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On high-dimensional representations of knot groups

STEFAN FRIEDL

MICHAEL HEUSENER

Given a hyperbolic knot K and any n � 2 the abelian representations and the
holonomy representation each give rise to an .n�1/–dimensional component in
the SL.n;C/–character variety. A component of the SL.n;C/–character variety of
dimension � n is called high-dimensional.

It was proved by D Cooper and D Long that there exist hyperbolic knots with high-
dimensional components in the SL.2;C/–character variety. We show that given
any nontrivial knot K and sufficiently large n the SL.n;C/–character variety of K
admits high-dimensional components.

57M25, 57M27; 57M50

1 Introduction

Given a knot K � S3 we denote by EK D S3 n �K the knot exterior and we write
�KD�1.EK/. Furthermore, given a group G and n2N we denote by X.G;SL.n;C//
the SL.n;C/–character variety. We recall the precise definition in Section 2. It is
straightforward to see that the abelian representations of a knot group �K give rise to
an .n�1/–dimensional subvariety of X.�K ;SL.n;C// consisting solely of characters
of abelian representations (see [17, Section 2]).

If K is hyperbolic, then we denote by eHolW �K ! SL.2;C/ a lift of the holonomy
representation. For n� 2 we denote by �nW SL.2;C/! SL.n;C/ the, up to conjuga-
tion, unique rational irreducible representation of SL.2;C/. P Menal-Ferrer and J Porti
[20; 19] showed that for any n, the representation �n WD �n ıeHol is a smooth point
of the SL.n;C/–representation variety R.�k;SL.n;C//. Moreover, Menal-Ferrer
and Porti proved that the corresponding character ��n is a smooth point on the char-
acter variety X.�K ;SL.n;C//; in particular it is contained in a unique component of
dimension n�1 [20, Theorem 0.4]. Also, the deformations of reducible representations
studied in [16] and [2] give rise to .n�1/–dimensional components in the character
variety X.�K ;SL.n;C//.
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The above discussion shows that the character variety X.�K ;SL.n;C// of any given
knot K contains an .n�1/–dimensional subvariety consisting of abelian representa-
tions, and if K is hyperbolic, X.�K ;SL.n;C// also contains an .n�1/–dimensional
subvariety that contains characters of irreducible representations. Furthermore E Falbel
and A Guilloux [13] showed that every component of X.�K ;SL.n;C// satisfying a
mild technical hypothesis is of dimension at least n� 1.

This motivates the following definition. Given a knot K we say that a component
of X.�K ;SL.n;C// is high-dimensional if its dimension is greater than n� 1. We
summarize some known facts about the existence and nonexistence of high-dimensional
components of character varieties of knot groups:

� For n D 3 and K a nonalternating torus knot, the variety X.�K ;SL.3;C// has
3–dimensional components, whereas for alternating torus knots, X.�K ;SL.3;C// has
only 2–dimensional components. In particular for alternating torus knots, the variety
X.�K ;SL.3;C// does not contain any high-dimensional components. For more details
see [21, Theorem 1.1].

� For nD 3 and K D 41 the variety X.�K ;SL.3;C// has five 2–dimensional com-
ponents. Three of the five components contain characters of irreducible representations.
There are no high-dimensional components. (See [17, Theorem 1.2].)

� It was proved by D Cooper and D Long [9, Section 8] that for a given n there exists
an alternating hyperbolic knot Kn in S3 such that the SL.2;C/–character variety
admits a component of dimension at least n.

The main result of this note is the proof that the SL.n;C/–character variety of every
nontrivial knot admits high-dimensional components for n sufficiently large. More
precisely, building on Cooper, Long, and A Reid [10, Theorem 1.3] we prove the
following theorem.

Theorem 1.1 Let K � S3 be a nontrivial knot. Then for all N 2N there exists an
n�N such that the character variety X.�K ;SL.n;C// contains a high-dimensional
component.

Given a group G we now denote by X irr.G;SL.n;C// the character variety corre-
sponding to irreducible representations. We refer the reader to Section 3 for the precise
definition. The following is then a more refined version of Theorem 1.1.

Theorem 1.2 Let K � S3 be a nontrivial knot. Then given any N 2N there exists
a p �N such that X irr.�K ;SL.p;C// contains a high-dimensional component.
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Remark It is straightforward to generalize the proofs of the above theorems to any
knot K in a rational homology sphere † such that † n �K ¤ S1 �D2 and such that
†n�K is irreducible. We restrict ourselves in the exposition to knots in S3 , to simplify
the notation and to make it easier to compare our results to earlier results.

In the case of the figure-eight knot we obtain in Section 4.2 a refined quantitative result:

Proposition 1.3 Let K �S3 be the figure-eight knot. Then for all n2N the represen-
tation variety X.�K ;SL.10n;C// has a component C of dimension at least 4n2� 1.
Moreover, C contains characters of irreducible representations.

Remark For a free group Fr we have dimX.Fr ;SL.n;C//=.n2�1/D .r�1/; hence

lim sup
n!1

dimX.G;SL.n;C//
n2� 1

� .r � 1/

if G is generated by r elements. It follows from Proposition 1.3 that for the figure-eight
knot K D 41 the following inequality holds:

1
25
� lim sup

n!1

dimX.�K ;SL.n;C//
n2� 1

� 1:

At the end of Section 4.2 we discuss the question of the extent to which the result of
Proposition 1.3 can be generalized to other 2–bridge knots.

2 Representation and character varieties

Before proving Theorem 1.1, we recall some definitions and facts. The general reference
for representation and character varieties is the book [18] of A Lubotzky and A Magid.

Given two representations �1W G! GL.n1;C/ and �2W G! GL.n2;C/ we define
the direct sum �1˚ �2W G! GL.n1Cn2;C/ by

.�1˚ �2/.
/D

�
�1.
/ 0

0 �2.
/

�
:

We also define the tensor product �1˝�2W G!GL.n1 �n2;C/DAut.Cn1˝Cn2/ by

..�1˝ �2/.
//.v1˝ v2/D �1.
/.v1/˝ �2.
/.v2/:

Definition We call a representation �W G ! GL.n;C/ reducible if there exists a
nontrivial, proper subspace V �Cn such that V is �.G/–stable. The representation �
is called irreducible or simple if it is not reducible. A semisimple representation is a
direct sum of simple representations.
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Let G D hg1; : : : ; gri be a finitely generated group. A SL.n;C/–representation is a
homomorphism �WG! SL.n;C/. The SL.n;C/–representation variety is

R.G;SL.n;C//D Hom.G;SL.n;C//� SL.n;C/r �Mn.C/
r
ŠCn2r :

The representation variety R.G;SL.n;C// is an affine algebraic set. It is contained
in SL.n;C/r via the inclusion � 7! .�.g1/; : : : ; �.gr//, and it is the set of solutions
of a system of polynomial equations in the matrix coefficients.

The group SL.n;C/ acts by conjugation on R.G;SL.n;C//. More precisely, for
A2SL.n;C/ and �2R.G;SL.n;C// we define .A:�/.g/DA�.g/A�1 for all g 2G .
In what follows we will write �� �0 if there exists an A2SL.n;C/ such that �0DA:� ,
and we will call � and �0 equivalent. For � 2R.G;SL.n;C// we define its character
��W G!C by ��.
/D tr.�.
//. We have �� �0) ��D ��0 . Moreover, if � and �0

are semisimple, then � � �0 if and only if �� D ��0 . (See Theorems 1.27 and 1.28 in
the book [18] of Lubotzky and Magid.)

The algebraic quotient or GIT quotient for the action of SL.n;C/ on R.G;SL.n;C//
is called the character variety. This quotient will be denoted by X.G;SL.n;C//D
R.G;SL.n;C//==SL.n;C/. The character variety is not necessarily an irreducible
affine algebraic set. Work of C Procesi [23] implies that there exists a finite number of
group elements f
i j 1� i �M g�G such that the image of t W R.G;SL.n;C//!CM

given by
t .�/D .��.
1/; : : : ; ��.
M //

can be identified with the affine algebraic set X.G;SL.n;C//Š t .R.G;SL.n;C///;
see also [18, page 27]. This justifies the name character variety. For an introduction
to algebraic invariant theory see I Dolgachev’s book [12]. For a brief introduction to
SL.n;C/–representation and character varieties of groups see [15].

Example 2.1 For a free group Fr of rank r we have R.Fr ;SL.n;C//Š SL.n;C/r

is an irreducible algebraic variety of dimension r.n2� 1/, and the dimension of the
character variety X.Fk;SL.n;C// is .r � 1/.n2� 1/.

The first homology group of the knot exterior is isomorphic to Z. A canonical
surjection 'W �K ! Z is given by '.
/ D lk.
;K/ where lk denotes the linking
number in S3 (see [7, 3.B]). Hence, every abelian representation of a knot group �K
factors through 'W �K ! Z. Here, we call � abelian if its image is abelian. There-
fore, we obtain for each nonzero complex number � 2C� an abelian representation
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�' W �K ! GL.1;C/D C� given by 
 7! �'.
/ . Notice that a 1–dimensional repre-
sentation is always irreducible.

LetW be a finite dimensional C–vector space. For every representation �W G!GL.W /
the vector space W turns into a left CŒG�–module via � . This CŒG�–module will
be denoted by W� or simply W if no confusion can arise. Notice that every finite
dimensional C–vector space W which is a left CŒG�–module gives a representation
�W G! GL.W /, and by fixing a basis of W we obtain a matrix representation.

The following lemma follows from Proposition 1.7 in [18] and the discussion therein.

Lemma 2.2 Any group epimorphism ˛W G� F between finitely generated groups
induces a closed embedding R.F;SL.n;C// ,!R.G;SL.n;C// of algebraic varieties,
and an injection

X.F;SL.n;C// ,!X.G;SL.n;C//:

Let H � G be a subgroup of finite index. Then the restriction of a representation
�W G! SL.n;C/ to H will be denoted by resGH � or simply by �jH if no confusion
can arise. This restriction is compatible with the action by conjugation and it induces a
regular map �W X.G;SL.n;C//!X.H;SL.n;C//. In what follows we will make use
of the following result of A S Rapinchuk which follows directly from [24, Lemma 1].

Lemma 2.3 If H �G is a subgroup of finite index k , then

�W X.G;SL.n;C//!X.H;SL.n;C//

has finite fibers.

2.1 The induced representation

Let G be a group and let H �G be a subgroup of finite index k . Given a represen-
tation ˛W H ! GL.m;C/ we refer to the representation of G that is given by left
multiplication by G on

CŒG�˝CŒH�C
m

as the induced representation. We denote by e1; : : : ; em the standard basis of Cm and
we pick representatives g1; : : : ; gk of G=H . It is straightforward to see that gi ˝ ej
with i 2 f1; : : : ; kg and j 2 f1; : : : ; mg form a basis for CŒG�˝CŒH�C

m as a complex
vector space. Using the ordered basis

g1˝ e1; : : : ; g1˝ em; : : : ; gk˝ e1; : : : ; gk˝ em;

the induced representation can be viewed as a representation indGH ˛W G!GL.mk;C/.
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If ˛W H ! SL.m;C/ is a representation into the special linear group, then for g 2G
a priori the determinant of indGH ˛.g/ is in f˙1g. But it is straightforward to see that
if m is even, then indGH ˛ defines in fact a representation G! SL.mk;C/.

Lemma 2.4 Let m be even and H �G a subgroup of finite index k . Then the map

�W R.H;SL.m;C//!R.G;SL.mk;C//

given by �.˛/ D indGH ˛ is an injective algebraic map. It depends on the choice
of a system of representatives, and it is compatible with the action of SL.m;C/
and SL.mk;C/ respectively.

Moreover, the corresponding regular map (which does not depend on the choice of a
system of representatives)

x�W X.H;SL.m;C//!X.G;SL.mk;C//

has finite fibers.

Proof A very detailed proof of the first statement can be found in [11, Section 10.A]
(see also [18, pages 9–10] and [24]). The second part is [24, Lemma 3].

Finally we recall the following theorem of Cooper, Long, and Reid [10, Theorem 1.3]
(see also [8, Corollary 6] or [1, page 94]).

Theorem 2.5 Let N be an irreducible 3–manifold with incompressible nonempty
toroidal boundary. (In our application N will be the exterior of a nontrivial knot
in S3 .) Then �1.N / admits a finite-index subgroup H that admits an epimorphism
˛W H ! F2 onto a free group on two generators.

We are now in the position to prove our main result:

Proof of Theorem 1.1 Let K be a nontrivial knot. We write G D �1.EK/. By
Theorem 2.5 the group G admits a finite-index subgroup H that admits an epimorphism
˛W H ! F2 onto a free group on two generators. It is clear (see Example 2.1) that
R.F2;SL.m;C//Š SL.m;C/2 , and

dimX.F2;SL.m;C//Dm2� 1:

It follows from Lemma 2.2 that the variety X.H;SL.m;C// has a component of
dimension at least m2�1. We denote by k the index of H in G , and we will suppose
that m is even. Then it follows from Lemma 2.4 that X.G;SL.mk;C// contains an
irreducible component of dimension at least m2� 1.
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Now for all m>k we have m2�1>mk�1. Therefore, for a given N 2N we choose
an m2N that is even and greater than k such that n WDmk�N . The character variety
X.�K ;SL.n;C// contains an irreducible component whose dimension is bigger than
m2� 1 > mk� 1D n� 1.

3 Proof of Theorem 1.2

We let Rirr.G;SL.n;C// � R.G;SL.n;C// denote the Zariski-open subset of irre-
ducible representations. The set Rirr.G;SL.n;C// is invariant by the SL.n;C/–action,
and we will denote by X irr.G;SL.n;C//�X.G;SL.n;C// its image in the character
variety. Notice that X irr.G;SL.n;C// is an orbit space for the action of SL.n;C/
on Rirr.G;SL.n;C// (see [22, Chapter 3, Section 3]).

Before we can give the proof of Theorem 1.2 we need to introduce several further
definitions. These notations are classic (see [28; 4] for more details).

Let H and K be two subgroups of finite index of G , and let ˛W H ! GL.W / be
a linear representation. Then for all g 2 G we obtained the twisted representation
˛g W gHg�1! GL.W / given by

(1) ˛g.x/D ˛.g�1xg/ for x 2 gHg�1:

Notice that the twisted representation ˛g is irreducible or semisimple if and only if ˛
is irreducible or semisimple respectively.

Now, we choose a set of representatives S of the .K;H/ double cosets of G . For s 2S ,
we let HsD sHs�1\K�K . We obtain a homomorphism ressHs

�1

Hs
˛sW Hs!GL.W /

by restriction of ˛s to Hs . The representation resGK indGH ˛ is equivalent to the direct
sum of twisted representations:

(2) resGK indGH ˛ Š
M
s2S

indKHs ressHs
�1

Hs
˛s:

Equation (2) takes a simple form if H DN DK is a normal subgroup of finite index
of G . We obtain

(3) resGN indGN ˛ Š
M
s2S

˛s;

where S is a set of representatives of the N cosets of G .

In what follows we will make use of the following lemmas:
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Lemma 3.1 Let G be a group, H �G a subgroup of finite index, and �W G!GL.V /
a representation. If resGH �W H ! GL.V / is semisimple, then �W G ! GL.V / is
semisimple.

Proof This is [30, Theorem 1.5].

Lemma 3.2 Let G be a group, H �G a subgroup of finite index, and ˛W H!GL.W /
a representation. If ˛ is irreducible, then indGH ˛ is semisimple.

Proof We can choose a normal subgroup N EG of finite index such that N �H .
More precisely, we can take

N D
\
g

gHg�1

to be the normal core of H in G . We choose a set of representatives S of the .N;H/
double cosets of G . In this case we obtain that HsD sHs�1\N D s.H\N/s�1DN ,
and the double coset NsH is equal to sH since N �H is normal. Therefore, (2) gives

resGN indGH ˛ Š
M
s2S

ressHs
�1

N ˛:

Now, ressHs
�1

N ˛W N ! GL.W / is a twist of ˛jN ie for all g 2N we have

ressHs
�1

N ˛.g/D ˛.s�1gs/D .˛jN /
s.g/:

By Clifford’s theorem [30, Theorem 1.7], we obtain that ˛jN is semisimple. We have
that ˛jN D ˛1˚ � � �˚˛k is a direct sum of simple representations. Therefore,

.indGH ˛/jN Š
M
s2S

˛s1˚ � � �˚˛
s
k

is the direct sum of irreducible representations. This proves that .indGH ˛/jN is semisim-
ple, and it follows from Lemma 3.1 that indGH ˛ is semisimple.

Corollary 3.3 Let G be a group, and let N CG be a normal subgroup of finite index.
If ˛W N ! SL.V / is irreducible, then indGN .˛/ is semisimple.

Moreover, if indGN .˛/Š �1˚ � � �˚ �l is a decomposition of indGN .˛/ into irreducible
representations �j W G! SL.Vj /, then dimV divides dimVj and hence

dimV � dimVj � dim.V / � ŒG WN�:

Proof The first part follows directly from (3) and Lemma 3.1 since ˛s is irreducible for
all s 2G . Notice that S is now a set of representatives of the cosets G=N . Moreover,
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we obtain M
s2S

˛s Š resGN indGN ˛ Š .�1jN /˚ � � �˚ .�l jN /:

If �j jN is irreducible, then it must be isomorphic to one of the twisted representa-
tions ˛s . Otherwise �j jN is isomorphic to a direct sum of twisted representations ˛s ,
s 2 S , and hence dimVj is a multiple of dimV .

Lemma 3.4 Let G be a group and let H �G be a finite-index subgroup.

If there exists a surjective homomorphism 'W H� F2 onto a free group of rank two,
then there exists a normal subgroup N E G of finite index such that N � H , and
'.N /� F2 is a free group of finite rank r � 2.

Proof Let N be the normal core of H ie N D
T
g2G gHg

�1E G . The normal
subgroup is a finite-index subgroup of G , and N �H . Now, H �'�1.'.N //�N , and
therefore '�1.'.N // is also of finite index in H (and hence in G ). Hence, '.N /EF2
is of finite index, and '.N / is a free group of rank r D ŒF2 W '.N /�C 1� 2.

We conclude this section with the following theorem.

Theorem 3.5 Let K�S3 be a nontrivial knot. Then there exists k 2N such that for
all even m2N there exists p2N such that m�p�mk , and

dimX irr.�K ;SL.p;C//� m
2�k

k
:

In particular, for m even with m>k2 there exists p2N such that m�p<m
p
m, and

dimX irr.�K ;SL.p;C//� m
2�k

k
>km� 1�p� 1:

The last sequence of inequalities in Theorem 3.5 implies that X irr.�K ;SL.p;C//
contains a high-dimensional component. In particular, Theorem 3.5 implies Theorem 1.2
from the introduction.

Proof By Lemma 3.4 there exists a finite-index normal subgroup N E �K of the
knot group �K , and an epimorphism  W N� F2 . We put k D Œ�K WN�.

For each even m 2N , we obtain a regular map

 �W X irr.F2;SL.m;C//!X.N;SL.m;C//

and we let C �X.N;SL.m;C// denote the image of  � . By Chevalley’s theorem [3,
Corollary 10.2], the set C �X.N;SL.m;C// is constructible. Again, by Chevalley’s
theorem the image D WDx�.C /, where x�W X.N;SL.m;C//! X.�K ;SL.km;C//, is
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also a constructible set. Notice that dimC DdimDDm2�1 since  � is an embedding
by Lemma 2.2 and since x� has finite fibers by Lemma 2.3.

If D contains a character of an irreducible representation, then

D\X irr.�K ;SL.km;C//

contains a Zariski-open subset of xD which is of dimension m2 � 1 � .m2 � k/=k .
Hence the conclusion of the theorem is satisfied for p D km.

If D does not contain irreducible representations, then

D �X red.�K ;SL.km;C//:

In this case we can choose for a given � 2D a semisimple representation � such that
�� D �. Now, we follow the argument in the proof of Corollary 3.3 and we obtain
� � �1˚ � � � ˚ �l , where �j W �K ! GL.pj ;C/ and m � pj < km. For the l–tuple
.p1; : : : ; pl/ we consider the regular map

ˆ.p1;:::;pl /WR.�K;SL.p1;C//��� ��R.�K;SL.pl;C//�.C
�/l�1!R.�K;SL.km;C//

given by

ˆ.p1;:::;pl /.�1; : : : ; �l ; �1; : : : ; �l�1/D

l�1M
iD1

.�i ˝�
pl'
i /˚ .�l ˝ .�

�p1
1 � � ��

�pl�1
l�1

/'/:

The map ˆ.p1;:::;pl / induces a map x̂ WD x̂ .p1;:::;pl / between the character varieties

(4) x̂ WX.�K;SL.p1;C//��� ��X.�K;SL.pl;C//�.C
�/l�1!X red.�K;SL.km;C//

(see [18, page 20]).

By Lemma 3.7, the map x̂ .p1;:::;pl / also has finite fibers; denote its image by D.p1;:::;pl / .
Again, by Chevalley’s theorem, the image D.p1;:::;pl / � X

red.�K ;SL.km;C// is a
constructible set, and

(5) dimD.p1;:::;pl / D

lX
jD1

dimX.�K ;SL.pj ;C//C l � 1:

By Corollary 3.3, D is covered by finitely many sets of the form D.p1;:::;pl / (see also
[18, Proposition 1.29]). Since dimDDm2�1, there must be at least one set D.p1;:::;pl /
of dimension at least m2� 1. If we apply (5) to this choice we obtain that

lX
jD1

dimX.�K ;SL.pj ;C//�m2� l:
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In particular there is a j such that the corresponding summand is greater than or equal
to .m2� l/= l . Note that from m�pj �mk for j D 1; : : : ; l and p1C� � �Cpl Dmk
it follows that l � k which in turn implies that .m2�l/= l � .m2�k/=k . Summarizing
we see that

dimX irr.�K ;SL.pj ;C//�
m2�k

k
:

This concludes the proof of the first statement of the theorem.

The second statement follows from the first statement using some elementary algebraic
inequalities.

In order to prove Lemma 3.7 we will make use of Schur’s lemma (see [14, 1.7]).

Lemma 3.6 (Schur’s lemma) If V and W are irreducible representations of G and
f W V !W is a CŒG�–module homomorphism, then:

(1) Either f is an isomorphism or f D 0.

(2) If V DW , then f D � � id for some � 2C .

Lemma 3.7 The map x̂ WD x̂ .p1;:::;pl / from (4),

x̂ W X.�K ;SL.p1;C//� � � � �X.�K ;SL.pl ;C//� .C
�/l�1!X.�K ;SL.km;C//;

has finite fibers.

Proof We show that x̂ .p1;:::;pl / is a composition of maps having finite fibers.

Let G be a finitely generated group, and let n1C � � � C nk D n be a partition of n.
Then the map

‰W R.G;GL.n1;C//� � � � �R.G;GL.nk;C//!R.G;GL.n;C//

given by ‰.%1; : : : %k/D %1˚ � � �˚ %k induces a regular map

x‰W X.G;GL.n1;C//� � � � �X.G;GL.nk;C//!X.G;GL.n;C//

(see [18, page 20]). Let � 2X.G;GL.n;C// be in the image of x‰ . We will use that a
character �D �% is the character of a semisimple representation %, which is unique up
to conjugation [18, Theorem 1.28]. The representation %� %1˚ � � �˚ %l decomposes
into irreducible representations. Schur’s lemma implies that the representations %j are
unique up to equivalence [14, Proposition 1.8]. If x‰.�1; : : : ; �k/D � then each �i is
also the character of a semisimple representation ˛i , and ˛1˚� � �˚˛k � %. Now, the
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irreducible representations which can occur in the decomposition of ˛i are equivalent
to the representations %j . This means that the semisimple representations ˛i such that
‰.˛1; : : : ; ˛k/ is equivalent to %, can have among their irreducible components only
representations equivalent to %1; : : : ; %l . Hence x‰�1.�/ is finite.

Next, for G D �K and the surjection 'W �K� Z we consider the map

ƒpW R.�K ;SL.p;C//�C�!R.�K ;GL.p;C//; ƒp.�; �/D �˝�
' :

The cyclic group Cp D h!i of pth roots of unity acts on R.�K ;SL.p;C// � C�

by !.�; �/ D .�˝!' ; x!�/. This action commutes with the action of SL.p;C/ by
conjugation. We obtain an action of Cp on X.�K ;SL.p;C//�C� . The map

xƒpW X.�K ;SL.p;C//�C�!X.�K ;GL.p;C//

factors through .X.�K ;SL.p;C//�C�/=Cp Š X.�K ;GL.p;C// (see Lemma 2.2
in [17]). Hence xƒp has finite fibers.

Note that the map "W .C�/l�1! .C�/l given by

".�1; : : : ; �l�1/D .�
pl
1 ; : : : ; �

pl
l�1
; .�

p1
1 � � ��

pl�1
l�1

/�1/

has finite fibers. Finally,

x̂
.p1;:::;pl / D

x‰ ı .xƒp1 � � � � �
xƒpl / ı .id� � � � � id� "/

has finite fibers.

4 The character variety of the figure-eight knot

The aim of this section is to prove Proposition 1.3. Before studying the character variety
of the figure-eight knot we will extend Mackey’s irreducibility criterion to infinite
groups. Suppose that H � G is a subgroup, and that W is a representation of H .
Mackey’s irreducibility criterion gives necessary and sufficient conditions under which
indGH W is irreducible as a CŒG�–module.

Let H �G be a subgroup of finite index, and let ˛W H !GL.W / be a representation.
For s 2G we obtain the twisted representation ˛sW sHs�1!GL.W / (see (1)). Define

Hs WD sHs
�1
\H and Ws WD ressHs

�1

Hs
W˛s :

In what follows we call two semisimple representations V and V 0 of G disjoint
if HomCŒG�.V; V

0/D 0. The aim of the next subsection is to prove the following:
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Proposition 4.1 (Mackey’s irreducibility criterion) Let H �G be a subgroup of finite
index. We suppose that ˛W H !GL.W / is an irreducible representation. Then indGH ˛
is irreducible if and only if for all s 2G�H the CŒHs�–modules Ws and resHHsW are
disjoint.

Remark Proposition 4.1 is well known for finite groups (see [28]). We will see that
it also holds for infinite groups under the assumption that the subgroup H � G has
finite index. The main difference is that for infinite groups the induced and coinduced
modules are in general not isomorphic. We will make use of Lemma 4.2 in place of
the classical Frobenius reciprocity theorem.

4.1 Mackey’s criterion

We follow Serre’s notation and exposition in [28]. First let us recall the adjoint
isomorphism. Let Q and R be rings and let QS , RTQ , and RU be modules (here
the location of the indices indicates whether these are left or right module structures).
Then HomR.T; U / is a left Q–module via qf .v/D f .vq/ for all v 2 V , and

(6) HomQ.S;HomR.T; U //Š HomR.T ˝Q S;U /

(see [27, Theorem 2.76]).

Lemma 4.2 Let G be a group and H � G a subgroup of finite index. For each
left CŒH �–module W and a left CŒG�–module V we obtain

HomCŒG�.V; indGH W /Š HomCŒH�.resGH V;W /;(7)

and

HomCŒH�.W; resGH V /Š HomCŒG�.indGH W;V /:(8)

Proof For proving (7) we apply (6) with QDCŒG�, RDCŒH �, S DV , T DCŒG�,
and U DW :

HomCŒG�.V;HomCŒH�.CŒG�;W //Š HomCŒH�.CŒG�˝CŒG� V;W /:

Since H �G is of finite index we obtain that the coinduced module coindGH .W / WD
HomCŒH�.CŒG�;W / and the induced module indGH .W / D CŒG�˝CŒH� W are iso-
morphic as left CŒG�–modules (see [4, Lemma III.5.9]). Moreover, resGH .U / and
CŒG�˝CŒG� U are isomorphic as left CŒH �–modules, and (7) follows.
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To prove (8) we apply (6) with QDCŒH �, RDCŒG�, S DW , T DCŒG�, U D V :

HomCŒH�.W;HomCŒG�.CŒG�; V //Š HomCŒG�.CŒG�˝CŒH�W;V /:

The left CŒH �–module HomCŒG�.CŒG�; V / is isomorphic to resGH .V /, and hence (8)
follows.

Before proving Mackey’s criterion we state the following:

Lemma 4.3 Let V be a semisimple G–module. Then V is irreducible if and only if
HomCŒG�.V; V /ŠC .

Proof Let V ŠV1˚� � �˚Vk be a decomposition of V into irreducible modules. Then

HomCŒG�.V; V /D
M
i;j

HomCŒG�.Vi ; Vj /:

Now, the lemma follows from Schur’s lemma since dimC HomCŒG�.V; V /D 1 if V is
irreducible and dimC HomCŒG�.V; V / > 1 if V is not irreducible.

Proof of Proposition 4.1 It follows from Lemma 3.2 that indGH ˛ is semisimple.
Therefore, by Lemma 4.3 it follows that indGH ˛ is irreducible if and only if

HomCŒG�.indGH W; indGH W /ŠC:

We choose a system S of the .H;H/ double cosets of G . Then we obtain that

HomCŒG�.indGH W; indGH W /Š HomCŒH�.W; resGH indGH W / (by (8))

Š

M
s2S

HomCŒH�.W; indHHsWs/ (by (2) for K DH )

Š

M
s2S

HomCŒHs�.resHHsW;Ws/ (by (7)).

Now, if s 2H , then Hs DH and Ws ŠW , and HomH .W;W /ŠC since W is an
irreducible CŒH �–module (see Lemma 4.3). Thus HomCŒG�.indGH W; indGH W /ŠC

if and only if HomCŒHs�.resHHsW;Ws/D 0 for all s 2G �H .

4.2 The character varieties of the figure-eight knot

Let us consider the figure-eight knot K41 and its group �41:

(9) �41Š hs; t j st
�1s�1ts D tst�1s�1ti Š hs; a j a�1s�1asa�1sas�1a�1i;
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where aD ts�1. Following Reidemeister [26, Section 15], we obtain a representation
ıW �41! S5 into the symmetric group S5 given by

(10) ı.s/D � WD .1/.2; 5/.3; 4/ and ı.a/D � WD .1; 2; 3; 4; 5/:

The image of ı is a dihedral group. We adopt the convention that permutations act
on the right on f1; : : : ; ˛g, and hence �41 acts on the right. We put N D Ker.ı/ and
H D Stab.1/D fg 2G j 1ı.g/ D 1g. We have N �H , N E �41 , Œ�41 WH�D 5, and
ŒH WN�D 2. We obtain

�41DH tHatHa
2
tHa3 tHa4;

and g 2Hai if and only if 1ı.g/ D i C 1 for 0 � i � 4. Notice that ı.H/D h�i is
the cyclic group generated by � .

Now we can use the Reidemeister–Schreier method [31] for finding a presentation for H :
f1; a; a2; a3; a4g is a Schreier representative system for the right cosets modulo H .
Hence generators of H are

(11) y0 D s; yi D a
isai�5 for i D 1; 2; 3; 4; and y5 D a

5:

We obtain defining relations ri , where i D 0; 1; 2; 3; 4, for H by expressing each

ri D a
i .a�1s�1asa�1sas�1a�1/a�i

as a word in the yj :

r0 D y
�1
5 y�11 y22y

�1
1 ; r1 D y

�1
0 y1y3y

�1
2 ; r2 D y

�1
4 y5y0y

�1
5 y4y

�1
3 ;

r3 D y
�1
3 y4y0y

�1
4 ; r4 D y

�1
2 y3y1y5y

�1
0 y�15 :

It follows that H=hhy0ii Š hy1; y2; y3; y4; y5 j y3 D y5 D 1; y1 D y2i Š F.y1; y4/.
Therefore, a surjection  W H� F2 D F.x; y/ is given by

(12)  .y0/D  .y3/D  .y5/D 1;  .y1/D  .y2/D x; and  .y4/D y:

We have y0 2 H �N since by (10) the permutation ı.y0/ D ı.s/ D � fixes 1 but
ı.y0/D � ¤ id. Moreover, y0 2 Ker. /.

We need also generators of N : we have y0…N , ı.y5/D id, and ı.yi /D� for 0� i �4.
Hence Reidemeister–Schreier gives that N is generated by

(13) yiy
�1
0 ; y5; y20 ; y0yi ; y0y5y

�1
0 where i D 1; 2; 3; 4:
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Lemma 4.4 Let ˇW F2! SL.2m;C/ be irreducible. Then ˛ D ˇ ı W H ! F2!

SL.2m;C/ and ˛jN W H ! F2! SL.2m;C/ are also irreducible.

Proof If ˇW F2! SL.2m;C/ is irreducible, then ˛ D ˇ ı is also irreducible since
 W H!F2 is surjective (the representations ˛ and ˇ have the same image). Similarly,
(13) and (12) give that  jN W N ! F2 is also surjective (ˇ and ˛jN have the same
image).

We obtain a component of representations X0 � X.H;SL.2m;C// with dimX0 �

4m2�1, and X0 contains irreducible representations. In order to apply Proposition 4.1
we notice that f1; a; a2g is a representative system for the .H;H/ double cosets

�41DH tHaH tHa
2H:

More precisely, we have that HaH DHa tHa4 and Ha2H DHa2 tHa3 since
1ı.hah

0/ 2 f2; 5g and 1ı.ha
2h0/ 2 f3; 4g for all h; h0 2H (recall that ı.H/D h�i).

We have also

Ha DH \ aHa
�1
DN DHa2 DH \ a

2Ha�2;

since an element in the image of the dihedral representation ıW �41! S5 given by (10)
which fixes two numbers is the identity, and N D Ker.ı/.

For the rest of this section we let G WD �41 denote the group of the figure-eight knot.

Lemma 4.5 Let ˇW F.x; y/! SL.2m;C/ be given by ˇ.x/ D A and ˇ.y/ D B .
If ˇ is irreducible, then �D indGH .ˇ ı / is also irreducible.

Proof We let ˛ D ˇ ı denote the corresponding representation of H . We want to
apply Proposition 4.1 to prove that �D indGH ˛ is irreducible. For s 2 fa; a2g we have

resHHs ˛ D ˛jN since Ha DHa2 DN:

Moreover, for s 2 fa; a2g we obtain

Ws D ressHs
�1

Hs
W˛s D .˛jN /

s:

By Lemma 4.4 we obtain that ˛ , ˛jN , .˛jN /a , and .˛jN /a
2

are irreducible. Recall
also that by Schur’s lemma (Lemma 3.6) two irreducible representations are disjoint if
and only if they are not equivalent. Hence by Proposition 4.1 we obtain that �D indGH ˛
is irreducible if and only if

˛jN 6� .˛jN /
a and ˛jN 6� .˛jN /

a2 :
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In order to see this, we consider the element y20 2N . We have  .y0/D 1 and therefore
˛jN .y

2
0/ D I2m , where I2m 2 SL.2m;C/ denotes the identity matrix. Recall that

ˇ.x/D A and ˇ.y/D B , where A;B 2 SL.2m;C/. We have

a�1y20a D a�1s2a D a�5 � a4sa�1 � asa�4 � a5 D y�15 y4y1y5;

a�2y20a
2
D a�2s2a2 D a�5 � a3sa�2 � a2sa�3 � a5 D y�15 y3y2y5:

This gives  .a�1y20a/D yx and  .a�2y20a
2/D x .

Therefore, .˛jN /a.y20/D BA and .˛jN /a
2

.y20/D A. Now, if ˇ is irreducible, then
A¤ I2m , and AB ¤ I2m . Hence ˛jN 6� .˛jN /a and ˛jN 6� .˛jN /a

2

.

Proof of Proposition 1.3 The subgroup H � �41 is of index 5, and  W H ! F2 is
a surjective homomorphism onto a free group of rank 2. Now, by Lemma 4.4 and
Lemma 4.5, and the same argument as in the proof of Theorem 1.2, we obtain that for
all m2N the character variety X.�41 ;SL.10m;C// has a component C of dimension
at least 4m2� 1. Finally, Lemma 4.5 implies that C contains characters of irreducible
representations.

More explicitly, if ˇW F.x; y/! SL.2m;C/ is a representation given by ˇ.x/D A
and ˇ.y/ D B , then, following the construction given in Section 2.1, the induced
representation �D indGH .ˇ ı /W �41! GL.10m;C/ is given by

�.s/D

0BBBB@
I2m 0 0 0 0

0 0 0 0 B

0 0 0 I2m 0

0 0 A 0 0

0 A 0 0 0

1CCCCA and �.t/D

0BBBB@
0 A 0 0 0

I2m 0 0 0 0

0 0 0 0 B

0 0 0 I2m 0

0 0 A 0 0

1CCCCA :
Here, s and t are the generators of �41 from (9), and I2m 2 SL.2m;C/ is the identity
matrix.

Remark We finish the section with some historical comments. Subgroups similar
to H and N from Section 4.2 are more generally defined for two-bridge knots. Let
K D b.p; q/ � S3 be a two-bridge knot. A presentation of the knot group �p;q is
given by the following (see [7, E 12.1]):

�p;q D hs; t j lss D t lsi where ls D s�1 t�2 � � � t�˛�1 and �k D .�1/
Œk.ˇ=˛/� :

K Reidemeister [26, Section 15] defined the representation ıW �p;q! Sp into the
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yk0

Figure 1: The link yK41� yS
3

symmetric group Sp by

(14) ı.s/D .1/.2; 2nC 1/.3; 2n/ � � � .nC 1; nC 2/ and ı.a/D .1; 2; : : : ; p/;

where p D 2nC 1 and a D ts�1 . The image of ı is a dihedral group. We put
N D Ker.ı/ and H D Stab.1/D fg 2 G j 1ı.g/ D 1g. We have N �H , N E �p;q ,
Œ�p;q WH�D p , and ŒH WN�D 2.

The irregular covering of EK corresponding to H has been studied since the beginning
of knot theory. Reidemeister calculated a presentation of H . Moreover, he showed
that the total space of the corresponding irregular branched covering . yS3; yK/ !

.S3; b.p; q// is simply connected. He proved also that the branching set yK consists
of .nC 1/ unknotted components (see [25; 26]). G Burde [5] proved that yS3 is in fact
the 3–sphere and he determined the nature of the branching set explicitly in [6]. More
recently, G Walsh studied the regular branched covering corresponding to N [29]. She
proved that the corresponding branching set is a great circle link in S3 .

For the figure-eight knot K41 D b.5; 3/, the link yK41 � S
3 has a particularly sim-

ple form (see Figure 1 and [7, Example 14.22]). If we fill in the component yk0 ,
then yK41 transforms into the trivial link of two components. Therefore the isomorphism
H=hhy0ii Š F2 , where hhy0ii denotes the normal subgroup of H generated by the
meridian y0 of yk0 , has a geometric origin.

We expect similar methods can be used to prove that for any hyperbolic 2–bridge
knot b.p; q/, where q � 2, the character variety X.�p;q;SL.2pm;C// admits an at
least .4m2�1/–dimensional component. In [16, Section 4] it was proved that for the
trefoil knot b.3; 1/, the variety X.�3;1;SL.6;C// contains an at least 7–dimensional
component. The same construction can be used to prove that for the torus knots
b.p; 1/, the variety X.�p;1;SL.2pk;C//, where k2N , is at least .2k2p2�4pk2C1/–
dimensional.
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