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The closed-open string map for S 1–invariant Lagrangians

DMITRY TONKONOG

Given a monotone Lagrangian submanifold invariant under a loop of Hamiltonian dif-
feomorphisms, we compute a piece of the closed-open string map into the Hochschild
cohomology of the Lagrangian which captures the homology class of the loop’s orbit.

Our applications include split-generation and nonformality results for real Lagrangians
in projective spaces and other toric varieties; a particularly basic example is that
the equatorial circle on the 2–sphere carries a nonformal Fukaya A1 algebra in
characteristic 2 .

53D37, 53D40, 57R58; 53D45

1 Introduction

1.1 Overview of main results

Let X be a compact monotone symplectic manifold, L�X a monotone Lagrangian
submanifold, and K a field. We assume that L satisfies the usual conditions making its
Floer theory well defined over K, namely, L has Maslov index at least 2 and is oriented
and spin if char K¤ 2. In this case, one can define a unital algebra over K, the Floer
cohomology HF�.L;L/, which is invariant under Hamiltonian isotopies of L. A larger
amount of information about L is captured by the Fukaya A1 algebra of L, and given
this A1 algebra, one can build another associative unital algebra called the Hochschild
cohomology HH�.L;L/. There is the so-called (full) closed-open string map

CO�W QH�.X/! HH�.L;L/;

which is a map of unital algebras, where QH�.X/ is the (small) quantum cohomology
of X . This map is of major importance in symplectic topology, particularly in light
of Abouzaid’s split-generation criterion (see Abouzaid [1], Sheridan [45] and Ritter
and Smith [38]), one of whose versions in the case char KD 2 says the following: if
the closed-open map is injective, then L split-generates the w–summand Fuk.X/w of
the Fukaya category, where w D w.L/ 2K is the so-called obstruction number of L.
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16 Dmitry Tonkonog

(When char K¤ 2, the hypothesis can be weakened to say that CO� is injective on
a relevant eigensummand of QH�.X/; we will recall this later.)

Split-generation of the Fukaya category Fuk.X/w by a Lagrangian submanifold L
is an algebraic phenomenon which has important geometric implications. For ex-
ample, in this case, L must have nonempty intersection with any other monotone
Lagrangian submanifold L0 which is a nontrivial object in Fuk.X/w , namely such
that HF�.L0; L0/¤ 0 and w.L0/Dw . Another application, though not discussed here,
is that split-generation results are used in proofs of homological mirror symmetry.

The present paper contributes new calculations of the closed-open map, motivated by
the split-generation criterion and the general lack of explicit calculations known so far.
(The closed-open map is defined by counting certain pseudoholomorphic disks with
boundary on L, which makes it extremely hard to compute in general.)

There is a simplification of the full closed-open map, called the “zeroth-order” closed-
open map, which is a unital algebra map

CO0W QH�.X/! HF�.L;L/:

It is the composition of CO� with the canonical projection HH�.L;L/! HF�.L;L/,
and if CO0 is injective, so is CO� (but not vice versa). Although CO0 generally carries
less information than CO�, it is sometimes easier to compute. For example, we compute
CO0 when L is the real locus of a complex toric Fano variety X ; see Theorem 1.13.
This map turns out to be noninjective in many cases, eg for RP 2nC1 �CP 2nC1 over
a characteristic-2 field. The aim of the present paper is to study the higher-order terms
of the full closed-open map CO�, and to find examples when CO� is injective but CO0

is not.

Specifically, let us consider the following setting: a loop  of Hamiltonian symplec-
tomorphisms preserves a Lagrangian L setwise. Let S./ 2 QH�.X/ be the Seidel
element of  ; then from Charette and Cornea [11], one can see that

CO0.S.//D 1L;

where 1L denotes the unit in HF�.L;L/. Our main result, Theorem 1.7, is a tool for
distinguishing CO�.S.// from the Hochschild cohomology unit in HH�.L;L/; this
way, it captures a nontrivial piece of the full closed-open map CO� not seen by CO0.
We apply Theorem 1.7 to show that CO� is injective for some real Lagrangians in
toric manifolds and also for monotone toric fibres which correspond to (non-Morse)
A2–type critical points of the Landau–Ginzburg superpotential.
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The closed-open string map for S1–invariant Lagrangians 17

After this paper had appeared, Evans and Lekili [19] proved split-generation for all
orientable real toric Lagrangians, and all monotone toric fibres in zero characteristic, by
completely different methods. They make use of the fact that these are homogeneous
Lagrangians (ie they are orbits of Hamiltonian group actions), while we only use the
fact these Lagrangians are invariant under certain Hamiltonian loops.

We will now mention our examples regarding real Lagrangians and postpone all dis-
cussion of monotone toric fibres, along with an introductory part, to Section 4.

Proposition 1.1 Let K be a field of characteristic 2 and RP n the standard real
Lagrangian in CP n . Then CO�W QH�.CP n/!HH�.RP n;RP n/ is injective for all n.
In contrast, CO0W QH�.CP n/! HF�.RP n;RP n/ is injective if and only if n is even.

Corollary 1.2 Over a field of characteristic 2, RP n split-generates Fuk.CP n/0 .

As hinted above, this corollary leads to a result on nondisplaceability of RP n from
other monotone Lagrangians which are Floer-theoretically nontrivial. This has been
known due to Biran and Cornea [8, Corollary 8.1.2] and Entov and Polterovich [18].
Very recently, Konstantinov [29] showed that the Chiang Lagrangian in CP 3 admits a
higher-rank local system making it Floer-theoretically nontrivial over a characteristic-2
field; then he concludes via Corollary 1.2 that the Chiang Lagrangian is nondisplace-
able from RP3. It is possible that for Lagrangians with higher-rank local systems, a
generalisation of [8] and [18] can be invoked instead of Corollary 1.2, but we have not
checked this.

We can extract another interesting consequence about projective spaces from our main
computation of the closed-open map.

Proposition 1.3 The Fukaya A1 algebra of the Lagrangian RP 4nC1 �CP 4nC1 is
not formal over a characteristic-2 field for any n� 0.

Here formality means an existence of a quasi-isomorphism with the associative algebra
HF�.RP 4nC1;RP 4nC1/ Š KŒu�=.u4nC2 � 1/ considered as an A1 algebra with
trivial higher-order structure maps. In particular, the Fukaya A1 algebra of the equator
S1 � S2 is not formal in characteristic 2; we devote a separate discussion to this fact
in Section 3, where we explicitly exhibit a nontrivial Massey product which provides
an alternative proof of the nonformality. Below is another example of split-generation
which we can prove using the same methods.
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18 Dmitry Tonkonog

Proposition 1.4 Let K be a field of characteristic 2, X D BlCP 1 CP 9 the blowup
of CP 9 along a complex line which intersects RP 9 in a circle, and L�X the blowup
of RP 9 along that circle. Then CO�W QH�.X/! HH�.L;L/ is injective, although
CO0W QH�.X/! HF�.L;L/ is not. Consequently, L split-generates Fuk.X/0 .

(The manifold BlCP 1 CP 9 is the first instance among BlCPk CP n for which L is
monotone of Maslov index at least 2 and such that CO0 is not injective; the last
requirement makes the use of our general results essential in this example.) In general,
it is known that the real Lagrangian in a toric Fano variety is not displaceable from
the monotone toric fibre; this was proved by Alston and Amorim [5]. Proposition 1.4
implies a much stronger nondisplaceability result like the one which has been known
for RP n �CP n .

Corollary 1.5 Let K and L � X be as in Proposition 1.4, and L0 � X any other
monotone Lagrangian, perhaps equipped with a local system �1.L/ ! K� , with
minimal Maslov number at least 2 and such that HF�.L0; L0/ ¤ 0. If w.L0/ ¤ 0,
we also assume the technical Hypothesis 3.9, which is expected to hold following
Ganatra [22]. Then L\L0 ¤∅.

Here HF�.L0; L0/ denotes the Floer cohomology of L0 with respect to the local
system � , so a better notation would be HF�..L0; �/; .L0; �//. For brevity, we decided
to omit � from our notation of Floer and Hochschild cohomologies throughout the
article when it is clear that a Lagrangian is equipped with such a local system. The point
of allowing local systems in Corollary 1.5 is to introduce more freedom in achieving
the nonvanishing of HF�.L0; L0/.

Note that Corollary 1.5 does not require that the obstruction number of L0 matches
the one of L, namely zero. If w.L0/ ¤ 0, we can pass to X � X noticing that
w.L0�L0/D 2w.L0/D 0 and similarly w.L�L/D 0, so we have well-defined Floer
theory between the two product Lagrangians. This trick was observed by Abreu and
Macarini [3] and has also been used in Alston and Amorim [5]. So it suffices to show
that L �L split-generates Fuk.X �X/0 ; this follows from Proposition 1.4 by the
general expectation that the condition of the Abouzaid’s split-generation criterion is
“preserved” under Künneth isomorphisms. As we explain later, this general expectation
is contingent upon a certain commutative diagram which we formulate as Hypothesis 3.9,
and which is largely substantiated by Ganatra [22]; see also Abouzaid and Smith [2]
and Amorim [6].

As in the case of RP n , we also prove a nonformality statement.
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The closed-open string map for S1–invariant Lagrangians 19

Proposition 1.6 The Fukaya A1 algebra of the Lagrangian BlRP1 RP 9�BlCP1 CP 9

from Proposition 1.4 is not formal over a characteristic-2 field.

Although we cannot prove that CO� is injective for the real locus of an arbitrary toric
Fano variety, we are able to do this in a slightly wider range of examples, which we
postpone to Section 3. We will prove Proposition 1.1 and Corollary 1.2 at the end of
the introduction, and the remaining statements from above will be proved in Section 3.
Now we state the main theorem; the new pieces of notation are explained right after
the statement.

Theorem 1.7 Let X be a compact monotone symplectic manifold and L � X a
monotone Lagrangian submanifold of Maslov index at least 2, possibly equipped with
a local system �W H1.L/!K� . If char K¤ 2, assume L is oriented and spin.

Let  D ftgt2S1 be a loop of Hamiltonian symplectomorphisms of X , and denote by
S./ 2 QH�.X/ the corresponding Seidel element. Suppose the loop  preserves L
setwise, that is, t .L/ D L. Denote by l 2 H1.L/ the homology class of an orbit
ft .q/gt2S1 , q 2 L. Finally, assume HF�.L;L/¤ 0.

(a) Then CO0.S.//D .�1/�.l/ � �.l/ � 1L , where 1L 2 HF�.L;L/ is the unit.

(b) Suppose there exists no a 2 HF�.L;L/ such that

(�) �2.a;ˆ.y//C�2.ˆ.y/; a/D .�1/�.l/�.l/ � hy; li � 1L for each y 2H 1.L/:

Then CO�.S.// 2 HH�.L;L/ is linearly independent from the Hochschild
cohomology unit.

(c) More generally, suppose Q 2 QH�.X/ and there exists no a 2 HF�.L;L/
such that

(��) �2.a;ˆ.y//C�2.ˆ.y/; a/

D .�1/�.l/�.l/ � hy; li � CO0.Q/ for each y 2H 1.L/:

Then CO�.S./�Q/ and CO�.Q/ are linearly independent in the Hochschild
cohomology HH�.L;L/.

Here �2 is the product on HF�.L;L/, h�;�i is the pairing H 1.L/˝H1.L/!K,
and S./�Q is the quantum product of the two elements. Next,

ˆW H 1.L/! HF�.L;L/

is the PSS map of Albers [4], which is canonical and well defined if HF�.L;L/¤ 0.
Its well-definedness in a setting closer to ours was studied by eg Biran and Cornea [9],
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20 Dmitry Tonkonog

and later we discuss it in more detail. Note that ˆ is not necessarily injective, although
in our applications, where HF�.L;L/ŠH�.L/, it will be. Finally, in the theorem,
we have allowed L to carry an arbitrary local system, which modifies the Fukaya A1
structure of L by counting the same punctured holomorphic disks as in the case without
a local system with coefficients which are the values of � on the boundary loops of such
disks. The algebras HF�.L;L/ and HH�.L;L/ get modified accordingly, although
their dependence on � is not reflected by our notation, as mentioned earlier. We allow
nontrivial local systems in view of our application to toric fibres and will only need the
trivial local system �� 1 for applications to real Lagrangians.

To complete the statement of Theorem 1.7, we need to explain the appearance of the
sign .�1/�.l/ D ˙1. By a spin Lagrangian, we always mean a Lagrangian with a
fixed spin structure (rather than admitting one). We have two natural trivialisations
of TL over the loop t .q/ � L: the one induced from a fixed basis of TqL by the
Hamiltonian loop  and the one determined by the spin structure on L. We put �.l/
to be 0 if the two trivialisations agree and 1 otherwise.

Outline of proof We mentioned earlier that part (a) of Theorem 1.7 is an easy conse-
quence of the paper by Charette and Cornea [11]. The proof of parts (b) and (c) also starts
by using a result from that paper, and then the main step is an explicit computation of

CO1.S.//jCF1.L;L/W CF1.L;L/! CF0.L;L/

on the cochain level, which turns out to be dual to taking the –orbit of a point
up to the factor .�1/�.l/�.l/: this is Proposition 2.8. The final step is to check
whether the computed nontrivial piece of the Hochschild cocycle CO�.S.// survives
to cohomology; this is controlled by equations (�) and (��).

Remark 1.8 In our examples, we will never encounter a nontrivial sign .�1/�.l/ : for
real Lagrangians, we shall be working over characteristic 2, and for toric fibres with
the standard spin structure, this sign is easily seen to be C1. The examples when the
sign .�1/�.l/ is negative have been found by J Smith [47, Remark 5.3.2]; they occur
for PSU.N�1/–homogeneous Lagrangians. We are grateful to him for pointing out the
presence of this sign in general, which was missed in the previous versions of the paper.

1.2 The split-generation criterion

We will now briefly discuss the split-generation criterion in more detail, particularly
because we wish to pay attention to both cases: char KD2 and char K¤2. We continue
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The closed-open string map for S1–invariant Lagrangians 21

to denote by L�X a monotone Lagrangian submanifold with minimal Maslov number
at least 2, which is oriented and spin if char K ¤ 2. If char K D 2, we allow L to
be nonorientable. Consider the quantum multiplication by the first Chern class as an
endomorphism of quantum cohomology, � � c1.X/W QH�.X/! QH�.X/. If K is
algebraically closed, we have an algebra decomposition QH�.X/D

L
w QH�.X/w ,

where QH�.X/w is the generalised w–eigenspace of �� c1.X/ for w 2K.

Recall that w.L/ 2 K denotes the obstruction number of L, ie the count of Maslov
index 2 disks with boundary on L. By an observation of Auroux, Kontsevich and Seidel,
CO0.2c1/D 2w.L/ � 1L , which in char K¤ 2 implies that CO0.c1/D w.L/ � 1L ; see
eg [45]. Now suppose that char KD 2 and c1.X/ lies in the image of H 2.X;LIK/!

H 2.X IK/, which is true if L is orientable (because the Maslov class goes to twice the
Chern class under H 2.X;LIZ/!H 2.X IZ/, and the Maslov class of an orientable
manifold is integrally divisible by two). In this case, the same argument shows again
that CO0.c1/D w.L/ � 1L . This way one deduces the following lemma, which is well
known but usually stated only for char K¤ 2.

Lemma 1.9 For K of any characteristic, if L is orientable, then CO0W QH�.X/!
HF�.L;L/ vanishes on all summands except maybe QH�.X/w.L/ .

(If w.L/ is not an eigenvalue of � � c1.X/, then CO0 vanishes altogether, and it
follows that HF�.L;L/ D 0. Recall that L is required to be monotone.) The same
vanishing statement is expected to hold for the full map CO�. Keeping this vanishing
in mind, we see that the “naive” version of the split-generation criterion stated in
the introduction, that CO�W QH�.X/! HH�.L;L/ is injective, can only be useful
when char K D 2 and L is nonorientable. In other cases, it must be replaced by a
more practical criterion which does not ignore the eigenvalue decomposition; we will
now state both versions of the criterion. Let Fuk.X/w denote the Fukaya category
whose objects are monotone Lagrangians in X with minimal Maslov number at least 2,
oriented and spin if char K¤ 2, and whose obstruction number equals w 2K.

Theorem 1.10 Let L1; : : : ; Ln �X be Lagrangians which are objects of Fuk.X/w ,
and G � Fuk.X/w the full subcategory generated by L1; : : : ; Ln . Then G split-
generates Fuk.X/w if either of the two following statements hold:

(a) char K¤ 2 and CO�jQH�.X/w W QH�.X/w ! HH�.G/ is injective.

(b) K is arbitrary and CO�W QH�.X/! HH�.G/ is injective.
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22 Dmitry Tonkonog

In the monotone case, this theorem is due to Ritter and Smith [38] and Sheridan [45].
It is more common to only state part (a), but it is easy to check the same proof works
for part (b) as well. (In part (a), we could also allow char KD 2, if L is orientable.)
Theorem 1.10 is most easily applied when QH�.X/w is 1–dimensional: because CO�

is unital, it automatically becomes injective. We apply this theorem in more complicated
cases. Before we proceed, let us mention one easy corollary of split-generation. We
say that L1; : : : ; Ln split-generate the Fukaya category when G does.

Lemma 1.11 If Lagrangians L1; : : : ; Ln�X split-generate Fuk.X/w , and L�X is
another Lagrangian that is an object of Fuk.X/w with HF�.L;L/ ¤ 0, then L has
nonempty intersection and nonzero Floer cohomology with one of the Li .

1.3 CO0 for real toric Lagrangians

In this subsection, we state a theorem that computes CO0 for real Lagrangians in toric
manifolds. Using this, it is easy to identify the cases when CO0 is injective (and the
split-generation follows immediately), and the cases when CO0 is not injective, and
therefore, a further study of CO� is required to establish the split-generation. Our
subsequent goal is to apply the main result, Theorem 1.7, to some examples of the
latter type.

Let X be a (smooth, compact) toric Fano variety with minimal Chern number at least 2,
ie hc1.X/;H2.X IZ/i D NZ with N � 2. As a toric manifold, X has a canonical
antiholomorphic involution � W X !X . Its fixed locus is the so-called real Lagrangian
L � X which is smooth (see Duistermaat [16, page 419]), monotone, and whose
minimal Maslov number equals the minimal Chern number of X (see Haug [23]).
When speaking of such real Lagrangians, we will always be working over a field K of
characteristic 2. In particular, there is the Frobenius map

F W QH�.X/! QH2�.X/; F.x/D x2:

Because char KD 2, we have that F is a map of unital algebras. We have reflected
in our notation that F multiplies the Z=2N–grading by two. A classical theorem of
Duistermaat [16] constructs, again in char KD 2, the isomorphisms H i .L/ŠH 2i .X/.
We can package these isomorphisms into a single isomorphism of unital algebras,

DW H 2�.X/ Š�!H�.L/:

Let us now recall a recent theorem of Haug [23].
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Theorem 1.12 If char K D 2, then HF�.L;L/ Š H�.L/ as vector spaces. Using
the identification coming from a specific perfect Morse function from [23], and also
identifying QH�.X/ŠH�.X/, the same map

DW QH2�.X/ Š�! HF�.L;L/

is again an isomorphism of unital algebras.

It turns out that it is possible to completely compute CO0 for real toric Lagrangians.
This rather quickly follows by combining the works of Charette and Cornea [11],
Hyvrier [25], and McDuff and Tolman [32]; we explain this theorem in Section 3.

Theorem 1.13 The diagram below commutes:

QH�.X/ F
//

CO0
%%

QH2�.X/

D Š

��

HF�.L;L/

In particular, CO0 is injective if and only if F is injective.

1.4 Split-generation for the real projective space

We conclude the introduction by proving Proposition 1.1 and Corollary 1.2. The crucial
idea is that when n is odd, the kernel of CO0W QH�.CP n/! HF�.RP n;RP n/ is the
ideal generated by the Seidel element of a nontrivial Hamiltonian loop preserving RP n ;
this allows us to apply Theorem 1.7 and get new information about CO�. Recall that
QH�.X/ŠKŒx�=.xnC1� 1/ and w.RP n/D 0 because the minimal Maslov number
of RP n equals nC 1 (when nD 1, we still have w.S1/D 0 for S1 � S2 ).

Proof of Proposition 1.1 If n is even, the Frobenius map on QH�.CP n/ is injective,
so by Theorem 1.13, CO0W QH�.CP n/! HF�.RP n;RP n/ is injective, and hence so
is CO�.

Now suppose n is odd, and let nD 2p�1. Given char KD 2, we have QH�.CP n/Š
KŒx�=.xpC 1/2, so kerF D ker CO0 is the ideal generated by xpC 1. Consider the
Hamiltonian loop  on CP n which in homogeneous coordinates .z1 W � � � W z2p/ is the
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24 Dmitry Tonkonog

rotation
�

cos t sin t
� sin t cos t

�
for t 2 Œ0; ��, applied simultaneously to the pairs .z1; z2/; : : : ;

.z2p�1; z2p/. Note that t runs to � , not 2� . This loop is Hamiltonian isotopic to
the loop

.z0 W � � � W z2p�1/ 7! .e2itz0 W z1 W � � � W e
2itz2p�1 W z2p/; t 2 Œ0; ��;

so S./D xp; see [32]. The loop  clearly preserves the real Lagrangian RP n�CP n,
and its orbit l is a generator of H1.RP n/ Š K. Taking y 2 H 1.RP n/ to be the
generator, we get hy; liD 1, and the right-hand side of equation (��) from Theorem 1.7
equals CO0.Q/. On the other hand, the product on HF�.RP n;RP n/ is commutative
by Theorem 1.12, so the left-hand side of (��) necessarily vanishes. We conclude that
the hypothesis of Theorem 1.7(c) is satisfied for any Q … ker CO0.

Let us prove that CO�.P /¤ 0 for each nonzero P 2QH�.CP n/. If CO0.P /¤ 0, we
are done, so it suffices to suppose that CO0.P /D 0. This means that

P D .xpC 1/�QD .S./C 1/�Q

for some Q2QH�.CP n/. Note that if Q2 ker CO0D kerF , then P 2 .kerF/2Df0g.
So if P ¤ 0, then CO0.Q/ ¤ 0, and thus CO�.P / ¤ 0 by Theorem 1.7(c) and the
observation earlier in this proof.

Remark 1.14 When n is even, c1.CP n/ is invertible in QH�.CP n/, so the 0–
eigenspace QH�.CP n/0 is trivial; but L is nonorientable, so this does not contradict
Lemma 1.9. On the other hand, when n is odd, L is orientable, but c1.CP n/ vanishes
in char K D 2, so the whole QH�.CP n/ is its 0–eigenspace; this is also consistent
with Lemma 1.9.

Proof of Corollary 1.2 This follows from Proposition 1.4 and Theorem 1.10(b).

The same trick of finding a real Hamiltonian loop whose Seidel element generates
ker CO0 works for some other toric manifolds which have “extra symmetry” in addition
to the toric action, like a Hamiltonian action of SU.2/dimC X=2 which was essentially
used above. As already mentioned, we will provide more explicit examples in Section 3.
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2 Proof of Theorem 1.7

Let X be a monotone symplectic manifold and w 2K. We recall that the objects in the
monotone Fukaya category Fuk.X/w are monotone Lagrangian submanifolds L�X
with minimal Maslov number at least 2, oriented and spin if char K ¤ 2, equipped
with local systems �W �1.L/!K� , whose count of Maslov index 2 disks (weighted
using �) equals w . We will use the definition of the Fukaya category based on achieving
transversality by explicit Hamiltonian perturbations of the pseudoholomorphic equation.
This setup was developed by Seidel [40] for exact manifolds and carries over to
monotone ones; see [38; 45]. There is a notion of bounding cochains from [20],
generalising the notion of a local system, and all results are expected carry over to
them as well.

2.1 A theorem of Charette and Cornea

Suppose  D ftgt2S1 is a loop of Hamiltonian symplectomorphisms on X . As
explained by Seidel in [40, Section 10c], the loop  gives rise to a natural trans-
formation ] from the identity functor on Fuk.X/w to itself. Any such natural
transformation is a cocycle of the Hochschild cochain complex CC�.Fuk.X/w/ [40,
Section 1d]. Denote the corresponding Hochschild cohomology class by

Œ]� 2 HH�.Fuk.X/w/:

We denote, as earlier, the closed-open map by CO�W QH�.X/! HH�.Fuk.X/w/ and
the Seidel element by S./2QH�.X/. The following theorem was proved by Charette
and Cornea [11].

Theorem 2.1 If we take for Fuk.X/w the Fukaya category of Lagrangians with trivial
local systems only, then CO�.S.//D Œ]�.

Let us now restrict to a single Lagrangian L which is preserved by the Hamiltonian
loop  and denote by l 2 H1.L/ the homology class of an orbit of  on L. Let
CC�.L;L/ denote the Hochschild cochain complex of the A1 algebra CF�.L;L/,
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and let HH�.L;L/ be its Hochschild cohomology. (The definition of Hochschild
cohomology will be reviewed later in this section.) We will now need to recall the
proof of Theorem 2.1 for several reasons: first, we wish to see how Theorem 2.1 gets
modified in the presence of a local system on L; second, we shall see the appearance
of a sign “hidden” in ] ; third and most importantly, we will recall the definition of
the moduli spaces computing ] in the process. Eventually, for later use, we need a
form of Theorem 2.1 expressed by formula (2-2) below, which takes the local system
and the sign into account.

Pick some Floer datum fHs; Jsgs2Œ0;1� and perturbation data defining an A1 structure
on Floer’s complex CF�.L;L/ [40]. Recall that the maps

COk.S.//W CF�.L;L/˝k! CF�.L;L/

count 0–dimensional moduli space of disks satisfying a perturbed pseudoholomorphic
equation (with appropriately chosen perturbation data) with kC 1 boundary punctures
(k inputs and one output) and one interior marked point. These disks satisfy the
Lagrangian boundary condition L, and their interior marked point is constrained to
a cycle dual to S./; see Figure 1, top left (in this figure, we abbreviate the datum
fHs; Jsg simply to H ). A disk u is counted with coefficient ˙�.@u/, where the sign ˙
comes from the orientation on the moduli space, and �.@u/ 2K� is the monodromy
of the local system. The collection of maps CO�.S.// WD fCOkgk�0 is a Hochschild
cochain in CC�.L;L/ if all perturbation data are chosen consistently with gluing.

The argument of Charette and Cornea starts by passing to a more convenient definition
of the closed-open map in which COk counts holomorphic disks with kC 1 boundary
punctures and one interior puncture (instead of a marked point). We can view the
neighbourhood of the interior puncture as a semi-infinite cylinder; then the pseudo-
holomorphic equation restricts on this semi-infinite cylinder to a Hamiltonian Floer
equation with some Floer datum fFt ; Jtgt2S1 . We input the PSS image of S./ to
the interior puncture (see Figure 1, top middle) given as a linear combination of some
Hamiltonian orbits z (in the figure, we abbreviate the datum fFt ; Jtg simply to Ft ).

The PSS image of S./ counts configurations shown in the upper part of Figure 1, top
middle, consisting of disks with one output puncture (say, asymptotic to an orbit y ),
and a cylinder counting continuation maps from .�1t /�y seen as an orbit of Floer’s
complex with datum pulled back by the loop �1t [39, Lemmas 2.3 and 4.1] to another
orbit z of the original Floer’s complex with datum fFt ; Jtg. Let us glue the z–orbits
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Figure 1: A computation of CO�.S.// by Charette and Cornea

together, passing to Figure 1, top right, and then substitute each lower punctured
pseudoholomorphic disk u in Figure 1, top right, by zu defined as

(2-1) zu.re2�it /D �1t ıu.re
2�it /;

assuming that the interior puncture is located at 02C and the output puncture at 12C .
Let us look at the effect of this substitution.

First, Œ@u�D Œ@zu�C l 2H1.L/, so the count of configurations in Figure 1, top right
(before substitution) is equal to the count of configurations in Figure 1, bottom left
(after substitution) multiplied by �.l/.

Second, zu satisfies the same boundary condition L because tLD L, but the pertur-
bation data defining the pseudoholomorphic equation get pulled back accordingly. In
particular, the Lagrangian Floer datum fHs; Jsgs2Œ0;1� and the asymptotic chord at a
strip-like end corresponding to the boundary puncture at ti 2 S1 get pulled back by ti.

Third, (2-1) gives an abstract bijection u 7! zu between the respective zero-dimensional
moduli spaces, but we should discuss how this bijection behaves with respect to the
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signs attached to u and zu by the orientations on the moduli spaces. Assume for
simplicity that the Hamiltonian perturbation is small enough so that we can canonically
deform @u and @zu to loops inside L. Take the trivialisation of TLj@u defined by the
spin structure on L and push it forward by  to a trivialisation of TLj@zu . Obviously,
(2-1) preserves the signs computed using these trivialisations; we remark that this
trivialisation of TLj@zu is used in the general definition of ] . In our specific case, zu
is again a curve with boundary on L (rather than with a moving Lagrangian boundary
condition), and we wish to consider a different orientation scheme for zu, namely the
usual scheme for orienting moduli spaces of curves with boundary on L using the
given spin structure. We shall be using this orientation scheme from now on, and we
observe that it uses the trivialisation of TLj@zu coming from the spin structure, which
may be different from the pushforward trivialisation of TLj@zu mentioned before. We
denote the sign difference between the two orientations for zu by .�1/� D˙1; this sign
equals C1 if and only if the two trivialisations of TLj@zu from above are homotopic.
(Ultimately, we are going to use the fact that for our choice of orientation scheme, the
moduli space of constant unconstrained disks is positively oriented; this may not be
true for the  pushforward orientation scheme.)

Remark 2.2 In general, the number � does not necessarily equal �.l/ from the intro-
duction. This equality holds when @zu is contractible, as easily seen from the definitions.

Fourth, near the interior puncture, zu satisfies the Hamiltonian Floer equation with
original datum fFt ; Jtg at the interior puncture, and is asymptotic orbit y . So we can
glue the y–orbits, passing to Figure 1, bottom middle, and Figure 1, bottom right, is
another drawing of the same domain we got after gluing, namely the disk with kC 1
boundary punctures and one interior unconstrained marked point fixed at 0 2C . Let us
explain the presence of the marked point 02C : it is carried over from a marked point on
the upper disk in Figure 1, top middle, where the interior marked point serves to stabilise
the domain; such a marked point is present in the definition of the Seidel element.

Summing up,

(2-2) COk.S.//.x1˝ � � �˝ xk/D .�1/� � �.l/ �
X

#M .x1; : : : ; xkI x0/ � x0;

where M .x1; : : : ; xkI x0/ is the 0–dimensional moduli space of disks shown in
Figure 1, bottom right, which satisfy the inhomogeneous pseudoholomorphic equation
defined by domain- and modulus-dependent perturbation data in the sense of [40]
such that:
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� The disks carry the unconstrained interior marked point fixed at t D 0, the output
boundary puncture fixed at t0 D 1, and k free input boundary punctures at
ti 2 S

1, i D 1; : : : ; k .

� On a strip-like end corresponding to a boundary puncture ti 2 S1, perturbation
data restrict to the Floer datum which is the ti–pullback of the original Floer
datum fHs; Jsgs2Œ0;1� , and the asymptotic chord for this strip must be the ti–
pullback of the asymptotic chord xi of the original Floer datum.

� The data must be consistent with gluing strip-like ends at ti 2 S1 to strip-like
ends of punctured pseudoholomorphic disks carrying the ti–pullbacks of the
perturbation data defining the A1 structure on CF�.L;L/.

� We use the standard orientation scheme for curves with boundary on L to orient
the M , and the sign .�1/� was explained above.

The counts #M are signed and weighted by � ; the third condition guarantees that
CO�.S.// is a Hochschild cocycle. Formula (2-2) coincides with the formula from
[40, Section 10c] defining the natural transformation Œ]� up to .�1/��.l/, and we
have clarified this difference.

Remark 2.3 The fixed interior marked point at t D 0 and the fixed boundary marked
point at t0 D 1 make sure our disks have no automorphisms, so the values ti 2 S1 of
the other boundary punctures are uniquely defined.

Before proceeding, note that we are already able to compute CO0.S.//.

Corollary 2.4 If ftgt2S1 is a Hamiltonian loop such that t .L/ D L, then on the
chain level,

CO0.S.//D .�1/�.l/ � �.l/ � 1L 2 HF0.L;L/:

(Here 1L is a chain-level representative of the cohomology unit; see (2-3) below.)

Proof When k D 0, the moduli space in formula (2-2) is exactly the moduli space
defining the cohomological unit in CF�.L;L/; see eg [45, Section 2.4]. The equality
� D �.l/ holds by Remark 2.2: for a small Hamiltonian, the curves computing the unit
are close to being constant and therefore have contractible boundary.

Proof of Theorem 1.7(a) This is the homology-level version of Corollary 2.4.
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2.2 The PSS maps in degree one

Our goal will be to compute a “topological piece” of CO1.S.//. This subsection
introduces some background required for the computation: in particular, we recall that
there is a canonical map ˆW H 1.L/!HF�.L;L/ which was used in the statement of
Theorem 1.7. This is the Lagrangian PSS map of Albers [4], and the fact it is canonical
was discussed, for instance, by Biran and Cornea [9, Proposition 4.5.1(ii)] in the context
of Lagrangian quantum cohomology.

First, recall that once the Floer datum is fixed, the complex CF�.L;L/ acquires the
Morse Z–grading. This grading is not preserved by the Floer differential or the A1
structure maps, but is still very useful. Assume that the Hamiltonian perturbation, as
part of the Floer datum, is chosen to have a unique minimum x0 on L, which means
that CF0.L;L/ is one-dimensional and generated by x0 . We denote by

(2-3) 1L 2 CF0.L;L/

the chain-level cohomological unit defined in [45, Section 2.4], which is proportional
to x0 . Now pick a metric and a Morse–Smale function f on L with a single minimum;
together they define the Morse complex which we denote by C �.L/. Consider the
“Maslov index 0” versions of the PSS maps, which are linear (but not chain) maps

(2-4) ‰W CF�.L;L/! C �.L/; ˆW C �.L/! CF�.L;L/:

These maps are defined as in the paper of Albers [4], with the difference that ˆ and ‰
count configurations with Maslov index 0 disks only. For example, the map ‰ counts
configurations consisting of a Maslov index 0 pseudoholomorphic disk with boundary
on L and one input boundary puncture, followed by a semi-infinite gradient trajectory
of f which outputs an element of C �.L/. Similarly, ˆ counts configurations in which
a semi-infinite gradient trajectory is followed by a Maslov index 0 disk with an output
boundary puncture. The maps ‰ and ˆ preserve Z–gradings on the two complexes.

Let d0W CF�.L;L/!CF�C1.L;L/ be the “Morse” part of the Floer differential counting
the contribution of Maslov index 0 disks; see Oh [34]. Let dMorseW C

�.L/!C �C1.L/

be the usual Morse differential. The lemma below is a version of [4, Theorem 4.11].

Lemma 2.5 ˆ and ‰ are chain maps with respect to d0 and dMorse , and are coho-
mology inverses of each other.

Lemma 2.6 Suppose HF�.L;L/ ¤ 0. If y 2 C 1.L/ is a Morse cocycle (resp.
coboundary) then ˆ.y/ is a Floer cocycle (resp. coboundary).
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Proof This follows from the fact that the image and the kernel of d0 and the full
Floer differential d coincide on CF1.L;L/ if HF�.L;L/¤ 0 by Oh’s decomposition
of the Floer differential [34].

Consequently, if HF�.L;L/¤ 0, we get a map

ˆW H 1.L/! HF�.L;L/:

For ‰ , we have a weaker lemma using [34] (this lemma is not true for coboundaries
instead of cocycles).

Lemma 2.7 If y 2 CF�.L;L/ is a Floer cocycle, then ‰.y/ 2 C �.L/ is a Morse
cocycle.

By Lemmas 2.6 and 2.7, given HF�.L;L/¤ 0, we have the following induced maps
which we denote by the same symbols ‰ and ˆ, abusing notation:

(2-5) ‰W CF�.L;L/!H�.L/; ˆW H�.L/! HF�.L;L/:

In particular, Theorem 1.7 in Section 1 refers to this cohomological version of the
map ˆ. We remind that ‰ does not necessarily descend to a map from HF�.L;L/.

2.3 Computing the topological part of CO1.S.//

We continue to use the above conventions and definitions, namely we use the Z–grading
on CF�.L;L/, the maps ˆ and ‰ , and the choice of a Hamiltonian perturbation on L
with a unique minimum x0 . From now on, we assume HF�.L;L/¤ 0. Recall that
CO�.S.// is determined via formula (2-2) by the moduli spaces M .x1; : : : ; xkI x0/.
The connected components of M .x1; : : : ; xkI x0/ corresponding to disks of Maslov
index � have dimension

jx0jC kC��

kX
iD1

jxi j;

where jxi j are the Z–gradings of the xi 2 CF�.L;L/. Consequently,

COk.S.//W CF�.L;L/˝k! CF�.L;L/

is a sum of maps of degrees

�k�mNL; m� 0;
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where NL is the minimal Maslov number of L. In particular, the restriction of
CO1.S.// to CF1.L;L/ is of pure degree �1; that is, its image lands in CF0.L;L/:

CO1.S.//jCF1.L;L/W CF1.L;L/! CF0.L;L/:

Moreover, this map is determined by the moduli space consisting of Maslov index 0
disks only and can be computed in purely topological terms. This is the main technical
computation which we now perform; recall that l 2H1.L/ is the homology class of
an orbit of  in L, and the sign .�1/�.l/ was defined in Section 1.

Proposition 2.8 Suppose HF�.L;L/¤ 0. If x 2 CF1.L;L/ is a Floer cocycle, then
on the chain level,

CO1.S.//.x/D .�1/�.l/ � �.l/ � h‰.x/; li � 1L:

(Here ‰.x/2H 1.L/ is from (2-5), h�;�i denotes the pairing H 1.L/˝H1.L/!K,
we consider CO1 on the chain level, and 1L is a chain-level cohomology unit as
in (2-3).)

Proof All disks with boundary on L we consider in this proof are assumed to have
Maslov index 0. We identify the domains of all disks that appear in the proof with the
unit disk in C , and their boundaries are identified with the unit circle S1 �C . In the
subsequent figures, punctured marked points will be drawn by circles filled white, and
unpunctured marked points by circles filled black. According to formula (2-2), for a
generator x 2 CF1.L;L/ we have

CO1.S.//.x/D .�1/� � �.l/ � #M .xI x0/;

where M .xI x0/ consists of (perturbed pseudoholomorphic) Maslov index 0 disks
whose domains are shown in Figure 2, left.

Step 1 (perturbation data producing bubbles with unpunctured points) Recall that the
domains appearing in the moduli space M .xI x0/ are disks with the interior marked
point 0 and boundary punctures 1 and t , where t 2 S1 n f1g. For further use, we
will choose perturbation data defining M .xI x0/ whose bubbling behaviour as t ! 1

differs from the standard one. Usually, the perturbation data would be chosen so as to
be compatible, as t! 1, with the gluing G1 shown in Figure 2, where the bubble meets
the principal disk along a puncture, meaning that near this puncture it satisfies a Floer
equation and shares an asymptotic Hamiltonian chord with the corresponding puncture
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Figure 2: Two types of gluings for M .xI x0/ and a way to interpolate
between the glued perturbation data

0
r 1

t0

Figure 3: Collision of two boundary marked points seen as stretching the
unshaded strip with parameter r!C1

of the principal disk. On the other hand, we will use perturbation data consistent with
gluing G2 shown in Figure 2, where the bubble is attached to the principal disk by
an unpunctured marked point. Near the unpunctured marked point, the disks satisfy a
holomorphic equation with no Hamiltonian term.

Let us explain how to define both types of data more explicitly. The domain in Figure 2,
left, with free parameter t close to 1, is biholomorphic to the domain shown in Figure 3
whose boundary marked points are fixed at 1 and some t0 2S1, upon which a stretching
procedure along the unshaded strip is performed. This stretching procedure changes
the complex structure on the disk by identifying the strip with Œ0; 1�� Œ0; 1�, removing
it, and gluing back the longer strip Œ0; 1�� Œ0; r�. The parameter r 2 Œ1;C1/ is free
and replaces the free parameter t , so that tending r!C1 replaces the collision of
two marked points t ! 1.

In order to get perturbation data which are consistent with the usual bubbling, as shown
by G1 in Figure 2, one requires the perturbed pseudoholomorphic equation to coincide,
on the strip Œ0; 1�� Œ0; r�, with the usual Floer equation defining the Floer differential,
which uses a Hamiltonian perturbation translation-invariant in the direction of Œ0; r�. In
order to get perturbation data producing the bubbling pattern shown by G2 in Figure 2,
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we simply put an unperturbed pseudoholomorphic equation on the strip Œ0; 1�� Œ0; r�
without using a Hamiltonian perturbation at all.

Both ways of defining perturbation data are subject to appropriate gluing and compact-
ness theorems, which precisely say that as we tend r !1, the solutions bubble in
one of the two corresponding ways shown in Figure 2. The standard choice is used, for
example, to prove that Œ]� (obtained from the counts of various M ) is a Hochschild
cocycle in the Fukaya A1 algebra of L defined using Seidel’s setup with Hamiltonian
perturbations. The other choice will be more convenient for our computations. Note
that the two different types of perturbation data give the same count #M .xI x0/: this
is proved by interpolating between them using the two-parametric space of perturbation
data obtained from gluing together the disks in Figure 2, right, with different length
parameters. Recall that all disks in M .xI x0/ have Maslov index 0 as the Morse index
jxj D 1; therefore, no unnecessary bubbling occurs. (Since we do not want to compute
the moduli spaces M other than the M .xI x0/ for jxj D 1, we do not have to worry
about extending our unusual type of perturbation data to the other moduli spaces.)

In addition, we will assume that the Hamiltonian perturbation vanishes over the principal
disk in Figure 2, bottom, making this disk J–holomorphic and hence constant, because
the disk has Maslov index 0. Such configurations can be made consistent with gluing:
for this, one just needs to make the Hamiltonian perturbation vanish over the shaded
subdomain in Figure 3, for all t close to 1. Note that regularity can be achieved by
perturbing the pseudoholomorphic equation over the subdomain to the right of the
unshaded strip in Figure 3.

Step 2 (a one-dimensional cobordism from M .xI x0/) In what follows, we will
use (and assume familiarity with) the theory of holomorphic pearly trees developed
by Sheridan in his Morse–Bott definition of the Fukaya category [45]; see also the
earlier work of Cornea and Lalonde [15]. Sheridan performs the analysis based on
extending Seidel’s setup of Fukaya categories from [40]. Although [45] considers
exact Lagrangians instead of monotone ones, all the analysis works equally well in the
nonexact case if we only consider disks of Maslov index 0, because here unpunctured
disk bubbles cannot occur just like in the exact case. Techniques for dealing with
holomorphic pearly trees (or “clusters”) with disks of arbitrary Maslov index have
appeared in [15; 10], but we will not actually need to appeal to them.

We will now define a family of domains depending on two parameters s 2 Œ0; 2�� and
l 2 Œ�1;C1�. When s … f0; 2�g, the domains are shown in Figure 4, where t D eis ;
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Figure 4: The domains for s 2 .0; 2�/ and l 2 Œ�1;1� , where t D eis

we discuss the case s 2 f0; 2�g later. When l D �1, the domain is the disk from
the definition of M .xI x0/. When l 2 .�1; 0/, the domain is the same disk (called
principal) with two additional interior marked points whose position is determined
by the parameter l : the first point lies on the line segment Œ0; t �, the second one lies
on the line segment Œ0; 1�, and both points have distance 1C l from 0. When l D 0,
the domain consists of the principal disk with marked points 0; 1; t , and two bubble
disks attached to the principal disk at points 1 and t . The first bubble disk has marked
points 0; 1 and a boundary puncture at �1; the second one has marked points at 0;�1
and a boundary puncture at 1. When 0 < l <1, the domain contains the same three
disks, now disjoint from each other, plus two line segments of length l connecting the
bubble disks to the principal one along the boundary marked points at which the disks
used to be attached to each other. (So far, the length is just a formal parameter associated
with the domain, but soon it will become the length of the flowline corresponding to the
segment.) When l D1, we replace each line segment by two rays Œ0;C1/t.�1; 0�.

When sD0 or sD2� , the domains obtain extra bubbles as those discussed above in the
definition of M .xI x0/, which correspond to the parameter t D eis 2 S1 approaching
1 2 S1 from the two sides. These domains are shown in Figure 5: as l goes from �1
to 0, the two interior marked points move along the punctured paths. Observe that these
points are crossing the node between the two disks at some intermediate value of l ;
this does not cause any difficulty with the definitions because these marked points are
only used to represent varying perturbation data consistent with the types of bubbling
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Figure 5: The domains for s 2 f0; 2�g , l 2 Œ�1;1�

we prescribe in the figures. We will soon mention what these varying data are in terms
of stretching certain strips inside a fixed disk. When l > 0, the length of the paths
equals l . When l D1, one introduces broken lines Œ0;C1/t .�1; 0� as above.

Having specified the domains, we briefly explain how to equip the disks with suitable
perturbed pseudoholomorphic equations and line segments with suitable gradient
equations to get a moduli space of solutions. When l D�1, we choose the equations
defining M .xI x0/ as discussed above in Step 1; in particular, this is consistent with
bubbling at the unpunctured point as s!0 or s!2� . When �1<l <0, we choose the
equations with the same properties as for M .xI x0/, which are additionally consistent
with bubbling at unpunctured points as l! 0. When l � 0, we choose the equation
on the disk with an input puncture to be the t–pullback of the one appearing in the
definition of the PSS map ‰ , and the equation on the disk with an output puncture to
be exactly the equation from the PSS map ˆ. Finally we fix two generic Morse–Smale
functions f; gW L! R. On the line segments and rays, the equation is the gradient
equation for g or the t–pullback of the gradient equation for f , as shown in Figure 4.

In general, we can arrange the equations on all disks to have a Hamiltonian perturbation.
For the disks with punctures, we must do so anyway; however, for the disks without
punctures (with unpunctured marked points only), we can choose the equation to be J–
holomorphic without a Hamiltonian term, provided that we check that our moduli space
can be made regular with this restricted choice. In order to carry out the computations
below, we choose the zero Hamiltonian perturbation on all disks without boundary
punctures, namely,
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� the central disk in Figure 4, bottom left, top right and bottom right,

� the left disks in all domains of Figure 5, and the central disks in Figure 5, top
right and bottom right.

We will now specify one more property of the equations that we choose. When s D 0
and l < 0, we require the perturbation data on the twice-punctured disk in Figure 5,
top left, to be obtained by �–rotation from the perturbation data on the similar disk
for s D 2� (and the same parameter l ) if we identify the two punctures with points 1
and �1 of the unit disk. When s D 0 and l � 0, we make a similar symmetric choice.

Finally, we specify the asymptotic conditions at the punctures. If x is a generator of
CF1.L;L/, we specify that the input puncture in Figure 4 must be asymptotic to the
t–pullback of x (as usual, if x is a linear combination of generators, we take the
disjoint union of the relevant moduli spaces). The output puncture must be asymptotic
to the unique generator x0 2CF0.L;L/. When l D1 , the first pair of rays in Figure 4,
bottom right, must be asymptotic to a point p such that �1t .p/ 2 C 1.L/ (that is, p
is an index-1 critical point of f ı t ) and the second pair of rays must be asymptotic
to q 2 C 0.L/; we assume q is the unique minimum of g . The interior marked points
on the disks are unconstrained.

Above, we have specified a 2–dimensional space of domains and the equations over
them. This gives us a moduli space of solutions (“pearly trees”) which is 1–dimensional
by our choice of indices. We remind the reader that a formal definition of this moduli
space falls into the setup of moduli spaces of pearly trajectories given by Sheridan [44].
For our purposes, its description given above will suffice.

The boundary of our 1–dimensional moduli space consists of

� solutions whose domains have parameter l D�1 or l D1,

� solutions whose domains have parameter s D 0 or s D 2� .

We claim that solutions of the second type cancel pairwise. Indeed, recall that the disks
without boundary punctures in Figure 5 are constant, and the perturbation data on the
punctured disks for sD 0; 2� are chosen in a way to provide the same solutions after a
�–rotation on each disk. Let us describe more explicitly what happens when l < 0 as
the case when l � 0 is clear enough from Figure 5, top right and bottom right. We can
represent the domains shown in Figure 4, top left, with free l < 0 and free small s > 0,
where tDeis , by a disk with fixed boundary punctures, stretched with length parameters
�1=l and 1=s along the three strips shown in Figure 6, left. The stretching procedure
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Figure 6: The domains (left) for l < 0 , s > 0 , seen as a fixed disk with three
stretched strips, and (right) for l < 0 , s D 0 , when the principal disk is
constant.

was described earlier, and our choice of perturbation data says that the stretched strips,
and the subdomain to the left of the 1=s–strip, carry an unperturbed pseudoholomorphic
equation. So for sD 0, we get the disks shown in Figure 6, right, with the unpunctured
boundary marked point attached to a constant disk, which means this boundary marked
point is unconstrained. (As usual, the domain is considered up to complex automor-
phisms, so the unconstrained point does not prevent us from having rigid solutions.)
This way, Figures 5, top left, and 6, right, are drawings of the same configuration for
any l < 0. If we rotate the disk in Figure 6, right, by � , we get precisely the disk with
perturbation data we would have gotten for s D 2� , except that the boundary marked
point (with the attached constant disk) is on the different side of the boundary.

We have shown that the solutions for s D 0 and s D 2� are in a natural bijection;
we claim that this bijection reverses the signs associated to those solutions as parts
of the moduli space. This is ultimately related to the fact that the constant disk is
being glued to those solutions at the opposite boundary components. One can adopt
a proof (which we will not provide in detail here) from the following classical example
where an analogous sign issue has been treated. Suppose L0 and L1 are monotone
Lagrangian submanifolds with obstruction numbers m0.Li / 2 Z, i D 0; 1. Then the
Floer differential d on CF�.L0; L1/ satisfies d2 Dm0.L0/�m0.L1/. This relation
arises from Maslov index 2 disks bubbling off the two sides of a 1–dimensional moduli
space of Floer strips [33]; see also [45, (2.3.9)] and [46, Figure 2]. Here, indeed, the
gluing of the side bubbles contributes with the opposite signs and results in the term
m0.L0/�m0.L1/. The reference for the signs in this relation is [20]; see specifically
Remark 3.2.21(1), Formula (3.3.4) and Chapter 8 from that book. Although in our case
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�t .x/
p q

r.f ı t / r.f ı t / rg

x0

Figure 7: The domains when l DC1 and the principal disk together with a
flowline are constant. Here p is an index-1 critical point of f ı t , and q is
the minimum of f .

we would be gluing a constant disk rather than Maslov index 2 disk, and the nonconstant
curve in Figure 6, right, satisfies a different equation than the standard Floer one (eg our
equation is not R–invariant), the required orientation analysis is essentially the same.

The outcome of the cancellation discussed above is that the count of configurations
in Figure 4, top left, ie #M .xI x0/, equals the count of configurations in Figure 4,
bottom right, and it remains to compute the latter.

Step 3 (a Morse-theoretic computation) Let us look at Figure 4, bottom right. Recall
that q 2L is the minimum of g , so the semi-infinite flowline of rg flowing into q must
be constant. Second, we have arranged the principal (central) disk to be constant, as
well. So the configurations in Figure 4, bottom right, reduce to those shown in Figure 7.

The free parameter t D eis 2S1nf1g is “unseen” by the domain after the principal disk
became ghost (ie constant), but the equations still depend on it. First, consider the left
disk and the left flowline in Figure 7, forgetting the rest of the configuration. Those disk
and flowline satisfy the t–pullback of the equation defining the PSS map ‰ , so for
each t , the linear combination of points p appearing as limits of such configurations
equals t .‰.x//, where ‰.x/2C 1.L/ is the PSS image which is a linear combination
of index-1 critical points of f , so that t .‰.x// is a combination of critical points
of f ı t .

Let us now add back the middle flowline, still forgetting the right flowline and the right
disk, and count the resulting configurations. The middle flowline is a semi-infinite
flowline of r.f ı t / ending at the point q ; note that q is not a critical point of f .
Suppose for the moment that we allow the right end of the middle flowline to be free
(not constrained to q ) and denote the moduli space of such configurations by P . Then
we can consider the evaluation map at the right end of the flowline, evW P ! L. The
image of ev, as a chain, is a linear combination of unstable manifolds, with respect
to the function f ı t , associated with the linear combination of the critical points p
which we have previously computed. Recall that this linear combination of points p
equals t .‰.x//. Consequently, if we denote by C‰.x/ � L the disjoint union of
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(oriented, codimension-1) unstable manifolds of the Morse cochain ‰.x/ 2 C 1.L/
with respect to f , then

P D .S1 n f1g/�C‰.x/; ev.t; z/D t .z/:

Those configurations which evaluate at q 2 L are the intersection points C‰.x/ \ l ,
where l D ft .q/gt2S1 is the orbit of q . By perturbing t and f , the intersections
can be easily made transverse, and we get

#.P �ev fqg/D ŒC‰.x/� � Œl �D h‰.x/; li:

Recall this is the count of the part of configurations in Figure 7 which end up at q .
Finally, the count of the rightmost flowlines (emerging from q ) plus the right disks in
Figure 7 equals 1L 2 CF0.L;L/. Indeed, the g–unstable manifold of the minimum q

is the whole manifold L (minus a codimension-2 subset), so the count is the same as
the count of the rightmost disks only, and the latter produces 1L by definition.

Putting everything together and noting that � D �.l/ by Remark 2.2 (since the total
boundary in Figure 7 is contractible for a small Hamiltonian perturbation), we get the
statement of Proposition 2.8. One last thing is to argue that the moduli spaces we have
been using are regular.

According to [45], the regularity of moduli spaces of pearly trajectories consisting
of pseudoholomorphic disks and flowlines is equivalent to the regularity of the sepa-
rate disks and flowlines not constrained to satisfy the incidence conditions, plus the
transversality of the evaluation maps which account for the incidence conditions.

The nonconstant disks in the proof carry the pseudoholomorphic equation with a
Hamiltonian perturbation which makes them regular. The constant disks are known
to be regular on their own; and it is easy to see that for generic f and g , the flowlines
are transverse to the evaluation maps for all appearing configurations.

2.4 Checking nontriviality in Hochschild cohomology

In this subsection, we prove Theorem 1.7(b)–(c) (recall that part (a) was proved earlier;
see Corollary 2.4). We have computed in Proposition 2.8 the map CO1.S.//jCF1.L;L/ ,
and it remains to see when the result survives to something nontrivial on the level of
Hochschild cohomology, and thus distinguishes CO�.S.// 2 HH�.L;L/ from the
unit in HH�.L;L/.
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First, let us quickly recall the definition of Hochschild cohomology. Let A be an A1
algebra, and assume it is Z=2 graded if char K¤ 2. When char KD 2, we consider A
as an ungraded algebra. The space of Hochschild cochains is, by definition,

CC�.A;A/D
Y
k�0

Hom.A˝k; A/:

If A is Z=2–graded, then CC�.A;A/ is Z=2–graded:

CCr.A;A/D
Y
k�0

Hom.A˝k; AŒr � k�/:

If hD fhkgk�0 2 CC�.A/ with hk W A˝k! A, then the Hochschild differential of h
is the sequence of maps

.@h/k.ak; : : : ;a1/DX
iCj�k

.�1/.rC1/.ja1jC���Cjai jCi/�kC1�i .ak; : : : ;aiCjC1;h
j.aiCj ; : : : ;aiC1/;ai ; : : : ;a1/

C

X
iCj�k

.�1/rC1Cja1jC���Cjai jCi

� hkC1�i .ak; : : : ;aiCjC1;�
j .aiCj ; : : : ;aiC1/;ai ; : : : ;a1/:

Here r is the Z=2–degree of h. (When kD0, the agreement is that Hom.A˝0; A/DA,
so h0 is an element of A.) If char KD 2, we do not need the gradings as the signs do
not matter.

Let us return to the A1 algebra CF�.L;L/. We continue to use the Morse Z–grading
on the vector space CF�.L;L/ keeping in mind this grading is not respected by the
A1 structure. If L is oriented, the reduced Z=2–grading is preserved by the A1
structure, so CF�.L;L/ is a Z=2–graded A1 algebra. If L is not oriented, we must
suppose char KD 2.

Proof of Theorem 1.7(b) We continue to work with CO� on the chain level. Because
the homological closed-map is unital [45, Lemma 2.3], the Hochschild cohomology unit
is realised by the cochain 1HH WDCO�.1/2CC�.L;L/, where 1 is the unit in QH�.X/.
The A1 category CF�.L;L/ need not be strictly unital, so the maps .1HH/

kD COk.1/
need not vanish for k >0. However, because the identity Hamiltonian loop preserves L
and has homologically trivial orbits on it, Proposition 2.8 applies to 1DS.Id/2QH�.X/
and says that .1HH/

1.x/D 0 for any Floer cocycle x 2 CF1.L;L/.

Suppose CO�.S.//C ˛ � 1HH is the coboundary of an element h 2 CC�.L;L/ for
some ˛ 2K. By comparing .@h/0 with CO0.S.//C˛ � .1HH/

0 (see Corollary 2.4),
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we get

�1.h0/D .�1/�.l/�.l/ � 1LC˛ � 1L:

Here �1 is the Floer differential and 1L is a chain-level cohomology unit; see (2-3). The
assumption HF�.L;L/¤ 0 implies that the Floer cohomology unit 1L cannot be killed
by the Floer differential. Therefore, we cannot solve the above equation unless ˛ D
�.�1/�.l/�.l/ and �1.h0/D0. Next, by comparing .@h/1 with CO1.S.//C˛�.1HH/

1

(see Proposition 2.8) for any Floer cocycle x 2 CF1.L;L/, we get

.�1/jh
0jC1�2.x;h0/C.�1/.jh

0jC1/.jxjC1/�2.h0;x/C�1.h1.x//C.�1/jh
1jC1h1.�1.x//

D .�1/�.l/�.l/�h‰.x/; li�1L:

Here we are using the version of ‰ as in (2-5). Because x is a Floer cocycle, the last
summand of the left-hand side vanishes. If char KD 2, let a WD h0 2 CF�.L;L/. If
char K¤ 2, let a 2 CFodd.L;L/ be the odd degree part of h0. By computing the signs
in the above equality, we get for any Floer cocycle x 2 CF1.L;L/,

�2.x; a/C�2.a; x/C�1.h1.x//D .�1/�.l/�.l/ � h‰.x/; li � 1L:

Recall that �1.h0/D 0, so �1.a/D 0 as well, and we get the following equality for
Floer cohomology classes Œx�; Œa� 2 HF�.L;L/ and ‰.x/ 2H 1.L/:

�2.Œx�; Œa�/C�2.Œa�; Œx�/D .�1/�.l/�.l/ � h‰.x/; li � 1L 2 HF�.L;L/:

Now put x D ˆ.y/, where y 2 C 1.L/ is a Morse cochain and ˆ is the chain-level
map from (2-4). The above equality means that for all Œy� 2H 1.L/,

�2.ˆ.Œy�/; Œa�/C�2.Œa�; ˆ.Œy�//D .�1/�.l/�.l/ � hŒy�; li � 1L 2 HF�.L;L/:

This time, we have used the homology-level version of ˆ from (2-5). The above
equality is exactly prohibited by the hypothesis of Theorem 1.7(b), so Theorem 1.7(b)
is proved.

Proof of Theorem 1.7(c) Note that, on the homology level,

CO0.S./�Q/D CO0.S.// � CO0.Q/D 1L� CO0.Q/D CO0.Q/

(here the dot denotes the �2 product), so the only possible linear relation between
CO�.S./�Q/ and CO�.Q/ is the following, where 1 is the unit in QH�.X/:

CO�..S./� 1/�Q/D 0:
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We have CO�..S./ � 1/ �Q/ D CO�.S./ � 1/ ? CO�.Q/, where the symbol ?
denotes the Yoneda product in Hochschild cohomology.

Let us now return to working with CO� on the chain level. Recall that if � D f�kgk�0 ,
 D f kgk�0 2 CC�.L;L/ are Hochschild cochains, the k D 1 part of their Yoneda
product by definition equals

.� ? /1.x/D˙�2.�1.x/;  0/˙�2.�0;  1.x//:

There is an explicit formula for the signs which we do not need. Let us apply this
formula to CO�.S./� 1/ and CO�.Q/. We know that .CO�.S./� 1//0 D 0 by
Corollary 2.4, and .CO�.S./� 1//1.x/D CO1.S.//.x/ is given by Proposition 2.8
for any Floer cocycle x 2 CF1.L;L/. Consequently, we get

CO1..S./� 1/�Q/.x/D .�1/�.l/�.l/ � h‰.x/; li � CO0.Q/:

From this point, the rest of the proof follows the one of Theorem 1.7(b).

3 The closed-open map for real toric Lagrangians

In this section, after a short proof of Theorem 1.13, we look for further examples of
real toric Lagrangians where Theorem 1.7 can be effectively applied. We also discover
that Proposition 2.8, after additional work, allows us to show that the Fukaya A1
algebra of some of the considered Lagrangians is not formal. In particular, we prove
the results about real toric Lagrangians stated in Section 1 (except for Proposition 1.1
and Corollary 1.2, which have been proved therein). We work with a coefficient field K

of characteristic 2 throughout this section.

3.1 A proof of Theorem 1.13

Let X be a compact, smooth toric Fano variety, and D �X be a toric divisor corre-
sponding to one of the facets of the polytope defining X . There is a Hamiltonian circle
action  on X associated with D , which comes from the toric action by choosing a
Hamiltonian which achieves maximum on D . A theorem of McDuff and Tolman [32]
says the following.

Theorem 3.1 S./DD�, where D� 2 QH�.X/ is the Poincaré dual of D .

The loop  never preserves the real Lagrangian L � X , but if we parametrise  D
ftgt2Œ0;1� , then 1=2.L/ D L; see [23]. Consequently, ˛ D ft .L/gt2Œ0;1=2� is a
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loop of Lagrangian submanifolds, and moreover, we have ˛2 D ft .L/gt2Œ0;1� in the
space of Lagrangian loops. There is an associated Lagrangian Seidel element SL.˛/ 2
HF�.L;L/, which counts pseudoholomorphic disks with rotating boundary condition ˛ ,
and a single boundary puncture which evaluates to an element of HF�.L;L/. A theorem
of Hyvrier [25, Theorem 1.13], based on the disk doubling trick, computes SL.˛/.

Theorem 3.2 We have SL.˛/D ŒL\D��, where L\D is the clean intersection that
has codimension 1 in L, and ŒL\D�� 2H 1.L/�HF�.L;L/ is its dual class.

The inclusion H 1.L/�HF�.L;L/ is the PSS map ˆ from Section 2, which is injective
because HF�.L;L/ŠH�.L/ by Theorem 1.12.

Proof of Theorem 1.13 It suffices to prove that CO0.D�/ D D.F.D�//, where
D�X is a toric divisor as above and D� 2QH�.X/ is its dual class, because such D�

generate QH�.X/ as an algebra [32]. Let  be the Hamiltonian loop corresponding
to D as above, and ˛ be the Lagrangian loop as above, such that ˛2 D ft .L/gt2Œ0;1� .
It follows from Theorem 2.1 that

CO0.S.//D SL.˛2/;

and the latter can be rewritten as F.SL.˛//, where F is the Frobenius map on
HF�.L;L/. By Theorem 3.1, S./DD�, and by Theorem 3.2, SL.˛/D ŒL\D��.
Finally, if we look at Haug’s construction [23] of the Duistermaat isomorphism D , we
will see that ŒL\D�� D D.D�/. Putting everything together, we get

CO0.D�/D F.D.D�//:

Because D is a ring map, it commutes with the Frobenius maps on HF�.L;L/ and
QH�.X/, and the theorem follows.

3.2 Split-generation for toric varieties with Picard rank 2

It is known that the unique toric variety with Picard number 1 is the projective space.
By a theorem of Kleinschmidt [28] (see also [14]), every n–dimensional toric Fano
variety whose Picard group has rank 2 (ie whose fan has nC2 generators) is isomorphic
to the projectivisation of a sum of line bundles over CP n�k

(3-1) X.a1; : : : ; ak/ WD PCPn�k .O˚O.a1/˚ � � �˚O.ak//
with ai � 0;

kP
iD1

ai � n� k� 1:
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(The imposed conditions on the ai are equivalent to X being toric Fano.) The nC 2
vectors in Zn generating the fan of X.a1; : : : ; ak/ are the columns of the matrix

(3-2)

0BBBBBBB@
In�n

�1 a1
:::

:::

�1 ak
0 �1
:::

:::

0 �1

1CCCCCCCA
The minimal Chern number of X.a1; : : : ; ak/ equals gcd

�
kC 1; n� kC 1�

P
ai
�
;

see [36]. Some of these varieties provide further examples where, using Theorems 1.13
and 1.7, we can prove the injectivity of CO� and deduce split-generation.

Theorem 3.3 Let X WDX.a1; : : : ; ak/ be as above, L�X the real Lagrangian, and K

a field of characteristic 2. Suppose all ai are odd and gcd
�
kC1; n�kC1�

P
ai
�
� 2.

(a) If n� kC 1 is odd, then CO0W QH�.X/! HF�.L;L/ is injective.

(b) If n� kC 1 is even, k is even and the numbers ai come in equal pairs, then
CO�W QH�.X/! HH�.L;L/ is injective while CO0 is not.

In both cases, L split-generates Fuk.X/0 .

Proof Let x; y 2 H 2.X/ be the generators corresponding to the last two columns
of the matrix (3-2). They generate QH�.X/ as an algebra and satisfy the following
relations when char KD 2:

x.xCy/k D 1; yn�kC1.xCy/�
P
ai D 1:

(For brevity, we no longer use the symbol � to denote the quantum product.) If
n� kC 1 is odd, one can show that the Frobenius endomorphism F on QH�.X/ is
an isomorphism, so CO0 is injective by Theorem 1.13. It follows that CO� is also
injective, and split-generation follows from Theorem 1.10. Part (a) is proved.

In the rest of the proof we work with case (b), so we let n� kC 1D 2r , k D 2q , andP
ai D 2p . The rewritten relations in QH�.X/ are

(3-3) x.xCy/2q D 1; y2r.xCy/�2p D 1:

Lemma 3.4 For the ring QH�.X/ as in (3-3), the kernel of F is the ideal generated
by yr.xCy/�pC 1.

Algebraic & Geometric Topology, Volume 18 (2018)



46 Dmitry Tonkonog

Proof Equations (3-3) are equivalent to

x�p D y2rq; y4rqC2r Cy4rpC2pC 1D 0;

where the second equation is rewritten from the second equation in (3-3) using the
substitution x�p D y2rq . This means if we let

R.y/D y2rqCr Cy2rqCpC 1;

then R.y/D yr.xCy/�pC 1. Let g D gcd.2rq; p/ and let ˛; ˇ 2 Z be such that

�2rq �˛Cp �ˇ D g:

Consider the map �W KŒu�!QH�.X/ given by u 7! x˛yˇ ; this map is onto because

(3-4) �.up=g/D y; �.u2qr=g/D x�1

using the given relations (note that the powers p=g , 2qr=g are integral). Further, ker�
is obviously the ideal generated by V.u/2 , where V.u/ WDR.up=g/, and we conclude
that � provides an isomorphism

(3-5) �W KŒu�=V .u/2 Š�! QH�.X/; V .u/D u.p=g/.2rqCr/Cu.p=g/.2rqCp/C 1:

It is clear that V.u/ generates the kernel of the Frobenius map on KŒu�=V .u/2. Because
V.u/ corresponds to yr.xCy/�pC 1 under � , Lemma 3.4 follows.

We continue the proof of Theorem 3.3(b). It turns out that, similarly to the case of
RP n � CP n studied in the introduction, the generator of kerF from Lemma 3.4
equals S./C 1 for a real Hamiltonian loop  on X which preserves L setwise and
has homologically nontrivial orbits on it. To construct  , we will need the additional
assumption that the ai come in equal pairs, so we assume the sequence .ai /

2q
iD1 is

.a1; a1; : : : ; aq; aq/.

Recall that X , being a toric manifold, is a quotient of C2rC2qC1 minus some linear
subspaces determined by the fan, by an action of .C�/2. Using the common notation,
this action is given by z 7! t

v1
1 t

v2
2 z , where z 2C2rC2qC1 and v1; v2 are the vectors

in Z2rC2qC1 given by the following two rows:

(3-6)
2q entries 2r�1 entries 2 entries

a1 a1 � � � aq aq �1 � � � �1 0 �1

�1 �1 � � � �1 �1 0 � � � 0 �1 0
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Let .z1; : : : ; z2rC2qC1/ be the coordinates on C2rC2qC1 . The action of .C�/2 on
C2rC2qC1 commutes with the action of

G D SU.2/q �SU.2r/;

where the SU.2/ factors act respectively on .z1; z2/; : : : ; .z2q�1; z2q/, and SU.2r/
acts on .z2qC1; : : : ; z2qC2r�1; z2qC2rC1/; note we have omitted z2qC2r . (If we
view X as a projective bundle over CP 2r�1 as in (3-1), the coordinates on which
SU.2r/ acts are the homogeneous coordinates on the base.) Denote the real form of G
by GR D SO.2/q �SO.2r/. Because all ai are odd, the action of .�1;C1/ 2 .C�/2

coincides with the action of �I 2 G . Consequently, the action of G descends to
a Hamiltonian action of G=˙I on X . Its real form GR=˙I preserves the real
Lagrangian L�X , and we let  be the S1–subgroup of GR=˙I defined as follows.
This subgroup lifts to the path from I to �I in GR which is the image of the rotation�

cos t sin t
� sin t cos t

�
2 SO.2/, t 2 Œ0; ��, under the diagonal inclusions

SO.2/� SO.2/q �SO.2/r � SO.2/q �SO.2r/DGR:

Recall that we are assuming char KD 2.

Lemma 3.5 The homology class of –orbits on L is nonzero in H1.LIK/.

Proof Indeed, L is a real projective bundle over RP 2r�1 , and the orbits project to
the nontrivial cycle on the base, provided char KD 2.

Lemma 3.6 We have S./C 1D yr.xCy/�pC 1 (which is the generator of kerF
from Lemma 3.4).

Proof Inside the complex group G=˙I , the loop  is homotopic to the loop  0 lifting
to the path from I to �I in G which is the image of the path

�
eit 0
0 e�it

�
2 SU.2/,

t 2 Œ0; ��, under the diagonal inclusions

SU.2/� SU.2/q �SU.2/r � SU.2/q �SU.2r/DG:

By using the action of C� � .C�/2 corresponding to the first vector in (3-6), we see
that  0 descends to the same Hamiltonian loop in X as the loop  00 in G which acts
on C2rC2qC1 , for t 2 Œ0; 2��, as follows:

.z1; : : : ; z2rC2qC1/ 7!

.eit.a1C1/=2z1; e
it.a1�1/=2z2; : : : ; e

it.aqC1/=2z2q�1; e
it.aq�1/=2z2q;

z2qC1; e
�itz2qC2; : : : ; e

�itz2rC2q�2; z2rC2q�1; z2rC2q; e
�itz2rC2qC1/:
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Note that here t runs through Œ0; 2��, hence the 1
2

–factors. Because all ai are odd,
 00 is now a closed loop in G , not only in G=˙I . So by [32], its Seidel element
S. 00/ 2 QH�.X/ can be computed as the quantum product of powers of the divisors
corresponding to the coordinates on C2rC2qC1 , where the powers are the multiplicities
of rotations. Given char KD 2, and recalling that S. 00/D S. 0/D S./, we get

S./D .xCy/.a1C1/=2.xCy/.a1�1/=2 � � �.xCy/.aqC1/=2.xCy/.aq�1/=2y�1 � � �y�1

D .xCy/py�r :

This element squares to 1 by (3-3) (in agreement with the fact  has order 2 in
�1.G=˙I /Š Z=2), so it also equals yr.xCy/�p , which proves Lemma 3.6.

We conclude the proof of Theorem 3.3(b). By Lemmas 3.4 and 3.6, kerF is the ideal
generated by S./C 1. Suppose P 2 QH�.X/ such that CO�.P /D 0 2 HH�.L;L/.
Then CO0.P /D 0, so P 2 kerF by Theorem 1.13. Consequently, P D .S./C1/�Q ,
and if P ¤ 0, then Q … kerF (because otherwise we would get P 2 .kerF/2 D f0g).
Apply Theorem 1.7(b) to the product .S./C1/�Q ; the left-hand side of (��) vanishes
because �2 is commutative on HF�.L;L/ [23], and the right-hand side is nontrivial
for some y by Lemma 3.5 and because CO0.Q/ ¤ 0. It follows that CO�.P / ¤ 0.
We have shown that CO� is injective, and split-generation follows from Theorem 1.10.
Note that w.L/D 0 holds for all real Lagrangians, as Maslov index 2 disks come in
pairs because of the action of the antiholomorphic involution; see [23].

The following corollary in particular implies Proposition 1.4 from the introduction.

Corollary 3.7 Let X DBlCP 2q�1 CP 2rC2q�1 , and let L�X be the real Lagrangian
(diffeomorphic to BlRP 2q�1 RP 2rC2q�1 ). Assume gcd.2qC 1; 2r � 2q/� 2 and that
either r or q are odd. Then CO�W QH�.X/! HF�.L;L/ is injective, although CO0

is not. Consequently, L split-generates Fuk.X/0 .

Proof of Proposition 1.4 Take X as in (3-1) with a1 D � � � D ak D 1. Then X D
BlCPk�1 CP n ; see eg [17, Proposition 11.14]. The additional hypotheses of the current
corollary make sure X satisfies all conditions of Theorem 3.3(b), which together with
the split-generation criterion (Theorem 1.10(b)) implies the corollary.

In order to deduce nondisplaceability results between the real Lagrangian L and other
Lagrangians with arbitrary obstruction numbers, we need the following lemma.
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Lemma 3.8 Suppose char KD 2, L is an object of Fuk.X/w and CO�W QH�.X/!
HH�.L;L/ is injective. Assuming Hypothesis 3.9 below, L � L split-generates
Fuk.X �X/0 .

Note that by Lemma 1.9, the condition of Lemma 3.8 can only hold if QH�.X/ D
QH�.X/w or L is nonorientable.

Proof First, observe that w.L�L/D 2w.L/D 0. By [45], the injectivity of CO� is
equivalent to the fact that the open-closed map OC�W HH�.L;L/! QH�.X/ hits the
unit 1 2 QH�.X/.

Hypothesis 3.9 There is a commutative diagram

HH�.L;L/˝HH�.L;L/ //

OC�˝OC�
��

HHsplit
� .L�L;L�L/

OC�prod
��

HF�.X/˝HF�.X/
D

// HF�.X �X/

where OC�prod is the open-closed map on the product, and the HF� are Hamiltonian
Floer cohomologies, isomorphic to the quantum cohomologies of the corresponding
spaces.

Here HHsplit
� .L�L;L�L/ indicates that the A1 structure on L�L is computed

using a split Hamiltonian perturbation and a product almost complex structure; such
a choice can be made regular. We expect the hypothesis to hold following Ganatra
[22, Remark 11.1], who stated it on chain level, in the setup of the wrapped Fukaya
category of an exact manifold. A slight complication is that the A1 algebra of L�L
appearing in the top right corner of the diagram had to be equipped with so-called
one-sided homotopy units; their presence is denoted by a tilde in [22, Remark 11.1].
This does not affect the diagram on the homology level [22, Proposition 10.10], but we
have not checked how this subtlety carries over to the monotone setup; therefore we
leave Hypothesis 3.9 as a conjecture.

Given Hypothesis 3.9, if OC� hits the unit, then OC�˝OC� and OC�prod also do. The
latter fact implies that CO� is injective on the product, and split-generation follows
from Theorem 1.10(b).

Corollary 1.5 from the introduction is a particular case of the following.
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Corollary 3.10 Let K be a field of characteristic 2 and L�X be as in Theorem 3.3(a)
or (b), or as in Corollary 3.7. Suppose L0�X is another monotone Lagrangian, perhaps
equipped with a local system �1.L/!K� , with minimal Maslov number at least 2 and
such that HF�.L0; L0/¤ 0. If w.L0/¤ 0, assume Hypothesis 3.9. Then L\L0 ¤∅.

Proof If w.L0/D 0, this follows from the fact that L split-generates Fuk.X/0 and
from Lemma 1.11. If w.L0/¤ 0, we have that w.L0 �L0/D 2w.L0/D 0, so L0 �L0

is an object of Fuk.X �X/0 which is split-generated by L�L by Lemma 3.8. Then
.L�L/\ .L0 �L0/¤ 0 by Lemma 1.11, and so L\L0 ¤ 0.

3.3 An application to nonformality

Recall that if A! A0 is a quasi-isomorphism of A1 categories, it induces an iso-
morphism HH�.A/! HH�.A0/; see eg Seidel [42, (1.14)]. We will need an explicit
chain-level formula for this isomorphism, which can be obtained by combining Seidel’s
argument with Ganatra’s functoriality formulas [22, Section 2.9], and this requires a
short account. We are assuming the reader is familiar with the basic language of A1
categories from eg [40; 45; 22], so that we can skip some basic definitions and present
the other ones rather informally. For simplicity, we are working with char KD 2 so we
won’t have to worry about signs, and we restrict to A1 algebras rather than categories.

Recall that if A is an A1 algebra, its Hochschild cohomology HH�.A/ can be seen
as Hochschild cohomology HH�.A;A/ of A as an A–A bimodule. If F W A!A0 is
a quasi-isomorphism between A1 algebras, it induces quasi-isomorphisms

(3-7) CC�.A;A/
F�
��! CC�.A; F �A0/

F �

 �� CC�.A0;A0/;

which proves that HH�.A;A/ Š HH�.A0;A0/. Chain-level formulas for the two
intermediate quasi-isomorphisms, which we will now recall, were written down eg by
Ganatra [22, Section 2.9] (in the context of Hochschild homology, but these are easily
adjusted to cohomology).

If B , B0 are two A–A bimodules, a morphism GW B ! B0 is a sequence of maps
Gk W A˝i ˝B˝A˝j ! B0 , i C j C 1D k , satisfying a sequence of relations which
we informally write down asP

?G
?.Id˝?˝�?A or B˝ Id˝?/D

P
? �

?
B0.Id

˝?
˝G?˝ Id˝?/:

Here ? are positive integers which are mutually independent but are such that the total
number of inputs on both sides of the equation is the same, the sum is over all such
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possibilities, and the structure map on the left is �?A or �?B depending on whether
one of its arguments is in B . In its full form, the above relation should be written as
follows:X

Gi1Ci4�i3C1.a1; : : : ;ai1 ;�
i3�i1C1
B .ai1C1; : : : ;ai2 ;b;ai2C1; : : : ;ai3/;ai3C1; : : : ;ai4/

C

X
Gi1Ci4�i2C2.a1; : : : ;ai1 ;�

i2�i1
A .ai1C1; : : : ;ai2/;ai2C1; : : : ;ai3 ;b;ai3C1; : : : ;ai4/

C

X
Gi2Ci4�i3C2.a1; : : : ;ai1 ;b;ai1C1; : : : ;ai2 ;�

i3�i2
A .ai2C1; : : : ;ai3/;ai3C1; : : : ;ai4/

D

X
�
i1Ci4�i3C1
B0 .a1; : : : ;ai1;G

i3�i1C1.ai1C1; : : : ;ai2;b;ai2C1; : : : ;ai3/;ai3C1; : : : ;ai4/

for ai 2A and b 2 B , where the sums are all over i1C i2C i3C i4 D l . We will keep
the informal style of notation, in which the inputs are omitted and the valencies are
replaced by ?. The induced map G�W CC�.A;B/! CC�.A;B0/ is defined by

(3-8) .G�.h//
?
D
P
?G

?.Id˝?˝ h?˝ Id˝?/;

where h?W A˝?!B and .G�.h//?W A˝?!B0 . If G is a quasi-isomorphism, so is G� .

If A, A0 are two A1 algebras, a morphism F W A ! A0 is a sequence of maps
F ?W A˝?!A0 such thatP

? �
?
A0.F

?
˝ � � �˝F ?/D

P
? F

?.Id˝?˝�?A˝ Id˝?/:

Next, if B is an A0�A0 bimodule, its two-sided pullback F �B is an A–A bimodule
based on the same vector space B , whose structure maps [22, Section 2.8] are

(3-9) �?F �B D
P
? �

?
B.F

?
˝ � � �˝F ?˝ IdB˝F

?
˝ � � �˝F ?/:

There is also a morphism F �W CC�.A0;B/! CC�.A; F �B/ defined by

(3-10) .F �.h//? D
P
? h

?.F ?˝ � � �˝F ?/;

where h?W .A0/˝?! B and .F �.h//?W A˝?! B . The total number of inputs here
can be zero, and F �.h/0 D h0. If F is a quasi-isomorphism, so is F �.

If, again, F W A!A0 is a morphism of A1 algebras, let F �A0 be the A–A bimodule
which is the pullback of A0 seen as an A0�A0 bimodule.

Lemma 3.11 The same sequence of maps F ?W A˝?! A0 provides a morphism of
A–A bimodules A! F �A0 , also denoted by f .
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Proof We must check
P
? F

?.Id˝?˝�?A˝ Id˝?/D
P
? �

?
F �A.Id

˝?
˝F ?˝ Id˝?/.

If we apply formula (3-9) to rewrite the right-hand sum, the unique Id–factor in (3-9),
which in our case is IdA0 , gets applied to the F ?–factor. So our right-hand sum
equals

P
? �

?
A0.F

?˝ � � �˝F ?˝ � � �˝F ?/, which is exactly the condition that F is
a morphism of A1 algebras A!A0 .

This lemma explains the precise meaning of (3-7): if F W A! A0 is a morphism of
A1 algebras, then the first map F� from (3-7) is the pushforward of F considered as
a morphism of modules A! F �A0 given by formula (3-8). The second map in (3-7)
is the pullback as in (3-10).

Next, recall that a general property of quasi-isomorphisms between A1 algebras
(bimodules, etc.) is that they have quasi-inverses [40, Chapter 1]. If F W A ! A0

is a quasi-isomorphism, then the A–A bimodule morphism F from Lemma 3.11
is also a quasi-isomorphism; hence there is an A–A bimodule quasi-isomorphism
GW F �A0!A which is a quasi-inverse of F , so we have quasi-isomorphisms

(3-11) CC�.A;A/
G�
 �� CC�.A; F �A0/

F �

 �� CC�.A0;A0/:

Their composition acts on Hochschild cochains by

.G�F
�.h//? D

P
?G

?.Id˝?˝ h?.F ?˝ � � �˝F ?/˝ Id˝?/;

where h?W .A0/˝?!A0 and .G�F �.h//?W A˝?!A. In particular, .G�F �.h//0 D
G1.h0/, and if h0 D 0 2A0 , then

(3-12) .G�F
�.h//1.u/DG1.h1.F 1.u///; u 2A0:

Note that G1W A0!A and F 1W A!A0 are chain maps with respect to �1A and �1A0 ,
and they are cohomology inverses of each other.

Assume L � X is a Lagrangian preserved by a Hamiltonian loop  which together
satisfy the conditions of Theorem 1.7 (those conditions which are common to all parts
of the theorem). Assume the A1 algebra CF�.L;L/ is formal, ie there is an A1
quasi-isomorphism F W HF�.L;L/! CF�.L;L/. Let

(3-13) h WD .G�F
�/.CO�.S.//� 1/ 2 CC�.HF�.L;L/;HF�.L;L//;

where G is a quasi-inverse of F , and G� and F � are as in (3-11). So h is a Hochschild
cochain for the associative algebra HF�.L;L/. Then by Corollary 2.4, h0 D 0,
Proposition 2.8 and (3-12), we have

h1.x/D �.l/ � h‰.F 1.x//; li �G1.1L/:
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(We have dropped the extra sign, working in characteristic two.) Let us additionally
assume that L is wide [9, Definition 1.2.1], ie there is a vector space isomorphism
between H�.L/ and HF�.L;L/, and that L admits a perfect Morse function. These
conditions enable us to identify CF�.L;L/ŠHF�.L;L/ as vector spaces. Because G1

is cohomologically unital, G1.1L/D 1L 2 HF�.L;L/, so

(3-14) h1.x/D �.l/ � h‰.F 1.x//; li � 1L 2 HF�.L;L/:

Under our identifications, ‰ becomes an isomorphism between the vector spaces below,
and F 1 can be considered as an algebra isomorphism from HF�.L;L/ to itself:

(3-15) HF�.L;L/
F 1

������!
algebra iso.

HF�.L;L/
‰

�����!
linear iso.

H�.L/:

We now turn the discussion to Hochschild cohomology of monic algebras. Let f .u/ 2
KŒu� be a polynomial and A WD KŒu�=.f / the quotient algebra; it is called a monic
algebra. This is an algebra in the ordinary associative sense; we can consider it as an A1
algebra by equipping it with trivial higher-structure maps. The Hochschild cohomology
algebra HH�.A/ was computed by Holm [24]. Recall that Hochschild cohomology
of ungraded associative algebras is Z–graded (unlike Hochschild cohomology of non-
Z–graded A1 algebras): cochains A˝k ! A are said to have degree k , and the
differential has degree 1. By [24, Proposition 2.2],

HHk.A/D

8<:
A if k D 0;
AnnA.f 0/ if k > 0 is odd;
A=.f 0/ if k > 0 is even:

Although we already know the answer, let us compute HH1.A/ explicitly, as this will
be helpful later.

Lemma 3.12 For a Hochschild cocycle hW A! A in CC1.A/, we must have

(3-16) h.um/D amum�1

for some fixed a 2 A. Note that aD h.u/.

Proof Let us compute the Hochschild differential @hW A˝A!A on the two elements
u and um�1 for some m 2N . Because @h vanishes by assumption, we get

0D .@h/.u; um�1/D uh.um�1/Cum�1h.u/C h.um/:

The desired formula follows by induction on m.
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So any cocycle h2CC1.A/ is completely determined by a single element aDh.u/2A,
and h must meet an additional condition that h.f .u//Dh.0/D0, which is equivalent to
a2AnnA.f 0/. As the differential CC0.A/!CC1.A/ vanishes, we get an isomorphism
HH1.A/! AnnA.f 0/, h 7! h.u/.

We will further assume that char KD 2 and f 0 D 0. The latter condition means that
f is a sum of even powers of u. Denote by

 W HH1.A/! A

the isomorphism �.h/Dh.u/ from above. Note that if s.u/2A is an arbitrary element
given by a polynomial with derivative s0.u/, then by (3-16), we get

(3-17)  .h/D s0.u/ � h.s.u//:

For k > 1, we also have isomorphisms  W HHk.A/! A, all of which we denote by
the same letter by abusing notation; we will not need an explicit formula for these
isomorphisms when k > 1.

Moreover, [24, Lemma 5.1] computes the Yoneda product on HH�.A/. In particular,
given h1; h2 2 HH1.A/, their Yoneda product h1 ?h2 is determined by

(3-18)  .h1 ?h2/D  .h1/ � .h2/
X
j odd

f2ju
2j�2

2 A;

where f D
P
j fju

j , fj 2K.

The two strands of discussion can be combined in the following theorem.

Theorem 3.13 Let K be a field of characteristic 2 and L�X a Lagrangian preserved
by a Hamiltonian loop  which together satisfy the conditions of Theorem 1.7 (those
conditions which are common to all parts of the theorem). Assume there is an algebra
isomorphism HF�.L;L/ Š KŒu�=.f /, where f .u/ D

P
j�0 fju

j is a polynomial,
and also that L is wide and admits a perfect Morse function, so that we can identify
the vector spaces HF�.L;L/ Š CF�.L;L/, and ‰W HF�.L;L/! H�.L/ becomes
an isomorphism of vector spaces. Further, assume that

� f 0 D 0 and
P
j odd f2ju

2j�2 is invertible in KŒu�=.f /,

� h‰.r.u//; liD1 for an element r.u/2KŒu�=.f /ŠHF�.L;L/ which generates
HF�.L;L/ as an algebra,

� S./2 D 1 2 QH�.X/.

Then the Fukaya A1 algebra of L is not formal over K.
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Proof Supposing CF�.L;L/ is formal, let h be as in (3-13) and F 1 as in (3-15). Then
there exists s.u/ 2 HF�.L;L/ (we view this element as a polynomial in KŒu�=.f /)
such that F 1.s.u// D r.u/. Then by (3-14), h1.s.u// D �.l/ � 1 2 HF�.L;L/, so
by (3-17),

 .h1/D �.l/ � s0.u/ 2 HF�.L;L/:

Further, note that h?hD 0 because .S./C 1/2 D 0, so (3-18) yields

�.l/2 � .s0.u//2
X
j odd

f2ju
2j�2

D 0 2 HF�.L;L/:

By hypothesis, this implies .s0.u//2 D 0, so s0.u/ 2 kerF , where F W KŒu�=.f /!
KŒu�=.f / is the Frobenius endomorphism. In general, over char KD 2, it is always
true that s0.u/ is a sum of even powers of u, so s0.u/ is a square of another polynomial:
s0.u/D .t.u//2. Then t .u/2 2 kerF , which implies t .u/2 kerF because kerF , being
an ideal in KŒu�=.f /, is necessarily prime. Consequently, s0.u/D 0. So s.u/ is a sum
of even powers of u, hence the subalgebra generated by s.u/ lies in the subalgebra of
KŒu�=.f / generated by u2, which is smaller than the whole KŒu�=.f /: for example,
it does not contain the element u. (Recall that f is also a sum of even powers of u.)
On the other hand, we know that F 1 is an algebra isomorphism, F 1.s.u// D r.u/
and r.u/ generates the whole HF�.L;L/ by hypothesis. So s.u/ should also generate
HF�.L;L/, which is a contradiction.

Proof of Proposition 1.3 Take the real loop  preserving RP 4nC1 defined in the
proof of Proposition 1.1, and let L D RP 4nC1 and X D CP 4nC1 . Recall that if
x 2H 2.X/ is the generator, then QH�.X/ŠKŒx�=.x4nC2C1/ and S./Dx2nC1 , so
S./2D1. Also recall that l 2H1.L/ŠK is nonzero. By Theorem 1.12, HF�.L;L/Š
KŒu�=.u4nC2 C 1/, where u 2 CF1.L;L/ Š K, and we have h‰.u/; li D 1. Now
apply Theorem 3.13 taking r.u/D u to conclude the proof.

Proposition 3.14 Let X be BlCP 2q�1 CP 2rC2q�1 and L � X the real Lagrangian
(diffeomorphic to BlRP 2q�1 RP 2rC2q�1 ). Assume gcd.2qC1; 2r�2q/�2 and either
r or q is odd. Then the A1 algebra of L is not formal over a characteristic-2 field.

Proof We recall that all real Lagrangians are wide by Theorem 1.12 and admit a
perfect Morse function by [23]. The fact that gcd.2qC 1; 2r � 2q/� 2 means we are
in the situation of Theorem 3.3(b) with kD 2qD 2p and a1D � � � D ak D 1. We have
already seen by (3-5) that HF�.L;L/ŠKŒu�=.f / with f 0D 0, and it is easy to check
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that
P
j odd f2ju

2j�2 is invertible provided that either r or q is odd (otherwise this
element would vanish). Moreover, via (3-4) and Haug’s isomorphism (Theorem 1.12),
up=g corresponds to the generator of CF1.L;L/ŠK2 such that h‰.u/; li D 1. Now
apply Theorem 3.13 taking r.u/D up=g .

3.4 Nonformality of the equator on the sphere

Proposition 1.3 says in particular that the A1 algebra of an equatorial circle on S2 is
not formal over char KD 2. This is an especially simple case which can be verified by
hand, and it is worth discussing it in more detail. Let L1 � S2 be a fixed equator and
L2; L3; : : : a sequence of its small Hamiltonian perturbations; assume jLi \Lj j D 2
for each i; j . Then CF0.Li ; Lj /Š K is generated by an element which we denote
by 1 (this is the cohomological unit), and CF1.Li ; Lj /ŠK is generated by an element
which we denote by u (we use the same letter for all i; j ). Of the two intersection
points Li \Lj , the point u is the one at which TuLj is obtained from TuLi by a
small positive rotation with respect to the !–induced orientation on S2. Consider the
A1 structure maps between the consecutive Lagrangians:

(3-19) �k W CF�.Lk; LkC1/˝ � � �˝CF�.L1; L2/! CF�.L1; LkC1/

given by counting immersed polygons as in [40]. These give a model for the A1
algebra of L, because all the Li differ by small perturbations, and we can canonically
identify the spaces CF�.Li ; LiC1/ with each other. The A1 maps will depend on
the particular arrangement of the Li , although up to quasi-isomorphism they give the
same A1 algebra.

Remark 3.15 The fact the A1 algebra of L defined using the count of polygons is
quasi-isomorphic to the one defined using Hamiltonian perturbations seems not to have
been written down in detail, but it is widely accepted. An approach is sketched in [41,
Remark 7.2] and also performed in [44] in a slightly different setup.

Let us compute some of the A1 structure maps using a specific choice of the Li .
Fix a Hamiltonian H whose flow is the rotation of S2 �R3 around an axis which is
not orthogonal to the plane intersecting S2 along the equator L1 . Let L2; L3; : : : be
obtained from L1 by applying that rotation by small but consecutively increasing angles,
ie Li are time-ti pushoffs of L1 under the flow of H for 0 D t1 < t2 < t3 < � � � .
The first four resulting circles Li are represented in Figure 8, left. The pairwise
intersections of the Li are contained in two opposite patches of the sphere; those
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Figure 8: Two different configurations (left) and (right) consisting of four
small Hamiltonian pushoffs L1; : : : ; L4 (marked by numbers) of an equato-
rial circle on S2. The image of the disk contributing to �3.u; u; u/ D 1 is
shaded.

patches are shown in the top and bottom of Figure 8, left, together with the Li on them,
which are depicted by straight lines. Both patches are drawn as if we look at them from
the same point “above” the sphere, so that the positive rotation (with respect to the
orientation on S2 ) is counterclockwise on the upper patch and clockwise on the lower
patch. For this particular choice of perturbations, and for each i < j , all degree-one
points u2CF�.Li ; Lj / are located on the upper patch, and all points 12CF�.Li ; Lj /
are on the lower patch.

We claim that in this model, we get

�3.u; u; u/D 1; �3.u; u; 1/D 0; �3.u; 1; u/D 0; �3.1; u; u/D 0:

For grading reasons, �k.u; : : : ; u/ is a multiple of 1 and is determined by counting
Maslov index 2 disks. There is a unique such disk; for k D 3, it is shown in grey
shade in Figure 8, left, on the two patches; away from the patches, this disc is just a
strip between L1 and L4 . Also for grading reasons, the only other products which can
possibly be nontrivial are �k.u; : : : ; u; 1; u; : : : ; u/ 2 f0; ug, where exactly one input
is 1. It possible to check that these vanish for our configuration of the circles Li , at
least when k D 3. Now note that

�2.1Cu; 1Cu/D 0; �3.1Cu; 1Cu; 1Cu/D 1:

The latter equality exhibits a nontrivial Massey product seen as a well-defined element of

KŒu�=.1Cu/ŠK:
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An explanation of where the Massey products generally belong is found in Remark 1.2
of [40], which explains the quotient by 1C u above. The presence of a nontrivial
Massey product is invariant under quasi-isomorphisms. To see this, recall that the
analogous fact for dg algebras is easy, and any A1 algebra is quasi-isomorphic to a
dg algebra. Moreover, the Massey products for the A1 and dg models satisfy a simple
relation [31, Theorem 3.1 and Corollary A.5]; in particular, if triple Massey products
of an A1 algebra are nontrivial, they remain nontrivial for its dg model. This gives us
an alternative proof of the fact that the A1 algebra of the equator on S2 is not formal.

For any other arrangement of the Li , we will necessarily have �3.1Cu; 1Cu; 1Cu/D1
modulo 1Cu because of invariance of Massey products, meaning that

�3.1Cu; 1Cu; 1Cu/ 2 f1; ug:

For example, another possible configuration of L1; : : : ; L4 is shown in Figure 8, right;
it is simply obtained from the earlier configuration by changing the ordering of the Li .
In this new model, the maps �k from (3-19) are now

�3.u; u; u/D 1; �3.u; u; 1/D 0; �3.u; 1; u/D u; �3.1; u; u/D u:

The unique disk contributing to �3.u; u; u/ is shown in Figure 8, right, by grey shade.
It is an immersed disk, and the domain over which it self-overlaps has darker shade.
Note that in this model, the degree-one generators u 2 CF1.L1; L2/, CF1.L3; L4/,
CF1.L1; L4/ correspond to the intersection points on the upper patch, and the degree-
one generator u 2 CF1.L2; L3/ corresponds to the intersection point on the lower
patch. We see that we again get �3.1Cu; 1Cu; 1Cu/D u.

The existence of the Massey product above crucially required char K D 2, because
otherwise we would not get �2.1Cu; 1Cu/D 0, which is necessary to speak of the
triple Massey product of 1Cu with itself. If char K¤ 2, then

HF�.L1; L1/ŠKŒu�=.u2� 1/ŠKŒu�=.u� 1/˚KŒu�=.uC 1/

is a direct sum of fields, whose Hochschild cohomology as an ordinary algebra
vanishes [27] in degree 2, in contrast to the case where char K D 2. So any A1
algebra over KŒu�=.u� 1/˚KŒu�=.uC 1/ is formal by [26] or [43, Section 3]; in
particular, the A1 algebra of the equator on S2 is formal. For example, the product
�3.1Cu; 1Cu; 1Cu/ can be made to vanish after a formal diffeomorphism. Because
of the nontrivial Massey product in characteristic 2, such a formal diffeomorphism, say
over Q, will necessarily involve division by 2, and cannot be realised by any geometric
choice of the pushoffs Li .
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In comparison, the topological A1 algebra of the circle is formal over a field of any
characteristic. Indeed, the topological A1 algebra is Z–graded, so if we make this
algebra to be based on the cohomology ring H�.S1/ŠKŒx�=x2 where jxj D 1, the
only possibly nontrivial products will be �k.x; : : : ; x; 1; x; : : : ; x/ for grading reasons.
On the other hand, every A1 algebra is quasi-isomorphic to a minimal, strictly unital
one over a field of any characteristic [40, Lemma 2.1; 30, Theorem 3.1.1]. In a minimal
strictly unital model, those products vanish by definition when k � 3.

4 The closed-open map for monotone toric fibres

4.1 The mechanism of Theorem 1.7 for toric fibres

Let X be an n–dimensional compact toric Fano variety, and T � X the unique
monotone toric fibre. Evans and Lekili [19] proved (after this paper had appeared as
a preprint) that if char K D 0, the Fukaya category Fuk.X/w is split-generated by
several copies of T , equipped with the local systems corresponding to the critical points
of the Landau–Ginzburg superpotential with critical value w 2K. We shall recall the
formula for the superpotential of a toric manifold in the next subsection; the common
general references are [13; 7; 21].

Prior to [19], the split-generation by toric fibres had been proved only in the case when
the superpotential is Morse; see Ritter [37]. (For Ritter, proving split-generation requires
considerable effort, even in the Morse case, if W has several critical points with the
same critical value. However, the difficulty is mainly related to the fact that he allows
some noncompact toric varieties, where the injectivity of CO� is no longer a criterion
for split-generation and one must look at OC� instead. If we work with compact
manifolds, checking that CO� is injective for an arbitrary Morse potential is easy; see
Corollary 4.4.) An example of a toric Fano variety with non-Morse superpotential
over C has been obtained by Ostrover and Tyomkin [35], and one can check that the
superpotential in their case has an A3 singularity.

To complete the literature overview, we should mention the work in progress by
Abouzaid, Fukaya, Oh, Ohta and Ono that will prove the split-generation result for
toric manifolds that are not necessarily Fano.

Because the toric fibre T is invariant under all the Hamiltonian loops coming from the
torus action, it is an obvious example where Theorem 1.7 can be put to the test. It turns
out that it does allow one to prove split-generation away from the Morse case, though
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not too far from it: the superpotential is required to have at worst A2 singularities, and
the extra condition that char K¤ 2; 3 is required; see Corollary 4.6.

Although our result is much weaker than the general one from [19], we find it interesting
in our approach that the ability to solve equation (�) from Theorem 1.7 depends on
whether W is Morse or not. Equip T with a local system � which corresponds to
a critical point of W ; then .T; �/ is wide, and we can identify the vector spaces
HF�.T; �/ŠH�.T / via the PSS map ˆ. For convenience, let us rewrite equation (�)
from Theorem 1.7:

(�0) �2.a; y/C�2.y; a/D �.l/ � hy; li � 1T for each y 2H 1.T /:

We are using the standard spin structure on T , and hence the sign .�1/�.l/ is positive; see
Remark 1.8. Recall that Theorem 1.7(b) can be applied if there exists no a 2HF�.T; �/
making (�0) hold. The Floer cohomology algebra of .T; �/ is a Clifford algebra
determined by the Hessian of W at the point � , so the left-hand side of (�0) is equal to
Hess�W.a; y/ � 1T , at least when a 2H 1.T /; we are using informal notation for the
moment. Therefore, finding an element a solving (�0) reduces to finding an a such that

(4-1) Hess�W.a;�/D const � h�; li:

The ability to find such an a depends on how degenerate Hess�W is. If � is a Morse
point of W , such an a can always be found, so Theorem 1.7(b) does not apply. However,
the Morse case can actually be covered by Theorem 1.7(a) as we explain below. On
the other hand, when Hess�W has kernel, we will have some elements l 2H1.T / for
which (4-1) has no solution a . If we consider the S1–action whose orbit is such an
element l , Theorem 1.7(b) can be applied to the Seidel element of this S1–action to
get some new information on CO� which is not seen by CO0. This information turns
out to be sufficient only when the superpotential has A2 singularities, however, there
is a possible way of improvement which we speculate upon in the end of this section.

4.2 The results

Recall [12; 13; 21; 20] that the Landau–Ginzburg superpotential of X is a Laurent
polynomial W W .K�/n!K given by

W.x1; : : : ; xn/D
X
e

nY
jD1

xe
j

j ;

where the first sum is over the outer normals e 2 Zn to the facets of the polyhedron
defining X , and ej 2Z are their coordinates. (Sometimes, the superpotential is written

Algebraic & Geometric Topology, Volume 18 (2018)



The closed-open string map for S1–invariant Lagrangians 61

down with a Novikov parameter, but we can ignore it because we will only be working
with the monotone torus T .) We identify .K�/n with the space of all local systems
H1.T IZ/! K� . For � 2 .K�/n , we write .T; �/ for the torus equipped with this
local system. Also, we will abbreviate

HF�.T; �/ WD HF�..T; �/; .T; �//;

and the same for Hochschild cohomology. It is known (see [35, Proposition 3.3] for
example) that

(4-2) QH�.X/ŠKŒx˙11 ; : : : ; x˙1n �= Jac.W /DO.Z/;

where the Jacobian ideal Jac.W / is generated by .@W=@x1; : : : ; @W=@xn/, and Z is
the subscheme of Spec KŒx˙11 ; : : : ; x˙1n � defined by the ideal sheaf Jac.W /. Then Z
is a 0–dimensional scheme supported at the critical points of W ,

f�1; : : : ; �qg D CritW; �i 2 .K
�/n:

The obstruction number of the torus is given by

w.T; �/DW.�/ 2K:

Under the isomorphism (4-2), the quantum product is the usual product on O.Z/, and
the first Chern class of X is given by the function W itself. The generalised eigenspace
decomposition with respect to �� c1.X/ is simply the decomposition into the local
rings at the points �i :

KŒx˙11 ; : : : ; x˙1n �= Jac.W /Š
M

�i2CritW

O�i .Z/;

the eigenvalue of the �i–summand being the critical value W.�i /. From Lemma 1.9,
we see that HF�.T; �/D 0 if � … CritW . On the other hand, it is known that .T; �i /
is wide for �i 2 CritW ; ie HF�.T; �i / is isomorphic as a vector space to H�.T /.

Lemma 4.1 Under the isomorphism (4-2), the map CO0W QH�.X/! HF�.T; �i / is
given by

CO0.f /D f .�i / � 1T :

Here f .x1; : : : ; xn/ 2 QH�.X/, f .�i / 2K is the value of the function at �i 2 CritW ,
and 1T 2 HF�.T; �i / is the unit.
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Proof Because CO0 is a map of algebras, it suffices to prove the lemma when f D xk
is a linear function for 1� k� n. By [32], f DS./ for a Hamiltonian loop  coming
from the Hamiltonian torus action such that the value of the local system �i on an
orbit of  equals the kth coordinate �ki , which is the same as the value f .�i /. So
CO0.f /D f .�i / � 1T by Theorem 1.7(a).

Corollary 4.2 For �i ¤ �j 2 CritW , the map CO�jO�i .Z/! HH�.T; �j / vanishes.

Remark 4.3 If W.�i / ¤ W.�j /, Corollary 4.2 follows from Lemma 1.9. When
W.�i /DW.�j /, the statement is implicit in [37, Proof of Theorem 6.17] where it is
shown that, dually,

OCW HH�.T; �j /! QH�.X/

hits at most one summand of the form O�i , and we know by Lemma 4.1 that this
summand must actually be O�j . The proof in [37] is very different and relies on the
variation of the symplectic form.

Proof Let f 2KŒx˙11 ; : : : ; x˙1n � be such that f .�i /¤ 0 and f .�j /D 0. Then as an
element of O�i .Z/, f is invertible. If the corollary does not hold, CO�.f / is also
invertible. On the other hand, CO0.f / D 0 2 HF�.T; �j / by Lemma 4.1. The map
HH�.T; �j /! HF�.T; �j /, which takes a Hochschild cochain to its zeroth-order term,
is a map of unital algebras by the formula for the Yoneda product and because the
Hochschild cohomology unit is represented by a cochain whose zeroth-order term is the
Floer cohomology unit (this follows, for example, from the unitality of CO� ). We have
determined that f lies in the kernel of HH�.T; �j /!HF�.T; �j /, but that contradicts
the fact that f is invertible. This implies the corollary.

For w 2K, let
Critw W D f� 2 CritW WW.�/D wg

denote the set of all critical points of W with the same critical value w . We will
sometimes denote the restrictions of CO0 and CO� to subalgebras of QH�.X/ by the
same symbol when it is otherwise clear that we are considering a restriction.

Corollary 4.4 If char K¤ 2, the map

CO0W QH�.X/w !
M

�i2CritwW

HF�.T; �i /

is injective if and only if all points of Critw W are Morse.
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Proof By Corollary 4.2, CO0 is injective if and only if its restrictions CO0W O�i .Z/!
HF�.T; �i / are injective for each �i . The map O�i .Z/!K which takes f 2O�i .Z/
to its value f .�i / is injective if and only if O�i .Z/ is a field, which is equivalent to
the fact that �i is a Morse point of W when char K¤ 2. Now apply Lemma 4.1.

Proposition 4.5 Suppose that char K ¤ 2; 3 and that W has an A2 singularity at a
point � ; then CO�W O�.Z/! HH�.T; �/ is injective.

Proof After an integral linear change of coordinates, we may assume that the Hessian
of W at � is the diagonal matrix Hess�W Ddiag.1; : : : ; 1; 0/. We claim that O�.Z/ is
generated, as a vector space, by the two elements 1 and xn , where the linear function xn
corresponds to the kernel of Hess�W . Indeed, after a further nonlinear change of
coordinates with the identity linear part, we can bring W to the canonical form

W.zx1; : : : ; zxn/DW.�/C

n�1X
iD1

.zxs � �
i /2 C .zxn� �

n/3:

Here �i 2K are the coordinates of � . Then

Jac.W /D ..zx1� �1/; : : : ; .zxn�1� �n�1/; .zxn� �n/2/;

so O�.Z/ is generated, as a vector space, by 1 and zxn . Because xn , as a function of
zx1; : : : ; zxn , equals zxn plus terms of order at least 2, it is easy to see that the elements 1
and xn also generate the vector space O�.Z/.

Let us identify HF�.T; �/ with H�.T / via the PSS map ˆ. Recall that, in general,
HF�.T; �/ is the algebra generated by y1; : : : ; yn 2H 1.T / with relations

ypyqCyqyp D @
2
xpxq

W.�/:

In particular, in our case, we get ypynCynypD0 for any 1�p�n, so yn2HF1.T; �/
anticommutes with any element of HF�.T; �/ of odd degree. Consequently, the left-
hand side of equation (�) from Theorem 1.7 vanishes if we put y D yn and allow a to
be of arbitrary odd degree.

Returning to our generator xn 2O�.Z/, we have xn D S./ for a Hamiltonian S1–
action (coming from the toric action) such that the element yn 2 HF1.T; �/ is dual to
the orbit l 2H1.T / of  , so hyn; li D 1. Thus if we put y D yn , the right-hand side
of equation (�) from Theorem 1.7 becomes �n �1T ¤ 0. Hence (�) has no solution, and
Theorem 1.7(b) says that CO�.xn/ and 1HH D CO�.1/ are linearly independent.
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Combining the above discussion with the split-generation criterion, we get the following:

Corollary 4.6 Suppose that char K¤ 2; 3 and that each critical point �i 2 Critw W
is either Morse or an A2 singularity. Then the copies of the monotone toric fibre with
local systems f.T; �i /g�i2CritwW split-generate Fuk.X/w .

4.3 A way of extending Theorem 1.7

It is in fact not surprising that Theorem 1.7 turned out to be efficient only for A2
singularities. The main result on which Theorem 1.7 is based upon is Proposition 2.8,
which computes the linear part CO1 of the closed-open map, while the only non-Morse
singularity whose local Jacobian is generated as a vector space by constant and linear
functions is the A2 singularity (for which the Jacobian is generated by 1 and xn as
above). One could extend the computation in Proposition 2.8 to all orders of CO�

when applied to products of 1–cochains on L; we conjecture that the following holds.

Conjecture 4.7 The restriction

COk.S.//jCF1.L;L/˝k W CF1.L;L/˝k! CF0.L;L/

equals

(4-3) .�1/�.l/�.l/ � .l�/˝k � 1L

on symmetrised tensor products of Floer 1–cocycles. Here l�W CF1.L;L/! K is
given by l�.x/D h‰.x/; li, and l 2H1.L/ is the orbit of  .

Remark 4.8 As in Proposition 2.8, part of the statement is that the image of this
restriction necessarily lands in CF0.L;L/; this follows for degree reasons. Although the
proof of the above formula should be analogous to Proposition 2.8, one new issue arises
which we have not checked in detail. Consider the moduli spaces M .x1; : : : ; xkI x0/

from Section 2 and the pearly moduli spaces analogous to Figure 7 but with more
inputs. The new issue is a different type of domain degenerations coming from the
collision of input points: eg several punctured inputs for a curve in M .x1; : : : ; xkI x0/

may collide and create a bubble. To prove (4-3), one would need to argue that these
collisions cancel out when the input string is symmetrised.

Formula (4-3) is a chain level computation, and whether it survives to something
nontrivial in Hochschild cohomology will be governed by equations generalising
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equation (�) from Theorem 1.7; those equations will be determined by the A1 structure
maps on L up to order kC 1. When L is the monotone toric fibre, the A1 structure
maps have been related to higher-order partial derivatives of W by Cho [12], and
intuitively, the more degenerate the superpotential is, the more nontrivial information
from (4-3) survives to Hochschild cohomology. Consequently, these observations are
a possible starting point for proving split-generation results for toric Fano varieties
with other degenerate superpotentials. However, further development of this discussion
seems both complicated and not particularly demanded, given the general results of [19].
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