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Heegaard Floer homology and knots
determined by their complements

FYODOR GAINULLIN

We investigate the question of when different surgeries on a knot can produce identical
manifolds. We show that given a knot in a homology sphere, unless the knot is quite
special, there is a bound on the number of slopes that can produce a fixed manifold
that depends only on this fixed manifold and the homology sphere the knot is in. By
finding a different bound on the number of slopes, we show that non-null-homologous
knots in certain homology RP 3 are determined by their complements. We also
prove the surgery characterisation of the unknot for null-homologous knots in L–
spaces. This leads to showing that all knots in some lens spaces are determined by
their complements. Finally, we establish that knots of genus greater than 1 in the
Brieskorn sphere †.2; 3; 7/ are also determined by their complements.

57M25; 57M27

1 Introduction

Dehn surgery is an important and widely used technique for constructing 3–manifolds,
yet many natural questions about it are still unanswered. For example, given a knot K
in a manifold Y , how many different surgeries on K can produce a fixed manifold Z?
Conjecturally, in generic circumstances, the answer is 1. More precisely, we have:

Conjecture 1.1 (cosmetic surgery conjecture; see Gordon [7, Conjecture 6.1], Kirby
[12, Problem 1.81(A)] and Ni and Wu [20, Conjecture 1.1]) Let K be a knot in a
closed, connected, orientable 3–manifold Y such that the exterior of K is irreducible
and not homeomorphic to the solid torus. Suppose there are two different slopes r1
and r2 such that there is an orientation-preserving homeomorphism between Yr1

.K/

and Yr2
.K/. Then the slopes r1 and r2 are equivalent.

We call two slopes equivalent if there is a homeomorphism of the knot exterior taking
one to the other. If there are two distinct surgeries on K (with inequivalent slopes) that
produce the same oriented manifolds, then we call such surgeries purely cosmetic.

Another very natural question about knots in 3–manifolds is whether knots are deter-
mined by their complements. In other words, given two distinct knots K1; K2� Y , can
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70 Fyodor Gainullin

there exist an orientation-preserving homeomorphism between Y nK1 and Y nK2?
We remark that by “distinct” here we mean that there is no orientation-preserving
homeomorphism of Y taking K1 to K2 .

Given a knot K1 � Y , we say that K1 is determined by its complement if there is no
other knot K2�Y such that there is an orientation-preserving homeomorphism between
Y nK1 and Y nK2 . We say that K1 is strongly determined by its complement if the
condition of the previous sentence holds without the insistence that the homeomorphism
be orientation-preserving.

By Edwards [5], the question for complements is equivalent to the analogous question
for exteriors. It is not difficult to see then that the question of whether a knot is
determined by its complement can be reformulated in terms of Dehn surgery as follows.
A knot K � Y is determined by its complement if and only if the following condition
holds: if a surgery of some slope r on K gives Y , then r is equivalent to the meridian
of K.

Knots in S3 are determined by their complements (but not strongly, as there exist
chiral knots); see Gordon and Luecke [8]. Apart from some obvious ones, no examples
of knots that are not determined by their complements have been exhibited. Thus the
following conjecture seems natural:

Conjecture 1.2 (knot complement conjecture; see Gordon [7, Conjecture 6.2], Kirby
[12, Problem 1.81(D)], Boyer [1, Conjecture 6.2]) Let K be a knot in a closed,
connected, orientable 3–manifold Y such that the exterior of K is irreducible and
not homeomorphic to the solid torus. Suppose there is a nontrivial slope r such that
there is an orientation-preserving homeomorphism between Yr.K/ and Y . Then r is
equivalent to the meridian of K.

We remark that dealing with equivalent slopes may seem complicated, but this issue
does not arise at all if we can show that for no slope r (other than the meridian) we
have Yr.K/Š Y . This not only shows that K is determined by its complement, but
also that there is a unique slope which is equivalent to the meridian (ie the meridian
itself). In all statements for which we will be able to show that a knot is determined by
its complement, this will be the case.

Now a knot K � Y is strongly determined by its complement if and only if it
is determined by its complement and the following condition holds. If Yr.K/ is
homeomorphic to �Y by an orientation-preserving homeomorphism, then there is an
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Heegaard Floer homology and knots determined by their complements 71

orientation-reversing homeomorphism of the exterior of K that takes the meridian to r .
For example, achiral knots in S3 are strongly determined by their complements.

It is not difficult to see that Conjectures 1.1 and 1.2 are, in fact, equivalent. However,
they are not equivalent if we concentrate on a given manifold. In other words, if Y
in the conjectures is fixed, then they are genuinely different (Conjecture 1.1 implies
Conjecture 1.2).

Conjecture 1.1 is wide open. In contrast to Conjecture 1.2, it is not even proven for
knots in S3 . However, in [20], Ni and Wu (generalising some results of Ozsváth and
Szabó [31]) used Heegaard Floer homology with great success to address the cosmetic
surgery conjecture in S3 (or other L–space homology spheres). They have been able
to show that

� many manifolds (including all Seifert fibred spaces) cannot be results of purely
cosmetic surgery;

� there are at most 2 slopes on a knot that can yield the same (oriented) manifold
by surgery and they are negatives of each other;

� if p=q is a purely cosmetic surgery slope, then q2 ��1 .mod p/;

� knots that admit purely cosmetic surgery satisfy certain conditions on their knot
Floer homology.

In fact, it can be shown that any knot that admits a Seifert fibred surgery satisfies the
cosmetic surgery conjecture (see Gainullin [6]).

Boyer and Lines ruled out cosmetic surgeries on many knots in homology spheres.
They showed [2, Proposition 5.1] that knots with �00K.1/ ¤ 0 satisfy the cosmetic
surgery conjecture. Here �K is the Alexander polynomial of K normalised so as to
be symmetric and satisfy �K.1/D 1.

One might try to approach Conjectures 1.1 and 1.2 by trying to at least find some bound
on the number of slopes on a knot that can yield the same manifold. (The cosmetic
surgery conjecture states that this bound is 1.) In fact, it follows from the work of
Cooper and Lackenby [3] that, given two manifolds Y and Z, there are only finitely
many slopes ˛ such that there exists a hyperbolic knot K � Y with Y˛.K/DZ.

Our first result says that given a knot K in any homology sphere Y , if the Heegaard
Floer homology of a 3–manifold Z satisfies a certain property, then there is a bound
on the number of slopes that can produce Z that only depends on the first homology
of Z. More precisely, we have:
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Theorem 4.3 Let K be a knot in a homology sphere Y . Let Z be a rational homology
sphere with jH1.Z/j D p such that p does not divide �.HFred.Z//. Suppose that
there exist q1 and q2 such that

Z D Yp=q1
.K/D Yp=q2

.K/:

Then there is no multiple of p between q1 and q2 . In particular, there are at most
�.p/ surgeries on K that give Z.

Here � denotes the Euler totient function.

In particular, if Z is a homology RP 3 (ie jH1.Z/j D 2) whose order of reduced Floer
homology is odd, then it can be obtained by at most one surgery on any fixed knot in
any homology sphere. A standard homological argument then gives:

Corollary 7.1 Let Z be a closed, connected, oriented manifold with jH1.Z/j D 2.
Suppose that dim.HFred.Z// is odd. Then non-null-homologous knots in Z are
determined by their complements.

Spaces that satisfy the conditions of Theorem 4.3 exist, some of which we exhibit in:

Corollary 4.4 Let Z1m D S
2..3;�1/; .2; 1/; .6m� 2;�m// for odd m� 3 and Z2n

be the result of 2=n–surgery on the figure-eight knot for any odd n. If K is a knot in
a homology sphere that gives one of Z1m or Z2n by surgery of some slope, then this
surgery slope is unique.

Results of Ni and Wu show that Heegaard Floer homology is a relatively good invariant
when restricted to the set of manifolds obtained by surgery on a fixed knot in S3

in the sense that at most finitely many (ie 2) of them can have the same Heegaard
Floer homology (examples, when 2 different surgeries have the same Heegaard Floer
homology, do occur — see Ozsváth and Szabó [31, Section 9]).

Let K be a knot in an arbitrary homology sphere. We show that, unless K is very
special, the set of Heegaard Floer homologies of spaces obtained by surgery on K
still contains at most finitely many repetitions. In the statement below, subscripts e
and o stand for even and odd (respectively) parts of homology groups. The rest of the
notation will be explained in the next section.

For a homology sphere Y and a rational homology sphere Z, define

N.Y;Z/D 2jH1.Z/j dim.HFred.Y //C dim.HFred.Z//:
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Theorem 5.4 Let Y be a non-L–space homology sphere, Z be a rational homology
sphere and K � Y be a knot and suppose there are coprime integers p and q such that
Z D Yp=q.K/.

If jqj>N.Y;Z/, then

� V0.K/D 0;

� �K � 1;

� dim.Ared
k
.K/e/D dim.HFred.Y /e/ for all k ;

� dim.Ared
k
.K/o/D dim.HFred.Y /o/ for all k .

Note that if Y is an L–space homology sphere, K a knot in it and ZD Yp=q.K/, then
by Gainullin [6, Theorem 7] we have jqj � pC dim.HFred.Z//.1 Therefore we lose
nothing by assuming that Y is not an L–space.

Theorem 5.4 shows that for a knot to have a surgery not satisfying the bound jqj �
N.Y;Z/, the knot has to be quite “special”, ie satisfy all four of the bullet points listed
in the statement of the theorem. In the next proposition, we show that even for such
“special” knots that have genus > 1 we can provide an alternative upper bound on q .

For a rational homology sphere Z, define

yD.Z/Dmaxfdeg.z/� d.Z; t/ j z 2 HFred.Z; t/ is homogeneous; t 2 Spinc.Z/g

and

LD.Z/Dminfdeg.z/� d.Z; t/ j z 2 HFred.Z; t/ is homogeneous; t 2 Spinc.Z/g;

where by deg.z/ we understand the absolute grading of z .

Proposition 6.3 Let K � Y be a knot such that Z D Yp=q.K/ for p; q > 0 and
q > N.Y;Z/. Suppose the genus of K is larger than 1. Then

bq=pc � 1
2
. yD.Z/� LD.Y //:

Thus if infinitely many spaces obtained by surgery on a knot K in a homology sphere
have the same Heegaard Floer homology then K has genus 1 and trivial Alexander
polynomial.

In [13], Kronheimer, Mrowka, Ozsváth and Szabó prove the following “surgery charac-
terisation of the unknot”:

1In [6] the theorem is stated for Y D S3 , but the same proof is valid for arbitrary L–space homology
spheres.
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Theorem 1.3 [13, Theorem 1.1] Let U denote the unknot in S3 and let K be any
knot. If there is an orientation-preserving diffeomorphism S3r .K/Š S

3
r .U / for some

rational number r , then K D U.

Clearly, this theorem provides an alternative proof of the fact that knots in S3 are
determined by their complements. The proof has been adapted to the setting of Heegaard
Floer homology in Ozsváth and Szabó [29] (see also Manion [15]). Crucial for the
proof is the fact that S3 is an L–space, ie it has “the smallest possible” Heegaard Floer
homology.

The Brieskorn space †.2; 3; 7/ has perhaps the simplest possible Heegaard Floer
homology a non-L–space can have. We use this to prove:

Theorem 7.2 Knots of genus larger than 1 in the Brieskorn sphere †.2; 3; 7/ are
determined by their complements. Moreover, if K �†.2; 3; 7/ is a counterexample to
Conjecture 1.2 then the surgery slope is integral, bHFK .†.2; 3; 7/;K; 1/ has dimension
2 and its generators lie in different Z2–gradings.

Nonfibred knots of genus larger than 1 in †.2; 3; 7/ are strongly determined by their
complements.

Returning to L–spaces, we show that Theorem 1.3 admits a generalisation as follows.

Theorem 8.2 Let Y be an L–space and K � Y a null-homologous knot. Suppose
that

HFC.Yp=q.K//Š HFC.Y #L.p; q//:

Then K is the unknot.

In particular, null-homologous knots in L–spaces are determined by their complements.

In the statement above, by L.p; q/ we understand the result of p=q surgery on the
unknot in S3 .

Shortly after the first version of this preprint was published, Ravelomanana [35]
published his proof of the fact that knots in L–space integral homology spheres are
determined by their complements, thus reproving a part of our Theorem 8.2. In a
later version of his paper, he was also able to show that knots in †.2; 3; 5/ are (in our
terminology) strongly determined by their complements.
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Lens spaces are L–spaces (indeed, they are the reason for the name), so it follows that
null-homologous knots in lens spaces are determined by their complements. In fact,
Mauricio [16] has proven the above theorem for integral slopes, so, coupled with the
cyclic surgery theorem of Culler, Gordon, Luecke and Shalen [4], Mauricio’s result
implies that null-homologous nontorus knots in lens spaces are determined by their
complements (though Mauricio does not phrase it in this way).

Some homological arguments allow us to prove a stronger result for lens spaces. First,
we need to fix some notation. Note that we will be making some arbitrary choices.
Suppose K is a knot in a lens space L D L.p; q/ and view L as a union of two
Heegaard solid tori V and W . Isotope K into W and fix thus obtained isotopy class
of K in W . Now that K is viewed as a fixed knot in W , it has a well-defined winding
number w in W (ie the algebraic intersection number of K with a meridional disc
of W — it does not make sense if we allow K to leave W ). Embed W into S3 in a
standard way. This endows both K and W with a preferred longitude (note, again,
that this only makes sense after we fix the embedding, which is chosen arbitrarily). We
use the thus-obtained longitude of K to identify slopes with rational numbers.

Note that even though w was fixed rather arbitrarily, it features in the corollary below.
This is because its remainder modulo p is well-defined and the slope n in the statement
also depends upon the choices above.

Then we have the following result:

Corollary 8.3 If p is square-free, then all knots in LD L.p; q/ are determined by
their complements.

More precisely, let K be a knot whose exterior is not a solid torus and such that a
nontrivial surgery on it gives L. Then the exterior of K is not Seifert fibred, p jw2 and
the surgery slope, n, is an integer that satisfies (with some choice of sign)

nD�q
w2

p
˙ 1:

Moreover, there is at most one such slope (ie we can choose either C or � but not both
in the equation above).
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2 Review of the mapping cone formula

In this section, we review the mapping cone formula of [31, Theorem 1.1]. We use
notation largely similar to that of Ni and Wu [20].

Given a knot K in a homology sphere Y we can associate to it a doubly pointed
Heegaard diagram as in [24]. We define a complex C DCFK1.Y;K/ generated (over
an arbitrary field F ) by elements of the form Œx; i; j �, where x is an “intersection
point” of the Heegaard diagram (as defined in [24]) and .i; j / 2 Z�Z. Generators
of C are not all triples Œx; i; j �, but only those that satisfy a certain condition. The
differential on C does not increase either i or j , so C is doubly filtered by the pair
.i; j / 2 Z�Z. The doubly filtered chain homotopy type of this complex is a knot
invariant [24, Theorem 3.1].

By [33, Lemma 4.5], the complex C is homotopy equivalent (as a filtered complex) to
a complex for which all filtration-preserving differentials are trivial. In other words,
at each filtration level, we replace the group, viewed as a chain complex with the
filtration-preserving differential, by its homology. From now on we work with this
reduced complex.

The complex C is invariant under the shift by the vector .�1;�1/. Thus there is an
action of a formal variable U on C , which is simply the translation by the vector
.�1;�1/. In other words, the group at the filtration level .i; j / is the same as the one
at the filtration level .i � 1; j � 1/ and U is the identity map from the first one to the
second. Of course, U is a chain map. In C the map U is invertible (but note that it
will not be in various subcomplexes and quotients), so C is an F ŒU; U�1�–module.

This means that as an F ŒU; U�1�–module C is generated by the elements with the
first filtration level i D 0. In the reduced complex, the group at filtration level .0; j / is
denoted by bHFK .Y;K; j / and is known as the knot Floer homology of K at Alexander
grading j .
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BC

AC1 .K/

j D 0

i D 0

Figure 1: Schematic representation of (a part of) the complex C (for some
genus-2 knot). Dots represent groups at various filtration levels and arrows
stand for components of the differential. The part shaded in grey (including
the dark grey part over it) is the complex AC1 .K/ . The part shaded dark grey
represents BC.

The complex C possesses an absolute Q–grading and a relative Z–grading, ie differ-
ences of absolute Q–gradings of elements of C are integers. In fact, C is the complex
used to compute the (1–flavour of the) Heegaard Floer homology of Y ; the knot
provides an additional filtration for it. By grading the Heegaard Floer homology of Y
(as in [22]), we obtain the grading on C . The map U decreases this grading by 2.

Using the filtration on C we can define the quotients (see Figure 1)

AC
k
.K/D C fi � 0 or j � kg; k 2 Z;

and
BC D C fi � 0g Š CFC.Y /:

We also define two chain maps, vk; hk W A
C

k
.K/ ! BC. The first one is just the

projection (ie it sends to zero all generators with i < 0 and acts as the identity map for
everything else). The second one is the composition of three maps: firstly we project to
C fj � kg, then we multiply by U k (this shifts everything by the vector .�k;�k/) and
finally we apply a chain homotopy equivalence that identifies C fj � 0g with C fi � 0g.
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h�2

&&

.�1; AC�1.K//

v�1

��

h�1

%%

.0; AC0 .K//

v0

��

h0

%%

.1; AC0 .K//

v0

��

h0

%%

.2; AC1 .K//

v1

��

h1

%%

.�1; BC/ .0; BC/ .1; BC/ .2; BC/

Figure 2: Schematic representation of the portion of the map DC
i;p=q

for
i D 0 and p=q D 2

3

Such a chain homotopy equivalence exists because the two complexes both represent
CFC.Y / and, by general theory [24], there is a chain homotopy equivalence between
them, induced by the moves between the Heegaard diagrams. We usually do not know
the explicit form of this chain homotopy equivalence.

Knot Floer homology detects the knot genus. It does so in the following way [18,
Theorem 3.1]:

Theorem 2.1 (Ni) Let Y be a homology sphere and K � Y a knot.

Then g.K/Dmaxfj 2 Z j bHFK .Y;K; j /¤ 0g.

From this (together with symmetries of C ) we can see that the maps vk (resp. hk ) are
isomorphisms if k � g (resp. k ��g ). For example, Figure 1 represents some knot of
genus 2.

We define chain complexes

AC
i;p=q

.K/D
M
n2Z

.n; AC
b.iCpn/=qc

.K//; BC D
M
n2Z

.n; BC/:

The first entry in the brackets here is simply a label used to distinguish different copies
of the same group. There is a chain map DC

i;p=q
from AC

i;p=q
.K/ to BC defined by

taking sums of all maps vk and hk with appropriate domains and requiring that the
map vk goes to the group with the same label n and hk increases the label by 1.
Explicitly

DC
i;p=q

�
f.k; ak/gk2Z

�
D f.k; bk/gk2Z;

where bk D v
C

b.iCpk/=qc
.ak/C h

C

b.iCp.k�1//=qc
.ak�1/ — see Figure 2.

Each of AC
k
.K/ and BC inherits a relative Z–grading from the one on C . Let XC

i;p=q

denote the mapping cone of DC
i;p=q

. We fix a relative Z–grading on the whole of it by
requiring that the maps vk and hk (and so DC

i;p=q
) decrease it by 1. The following is

proven in [31]:
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Theorem 2.2 (Ozsváth and Szabó) There is a relatively graded isomorphism of
F ŒU �–modules

H�.X
C

i;p=q
/Š HFC.Yp=q.K/; i/:

The index i in HFC.Yp=q.K/; i/ stands for a Spinc structure. The numbering of
Spinc structures we refer to is defined in [31], but we do not need precise details of
how to obtain this numbering for our purposes.

We can also determine the absolute grading on the mapping cone. The group BC is
independent of the knot. Now if we insist that the absolute grading on the mapping
cone for the unknot should coincide with the grading of HFC of the surgery on it (ie
d.L.p; q/; i/C d.Y /), this fixes the grading on BC . We then use this grading to fix
the grading on XC

i;p=q
for arbitrary knots — this grading then is the correct grading, ie

it coincides with the one HFC should have.

It seems quite complicated to understand the homology of the mapping cone of
DC
i;p=q

by direct inspection. Thus we pass to homology of the objects we introduced
above. Specifically, let AC

k
.K/ D H�.A

C

k
.K//, BC D H�.B

C/, AC
i;p=q

.K/ D

H�.ACi;p=q.K//, BCDH�.BC/ and let vk , hk and DC
i;p=q

denote the maps induced
by vk , hk and DC

i;p=q
, respectively, in homology.

When we talk about AC
i;p=q

.K/ as an absolutely graded group, we mean the grading
that it inherits from the absolute grading of the mapping cone that we described above.

Recall that the short exact sequence

0! BC i
�!XC

i;p=q

j
�!AC

i;p=q
.K/! 0

induces the exact triangle

(1)

AC
i;p=q

.K/ BC

H�.X
C

i;p=q
/Š HFC.Yp=q.K/; i/

D
C

i;p=q

j�
i�

All maps in these sequences are U –equivariant.

Define T C
d

to be the graded F ŒU �–module F ŒU; U�1�=U �F ŒU � with (the equivalence
class of) 1 having grading d and multiplication by U decreasing the grading by 2.
Similarly, let T .N / be the submodule of T C

d
generated by f1; U�1; : : : ; U�.N�1/g.
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We omit the subscript d if the absolute grading does not exist or is not relevant.
However, even without the absolute grading, these groups are still relatively Z–graded
(by requiring that U decreases the grading by 2).

If Z is a rational homology sphere, then HFC.Z; s/ D T C
d
˚ HFred.Z; s/, where

d D d.Z; s/ is the d –invariant (or the correction term) of Z in the Spinc structure s

and HFred.Z; s/ is the reduced Floer homology of Z in the same Spinc structure. The
reduced Floer homology of Z is the sum of reduced Floer homologies in all Spinc

structures, which we denote by

HFred.Z/D
M

s2Spinc.Z/

HFred.Z; s/:

For each s 2 Spinc.Z/, HFred.Z; s/ is a finitely generated F ŒU �–module in the kernel
of a large enough power of U, thus it has the form

Lm
iD1 T .ni / for some ni .

We have that AC
k
.K/ŠAT

k
.K/˚Ared

k
.K/ and BCDBT ˚Bred , where AT

k
.K/Š

T C ŠBT and Ared
k
.K/ and Bred are finitely generated-F ŒU � modules in the kernel

of a large enough power of U. Define

ATi;p=q.K/D
M
n2Z

.n;AT
b.iCpn/=qc.K//; Ared

i;p=q.K/D
M
n2Z

.n;Ared
b.iCpn/=qc.K//;

BT D
M
n2Z

.n;BT /; Bred
D

M
n2Z

.n;Bred/:

We decompose the maps in a similar manner. Let DC
i;p=q

DDT
i;p=q
˚Dred

i;p=q
, where the

first map is the restriction of DC
i;p=q

to AT
i;p=q

.K/ and the second one is the restriction to
Ared
i;p=q

.K/. Let vT
k

and hT
k

be the restrictions of vk and hk , respectively, to AT
k
.K/.

Then DT
i;p=q

is defined using vT
k

and hT
k

in the same way as DC
i;p=q

is defined using
vk and hk .

Notice that the images of vT
k

and hT
k

are contained in BT — this is because they are
F ŒU �–module maps. In fact, since these maps are homogeneous and are isomorphisms
for large enough gradings, they are multiplications by some powers U Vk and UHk for
vT
k

and hT
k

, respectively.

The following are some useful properties of Vk and Hk . The proofs are completely
analogous to the case of knots in S3 ; see [20]:

� Vk DH�k for any k 2 Z.

� Vk � VkC1 and Hk �HkC1 for any k 2 Z.
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� Vk!C1 as k!�1 and Hk!C1 as k!C1.

� Vk D 0 for k � g.K/ and Hk D 0 for k � �g.K/.

In other words, Vk form a nonincreasing unbounded sequence of nonnegative numbers,
which become zero at g.K/ or earlier, and Hk D V�k .

3 Correction terms

The next lemma essentially shows that when p; q > 0, the map DC
i;p=q

becomes an
isomorphism “at the ends”, so in the mapping cone formula we only need to consider a
finite central part.

Lemma 3.1 Fix a number G � g.K/. Let p; q > 0. Let BC
GC

and BCG� be the
subgroups of BC consisting of all .n;BC/ with n satisfying�

i Cpn

q

�
�G

and �
i Cp.n� 1/

q

�
� �G;

respectively.

Let AC
i;p=q

.K/GC and AC
i;p=q

.K/G� be the subgroups of AC
i;p=q

.K/ consisting of all
.n;AC

k
.K// with n satisfying �

i Cpn

q

�
�G

and �
i Cpn

q

�
� �G;

respectively.

Then DC
i;p=q

maps AC
i;p=q

.K/G˙ isomorphically onto BC
G˙

.

Proof The cases n� 0 and n� 0 are similar, so we will only consider n� 0.

First we want to show that the image of DC
i;p=q

is all of BC
GC

. Suppose � 2 .n;BC/,
n� 0 and b.i Cpn/=qc �G � g.K/.

Note that vk is an isomorphism for k � g.K/. Moreover, if we identify each AC
k
.K/

with BC via vk for k � g.K/, then any fixed element of AC
k
.K/ is in the kernel of

hk for big enough k and hk decreases the grading by any amount we want if k is big
enough.
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Let �0 D v�1b.iCpn/=qc.�/ 2 .n;A
C

b.iCpn/=qc
/. Define �m inductively by

�m D v
�1
b.iC.nCm/p/=qc.hb.iC.nCm�1/p/=qc.�m�1//:

By properties of vk and hk described above, for big enough m we have �mD 0. This
shows that � DDC

i;p=q

�P
k �k

�
is in the image of DC

i;p=q
.

Now suppose � 2 AC
i;p=q

.K/GC is in the kernel of the restriction of DC
i;p=q

to
AC
i;p=q

.K/GC . Then the leftmost component must be in the kernel of the corresponding
map vk — a contradiction.

In the previous section, we mentioned that it is possible to put an absolute grading on
BC that does not depend on the knot we consider. In the next lemma, we explicitly
describe this grading. Note that since the relative grading is already fixed, it is enough
to put an absolute grading on any homogeneous element of BC.

Lemma 3.2 Let Y be a homology sphere. Consider the mapping cone for the Spinc

structure i . The grading of 1 in .0;BT / is d.Y /C d.L.p; q/; i/� 1.

Proof As a result of p=q–surgery on the unknot, we get Y #L.p; q/, whose correction
terms are d.Y #L.p; q/; i/D d.Y /C d.L.p; q/; i/.

By Lemma 3.1 applied to the unknot (which has genus 0), the map DC
i;p=q

is surjective
for the unknot. Thus HFC.Y #L.p; q//Š ker.DC

i;p=q
/.

Just as in [20, Proof of Proposition 1.6], there is a tower in the kernel of DT
i;p=q

and
the element U�n in this tower has U�n as a component in .0;AT0 .K//. This shows
that 1 in .0;AT0 .K// has grading d.Y #L.p; q/; i/D d.Y /Cd.L.p; q/; i/, so, since
V0 D 0, 1 in .0;BT / has grading d.Y /C d.L.p; q/; i/� 1.

Let Y be a homology sphere. Recall that its Heegaard Floer homology possesses
an absolute Z2–grading, defined to be 0 on the tower part and be the reduction
mod 2 of the relative Z–grading.2 Decompose the Heegaard Floer homology of Y
in the following way: HFC.Y / Š T C

Ll
iD1 T .n

C
i /˚

Lm
iD1 T .n

�
i /, where T .nCi /

(resp. T .n�i /) lie in even (resp. odd) Z2–grading. The following proposition may be
seen as a generalisation of [20, Proposition 1.6].

2In other words, every element of the tower has grading 0 and the grading of an element is 1 if and
only if it has odd relative Z–grading with some element of the tower.
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Proposition 3.3 With notation as above, suppose Z D Yp=q.K/ for p > 0 and q > 0.
Then

(2) d.Y /C d.L.p; q/; i/� 2maxfVbi=qc;Hb.i�p/=qcg� 2max
j
fn�j g � d.Z; i/

and

(3) d.Z; i/� d.Y /C d.L.p; q/; i/� 2maxfVbi=qc;Hb.i�p/=qcg:

Proof Since the grading of BC is independent of the knot, by Lemma 3.2 we have
that 1 in .0;BT / has grading d.Y /C d.L.p; q/; i/ � 1. As usual, the proof sub-
divides into two cases, depending on whether Vbi=qc D maxfVbi=qc;Hb.i�p/=qcg or
otherwise. The two cases are analogous, so we only consider the case Vbi=qc D
maxfVbi=qc;Hb.i�p/=qcg.

Then, as in [20, Proof of Proposition 1.6] (or see [6, Lemmas 12–13]) we can show that
there is a tower in the kernel of DT

i;p=q
such that U�n in this tower has U�n as the

component in .0;AT0 .K//. Suppose that 1 in this tower has grading d . Then also 1 in
.0;AT0 .K// has grading d and thus U�Vbi=qc 2 .0;AT0 .K// has grading d C2Vbi=qc .

On the other hand, U�Vbi=qc 2 .0;AT0 .K// is mapped to 12 .0;BT / by vC
bi=qc

, which
has grading �1. So

d C 2Vbi=qc� 1D d.Y /C d.L.p; q/; i/� 1;

from which it follows that d D d.Y /C d.L.p; q/; i/� 2Vbi=qc .

By the exact triangle (1), everything in the kernel of DC
i;p=q

must be in the image of j� .
So, in particular, the tower we identified in the kernel of DT

i;p=q
(and thus DC

i;p=q
)

must be in the image of j� . At high enough gradings only the elements of the tower
in HFC.Yp=q.K/; i/ may hit the elements of the tower in the kernel of DC

i;p=q
. Since

the maps in the triangle are U –equivariant, the tower in HFC.Yp=q.K/; i/ must be
mapped onto the tower in the kernel of DC

i;p=q
. It follows that

d.Y /C d.L.p; q/; i/� 2Vbi=qc D d � d.Z; i/:

This argument also shows that the map j� has submodule T
�
1
2
.d � d.Z; i//

�
in its

kernel and moreover this submodule lies in Z2–grading 0.

Thus there has to be a submodule T .N / in BC with N � 1
2
.d � d.Z; i// that is not

in the image of DC
i;p=q

. Moreover, it must have odd Z2–grading in BC.
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However, the odd part of BC is in the kernel of Umaxj fn
�
j
g , so

max
j
fn�j g �

1
2
.d � d.Z; i//

and therefore

d.Z; i/� d � 2max
j
fn�j g D d.Y /C d.L.p; q/; i/� 2Vbi=qc� 2max

j
fn�j g:

This completes the proof in the case Vbi=qc �Hb.i�p/=qc . The other case is completely
analogous.

The following straightforward corollary may be of interest.

Corollary 3.4 Let Y be a positively oriented Seifert fibred homology sphere and
K � Y a knot. Suppose Z D Yp=q.K/, where p=q > 0. Then

d.Z; i/D d.Y /C d.L.p; q/; i/� 2maxfVbi=qc;Hb.i�p/=qcg:

Proof Positively oriented Seifert fibred homology spheres have n�i D 0 for all i , by
[23, Corollary 1.4].

4 Surgery producing spaces with p−�.HFred/

In this section, we want to prove Theorem 4.3. We use the Casson–Walker invariant,
normalised as in [20]. Our normalisation for the Alexander polynomial of a null-
homologous knot in a rational homology also differs from that used in some other
sources (in particular [38]). Specifically, we require that the Alexander polynomial
�K of a null-homologous knot K in a rational homology sphere Y satisfies �K.t/D
�K.t

�1/ and �00K.1/D jH1.Y /j.

To a rational homology sphere Y , the Casson–Walker invariant assigns a rational
number �.Y /. Two key properties we will need are as follows.

For a null-homologous knot K in a rational homology sphere Y we have (see [38,
Proposition 6.2] and note we are using slightly different normalisations)

(4) �.Yp=q.K//D �.Y /C�.L.p; q//C
q

2pjH1.Y /j
�00K.1/:

The following formula appears in [37, Theorem 3.3]:

(5) jH1.Y /j�.Y /D �.HFred.Y //�
1

2

X
s2Spinc.Y /

d.Y; s/:
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If we apply this formula to a lens space L.p; q/ we get

(6)
X

s2Spinc.L.p;q//

d.L.p; q/; s/D�2p�.L.p; q//:

Another invariant we will briefly use is the Casson–Gordon invariant, � , which satisfies
the following surgery formula: Suppose W is an integral homology sphere and K a
knot in it. Then

(7) �.Yp=q.K//D �.L.p; q//� �.K; p/;

where �.K; p/ is a number depending only on K and p .

Finally, both Casson–Walker and Casson–Gordon invariants of lens spaces can be
expressed in terms of Dedekind sums. For our purposes, it is enough to know that a
Dedekind sum assigns to a pair of coprime numbers .p; q/ a number s.q; p/. We have

(8) �.L.p; q//D�1
2
s.q; p/

and

(9) �.L.p; q//D�4ps.q; p/:

Proposition 4.1 Let Y be a homology sphere, K � Y a knot and suppose there is a
rational homology sphere Z with

Z D Yp=q1
.K/D Y�p=q2

.K/;

where p; q1; q2 > 0.

Then
�.HFred.Z//D p�.HFred.Y //:

Proof By combining equations (7) and (9) we get s.q1; p/D s.�q2; p/. From this
and (8) we get �.L.p; q1//D �.L.p;�q2//.

Now (4) implies that
q1

2pjH1.Z/j
�00K.1/D

�q2

2pjH1.Z/j
�00K.1/;

from which it follows that �00K.1/D 0.

Formula (3) gives d.Z; i/�d.Y /Cd.L.p; q1/; i/. If we can get Z from Y by �p=q2–
surgery, then by reversing orientations we see that we can get �Z from �Y by p=q2–
surgery. Using formula (3) then gives d.�Z; i/�d.�Y /Cd.L.p; q2/; i/, which yields
�d.Z; i/� �d.Y /� d.L.p;�q2/; i/ and thus d.Z; i/� d.Y /C d.L.p;�q2/; i/.
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Summing over all Spinc structures yields

(10)
X

s2Spinc.Z/

d.Z; s/� pd.Y /C
X

s2Spinc.L.p;q1//

d.L.p; q1/; s/

and

(11)
X

s2Spinc.Z/

d.Z; s/� pd.Y /C
X

s2Spinc.L.p;�q2//

d.L.p;�q2/; s/:

By (6), the two last terms (sums of d –invariants for lens spaces) in the two equations
above are equal.

The inequalities (10) and (11) now imply

(12)
X

s2Spinc.Z/

d.Z; s/ D pd.Y / � 2p�.L.p; q1// D pd.Y / � 2p�.L.p;�q2//:

Now using (5) we get

�.HFred.Z//�
1

2

X
s2Spinc.Z/

d.Z; s/D p�.Z/:

Using (4) and the fact that �00K.1/D 0, we obtain

p�.Z/D p�.Y /Cp�.L.p; q1//:

Applying (5) to Y gives us

p�.Z/D p�.HFred.Y //�
1
2
pd.Y /Cp�.L.p; q1//

D p�.HFred.Y //�
1
2

�
pd.Y /� 2p�.L.p; q1//

�
:

Substituting from (12) and combining the equalities we arrive at

�.HFred.Z//�
1

2

X
s2Spinc.Z/

d.Z; s/D p�.HFred.Y //�
1

2

X
s2Spinc.Z/

d.Z; s/;

from which the conclusion of the proposition follows.

Since this proposition holds for arbitrary homology spheres, we have relative freedom
to “change coordinates”, ie to see a surgery on a knot in some homology sphere as a
surgery on its dual in another homology sphere. This is the essence of what is going
on in the next lemma.
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Lemma 4.2 Let K be a knot in a homology sphere Y and suppose for some rational
homology sphere Z that

Z D Yp=q1
.K/D Yp=q2

.K/:

Suppose further that there exists k 2 Z such that q1 < pk < q2 . Then

p j�.HFred.Z//:

Proof Consider a homology sphere Y1 given by

Y1 D Y1=k.K/:

Let K 0 be the surgery dual of K in Y1 . Denote by � the meridian of K 0 and by m
and l the meridian and the (preferred) longitude, respectively, of K. Longitudes of
K and K 0 coincide. We view the curves �, m and l as slopes on the boundary of
Y n nb.K/D Y1 n nb.K 0/.

We have �DmCkl . So pmCq1lDp�C.q1�pk/l and pmCq2lDp�C.q2�pk/l .
Since q1�pk < 0 < q2�pk , this shows that Z can be obtained by both positive and
negative surgery on K 0 in Y1 . Then, by Proposition 4.1,

�.HFred.Z//D p�.HFred.Y1//) pj�.HFred.Z//:

We are now in position to prove:

Theorem 4.3 Let K be a knot in a homology sphere Y . Let Z be a rational homology
sphere with jH1.Z/j D p such that p does not divide �.HFred.Z//. Suppose that
there exist q1 and q2 such that

Z D Yp=q1
.K/D Yp=q2

.K/:

Then there is no multiple of p between q1 and q2 . In particular, there are at most
�.p/ surgeries on K that give Z.

Proof If p=q1; : : : ; p=qN are distinct slopes that give Z by surgery on K , then by
Lemma 4.2 there is k 2 Z such that pk < qi < p.kC 1/ for all i (clearly the case
p D 1 is vacuous). Since the qi are coprime to p , the conclusion follows.

If there are spaces that satisfy the condition of Theorem 4.3 and have order of homology
2 then for any knot in any homology sphere there can be at most one slope that
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gives such a space by surgery (since �.2/ D 1). Note also that dim.HFred.Z// �

�.HFred.Z// .mod 2/, so the condition is then equivalent to dim.HFred.Z// being
odd. Such spaces do exist and the next corollary demonstrates some.

Corollary 4.4 Let Z1m D S
2..3;�1/; .2; 1/; .6m� 2;�m// for odd m � 3 and Z2n

be the result of 2=n–surgery on the figure-eight knot for any odd n. If K is a knot in
a homology sphere that gives one of Z1m or Z2n by surgery of some slope, then this
surgery slope is unique.

Proof Note that Z1m is the result of 2=m–surgery on the right-handed trefoil. It is
enough to show that the order of HFred.Z

1
m/ or HFred.Z

2
n/ is odd.

The trefoil has V0 D 1 and V1 D 0 and all Ared
k
.K/ trivial (since it is a genus 1

L–space knot). The dimension of its reduced Floer homology can be found using the
formula of [21, Corollary 3.6] (or see [6, Proposition 16] for the same formula with
notation as in this paper). In this case, the dimension is m� 2 for m � 3, which is
clearly odd.

Since the figure-eight knot is alternating, we can calculate its knot Floer homology from
the Alexander polynomial and the signature (see [26, Theorem 6.1]). This (after some
calculations) shows that for the figure-eight AC0 .K/ Š T C

d
˚ Td�1.1/ for some d .

We also have V0 D 0 and Ared
k
.K/D 0 for k ¤ 0. Thus the dimension of the reduced

Floer homology of surgery is equal to n by [20, Proposition 5.3].

5 Bound on q for knots that are not too exceptional

In this section, we prove Theorem 5.4. First, we deal with knots for which the sequence
fVkgk�0 is not identically zero.

Lemma 5.1 Let K be a knot in a homology sphere Y with V0 > 0. Suppose Z D
Yp=q.K/ for p ¤ 0. Then

jqj � jpjC
dim.HFred.Z//

V0
:

Proof Let jqj � jpj. It follows from [6, Lemma 13] for positive surgeries and [6,
Lemma 17] for negative surgeries that HFred.Z; i/ contains a submodule isomorphic
to T .V0/

L
ni, where ni D #

˚
j 2 Z j 0� j < jqj; j � i .mod jpj/

	
� 1.
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So dim.HFred.Z; i//� niV0 . Therefore,

dim.HFred.Z//� V0

jpj�1X
iD0

ni D V0.jqj � jpj/:

The desired inequality now follows upon rearranging the terms.

The mapping cone complex is sometimes unnecessarily large for our purposes. By
using some elementary linear algebra contained in the next lemma, we want to be able
to pass to a smaller complex when necessary.

Lemma 5.2 Let T1 , T2 , R1 and R2 be graded vector spaces and let f W T1 ! T2 ,
gW R1! R2 and hW R1! T2 be graded linear maps. Suppose that f is surjective.
Then the homology of the complex

0! T1˚R1
D
�!T2˚R2! 0;

where D is given by D D
�
f
0
h
g

�
, is isomorphic (as a graded vector space) to the direct

sum of the kernel of the map f and the homology of the complex

0!R1
g
�!R2! 0:

Proof It is clear that the cokernels of the maps D and g are isomorphic as graded
vector spaces — indeed they are generated by the same elements not in the image of g .

We need to show that the kernels agree. Since f is surjective, there is a graded map
f �W T2! T1 such that f ıf � D idT2

. Consider the map

� W ker.D/! ker.f /˚ ker.g/

given by �..t; r// D .t � f �.h.r//; r/. It is easy to see that this map is a graded
isomorphism.

Let zvk be the restriction of vk to Ared
k
.K/ followed by the projection to Bred . Define

zhk similarly using hk . Define also zDC
i;p=q

to be the restriction of DC
i;p=q

to Ared
i;p=q

.K/

followed by the projection to Bred . The map zDC
i;p=q

is a sum of various maps zvk
and zhk .

In terms of the notation in Lemma 5.2 we have DDDC
i;p=q

, f DDT
i;p=q

, gD zDC
i;p=q

,
T1 DAT

i;p=q
.K/, T2 D BT , R1 DAred

i;p=q
.K/ and R2 D Bred .

Algebraic & Geometric Topology, Volume 18 (2018)



90 Fyodor Gainullin

Lemma 5.3 Let Y be a homology sphere and K � Y a knot with V0 D 0. Define
Z D Yp=q.K/. Then dim.ker. zDC

i;p=q
//; dim.coker. zDC

i;p=q
// <1,

dim.ker. zDC
i;p=q

//C dim.coker. zDC
i;p=q

//� dim.HFred.Z; i//C dim.HFred.Y //

and
dim.ker. zDC

i;p=q
//� dim.HFred.Z; i//:

Proof By the proof of Proposition 3.3 (specifically inequality (2)) the tower in
HFC.Z; i/ is isomorphic to a direct sum of two pieces (one of which may be trivial).
One piece is the kernel of DT

i;p=q
(the whole kernel, because V0 D 0 — see eg [6,

Lemma 13]). Another piece (which may be trivial) is a subspace of the cokernel
of DC

i;p=q
(isomorphic to the cokernel of zDC

i;p=q
) of dimension at most dim.HFred.Y //.

Now, by Lemma 5.2, the whole resulting homology is isomorphic (in a graded
way) to the kernel of DT

i;p=q
and the homology of zDC

i;p=q
(which correspond to

f and g in Lemma 5.2, respectively). The paragraph above implies that the whole
tower part is covered by the kernel of DT

i;p=q
and perhaps a piece of dimension

at most dim.HFred.Y //. Thus the homology of zDC
i;p=q

is finite-dimensional,3 so
dim.ker. zDC

i;p=q
//; dim.coker. zDC

i;p=q
// <1 and since the dimension of the homology

of zDC
i;p=q

equals dim.ker. zDC
i;p=q

//C dim.coker. zDC
i;p=q

// we have

dim.ker. zDC
i;p=q

//C dim.coker. zDC
i;p=q

//� dim.HFred.Z; i//C dim.HFred.Y //

For the second inequality note that the reduced part of HFC.Z; i/ consists of the
part in the kernel and the part in the cokernel. If we forget about the part in the
cokernel altogether, we can see that the kernel contributes to the dimension exactly
dim.ker. zDC

i;p=q
//. This verifies the second inequality.

For an absolutely Z2–graded abelian group H , let He denote the subgroup of elements
of grading 0 and Ho denote the subgroup of elements of grading 1.

Recall that we defined

N.Y;Z/D 2jH1.Z/j dim.HFred.Y //C dim.HFred.Z//:

We are now ready to prove the main theorem of this section.

3The structure of the graded vector spaces here allows us to talk about the dimensions: once we
identified what covers the elements of high enough grading in the tower, the rest has to happen in a
finite-dimensional vector space.
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Theorem 5.4 Let Y be a non-L–space homology sphere, Z be a rational homology
sphere and K � Y be a knot, and suppose there are coprime integers p and q such that
Z D Yp=q.K/.

If jqj>N.Y;Z/, then

� V0.K/D 0;
� �K � 1;
� dim.Ared

k
.K/e/D dim.HFred.Y /e/ for all k ;

� dim.Ared
k
.K/o/D dim.HFred.Y /o/ for all k .

Proof Suppose jqj > N.Y;Z/. We know from Lemma 5.1 that V0.K/D 0. Since
changing the orientation of a manifold does not change the dimension of its reduced
Floer homology [25, Proposition 2.5], we can assume that p > 0 and q > 0.

Claim dim.Ared
k
.K/e/� dim.Bred

e / and dim.Ared
k
.K/o/� dim.Bred

o /.

Proof The even and odd cases are completely analogous so we only prove

dim.Ared
k .K/e/� dim.Bred

e /:

Suppose for contradiction that dim.Bred
e /� dim.Ared

k
.K/e/� 1.

Let Bi be the sum of all .n;Bred
e / with n satisfying�

i Cpn

q

�
D

�
i Cp.n� 1/

q

�
D k:

Let Ai be the sum of all .n;Ared
k
.K/e/ with n satisfying b.i Cpn/=qc D k . Then

zDC
i;p=q

maps Ai into Bi , so dim.coker. zDC
i;p=q

//� dim.Bi /� dim.Ai /.

Define Ni D f j j j � i .mod p/; bj=qc D kg. Then dim.Ai /D Ni dim.Ared
k
.K/e/

and dim.Bi /D .Ni � 1/ dim.Bred
e /.

By Lemma 5.3 we have

dim.HFred.Z; i//C dim.HFred.Y //� dim.coker. zDC
i;p=q

//

�Ni .dim.Ared
k .K/e/� dim.Bred

e //� dim.Bred
e /

�Ni � dim.HFred.Y //:

Noting that
Pp�1
iD0 Ni D q and summing over all Spinc structures, we get

dim.HFred.Z//Cp dim.HFred.Y //� q�p dim.HFred.Y //;

which contradicts the assumption made on q . G
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Claim dim.Ared
k
.K/e/� dim.Bred

e / and dim.Ared
k
.K/o/� dim.Bred

o /.

Proof Again, the two cases are analogous, so we only show that dim.Ared
k
.K/e/ �

dim.Bred
e /. Suppose for a contradiction that dim.Ared

k
.K/e/� dim.Bred

e /� 1.

Let yAi be the sum of all .n;Ared
k
.K/e/ with n satisfying�

i Cpn

q

�
D

�
i Cp.nC 1/

q

�
D k:

Let yBi be the sum of all ..n;Bred
e / with n satisfying b.i Cpn/=qc D k .

Clearly zDC
i;p=q

maps yAi into yBi , so dim.ker. zDC
i;p=q

//� dim. yAi /� dim. yBi //.

We have dim. yBi /DNi dim.Bred
e / and dim. yAi /D .Ni � 1/ dim.Ared

k
.K/e/.

Hence, by Lemma 5.3, we have

dim.HFred.Z; i//� dim.ker. zDC
i;p=q

//

� .Ni � 1/.dim.Ared
k .K/e/� dim.Bred

e //� dim.Bred
e /

�Ni � 1� dim.HFred.Y //:

Summing over all Spinc structures, we get

dim.HFred.Z//� q�p�p dim.HFred.Y //;

which is again a contradiction to the assumed inequality for q . G

Combining the results in the two claims, we see that the assumption that q violates the
bound in the statement of the lemma implies that for all k we have dim.Ared

k
.K/e/D

dim.Bred
e / and dim.Ared

k
.K/o/D dim.Bred

o /. Thus �.Ared
k
.K//D �.Bred/ for all k .

Let K be a knot and �K.T /D a0C
P
i ai .T

i CT �i / be its symmetrised Alexander
polynomial, with normalisation convention �K.1/D 1. Define its torsion coefficients
ti .K/ for i � 0 by

ti .K/D
X
j�1

jaiCj :

We now want to show that tk.K/D �.Ared
k
.K//��.Bred/. This will imply that all

torsion coefficients of K are 0 and thus its Alexander polynomial is trivial.

Define �k D C fj � k and i < 0g. Note that �.�k/ D tk.K/. We have an exact
sequence

0!�k
i
�!AC

k
.K/

vk
�!BC! 0;
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which leads to an exact triangle

(13)
H�.�k/ AC

k
.K/

BC

i�

vk

Since V0 D 0, the map vT
k

maps AT
k
.K/ isomorphically onto BT . So, up to graded

isomorphism, we also have an exact triangle

(14)
H�.�k/ Ared

k
.K/

Bred

i�

zvk

It follows that tk.K/D �.�k/D �.Ared
k
.K//��.Bred/D 0.

6 A bound on q for exceptional knots of genus larger than 1

In this section we want to show that for knots that do not satisfy the bound of
Theorem 5.4 and have genus larger than 1, the integer q is still bounded by a quantity
depending only on the pair of manifolds connected by surgery. We first prove the
following lemma, a version of which for S3 was proven in [10, Lemma 2.5].

Lemma 6.1 Let fVkgk2Z and fHkgk2Z be numbers associated with a knot K in a
homology sphere, as defined in Section 2. Then

Hk �Vk D k

for all k 2 Z.

Proof According to [30, Theorem 2.3], the modules AC
k
.K/ can be identified with

HFC of N –surgeries on K (in a certain Spinc structure), where N is a sufficiently
large integer. Moreover, after this identification, the maps vk and hk coincide with
the maps into HFC.Y / induced by the (turned-around) surgery cobordism.

More specifically, the maps vk and hk can be thought of as the maps corresponding
to the Spinc structures vk and hk , respectively, where

hc1.vk/; Œ yF �iCN D 2k

and
hc1.hk/; Œ yF �i �N D 2k:
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Here Œ yF � is the homology class of the surface obtained by capping off a Seifert surface
F of K with the core of the 2–handle.

From this we can deduce that c1.vk/2D� 1
N
.2k�N/2 and c1.hk/2D� 1

N
.2kCN/2

(see [15, Proposition 2.69] for a nice exposition of this calculation). The difference in
the grading shifts of the two maps identified with vk and hk is given by 2.Hk �Vk/.
On the other hand, we can deduce from [28, Theorem 7.1] that the difference in the
grading shifts is also given by

1
4
.c1.vk/

2
� c1.hk/

2/D 2k:

Comparing the two expressions, we get the desired result.

For two homogeneous elements u and v in the mapping cone complex, denote their
relative Z–grading by deg.u; v/. For a homogeneous element w of Heegaard Floer
homology of some rational homology sphere, denote by deg.w/ its absolute Q–grading.
Recall that the modules AC

k
.K/ and BC decompose as the sum of the “tower” T C

and the reduced part. For a homogeneous element c in either one of AC
k
.K/ or BC

denote by zd.c/ its relative grading with the 1 in the tower part (ie zd.c/D deg.c; 1/).

As already mentioned, if Y is an L–space homology sphere, there is a bound on q
similar to that of Theorem 5.4 that holds for all knots. Thus, as before, we will assume
throughout this section that Y is a non-L–space homology sphere.

Lemma 6.2 Let K � Y be a knot and suppose Z D Yp=q.K/, where p; q > 0. Let
N.Y;Z/ be defined as in the statement of Theorem 5.4 and suppose q > N.Y;Z/.
Then, for every homogeneous z 2Ared

k
.K/,

zd.z/�minf zd.c/ j c 2Bred is homogeneousg:

Proof Suppose there exists k and z 2Ared
k
.K/ with

zd.z/ <minf zd.c/ j c 2Bred is homogeneousg:

Both vk and hk do not increase zd , so z is in the kernel of both zvk and zhk , hence
also in the kernel of zDC

i;p=q
. This holds for every copy of Ared

k
.K/ in the mapping

cone complexes for all Spinc structures, so, summing contributions from all Spinc

structures and using Lemma 5.3, we deduce

q � dim.HFred.Z// < N.Y;Z/:

This is a contradiction.
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Recall that for a rational homology sphere Z we defined

yD.Z/Dmaxfdeg.z/� d.Z; t/ j z 2 HFred.Z; t/ is homogeneous; t 2 Spinc.Z/g

and

LD.Z/Dminfdeg.z/� d.Z; t/ j z 2 HFred.Z; t/ is homogeneous; t 2 Spinc.Z/g;

where deg.z/ is the absolute grading of z .

We can now formulate a bound on q that holds for knots that have genus > 1 and are
not covered by Theorem 5.4.

Proposition 6.3 Let K � Y be a knot such that Z D Yp=q.K/ for p; q > 0 and
q > N.Y;Z/. Suppose the genus of K is larger than 1. Then

bq=pc � 1
2
. yD.Z/� LD.Y //:

Proof By Theorem 2.1 and the exact triangle (13), the map vCg�1 must not be an
isomorphism (where g is the genus of K ). Since V0 D 0, the map vTg�1 is an
isomorphism, so the map zvg�1 must not be an isomorphism. Since the spaces Ared

g�1.K/

and Bred have the same dimension, the map zvg�1 must have some kernel. Suppose
z 2 ker.zvg�1/. By adding an element of ATg�1.K/ if necessary, we can assume that
z 2 ker.vCg�1/.

Let N D maxfn j bpn=qc D g � 1g. Then .N; z/ 2 .N;ACg�1.K// is in the kernel
of vCg�1 . By Lemma 3.1, we can assume that .N; z/ is in the kernel of DC

0;p=q
.

Denoting as usual by 1 the generators of the kernel of U in the tower modules, we
have

deg..N; 1/; .0; 1//D 2
g�1X
iD1

niHi ;

where ni � bq=pc. Since V0 D 0, by Lemma 6.1 we have Hi D i for i � 0. So

deg..N; 1/; .0; 1//� g.g� 1/bq=pc:

By the proof of Proposition 3.3, gr.0; 1/ � d.Z; 0/. In homology, .N; z/ represents
some element of HFred.Z; 0/. Suppose its absolute grading there is G .

Then G � d.Z; 0/� deg..N; z/; .0; 1//D zd.z/C deg..N; 1/; .0; 1//. By Lemma 6.2,

zd.z/� LD.Y /:
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Combining the various inequalities, we obtain

bq=pc �
G � d.Z; 0/� LD.Y /

g.g� 1/
�
yD.Z/� LD.Y /

2
:

We can combine Theorem 5.4 and Proposition 6.3 into the following:

Corollary 6.4 Let Y be a homology sphere and K�Y a knot. Suppose Yp=q.K/DZ
for p ¤ 0. There exists a constant C.Y;Z/ that depends only on the Heegaard Floer
homology of Y and Z such that if q > C.Y;Z/ then

� the genus of K is 1;

� K has trivial Alexander polynomial;

� V0.K/D 0;

� dim.Ared
k
.K/e/D dim.HFred.Y /e/ for all k ;

� dim.Ared
k
.K/o/D dim.HFred.Y /o/ for all k .

7 Some knots determined by their complements

Results of Section 4 can be applied to show that, in certain homology RP 3 , non-null-
homologous knots are determined by their oriented complements.

Corollary 7.1 Let Z be a closed, connected, oriented manifold with jH1.Z/j D 2.
Suppose that dim.HFred.Z// is odd. Then non-null-homologous knots in Z are
determined by their complements.

Proof By Theorem 4.3, if a knot in one of these spaces has a homology sphere
surgery, then it is determined by its complement. Thus it will be enough to show that
non-null-homologous knots in such spaces have homology sphere surgeries.

Let Z be a space as in the statement. Denote by S a solid torus regular neighbourhood
of K and denote the exterior of K by Z0 . Let T be the boundary of S . Consider the
exact sequence for the pair .Z; S/,

0!H2.Z; S/!H1.S/!H1.Z/!H1.Z; S/! 0:

By considering this sequence with coefficients in Q, H2.Z; S/ is a direct sum of
one copy of Z with a torsion group. Then excision and Poincaré–Lefschetz duality
show that H2.Z; S/ŠH2.Z0; T /ŠH 1.Z0/. The latter group is free abelian, thus
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H2.Z0; T / Š Z. Similarly, H1.Z; S/ Š H 2.Z0/, which is equal (by the universal
coefficients theorem) to the torsion part of H1.Z0/; call it G . We have H1.Z0/Š
Z˚G . Now the sequence above becomes

0! Z! Z! Z2!G! 0:

Since K is not null-homologous (but obviously 2K is), there is a rational Seifert
surface for K that winds twice longitudinally. This implies that the map between two
copies of Z in the sequence above is multiplication by 2. It follows that G D 0.

Now consider the exact sequence of the pair .T;Z0/,

� � � !H2.Z0; T /!H1.T /!H1.Z0/! 0:

This sequence shows that H1.Z0/ is generated by the images of the meridian and the
longitude. This means that if we perform a surgery with a slope given by the generator
of H1.Z0/, we get a homology sphere.

The Brieskorn sphere †.2; 3; 7/ has perhaps the simplest Heegaard Floer homology
a non-L–space can possibly have — the rank of its reduced Floer homology is 1.
This makes it possible to show that “most” knots in †.2; 3; 7/ are determined by
their complements. The first part of the proof shows that a surgery from †.2; 3; 7/ to
†.2; 3; 7/ must be integral. The thinking behind the proof is similar to that of Section 5,
but we get a better bound due to the fact that 1< 2 and linear maps into 1–dimensional
spaces are either trivial or surjective.

Theorem 7.2 Knots of genus larger than 1 in the Brieskorn sphere †.2; 3; 7/ are
determined by their complements. Moreover, if K �†.2; 3; 7/ is a counterexample to
Conjecture 1.2, then the surgery slope is integral, bHFK .†.2; 3; 7/;K; 1/ has dimen-
sion 2 and its generators lie in different Z2–gradings.

Nonfibred knots of genus larger than 1 in †.2; 3; 7/ are strongly determined by their
complements.

Proof The Heegaard Floer homology of �†.2; 3; 7/ has been computed in [22,
Section 8.1]. Alternatively, we can calculate it using the program HFNem2 by Çağrı
Karakurt.4 It is clear that proving what we want for knots in �†.2; 3; 7/ is equivalent
to proving it for knots in †.2; 3; 7/.

4At the time of writing available for download at https://www.ma.utexas.edu/users/karakurt/.
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The calculation shows that �†.2; 3; 7/ has reduced Floer homology of rank 1, situated
in the absolute grading 0 which is equal to the d –invariant of �†.2; 3; 7/. By [25,
Proposition 2.5; 22, Proposition 4.2], reduced Floer homology of †.2; 3; 7/ has rank 1
(and odd absolute Z2–grading) and d –invariant 0.

Suppose a knot K �†.2; 3; 7/ gives †.2; 3; 7/ by 1=q–surgery. Since the analogous
statement can be proven for �†.2; 3; 7/, we can assume that q > 0.

Let Y D†.2; 3; 7/. Suppose for a contradiction that q>1. Note that by Proposition 3.3
we must have V0 D 0. Consider .qg � 1;ACg�1/, where g D g.K/. This is the
“rightmost” group for which the corresponding map v is not an isomorphism.

Suppose Ared
g�1D0. Since q�2, the group .qg�1;Bred/ is not in the image of DC

i;p=q
.

Thus it gives rise to a generator of HFred.Y /. However, this element is in the even
Z2–grading. This gives a contradiction.

Now assume dim.Ared
g�1/ � 1. Since the map vg�1 cannot be an isomorphism, the

map vred
g�1 must have kernel. According to Lemma 3.1, this element of the kernel gives

rise to an element in HFred.Y /. However, applying the same argument “on the other
end”, ie to h�.g�1/ , we see that we must have dim.HFred.Y // � 2, which gives a
contradiction.

All in all, we have q D 1, irrespective of the genus. Now assume g > 1. According to
[25, Theorem 9.1], there is an exact triangle of F ŒU �–modules

(15)
HFC.Y / HFC.Y0.K//

HFC.Y1.K//

f

h
g

Much as in the proof of [24, Corollary 4.5], we have5

HFC.Y0.K/; g� 1/Š HFC.Y0.K/;�.g� 1//Š bHFK .Y;K; g/;

so these groups are nontrivial by Theorem 2.1.

By [25, Theorem 10.4], HFC.Y0.K/; 0/Š Td�1=2.Y0.K//˚TdC1=2.Y0.K//˚R , where
RD HFred.Y0.K/; 0/ is a finite-dimensional vector space in the kernel of some power
of U and d˙1=2.Y0.K// 2 ZC 1

2
is an analogue of the correction term.

5The labellings of the Spinc structures are obtained by taking the half of the pairing of their Chern
classes with the generator of H2.Y0.K// obtained by capping a Seifert surface.
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By [22, Lemma 3.1], the component of f mapping into HFC.Y0.K/; 0/ has grading
�
1
2

and the restriction of g to HFC.Y0.K/; 0/ also has grading �1
2

.

Since in high enough gradings the group HFC.Y0.K/; 0/ consists of two tower modules
(in different relative gradings) and only one of them can be in the image of the map f ,
it follows that the other one has to map onto the tower in HFC.Y1.K//. It follows that
the restriction of h to the tower part of HFC.Y1.K// is zero. Since we assume g > 1
and so HFC.Y0.K// contains two nontrivial vector spaces HFC.Y0.K/;˙.g� 1//,
the map h has to be trivial. If h was not trivial, it would surject onto the reduced part of
HFC.Y / and so there would be nothing left to map onto HFC.Y0.K/;˙.g�1//. Thus
we can assume hD 0. Then the maps f and g map a tower module isomorphically
onto another one, so comparing the gradings we see that d˙1=2.Y0.K//D˙12 .

Moreover, the dimension of HFred.Y0.K// has to be 2, thus

HFC.Y0.K/; g� 1/Š HFC.Y0.K/;�.g� 1//Š bHFK.Y;K; g/Š F2;

HFC.Y0.K/; k/D 0

for k … f0;˙.g� 1/g and RD 0.

By [25, Proposition 10.14 and Theorem 10.17], we have

tk.K/D 0

for 0� k < g and tg�1.K/D˙1.

Notice that

�00K.1/D 2t0.K/C 4

g�1X
iD1

ti .K/D˙4¤ 0;

which contradicts (4).

If g D q D 1, then, by the reasoning of Lemma 3.1, Ared
0 Š HFred.Y /D F2 . Since

vred
0 cannot be an isomorphism, it must be zero. It follows that the dimension of
bHFK .Y;K; 1/ is 2. Since �00K.1/D 0 forces the Alexander polynomial to be trivial,

the two generators have to be in different Z2–gradings.

Now suppose K�Y produces �Y by 1=q–surgery for q >0 . Moreover, let g.K/>1.
Just as before we cannot have dim.Ared

g�1/� 1, thus Ared
g�1D 0. Since the d –invariants

of Y and �Y coincide, we have V0 D 0, thus the map vred
g�1 has no kernel and has

cokernel of dimension 1. It follows that dim
� bHFK .Y;K; g.K//

�
D 1, so, by [17,

Theorem 1.1] or [11, Theorem 9.11], K is fibred.
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8 Null-homologous knots in L–spaces

The aim of this section is to show that null-homologous knots in L–spaces are deter-
mined by their complements. Moreover, we will also show that all knots in lens spaces
of the form L.p; q/ with p square-free are determined by their complements.

First of all, we need to verify that the mapping cone formula for rational surgeries as
proved in [31] for knots in integer homology spheres also applies to null-homologous
knots in rational homology spheres with only minor modifications.

Let Y be a rational homology sphere and K a null-homologous knot in it. Let Y0 be
the exterior of K. To understand relative Spinc structures, we first need to calculate
the first homology.

Lemma 8.1 We have H1.Y0/ Š Z ˚ H1.Y /, where the first factor is the group
generated by the meridian of K.

Proof Let S be a (closed) regular neighbourhood of K and T D @Y0 its boundary.
Consider the long exact sequence for the pair,

0!H2.Y; S/!H1.S/!H1.Y /!1 .Y; S/! 0:

By excision, H�.Y; S/ŠH�.Y0; T /. Since K is null-homologous, the boundary of its
Seifert surface generates H1.S/. Thus the map H2.Y; S/!H1.S/ is an isomorphism.

It follows that H1.Y / Š H1.Y0; T /. By Poincaré–Lefschetz duality, H1.Y0; T / Š
H 2.Y0/ and, by the universal coefficients theorem, the torsion part of H1.Y0/ is equal
to the torsion part of H 2.Y0/, which, by the previous sentence, equals H1.Y /.

Now consider the Mayer–Vietoris sequence

0!H1.T /!H1.S/˚H1.Y0/!H1.Y /! 0:

The same sequence with rational coefficients shows that H1.Y0/ has rank 1, so,
combining with the argument above, H1.Y0/ Š Z˚H1.Y /. Moreover, the map
H1.T /!H1.S/ takes the longitude to a generator and the meridian to 0 and also the
longitude is trivial in H1.Y0/. It follows that we have an exact sequence

0! hmi D Z
f
�!H1.Y0/Š Z˚H1.Y /!H1.Y /! 0:

Since the map f is an injection, the subgroup 0˚H1.Y / is disjoint from the image
of f . Hence it is mapped injectively into H1.Y /. However, since this group is finite,
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the restriction of the second map from the right to H1.Y / is an isomorphism. It follows
that the Z factor of H1.Y0/ (perhaps after changing the splitting) is equal to the kernel
of this map and thus is generated by the meridian.

Since H1.Y0/ acts freely and transitively on the set of relative Spinc structures on Y0 ,
we can identify (noncanonically) this group with the set of relative Spinc structures.
In other words, we label relative Spinc structures on Y0 by a pair .n; h/ with n 2 Z

and h 2H1.Y /. Moreover, by adding a multiple of the meridian we can ensure that

hc1..n; h//; ŒF �i D 2n;

where F is a Seifert surface for K.

Recall from [31, Section 7] that doing p=q surgery on K in Y is equivalent to doing
integral surgery with slope aDbp=qc on the knot yKDK#Oq=r in yY DY #.�L.q; r//.
Here p D aqC r and Oq=r is a core of one of the Heegaard solid tori in �L.q; r/,
thought of as the image of one component of the Hopf link after the �q=r –surgery on
the other component.

Denote by yY0 and L0 the exteriors of yK0 and Oq=r , respectively. Notice that yY0 is
obtained by glueing Y0 and L0 along an annulus A whose core maps to meridians
of K and Oq=r . Consider the associated Mayer–Vietoris sequence

� � � !H1.A/!H1.Y0/˚H1.L0/!H1. yY0/! 0:

We can rewrite it as

� � � ! Z! Z˚H1.Y /˚Z!H1. yY0/! 0:

Moreover, the generator of H1.A/ is mapped to meridians of both knots. Thus the
second map from the right is given by 1 7! .1; 0;�q/. It follows that we can write
H1. yY0/Š Z˚H1.Y /. Moreover, the meridian of K maps to q times the generator
of Z and the meridian of Oq=r maps to the generator of Z. As in the case of homology
spheres, the push-off of K with respect to the framing a is mapped to p times the
generator of the Z summand.

Now, just as in [31, Proof of Theorem 1.1], we can assemble the mapping cone, whose
homology will coincide with the Heegaard Floer homology of p=q–surgery on K. The
only difference with the case of homology spheres is that instead of indices i (that
represented relative Spinc structures) we have to use pairs .i; h/, but when considering
every Spinc structure on the resulting space separately, h stays the same.
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We use the same notation as in [31], replacing relative Spinc structures with the labelling
we defined after the proof of Lemma 8.1, ie .n; h/. Note that BC

.n;h/
only depends

on h (up to a shift in the filtration) and in homology gives HFC.Y; h/.6 Consequently,
we denote this group simply by BC

h
.

For each h 2H1.Y / and 0� i < p , consider the set of groups .s; AC
.b.iCps/=qc;h/

/ for
s 2 Z. Combine them into

AC
.i;h/
D

M
s2Z

.s; AC
.b.iCps/=qc;h/

/:

Similarly, define
B.i;h/ D

M
s2Z

.s; BC
h
/:

Define DC
.i;h/;p=q

W AC
.i;h/
! B.i;h/ componentwise by

DC
.i;h/;p=q

.s; as/D .s; v
C

.b.iCps/=qc;h/
.as//C .sC 1; h

C

.b.iCps/=qc;h/
.as//:

Denote by XC
.i;h/;p=q

the mapping cone of DC
.i;h/;p=q

.Then the Heegaard Floer homol-
ogy of Yp=q.K/ in a certain Spinc structure is given by the homology of XC

.i;h/;p=q
.

We denote this Spinc structure on Yp=q.K/ by .i; h/. In other words, we have

H�.X
C

.i;h/;p=q
/Š HFC.Yp=q.K/; .i; h//:

Reusing the notation from above, let AC
.n;h/

, BC
h

, AC
.i;h/

and B.i;h/ be the homologies
of AC

.n;h/
, BC

h
, AC

.i;h/
and B.i;h/ , respectively. Let vC

.n;h/
, hC

.n;h/
and DC

.i;h/;p=q
be

the maps induced by vC
.n;h/

, hC
.n;h/

and DC
.i;h/;p=q

, respectively, in homology.

As before, we denote by DT
.i;h/;p=q

, vT
.n;h/

and hT
.n;h/

the restrictions of DC
.i;h/;p=q

,
vC
.n;h/

and hC
.n;h/

to the tower parts (in the case of DT
.i;h/;p=q

, the restriction to the
sum of the tower parts).

The maps vT
.n;h/

and hT
.n;h/

are multiplications by powers of U. Denote these powers
by V.n;h/ and H.n;h/ , respectively. For each h 2H1.Y / we have:

� V.n;h/ � V.nC1;h/ and H.n;h/ �H.nC1;h/ .

� There is N 2 N such that V.n;h/ D 0 for all n � N and H.n;h/ D 0 for all
n� �N .

� V.n;h/!C1 as n!�1 and H.n;h/!C1 as n!C1.

6The statement should be read as saying that there is an identification between H1.Y / and Spinc.Y /
such that this correspondence holds.

Algebraic & Geometric Topology, Volume 18 (2018)



Heegaard Floer homology and knots determined by their complements 103

By [6, Lemma 12], the map DT
.i;h/;p=q

is surjective (when p=q > 0), so

HFC.Yp=q.K/; .i; h//Š ker.DC
.i;h/;p=q

/:

If one of AC
.n;h/

is not a tower, ie contains some reduced part (which we denote
by Ared

.n;h/
), then every element of Ared

.n;h/
will be a component of some element of

the kernel of DC
.i;h/;p=q

. However, such an element will not be in the image of large
enough power of U. It follows that HFC.Yp=q.K/; .i; h// will have some reduced
Floer homology. Thus if Yp=q.K/ is an L–space, then AC

.n;h/
Š T C for all n and h.

Write yA.n;h/ D ker.U W AC
.n;h/
! AC

.n;h/
/ and denote its homology by yA.n;h/ . Since

AC
.n;h/
Š T C for all n and h, we have yA.n;h/ Š F for all n and h.

8.1 Alexander polynomial

Just as in the case of homology spheres, given a knot K � Y in a rational homology
sphere, one can define its Alexander module to be the first homology of the covering
space yY of Y nK with deck transformation group Z. The two differences are as follows:
firstly, to define yY instead of the abelianisation map we use �W �1.Y nK/!Z gotten
by composing abelianisation with the projection onto Z (so the subgroup defining
yY is the preimage of the torsion subgroup of H1.Y / under the abelianisation map).
Secondly, for a more convenient definition of the Alexander polynomial later we use
the ring QŒt; t�1� instead of ZŒt; t�1�.

With these changes, the method for obtaining the presentation matrix for H1. yY / as a
QŒt; t�1�–module using Fox calculus works in the same way as for knots in homology
spheres — see [14, Chapter 11].

Now the Alexander polynomial �K is defined to be a specific generator of the ideal
generated by the maximal size minors of the presentation matrix of the Alexander
module. The specific generator is fixed by the requirement that �K.t/ D �K.t�1/
and �K.1/D jH1.Y /j.

Suppose we have a genus g doubly pointed Heegaard diagram for K � Y . To get a
Heegaard diagram of the knot exterior we add one more ˛–curve, ˛gC1 . As described
in [33, Section 3], this leads to a presentation of �1.Y / in which there is one generator
for each ˛–curve and one relator for each ˇ–curve. Denote the generators by faig

gC1
iD1

and relators (words in ai ) by fwj g
g
jD1 . Denote the free differential with respect to ai

by dai
(this time with respect to the map � , not abelianisation).
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Define
bHFK .Y;K; n/D

M
h2H1.Y /

bHFK .Y;K; .n; h//:

Then, as in [33, Section 3], we can see that

�. bHFK .Y;K//D
X
i;j

.�1/i tj dim bHFK i .Y;K; j /D det.dai
wj /1�i;j�g :

Following [34, Proposition 3.1], we see that, in fact,

�. bHFK .Y;K//D�K.t/:

For every h 2H1.Y / define7

�K;h.t/D
X
i;j

.�1/i tj dim bHFK i .Y;K; .j; h//:

We have �K.t/D
P
h�K;h.t/ and �K;h.1/D 1.

Let Y be an L–space and K a null-homologous knot in it with L–space surgery.
Recall that yA.n;h/ Š F for all n and h. Using the same algebraic manipulations as in
[27, Section 3] we deduce that, for each fixed h, bHFK .Y;K; .n; h// has dimension 0
or 1, successive copies of F are concentrated in different Z2 gradings and the first
(and the last) copies of F are concentrated in grading 0.

It follows that, for each h, �00
K;h

.1/ � 0 and equality is only possible if �K;h.t/D
1 or t .

8.2 Knots determined by their complements

We are now ready to prove the surgery characterisation of the unknot for null-homolo-
gous knots in rational homology L–spaces.

Theorem 8.2 Let Y be an L–space and K � Y a null-homologous knot. Suppose
that

HFC.Yp=q.K//Š HFC.Y #L.p; q//:

Then K is the unknot.

In particular, null-homologous knots in L–spaces are determined by their complements.

7This definition works only up to an affine identification, since we should really have h 2 Spinc.Y / .
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Proof The Casson–Walker invariant is additive under connected sums and, by (5),
determined by Heegaard Floer homology, thus we have

�.Y /C�.L.p; q//D �.Yp=q.K//D �.Y /C�.L.p; q//C
q

2pjH1.Y /j
�00K.1/:

It follows that �00K.1/D 0. Thus for each h we must have �K;h.t/D 1 or t . However,
by symmetry if there is a multiple of t in �K.t/ there must also be a multiple of t�1 .
Hence �K;h.t/D 1 for all h. Note that it also means that

bHFK .Y;K; .n; h//D 0

for all n¤ 0. Hence, by [19, Theorem 2.2], g.K/D 0, ie K is the unknot.

A straightforward homological argument provides more restrictions on knots not being
determined by their complements in lens spaces. In particular, all knots in lens spaces
L.p; q/ with p square-free satisfy Conjecture 1.2. For notation used in the statement
below, see Section 1 or the proof. By a nontrivial surgery we mean a surgery with a
slope that is not the meridian, so even if a slope is equivalent to the meridian, surgery
with this slope is still nontrivial.

It is clear that cores of Heegaard solid tori of L.p; q/ admit nontrivial surgery which
give back L.p; q/. Hence, in the corollary below we assume that K is not a core of
one of the Heegaard solid tori.

Corollary 8.3 If p is square-free, then all knots in LD L.p; q/ are determined by
their complements.

More precisely, let K be a knot whose exterior is not a solid torus and such that a
nontrivial surgery on it gives L. Then the exterior of K is not Seifert fibred, p jw2

and the surgery slope, n, is an integer that satisfies the following (with some choice of
sign):

nD�q
w2

p
˙ 1:

Moreover, there is at most one such slope (ie we can choose either C or � but not both
in the equation above).

Proof By Theorem 8.2 we only need to consider non-null-homologous knots. Let
LD L.p; q/ be a lens space and K a non-null-homologous knot in it.

Suppose the exterior of K is not Seifert fibred. Then, by the cyclic surgery theorem [4],
the slope has to be integral.
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We can isotope K into one of the Heegaard solid tori W of L. Then we can get L by
first performing an integral surgery on K in W and then glueing the other solid torus
from the outside so that its meridian becomes the .p; q/–curve.

Let � be the meridian of W , fix a curve � in @W with � � � D 1 and embed W
into S3 in the standard way with respect to � and �. This endows K with a well-
defined longitude l . Let m be the meridian of K. Suppose K has winding number w
in W . Then, in H1.W nK/ (which is generated by m and �), l D w� and �D wm.
Let n be the surgery slope with respect to these coordinates. Then surgery on K
introduces a relation nmC w� D 0. The other Heegaard solid torus introduces a
relation �qwmCp�. All in all, the first homology of L has presentation matrix�

n w

�qw p

�
:

The order of the first homology of L is the absolute value of the determinant of the
relation matrix. Thus we must have ˙p D npC qw2 , and thus n D �qw2=p˙ 1.
However, q is coprime with p , so p jw2 . By the cyclic surgery theorem, the distance
between slopes that give lens spaces is at most 1, so �qw2=pC 1 and �qw2=p� 1
cannot both produce a lens space.

If p is square-free, p jw2 implies that p jw , so K is null-homologous in L — a
contradiction.

Now suppose the exterior of K is Seifert fibred. As stated, Conjecture 1.2 has been
proven for knots with Seifert fibred exteriors in [36, Theorem 1].

However, to demonstrate that there are no nontrivial slopes equivalent to the meridian
we will provide a different proof.

By [36, Lemma 2], we can assume that K is a fibre in some fibration of L.

Fibrations of lens spaces come in two families (see eg [9, Theorem 2.3]). All lens
spaces can be fibred over a sphere with at most two exceptional fibres. There are also
some lens spaces that can be fibred over the projective plane with one exceptional fibre
of invariant .n; 1/.

In the first (and most common) case, to avoid the exterior being a solid torus, K must
be an ordinary fibre in a fibration with two exceptional fibres. Suppose the invariants of
these fibres are .p1; x1/ and .p2; x2/. Since Seifert fibred spaces with three exceptional
fibres are not lens spaces, surgery on K must introduce a fibre with invariant .1; n/. If
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so, the order of homology changes from jp1x2Cp2x2j to jp1x2Cp2x2C np1p2j.
Equality is only possible if p1 D p2 D 2, ie L is obtained by filling the Seifert fibred
space over a disc with two exceptional fibres with the same invariant .2; 1/.

Different fillings of this space that produce lens spaces can be indexed by integers
m 2 Z and they produce L.4m; 2mC 1/. If L.4m; 2mC 1/ D L.4n; 2nC 1/ for
m¤ n (the equality sign here means “there exists an orientation-preserving homeo-
morphism”), then m D �n, ie the two lens spaces are L.4m; 2m˙ 1/. If they are
to be homeomorphic by an orientation-preserving homeomorphism, then we must
have .2m C 1/.2m � 1/ � 1 .mod 4m/ (see [32] and references therein), which
is not true (even though this spaces are homeomorphic by an orientation-reversing
homeomorphism).

This deals with the case when K is a fibre of a fibration of L over a sphere. L may
also have a fibration with one exceptional fibre over the projective plane, in which case
the invariant of the exceptional fibre is .n; 1/. In this case, LD L.4n; 2nC 1/. If K
is the exceptional fibre, then the only nontrivial surgery which still gives a lens space
yields L.4m; 2mC 1/ for n¤m. This case has been dealt with above. Similarly, if
K is an ordinary fibre then surgeries on it are indexed by an integer k and their effect
is to change the invariant of the exceptional fibre to .n; nkC 1/. It follows that we
must have nkC 1D�1, so surgery again gives L.4n; 2n� 1/.

References
[1] S Boyer, Dehn surgery on knots, from “Handbook of geometric topology” (R J Daver-

man, R B Sher, editors), North-Holland, Amsterdam (2002) 165–218 MR

[2] S Boyer, D Lines, Surgery formulae for Casson’s invariant and extensions to homology
lens spaces, J. Reine Angew. Math. 405 (1990) 181–220 MR

[3] D Cooper, M Lackenby, Dehn surgery and negatively curved 3–manifolds, J. Differ-
ential Geom. 50 (1998) 591–624 MR

[4] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math.
125 (1987) 237–300 MR

[5] C H Edwards, Jr, Concentricity in 3–manifolds, Trans. Amer. Math. Soc. 113 (1964)
406–423 MR

[6] F Gainullin, The mapping cone formula in Heegaard Floer homology and Dehn surgery
on knots in S3 , Algebr. Geom. Topol. 17 (2017) 1917–1951 MR

[7] C M Gordon, Dehn surgery on knots, from “Proceedings of the International Congress
of Mathematicians, I” (I Satake, editor), Math. Soc. Japan, Tokyo (1991) 631–642 MR

Algebraic & Geometric Topology, Volume 18 (2018)

http://msp.org/idx/mr/1886670
http://msp.org/idx/mr/1041002
http://dx.doi.org/10.4310/jdg/1214424971
http://msp.org/idx/mr/1690741
http://dx.doi.org/10.2307/1971311
http://msp.org/idx/mr/881270
https://doi.org/10.2307/1994141
http://msp.org/idx/mr/0178459
http://dx.doi.org/10.2140/agt.2017.17.1917
http://dx.doi.org/10.2140/agt.2017.17.1917
http://msp.org/idx/mr/3685598
http://www.mathunion.org/ICM/ICM1990.1/
http://msp.org/idx/mr/1159250


108 Fyodor Gainullin

[8] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math.
Soc. 2 (1989) 371–415 MR

[9] A E Hatcher, Notes on basic 3–manifold topology, book project (2007) Available at
http://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html

[10] J Hom, T Lidman, N Zufelt, Reducible surgeries and Heegaard Floer homology,
Math. Res. Lett. 22 (2015) 763–788 MR

[11] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299–
350 MR

[12] R C Kirby, editor, Problems in low-dimensional topology, from “Geometric topology,
II” (W H Kazez, editor), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence,
RI (1997) 35–473 MR

[13] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries,
Ann. of Math. 165 (2007) 457–546 MR

[14] W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175,
Springer (1997) MR

[15] A Manion, Heegaard Floer homology and knots, Part III essay, University of Cam-
bridge (2010) Available at http://tinyurl.com/ManionIII

[16] M Mauricio, Distance bounding and Heegaard Floer homology methods in reducible
Dehn surgery, PhD thesis, Imperial College London (2012) Available at http://
hdl.handle.net/10044/1/10226

[17] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577–608
MR

[18] Y Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13 (2009) 2991–
3019 MR

[19] Y Ni, Z Wu, Heegaard Floer correction terms and rational genus bounds, Adv. Math.
267 (2014) 360–380 MR

[20] Y Ni, Z Wu, Cosmetic surgeries on knots in S3 , J. Reine Angew. Math. 706 (2015)
1–17 MR

[21] Y Ni, X Zhang, Characterizing slopes for torus knots, Algebr. Geom. Topol. 14 (2014)
1249–1274 MR

[22] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR

[23] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol.
7 (2003) 185–224 MR

[24] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR

Algebraic & Geometric Topology, Volume 18 (2018)

http://dx.doi.org/10.1090/S0894-0347-1989-0965210-7
http://msp.org/idx/mr/965210
http://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html
http://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html
http://dx.doi.org/10.4310/MRL.2015.v22.n3.a8
http://msp.org/idx/mr/3350104
http://dx.doi.org/10.2140/gt.2008.12.299
http://msp.org/idx/mr/2390347
https://math.berkeley.edu/~kirby/problems.ps.gz
http://msp.org/idx/mr/1470751
http://dx.doi.org/10.4007/annals.2007.165.457
http://msp.org/idx/mr/2299739
https://doi.org/10.1007/978-1-4612-0691-0
http://msp.org/idx/mr/1472978
http://tinyurl.com/ManionIII
http://hdl.handle.net/10044/1/10226
http://hdl.handle.net/10044/1/10226
http://dx.doi.org/10.1007/s00222-007-0075-9
http://msp.org/idx/mr/2357503
http://dx.doi.org/10.2140/gt.2009.13.2991
http://msp.org/idx/mr/2546619
http://dx.doi.org/10.1016/j.aim.2014.09.006
http://msp.org/idx/mr/3269182
https://doi.org/10.1515/crelle-2013-0067
http://msp.org/idx/mr/3393360
http://dx.doi.org/10.2140/agt.2014.14.1249
http://msp.org/idx/mr/3190593
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://msp.org/idx/mr/1957829
http://dx.doi.org/10.2140/gt.2003.7.185
http://msp.org/idx/mr/1988284
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://msp.org/idx/mr/2065507


Heegaard Floer homology and knots determined by their complements 109

[25] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. 159 (2004) 1159–1245 MR

[26] P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology
Appl. 141 (2004) 59–85 MR

[27] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44
(2005) 1281–1300 MR

[28] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds,
Adv. Math. 202 (2006) 326–400 MR

[29] P Ozsváth, Z Szabó, Lectures on Heegaard Floer homology, from “Floer homology,
gauge theory, and low-dimensional topology” (D A Ellwood, P S Ozsváth, A I Stipsicz,
Z Szabó, editors), Clay Math. Proc. 5, Amer. Math. Soc., Providence, RI (2006) 29–70
MR

[30] P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom.
Topol. 8 (2008) 101–153 MR

[31] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom.
Topol. 11 (2011) 1–68 MR

[32] J H Przytycki, A Yasukhara, Symmetry of links and classification of lens spaces,
Geom. Dedicata 98 (2003) 57–61 MR

[33] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University
(2003) MR Available at https://search.proquest.com/docview/305332635

[34] J Rasmussen, Lens space surgeries and L–space homology spheres, preprint (2007)
arXiv

[35] H C Ravelomanana, Knot complement problem for L–space ZHS3 , preprint (2015)
arXiv

[36] Y W Rong, Some knots not determined by their complements, from “Quantum topology”
(L H Kauffman, R A Baadhio, editors), Ser. Knots Everything 3, World Sci., River Edge,
NJ (1993) 339–353 MR

[37] R Rustamov, Surgery formula for the renormalized Euler characteristic of Heegaard
Floer homology, preprint (2004) arXiv

[38] K Walker, An extension of Casson’s invariant, Annals of Mathematics Studies 126,
Princeton University Press (1992) MR

Department of Mathematics, Imperial College London
London, United Kingdom

fyodor.gainullin@gmail.com

Received: 13 October 2015 Revised: 7 May 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://msp.org/idx/mr/2113020
http://dx.doi.org/10.1016/j.topol.2003.09.009
http://msp.org/idx/mr/2058681
http://dx.doi.org/10.1016/j.top.2005.05.001
http://msp.org/idx/mr/2168576
http://dx.doi.org/10.1016/j.aim.2005.03.014
http://msp.org/idx/mr/2222356
http://msp.org/idx/mr/2249248
http://dx.doi.org/10.2140/agt.2008.8.101
http://msp.org/idx/mr/2377279
https://doi.org/10.2140/agt.2011.11.1
http://msp.org/idx/mr/2764036
http://dx.doi.org/10.1023/A:1024008222682
http://msp.org/idx/mr/1988423
http://msp.org/idx/mr/2704683
https://search.proquest.com/docview/305332635
http://msp.org/idx/arx/0710.2531
http://msp.org/idx/arx/1505.00239
https://doi.org/10.1142/9789812796387_0019
http://msp.org/idx/mr/1273583
http://msp.org/idx/arx/math/0409294
https://doi.org/10.1515/9781400882465
http://msp.org/idx/mr/1154798
mailto:fyodor.gainullin@gmail.com
http://msp.org
http://msp.org



	1. Introduction
	2. Review of the mapping cone formula
	3. Correction terms
	4. Surgery producing spaces with p not dividing chi(HF_red)
	5. Bound on q for knots that are not too exceptional
	6. A bound on q for exceptional knots of genus larger than 1
	7. Some knots determined by their complements
	8. Null-homologous knots in L–spaces
	8.1. Alexander polynomial
	8.2. Knots determined by their complements

	References

