Volume 17, issue 6 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Slice implies mutant ribbon for odd $5$–stranded pretzel knots

Kathryn Bryant

Algebraic & Geometric Topology 17 (2017) 3621–3664
Abstract

A pretzel knot K is called odd if all its twist parameters are odd and mutant ribbon if it is mutant to a simple ribbon knot. We prove that the family of odd 5–stranded pretzel knots satisfies a weaker version of the slice-ribbon conjecture: all slice odd 5–stranded pretzel knots are mutant ribbon, meaning they are mutant to a ribbon knot. We do this in stages by first showing that 5–stranded pretzel knots having twist parameters with all the same sign or with exactly one parameter of a different sign have infinite order in the topological knot concordance group and thus in the smooth knot concordance group as well. Next, we show that any odd 5–stranded pretzel knot with zero pairs or with exactly one pair of canceling twist parameters is not slice.

Keywords
slice, ribbon, pretzel, knot, Donaldson's theorem, d-invariant
Mathematical Subject Classification 2010
Primary: 32S55, 57-XX
References
Publication
Received: 21 September 2016
Revised: 7 February 2017
Accepted: 26 February 2017
Published: 4 October 2017
Authors
Kathryn Bryant
Department of Mathematics and Computer Science
Colorado College
Colorado Springs, CO
United States