Volume 17, issue 6 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Super $q$–Howe duality and web categories

Daniel Tubbenhauer, Pedro Vaz and Paul Wedrich

Algebraic & Geometric Topology 17 (2017) 3703–3749
Bibliography
1 A K Aiston, H R Morton, Idempotents of Hecke algebras of type A, J. Knot Theory Ramifications 7 (1998) 463 MR1633027
2 A Berenstein, S Zwicknagl, Braided symmetric and exterior algebras, Trans. Amer. Math. Soc. 360 (2008) 3429 MR2386232
3 S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 MR3263166
4 S J Cheng, W Wang, Howe duality for Lie superalgebras, Compositio Math. 128 (2001) 55 MR1847665
5 H El Turkey, J R Kujawa, Presenting Schur superalgebras, Pacific J. Math. 262 (2013) 285 MR3069063
6 N Geer, B Patureau-Mirand, On the colored HOMFLY–PT, multivariable and Kashaev link invariants, Commun. Contemp. Math. 10 (2008) 993 MR2468374
7 E Gorsky, S Gukov, M Stošić, Quadruply-graded colored homology of knots, preprint (2013) arXiv:1304.3481
8 J Grant, A categorification of the skew Howe action on a representation category of Uq(𝔤𝔩(m|n)), preprint (2015) arXiv:1504.07671
9 J Grant, A generators and relations description of a representation category of Uq(𝔤𝔩(1|1)), Algebr. Geom. Topol. 16 (2016) 509 MR3470707
10 S Gukov, M Stošić, Homological algebra of knots and BPS states, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18, Geom. Topol. Publ. (2012) 309 MR3084243
11 A Gyoja, A q–analogue of Young symmetrizer, Osaka J. Math. 23 (1986) 841 MR873212
12 R Howe, Perspectives on invariant theory : Schur duality, multiplicity-free actions and beyond, from: "The Schur lectures" (editors I Piatetski-Shapiro, S Gelbart), Israel Math. Conf. Proc. 8, Bar-Ilan Univ. (1995) 1 MR1321638
13 V F R Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987) 335 MR908150
14 L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of 3–manifolds, 134, Princeton Univ. Press (1994) MR1280463
15 G Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109 MR1403861
16 J H Kwon, Crystal bases of q–deformed Kac modules over the quantum superalgebras Uq(𝔤𝔩(m|n)), Int. Math. Res. Not. 2014 (2014) 512 MR3159079
17 X S Lin, H Zheng, On the Hecke algebras and the colored HOMFLY polynomial, Trans. Amer. Math. Soc. 362 (2010) 1 MR2550143
18 K Liu, P Peng, Proof of the Labastida–Mariño–Ooguri–Vafa conjecture, J. Differential Geom. 85 (2010) 479 MR2739811
19 S Lukac, Homfly skeins and the Hopf link, PhD thesis, University of Liverpool (2001)
20 G Lusztig, Introduction to quantum groups, 110, Birkhäuser (1993) MR1227098
21 H Mitsuhashi, Schur–Weyl reciprocity between the quantum superalgebra and the Iwahori–Hecke algebra, Algebr. Represent. Theory 9 (2006) 309 MR2251378
22 H Murakami, T Ohtsuki, S Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325 MR1659228
23 H Queffelec, A Sartori, Mixed quantum skew Howe duality and link invariants of type A, preprint (2015) arXiv:1504.01225
24 J Rasmussen, Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 MR3447099
25 D E V Rose, D Tubbenhauer, Symmetric webs, Jones–Wenzl recursions, and q–Howe duality, Int. Math. Res. Not. 2016 (2016) 5249 MR3556438
26 G Rumer, E Teller, H Weyl, Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1932 (1932) 499
27 A Sartori, Categorification of tensor powers of the vector representation of Uq(𝔤𝔩(1|1)), PhD thesis, Universiät Bonn (2014)
28 A Sartori, Categorification of tensor powers of the vector representation of Uq(𝔤𝔩(1|1)), Selecta Math. 22 (2016) 669 MR3477333
29 V G Turaev, Quantum invariants of knots and 3–manifolds, 18, Walter de Gruyter (2010) MR2654259
30 G Williamson, Singular Soergel bimodules, Int. Math. Res. Not. 2011 (2011) 4555 MR2844932
31 Y Wu, R B Zhang, Unitary highest weight representations of quantum general linear superalgebra, J. Algebra 321 (2009) 3568 MR2510063
32 H Yamane, Quantized enveloping algebras associated with simple Lie superalgebras and their universal R–matrices, Publ. Res. Inst. Math. Sci. 30 (1994) 15 MR1266383
33 R B Zhang, Structure and representations of the quantum general linear supergroup, Comm. Math. Phys. 195 (1998) 525 MR1640999