|
|
Recent Issues |
Volume 25, 1 issue
Volume 24, 9 issues
Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594
Volume 23, 9 issues
Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508
Volume 22, 8 issues
Volume 22
Issue 8, 3533–4008
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472
Volume 21, 7 issues
Volume 21
Issue 7, 3221–3734
Issue 6, 2677–3220
Issue 5, 2141–2676
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
1 |
N Abdiel, C
Frohman, The localized skein algebra is Frobenius,
preprint (2015) arXiv:1501.02631 |
2 |
J W Barrett,
Skein
spaces and spin structures, Math. Proc. Cambridge
Philos. Soc. 126 (1999) 267 MR1670233 |
3 |
C Blanchet, N
Habegger, G Masbaum, P Vogel, Topological
quantum field theories derived from the Kauffman
bracket, Topology 34 (1995) 883 MR1362791 |
4 |
F Bonahon, Shearing hyperbolic
surfaces, bending pleated surfaces and Thurston’s symplectic
form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233
MR1413855 |
5 |
F Bonahon, X
Liu, Representations of the
quantum Teichmüller space and invariants of surface
diffeomorphisms, Geom. Topol. 11 (2007) 889 MR2326938 |
6 |
F Bonahon, H
Wong, Kauffman brackets,
character varieties and triangulations of surfaces,
from: "Topology and geometry in dimension three" (editors W Li,
L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein),
Contemp. Math. 560, Amer. Math. Soc. (2011) 179 MR2866931 |
7 |
F Bonahon, H
Wong, Quantum traces for
representations of surface groups in SL2(ℂ), Geom.
Topol. 15 (2011) 1569 MR2851072 |
8 |
F Bonahon, H
Wong, The
Witten–Reshetikhin–Turaev representation of the Kauffman
bracket skein algebra, Proc. Amer. Math. Soc. 144
(2016) 2711 MR3477089 |
9 |
F Bonahon, H
Wong, Representations of
the Kauffman bracket skein algebra, I : Invariants and miraculous
cancellations, Invent. Math. 204 (2016) 195 MR3480556 |
10 |
F Bonahon, H
Wong, Representations of the Kauffman bracket skein
algebra, III: Closed surfaces and naturality, preprint
(2015) arXiv:1505.01522 |
11 |
F Bonahon, H
Wong, Representations of the Kauffman bracket skein
algebra, IV: Naturality for punctured surfaces, in
preparation |
12 |
D Bullock, Estimating a
skein module with SL2(C)
characters, Proc. Amer. Math. Soc. 125 (1997) 1835
MR1403115 |
13 |
D Bullock, Rings of SL2(C)–characters and
the Kauffman bracket skein module, Comment. Math. Helv.
72 (1997) 521 MR1600138 |
14 |
D Bullock, C
Frohman, J Kania-Bartoszyńska, Understanding the
Kauffman bracket skein module, J. Knot Theory
Ramifications 8 (1999) 265 MR1691437 |
15 |
D Bullock, C
Frohman, J Kania-Bartoszyńska, The Kauffman
bracket skein as an algebra of observables, Proc. Amer.
Math. Soc. 130 (2002) 2479 MR1897475 |
16 |
D Bullock, J H
Przytycki, Multiplicative
structure of Kauffman bracket skein module
quantizations, Proc. Amer. Math. Soc. 128 (2000) 923
MR1625701 |
17 |
L O Chekhov,
V V Fock, Observables in 3D
gravity and geodesic algebras, Czechoslovak J. Phys. 50
(2000) 1201 MR1806262 |
18 |
V V Fock, Dual
Teichmüller spaces, unpublished preprint (1997) arXiv:dg-ga/9702018 |
19 |
V V Fok,
L O Chekhov, Quantum Teichmüller
spaces, Teoret. Mat. Fiz. 120 (1999) 511 MR1737362 |
20 |
C Frohman, N
Abdiel, Frobenius algebras
derived from the Kauffman bracket skein algebra, J.
Knot Theory Ramifications 25 (2016) 1 MR3482494 |
21 |
C Frohman, J
Kania-Bartoszyńska, The structure of the Kauffman
bracket skein algebra at roots of unity, preprint (2016)
arXiv:1607.03424 |
22 |
C Frohman, J
Kania-Bartoszyńska, T T Q Lê, Unicity
for representations of the Kauffman bracket skein algebra,
preprint (2017) arXiv:1707.09234 |
23 |
M Havlíček, S
Pošta, On
the classification of irreducible finite-dimensional
representations of U′q(so3)
algebra, J. Math. Phys. 42 (2001) 472 MR1808791 |
24 |
R M Kashaev,
Quantization of
Teichmüller spaces and the quantum dilogarithm, Lett.
Math. Phys. 43 (1998) 105 MR1607296 |
25 |
T T Q Lê,
On
Kauffman bracket skein modules at roots of unity,
Algebr. Geom. Topol. 15 (2015) 1093 MR3342686 |
26 |
X Liu, The quantum
Teichmüller space as a noncommutative algebraic object,
J. Knot Theory Ramifications 18 (2009) 705 MR2527682 |
27 |
D Mumford, J
Fogarty, F Kirwan, Geometric invariant
theory, 34, Springer (1994) MR1304906 |
28 |
R C Penner,
J L Harer, Combinatorics of train
tracks, 125, Princeton Univ. Press (1992) MR1144770 |
29 |
J H Przytycki,
A S Sikora, On skein
algebras and Sl2(C)–character
varieties, Topology 39 (2000) 115 MR1710996 |
30 |
N Reshetikhin,
V G Turaev, Invariants of 3–manifolds via link polynomials and quantum
groups, Invent. Math. 103 (1991) 547 MR1091619 |
31 |
N Takenov,
Representations of the Kauffman skein algebra of small
surfaces, preprint (2015) arXiv:1504.04573 |
32 |
W P Thurston,
The
geometry and topology of three-manifolds, lecture notes
(1979) |
33 |
V G Turaev,
Skein
quantization of Poisson algebras of loops on surfaces,
Ann. Sci. École Norm. Sup. 24 (1991) 635 MR1142906 |
34 |
V G Turaev,
Quantum invariants of knots and 3–manifolds, 18, de Gruyter (1994) MR1292673 |
35 |
E Witten, Quantum field
theory and the Jones polynomial, Comm. Math. Phys. 121
(1989) 351 MR990772 |
|