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Correction to the articles
Homotopy theory of nonsymmetric operads, I–II

FERNANDO MURO

We correct a mistake in Algebr. Geom. Topol. 11 (2011) 1541–1599 on the construc-
tion of push-outs along free morphisms of algebras over a nonsymmetric operad, and
we fix the affected results from there and a follow-up article (Algebr. Geom. Topol.
14 (2014) 229–281).

18D50, 55U35; 18D10, 18D35, 18D20

Introduction

In [10, Section 8] we give a wrong construction of push-outs along free maps in the
category of algebras over an operad. Contrary to what we intended and claimed in
the introduction, it does not generalize Harper [6, Proposition 7.32], which is the
correct construction. It does not even yield Schwede and Shipley’s description [12] of
push-outs along free maps in the category of monoids. As Donald Yau pointed out to
us, the trivial ring only maps to itself (since it is characterized by the fact that 0D 1),
but our construction yields

N
n�1Z

˝n for the coproduct of the trivial ring and the
tensor algebra on Z . Here, we fix this mistake and its consequences in Muro [10; 11].
The main results of these papers, presented in their introductions, remain true as stated,
modulo a modification in the nonsymmetric monoid axiom [10, Definition 9.1] and
a strengthening in the hypotheses of [11, Theorem 1.13 and Corollary 1.14]. These
changes do not affect the applications. Moreover, the results which are purely on
operads, not on algebras, remain completely unaffected.

1 Push-out filtrations in symmetric monoidal categories

In this section we consider operads O (always nonsymmetric) and their algebras A
in a bicomplete closed symmetric monoidal category V with tensor product ˝ and
tensor unit I , as a preliminary step to the more general case in the following section.
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3838 Fernando Muro

We start with Harper’s description of the O–algebra push-out

(1-1)

FO.Y /
FO.f /

//

g

��

push

FO.Z/

g 0

��

A
f 0

// B

Here FO is the free O–algebra functor, FO.Y /D
`
n�0O.n/˝Y ˝n , and we denote

the adjoint of g by xgW Y ! A.

The enveloping operad OA [5; 4; 3] is characterized by the fact that an operad map
OA ! P is the same as an operad map O ! P together with an O–algebra map
A! P.0/. Aritywise, OA.t/ is the (reflexive) coequalizer of the following diagram
for t � 0 — compare [6, Proposition 7.28] —

(1-2)

a
s�0

O.sC t /˝
�
†sCt

†s �†t
�FO.A/

˝s
˝ I˝t

�
����

OO

a
s�0

O.sC t /˝
�
†sCt

†s �†t
�A˝s˝ I˝t

�

Here, given a permutation � 2†n we write � �X1˝� � �˝XnDX��1.1/˝� � �˝X��1.n/ ,
given a subset S � †n we set S �X1 ˝ � � � ˝Xn D

`
�2S � �X1 ˝ � � � ˝Xn , and

†sCt=†s � †t identifies with the set of .s; t/–shuffles. The two arrows pointing
downwards are defined by the operad structure of O and the O–algebra structure of A,
respectively, and the arrow pointing upwards is given by the unit of O . For t D 0, the
previous formula reduces to the cotriple presentation of OA.0/D A.

Recall from [10, Section 4] that a map f W Y ! Z in V is the same as a functor
f W 2! V from the poset 2D f0 < 1g. Given maps fi W Yi !Zi in V for 1� i � n,
their push-out product f1ˇ � � �ˇfn is the latching map of the functor

2n
f1˝���˝fn

// C

at the final object .1; : : : ; 1/ 2 2n [7, Definition 15.2.5].

The following lemma is a special case of [6, Proposition 7.32].

Lemma 1.1 The map f 0 in (1-1) is the transfinite composition of a sequence

AD B0
'1
�!B1! � � � ! Bt�1

't
�!Bt ! � � �
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Correction: Homotopy theory of nonsymmetric operads, I–II 3839

in V such that the morphism 't for t � 1 is given by the push-out square

�
OA.t/˝f

ˇt

//

 t

��

push

�

x t
��

Bt�1 't

// Bt

where the attaching map  t is defined by the following maps for 1� i � t :

OA.t/˝Z˝.i�1/˝Y ˝Z˝.t�i/!OA.t/˝Z˝.i�1/˝A˝Z˝.t�i/
ıi
�!OA.t � 1/˝Z˝.t�1/! Bt�1;

where the first map is defined by NgW Y ! A and the last is x t�1 if t > 1 and the
identity if t D 1.

This lemma is also the arity-0 part of the following one. Observe that the enveloping
operad OA is functorial on A in the obvious way. Moreover, it is a functor of the
pair .O; A/ regarded as a object in the Grothendieck construction of the categories of
algebras over all operads.

Lemma 1.2 If we have an O–algebra push-out (1-1), Of 0 W OA!OB is the transfinite
composition of a sequence of maps in the category of sequences

OA DOB;0
ˆ1
�!OB;1! � � � !OB;t�1

ˆt
�!OB;t ! � � �

such that ˆt .n/ for t � 1 and n� 0 is given by the push-out square

�
OA.tCn/˝..†tCn=.†t�†n//�f

ˇt˝I˝n/
//

‰t .n/
��

push

�

S‰t .n/
��

OB;t�1.n/
ˆt .n/

// OB;t .n/

where the attaching map ‰t .n/ is defined, as in Lemma 1.1, from xg , the composition
laws ıi W OA.t Cn/˝A!OA.t Cn� 1/, and also S‰t�1.n/ if t > 1.

The universal property of OB allows us to obtain it as the push-out in the category of
operads

(1-3)

F.Y /
F.f /

//

zg

��

push

F.Z/

��

OA // OB

Algebraic & Geometric Topology, Volume 17 (2017)



3840 Fernando Muro

Here F is the free operad functor, f is regarded as a map of sequences concentrated
in arity 0, and zg is the adjoint of xgW Y ! A � OA . Lemma 1.2 follows from the
description of operad pushouts in [10, Section 5].

Assume now that we have a push-out square in the category of operads

(1-4)

F.U /
F.f /

//

g

��

push

F.V /

g 0

��

O
f 0

// P

and A is a P–algebra. The universal properties of P and PA show that we have a
similar push-out

(1-5)

F.U /A
F.f /A

//

gA

��

push

F.V /A
g 0A
��

OA
f 0A

// PA

The enveloping operad F.V /A of an algebra over a free operad admits a description
similar to the free operad F.V /; compare [1, Section 3; 10, Section 5]. Namely,

(1-6) F.V /A.n/D
a
T

O
v2I.T /

V .zv/:

Here V is the sequence with V .0/D A and V .m/D V.m/ for m> 0, T runs over
all (isomorphism classes of) trees (planted, planar and with leaves) with n leaves [10,
Section 3] which do not contain any forbidden configuration for m� 1,

m
� � �

and I.T / is the set of inner vertices of T . Each coproduct factor in (1-6) is usually
depicted by labeling each inner vertex v of T with V .zv/, where zv is the number of
edges adjacent to v from above, eg

(1-7) V.3/
A

A

V.2/

V.4/

The reason for the forbidden configuration is that we must take into account the F.V /–
algebra structure maps V.m/˝A˝m!A. The operad structure on F.V /A is defined
by formal tree grafting, applying (repeatedly) if necessary the previous structure maps
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Correction: Homotopy theory of nonsymmetric operads, I–II 3841

whenever a forbidden configuration appears, collapsing it to
A

Hence, the push-out (1-5) admits a filtration description analogous to (1-4). The level
of a vertex v of T is the number of edges in the shortest path to the root. We say that
v is even if it has even level. Odd vertices are defined similarly. The sets of even and
odd inner vertices in T are denoted by I e.T / and I o.T /, respectively.

Lemma 1.3 Given an operad push-out (1-4) and a P–algebra A, f 0AW OA! PA is
the transfinite composition of a sequence of maps of sequences

OA D PA;0
ˆ1
�!PA;1! � � � ! PA;t�1

ˆt
�!PA;t ! � � �

such that ˆt .n/ for t � 1 and n� 0 is given by the push-out square

�

`
T

J
v2Ie.T / f .zv/˝

N
w2Io.T / OA. zw/

//

‰t .n/
��

push

�

S‰t .n/
��

PA;t�1.n/
ˆt .n/

// PA;t .n/

where T runs over the isomorphism classes of trees with n leaves concentrated in even
levels and t inner even vertices not containing

� � �

even even

odd

The attaching map ‰t .n/ is defined by the maps from

U.zu/˝
O

v2Ie.T /nfug

V.zv/˝
O

w2Io.T /

OA. zw/; u 2 I e.T /;

defined by the composite U ! O ! OA , composition in OA , the structure maps
V.m/˝A˝m! A, and the previous S‰s.n/, s < t .

Each factor of the coproduct of maps in the statement of the previous lemma is depicted
by labeling each even inner vertex v of T with f .zv/, and each odd inner vertex w
with OA. zw/, eg

(1-8)

A
OA.1/

f .2/

OA.1/
A

OA.2/

f .3/

OA.2/
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3842 Fernando Muro

The proof of Lemma 1.3 is a slight variation of the explicit construction of the push-out
(1-4) given in [10, Section 5]. We believe that this result is new in the literature.

2 Push-out filtrations in nonsymmetric settings

We now turn to our general setting, where operads O still live in V but their algebras A
live in a bicomplete biclosed monoidal category C (possibly nonsymmetric) endowed
with a strong monoidal left adjoint zW V ! C which is central, meaning that it is
equipped with coherent isomorphisms z.X/˝ Y Š Y ˝ z.X/. Objects in V have
“underlying” objects in C via z . We will often drop z from notation. Here we indicate
how the three previous lemmas extend to this context.

Enveloping operads do not make sense in this setting since they should live in C , but
the definition of operad requires a symmetric tensor product. We must instead consider
(always nonsymmetric) functor-operads F D fF.n/gn�0 in C [9], also known as
multitensors [2]. They consist of a sequence of functors F.n/W C n! C equipped with
composition and unit natural transformations

ıi W F.p/. i�1: : : : ; F .q/; p�i: : : : /! F.pC q� 1/; 1� i � p; q � 0;

uW idC ! F.1/;

satisfying relations similar to operads. The values OA.t/.X1; : : : ; Xt / of the envelop-
ing functor-operad OA are defined by replacing I˝t with X1 ˝ � � � ˝Xt in (1-2).
Again, OA.0/, which is a functor from the discrete category on one object C 0 , identi-
fies with A. Enveloping functor-operads satisfy the same functoriality properties as
enveloping operads do when C D V .

Consider the O–algebra push-out (1-1), now in our current setting. As above, we
regard maps in C as functors 2! C . We now present our first amended statement,
where the numbering refers to the cited paper.

Lemma 8.1 [10] The map f 0 in (1-1) is the transfinite composition of a sequence

AD B0
'1
�!B1! � � � ! Bt�1

't
�!Bt ! � � �

in C such that the morphism 't for t � 1 is given by the push-out square

� //

 t

��

push

�

x t
��

Bt�1 't

// Bt
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where the top map is the latching map of OA.t/.f; : : : ; f / at the final object and the
attaching map  t is given by, for 1� i � t ,

OA.t/.Z; i�1: : : : ; Z; Y;Z; t�i: : : : ; Z/!OA.t/.Z; i�1: : : : ; Z;A;Z; t�i: : : : ; Z/
ıi
�!OA.t � 1/.Z; t�1: : : : ; Z/! Bt�1

where the first map is defined by NgW Y ! A and the last is x t�1 if t > 1 and the
identity if t D 1.

The same proof as in the case C DV [6, Proposition 7.32] works here, mutatis mutandis.
The lemma actually extends to enveloping functor-operads. Given a functor F W C n!C

and a permutation � 2†n , we let F� �.X1; : : : ; Xn/DF.X��1.1/; : : : ; X��1.n//, and
given a subset S �†n we set FS � .X1; : : : ; Xn/D

`
�2S F� � .X1; : : : ; Xn/.

Lemma 2.1 If we have an O–algebra push-out (1-1), Of 0 is the transfinite composi-
tion of a sequence of natural transformations between sequences of functors

OA DOB;0
ˆ1
�!OB;1! � � � !OB;t�1

ˆt
�!OB;t ! � � �

such that, pointwise, ˆt .n/.X1; : : : ; Xn/ for t � 1 and n� 0 is given by the push-out

� //

‰t .n/.X1;:::;Xn/
��

push

�

S‰t .n/.X1;:::;Xn/
��

OB;t�1.n/.X1; : : : ; Xn/
ˆt .n/.X1;:::;Xn/

// OB;t .n/.X1; : : : ; Xn/

where the top map is the latching map of

OA.t Cn/.†tCn=.†t �†n// � .f; t: : : ; f; X1; : : : ; Xn/

at the final object and the attaching map ‰t .n/.X1; : : : ; Xn/ is defined, as in Lemma 8.1
above, from xg , the composition laws

ıi W OA.t Cn/. : : : ; A; : : : /!OA.t Cn� 1/;

and also S‰t�1.n/.X1; : : : ; Xn/ if t > 1.

This lemma can be proved by fitting Lemma 8.1 above into the coequalizer definition
of OB .

Given a sequence V in V we identify the object V.n/ with the functor C n !

C W .X1; : : : ; Xn/ 7! V.n/˝ X1 ˝ � � � ˝ Xn . In this way, a sequence in V can be
regarded as a sequence of functors. We similarly identify a map of sequences in V

with the obvious natural transformations. An operad in V yields a functor-operad in C

through this assignment, and the natural operad map O!OA becomes a functor-operad
map when A is in C .

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 2.2 Given an operad push-out (1-4) and a P –algebra A, the map f 0AW OA!
PA is the transfinite composition of a sequence of natural transformations between
sequences of functors

OA D PA;0
ˆ1
�!PA;1! � � � ! PA;t�1

ˆt
�!PA;t ! � � �

such that ˆt .n/.X1; : : : ; Xn/ for t � 1 and n� 0 is given by the push-out square

�

`
T
ẑ

t .T /.X1;:::;Xn/
//

‰t .n/.X1;:::;Xn/
��

push

�

S‰t .n/.X1;:::;Xn/
��

PA;t�1.n/.X1; : : : ; Xn/
ˆt .n/.X1;:::;Xn/

// PA;t .n/.X1; : : : ; Xn/

where T runs over the same set of trees as in Lemma 1.3, ẑ t .T /.X1; : : : ; Xn/ is
the latching map at the final object of the functor 2t ! C obtained by compos-
ing horizontally the natural transformations f .zv/ for v 2 I e.T / and the functors
OA. zw/ for w 2 I o.T / according to the structure of the tree T (see eg (1-8)), eval-
uating at X1; : : : ; Xn in the slots indicated by the leaves, and the attaching map
‰t .n/.X1; : : : ; Xn/ is defined by the composite U ! O! OA , composition in OA ,
the structure maps V.m/˝A˝m!A, and the previous S‰s.n/.X1; : : : ; Xn/ for s < t .

For the proof of this lemma, we can fit the filtration for the bottom map in (1-4)
constructed in [10, Section 5] into the coequalizer definition of PA .

3 Corrected results

We will sometimes restrict to the following class of operads with homotopically well-
behaved enveloping (functor-)operads.

Definition 3.1 Suppose that the tensor unit of V is cofibrant. An operad O is excellent
if the functor A 7! OA takes an O–algebra A with underlying cofibrant object to a
cofibrant sequence, and a weak equivalence between O–algebras with underlying
cofibrant objects to a weak equivalence of sequences.

The meaning is clear in case C D V . In the general case we must consider sequences
of functors C n! C for n� 0 rather than objects in V . Homotopical notions in this
more general context will be defined below. When the tensor unit is not cofibrant, the
previous definition makes sense but it is not useful. We will also deal with this more
general case below.

An operad which is not excellent, with C D V the category of chain complexes over a
commutative ring, is the operad whose algebras are nonunital DG–algebras A with

Algebraic & Geometric Topology, Volume 17 (2017)
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A3 D 0. This operad, which has an underlying cofibrant sequence, can be used to
construct examples showing the necessity of the excellence assumption in several
statements below.

3.2 Corrections to statements

Note that [10, Lemma 8.1] has already been amended in the previous section. We do
not repeat it here.

Proposition 9.2(2) [10] Consider the push-out diagram (1-1) in AlgC .O/.

(2) Suppose that f is a cofibration in C and either A is cofibrant in C and O is
excellent or A is cofibrant as an O–algebra in C and O.n/ is cofibrant in V for
n� 0. Then f 0W A! B is a cofibration in C .

We will modify not [10, Proposition 9.2(1)] but the definition of the nonsymmetric
monoid axiom, so that the statement will be tautologically true by Lemma 8.1 above.

Definition 9.1 [10] The monoid axiom in the V –algebra C says that relative K 0–cell
complexes are weak equivalences, where K 0 is the class of morphisms

K 0 D
n
f ˝X; X ˝f; latching map of OA.t/.f; : : : ; f / at the final object

ˇ̌
X is an object in C ; f is a trivial cofibration in C ; O is an operad in V ;

A is an O–algebra in C ; t � 1
o
:

This axiom is equivalent to Schwede and Shipley [12, Definition 3.3] if C D V .

The following two modifications are forced by the previous amendments.

(6-2) [11] Replace this equation with the latching map of OA.t/.f; : : : ; f / at the
final object.

Definition 2.3(3) [11] Replace with the new [10, Definition 9.1] above.

Now, in [11, Theorems 1.13, 8.1 and D.13, Corollaries 1.14 and 8.2 and Proposi-
tions 8.3 and D.14], we must assume in addition that the operad O is excellent.

The most general of these results is [11, Theorem D.13], which follows from Proposition
3.4.3 and, if the tensor unit is not cofibrant, the remarks in Section 3.7 below.

Note that [11, Lemmas 6.6 and D.1] are not useful any more, since the map [11, (6-2)]
plays no role after the corrections.

Algebraic & Geometric Topology, Volume 17 (2017)
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Corollary D.2 [11] Suppose that C satisfies the strong unit axiom and either A is
pseudocofibrant in C and O is excellent, or A is pseudocofibrant as an O–algebra in
C and O.n/ is cofibrant in C for n� 0. Then any cofibration �W A� B in AlgC .O/
is also a cofibration in C .

3.3 Correct statements needing new proofs

The nonsymmetric monoidal category GraphS .V / of V –graphs with object set S [10,
Definition 10.1] still satisfies the amended nonsymmetric monoid axiom.

Proof of [10, Proposition 10.3] It is easy to check (using the symmetry of V ) that
the latching map of OA.t/.f; : : : ; f / at the final object is componentwise a coproduct
of maps, each of which is the tensor product of a single object in V with a push-out
product of components of f , which are trivial cofibrations in V . Such a push-out
product is again a trivial cofibration by the push-out product axiom. Hence, any K 0–cell
complex is componentwise a K–cell complex in the sense of [10, Definition 6.1], and
therefore a weak equivalence by the monoid axiom for V .

The modifications made to [10, Proposition 9.2] have no impact on [10, Lemma 9.4 and
Corollary 9.5], however [10, Lemma 9.6 and Theorem 1.3; 11, Theorems 6.7 and D.4]
require a new proof. They follow from the arity-0 part of Proposition 3.4.2 and, if the
tensor unit is not cofibrant, the remarks in 3.7 below. The modification in [11, (6-2)]
forces us to give new proofs of [11, Propositions 7.3 and D.6]. They follow from the
arity-0 part of Proposition 3.4.6 and Section 3.7.

3.4 Auxiliary results

We need the following results to prove the amended statements and to fix proofs of
correct statements affected by the amendments.

Proposition 3.4.1 Let O be an operad with underlying cofibrant sequence. For any
cofibration with cofibrant source f 0W A! B in AlgC .O/, the map Of 0 W OA!OB is
a cofibration of sequences. In particular, OA is a cofibrant sequence for any cofibrant
A in AlgC .O/.

Proposition 3.4.2 Let �W O ��!P be a weak equivalence in Op.V /. Assume that the
objects O.n/ and P.n/ are cofibrant in V for all n� 0. Given a cofibrant O–algebra
A in C , the map ��A

W OA! P��A induced by � and by the unit �AW A! ����A of
the change of operad adjunction �� a �� [10, (1)] is a weak equivalence of sequences.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proposition 3.4.3 If O is an excellent operad in V and

A //
 

//

' �

��

push

B

'0

��

C //
 0
// C [AB

is a push-out of O–algebras in C such that the underlying objects of A and C are
cofibrant, then '0 is a weak equivalence.

The goal of the two following results is to exhibit a huge class of excellent operads.
They are not strictly required to correct the results in [10; 11], but they are essential
for applications. We believe that these results, which imply homotopy invariance of
enveloping (functor-)operads, are new in the literature in this generality. Similar results
for chain complexes have been obtained in [4, Section 17.4].

Proposition 3.4.4 The initial operad AssV , and uAssV , are excellent.

Proposition 3.4.5 If f 0W O� P is a cofibration in Op.V / and O is an excellent
operad such that O.n/ is cofibrant for all n� 0, then so is P .

In the following result, in addition to our standing context .V ;C / we have another
one .W ;D/ satisfying the same formal properties. Both of them are related by Quillen
pairs, F W V �W WG and F W C �D WG , with colax monoidal left adjoints F and F ,
equipped with a coherent natural map �.X/W F z.X/ ! zF.X/ which is a weak
equivalence for X cofibrant [11, Section 7]. They give rise to a functor between operad
categories F operW Op.V /! Op.W / and, for each operad O in V , a functor between
algebra categories FOW AlgC .O/! AlgD.F

oper.O//. These functors are left adjoint
to the obvious functors defined by the lax monoidal functors G and G . In particular,
we obtain a map of sequences �OW F.O/! F oper.O/ and natural transformations
�O;A.n/W FOA.n/! F oper.O/F O.A/

.n/F �n between functors C n ! D for n � 0
for any O–algebra A.

Proposition 3.4.6 If F aG is a weak monoidal Quillen adjunction, V and W have
cofibrant tensor units, O is a cofibrant operad in V and A is a cofibrant O–algebra
in C , then �O;A.n/ is a weak equivalence in D when evaluated at n cofibrant objects
in C for n� 0.

3.5 Proofs for C D V and cofibrant tensor units

In this special case our results admit easier proofs which do not need the sophisticated
homotopical notions for functors introduced below.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proof of Proposition 9.2(2) By Lemma 1.1 and the usual inductive transfinite compo-
sition and retract argument, this boils down to proving that OA.t/˝f ˇt is a cofibration
for all t � 1. If the sequence OA is cofibrant, this follows from the push-out product
axiom. This sequence is cofibrant under the first set of hypotheses, by excellence. The
second case is the arity-0 part of Proposition 3.4.1.

Proof of Proposition 3.4.1 By Lemma 1.2, the usual transfinite composition and
retract argument, and the push-out product axiom, it suffices to notice that the map
OA.t Cn/˝f ˇt for t � 1 and n� 0 is a cofibration provided f is a cofibration and
OA is a cofibrant sequence, and the sequence OA is cofibrant if ADO.0/ is the initial
O–algebra, since OO.0/ DO .

Proof of Proposition 3.4.2 This follows from the proof of [3, Proposition 5.7], but
we here give an argument which extends to our general case. By the aforementioned
inductive argument and Lemma 1.2, it is enough to check that the statement holds
for ADO.0/ the initial O–algebra and that, assuming the result true for A, the map
��A

induces a weak equivalence of cofibrations ��A
.tCn/˝f ˇt W OA.tCn/˝f ˇt!

P��A.tCn/˝f ˇt , with cofibrant source and target, for f a cofibration as in (1-1). For
ADO.0/, ��O.0/

D �W O! P , which is a weak equivalence by hypothesis. For any
cofibrant O–algebra A, OA and P��A are cofibrant sequences by Proposition 3.4.1.
We can assume that f W Y � Z has cofibrant source, replacing it with its push-
out A� Z [Y A along xg if necessary. Hence, by the push-out product axiom,
��A

.t Cn/˝f ˇt is indeed a weak equivalence between cofibrations with cofibrant
source and target.

Proof of Proposition 3.4.3 By the previous inductive argument, we can assume
that  D f 0 in (1-1) with f a cofibration. We can also suppose as in the proof of
Proposition 3.4.2 that the source of f is cofibrant. By Lemma 1.1, it suffices to notice
that

O'.t/˝f ˇt W OA.t/˝f ˇt !OC .t/˝f ˇt

is a weak equivalence between cofibrations with cofibrant source. Here we use excel-
lence and the push-out product axiom.

Proof of Proposition 3.4.4 This follows from the fact that uAssV
A .n/DA

˝.nC1/ for
n� 0, AssV

A .0/D A and AssV
A .n/D .Aq I/˝.nC1/ for n� 1, and, for O the initial

operad, OA.0/D A, OA.1/D I and OA.n/D¿ for n� 2.

Proof of Proposition 3.4.5 As in previous proofs, we can assume that f 0 fits into a
push-out square (1-3) with f a cofibration between cofibrant sequences. Let A be an
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O–algebra with underlying cofibrant object and 'W A!B a weak equivalence between
such O–algebras. By Lemma 1.3, it is enough to notice that, a push-out product of
maps f .n/ tensored with objects OA.n/ for n� 0 is a cofibration between cofibrant
objects. Moreover, if we replace OA.n/ with O'.n/ we get a weak equivalence between
these cofibrations. We are using here the push-out product axiom and the excellence
assumption.

Proof of Proposition 3.4.6 Under the standing hypotheses of this subsection, C D V ,
D DW , and �O;AW F.OA/! F oper.O/FO.A/ is a map of sequences in W . If A is the
initial O–algebra then �O;AD �O , so the statement follows from [11, Proposition 4.2].
For general cofibrant O–algebras, using the inductive argument and Lemma 1.2, it
suffices to notice that, if the result holds for A and f is a cofibration between cofibrant
objects in V , then the map F.OA.tCn/˝f ˇt /!F oper.O/FO.A/.tCn/˝F.f /

ˇt for
t � 1 and n� 0 induced by the comultiplication of F and �O;A is a weak equivalence
between cofibrations with cofibrant source (and target). Here we are using the push-out
product axiom and the cofibrancy results in Proposition 3.4.1 and [11, Corollary 3.8
and Lemma 4.3].

3.6 Proofs for C ¤ V and cofibrant tensor units

The Reedy model structure [7, Section 15.3] on the category of diagrams indexed by 2n

can be generalized as follows.

Proposition 3.6.1 If M is a model category and S � f1; : : : ; ng, there is a model
structure M 2n

S on the diagram category M 2n

such that a map � W F !G is
� a fibration if �.x1; : : : ; xn/W F.x1; : : : ; xn/! G.x1; : : : ; xn/ is a fibration in M

for all .x1; : : : ; xn/ in 2n ,
� a weak equivalence if �.x1; : : : ;xn/ is a weak equivalence in M for all .x1; : : : ;xn/

in 2n with xi D 0 if i 2 S , and
� a cofibration if the relative latching map of � at any .x1; : : : ; xn/ in 2n is a

cofibration, and moreover a trivial cofibration if xi D 1 for some i 2 S .

Note that M 2n

S is a right Bousfield localization of the Reedy model structure M 2n

¿
.

Cofibrant diagrams take cofibrant values and have cofibrant latching objects. Moreover,
any weak equivalence between cofibrant functors induces weak equivalences between
latching objects.

Given model categories M and N , we introduce some naive homotopical notions for
functors of several variables between them. They rely on the previous model structures,
hence many facts from ordinary model categories extend to these big functor categories.
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Definition 3.6.2 A natural transformation � W F !G between functors N n!M is
a weak equivalence, fibration or cofibration if, given cofibrations between cofibrant ob-
jects g1; : : : ; gn in N , �.g1; : : : ; gn/ has that property in M 2n

S for any S �f1; : : : ; ng
such that gi is a trivial cofibration if i 2S . These notions extend aritywise to sequences
of functors F.n/W N n!M for n� 0.

Weak equivalences and fibrations can be just characterized pointwise on cofibrant
objects. The condition on cofibrations is stronger. For nD 0 we recover the original
notions in M . Cofibrant functors preserve cofibrant objects and weak equivalences
between them.

When M DN , we can horizontally compose functors of several variables M n!M ,
ie F.: : : ; G; : : : /, and natural transformations between them. Weak equivalences are
preserved by horizontal composition if source and target are cofibrant. Cofibrant
functors are also preserved, provided we compose at a colimit-preserving slot. All slots
in enveloping functor-operads preserve colimits.

The meaning of Definition 3.1 is now clear in the general case for cofibrant tensor
units. The proofs in the previous subsection extend straightforwardly, using Lemmas
8.1 above, 2.1 and 2.2 instead of Lemmas 1.1, 1.2 and 1.3, respectively.

3.7 Noncofibrant tensor units

In the proofs of Section 3.5 we have used that the tensor unit is cofibrant at some places.
This hypothesis can be relaxed using the theory of pseudocofibrant and I–cofibrant
objects developed in [11, Appendices A and B] provided our monoidal model categories
satisfy the strong unit axiom and all left Quillen functors satisfy the pseudocofibrant
and I–cofibrant axioms. These will be standing assumptions. We recently learned
that pseudocofibrant objects were previously introduced in [8], where they are called
semicofibrant.

For C D V , Definition 3.1 must be modified replacing cofibrancy with pseudocofi-
brancy. Proposition 3.4.4 holds with the same proof. Essentially the same proofs
work for Propositions 3.4.2 and 3.4.3 if we only demand underlying pseudocofibrant
objects. Moreover, if we only make pseudocofibrancy hypotheses in Propositions 3.4.1
and 3.4.5, we obtain pseudocofibrant outcomes and honest cofibrations between them.
Proposition 3.4.6 holds without I being cofibrant under our standing assumptions
(using [11, Corollary C.3 and Lemma B.14] in the proof). The proof of Corollary D.2
is similar to the proof of Proposition 9.2(2) above.

For C ¤ V , we need new and modified homotopical notions in functor categories.
Pseudocofibrant and I–cofibrant objects F in diagram categories M 2n

S are defined by
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the existence of a cofibration X�F from a constant diagram on an object X satisfying
the corresponding property in M (which must be monoidal). In Definition 3.6.2, we
allow the sources of the gi to be pseudocofibrant.

The operads in Proposition 3.4.4 are excellent since

uAssV
A .n/.X1; : : : ; Xn/D A˝

nO
iD1

.Xi ˝A/ for n� 0;

AssV
A .n/.X1; : : : ; Xn/ D .A q I/ ˝

Nn
iD1.Xi ˝ .A q I// for n � 1 and, for O

the initial operad, OA.1/.X1/ D X1 and OA.n/.X1; : : : ; Xn/ D ¿ for n � 2. In
Proposition 3.4.1, if we only demand that O is pseudocofibrant in C we obtain as
outcomes functor-operads with underlying pseudocofibrant sequences and cofibrations
between them. In Proposition 3.4.2, the map of sequences in C underlying � must be a
weak equivalence between pseudocofibrant objects. Propositions 3.4.3 and 3.4.5 are true
when the underlying objects are pseudocofibrant in C . The analog of Proposition 9.2(2)
for noncofibrant I is Corollary D.2 above.

For the proof of Proposition 3.4.6 without cofibrant tensor units, we must modify again
the homotopical notions in Definition 3.6.2, allowing the sources of the gi to be just
(I–)cofibrant. The natural transformations �O;A.n/ are weak equivalences in this
sense, ie when evaluated at (I–)cofibrant objects.
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