Volume 17, issue 6 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Axioms for higher twisted torsion invariants of smooth bundles

Christopher Ohrt

Algebraic & Geometric Topology 17 (2017) 3665–3701
Bibliography
1 J M Bismut, S Goette, Families torsion and Morse functions, 275, Soc. Math. France (2001) MR1867006
2 J M Bismut, J Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995) 291 MR1303026
3 W Dwyer, M Weiss, B Williams, A parametrized index theorem for the algebraic K–theory Euler class, Acta Math. 190 (2003) 1 MR1982793
4 T Goodwillie, K Igusa, C Ohrt, An equivariant version of Hatcher’s G∕O construction, J. Topol. 8 (2015) 675 MR3394313
5 K Igusa, Higher Franz–Reidemeister torsion, 31, Amer. Math. Soc. (2002) MR1945530
6 K Igusa, Higher complex torsion and the framing principle, 835, Amer. Math. Soc. (2005) MR2155700
7 K Igusa, Axioms for higher torsion invariants of smooth bundles, J. Topol. 1 (2008) 159 MR2365656
8 K Igusa, Outline of higher Igusa–Klein torsion, lecture notes (2009)
9 K Igusa, J Klein, The Borel regulator map on pictures, II : An example from Morse theory, K–Theory 7 (1993) 225 MR1244002
10 J Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983) 281 MR719313
11 T Szamuely, Galois groups and fundamental groups, 117, Cambridge Univ. Press (2009) MR2548205
12 J B Wagoner, Diffeomorphisms, K2, and analytic torsion, from: "Algebraic and geometric topology, 1" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 23 MR520491