; w

2
2 � abw3; w1w3; w2w3; w

2
3i;

where degw1 D degw2 D 2 and degw3 D 4.

Remark The cohomology ring of Hirzebruch surfaces, by way of comparison, can be
computed from the results of [7], [9] or [16]. Indeed it has the presentation

H�.Hb/Š ZŒw1; w2�=.w
2
1 ; w

2
2 � bw1w2/;

where degw1 D degw2 D 2, which means that it is generated by degree-2 elements.
However, H�.H.a;b// has the degree-4 generator w3 which cannot be generated by
degree-2 elements, ie w1w2 D aw3 . Notice that we can recover the presentation of
H�.Hb/ by replacing a by 1 in (6-3).
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