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Width of a satellite knot and its companion

QILONG GUO

ZHENKUN LI

In this paper, we give a proof of a conjecture which says that w.K/> n2w.J / , where
w. � / is the width of a knot, K is a satellite knot with J as its companion, and n

is the winding number of the pattern. We also show that equality holds if K is a
satellite knot with braid pattern.

57M25, 57M27

1 Introduction

Width is an important invariant of knots which was introduced by Gabai [2]. It gives
rise to the notion of thin position (of knots), which is essentially used in Gabai’s
proof of property R [2] and Gordon and Luecke’s proof of the knot complement
conjecture [3], among others. We can view width as a kind of refinement of bridge
number. It is an interesting question how those knot invariants behave under the
operations of connected sum and taking satellites. For the bridge number, we know that
b.K1 # K2/D b.K1/Cb.K2/�1 and b.K/> nb.J /, given that K is a satellite knot
with companion J and n is the wrapping number; see Schubert [6] and Schultens [7].
In the case of width, it is known that

w.K1/Cw.K2/� 2 > w.K1 # K2/> max fw.K1/; w.K2/g;

and both bounds are tight. See Blair and Tomova [1], Rieck and Sedgwick [4] and
Scharlemann and Schultens [5]. For width under taking satellites, it is conjectured
that w.K/ > n2w.J /, where n is the wrapping number, similar to the case of the
bridge number. There is also a weak version conjecturing that w.K/> n2w.J /, where
n is the winding number instead of the wrapping number. Zupan [8; 9] proves that
w.K/ > 8n2, where n is the winding number, and w.K/ D q2w.J /, where K is
a .p; q/–cable knot with companion J and q acts as the winding number. Both of
his results give partial positive answers to the weak version. In this paper, we give a
complete positive answer to the weak version involving the winding number.
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Theorem 1.1 Let K be a satellite knot with companion J , and suppose the winding
number of the pattern is n. Then

w.K/> n2w.J /:

In Section 2, we introduce some basic concepts and construct a graph associated to the
neighborhood of the companion; in Section 3, we prove that there is a simple loop in
this graph, and such a loop is unique; in Section 4, we associate each knot with a word
in Z2 , the free monoid of rank 2, and then use it to help calculate the width.

2 Preliminaries

First we introduce some basic definitions.

Definition 2.1 Suppose yV is a standard solid torus in S3, and yk is a knot in int. yV /
such that yk is not contained in any 3–ball B � yV . Let j �S3 be a nontrivial knot and
let V DN.j / be the closure of a tubular neighborhood of j in S3. Let f W yV !S3 be
an embedding such that f . yV /D V , and let k D f .yk/. Then k is called a satellite knot
with companion j and pattern yk . The winding number (of the pattern) is defined to
be the algebraic intersection number (up to a sign) of the pattern with a meridian disk.
Furthermore, if K (or J; yK ) is the knot type represented by k (or j ; yk ), we could say
that K is a satellite knot with companion J and pattern yK without ambiguity.

Let � W R4! R be the projection .x1;x2;x3;x4/ 7! x4 , and regard S3 as the unit
sphere in R4. In the rest of this paper, we always assume that hD �jS3 . Then h is a
Morse function on S3 with exactly two critical points. These two critical points are
h�1.1/ and h�1.�1/, and we call them infinite (critical) points. For each r 2 .�1; 1/,
h�1.r/ is obviously a 2–sphere, which is called a level sphere.

Definition 2.2 Let K be a knot type and let K be the set of all knots k 2K such that

� k does not contain the two infinite points,

� hjk is Morse, and

� the critical points of hjk are in distinct levels.

For each k 2 K , suppose all the critical values of hjk are c1 < c2 < � � �< cm . Choose
regular values r1; r2; : : : ; rm�1 such that ci < ri < ciC1 for i D 1; 2; : : : ;m� 1, and
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Figure 1: The width of the trefoil is 8.

let !i.k/D jk \ h�1.ri/j. Define

w.k/D

m�1X
iD1

!i.k/ and w.K/Dmin
k2K

w.k/:

We call w.K/ the width of the knot type K . See Figure 1 for the width of trefoil.

In this paper, we focus on “nice” solid tori defined as follows.

Definition 2.3 Let V be a solid torus in S3. We say that V is nice if

� V does not contain the two infinite points,

� hj@V is also a Morse function, and

� all critical points of hj@V are in distinct levels.

If a solid torus contains a infinity point in its interior, then the first condition can be
achieved by “digging them out”; ie pick an arc connecting the infinity point and a point
on the boundary @V (disjoint from k; j ), and remove a tubular neighborhood of the
arc. Then we can modify the new boundary to satisfy the other two conditions and get
a nice solid torus.

Definition 2.4 Let V be a nice solid torus in S3. We construct a graph as follows. Let
c1 < c2 < � � � < cm be all critical values of hj@V , and let M D V �

�Sm
iD1 h�1.ci/

�
.

Then vertices of the graph correspond to connected components of M and edges
correspond to components of h�1.ci/\V for i D 1; 2; : : : ;m, which are not points.
We require that two vertices v1 and v2 are connected by an edge if and only if the two
corresponding components of M are separated by a component of h�1.ci/\V which
corresponds to the edge. We call this graph the Reeb graph and denote it by �.V /.
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We need some results from [5]. In general, critical points of hj@V are classified as
maximal, minimal and saddle points. Following [5], maximal (or minimal) points can
be further divided into external and internal maximal (or minimal) points; saddle points
can be divided into nested and unnested saddle points. We don’t want to introduce the
detailed definition here as they are not important for the use of this paper. Now the
connectivity graph studied in [5] can be defined as follows.

Definition 2.5 Suppose c0
1
; : : : ; c0

l
are all critical values of hj@V corresponding to

all external maximal, external minimal and unnested saddle points, and let M 0 D

V �
�Sl

iD1 h�1.c0i/
�
. If we carry out the construction in Definition 2.4 using M 0

and c0i , then the graph we get is called the connectivity graph, and is denoted by �C .V /.

We can see from the definition that M is obtained from M 0 by cutting off those critical
levels containing internal maximal, internal minimal and nested saddle points. Then a
component of M 0 is either unchanged or is cut off into a few components. For graphs,
this corresponds to the fact that a vertex of �C .V / is either unchanged or replaced
by some other graph which can be easily seen to be connected. Hence we have the
following lemma:

Lemma 2.6 Let V be a nice solid torus. If the connectivity graph �C .V / contains a
loop, then Reeb graph �.V / also has a loop.

In this paper, we also need following results.

Lemma 2.7 [5] For any knots K1, K2, we have w.K1 #K2/> maxfw.K1/;w.K2/g.

Lemma 2.8 [5] Let V � S3 be a nice solid torus with boundary T . Then there is an
new embedding i W V ! S3 satisfying the following properties:

� H D S3� i.V / is a solid torus.

� The connectivity graph is a tree if and only if there is a meridian disk D of H

such that i�1.@D/� T is horizontal in T under hjT (ie i�1.@D/� .hjT /
�1.r/

for some r , where r is a regular value of hjT ).

Remark. Lemma 2.8 is a special case of Proposition 2.3 in [5].

We will also use the word “vertex” to refer to its corresponding connected component
of M . It is not hard to see that each vertex has a product structure P � .ci ; ciC1/,
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V

�.V /

Figure 2: Embedding of �.V / into V

where P is a horizontal planar surface (what we call a horizontal piece in Definition 3.5),
and ci , ciC1 are the two critical values that bound the vertex from below and above.
We could embed �.V / into int.V / as follows:

(1) Pick one point in the interior of each component of M .

(2) For two adjacent vertices, connecting the two points in the two vertices by a
monotone decreasing arc in the interior of V .

Then �.V / can be thought of as a 1–dimensional complex in VV as in Figure 2. The
solid curves are the boundary of the solid torus V , and the interior of V is bounded by
them. The dashed curves indicate the embedding of �.V / into VV .

3 �.V / contains a unique simple loop

In this section, we always assume that V � S3 is a nice solid torus and �.V / is
the graph constructed as in Definition 2.4. We need some preliminary results before
proving that there is a unique loop in �.V /.

Lemma 3.1 Suppose V is knotted in S3, T D @V , and r is a regular value of hjT

such that one component of .hjT /�1.r/ is an essential curve on T . Then at least one
component X of h�1.r/\V is a surface with boundary such that exactly one boundary
component ı is essential on T . Furthermore, ı is a meridian on T .

Proof Since r is a regular value of hjT , we have that .hjT /�1.r/ is a disjoint union
of some simple closed curves. Note that h�1.r/ is a sphere in S3, so each component ˛
of .hjT /�1.r/, which is essential in T , bounds two disks on h�1.r/. We say ˛ is
innermost if ˛ bounds a disk in h�1.r/ which does not contain any other essential
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6 Qilong Guo and Zhenkun Li

curve of .hjT /�1.r/. By the innermost arguments, we can find a component P of
h�1.r/�T such that only one component of @P is essential in T .

Claim P � V .

Proof of claim Suppose P is not contained in V . Then P \ VV D ¿. Let ı be the
component of @P which is essential in T . Then any other component of P bounds a
disk in T ; hence ı bounds a singular disk in S3�V . By Dehn’s lemma, ı bounds an
embedded disk in S3�V , and thus T is compressible in S3�V , which contradicts
to the assumption that V is knotted.

By similar argument as above, we can see that ı bounds an embedded disk in V ;
hence ı is a meridian of T .

Corollary 3.2 Suppose V is knotted and r is a regular value of hjT . Suppose ı is a
component of .hjT /�1.r/ which is essential in T . Then ı is a meridian of T .

Corollary 3.3 The graph �.V / is not a tree if V is a knotted solid torus.

Proof Suppose, on the contrary, that �.V / is a tree. By Lemma 2.6, the connectivity
graph defined in [5] for V is also a tree. Let i W V ! S3 be the embedding as in
Lemma 2.8. Then there is a meridian disk D of solid torus H D S3� i.V / such that
i�1.@D/ � .hjT /

�1.r/ for some r . Obviously, i�1.@D/ is an essential curve in T ,
so by Corollary 3.2, i�1.@D/ is a meridian of V ; hence @D bounds a disk in i.V /,
which contradicts that S3 D i.V /[H .

Definition 3.4 Let l be a simple loop of � . A vertex of l which is locally minimal
(maximal) under h is called a minimal (maximal) vertex. We say that a vertex is a
critical vertex if it is either minimal or maximal. A vertex which is neither minimal
nor maximal is called a vertical vertex.

Definition 3.5 Let r be a regular value of hjT . We call each component of h�1.r/\V

a horizontal piece.

Let v be a vertex in l , regard v as a component of M (see the discussion at the end of
Section 2) and let P be a horizontal piece in v . We want to describe the intersection of l

with P . If v is a maximal vertex, then the two adjacent vertices in l are both below v .
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Thus l \ v is an arc with one maximal point with respect to the height function h,
and P intersects l in either zero, one or two points. Note that the intersection at one
point is not transversal because if we move the piece slightly above or below, then the
intersection would be zero or two points. A similar result holds for minimal vertices.
If v is vertical, then l \ v is a monotonic arc, so every horizontal piece intersects l

exactly once.

Another observation is that the two vertices adjacent to a critical vertex must both be
vertical, so in any simple loop, vertical vertices must exist.

Lemma 3.6 Let l be a simple loop in �.V /. Then, as a simple closed curve in V , we
have that l (with any orientation) represents a generator of H1.V /.

Proof Let v be a vertical vertex of l , and pick a horizontal piece of v . Then P is a
properly embedded surface in V and intersects l transversally once, so the algebraic
intersection number of l and P is just ˙1; hence l must be a generator of H1.V /.

Proposition 3.7 There is a unique simple loop in �.V /.

Proof The existence of a loop follows from Corollary 3.3. To show the uniqueness,
suppose, on the contrary, there are two different simple loops l1 , l2 . If l1 and l2 do
not have the same vertical vertices, then there is a vertical vertex v with respect to one
loop but not the other, say, with respect to l1 but not l2 . Then pick a generic horizontal
piece P in v and calculate the intersection number of l2 and P . Since the geometric
intersection number is even, the algebraic intersection number is also even and cannot
be ˙1. But the algebraic intersection number of l1 and P is ˙1. This contradicts the
fact that both l1 and l2 are generators of H1.V /.

Finally, observe that if the two simple loops have same vertical vertices, then they must
be the same loop. We conclude that the simple loop must be unique.

4 The inequalities

To calculate width, we use a technique coming from Zupan; see Section 5 in [9]. Let Z2

be the free monoid generated by fa; bg, and let 'W Z2! Z be a homomorphism such
that '.a/D2 , '.b/D�2 and '.˛ˇ/D'.˛/C'.ˇ/. For a word xD˛1˛2 � � �˛m2Z2 ,
where each j̨ is a or b , write xi D ˛1˛2 � � �˛i 2Z2 , and define

w.x/D

mX
iD1

'.xi/:
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For each knot k2K (see Definition 2.2), associate a word xDx.k/2Z2 to it as follows:
suppose all the critical points of k , from the lowest to highest, are p1;p2; : : : ;pm ;
then define

x D x.k/D ˛1˛2 � � �˛m;

where ˛i D a if pi is a local minimal critical point and ˛i D b if pi is a local maximal
critical point. Let wi.k/ be defined as in Definition 2.2. It is not hard to see that
wi.k/D '.xi/ and

w.k/D

mX
iD1

wi.k/D

mX
iD1

'.xi/D w.x/:

Lemma 4.1 Suppose x D ˛1˛2 � � �˛m 2Z2 is a word.

(i) Suppose '.xi/> 0 for i D 1; 2; : : : ;m. Let x0 be a word obtained by deleting
two letters ˛i , j̨ in F , where i < j , ˛i D a and j̨ D b . Then w.x/>w.x0/.

(ii) Suppose x0 is obtained from x by exchanging two letters ˛i , ˛iC1 , where
˛i D a or ˛iC1 D b . Then w.x/> w.x0/.

The proof is straightforward. We call the operation on words in (i) (or in (ii)) of this
lemma the type I (or II) operation. The next lemma is useful when estimating w.k/:

Lemma 4.2 Suppose n is a fixed positive integer, and x D x.zk/ is a word, as-
sociated with a knot zk , which has the form !1˛

s1

1
!2˛

s2

2
� � �!m˛

sm
m !mC1 , where

!i D ˇi1ˇi2 � � �ˇiti
is a word for i D 1; 2; : : : ;mC 1. Assume that each si > n.

Furthermore, suppose that x D ˛1 � � �˛m is the word associated to another knot yl , and

(1) '.!1˛
s1

1
� � �!i˛

si

i /> n'.˛1 � � �˛i/ if ˛i D a,

(2) '.!1˛
s1

1
� � �!i�1˛

si�1

i�1
!i/> n'.˛1 � � �˛i�1/ if ˛i D b .

Then we have
w.zk/> n2w.˛1˛2 � � �˛m/D n2w.yl/:

Proof Suppose 1 6 i 6 m. If ˛i D a, then for 0 6 j 6 n� 1, we have

'.!1˛
s1

1
� � �!i˛

si�j
i /> n'.˛1 � � �˛i/� 2j I

if ˛i D b , then for 1 6 j 6 n, we have

'.!1˛
s1

1
� � �!i�1˛

si�1

i�1
!i˛

j
i /> n'.˛1 � � �˛i�1/� 2j

D n.'.˛1 � � �˛i/C 2/� 2j

D n'.˛1 � � �˛i/C 2n� 2j:
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Since the word comes from a knot, '.xl/> 0 for any l . Hence we have

w.zk/>
X
˛iDa

n�1X
jD0

'.!1˛
s1

1
� � �!i˛

si�j
i /C

X
˛iDb

nX
jD1

'.!1˛
s1

1
� � �!i�1˛

si�1

i�1
!i˛

j
i /

>
mX

iD1

n2'.˛1; : : : ; ˛i/C
X
˛iDa

n�1X
jD0

.�2j /C
X
˛iDb

nX
jD1

2n� 2j

D n2w.˛1; : : : ; ˛n/�
X
˛iDa

n.n� 1/C
X
˛iDb

n.n� 1/

D n2w.˛1; : : : ; ˛n/

D n2w.yl/:

Now suppose k is a satellite knot with companion j , and let V be a closed regular
neighborhood of j that contains k . Without loss of generality, we can assume that V

is a nice solid torus. Let l be the unique loop in �.V / as in Proposition 3.7; then l

can also be viewed as a knot in VV � S3. Denote by J (or K;L) the knot type of j

(or k; l ).

Lemma 4.3 w.L/> w.J /.

Proof Picking a horizontal piece P as in Lemma 3.1, and capping off all inessential
boundaries of P near the boundary T , we get a meridian disk D of V such that
D \ l D P \ l . By Section 3, l represents a generator of H1.V /, so the algebraic
intersection number of l and P is ˙1. Note also that l intersects P (and hence D )
at most two points; see the discussion below Definition 3.5. So l must intersect the
meridian disk D (transversally) only once and hence can be viewed as a composition
of j and possibly another knot l 0 . Then by Lemma 2.7, w.L/> w.J /.

Lemma 4.4 Let P be a horizontal piece in a vertical vertex of l . Then the geometric
intersection number of k and P is no less than the winding number of the pattern k .

Proof Since the winding number for the pattern of k is n, and l represents a generator
of H1.V /ŠZ, we have Œk�D˙nŒl �2H1.V /. Since P is a vertical vertex, the algebraic
intersection number (up to sign) of ˙1 and l is 1. Consequently, P and k must have
algebraic intersection number (up to sign) ˙n, hence the geometric intersection number
is at least n.

Now we isotope l into an equivalent knot yl and change k into another knot zk as follows.

Algebraic & Geometric Topology, Volume 18 (2018)
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isotopy

yl

l

Figure 3: Isotopy between l and yl

Suppose all the critical points of l are q1; q2; : : : ; qm , from the lowest to the highest.
Each qj corresponds to a critical vertex of �.V / and hence corresponds to a component
of M D V �

�Sn
iD1 h�1.ci/

�
(see Definition 2.4), denoted by Cj . When qj is a local

minimal point of l , suppose Cj is bounded from above by h�1.cij /. Since vj has
a product structure, we can move qj up to a point yqj so that yqj is a critical point
of hjT and h.yqj /D cij . Furthermore, we can assume that no more critical points of l

are created. Do similar operations on local maximal points of l and after all such
operations, l becomes a new knot yl . Obviously, yl and l are equivalent knots, and all
the critical points of yl are yq1; yq2; : : : ; yqm . See Figure 3 for the isotopy near a local
minimal point of l .

Suppose yqj is a local minimal point, then pick a regular value rj slightly larger than cij

so that no other critical point of T , yl , k lies between two level spheres h�1.rj / and
h�1.cij /. There are two horizontal pieces Pj and Qj on h�1.rj / which respectively
belong to the two vertical vertices adjacent to the vertex Cj . The pieces Pj and Qj

cut k into arcs, and each arc of k�Pj�Qj that lies in Cj is disjoint from any other Ct

for t ¤ j since l is the unique simple loop. If ˇ is such an arc intersecting Cj , we
can create a new arc  so that ˇ and  have the same end points,  has exactly one
inner critical point which is local minimal and  is contained in h�1.cij ; rj /. Then
replace ˇ by  and do this repeatedly until no arc of k�Pj �Qj intersects Cj . Then
we finish the operation for a particular local minimal point of yl . See Figure 4. Do
similar replacements for local maximal points of yl . After such replacement for all m

critical points of yl , we have that k becomes a new knot zk . The knots k and zk may
have different knot type, but it does not matter. We only need the following inequality.

Lemma 4.5 w.k/> w.zk/.

Algebraic & Geometric Topology, Volume 18 (2018)
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rj

cij

two horizontal pieces

knot km after the operation

original knot k

yl

Figure 4: Operation on k

Proof We study how k becomes zk . Let yqj be a local minimal point of yl , and let
Pj , Qj be as above. Also let ˇ be an arc in k�Pj�Qj which has end points in Pi[Qi

and has interior below them. Then the operation of creating  and replacing ˇ can be
done by two steps. the first step is to cancel pairs of maximal and minimal points of ˇ to
make ˇ to have a unique critical point which is minimal. Since the interior of ˇ is below
its two end points, we can always pair a maximal point with another minimal point
which is lower. This corresponds to the type I operation on words and, by Lemma 4.1,
will not increase width. The condition that '.yi/> 0 in Lemma 4.1 holds because, after
cancelling each pair of points, k still remains a knot. The second step is to lift the unique
minimal point of ˇ above the level cij . This corresponds to type II operation on words
and will not increase width. Similar arguments apply to local maximal points of yl .

Lemma 4.6 w.zk/> n2w.yl/, where n is the winding number.

Proof Now we need to estimate w.zk/. The difficulty is that we do not know every
critical point of zk but only the ones near a critical point of yl . For a local minimal
point yqj of yl , let ri be a regular value slightly larger than cij as in the discussion
above. Then jh�1.rj /\yl j D !j .yl/, so there are exactly !j .yl/ horizontal pieces of V

on h�1.rj / which intersect yl . By Lemma 4.4, we have

jh�1.rj /\ zkj> n!j .yl/:

A similar argument applies when yqi is local maximal point. The difference is that we
should pick a regular level ri slightly lower than cij , and hence

jh�1.rj /\ zkj> n.!j�1.yl//:

Algebraic & Geometric Topology, Volume 18 (2018)
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Note that !j�1 appears on the right because we pick a regular level slightly lower than
the critical level cij . Compare Definition 2.2.

Suppose the word for yl is ˛1˛2 � � �˛m . Then the word for zk can be written as
!1˛

s1

1
!2˛

s2

2
� � �!m˛

sm
m !mC1 , where !i is an arbitrary word for i D 1; 2; : : : ;mC 1

and si > n for all i D 1; 2; : : : ;m. The argument above shows that the words for zk
and yl satisfy the conditions of Lemma 4.2, and hence we have

w.zk/> n2w.˛1˛2 � � �˛m/D n2w.yl/:

Theorem 4.7 Let K be a satellite knot with companion J and winding number n.
Then

w.K/> n2w.J /:

Proof Choose k 2 K which realizes the width of its knot type. Without loss of
generality, we can assume that V is a closed regular neighborhood of j which is nice
and contains k . Furthermore, we could assume that all critical points of @V and k

are in distinct levels. Construct �.V / and pick the unique loop l by Proposition 3.7.
Combining Lemmas 4.3, 4.5 and 4.6, we have

w.K/D w.k/> n2w.zk/> n2w.yl/> n2w.L/> n2w.J /:

Corollary 4.8 Let K be a satellite knot with knotted companion J , and suppose the
winding number of the pattern is n. If K has a braid pattern, then

w.K/D n2w.J /:

Proof Suppose j realizes the width of its knot type and has the associated word
x D ˛1˛2 � � �˛t . Since k has a braid pattern, we can embed k so that the word
associated to it is y D ˛n

1
˛n

2
� � �˛n

m . By direct calculation, we have

w.K/6 w.k/D w.y/D n2w.x/D n2w.j /D n2w.J /:

Together with Theorem 4.7, we conclude that

w.K/D n2w.J /:
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