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An infinite family of links with critical bridge spheres

DANIEL RODMAN

A closed orientable splitting surface in an oriented 3–manifold is a topologically
minimal surface of index n if its associated disk complex is .n�2/–connected but not
.n�1/–connected. A critical surface is a topologically minimal surface of index 2.
In this paper, we use an equivalent combinatorial definition of critical surfaces to
construct the first known critical bridge spheres for nontrivial links.

57M25

1 Introduction

In the 1960s Haken developed a framework for studying manifolds that contain in-
compressible surfaces. He demonstrated that for such manifolds, one can reduce the
proofs of many theorems to induction arguments by using “hierarchies”, consecutively
cutting a manifold into pieces along incompressible surfaces until a collection of balls
is obtained. This powerful approach clearly demonstrated the utility of incompressible
surfaces in the study of low-dimensional topology.

In 1987 Casson and Gordon [4] introduced the idea of strongly irreducible surfaces.
Unlike incompressible surfaces, which have no compressing disks, strongly irreducible
surfaces have potentially many compressing disks to both sides, but any two compressing
disks on opposite sides necessarily intersect. Somewhat surprisingly, it turns out that
many theorems that are easy to prove for manifolds with incompressible surfaces also
hold true for manifolds with strongly irreducible surfaces, although the proofs can
be somewhat more involved. Casson and Gordon’s watershed result in the theory of
strongly irreducible surfaces is that if a closed, connected, orientable 3–manifold’s
minimal-genus Heegaard splitting is not strongly irreducible, then the manifold must
contain an essential surface [4].

In 2002, Bachman [1] introduced the notion of a critical surface, which he followed
in 2009 [2] with the introduction of the more general concept of a topologically
minimal surface. A closed orientable splitting surface in an oriented 3–manifold M
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is a topologically minimal surface of index n if its associated disk complex is .n�2/–
connected but not .n�1/–connected. This latter definition provides the framework
into which incompressible, strongly irreducible, and critical surfaces all fit: they
are topologically minimal surfaces of indices 0, 1 and 2 respectively. Just like the
incompressible and strongly irreducible surfaces before them, critical surfaces and
topologically minimal surfaces in general have been used to prove long-standing
conjectures that had remained unresolved for many years. For example, Bachman [3]
used these surfaces to prove the Gordon conjecture1 and to provide counterexamples
to the stabilization conjecture.2

Most of the work done thus far regarding topologically minimal surfaces deals specif-
ically with surfaces which are Heegaard splittings, two-sided surfaces that split a
manifold into two compression bodies. Less is known about topologically minimal
bridge surfaces, which are a natural type of surface to consider when the 3–manifold is
a link complement. Lee has shown in [8] that all bridge spheres for the unknot with
any number of bridges in S3 are topologically minimal, and his results provide upper
bounds for the indices of such bridge spheres. In particular, he concludes that the
bridge sphere for an unknot in a 3–bridge position has index exactly 2 (ie it is critical).

In this paper we provide the first known examples of critical bridge spheres for nontrivial
links. Our construction is inspired by recent work of Johnson and Moriah [6] in which
they construct links with bridge surfaces of arbitrarily high distance. The central result
of this paper is the following:

Theorem 6.9 There is an infinite family of nontrivial links with critical bridge spheres.

In Section 2 we go over some of the foundational topological definitions upon which
this paper relies, including an equivalent, combinatorial definition of a critical surface.
Then in Section 2 we describe what it means for a link to be in a plat position. Following
that, in Section 3 we embed a link L in S3 in a plat position with bridge sphere F and
discuss some of the specific details of the embedding as well as build some of the tools
(certain arcs, loops, disks and projection maps) which we will use throughout the rest
of the paper. Sections 2 and 3 should be considered setup for the rest of the paper, and
this is essentially the same setup as in Johnson and Moriah’s paper [6]. In particular,
we make use of Johnson and Moriah’s plat links and projection maps. In Section 4 we

1Gordon conjecture: if the Heegaard splitting U [H V is a connected sum of two Heegaard splittings,
and H is stabilized, then one of its summands is stabilized.

2Stabilization conjecture: given any pair of Heegaard splittings, stabilizing the higher-genus splitting
once results in a stabilization of the other splitting.
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develop a link-diagrammatic way to visualize boundary loops of compressing disks
for F . Theorem 6.9 is proved in Sections 5 and 6.

2 Definitions

Suppose † is a compact orientable surface embedded in a compact orientable 3–
manifold M , and D is a disk embedded in M (not necessarily properly). We say that
D is a compressing disk for † if D \†D @D and @D neither bounds a disk in †
nor is parallel to a boundary component of †.

A compact, orientable surface † embedded in a connected 3–manifold M is a splitting
surface if M n† has two components. We associate a simplicial complex � called
the disk complex to .M; †/ in the following way: Vertices of � are isotopy classes of
compressing disks for †. A set of mC 1 vertices will be filled in with an m–simplex
if and only if the corresponding isotopy classes of compressing disks have pairwise
disjoint representatives. For n� 0, † is called topologically minimal of index n if � is
.n�2/–connected but not .n�1/–connected. (Note that every space is .�2/–connected,
and a space is .�1/–connected if and only if it is nonempty.) † is called a critical
surface if it is a topologically minimal surface of index 2. In [2], Bachman gives an
alternative, combinatorial definition for critical surfaces and proves the two definitions
are equivalent. This second definition, given below, is the one we will use in this paper.

A critical surface is a splitting surface †�M whose isotopy classes of compressing
disks can be partitioned into C1tC2 in a way that satisfies the following two conditions:

(1) Whenever ŒC �2 C1 and ŒD�2 C2 for C and D on opposite sides of †, @C \@D
must be nonempty.

(2) For i D 1; 2, there exists a pair of disjoint compressing disks, one on either side
of †, where each disk belongs to an isotopy class in Ci .

Any link L� S3 can be isotoped so that all of its maxima lie above all of its minima
(with respect to the standard height function on S3 ). After such an isotopy, L is said
to be in bridge position. Let �.L/ be an open regular neighborhood of L, and let F

be a level sphere in S3 which separates all of the maxima of L from all of the minima.
Then the surface F 0 D Fn�.L/ �M D S3n�.L/ (a sphere with a finite number of
open disks removed) is called a bridge sphere for L. See Figure 2.

In our context, studying the bridge sphere F 0 � S3n�.L/ is equivalent to studying the
“sphere F �S3 with marked points”, where the marked points are the points of L\F .
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F

L

Figure 1: If a bridge disk on one side of F intersects a bridge disk below F

in a single point of the link, and are disjoint otherwise, then the link is
perturbed.

Figure 2: A bridge sphere and a compressing disk

A disk in S3 is considered a compressing disk for the sphere F with marked points if
and only if it is a compressing disk for F 0 in M . This implies that a compressing disk
for F cannot intersect L, and two compressing disks for F are considered to be in
the same isotopy class if and only if they are isotopic in S3=�.L/.

A bridge arc is a component of LnF , and each of these bridge arcs has exactly one
critical point, so each is parallel into F . An isotopy of a bridge arc into F sweeps out
a disk, called a bridge disk. (Bridge disks are not unique, even up to isotopy.)

A link is perturbed if there is a bridge disk above F and another bridge disk below F

which intersect in a point of L, and which are otherwise disjoint. See Figure 1. We
will say the link is perturbed at a bridge arc ˛ if ˛ corresponds to either of these
two bridge disks. If a link L is perturbed, then there is an isotopy of L through the
bridge disks which reduces the number of critical points of L by one maximum and
one minimum.

A cap for F is a compressing disk C such that @C bounds a disk in F that contains
exactly two marked points. The existence of caps is guaranteed by the existence of
bridge disks. See Figure 3.

The notion of boundary-compression along boundary-compressing disks will also be
useful. Suppose † is a surface with boundary properly embedded in a 3–manifold M .
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Figure 3: The two disks depicted are both caps for the leftmost bridge arc. In
each figure, the disk in F with two marked points is shaded.

Figure 4: A boundary-compressing disk is shaded dark gray.

A boundary-compressing disk (See Figure 4 for an example) is defined to be an
embedded disk D with the following properties:

� D\ @M is an arc ˇ .

� D\† is an arc ž.3

� @D D ˇ[ ž.

� ˇ\ žD @ˇ D @ ž.

Next we define a half-twist. Let U be a twice punctured (marked) disk. The half-twist
can be simply understood to be the homeomorphism U ! U depicted in Figure 5.
To be technical, the half-twist H of U is the homeomorphism H W U ! U defined
as follows: View U as a union A[� D of the closed unit disk D �C with an outer
annulus A whose intersection is an embedded circle containing the two marked points.
See Figure 5. Give D the coordinates rei� , and identify A with S1 � I , with the
coordinates .�; t/ (here A is glued to D by the map � taking .�; 0/ in one component
of @A to ei� in @D ). Now define

H.p/D

�
.� C� t; t/ for p D .�; t/ 2A;

rei.�C�/ for p D rei� 2D:

3Our definition here is looser than the standard definition since we do not require ž to be an essential
arc in † . We drop this condition because we will want to perform boundary-compressions on disks, which
have no essential arcs.
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A

D

half-twist smoothed version

Figure 5: Half-twist

For any punctured (marked) surface S with more than one puncture (marked point), if
l �S is a loop which bounds an embedded twice-punctured (marked) disk Ul �S , we
can identify Ul with U and define the half-twist Hl about l to be the homeomorphism
Hl W S ! S given by

Hl.p/D

�
H.p/ for p 2 U;

p for p 62 U:

Now we will define plat position for a link. We start by describing plat position for a
braid. Fix integers h� 2 and b� 3. We begin by constructing a set of vertical cylinders
in R3 which will provide a frame for our braid. See Figure 6. In the xy–plane, define
c1; c2; : : : ; c2b�1 to be the circles of radius 1

2
such that cj has center

�
j C 1

2
; 0; 0

�
.

Now define Cylj to be the cylinder obtained by crossing cj with the z–interval Œ1; h�.

Next we define the twist regions, subcylinders of fCylj g depicted in Figure 6. Let
i 2 f2; 3; : : : ; hg. For odd i , let j range from 1 to b ; for even i , let j range from 1

to b� 1. Then define

Twj
i D

(
c2j�1 �

�
i � 3

4
; i � 1

4

�
for i odd;

c2j �
�
i � 3

4
; i � 1

4

�
for i even:

In this paper, superscripts will usually denote an object’s horizontal position (ie in the
x–direction), and subscripts will usually denote an object’s vertical position (ie in the
z–direction). This is reminiscent of typical matrix notation: an entry a

j
i of a matrix is

in the i th position vertically and the j th position horizontally. Here, however, unlike
in a matrix, an array of objects is enumerated from bottom to top instead of from top
to bottom.

Now we define a (nonclosed) braid B to be in .h; b/–plat position if it satisfies the
following conditions:

(1) B is a 2b–strand braid embedded in
S

Cylj whose bottom endpoints’ coordi-
nates are .j ; 0; 1/ for j D 1; 2; : : : ; 2b and whose top endpoints’ coordinates
are .j ; 0; h/ for j D 1; 2; : : : ; 2b .
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Figure 6: The cylinders which form a frame for plat links (here hD b D 4)

(2) Arcs of B are partitioned into two types: vertical arcs which lie in the intersection
of
S

Cylj with the xz–plane, and twisting arcs which are not contained in the
xz–plane but are properly embedded in the twist regions.

(3) Every twisting arc is strictly increasing in a twist region, and as it ascends, it
moves either strictly clockwise around the cylinder or strictly counterclockwise.

These conditions guarantee that each twist region contains exactly two arcs of B .
Observe that the endpoints of every twisting arc must lie in the xz–plane. Since
twisting arcs move strictly clockwise or counterclockwise, they intersect the xz–plane
minimally. That is, there is no isotopy of a twisting arc in a twist region, relative to its
endpoints, which would decrease the intersection of that twisting arc and the xz–plane.
Looking down at the link from above, if the twisting arc moves counterclockwise as it
ascends, we define t to be �1 plus the number of times the twisting arc intersects the
xz–plane. Similarly, if the twisting arc moves clockwise as it ascends, we define �t

to be �1 plus the number of times the twisting arc intersects the xz–plane. In other
words, to each twisting arc we assign an integer t such that the twisting arc travels
around the twist region through an angle of t� . Notice that the other twisting arc in
the same twist region must twist through an equal angle t� (or else the two arcs would
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Figure 7: Closing a braid in .h; b/–plat position, for (left) h even, and (right)
h odd. In this paper, we only consider hD 4 .
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Figure 8: A 4–twisted .4; 4/–plat link with t
j
1 D t

j
3 D4 for all j and t

j
2 D�4

for all j . Also pictured are the U –disks defined in Section 3.

intersect). Thus we can define the number t to be the twist number corresponding to
that twist region. We will use t

j
i to denote the twist number for Twj

i .

There is a standard way to create a link from a braid in plat position. See Figure 7.
Along the bottom of B , we have a row of 2b endpoints at a height of z D 1. For
each odd j between 1 and 2b , connect the endpoints .j ; 0; 1/ and .j C1; 0; 1/ with a
lower semicircle in the xz–plane. The way we connect the top endpoints of B depends
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Figure 9: Point of view

on the parity of h. Notice that if h is even, then the highest row of twist regions
consists of b� 1 twist regions. Along the top of B we have a row of 2b endpoints at
a height of z D h. For each odd j between 1 and 2b , connect the endpoints .j ; 0; h/
and .j C 1; 0; h/ with an upper semicircle in the xz–plane. If h is odd, there are b

twist regions at the top. For each even j between 2 and 2b� 2, connect the endpoints
.j ; 0; h/ and .j C 1; 0; h/ with an upper semicircle in the xz–plane. Then connect
the points .j ; 0; 1/ and .j ; 0; 2b/ with a larger upper semicircle in the xy–plane. See
Figure 7. Thus we obtain a link from B .

Any link constructed in this way from a braid in .h; b/–plat position will be said to be a
link in .h; b/–plat position. Observe that such a link is in a bridge position with bridge
number b . For n 2N , a link in .h; b/–plat position is called n–twisted if jtj

i j � n for
all i; j . See Figure 8 for an example of a 4–twisted link in .4; 4/–plat position.

3 Setting

Let f W S3! Œ�1;1� be a height function on S3 , and let ƒ be a strictly increasing arc
in S3 whose endpoints are the two critical points of S3 . Then S3nƒ is homeomorphic
to R3 . Let �W R3! S3nƒ be a homeomorphism that respects the height function f
on S3 and the standard height function on R3 . That is, if Pi is the level plane in R3

of height i , and Fi is the level sphere in S3 of height i , then �.Pi/ is Fi minus the
point Fi \ƒ. Throughout the rest of the paper, we adopt the point of view of someone
standing on the �y side of the xz–plane. This gives meaning to words like “left”,
“right”, “up”, “down”, “horizontal” and “vertical”. See Figure 9.

The link L Let L be a 2–twisted link in .4; 4/–plat position with bridge sphere
F ' F1 D f

�1.1/� S3 . Suppose L has twist numbers ftj
i g such that for all j , the
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Figure 10: The bridge disks Dk above F

ˇ0

D40

˛40

Figure 11: The bridge arcs below F . Of these, we care especially about the
rightmost bridge arc ˛40 , the straight line segment ˇ0 between its endpoints,
and the bridge disk D40 cobounded by ˛40 and ˇ0 .

twist numbers t
j
2
; t

j
4

are positive, and t
j
3

is negative. We will work with this link L

for the rest of the paper.

Consider the diagram D.L/ for L obtained by projection to the xz–plane. Our choice
of signs for the twist numbers ftj

i g makes D.L/ an alternating diagram, and we know
that L is a split link if and only if D.L/ is a split diagram (see Theorem 4.2 of [9]).
Since D.L/ is clearly a nonsplit diagram, it follows that L is a nonsplit link.

The bridge disks Refer to Figure 10. Above F4 in the xz–plane lie the four upper
bridge arcs. We will name these arcs consecutively from left to right ˛1 , ˛2 , ˛3 , ˛4 .
Vertical projection of the bridge arcs into F gives us four straight line segments at
level 4, which we will name consecutively from left to right ˇ1 , ˇ2 , ˇ3 , ˇ4 . We will
refer to these as ˇ–arcs. Observe that ˛j and ˇj form a loop. Let Dj be the disk in
the xz–plane bounded by this loop. Notice each Dj is a bridge disk. Define  j to be
the straight line segment connecting the points .2j ; 0; 4/ and .2j C 1; 0; 4/. We will
refer to these arcs as –arcs.

Below F1 in the xz–plane lie the four lower bridge arcs, which we will call consecu-
tively from left to right ˛10 , ˛20 , ˛30 , ˛40 . We will also define ˇ0 to be the straight
line segment between the endpoints of ˛40 . See Figure 11. The union ˇ0 [ ˛40 is a
loop bounding a bridge disk in the xz–plane, which we will call D40 .

l–loops and U –disks For i D 1; 3, define l
j
i to be the circle of radius 3

4
in the

horizontal plane z D i � 1 centered at the point
�
2j C 1

2
; 0; i � 1

�
. For i D 2, define

l
j
2

to be the circle of radius 3
4

in the horizontal plane z D 2 centered at the point
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�
2j � 1

2
; 0; i � 1

�
. Then each l

j
i bounds a twice-punctured disk which we call U

j
i .

Each disk U
j
i lies below a corresponding twist region Twj

i . See Figure 8.

�–projection It will be convenient to be able to talk about simple vertical projections.
If Pi denotes the horizontal plane in R3 of height i , let �i W R3! Pi be the vertical
projection map defined by .x;y; z/ 7! .x;y; i/.

�–projection We will also need a more subtle type of projection which respects L.
We closely follow Johnson and Moriah [6]. Note that L intersects each Fi in the same
number of points and these points vary continuously as i varies from 1 to h. This
can be thought of as an isotopy of these 2b marked points in F which extends to an
ambient isotopy of Fh . To be precise, there is a projection map �i W F � Œ1; h�!Fi for
each i 2 Œ1; h� that sends each arc component of the plat braid to a point .j ; 0; i/ for
some j D 1; 2; : : : ; 2b and defines a homeomorphism Fi0 ! Fi for each i 0 2 Œ1; h�.
These homeomorphisms are canonical up to isotopy fixing the points L\Fi , and the
induced homeomorphism Fi ! Fi is the identity. Further, for each i D 2; 3; 4, the
homeomorphism induced by �i W Fi�1! Fi is a composition of half-twists about the
l–loops, which can be expressed as the product

Q
j H

t
j

i

l
j

i

. (Note that since the U –disks
at any given level are pairwise disjoint, the corresponding half-twists all commute
with each other.) Therefore the homeomorphism gW F0! F4 induced by �4 can be
expressed as

(�) g D
�Y

j

H
t

j

4

l
j

4

��Y
j

H
t

j

3

l
j

3

��Y
j

H
t

j

2

l
j

2

�
:

Disk partition Our goal is to show that F is critical, so we need to exhibit a partition
C1t C2 of the isotopy classes of the compressing disks for F . (Recall the definition of
“critical” from the beginning of Section 2.) Above F , let B be the frontier of a regular
neighborhood of D1 . Below F , let B0 be the frontier of a regular neighborhood
of D40 . B and B0 are depicted in Figure 12. Let ŒB�, ŒB0� 2 C2 , and let all of the
other isotopy classes of compressing disks be in C1 . It will be convenient to refer to a
compressing disk C as red if ŒC � 2 C1 and blue if ŒC � 2 C2 .

4 The labyrinth

We are interested in the image of @B0 under g , the homeomorphism induced by �4 .
As �4 takes @B0 up from level 1 to level 4, @B0 undergoes a series of twists, following
the strands of the link. As explained in Section 3, g can be expressed as a product of
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�4.@B
0/

Figure 12: The two blue compressing disks, B and B0
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0/

Lab
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ge
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 3 ˇ4

Figure 13: The thin spiraling line is �4.@B
0/ in the case when t

j
1
D t

j
3
D 2

and t
j
2 D�2 for all j . Also depicted is the disk Lab which contains �4.@B

0/ ,
and the three gates, Gb , Go , and Gp , as well as the three colored points. In
general, the five marked points in Lab may be permuted differently when
different twist numbers are chosen.

half-twists around the l–loops via the equation (�). In Figure 13 we show exactly what
@B0 looks like under g in a case where jtj

i j D 2 for all j .
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Hl
j
i

U
j
i

�

Figure 14: How to view a half-twist about an l–loop as a link diagram

Figure 15: Rule for smoothing a crossing

Of course, we want to understand what �4.@B
0/ will look like in general for any set of

twist numbers ftj
i g. To do so, we will devise a convenient pictorial notation for loops

in F which undergo half-twists about l–loops. Suppose � is a loop in F with one arc
of intersection with U

j
i which passes between the two marked points, as in the first

picture in Figure 14. The second and third pictures in Figure 14 are homotopic pictures
of Hl

j

i
.�/. Observe that the third picture is reminiscent of knot diagram smoothing.

In fact, using the smoothing rule in Figure 15, we can “unsmooth” Hl
j

i
.�/ into the

fourth picture, which consists of a link diagram on F with two components: (1) the
original � and (2) l

j
i . This suggests a convenient algorithm to draw any such loop �

after a (positive) half-twist about an l–loop: We start by drawing �. Next we draw
the l–loop so that it passes under �. Last we smooth the crossings using the rule in
Figure 15. If we want to perform a negative half-twist instead, the procedure is the
same, except that we draw the l–loop crossing over �.

We can generalize this process to the situation where there are n strands of � passing
through U

j
i . In Figure 16, the top row is an example in which nD 3, and the bottom

row depicts the general case. As in Figure 14, the second and third pictures of each row
in Figure 16 are homotopic pictures of Hl

j

i
.�/, and we can “unsmooth” Hl

j

i
.�/ into

the fourth picture, which consists of a link diagram on F . This time, the link diagram
contains nC 1 components: � and n parallel copies of l

j
i . Thus our generalized

procedure for drawing a half-twist of � about l
j
i is the following: First determine

the number n of times that � passes between the two punctures of U
j
i , then draw n

parallel, disjoint copies of l
j
i so that at each crossing, l

j
i passes under � for a positive
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H
l
j
i

U
j
i

�

n n n n

n

Figure 16: How to view a half-twist about an l–loop as a link diagram. In
the top row of pictures, we show specifically what the situation looks like
when nD 3 . The bottom row shows that the whole process can be done with
an arbitrary number n of strands through U

j
i . In all the following figures

that depict half-twists, when we label the number of parallel strands present,
as in the bottom row here, we will box the labels with squares.

half-twist, or over � for a negative half-twist, and then smooth the crossings using the
rule from Figure 15.

Note that to perform jtj
i j consecutive half-twists around l

j
i , we simply perform this

process jtj
i j times, taking care that every time we add new parallel copies of l

j
i , they

are nested inside the ones previously drawn. Thus if � is half-twisted around l
j
i a total

of jtj
i j times, and � passes between the punctures of U

j
i a total of n times, then to

build the link diagram depicting H
t

j

i

l
j

i

.�/, we will add a total of njt
j
i j parallel copies

of l
j
i (all passing under � if t

j
i > 0 or over � if t

j
i < 0). Thus after any sequence of

half-twists about l–loops, we obtain a link diagram representing �. Instead of drawing
all of the parallel copies of each l–loop, we will draw only one of each and label it
with the number n of strands it represents.

In the resulting link diagram, we will have crossings involving two strands which are
labeled with different numbers. Figure 17 depicts an example in which we show how
to recover what � actually looks like near such a crossing, where a strand marked with
a 7 crosses a strand marked with a 3 . Figure 18 shows the general case.

Our purpose in developing this link-diagrammatic representation of a twisted loop is
to understand what @B0 looks like after performing (in order) half-twists about all of
the l–loops for any set of twist numbers ftj

i g. With this method in hand, this is a
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7

3

7

3

=

=

=

=

=

=

Figure 17: After twisting a loop � about l–loops, we obtain a link diagram
on F . Here is an example of a crossing in such a diagram: In this crossing,
one strand represents three parallel strands, and the other represents seven
parallel strands. Consider the top row of pictures, where the over-strand has
a larger number. The first picture is a neighborhood of the crossing of the
link diagram we have obtained. The second picture explicitly shows all of
the parallel strands at the crossing. The third picture shows the result after
smoothing all 21 crossings. The fourth picture is a smoothed version of the
third. All four pictures represent the same thing. The bottom row is similar,
but this time the under-strand has the larger number.

...
......
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......

...
... ...

...

... ...

N

n

N

n

=

=

�
N

�N

� N

�
N

˚n

˚ n
n̊

n̊

Figure 18: How to interpret a crossing in the link diagram of N strands with
n strands, where N > n
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level 1 @B0

1

level 2 �2.@B
0/

1
t3
2

level 3 �3.@B
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1t3
2

t3
2
jt4

3
j

t3
2
jt3

3
j

level 3
(simplified)

�3.@B
0/

t3
2 1C t3

2
jt4

3
j

t3
2
jt3

3
j

level 4 �4.@B
0/

t3
2

t3
4
.1C t3

2
jt3

3
jC t3

2
jt4

3
j/

1C t3
2
jt4

3
j

t3
2
jt3

3
j

t3
2
jt3

3
jt2

4

level 4
(simplified)

�4.@B
0/

t3
2
C t3

4
.1C t3

2
jt3

3
jC t3

2
jt4

3
j/

1C t3
2
jt4

3
j

t3
2
jt3

3
j

t3
2
jt3

3
jt2

4

Figure 19: The components of the link diagram that are newly added as a
result of having just moved up a level are highlighted by being drawn with
dotted lines. The reader may find it helpful to compare this figure to Figure 12,
which shows the link diagram’s location with respect to L .

straightforward task. Refer to Figure 19 as we describe this process. We start with the
simple circle @B0 in F at level 1, and then push it up to level 2 (ie we apply �2 ). The
boundary @B0 had to pass through the twist region Tw3

2 , so this means it underwent t3
2
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N 1 N 2 N 3 N 4

Gb

Go

Gp

Lab

ˇ1  1 ˇ2  2 ˇ3  3 ˇ4

Figure 20: The link diagram representing �4.@B
0/ (with values of the N i

and inequalities between them as given below)

half-twists about l3
2

. Before twisting (ie at level 1), @B0 passed one time (ie nD 1)
between the punctures of U 3

2
; therefore what @B0 looks like at level 2 is a link diagram

consisting of the original circle @B0 , plus 1 � t3
2

parallel copies of l
j
i . Since we

specified in Section 3 that t
j
2

is positive for all j , each copy of l
j
i will be drawn to pass

under @B0 . Now the original @B0 and the t3
2

copies of l
j
i together with the crossing

information make a link diagram which represents the image of @B0 under �2 . Since
the value of t3

2
is arbitrary, we cannot smooth the crossings to see exactly what �2.@B

0/

looks like. But that is not a problem; we can still push this loop up from level 2 to level
3. As we do, we add copies of l3

3
and l4

3
to the link diagram. This time, since t

j
3
< 0

for all j , these l–loops will all be drawn with overcrossings, which gives us a link
diagram representing �3.@B

0/. Finally we push this up to level 4, adding copies of l2
4

and l3
4

(with undercrossings) to the link diagram. In this way we see that �4.@B
0/ can

be represented by the diagram of the four-component unlink in Figure 20.

Each circle in the diagram in Figure 20 is marked with a number N i indicating how
many parallel copies of that circle are present, where

N 1
D t3

2 jt
3
3 jt

2
4 ;

N 2
D t3

2 jt
3
3 j;

N 3
D t3

2 C t3
4 .1C t3

2 jt
3
3 jC t3

2 jt
4
3 j/;

N 4
D 1C t3

2 jt
4
3 j:

Recall that t
j
2
; t

j
4
� 2 and t

j
3
��2 for all j . No matter what values the twist numbers

ft
j
i g take on, provided they follow this rule, it can be shown that N i > 0 for each i ,

and these three inequalities hold true:

N 1 >N 2; N 2 <N 3; N 3 >N 4:
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Figure 21: Proposition 4.2 asserts that Lab is isotopic to this picture. The
boundary @B0 and the three gates cut Lab into five components: three once-
punctured disks, an annulus, and a twice-punctured disk.

This means that at each of the six crossings, the strand labeled with the higher number
passes under the strand labeled with the lower number, so all six crossings look like
the bottom picture in Figure 18.

Proposition 4.1 The position of @B0 described by the link diagram in Figure 20 is
minimal with respect to ˇ2[ˇ3[ˇ4 .

Proof The bigon criterion in [5] tells us that as long as @B0 cobounds no bigons
with ˇ2[ˇ3[ˇ4 , then they are in minimal position. Consider @B0 as being cut into
component strands by ˇ2 [ˇ3 [ˇ4 . To bound a bigon, one of these strands would
have to have both endpoints on a single ˇ–arc. However, each strand has endpoints on
distinct ˇ–arcs.

Let Lab be the disk in F4 which contains �4.@B
0/ and whose complement is a regular

neighborhood of ˇ1 [  1 . (Lab is depicted in Figures 13 and 20, and also, Lab is
isotopic in F to the top gray rectangle in Figure 12.) We will refer to Lab as the
labyrinth.

Define Gb;Go , and Gp to be the dotted arcs depicted in Figures 13 and 20. We will
call these the brown, orange, and purple gates of the labyrinth, respectively. Each gate
is an arc in Lab with endpoints on @B0 .

Proposition 4.2 @B0 and the three gates cut Lab into five components: three once-
punctured disks, an annulus, and a twice-punctured disk.

Proof Since each crossing in our link diagram in Figure 20 looks like the bottom
picture of Figure 18, it is apparent that there is an annulus component, which we will
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F

R

˛k

˛kC1

Figure 22: In Case 1, ˛2; ˛3 and ˛4 appear on both sides of R .

call A. A has @.Lab/ as one boundary component, and the other component of @A
alternates between the three gates and three subarcs of @B0 . Observe that A is not
punctured. The boundary @B0 cuts off the twice-punctured disk U 3

2
from Lab by

definition, and clearly none of the gates are in this disk. Lab nU 3
2

is a thrice-punctured
annulus in which the three gates are properly embedded but not nested: if any subset
of the gates were nested, then at least one of them would not be a boundary component
of A. None of the gates can be parallel to @B0 because that would either force A to be
punctured or force the other gates to be nested. Thus the only possible configuration is
(isotopic to) Figure 21.

We will refer to the three once-punctured disks in Proposition 4.2 as the brown, orange,
and purple punctured disks, according to the color of the corresponding gate, and we
will call the marked point contained therein a brown, orange, or purple marked point.
In the brown disk, there is a unique arc (up to isotopy) connecting the brown point
to Gb , which we will call the brown escape route. We define the orange and purple
escape routes similarly. (The three escape routes are depicted in the second picture of
Figure 32.) We can think of the colored points as escaping from a maze whose walls
are (@B0 ), and the escape routes are the paths they take to get to the exits (the gates).

5 Red disks enter the labyrinth

Refer to Figure 10.

Lemma 5.1 If R is a red disk above F , then R must intersect  2 or  3 .

Proof F cuts S3 into two 3–balls: MC above F and M� below F . R divides MC

into two 3–balls which we will call M 1
C and M 2

C and refer to as the two sides of R.

Case 1 (˛2; ˛3 and ˛4 are not all on the same side of R) Then for k D 2 or k D 3,
˛k and ˛kC1 are on opposite sides of R. Since  k connects an endpoint of ˛k and
an endpoint of ˛kC1 ,  k must intersect R.
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F

R

˛1

M 2
C

M 1
C

Figure 23: In Case 2, ˛1 �M 1
C and ˛2; ˛3; ˛4 �M 2

C .

F

˛k

Dk

z̨
zD k�1  k

ž

Figure 24: In Subcase 2.2, R\Dk is nonempty. Possible arcs of intersection
are depicted on Dk .

Case 2 (all of the bridge arcs ˛2; ˛3 and ˛4 are on the same side of R) Without
loss of generality, say they are in M 2

C . See Figure 23. Notice that ˛1 cannot also be
in M 2

C because that would imply @R is null-homotopic in F , contradicting the fact
that R is a compressing disk. Therefore, in Case 2, R separates ˛1 from the other
bridge arcs, which implies R is a cap for ˛1 . Let DDD2[D3[D4 , and isotope R

to minimize #jR\Dj.

Subcase 2.1 (R is disjoint from D) Assume (for contradiction) that R is also disjoint
from  2 and  3 . Then we have a single straight arc � D ˇ2[  2[ˇ3[  3[ˇ4

disjoint from @R because ˇj �Dj �D. So @R cuts F into two disks, one of which
contains � , and the other of which contains @ˇ1 . But of course, there is only one such
loop in F , which is @B . Thus R' B , so the red disk R is blue, a contradiction. We
conclude that in this subcase, @R must intersect  2 or  3 .

Subcase 2.2 (R is not disjoint from D) For some Dk �D, R\Dk is nonempty.
R\Dk cannot contain loop intersections because # jR\Dj is minimal, and S3n�.L/

is irreducible. R\Dk cannot contain an arc with either endpoint on ˛k because that
would imply that R intersects L. Thus the components of intersection in Dk must all
be arcs with both endpoints on ˇk . See Figure 24.
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F

R

˛1

M 2
C

M 1
C

zD

z̨

ž

Figure 25: In Subcase 2.2, R\Dk is nonempty. Here we see R and the
outermost disk zD .

Take an arc of intersection outermost on Dk and call it z̨ . Let ž be the subarc of ˇk

that shares endpoints with z̨ . Then let zD be the subdisk of Dk cobounded by z̨
and ž. See Figures 24 and 25. zD �M

j
C for either j D 1 or j D 2. Whichever is the

case, zD cuts M
j
C into two balls which we call the sides of zD . Recall that we assume

˛2; ˛3; ˛4 �M 2
C , so therefore ˛1 �M 1

C . zD cannot be in M 1
C with ˛1 . If it were,

then since ˛1 cannot intersect R or zD , ˛1 would have to be completely contained on
one side or the other of zD . Then the other side of zD would be an empty 3–ball through
which we can isotope R, removing at least one component of intersection with Dk ,
which is a contradiction since # jR\Dj is already minimal. Thus zD is in M 2

C with
˛2; ˛3 and ˛4 .

If ˛2; ˛3 and ˛4 were on the same side of zD , that would mean that the other side
of zD was an empty 3–ball through which we could isotope R, removing the arc of
intersection z̨ �R\D, contradicting minimality. Thus it must be the case that there
are some ˛–arcs in either side of zD .

Then for k D 2 or k D 3, ˛k and ˛kC1 are on opposite sides of zD . An endpoint
of ˛k and an endpoint of ˛kC1 are connected by the arc  k in F . None of the –arcs
have interiors that intersect D, so  k must pass through @R in order to connect ˛k

to ˛kC1 . Thus we have proved that in Subcase 2.2, @R\ . 2[  3/¤∅.

Now we have proved both subcases, concluding Case 2 and finishing the proof of
Lemma 5.1.

Corollary 5.2 Every red disk intersects at least one of �4.@B
0/, Gb , Go and Gp .

Proof Recall that by Proposition 4.2, Lab n
�
�4.@B

0/[Gb[Go[Gp
�

has five com-
ponents: three (colored) once-punctured disks, one twice-punctured disk (U 3

2
), and
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an annulus. See Figure 21. Let R be a red compressing disk above F . The boundary
of a compressing disk cannot bound a once-punctured disk in F . Thus @R cannot
be contained in one of the three colored once-punctured disks. If @R lies in the
twice-punctured disk, then @R must be isotopic to �4.@B

0/. But then after the isotopy,
R[B0 would be a splitting sphere for L, a contradiction since L is nonsplit. We
see in Figures 13 and 20 that  2 and  3 are disjoint from the annulus component
of Lab, so if @R is contained in the annulus, @R would fail to intersect  2 or  3 ,
contradicting Lemma 5.1. We conclude @R cannot lie in a single component of
Lab n

�
�4.@B

0/[Gb[Go[Gp
�
; therefore it must intersect �4.@B

0/[Gb[Go[Gp .

6 All red disks above F intersect all blue disks below

Recall the disks and arcs defined in Section 3 and pictured in Figures 10 and 11. Let
DDD2[D3[D4 as in Section 5. Let R be the set of red compressing disks above F

which are disjoint from ˇ0 . Throughout Section 6, whenever R is nonempty, assume
that R is a disk in R such that jR\Dj � jR0\Dj for all R0 2R, and assume R is
in minimal position with respect to D and with respect to the gates. ˇ0 cuts ˇi into
multiple subarcs, which we call lanes.

Lemma 6.1 Assume R is nonempty. If two points of R\ ˇi lie in the same lane,
then they cannot be the endpoints of a common arc of R\Di .

Proof Suppose there exists an arc of R\Di whose endpoints lie in the same lane.
We may assume the arc is outermost on Di . It cuts off a small subdisk zDi �Di which
does not intersect ˇ0. Boundary-compress R along zDi . The result is two disks, R1;R2

whose boundaries lie in F , and which are disjoint from ˇ0 . Suppose R1 is trivial.
Then it represents an isotopy through which we can move R to decrease its intersection
with the bridge disks. But that implies R was not in minimal position with respect to
the bridge disks, a contradiction. Thus R1 is not trivial, and similarly, neither is R2 .

This means both R1 and R2 are compressing disks. By construction, neither of them
intersects ˇ0 , and jRi \Dj< jR\Dj for both i . Thus Ri 62R by our choice of R as
a minimal representative from R. Then by the definition of R, both Ri must be blue.
There is only one blue disk above F , which is B , so R1 and R2 must be parallel
copies of B . This implies R is a band sum of parallel disks, but any band sum of
parallel disks is trivial, so R is a trivial disk, which is a contradiction.
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@R
brown track

3 2 3

@R
orange track

3 4 3 4 3 2 3 2 3 4 3 4 3

@R
purple track

4 3 4 3 4 3 4 3 4 3 4 3 4 3 2 3 2 3 4 3 4 3 2 3 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4

Figure 26: Here we depict the brown, orange, and purple tracks in @R with
their respective sequences of numbered points for the example depicted in
Figure 13 (in which t

j
1
D t

j
3
D 2 and t

j
2
D �2 for all j ). We will not prove

this figure, nor does the paper depend on it. The reader can check it by taking a
pencil (and perhaps a magnifying glass) to Figure 13 and tracing out a path that
winds in a gate, around a marked point inside the labyrinth, and then back out.

By definition, R 2R implies R\ˇ0 D∅, so R can also be made disjoint from @B0

since @B0 is the boundary of a regular neighborhood of ˇ0 . It follows from Corollary 5.2
that R must intersect at least one gate. Figure 21 makes clear something not at all
obvious in Figures 13 and 20, which is that if an arc of R “enters” the labyrinth through
a particular gate, it must subsequently “exit” the labyrinth from the same gate. We will
call the components of the intersection of @R and the brown disk brown tracks, and
we will define orange tracks and purple tracks similarly. Observe that these tracks are
pairwise disjoint, and each track has endpoints on the gate of the corresponding color.

We label the points of @R\D2 , @R\D3 , and @R\D4 2–points, 3–points, and
4–points, respectively, and we will collectively refer to these as numbered points.
Likewise, we will label the arcs of R\D2 , R\D3 , and R\D4 2–arcs, 3–arcs, and
4–arcs, respectively, and we will collectively call them numbered arcs. Observe that
the endpoints of a j –arc are j –points. The next result follows from these definitions.

Lemma 6.2 If R is nonempty, at least one endpoint of each 2–arc must lie in a track,
and all 3– and 4–points lie in tracks.

Proof The leftmost lane of ˇ2 is not completely contained in Lab, but all the other
lanes of ˇ2 , as well as all the lanes of ˇ3 and ˇ4 , are contained in the union of the
three colored disks and U 3

2
. The boundary @R is disjoint from U 3

2
, so it can only

intersect these lanes inside the colored disks. Since every arc component of @R inside
a colored disk is, by definition, a track, we conclude that aside from the leftmost lane of
ˇ2 , @R only intersects the lanes of ˇ2 , ˇ3 and ˇ4 in tracks. Thus all 3– and 4–points
lie in tracks. If both endpoints of a 2–arc lie outside of the tracks, then those endpoints
must lie in the leftmost lane of ˇ2 , contradicting Lemma 6.1. Therefore at least one
endpoint of each 2–arc must lie in a track.
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@R
brown track

3 2 2 3

@R
orange track

3 4 4 3

@R
purple track

4 3 3 4

Figure 27: Each colored track contains a sequence of numbered points. No
matter the twist numbers ftj

i g , we can say what the outermost and second-
outermost points will be for each type of track.

Corresponding to each track color is a particular sequence of numbered points. Each
of these three sequences is symmetric in the sense that the outermost numbered points
in the track have the same number, the second-outermost numbered points match each
other, the third-outermost numbered points match, etc. Figure 26 depicts the sequence
of numbered points along each colored track in the case depicted in Figure 13.

Observe Figure 28, which depicts the possibilities for which directions tracks can
go after they intersect the ˇ–arcs. We see that the outermost numbered points of a
brown track are 3–points because the first and last ˇ–arc that the track will intersect
is ˇ3 . After intersecting ˇ3 , a brown track will loop around and intersect ˇ2 , so
the second-outermost numbered points of a brown track are 2–points. Similarly, the
outermost numbered points of an orange track are 3–points, and the second-outermost
numbered points of an orange track are 4–points. Finally, the outermost numbered
points of a purple track are 4–points, and the second-outermost numbered points of
a purple track are 3–points. This information is summarized in Figure 27. Note that
this information about the outermost and second-outermost numbered points does not
depend on the set ftj

i g of twist numbers.

Lemma 6.3 Assume R is nonempty. No numbered arc can have endpoints which lie
on the same track.

Proof Since @R must intersect at least one of the gates, it follows that there exists at
least one track in @R. Refer again to Figure 28: In the top picture, we see that after
intersecting ˇ3 , a track will always either intersect ˇ2 or ˇ4 or leave the labyrinth. In
the bottom picture, we see that after intersecting ˇ2 or ˇ4 , a track will always either
intersect ˇ3 or leave the labyrinth. This means that in each sequence of numbered
points in a track, every other numbered point is a 3–point.
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ˇ2 ˇ3 ˇ4

ˇ2 ˇ3 ˇ4

Go

Go

Gb

Gb

Gp

Gp

Figure 28: If � is a track, then � contains a sequence of numbered points.
The top picture shows that each 3–point on � either has a 2–point or a 4–point
to both sides, or it has a 2–point or a 4–point to one side and exits through a
gate to the other side. The bottom picture shows that each 2–point on � has
a 3–point to either side, and that each 4–point either has a 3–point to either
side, or it has a 3–point to one side and exits through a gate to the other side.

Suppose two numbered points from the same track are connected in R by a numbered
arc �. Since the two endpoints of � must have the same number, and since every other
numbered point in the track is a 3–point, there must be an odd number of numbered
points between the endpoints of �. But this leads to a contradiction: numbered arcs
never intersect each other, so it is impossible to pair up the numbered points between
the endpoints of � with disjoint numbered arcs.

Lemma 6.4 If R is nonempty, @R contains tracks of all three colors.

Proof Consider a numbered arc � which is outermost in R. Being outermost guaran-
tees that the endpoints of � are adjacent same-numbered points on @R. Since numbered
points in each track alternate between 3–points and 2– or 4–points, there are only three
ways to have adjacent same-numbered points on @R:
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R
�

brown track brown track
4 2 3 3 2 4@R

9�

Figure 29: Case 1: The outermost 4–arc � connects 4–points in adjacent
brown tracks.

(1) The endpoints of � are consecutive 2–points which do not lie in tracks, which
would contradict Lemma 6.2.

(2) The endpoints of � are a 2–point off of a track, and an outermost numbered
point on a track, which is impossible since no outermost point on any track is a
2–point.

(3) The endpoints of � are outermost same-numbered points of adjacent tracks.

Suppose @R contains no brown tracks. Since the outermost numbered points of orange
tracks are 3–points, and the outermost numbered points of purple tracks are 4–points,
� must have endpoints which are adjacent outermost numbered points of two adjacent
same-colored tracks, and we reach a contradiction by Lemma 6.1 since these two
endpoints lie in the same lane. Therefore @R must contain at least one brown track.
By a similar argument, @R contains at least one orange track.

Suppose @R contains no purple tracks. Consider a numbered 4–arc � of R\D4 which
is outermost in R (ie outermost among the set of 4–arcs). The arc � cuts @R into two
components. Since � is outermost among the 4–arcs, one of these components contains
no 4–points. Call this piece the primary piece. There are three possibilities: � connects
two 4–points in two brown tracks, it connects two 4–points in two orange tracks, or it
connects a 4–point of a brown track and a 4–point of an adjacent orange track. We
will derive a contradiction in each case.

Case 1 (� connects two 4–points in two brown tracks)

For this to be possible, the set ftj
i g of twist numbers must be such that brown tracks

contain 4–points, which is only true for some sets of twist numbers. In contrast, orange
and purple tracks necessarily contain 4–points, no matter the twist numbers. This means
that since the primary piece of @R cannot contain any 4–points, it cannot contain any
complete track of any color. Then the 4–points which are the endpoints of � must lie
in adjacent brown tracks. See Figure 29. Consider all of the numbered points in the
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R
�

orange
track

2 6 6 44 3 2

either 9�

brown
track

2 6 6 6 6 6 4

or 9�

2–points
not on a track

2 6 6 42 2 2 3 2

or 9�

2 2 3
brown
track

2 6 6 4

or 9�

3 2
brown
track

2 6 6 4 3 4
orange
track

2 6 6 4@R

Figure 30: Case 2: The outermost 4–arc � connects 4–points in adjacent
orange tracks. If brown tracks do not contain 4–points, then there may be any
number of brown tracks between these two orange tracks (and there may be
any number of 2–points between each pair of tracks).

primary piece of @R. They must be paired with numbered arcs, and there must be an
outermost such arc �, which connects same-numbered points adjacent on @R. If there
are no 2–points between the brown tracks in the primary piece of @R, then the only
pair of adjacent same-numbered points in the primary part of @R are an outermost
3–point of one brown track, and an outermost 3–point of the other brown track. But
these points are the same lane of ˇ3 , which contradicts Lemma 6.1. If there is exactly
one 2–point between the brown tracks in the primary piece of @R, then there does
not exist a pair of adjacent same-numbered points in the primary part of @R to be the
endpoints of �. If there is more than one 2–point between the brown tracks in the
primary piece of @R, then the only pair(s) of adjacent same-numbered points in the
primary part of @R are pairs of these 2–points, but they cannot be the endpoints of �
by Lemma 6.2. We conclude Case 1 is not possible.

Case 2 (� connects two 4–points in two orange tracks)

In this case, brown tracks may or may not contain 4–points, depending on the twist
numbers; if they do not, then the primary piece of @R may contain any number of
brown tracks. If there are zero brown tracks in the primary piece of @R, then the proof
is similar to Case 1. Suppose the primary piece of @R contains at least one brown
track. Then since the second-outermost numbered points of brown tracks are 2–points,
there are at least two 2–points in the primary piece of @R. Since numbered arcs cannot
intersect each other, they cannot intersect � in particular, so all of the 2–points in
the primary piece must be paired with each other by a set S of 2–arcs. Consider an
outermost 2–arc � in S (ie outermost in R with respect to the other 2–arcs of S ).
The endpoints of � are a pair of 2–points with no other 2–points between them. There
are four ways this can happen (depicted in Figure 30), though each one leads to a
contradiction:
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R �

brown track orange track
4 3 2 3 3 4 3

@R

Figure 31: Case 3: Adjacent brown and orange tracks with 4–points con-
nected by the outermost 4–arc � .

(1) The pair of 2–points lies in a single brown track, contradicting Lemma 6.3.

(2) Both 2–points are off of tracks, contradicting Lemma 6.1.

(3) The pair consists of a second-outermost numbered point in a brown track and a
2–point not contained in a track. But then � would separate a single 3–point
from all the other numbered points of @R, so the numbered arc corresponding
to that 3–point would have to intersect �.

(4) The pair consists of second-outermost numbered points in adjacent brown tracks,
points which lie in the same lane, again contradicting Lemma 6.1.

Therefore Case 2 is impossible.

Case 3 (� connects a 4–point of a brown track and a 4–point of an adjacent orange
track)

See Figure 31. Again, the numbered points in the primary piece of @R must all be
connected in pairs. Recall that in every track the numbered points alternate between
3–points and 2– or 4–points, so in the intersection of the primary piece and the brown
track, there are at least two 3–points, one on either side of the second-outermost 2–point.
In the orange track, the second-outermost numbered point is a 4–point, so it must be an
endpoint of � , so there is exactly one other numbered point in the intersection of the
primary piece and the orange track: an outermost 3–point. Since the primary piece of
the brown track contains strictly more than one 3–point, and the primary piece of the
orange track contains exactly one 3–point, it is impossible to pair up the 3–points in
such a way that no pair lies in the same track, so Case 3 contradicts Lemma 6.3 and is
therefore impossible. We conclude @R must contain purple tracks, finishing the proof
of Lemma 6.4.

Lemma 6.5 Assume R is nonempty. Let b � ˇi be a lane whose endpoints are
interior points of ˇ0 . Then a track must intersect b .
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@B0

ˇ0

@B0

ˇ0
@B0

colored point

route
escape

zbˇi

Di Lab

ˇ0

@B0

zb

Figure 32: On the left, zb is the bold horizontal segment of ˇi . On the right,
zb is the gray arc. Also depicted on the right are the three escape routes, and
the three corresponding tracks.

Proof Recall that @B0 and the three gates cut Lab into five components, one of which
is the annulus A, and observe that no lane of ˇ2; ˇ3 or ˇ4 intersects A except for the
leftmost lane of ˇ2 . By definition, b cannot be that leftmost lane, so b is properly
contained in the union of U 3

2
and the three colored disks. Let zb D bn.U 3

2

ı
/ as in

the first picture of Figure 32; zb is an arc properly contained in a colored disk, with
endpoints on @U 3

2
. zb cannot cobound a bigon with @B0 because that would contradict

Proposition 4.1, so zb must be an arc cutting out a punctured disk from a colored disk,
as in the second picture of Figure 32. Suppose the colored disk in question is brown.
By definition, the brown escape route does not intersect @B0 , so the only way for it to
connect the brown point with the brown gate is to intersect zb . Thus if zb is contained
in the brown disk, it must intersect the brown escape route. Every brown track is a
frontier in the brown disk of the brown escape route, so every brown track must also
intersect zb . Since the color was arbitrary, the lemma is proved.

Proposition 6.6 If L is not perturbed at ˛40 , then R is empty.

Proof Assume R is nonempty. Consider a numbered arc � which for some i is
outermost in Di . Let p and p0 be the endpoints of �, and let ži be the segment of
ˇi between p and p0 , as in Figure 33. The points p and p0 cannot lie in a single lane
by Lemma 6.1. If the two lanes containing p and p0 have at least one lane between
them (ie if the lanes are not adjacent), then by Lemma 6.5, there must be at least one
numbered point between p and p0 . However, � is outermost in Di , so that cannot

Algebraic & Geometric Topology, Volume 18 (2018)



182 Daniel Rodman

ˇ0

�

zDi

ži

p p0

Di

ˇi

Figure 33: � straddles exactly one strand of ˇ0

ˇ0

yD
˛j @R2

@R1

FR1

FR2

yd

FA

Figure 34: In Case 1, the bridge arcs are all disjoint from R1 and R2 . One
of the disks FR1

or FR2
must contain exactly one pair of partners, the

endpoints of a bridge arc ˛j . Then L is perturbed at ˛40 .

happen. Therefore the lanes containing p and p0 must be adjacent, so ži contains
exactly one point of ˇ0 .

The arc � cuts off a small disk zDi from Di . We boundary-compress R along zDi ,
which results in two new disks, R1 and R2 , properly embedded in MC . Since each
intersects ˇ0 exactly once, @R1 and @R2 cut F into an annulus and two disks, and
each of the two disks contains an endpoint of ˇ0 . Label these three regions FR1

,
FR2

and FA . The disk Ri cannot be trivial since F is punctured to either side
of @Ri . Therefore both Ri are compressing disks. Notice that R1 and R2 cannot be
parallel because the band sum dual to the boundary compression just performed would
recover R, but any band sum of parallel disks is a trivial disk.

Define a pair of marked points on F to be partners if they are endpoints of a common
bridge arc above F . Let the endpoints of ˇ0 be q1 and q2 .
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B000

B00

B0

B

Figure 35: A disjoint pair of blue disks (B and B0 ) and a disjoint pair of red
disks (B00 and B000 ) which fulfill condition (2) of the definition of a critical
surface

Case 1 For all four pairs of partners, it is the case that both points are contained in the
same region: FR1

, FR2

or FA . Since an endpoint of ˇ0 lies in each of the disks, a
pair of partners lies in each of the disks. One pair of partners must be in FA ; otherwise,
R1 and R2 would be parallel compressing disks. This accounts for three of the four
pairs of marked points. The fourth pair may be in any of the three regions FR1

, FR2

or FA . This means that FR1

or FR2

must contain exactly one pair of partners. See
Figure 34. Suppose these partners are the endpoints of ˛j for some j . Then there is
some bridge disk yD for ˛j (which is not necessarily isotopic to Dj ) which is disjoint
from Ri . If yd D F \ yD , then yd and ˇ0 can be made disjoint except for their shared
endpoint. Then yd [ˇ0 is an embedded arc. This means that yD and D40 are bridge
disks above and below F which intersect in a single point of the link, so L is perturbed
at ˛40 . This contradicts the hypothesis of the proposition, so Case 1 is not possible.

Case 2 There is a pair of partners which lie in different regions FR1

, FR2

and FA .
But then the bridge arc connecting them must intersect R1 or R2 , a contradiction
since compressing disks are disjoint from the link. Having arrived at a contradiction,
we conclude R cannot exist, so R is empty, and the proposition is proved.

Define R0 to be the set of red compressing disks below F disjoint from B . The next
result follows directly from Proposition 6.6 and rotational symmetry of L.

Corollary 6.7 If L is not perturbed at ˛1 , then R0 is empty.

Theorem 6.8 Let L be a 2–twisted link in .4; 4/–plat position with bridge sphere
F ' F4 D f

�1.4/� S3 . Suppose L has twist numbers ftj
i g such that for all j , the

twist numbers t
j
2
; t

j
4

are positive and t
j
3

is negative. If L is perturbed at neither ˛1

nor ˛40, then F is a critical bridge sphere.
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even all t
j
i � 2

all t
j
i � �2

even all t
j
i � 2

Figure 36: Links L in the family L . Since both t2
2

and t2
4

are even, L will
have at least two components, L1 (drawn with dotted arcs) and L2 (drawn
with solid arcs).

Proof By Proposition 6.6 and Corollary 6.7 we conclude that R and R0 are empty.
In other words, all red disks above F intersect all blue disks below F , and vice versa,
which fulfills condition (1) of the definition of a critical surface. Observe that the link
diagram representing @B0 (in Section 4) is disjoint from @B , so B and B0 are disjoint.
This gives us a pair of disjoint blue disks, one above F and one below. Consider
B00 and B000 depicted in Figure 35. (Explicitly, these are the frontiers of regular
neighborhoods of D4 and D10 above and below F , respectively.) By a symmetric
argument, these two compressing disks are a pair of disjoint red disks, one above F and
one below. These two pairs of disjoint disks fulfill the condition (2) of the definition of
a critical surface.

We finally come to the proof of Theorem 6.9.

Theorem 6.9 There is an infinite family of nontrivial links with critical bridge spheres.

Proof All we must do to prove Theorem 6.9 is to demonstrate that there exists an
infinite family of links which satisfy the hypothesis of Theorem 6.8. Let L be the
set of 2–twisted links in .4; 4/–plat position with twist numbers ftj

i g, such that all
twist numbers in the top and bottom rows are positive, and all twist numbers in the
middle row are negative, and such that t2

2
and t2

4
are both even. The parity requirement

guarantees that if L 2 L, then L is a union of two different links, say L1 and L2 . See
Figure 36. Consider L1 ; it is a link in a 2–bridge position (with respect to F ), so it
can have at most two components.

Case 1 (L1 has one component, ie it is a knot) Let D.L1/ be the diagram for L1

obtained by projection to the xz–plane. This diagram is alternating (for the same
reason D.L/ was shown to be alternating in Section 3). Observe that D.L1/ is
a reduced diagram. (In other words, as a graph, it has no cut vertex.) One of the
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famous Tait conjectures states that a reduced alternating diagram for a knot realizes the
knot’s minimal crossing number [9]. (This was proved in 1987 by Kauffman [7] and
Murasugi [10].) Therefore as D.L1/ has at least eight crossings, L1 is not the unknot,
so it must be a 2–bridge knot. Since L1 is in bridge position, it is by definition not
perturbed at any of its bridge arcs, one of which is ˛1 . We conclude that L1 is not
perturbed at ˛1 . Since L1 and L2 are not connected to each other, ˛1 cannot share
an endpoint with either of the two bridge arcs below F contained in L2 . Therefore
we conclude that L is not perturbed at ˛1 .

Case 2 (L1 has two components) Then each component is individually an unknot in
bridge position. Unknots are not perturbed, so in particular, L1 is not perturbed at ˛1 .
From there, it follows as in Case 1 that L is not perturbed at ˛1 either.

By a similar argument, L is not perturbed at ˛40 either. Therefore L satisfies
Theorem 6.8 and its bridge sphere F is critical. This proves L is an infinite family of
links satisfying Theorem 6.9.
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