
msp
Algebraic & Geometric Topology 17 (2017) 3811–3836

Remarks on coloured triply graded link invariants

SABIN CAUTIS

We explain how existing results (such as categorical sln actions, associated braid
group actions and infinite twists) can be used to define a triply graded link invariant
which categorifies the HOMFLY polynomial of links coloured by arbitrary partitions.
The construction uses a categorified HOMFLY clasp defined via cabling and infinite
twists. We briefly discuss differentials and speculate on related structures.

57M27; 16T99

1 Introduction

In [14; 16] Khovanov and Rozansky defined a triply graded link invariant using matrix
factorizations and subsequently Soergel bimodules. In their case the link is coloured by
the partition .1/ and the invariant categorifies the HOMFLY polynomial. In this paper
we explain how existing tools can be used to extend this construction to links coloured
by arbitrary partitions, which categorifies the coloured HOMFLY polynomial.

The idea is as follows. First one defines a 2–category Kn out of Soergel bimodules
and constructs a categorical .sln; �/ action on it (Sections 2 and 3). Combining this
action with a trace 2–functor (Hochschild (co)homology) one obtains a triply graded
invariant for links coloured by partitions with only one part .k/ for k 2N .

Finally, to deal with an arbitrary partition .k1; : : : ; ki/, one cables together i strands
labeled k1; : : : ; ki and composes with a certain projector P� . We will call these
(categorified) HOMFLY clasps to differentiate them from those in the Reshetikhin–
Turaev context (RT clasps). Apart from some general results on .sln; �/ actions and
associated braid group actions and projectors (see for instance [5]) I have tried to keep
this paper self-contained. Some example computations are worked out in Section 7.

There are many papers in the literature on coloured HOMFLY homology and it is difficult
to list them all without forgetting some. We try to recall some of the ones which are
more closely related to this paper.

There are several papers defining various generalities of triply graded homologies.
In [20] Mackaay, Stošić and Vaz work out the case of links labeled by the one-part
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partition .2/. In [24] Webster and Williamson define a triply graded homology of links
coloured by partitions with only one part. Their construction, which is geometric, is
related to ours via the equivalence between perverse sheaves on finite flag varieties and
(singular) Soergel bimodules. The same relationship appears (and is briefly discussed)
in Cautis, Dodd and Kamnitzer [6]. More recently, Wedrich [25] examines these
constructions in the “reduced” case as well as some associated spectral sequences.

The papers Abel and Hogancamp [1] and Hogancamp [13] discuss the categorified
HOMFLY clasps for partitions with parts of size at most one (ie coloured with .1k/ for
k 2N ). As with our projectors, these are built as infinite twists. As far as I understand,
Elias and Hogancamp aim to develop a more systematic, more general construction
of such projectors. This will hopefully shed some light on the projectors P� and the
various properties they (are expected to) satisfy.

In Dunfield, Gukov and Rasmussen [11] and Rasmussen [21] it was conjectured (and
partially proved) that there exist certain differentials on triply graded link homology
which recover SL.N / link homology. In Section 6 we discuss a differential dN for
N > 0 which gives rise to an SL.N /–type link invariant. Somewhat surprisingly, the
resulting homology seems to be finite-dimensional while at the same time it categorifies
SL.N /–representations of the form Symk.CN /. A homology of this form is predicted
by the physical interpretation of knot homologies as spaces of open BPS states (see
for instance Gukov and Stošić [12]) but does not show up in our earlier work on
knot homologies (Cautis and Kamnitzer [7] and subsequent papers). In Section 8
we also speculate on defining differentials dN for N < 0 which should categorify
SL.N /–representations of the form ƒk.CN /.

The author was supported by an NSERC discovery/accelerator grant.

2 Background: .sln; �/ actions, braid group actions
and projectors

2.1 Notation

We work over an arbitrary field k. By a graded 2–category K we mean a 2–category
whose 1–morphisms are equipped with an auto-equivalence h1i (so graded means
Z–graded). We say K is idempotent complete if for any 2–morphism f with f 2 D f

the image of f exists in K .

For n� 1 we denote by Œn� the quantum integer qn�1Cqn�3C� � �Cq�nC3Cq�nC1 ,
where q is a formal variable. By convention, for negative entries we let Œ�n�D�Œn�.
Moreover, Œn�! WD Œ1�Œ2� : : : Œn� and

�
n
k

�
WD

Œn�!
Œk�!Œn�k�!

.
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If f D faqa 2NŒq; q�1� and A is a 1–morphism inside a graded 2–category K then
we write

L
f A for the direct sum

L
s2Z A˚fs hsi. For example,M

Œn�

AD Ahn� 1i˚Ahn� 3i˚ � � �˚Ah�nC 3i˚Ah�nC 1i:

We will always assume N contains 0. Moreover, we will write Endi.A/ as shorthand
for Hom.A;Ahii/, where i 2 Z.

Finally, if i W Ai! Bi is a sequence of 2–morphisms in K for i D 1; : : : ; k , we will
write 1 � � � k W A1 � � �Ak ! B1 � � �Bk for the corresponding 2–morphism. We will
denote by I the identity 2–morphism.

2.2 Categorical actions

In [4], .g; �/ actions were introduced in order to simplify some of the earlier defini-
tions from [15; 22; 10]. A .g; �/ action involves a target graded, additive, k–linear,
idempotent complete 2–category K whose objects are indexed by the weight lattice of g.

In this paper we only consider the case gD sln . The vertex set of the Dynkin diagram
of sln is indexed by I D f1; : : : ; n� 1g. However, it will be more convenient if the
objects K.k/ of K are indexed by k D .k1; : : : ; kn/ 2 Zn , which we can identify
with the weight lattice of gln . In this notation the root lattice is generated by ˛i D

.0; : : : ;�1; 1; : : : ; 0/ for i 2 I (this notation agrees with that in [5]). We equip Zn

with the standard nondegenerate bilinear form h � ; � iW Zn �Zn! Z (so that h˛i ; j̨ i

is given by the standard Cartan datum for gln ).

We require that the 2–category K is equipped with the following:

� 1–morphisms Ei1k D 1kC˛i
Ei and Fi1kC˛i

D 1kFi , where 1k is the identity
1–morphism of K.k/.

� 2–morphisms For each k 2Zn , a k–linear map spanf˛i W i 2 Ig! End2.1k/.

We abuse notation and denote by � 2End2.1k/ the image of � 2 spanf˛i W i 2 Ig under
the linear maps above. On this data we impose the following conditions.

(1) Endl.1k/ is zero if l < 0 and one-dimensional if l D 0 and 1k ¤ 0. Moreover,
the space of maps between any two 1–morphisms is finite-dimensional.

(2) Ei and Fi are left and right adjoints of each other up to specified shifts. More
precisely:
(a) .Ei1k/

R Š 1kFihhk; ˛iiC 1i,
(b) .Ei1k/

L Š 1kFih�hk; ˛ii � 1i.
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(3) We have �
EiFi1k Š FiEi1k ˚Œhk;˛i i� 1k if hk; ˛ii � 0;

FiEi1k Š EiFi1k ˚Œ�hk;˛i i� 1k if hk; ˛ii � 0:

(4) If i ¤ j 2 I , then FjEi1k Š EiFj 1k .

(5) For i 2 I we have

EiEi Š E
.2/

i h�1i˚E
.2/

i h1i

for some 1–morphism E.2/

i . Moreover, if � 2 spanf˛i W i 2 Ig then the map
I�I 2 End2.Ei1kEi/ induces a map between the summands E.2/

i h1i on either
side which is
� nonzero if h�; ˛ii ¤ 0, and
� zero if h�; ˛ii D 0.

(6) If ˛ D ˛i or ˛ D ˛i C j̨ for some i; j 2 I with ji � j j D 1, then 1kCr˛ D 0

for r � 0 or r � 0.

(7) Suppose i ¤ j 2 I . If 1kC˛i
and 1kC j̨

are nonzero, then 1k and 1kC˛iC j̨

are also nonzero.

In [4, Theorem 1.1] we showed that such an .sln; �/ action must carry an action of the
quiver Hecke algebras (KLR algebras). In particular, this gives us decompositions

Er
i Š

M
Œr �!

E
.r /

i and Fr
i Š

M
Œr �!

F
.r /

i

for certain 1–morphisms E.r /

i and F.r /

i (called divided powers). These satisfy

.E
.r /

i 1k/
R
Š 1�F

.r /

i hr.hk; ˛iiC r/i;

.E
.r /

i 1k/
L
Š 1�F

.r /

i h�r.hk; ˛iiC r/i:

2.3 (Categorical) braid group actions

The reason we are interested in .sln; �/ actions is that they can be used to define braid
group actions [8], as we now recall.

Suppose that, as above, we have an .sln; �/ action on a 2–category K . Denote by
Kom.K/ the bounded homotopy category of K (where objects are the same as in K ,
1–morphisms are complexes of 1–morphisms which are bounded from above and below
and 2–morphisms are maps of complexes). We define Ti1k 2 Kom.K/ as�
� � � ! E

.�hk;˛i iC2/
i F

.2/

i h�2i ! E
.�hk;˛i iC1/
i Fih�1i ! E

.�hk;˛i i/
i

�
1k if hk; ˛ii � 0;�

� � � ! F
.hk;˛i iC2/
i E

.2/

i h�2i ! F
.hk;˛i iC1/
i Eih�1i ! F

.hk;˛i i/
i

�
1k if hk; ˛ii � 0:

Algebraic & Geometric Topology, Volume 17 (2017)



Remarks on coloured triply graded link invariants 3815

One can show the differentials must be the unique nonzero maps. Notice that these
complexes are actually bounded on the left since 1k˙r˛i

D 0 if r� 0. The main result
of [8] states that these complexes give us a braid group action. This fact categorifies a
classical result of Lusztig [19, 5.2.1].

2.4 Categorified projectors

To obtain projectors let us first consider

T!1k WD .Tn�1/.Tn�2Tn�1/ � � � .T2 � � �Tn�1/.T1 � � �Tn�1/1k ;

corresponding to a half-twist in the braid group. In [5, Section 5.2] we constructed
a natural map 1k ! T2

!1k and showed that there is a well-defined limit P�1k WD

lim`!1 T2`
! 1k which lives in a certain subcategory Kom�� .K/ � Kom�.K/ of the

bounded-above homotopy category (see [5, Section 3.5] for more details).

Remark To illustrate, if K was the category of Z–graded k–vector spaces thenL
i�0 kŒi �h�ii would belong to Kom�� .K/ because

P
i�0.�1/iqi Œk� converges to

1
1Cq

Œk� (here Œk� is the class in K-theory of the one-dimensional vector space). On the
other hand,

L
i�0 kŒi � would not belong to Kom�� .K/ because

P
i�0.�1/i Œk� does

not converge.

Having shown that P�1k is well-defined it is then easy to see that P�1k is idempotent,
meaning that P�P�1kŠP�1k . The main result of [5] showed using an instance of skew
Howe duality that P� can be used to categorify all the clasps. The inspiration of using
infinite twists to categorify clasps goes back to Rozansky [23], who categorified Jones–
Wenzl projectors within Bar-Natan’s graphical formulation of Khovanov homology.

3 The category Kn

3.1 Categories and functors

We now define a 2–category Kn with an .sln; �/ action.

For k 2 N consider the affine space Ak WD Spec kŒx1; : : : ;xk �, where deg.x`/ D 2

for each ` (the grading is equivalent to endowing Ak with a k� action). The
quotient Ak WD Ak=Sk by the symmetric group Sk on k letters is isomorphic
to Spec kŒe1; : : : ; ek �, where the e` are the elementary symmetric functions and
deg.e`/ D 2`. For a sequence k we write Ak WD Ak1

� � � � � Akn
. Finally, we

will denote by D.Ak/ the derived category of k�–equivariant quasicoherent sheaves
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on Ak . We will denote by f � g a shift in the grading induced by the k� action. In
particular, this means that multiplication by e` induces a map OAk

!OAk
f2`g since

e` has degree 2`. This is the same convention as in earlier papers such as [7].

For n 2 N the 2–category Kn is defined as follows. The objects are the categories
D.Ak/. The 1–morphisms are all kernels on products Ak �Ak0 (with composition
given by the convolution product ?) and the 2–morphisms are morphisms between
kernels. The grading shift h1i is by definition f1g.

Note that for a; b 2N there exists a natural projection map � W Aa;b! AaCb . This
map is finite of degree

�
aCb

a

�
. More generally, we can consider correspondences such

as

(1)

A.:::;ki�r;r;kiC1;::: /

�1
ww

�2 ''

Ak AkCr˛i

where ˛i D .0; : : : ;�1; 1; : : : ; 0/ with a �1 in position i . We then define the following
data:

� 1–morphisms

Ei1k WDOA.:::;ki�1;1;kiC1;::: /
fki � 1g 2D.Ak �AkC˛i

/;

1kFi WDOA.:::;ki�1;1;kiC1;::: /
fkiC1g 2D.AkC˛i

�Ak/;

where we embed A.:::;ki�1;1;kiC1;::: / into Ak�AkC˛i
using �1 and �2 from (1)

(taking r D 1 in this case).

� A k–linear map � W spanf˛i W i 2 Ig! End2.1k/ where the image of ˛i is given
by multiplication by e.i/

1
� e

.iC1/
1

where e.i/

1
; e.i/

2
; : : : ; e.i/

ki
are the elementary

generators of the factor Aki
inside Ak .

Remark Although we use derived categories of quasicoherent sheaves, we could
restrict everything to abelian categories of coherent sheaves. This is because all the
morphisms involved are flat and finite. However, it is natural to work with these larger
categories because later we will apply Hochschild cohomology.

Theorem 3.1 The data above defines an .sln; �/ action on Kn .

Proof The fact that relations of an .sln; �/ action are satisfied is not difficult to prove
and essentially follows from [15, Section 6]. The fact that � satisfies relation (5) comes
down to the following elementary fact. Consider kŒx;y� as a kŒx;y�S2 Š kŒe1; e2�
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bimodule where S2 acts by switching x and y and (following our notation above)
e1 D xCy , e2 D xy . Then, as a bimodule,

kŒx;y�Š kŒe1; e2�˚ kŒe1; e2�f2g;

and multiplication by x (or y ) induces an endomorphism of kŒx;y� which is an
isomorphism between the summands kŒe1; e2�f2g on either side.

Perhaps one thing to note is that our choices of shifts in defining the Ei and the Fi

differ slightly from [15]. However, the specific choice of shifts is not so important and
is mainly determined by the fact that the canonical bundle of Ak is !Ak

ŠOAk
fdkg,

where dk D�
P
` k`.k`C 1/.

It is not hard to show that the divided powers E.r /

i 1k and 1kF
.r /

i are given by kernels

E .r /

i 1k WDOA.:::;ki�r;r;kiC1;::: /
fr.ki � r/g 2D.Ak �AkCr˛i

/;

1kF
.r /

i WDOA.:::;ki�r;r;kiC1;::: /
frkiC1g 2D.AkCr˛i

�Ak/;

where again we embed A.:::;ki�r;r;kiC1;::: / using (1) (we will not use this fact).

Remark There are three different gradings that show up. First, there is h1i D f1g,
which corresponds to the grading induced by the k� action. Second, there is the
cohomological grading Œ1� in Kom�� .Kn/. Third, there is the cohomological grading
ŒŒ1��, which is internal to D.Ak/. This last grading only shows up when we apply the
trace 2–functors described in Section 3.3.

3.2 The braid group action

Following Section 2.3 we define the braid group generators Ti1k 2 Kom.Kn/ as�
� � �!E.�hk;˛i iC2/

i ?F .2/

i f�2g!E.�hk;˛i iC1/
i ?Fif�1g!E.�hk;˛i i/

i

�
1k if hk;˛ii�0;�

� � �!F .hk;˛i iC2/
i ?E .2/

i f�2g!F .hk;˛i iC1/
i ?Eif�1g!F .hk;˛i i/

i

�
1k if hk;˛ii�0:

We also get the corresponding projectors P�1k 2 Kom
�
� .Kn/.

Following the construction in [5, Section 7.1] it is useful to also define the elements

T 0i 1k WD

�
Ti1k Œ�kiC1�fkiC1C kikiC1g if hk; ˛ii � 0;

Ti1k Œ�ki �fki C kikiC1g if hk; ˛ii � 0:

Notice that in contrast to [5, Section 7.1] we have an extra shift of fkikiC1g. These T 0i
also generate a braid group action but are better behaved with respect to the Ei and Fi
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since, using [5, Corollary 7.3] and [5, Corollary 4.6], we have

T 0i ?T
0

j ?Ei Š Ej ?T 0i ?T
0

j and T 0i ?T
0

j ?Fi Š Fj ?T 0i ?T
0

j if ji�j j D 1;(2)

T 0i ?Ei Š Fi ?T 0i and T 0i ?Fi Š Ei ?T 0i :(3)

3.3 Trace 2–functors

For any ` 2N we now define a 2–functor ‰`W Kn! KnC1 . This functor should be
thought of as adding a strand labeled `.

At the level of objects ‰` takes D.Ak/ to D.Ak;`/. Given a 1–morphism M 2

D.Ak �Ak0/ we define

(4) ‰`.M/ WD���
�.M/ 2D.Ak;` �Ak0;`/;

where �� and �� are pullback and pushforward with respect to the natural projection
and diagonal maps

� W Ak �A`�Ak0!Ak �Ak0 and �W Ak �A`�Ak0! .Ak �A`/� .Ak0 �A`/:

Given a 2–morphism f WM!M0 we define ‰`.f / WD����.f /. Using Corollary A.2
this defines a 2–functor ‰`W Kn!KnC1 . It is not difficult to see that ‰`.Ei1k/ŠEi1k;`

and ‰`.1kFi/Š 1k;`Fi .

We can likewise define a 2–functor ‰0
`
W KnC1! Kn . On objects it takes D.Ak;`/ to

D.Ak/. All other objects, meaning D.Ak;`0/ where `¤ `0 , are mapped to zero. On
1–morphisms it acts by

D.Ak;` �Ak0;`/!D.Ak �Ak0/; N 7!‰0`.N / WD ���
�.N /:

By Proposition A.3 we also have

(5) ‰0`.N ?‰`.M//Š‰0`.N / ?M;

where M 2D.Ak �Ak0/ and N 2D.Ak;` �Ak0;`/.

If we define � WD Spec k then D.�/ is the category of complexes of (possibly infinite-
dimensional) graded vector spaces. For any k we define

� W D.Ak �Ak/!D.�/; M 7!‰0k1
ı � � � ı‰0kn

.M/:

Note that this is just the Hochschild homology HH�.M/ of M.
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4 Link invariants

Consider an oriented link L whose components are coloured by partitions. For now
we assume that each such partition has only one part, meaning it is of the form .k/ for
some k 2N . Such a link can be given as the closure y̌ of a coloured braid ˇ , where
we visualize the strands of this braid vertically with the top and bottom labeled by the
same sequence k .

To a positive crossing exchanging strands i and iC1 (ie the strand starting at i crosses
over the one starting at i C 1) we associate the 1–morphism

T 0i 2 Kom
�
� .D.Ak �Asi �k//

as defined in Section 3.2, where si acts on k by switching ki and kiC1 . Compos-
ing these 1–morphisms gives a complex T 0

ˇ
2 Kom�� .D.Ak �Ak0//. The invariant

associated to the closure y̌ of the braid is then �.T 0
ˇ
/ 2 Kom�� .D.�//.

To deal with partitions with more than one part, we cable strands together and use the
projector P� . More precisely, given a strand labeled by a partition

k
. � /

i D .k
.1/

i � � � � � k
.p/

i /;

we replace it with p strands labeled k.1/

i ; : : : ; k
.p/

i together with the projector P�1
k

.�/

ion these strands.

Theorem 4.1 Suppose L D y̌, where ˇ is a braid whose strands are coloured by
partitions. Then, up to an overall grading shift, H.L/ WD �.T 0

ˇ
/ 2 Kom�� .D.�// defines

a triply graded link invariant.

Remark In order to obtain a homology which is invariant on the nose (not just up to
shifts) one needs to shift the functor ‰0

`
by

�
`
2

���
�
`
2

��
and the definition of a T

switching two strands labeled ` by
�
`
2

���
�
`
2

��
.

Before we can prove Theorem 4.1 we need the following lemma.

Lemma 4.2 For T1 2 Kom
�
�.D.A1;1 �A1;1// we have

‰01.T1/ŠO�ŒŒ1��f�2g and ‰01.T
�1

1 /ŠO�f2gŒ�1�

inside Kom��.D.A1 �A1//.
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Remark The key to Lemma 4.2 is the exact triangle OS!O�!OT ŒŒ1��f�2g, where
S and T are the loci inside Ak;1;1 �Ak;1;1 given by (7) on the last two strands. The
argument in the proof shows in fact that for P 2 Kom.D.Ak;1 �Ak;1// we have an
isomorphism

(6) ‰01..OS !O�/ ?‰1.P// �!� ‰01.OT ŒŒ1��f�2g?‰1.P//

inside Kom.D.Ak;1 �Ak;1//.

Proof On A1;1 �A1;1 consider the following subvarieties:

(7) � WD f.x;y;x;y/g; T WD f.x;y;y;x/g and S WD T [�:

Then T1 Š ŒOS ! O�� and T �1
1
Š ŒO� ! OSf2g�, where in both cases O� is in

cohomological degree zero. The result will follow if we can show that

Œ‰01.OS /!‰01.O�/�Š Œ0!O�ŒŒ1��f�2g�;

Œ‰01.O�/!‰01.OSf2g/�Š Œ0!O�f2g�

in the homotopy category Kom�� .D.A1 �A1//.

We will prove the first assertion (the second follows similarly). Note that S \T � T

is the divisor cut out by x D y . Thu, OT .�S \T /ŠOT f�2g and we have the exact
triangle OT f�2g !OS !O� . Recall that ‰0

1
. � /D ���

�. � /, where � and � are
the natural maps

A1 �A1
�
 �A1 �A1 �A1

�
�!A1;1 �A1;1:

Now, O� 2D.A1;1 �A1;1/ has a resolution

OA1;1�A1;1
f�2g

�.y1�y2/
������!OA1;1�A1;1

!O�;

which means that ��O� Š O�0 ˚O�0 ŒŒ1��f�2g, where �0 � A1 �A1 �A1 is the
locus .x;y;x/. Moreover, ��.O�0/ŠO�˝k kŒy� 2D.A1 �A1/. Hence

(8) ‰01.O�/D ���
�O�Š ��.O�0˚O�0 ŒŒ1��f�2g/Š .O�˚O�ŒŒ1��f�2g/˝k kŒy�:

On the other hand, ��OT ŠOf.x;x;x/g , which means that

‰01.OT f�2g/D ���
�OT f�2g Š ��Of.x;x;x/gf�2g ŠO�f�2g:

Thus, the exact triangle ‰0
1
.OS /!‰0

1
.O�/!‰0

1
.OT f�2gŒ1�/ becomes

‰01.OS /
f
�!O�˝k kŒy�˚O�ŒŒ1��f�2g˝k kŒy�!O�ŒŒ1��f�2g:
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Now H0.‰0
1
.OS //Š ��L

0��OS Š ��O�0 ŠO�˝k kŒy� and f induces an isomor-
phism in this degree. Thus, from the long exact sequence we get

(9) H�.‰01.OS //D

8<:
O�˝k kŒy� if � D 0;

O�f�4g˝k kŒy� if � D �1;

0 otherwise.

It is easy to see that on A1 �A1 we have End2.O�f�g˝k kŒy�/D 0, so

‰01.OS /Š .O�˚O�ŒŒ1��f�4g/˝k kŒy�:

Hence, using a version of the Gaussian elimination lemma [5, Lemma 3.2], we combine
(8) and (9) to obtain

(10) Œ‰01.OS /!‰01.O�/�Š Œ0!O�ŒŒ1��f�2g�:

Proof of Theorem 4.1 We already know that ˇ 7! T 0
ˇ

satisfies the braid relations. It
remains to check that �.T 0

ˇ1
?T 0

ˇ2
/Š �.T 0

ˇ2
?T 0

ˇ1
/ and the Markov move (stabilization).

The first relation is a standard property of Hochschild homology (in fact the more
general trace property �.A?B/Š �.B ?A/ holds for any kernels A, B ).

To prove the Markov move first note that since projectors P� move freely through
crossings it suffices to prove the Markov move when the extra strand is coloured by a
partition .`/. In this case, for any P 2 Kom�� .D.Ak �Ak/ we claim that

(11) �.T 0n ?‰`.P//Š �.P/Œ�`�ŒŒ`�� and �..T 0n/
�1 ?‰`.P//Š �.P/:

We prove the isomorphism on the left by induction on ` (the right one is similar). For
P 2 Kom�� .D.Ak �Ak// we have the following algebraic computation:M

Œ`�
�.T 0n?‰`.P//Š

M
Œ`�
�.T 0nC1?T

0
n?T

0
nC2?T

0
nC1?.‰0ı‰`ı‰0/.P//

Š �.T 0nC1?T
0

n?T
0

nC2?T
0

nC1?FnC2?EnC2?.‰0ı‰`ı‰0/.P//(12)

Š �.Fn?T 0nC1?T
0

n?T
0

nC2?T
0

nC1?EnC2?.‰0ı‰`ı‰0/.P//(13)

Š �.EnC2?Fn?T 0nC1?T
0

n?T
0

nC2?T
0

nC1?.‰1ı‰`�1ı‰0/.P//(14)

Š �.Fn?T 0nC1?T
0

n?T
0

nC2?T
0

nC1?En?.‰1ı‰`�1ı‰0/.P//(15)

Š �.Fn?T 0nC1?T
0

n?T
0

nC1?En?.‰`�1ı‰0/.P//Œ�1�ŒŒ1��(16)

Š �.Fn?T 0n?T
0

nC1?T
0

n?En?.‰`�1ı‰0/.P//Œ�1�ŒŒ1��(17)

Š �.Fn?T 0n?T
0

n?En?‰0.P//Œ�`�ŒŒ`��(18)

Š �.T 0n?En?Fn?T 0n?‰0.P//Œ�`�ŒŒ`��(19)

Š

M
Œ`�
�.P/Œ�`�ŒŒ`��:(20)
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Here we
� added two strands labeled 0 to obtain the first isomorphism,
� used (2) twice to obtain (13),
� used the Markov relation to obtain (14),
� used that

EnC2 ?Fn ? T 0nC1 ? T
0

n ? T
0

nC2 ? T
0

nC1 Š Fn ? EnC2 ? T 0nC1 ? T
0

nC2 ? T
0

n ? T
0

nC1

Š Fn ? T 0nC1 ? T
0

nC2 ? T
0

n ? T
0

nC1 ? En

to get (15),
� used (11) with ‰1 to obtain (16) and with ‰`�1 to obtain (18),
� applied (3) twice to obtain (20), and
� used that .T 0i /

2 is the identity if one of the strands it acts on is labeled 0 to get
(20).

Thus, (11) follows by induction if we can prove the base case `D 1. In this case we
have

�.T 0n ?‰1.P//Š �.‰01.T
0

n ?‰1.P///Š �.‰01.T
0

n/ ?P/;

so it suffices to show that ‰0
1
.T 0n/ŠO�Œ�1�ŒŒ1��. This follows from Lemma 4.2 (since

T 0n D TnŒ�1�f2g in this case).

Remark For those familiar with webs (see for instance [9]) the algebraic computation
above can be summarized as follows. First break up the strand labeled ` and then use
that “trivalent vertices” move naturally through crossings together with the Markov
move. Figure 1 illustrates this procedure, where the box denotes an arbitrary braid (we
simplify by omitting the closure of each diagram).

5 K-theory

Recall that to a link L whose strands are coloured by partitions one can associate the
coloured HOMFLY polynomial PL.q; a/ 2 k.q; a/. We now explain why the invariant
from Theorem 4.1 categorifies the coloured HOMFLY polynomial. This is normalized
so that if LD.k/ (the unknot labeled by k ) then

(21) PL.q; a/D

kY
`D1

aq�`C1� a�1q`�1

q�` � q`
:

Remark For notational convenience we use the transpose notation, meaning that what
we call � would normally be the transpose partition. For example, our partition .k/
would be instead .1k/ (and vice versa).
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On the other hand, we can consider the Poincaré polynomial PL.q; a; t/ of H.L/ from
Theorem 4.1. Here the shifts f1g; ŒŒ1�� and Œ1� are kept track of by formal variables
q;�a2; t respectively.

Proposition 5.1 For a coloured link L, the invariants PL.q; a/ and PL.q; aq;�1/

agree, up to an explicit factor amqn .

Proof In the rest of the proof we will ignore extra factors amqn . Let us first suppose
that L is the closure of a braid ˇ coloured by partitions .k/ with only one part. One can
compute PL.q; a/ from ˇ by applying a trace. Moreover, as explained (for instance)
in [9, Section 6] one can break down the crossings in L into web diagrams since
the crossing element is a linear combination of webs. This reduces the evaluation of
PL.q; a/ to evaluating this trace on diagrams.

As usual, one views the trace of a web diagram as the closure of that diagram on the
annulus. The algebra of webs on the annulus is generated (as an algebra) by unknots
labeled by one-part partitions (where multiplication is given by gluing one annulus
inside the other). This reduces the computation of PL.q; a/ to the case L D.k/

(which is described in (21)).

Similarly, the evaluation of PL.q; a;�1/ can be reduced to the case LD.k/ . This
case is computed in Section 7.1 and agrees with (21) once you replace a with aq . This
completes the proof when L contains partitions with only one part.

To deal with arbitrary partitions we will show that PL.q; q
N / D PL.q; q

NC1;�1/

for all N > 0 (ie the specializations a D qN for all N > 0). Note that PL.q; q
N /

M
Œ`�

`

`

D

`

`

`�1 1

`

D

`

`

`�1 1

`

D

`�1

`

1

1`�1

D

`�1

`

1

1`�1

D

`�1

`

1

`�1

Œ�1�ŒŒ1�� D

`�1

`

1

`�1

Œ�1�ŒŒ1�� D

`�1

`

1

Œ�`�ŒŒ`�� D
M
Œ`�

`

Œ�`�ŒŒ`��

Figure 1: The Markov move involving a strand labeled `
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recovers the corresponding SL.N / Reshetikhin–Turaev (RT) invariant and that we
know PL.q; q

N /D PL.q; q
NC1;�1/ if L is coloured by one-part partitions. On the

other hand, in [5] we showed that, when evaluating RT invariants, the projectors (clasps)
for arbitrary partitions can be constructed as infinite twists. Since this construction
only uses the braid group action it follows that PL.q; q

N /D PL.q; q
NC1;�1/ holds

for any L.

6 Some differentials

To simplify notation we will omit the f � g grading in this section. We also fix N > 0.
Note that

HH1.Ak/D Ext1Ak�Ak .��OAk ; ��OAk /Š
M

i

kŒx1; : : : ;xk �@xi
;

so that
1k WD

X
i

xN
i @xi

2 HomAk�Ak .��OAk ; ��OAk Œ1�/:

Since this element is Sk–invariant it descends to HH1.kŒe1; : : : ; ek �/. We denote by

k 2 HomAk�Ak
.��OAk

; ��OAk
Œ1�/

the corresponding element obtained from 1k1 ˝ � � �˝ 1kn by descent.

Now, given a braid ˇ with endpoints marked k , we have

�.T 0ˇ/D HH�.T 0ˇ/Š Ext�Ak�Ak
.��!

�1
Ak
ŒŒ� dim Ak ��; T 0ˇ/;

where !Ak
denotes the canonical bundle. Thus, we have an action of HH1.Ak/ coming

from precomposing on the left with

HH1.Ak/Š HomAk�Ak
.��!

�1
Ak
; ��!

�1
Ak
Œ1�/:

We denote by dN the action of k . Note that d2
N
D 0 since k belongs to HH1 .

Moreover, dN commutes with the differential d used in the definition of the complex T 0
ˇ

because composition is associative. Thus, we get a bicomplex with differentials d

and dN .

Theorem 6.1 Suppose LD y̌, where ˇ is a coloured braid. If we denote by HN .L/

the cohomology of �.T 0
ˇ
/ equipped with the total differential d C dN , then, up to an

overall grading shift, HN .L/ defines a doubly graded link invariant.
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In the remainder of this section we prove this result. Sometimes we will write HN .T 0ˇ/
instead of HN .L/, where LD y̌.

If ˇ and ˇ0 are equivalent braids, then T 0
ˇ

is homotopic to T 0
ˇ0

, which means that
HN .T 0ˇ/ŠHN .T 0ˇ0/. Next, to prove invariance under conjugation, we must show that
HN .T 0ˇ1

? T 0
ˇ2
/ Š HN .T 0ˇ2

? T 0
ˇ1
/ for any braids ˇ1 and ˇ2 . This follows as in the

proof of Theorem 4.1 together with the fact that for any braid ˇ we have

IIk D k0II 2 Hom.��OAk0
? T 0ˇ ?��OAk

; ��OAk0
? T 0ˇ ?��OAk

Œ1�/;

where k and k 0 label the bottom and top strands of ˇ (this equality follows from
Lemma 6.2).

Remark Here we use the convention mentioned at the end of Section 2.1. For
instance, IIk denotes the map induced by the identity on the first two factors of
��OAk0

? T 0
ˇ
?��OAk

and by k on the last (right) one.

Lemma 6.2 Consider E 2D.Ai�1;jC1 �Ai;j /. Then

IIi;j D i�1;jC1II

in Hom.��OAi�1;jC1
?E ?��OAi;j

; ��OAi�1;jC1
?E ?��OAi;j

Œ1�/, and likewise if
we replace E with F .

Proof E is the kernel inducing the correspondence

Ai �Aj
�1
 �Ai�1 �A1

�Aj
�2
�!Ai�1 �AjC1:

On the other hand, IIi;j is the element obtained from 1iCj by descent along the map

AiCj
!Ai�1 �A1

�Aj
�1
�!Ai �Aj :

Likewise i�1;jC1II is the map obtained from 1iCj by descent along the map

AiCj
!Ai�1 �A1

�Aj
�2
�!Ai�1 �AjC1:

The result follows.

Finally, we need invariance under the Markov move. As in the proof of Theorem 4.1,
we can significantly reduce what we must show. First, since projectors pass through
crossings, we can assume each strand is coloured by a partition .`/ with only one part.
By breaking up this strand into ` strands coloured by 1 and using Lemma 6.2 we can
further reduce to the case `D 1.
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Using the homotopy equivalence from (6) we know that

HN .‰
0
1.T
0

n ?‰1.P///DHN .‰
0
1..OS !O�/ ?‰1.P///

�!� H�N .‰
0
1.OT ŒŒ1��f�2g?‰1.P///;

where P 2 Kom.D.Ak;1 �Ak;1//. Recall that we have the standard exact sequence

OT f�2g !OS !O�;

where S , T are the varieties corresponding to the last two strands. Moreover,

‰01.OT ?‰1.P// �!� P

and Lemma 6.3 implies that HN .T 0n ?‰1.P//ŠHN .P/ (up to a grading shift). This
completes the proof of Theorem 6.1.

Lemma 6.3 For P 2 Kom.D.Ak;1 �Ak;1//, the diagram

ExtjAk;1;1�Ak;1;1
.��S

�1
Ak;1;1

;OT ?‰1.P//
k;1;1

//

'

��

ExtjC1
Ak;1;1�Ak;1;1

.��S
�1
Ak;1;1

;OT ?‰1.P//

'0

��

ExtjAk;1�Ak;1
.��S

�1
Ak;1

;P/
k;1

// ExtjC1
Ak;1�Ak;1

.��S
�1
Ak;1

;P/

commutes, where S�1
X
WD !�1

X
ŒŒ� dim X �� for a variety X and where isomorphisms '

and '0 are induced by the isomorphism ‰0
1
.OT ?‰1.P// �!� P .

Proof As before, we will ignore shifts in f � g. The left adjoint of ‰0
1
W Ak;1!Ak is

the functor
.‰01/

L. � /D��.�
�. � /˝p�S�1

A1 /;

where pW Ak �A1 �Ak !A1 is the projection. Now take

˛ 2 ExtjAk;1;1�Ak;1;1
.��S

�1
Ak;1;1

;OT ?‰1.P//

and consider the following diagram:

��S
�1
Ak;1

ŒŒ�1��
k;1

//

adj

��

��S
�1
Ak;1

adj

��

'.˛/
// ‰0

1
.OT / ?P ŒŒj ��

‰01.‰
0
1/

L.��S
�1
Ak;1

/ŒŒ�1��
‰0

1
.‰0

1
/L.k;1/

// ‰01.‰
0
1/

L.��S
�1
Ak;1

/
‰0

1
.˛/
// ‰01.OT ?‰1.P//ŒŒj ��

�

OO
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Note that .‰0
1
/L.S�1

Ak;1
/D S�1

Ak;1;1
, which explains how ‰0

1
.˛/ acts. The left square

commutes since adjunction is a natural transformation. The square on the right com-
mutes by the definition of ' .

The composition along the top is the map ˛ 7! '.˛/ ı k;1 . On the other hand, the
composition along the bottom row and up the right side is ˛ 7! '0.˛ ı .‰0

1
/L.k;1//.

So it suffices to show that

'0.˛ ı .‰01/
L.k;1//D '

0.˛ ı k;1;1/:

The difference k;1;1� .‰
0
1
/L.k;1/ is equal to xN

nC1
@xnC1

, so it remains to show that
'0.˛ ıxN

nC1
@xnC1

/ vanishes.

The map '0.˛ ıxN
nC1

@xnC1
/ is given by the composition

��S
�1
Ak;1

adj
�!‰01.‰

0
1/

L.��S
�1
Ak;1

/D‰01.��S
�1
Ak;1;1

/

‰0
1
.xN

nC1
@xnC1

/

�����������!‰01.��S
�1
Ak;1;1

ŒŒ1��/

‰0
1
.˛/

����!‰01.OT ?‰1.P//ŒŒjC1�� �!� P ŒŒjC1��:

One can check that

‰01.‰
0
1/

L.��S
�1
Ak;1

/Š
�
��S

�1
Ak;1
˝k kŒxnC1�

�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

ŒŒ�1��
�
:

Then the composition of the first two maps is given by

(22) ��S
�1
Ak;1
!
�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

ŒŒ�1��
�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�

�
!
�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�ŒŒ1��

�
;

where, considering the direct sums as column vectors, the maps are respectively�
0

id

�
and

�
0 �xN

nC1
@xnC1

0 0

�
:

On the other hand, to understand ‰0
1
.˛/, consider the isomorphisms

ExtjAk;1;1�Ak;1;1
.��S

�1
Ak;1;1

;OT ?‰1.P//

Š ExtjAk;1;1�Ak;1;1
..‰01/

L.��S
�1
Ak;1

/;OT ?‰1.P//

Š ExtjAk;1�Ak;1
.��S

�1
Ak;1

; ‰01.OT ?‰1.P///

Š ExtjAk;1�Ak;1
.��S

�1
Ak;1

;P/:
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The image of ˇW ��S�1
Ak;1
! P ŒŒj �� under these isomorphisms is the composition

.‰01/
L.��S

�1
Ak;1

/
.‰0

1
/L.ˇ/

������! .‰01/
L.P/ŒŒj ��D��p�.S�1

A1 / ?‰1.P/ŒŒj ��
h
�! .OT ?‰1.P//ŒŒj ��;

where pW Ak;1;1! A1 projects onto the last factor. Here h is induced by the map
��p

�.S�1
A1 /!OT , which comes from the standard exact sequence

OT f�2g !OS !O�

after noting that ��p�.S�1
A1 /Š O�ŒŒ�1��f2g. Thus, we can assume that ˛ is such a

composition for some ˇ . Applying ‰0
1

, we find that ‰0
1
.˛/ factors as�

��S
�1
Ak;1
˝k kŒxnC1�@xnC1

ŒŒ�1��
�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�

�
!
�
P˝k kŒxnC1�@xnC1

ŒŒj�1��
�
˚
�
P˝k kŒxnC1�ŒŒj ��

�
!‰01.OT ?‰1.P//ŒŒj ��;

where, in matrix form, the maps are respectively�
‰0

1
.‰0

1
/L.ˇ/ 0

0 ‰0
1
.‰0

1
/L.ˇ/

�
and

�
0 ‰0

1
.h/
�
:

Finally, the composition of ‰0
1
.h/ with the isomorphism ‰0

1
.OT ?‰1.P//ŒŒj ���!� P ŒŒj ��

gives a map which is zero on the summand P˝k kŒxnC1�@xnC1
ŒŒj�1�� and the natural

projection map P˝k kŒxnC1�ŒŒj ��! P ŒŒj �� on the second summand (which sends xnC1

to zero). This fact can be traced back to the map

��OA1
˝k kŒx2�ŒŒ�1��˚��OA1

˝k kŒx2�D‰
0
1.��OA1;1

/!‰01.OT /Š��OA1
;

which, as we saw in the proof of Lemma 4.2, acts by zero on the first summand and by
the natural projection map on the second summand. In conclusion, the composition

‰01.‰
0
1/

L.��S
�1
Ak;1

/ŒŒ1��
‰0

1
.˛/

����!‰01.OT ?‰1.P//ŒŒjC1�� �!� P ŒŒjC1��

is isomorphic to the composition�
��S

�1
Ak;1
˝k kŒxnC1�@xnC1

�
˚
�
��S

�1
Ak;1
˝k kŒxnC1�ŒŒ1��

�
!
�
P˝k kŒxnC1�@xnC1

ŒŒj ��
�
˚
�
P˝k kŒxnC1�ŒŒjC1��

�
! P ŒŒjC1��;

where, in matrix form, the maps are respectively�
‰0

1
.‰0

1
/L.ˇ/ 0

0 ‰0
1
.‰0

1
/L.ˇ/

�
and

�
0 �

�
;

and where � is the natural projection map from the second summand. The composition
of this with (22) is clearly zero and hence '0.˛ ıxN

nC1
@xnC1

/D 0.
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Remark In the proof of Lemma 6.3 above, we used the observation that the difference
k;1;1�‰1.k;1/ is of the form f @xnC1

for some function f on Ak;1;1 .

7 Examples

For a partition k D .k1; : : : ; kn/ we denote by H.k/ the triply graded homology of
the unknot labeled by k . We will compute this invariant when k D .k/ and k D .12/.
Its Poincaré polynomial is denoted by Pk

.q; a; t/, where the shifts f1g, ŒŒ1�� and Œ1�
are kept track of by q , �a2 and t , respectively.

7.1 Cohomology of .k/

If k D 1 we have

H..1//Š ���
�.O�/Š ��.OA1

˚OA1 ŒŒ1��f�2g/Š kŒx�˚ kŒx�ŒŒ1��f�2g;

where � and � are the natural maps �
�
 �A1

�
�!A1 �A1 . Hence

P.1/
.q; a; t/D .1C q�2

C q�4
C � � � /.1� a2q�2/D

1� a2q�2

1� q�2
:

Note that kŒx�Š
L

i�0 kf�2ig, which explains why it contributes .1Cq�2Cq�4C� � � /.
More generally, Ak D Spec kŒe1; : : : ; ek �, and a similar argument shows that

H..k//Š

kO
`D1

.kŒe`�˚ kŒe`�ŒŒ1��f�2`g/:

It follows that

P.k/
.q; a; t/D

kY
`D1

1� a2q�2`

1� q�2`
:(23)

7.2 Cohomology of .12/

We need to explicitly identify the projector P� , which lives in Kom�� .D.A1;1�A1;1//.
The braid element in this case is isomorphic to

TD ŒEFh�1i ! id�Š ŒOS !O��;

where S is the variety described in the proof of Lemma 4.2. If .x;y/ are the coordinates
of A1;1 , then

TD
�
kŒx;y�˝kŒe1;e2� kŒx;y�! kŒx;y�

�
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as kŒx;y�–bimodules (where e1 D x C y and e2 D xy are the usual elementary
symmetric functions). Now, squaring and simplifying gives

T2
Š ŒEFEFh�2i ! EFh�1i˚EFh�1i ! id�

Š

h
EFh�3i

OO

� �� �
OO

��
�

�������! EFh�1i
��

���! id
i

Š ŒOSf2g
x˝1�1˝x
�������!OS !O��:

The maps in the first and second lines above are encoded using the diagrammatics of [15].
The isomorphism between the first and second lines was proved in [5, Section 10.2].
The isomorphism between the second and third lines follows from the fact that

OO

� ��

corresponds to x˝ 1 and
OO

��
� to 1˝x (this follows from the action of the nilHecke

defined in [15] or indirectly from the main result in [4]). Now, if we multiply again
by T we get

T3
Š ŒEFEFh�4i ! EFh�3i˚EFEFh�2i ! EFh�1i˚EFh�1i ! id�

Š

h
EFh�5i

OO

� �� C
OO

��
� �

OO
QQ�� �
2

��

�����������������! EFh�3i

OO

� �� �
OO

��
�

�������! EFh�1i
��

���! id
i

Š ŒOSf�4g
x˝1�1˝y
�������!OSf�2g

x˝1�1˝x
�������!OS !O��:

Here the 2 beside the dot in the second line indicates that we add two dots. The second
line follows again from [5, Section 10.2] while the third isomorphism holds because

OO
QQ�� �
2

�� is given by 1˝ 1 7! .xCy/˝ 1D 1˝ .xCy/:

Continuing this way, one finds that

P� D lim
`!1

T` D
�
� � �

g
�!OSf�6g

f
�!OSf�4g

g
�!OSf�2g

f
�!OS !O�

�
;(24)

where the maps alternate between f D x˝ 1� 1˝x and g D x˝ 1� 1˝y .

We need to compute H..12//D‰
0
1
‰0

1
.P�/. Now, using (10) and arguing as in the

proof of Lemma 4.2, we find that ‰0
1
.P�/ is isomorphic to the complex

� � �
0 // O�˝k kŒy�f�4g

17!x�y
// O�˝k kŒy�f�2g

0 // O�˝k kŒy�
� // O�˝k kŒy�

˚ ˚ ˚ ˚

� � �
0 // O�˝k kŒy�f�8g

17!x�y
// O�˝k kŒy�f�6g

0 // O�˝k kŒy�f�4g
1 7!y
// O�˝k kŒy�f�2g

where, going to the left, the differentials alternate. Now, consider the exact triangle

O�˝k kŒy�f�2g
17!x�y
�����!O�˝k kŒy�!O�:
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Applying ‰0
1

leaves us with

‰01.O�˝k kŒy�f�2g/!‰01.O�˝k kŒy�/! kŒx�ŒŒ1��f�2g˚ kŒx�:

Thus, applying ‰0
1
. � / to ‰0

1
.P�/ gives us a complex isomorphic to

� � � 0 kŒx�f�6g 0 kŒx�f�2g 0 0

� � � 0 kŒx�f�8;�10g 0 kŒx�f�4;�6g 0 kŒx�f�2g

� � � 0 kŒx�f�12g 0 kŒx�f�8g 0 kŒx�f�4g

where the top right entry is in cohomology bidegree .0; 0/. The generating series is
then

P
.12/
.q; a; t/D

1

1� q�2

1

1� q�4t2
.q�2t2

� q�2a2
� q�4a2t2

C q�4a4/

D
q�2t2.1� q�2a2/.1� a2t�2/

.1� q�2/.1� q�4t2/
:

8 Some remarks and speculation

8.1 SL.N /–homologies

In order to make the differential dN homogeneous one needs to kill the ŒŒ � �� grading.
More precisely, one needs to set ŒŒ�1��Df�2.�N C1/g. Since ŒŒ1�� is recorded by �a2

and f1g by q this means that the Euler characteristic �N .L/ of HN .L/ satisfies
�N .L/D PL.q; iq

�NC1;�1/. But

P.k/
.q; iq�NC1;�1/D

kY
`D1

1� q�2NC2�2`

1� q�2`
;

which, up to sign and a factor of q , equals
�

NCk�1
k

�
. In particular, this means that

if L is a link labeled by .k/ then HN .L/ categorifies the RT invariant of SL.N /

labeled by the representation Symk.CN /. Moreover, the homology of the unknot
in this case can be shown to be finite-dimensional homology. This implies (using
conjugation-invariance of the homology) that HN .L/ is finite-dimensional for any L

labeled by partitions with only one part.

8.2 Batalin–Vilkovisky structures

In Section 6 we defined the differential dN for N > 0. This was based on the fact that
HH�.A/ acts on HH�.M/ for any algebra A and A–bimodule M. More generally,
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under fairly general hypotheses described in [18, Section 1], HH�.A/ is a Gerstenhaber
algebra and HH�.M/ is a Batalin–Vilkovisky (BV) module.

Without going into details (see [18] for more) this equips HH�.A/ with the usual cup
product as well as a graded Lie algebra structure

f � ; � gW HHpC1.A/˝k HHqC1.A/! HHpCqC1.A/;

while HH�.M/ carries the standard module structure as well as a graded Lie algebra
module structure

(25) LW HHpC1.A/˝k HHn.M/! HHn�p.M/:

When p D�1 we get a map

HH0.A/˝k HHn.M/! HHnC1.M/:

If A is commutative then HH0.A/ Š A and for f 2 A we denote by df the map
HHn.M/! HHnC1.M/ induced in (25) by f (the condition of being a BV-module
implies that d.fg/D f dgCg df ). If we take AD kŒx1; : : : ;xk � then we obtain a
map X

i

d.xN
i /W HHn.M/! HHnC1.M/

for any kŒx1; : : : ;xk �–bimodule M. One would like this map to give a differential
d�N which commutes with d and such that, as in Theorem 6.1, the total differential
dCd�N defines a doubly graded link invariant H�N .L/. This would give us a spectral
sequence which commences at H.L/ and converges to HN .L/ for any N 2 Z.

On the other hand, if we take p D 0 then we get a map

(26) HH1.A/˝k HHn.M/! HHn.M/:

Since HH1.kŒx�/ � HH1.kŒx1; : : : ;xk �/ can be identified with the so-called Witt
algebra one would hope that the resulting action from (26) agrees with the action of
the Witt algebra defined in [17] (see the introduction and Theorem 5.6 therein).

Finally, it is worth noting that in [3, Section 2.3] and [2, Corollary 1.1.3] one ob-
tains a Gerstenhaber algebra structure on Tor�X .OY ;OZ / whenever Y;Z are smooth
coisotropic subvarieties inside a smooth Poisson variety X as well as a BV-module
structure on Ext�X .OY ;OZ /. In our case each term M in the complex T 0

ˇ
is a direct

sum of the structure sheaves of nonsmooth Lagrangian subvarieties inside Ak �Ak ,
where the latter is equipped with the standard symplectic structure. This suggests that
HH�.M/ might carry the structure of a Gerstenhaber algebra and HH�.M/ that of a
BV-module over it.
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Appendix: ‰–functors

In this section we suppose all varieties are smooth. However, we work over an arbitrary
base ring and do not assume properness at any point. The results also hold if we equip
all our varieties with an action of k� and work equivariantly.

Fix a variety Z . For any two varieties Y1 , Y2 we define

� ‰Z W D.Y1 �Y2/!D..Y1 �Z/� .Y2 �Z// and

� ‰0
Z
W D..Y1 �Z/� .Y2 �Z//!D.Y1 �Y2/

via ‰Z WD���
� and ‰0

Z
WD ���

! , where � and � are the natural projection and
diagonal inclusion maps

� W Y1 �Z �Y2! Y1 �Y2 and �W Y1 �Z �Y2! .Y1 �Z/� .Y2 �Z/:

Recall that if i W Y1!Y2 is an inclusion of smooth varieties then i !. � /D i�. � /˝!i Œ�c�,
where !i D !Y1

˝!_
Y2
jY1

and c is the codimension of the inclusion.

Proposition A.1 Let Y1 , Y2 , Y3 , Z1 , Z2 , Z3 be six varieties and suppose

P 2D.Y1 �Y2/; Q 2D.Y2 �Y3/; P 0 2D.Z1 �Z2/; Q0 2D.Z2 �Z3/:

Then .Q�Q0/ ? .P �P 0/Š .Q?P/� .Q0 ?P 0/.

Proof This is a fairly straightforward exercise with kernels, which we leave up to the
reader.

Corollary A.2 Let Y1 , Y2 , Y3 be three varieties and suppose

P 2D.Y1 �Y2/ and Q 2D.Y2 �Y3/:

Then ‰Z .Q?P/Š‰Z .Q/ ?‰Z .P/.

Proof This follows from Proposition A.1 by taking Z1 DZ2 DZ and P 0 DQ0 D
��OZ because in this case ‰Z . � /Š . � /�OZ .

Proposition A.3 Let Y1 , Y2 , Y3 be three varieties and suppose

P 2D.Y1 �Y2/ and Q 2D..Y2 �Z/� .Y3 �Z//:

Then ‰0
Z
.Q?‰Z .P//Š‰0Z .Q/ ?P 2D.Y1 �Y3/.

Proof For i; j 2 f1; 2; 3g denote by pij W Y1 �Y2 �Y3! Yi �Yj and

p0ij W .Y1 �Z/� .Y2 �Z/� .Y3 �Z/! .Yi �Z/� .Yj �Z/
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the natural projections. We also denote by

�ij W Yi �Z �Yj ! Yi �Yj and �ij W Yi �Z �Yj ! .Yi �Z/� .Yj �Z/

the projection and diagonal inclusion. Then

‰0Z .Q?‰Z .P//Š �13��
�
13.Q? .�12��

�
12P//

Š �13��
�
13.p

0
13�.p

0�
12�12��

�
12P˝p0�23Q//

Š �13��
�
13.p

0
13�.�

0
12�p

00�
12�

�
12P˝p0�23Q//

Š �13��
�
13.p

0
13��

0
12�.p

00�
12�

�
12P˝�

0�
12p0�23Q//

Š �13��
�
13q13�.p

00�
12�

�
12P˝p000�23 �

�
23Q/

Š �13�q
0
13��

�
Z .p

00�
12�

�
12P˝p000�23 �

�
23Q/

where the third isomorphism follows from the commutative square

.Y1 �Z �Y2/� .Y3 �Z/

p00
12

��

�0
12

// .Y1 �Z/� .Y2 �Z/� .Y3 �Z/

p0
12

��

Y1 �Z �Y2
�12

// .Y1 �Z/� .Y2 �Z/

the fourth via the projection formula, the fifth using p0
23
�0

12
D�23p000

23
, where p000

23
is

the map

.Y1 �Z �Y2/� .Y3 �Z/! Y2 �Z �Y3; .x1; z;x2;x3; z
0/ 7! .x2; z;x3/;

and the last from the commutative square

.Y1 �Z �Y2/�Y3
�Z

//

q0
13

��

.Y1 �Z �Y2/� .Y3 �Z/

q13

��

Y1 �Z �Y3
�13

// .Y1 �Z/� .Y3 �Z/

Now, �13q0
13
D p13.�12 � idY3

/ and �12p00
12
�Z D p12.�12 � idY3

/, so we get

�13�q
0
13��

�
Z .p

00�
12�

�
12P˝p000�23 �

�
23Q/

Š p13�.�12 � idY3
/�.�

�
Z p00�12�

�
12P˝�

�
Z p000�23 �

�
23Q˝!

_
Z Œ� dim Z�/

Š p13�.�12 � idY3
/�..�12 � idY3

/�p�12P˝�
�
Z p000�23 �

�
23Q˝!

_
Z Œ� dim Z�/

Š p13�.p
�
12P˝ .�12 � idY3

/�..p
000
23 ı�Z /

�.��23Q˝!
_
Z Œ� dim Z�///

Š p13�.p
�
12P˝p�23�23��

�
23Q/

Š‰0Z .Q/�P;
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where the third isomorphism is via the projection formula and the fourth uses

.Y1 �Z �Y2/�Y3

p000
23
ı�Z

��

�12�idY3
// Y1 �Y2 �Y3

p23

��

Y2 �Z �Y3
�23

// Y2 �Y3

The result follows.
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