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DAHA and plane curve singularities

IVAN CHEREDNIK

IAN PHILIPP

We suggest a relatively simple and totally geometric conjectural description of uncol-
ored DAHA superpolynomials of arbitrary algebraic knots (conjecturally coinciding
with the reduced stable Khovanov–Rozansky polynomials) via the flagged Jacobian
factors (new objects) of the corresponding unibranch plane curve singularities. This
generalizes the Cherednik–Danilenko conjecture on the Betti numbers of Jacobian
factors, the Gorsky combinatorial conjectural interpretation of superpolynomials
of torus knots and that by Gorsky and Mazin for their constant term. The paper
mainly focuses on nontorus algebraic knots. A connection with the conjecture due
to Oblomkov, Rasmussen and Shende is possible, but our approach is different.
A motivic version of our conjecture is related to p–adic orbital A–type integrals for
anisotropic centralizers.

14H50, 17B45, 20C08, 20F36, 33D52, 57M25; 17B22, 22E50, 22E57, 30F10, 33D80

0 Introduction

We propose a relatively simple and totally computable conjectural geometric description
of uncolored DAHA superpolynomials of arbitrary algebraic knots in terms of flagged
Jacobian factors (new objects) of the corresponding unibranch plane curve singularities,
presumably coinciding with the corresponding stable Khovanov–Rozansky polynomials.
This description significantly generalizes (a) Cherednik and Danilenko’s conjecture
on the Betti numbers of Jacobian factors (any unibranch singularities), (b) Gorsky’s
conjectural interpretation of superpolynomials of torus knots from [16] etc, and (c) that
from Gorsky and Mazin [19; 20] for their a–constant term. Our conjecture is different
from the ORS conjecture from Gorsky, Oblomkov, Rasmussen and Shende [22] and
Oblomkov, Rasmussen and Shende [36] (though some connection is not impossible).

Motivation Algebrogeometric theory of topological invariants of algebraic links has
a long history, starting with the well-known algebraic interpretation of the Alexan-
der polynomials. This paper provides an algebrogeometric description of stable
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Khovanov–Rozansky polynomials via the DAHA-superpolynomials. See eg Kho-
vanov [26], Khovanov and Rozansky [27; 28], Rasmussen [39] and Webster and
Williamson [42]. The geometry of flagged Jacobian factors conjecturally provides the
DAHA-superpolynomials from Cherednik [6; 7] and Cherednik and Danilenko [8; 9].
For instance, this explains the positivity of the latter in the uncolored case, conjectured
in [8].

For uncolored torus knots, this positivity results from the combinatorial construction
from Gorsky [16; 17], which conjecturally provides both stable KhR-polynomials and
those via DAHA (and is closely related to rational DAHA). Our conjecture makes the
positivity entirely geometric (generalizing [19; 20]) for torus and arbitrary algebraic
knots. We expect important implications in the theory of plane curve singularities, the
theory of p–adic orbital integrals and affine Springer fibers; see Conjecture 2.5(iii)
and Section 5.

Algebraic knots Torus-type (quasihomogeneous) plane singularities are very special.
Not much is actually known on the Jacobian factors of nontorus plane singularities;
the paper by Piontkowski [38] still remains the main source of examples. It was
an important development when the DAHA approach from [6; 7] and Gorsky and
Negut, [21] was extended from torus knots to arbitrary algebraic knots in [8] and then
to any algebraic link in [9]. The Newton pairs and the theory of Puiseux expansion, the
key in the topological classification of plane curve singularities, naturally emerge in
the DAHA approach.

One of the key advantages of the usage of DAHA is that adding colors is relatively
direct (via the Macdonald polynomials), which is well understood for any iterated
torus link (including all algebraic links). This is well ahead of any other approaches
(topology included) for such links. We expect that our present paper can be enhanced
by adding colors via (presumably) the curves suggested in Maulik [31]. The case
of rectangle Young diagrams is exceptional due to the conjectured positivity of the
corresponding reduced DAHA superpolynomials for algebraic knots [6; 8]. The switch
from the rank-one torsion free modules in the definition of compactified Jacobians to
arbitrary ranks is expected here (among other modifications), which is in progress.

The passage to arbitrary algebraic knots and links from torus knots is important because
of multiple reasons. The generality is an obvious advantage, but not the only one.
All algebraic links (not only torus knots) are necessary to employ the technique of
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the resolved conifold and similar tools used in [31] to prove the (colored generaliza-
tion of) the OS conjecture concerning the HOMFLYPT polynomials; see Oblomkov and
Shende [37]. Also, all algebraic links are needed for the theory of Hitchin and affine
Springer fibers since spectral curves are generally not unibranch. Topologically, the
class of iterated links is closed with respect to cabling, a major operation in knot theory.

ORS conjecture Let us briefly comment on Conjecture 2 from [36]; see Section 5 for
some further discussion. It relates the geometry of nested Hilbert schemes of arbitrary
(germs of) plane curve singularities to the Khovanov–Rozansky unreduced stable
polynomials of the corresponding links. The main component of their conjecture versus
the OS conjecture is the weight filtration. The polynomials there, Palg , conjecturally
coincide with uncolored ones in the q; t–DAHA theory (upon switching to the standard
parameters); see [8]. They are connected with the perverse filtration on the cohomology
of the compactified Jacobians from Maulik and Yun [32] and Migliorini and Shende [34]
(see Proposition 4 in [36]).

Our approach is based on admissible flags of submodules fMig in the normalization
ring; here dimC.MiC1=Mi/D 1, but they are not full flags, and the admissibility is
a very restrictive condition. The absence of (nested) Hilbert schemes is due to the
reduced setting of our paper (continuing [8]); there are other important deviations
from [36]. For instance, we do not need the weight filtration, and our approach is quite
computable. There may be a connection with Section 9.1 from [22] (a reduced version
of the construction of [36]), but this is unclear. Actually, the weight filtration appears
naturally in (5-2), which follows from a modular variant (2-7) of our conjecture, but it
is associated with a parameter different from that in [36].

Main results The key is Conjecture 2.5; anything else is about confirmations, ex-
amples and connections. It extends Conjecture 2.4(iii) from [8] for Betti numbers of
Jacobians factors for unibranch plane curve singularities (the case q D 1, aD 0). It
was essentially checked in Mellit [33] for torus knots. The Betti numbers for torus
knots are due to Lusztig and Smelt [30] (see also [19] and [38]). We focus in this paper
on nontorus knots.

The series of the plane curve singularities for Puiseux exponents .4; 2u; v/ for odd
u; v and v > 2u > 4 is the simplest of nontorus type; the corresponding links are
Cab.2uC v; 2/T .u; 2/. Here we generalize the formulas from [38] for the dimensions
of cells in the corresponding CW-presentation. The most convincing demonstrations of
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our main conjecture are the examples where such cells are not all affine. Such examples
are well beyond [38] and are actually a new vintage in the theory of compactified
Jacobians as well as our flagged generalization.

Some perspectives An extension of the geometric approach to superpolynomials from
this paper to all root systems is of obvious interest, especially due to connections with
p–adic orbital integrals. Cherednik and Elliot [10] hint that such a uniform theory may
exist, in spite of the fact that there can be no rank stabilization for the systems EFG.
Such a theory can be expected to provide refined generalizations of orbital integrals
from the geometric fundamental lemma; local spectral curves are taken here as plane
curve singularities. See the end of the paper.

The case q D 1, a D 0 is directly related to p–adic orbital integrals of nil-elliptic
type A. An immediate corollary of Conjecture 2.5 is that such orbital integrals are
topological invariants of the corresponding plane curve singularities. This readily
follows from [30] for torus knots, but seems beyond any existing approaches for nontorus
singularities, especially in the presence of nonaffine cells (see the online supplement).
This invariance, the refined orbital integrals, the connections with HOMFLYPT homology
and an extension of our paper to arbitrary algebraic links, any colors and all root systems
are natural challenges.

1 DAHA superpolynomials

We will provide here the main facts of DAHA theory needed for the definition of the
DAHA–Jones polynomials and DAHA superpolynomials. See [6; 7; 5] for details. The
construction is totally uniform for any root systems and weights.

1.1 Definition of DAHA

Let RDf˛g�Rn be a root system of type An; : : : ;G2 with respect to a euclidean form
. � ; � / on Rn , W the Weyl group generated by the reflections s˛ , and RC the set of
positive roots corresponding to fixed simple roots ˛1; : : : ; ˛n . The form is normalized
by the condition .˛; ˛/ D 2 for short roots. The weight lattice is P D

Ln
iD1 Z!i ,

where f!ig are fundamental weights. The root lattice is QD
Ln

iD1 Z˛i . Replacing Z

by ZC D fZ 3m� 0g, we obtain PC;QC ; see eg [3] or [5].

Setting �˛ WD 1
2
.˛; ˛/, the vectors z̨ D Œ˛; �˛j � 2 Rn �R � RnC1 for ˛ 2 R and

j 2 Z form the twisted affine root system zR � R (z 2 Rn is identified with Œz; 0�).
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We add ˛0 WD Œ�#; 1� to the simple roots for the maximal short root # 2 RC . The
corresponding set zRC of positive roots is RC[fŒ˛; �˛j � j ˛ 2R; j > 0g.

The set of the indices of the images of ˛0 by all automorphisms of the affine Dynkin
diagram will be denoted by O (with O D f0g for E8;F4;G2 ). Let O 0 WD fr 2 O j

r ¤ 0g; then O 0 D Œ1; : : : ; n� for An . The elements !r for r 2 O 0 are minuscule
weights, defined by the inequalities .!r ; ˛

_/� 1 for all ˛ 2RC . We set !0 D 0 for
the sake of uniformity.

Affine Weyl groups Given z̨ D Œ˛; �˛j � 2 zR and b 2 P , let

sz̨.zz/D zz� .z; ˛
_/ z̨; b0.zz/D Œz; � � .z; b/�(1-1)

for zz D Œz; �� 2 RnC1 . The affine Weyl group zW D hsz̨ j z̨ 2 zRCi is the semidirect
product W ËQ of its subgroups W D hs˛ j˛ 2RCi and Q, where ˛ is identified with

s˛sŒ˛;�˛� D sŒ�˛;�˛�s˛ for ˛ 2R considered in hsz̨i:

Using the presentation of zW as W ËQ, the extended Weyl group yW can be defined
as W ËP , where the corresponding action is

.wb/.Œz; ��/D Œw.z/; � � .z; b/� for w 2W; b 2 P:(1-2)

It is canonically isomorphic to zW Ë… for … WD P=Q. The latter group consists of
�0 Did and the images �r of minuscule !r in P=Q.

The group … will be naturally identified with the subgroup of yW of the elements of
the length zero; the length is defined as follows:

l. yw/D j�. yw/j for �. yw/ WD zRC\ yw�1.� zRC/:

One has !r D �r ur for r 2O 0 , where ur is the (unique) element u 2W of minimal
length such that u.!r / 2 �PC .

Setting yw D �r zw 2 yW for �r 2… and zw 2 zW , the length l. yw/ coincides with the
length of any reduced decomposition of zw in terms of the simple reflections si ; 0� i �n

(a standard and important fact).

Let m be the least natural number such that .P;P /D .1=m/Z; then mD nC1 for An .
The double affine Hecke algebra, DAHA, depends on the parameters q; t� (� 2 f�˛g);
to be exact, it is defined over the ring of polynomials in terms of q˙1=m and ft˙1=2

� g.
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For z̨ D Œ˛; �˛j � 2 zR, we set tz̨ D t˛ D t�˛ and qz̨ D q˛ D q�˛ , and introduce
kz̨ D k˛ D k�˛ from the relation t� D q�k� . For i D 1; : : : ; n, let

�k WD
1

2

X
˛>0

k˛˛ D ksht�shtC klng�lng; �� D
1

2

X
�˛D�

˛ D
X
�˛i
D�

!i ;

where sht and lng are used for short and long roots. We note that the specialization
ksht D 1D klng corresponds to quantum groups and provides the WRT invariants in the
construction below; see [6].

For pairwise commutative X1; : : : ;Xn ,

(1-3) Xzb WD

nY
iD1

X
li

i qj if zb D Œb; j �; yw.Xzb/DX
yw.zb/

;

where

b D

nX
iD1

li!i 2 P; j 2 .1=m/Z; yw 2 yW :

For instance, X0 WDX˛0
DXŒ�#;1� D qX�1

#
.

Recall that !r D �r ur for r 2 O 0 (see above). Note that ��1
r is ��.i/ , where � is

the standard involution of the nonaffine Dynkin diagram, induced by ˛i 7! �w0.˛i/;
it is the reflection of Œ1; : : : ; n� in type An . Finally, we set mij D 2; 3; 4; 6 when the
number of links between ˛i and j̨ in the affine Dynkin diagram is 0; 1; 2; 3.

Definition 1.1 The double affine Hecke algebra HH is generated by the elements
fTi j 0� i � ng, pairwise commutative fXb j b 2Pg satisfying (1-3) and the group …,
where the following relations are imposed:

(o) .Ti � t
1=2
i /.Ti C t

�1=2
i /D 0 for 0� i � n;

(i) TiTj Ti � � � D Tj TiTj � � � , with mij factors on each side;

(ii) �r Ti�
�1
r D Tj if �r .˛i/D j̨ ;

(iii) TiXb DXbX�1
˛i

T �1
i if .b; ˛_i /D 1 for 0� i � n;

(iv) TiXb DXbTi if .b; ˛_i /D 0 for 0� i � n;

(v) �r Xb�
�1
r DX�r .b/ DXu�1

r .b/q
.!�.r /;b/ for r 2O 0 .
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Given zw 2 zW ; r 2O; the product

T�r zw WD �r Til
� � �Ti1

; where zw D sil
� � � si1

and l D l. zw/;(1-4)

does not depend on the choice of the reduced decomposition. Moreover,

TyvT yw D Tyv yw whenever l.yv yw/D l.yv/C l. yw/; for yv; yw 2 yW :(1-5)

In particular, we arrive at the pairwise commutative elements

Yb WD

nY
iD1

Y
li

i if b D

nX
iD1

li!i 2 P; Yi WD T!i
; b 2 P:(1-6)

1.2 Main features

The following maps can be (uniquely) extended to automorphisms of HH , where
q1=.2m/ must be added to the ring of constants [5, (3.2.10)–(3.2.15)]:

�CW

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Xb 7!Xb;

Yr 7!Xr Yr q�.!r ;!r /=2;

Ti 7! Ti .i > 0/;

T0 7! q�1X#T �1
0 ;

�r 7! q�.!r ;!r /=2Xr�r .r 2O 0/;

��W

8̂̂̂<̂
ˆ̂:

Yb 7! Yb;

Xr 7! Yr Xr q.!r ;!r /=2;

Ti 7! Ti .i � 0/;

X# 7! qT0X�1
#

T �1
s#
;

(1-7)

� WD �C�
�1
� �C D �

�1
� �C�

�1
� :(1-8)

These automorphisms fix t� ; q and their fractional powers.

The span of �˙ is the projective PSL2.Z/ (due to Steinberg), which is isomorphic
to the braid group B3 . Let us list the matrices corresponding to the automorphisms
above upon the natural projection onto SL2.Z/, which is upon the specialization
t1=.2m/
� ; q1=.2m/ 7! 1. The matrix

� ˛ ˇ
 ı

�
will represent the map

Xb 7!X ˛
b Y



b
; Yb 7!X

ˇ

b
Y ıb

for b 2 P . One has �C 7!
�

1 1
0 1

�
, �� 7!

�
1 0
1 1

�
, and � 7!

�
0 1
�1 0

�
.

We note that there are some simplifications with the definition of DAHA and �˙ for An

and in Theorem 1.2(i), but they are not significant (the theory is very much uniform for
any root systems). However, An is obviously needed in part (ii) in this theorem.

Following [5], we use the PBW Theorem to express any H 2 HH in the formP
a;w;b ca;w;bXaTwYb for w 2W and a; b 2 P (this presentation is unique). Then
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we substitute

f � gevW Xa 7!Xa.q
��k /D q�.�k ;a/; Yb 7! q.�k ;b/; Ti 7! t

1=2
i :(1-9)

The functional HH 3H 7! fH gev , which is called coinvariant, acts via the projection
H 7!H+ WDH.1/ of HH onto the polynomial representation V , which is the HH–
module induced from the one-dimensional character Ti.1/D t�1=2

i DYi.1/ for 1� i�n

and T0.1/D t�1=2
0 . Here t0 D tsht ; see [5; 6; 7].

The polynomial representation V is linearly generated by Xb .b 2 P /, and the action
of Ti .0� i � n/ there is given by the Demazure–Lusztig operators:

Ti D t
1=2
i si C .t

1=2
i � t

�1=2
i /.X˛i

� 1/�1.si � 1/; 0� i � n:(1-10)

The elements Xb become the multiplication operators and �r .r 2 O 0/ act via the
general formula yw.Xb/DX yw.b/ for yw 2 yW .

Macdonald polynomials The Macdonald polynomials Pb.X /, b 2 PC are uniquely
defined as follows. For c 2 P , let cC be a unique element such that cC 2W .c/\PC .
Given b 2 PC and assuming that c 2 P is such that b ¤ cC 2 b�QC ,

(1-11) Pb �

X
a2W .b/

Xa 2

M
c

Q.q; t�/Xc and CT
�
PbXc��.X I q; t/

�
D 0;

where

�.X I q; t/ WD
Y
˛2RC

1Y
jD0

.1�X˛q
j
˛/.1�X�1

˛ q
jC1
˛ /

.1�X˛t˛q
j
˛/.1�X�1

˛ t˛q
jC1
˛ /

:

Here CT is the constant term; � is considered a Laurent series of Xb with the co-
efficients expanded in terms of positive powers of q . The coefficients of Pb belong
to the field Q.q; t�/. The following evaluation formula (the Macdonald evaluation
conjecture) is important to us:

.Pb.q
��k //D q�.�k ;b/

Y
˛>0

.˛_;b/�1Y
jD0

�
1� q

j
˛ t˛X˛.q

�k /

1� q
j
˛X˛.q�k /

�
:(1-12)

1.3 Algebraic knots

Torus knots T .r; s/ are defined for any integers r; s> 0 such that gcd.r; s/D 1. One has
the symmetry T .r; s/DT .s; r/, where we use “D” for the ambient isotopy equivalence.
Also T .r; 1/D for the unknot, denoted by  .
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Algebraic knots T .Er;Es/ are associated with two sequences of (strictly) positive integers:

ErD fr1; : : : ; r`g; EsD fs1; : : : ; s`g such that gcd.ri ; si/D 1I(1-13)

we will call ` the length of Er;Es. The pairs fri ; sig are characteristic or Newton pairs.

We will need one more sequence:

a1 D s1; ai D ai�1ri�1ri C si .i D 2; : : : ;m/:(1-14)

See eg [12] and [38]. Then

T .Er;Es/ WD Cab.Ea;Er/./D .Cab.a`; r`/ � � �Cab.a2; r2//.T .a1; r1//(1-15)

in terms of the cabling defined below. Note that the first iteration (application of Cab)
is for fa1; r1g (not for the last pair!).

Cabling The cabling Cab.a; b/.K/ of any oriented knot K in (oriented) S3 is defined
as follows; see eg [35; 12]. We consider a small 2–dimensional torus around K and
put there the torus knot T .a; b/ in the direction of K , which is Cab.a; b/.K/ (up to
ambient isotopy).

This procedure depends on the order of a; b and the orientation of K . We choose
the latter in the standard way (compatible with almost all sources, including the
Mathematica package “KnotTheory”); the parameter a gives the number of turns
around K . This construction also depends on the framing of the cable knots; we take
the natural one, associated with the parallel copy of the torus where a given cable knot
sits (its parallel copy has zero linking number with this knot).

By construction, Cab.a; 0/.K/D and Cab.a; 1/.K/DK for any knot K and a¤ 0.
See [8] for further discussion of relations. The pairs fri ; aig are sometimes called
topological; the isotopy equivalence of algebraic knots generally can be seen only at
the level of r; a–parameters (not at the level of the Newton or Puiseux pairs).

Newton–Puiseux theory Given a sequence ri ; si > 0 of Newton (characteristic) pairs,
the knot T .Er;Es/ is the link of the germ of the singularity

y D xs1=r1.c1Cxs2=.r1r2/.c2C � � �Cxs`=.r1r2���r`/// at 0;(1-16)

which is the intersection of the corresponding plane curve with a small 3–dimensional
sphere in C2 around 0. We will always assume in this paper that this germ is unibranch.
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The inequality s1< r1 is commonly imposed here (otherwise x and y can be switched).
Formula (1-16) is the celebrated Newton–Puiseux expansion; see eg [12]. All algebraic
knots can be obtained in such a way.

Jacobian factors One can associate with a unibranch CEr;Es the Jacobian factor J.CEr;Es/.
Up to a homeomorphism, it can be introduced as the canonical compactification of
the generalized Jacobian of an integral rational planar curve with CEr;Es as its only
singularity. It has a purely local definition, which we will use below. Its dimension is
the ı–invariant of the singularity CEr;Es , also called the arithmetic genus.

Calculating the Euler number e.J.CEr;Es//, the topological Euler characteristic of J.CEr;Es/,
and the corresponding Betti numbers in terms of Er;Es is a challenging problem. For
torus knots T .r; s/, one has e.J.Cr;s//D .1=.rC s//

�
rCs
r

�
due to [2]. This formula is

related to the perfect modules of rational DAHA and the combinatorics of generalized
Catalan numbers; see eg [19].

The Euler numbers of J.CEr;Es/ were calculated in [38] (the Main Theorem) for the
following triples of Puiseux characteristic exponents:

.4; 2u; v/; .6; 8; v/; .6; 10; v/ for odd u; v > 0;(1-17)

where 4<2u<v , 8<v , and 10<v , respectively. Here ıDdim J.CEr;Es/ is 1
2
.r�1/.s�1/

for T .r; s/ and 2uC 1
2
.v� 1/� 1 for the series .4; 2u; v/. Generally, ı equals the

cardinality jN n�j, where � is the valuation semigroup associated with CEr;Es ; see [38]
and [45]. The Euler numbers of the Jacobian factors can be also calculated via the
HOMFLYPT polynomials of the corresponding links (see below) due to [37; 31].

Concerning the Betti numbers for the torus knots and the series .4; 2u; v/, the odd
(co)homology of J.CEr;Es/ vanishes. The formulas for the corresponding even Betti
numbers h.2k/ D rk.H 2k.J.CEr;Es/// were calculated explicitly for many values of k

in [38], where 0�k� ı . Not much was and is known/expected beyond these two series.

1.4 DAHA–Jones theory

The following results and conjectures are mainly from [8]; see also [7, Theorem 1.2]
and [6; 21].

The construction is given directly in terms of the parameters fEr;Esg, though it actually
depends only on the corresponding topological parameters fEa;Erg. Recall that torus
knots T .r; s/ are naturally represented by r;s 2 PSL2.Z/ with the first column .r; s/tr
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(tr denotes transposition), where r; s> 0 and we assume that gcd.r; s/D 1. Let yr;s be
any pullback of r;s to the projective PSL2.Z/.

For a polynomial F in terms of fractional powers of q and t� , the tilde-normalization zF
will be the result of the division of F by the lowest q; t�–monomial, assuming that
it is well defined. We put q�t� for a monomial factor (possibly fractional) in terms
of q; t� . See [8] for the following theorem. We will also apply this definition to the
superpolynomials, where the lowest q; t–monomial is picked from the constant a–term.

Theorem 1.2 Let R be a reduced irreducible root system. Recall H 7!H+ WDH.1/,
where the action of H 2 HH in V is used.

(i) Given two strictly positive sequences Er;Es of length ` as in (1-13), we lift .ri ; si/tr

to i and then to yi (acting in HH ) as above. For a weight b 2 PC , the DAHA–Jones
polynomial is

(1-18) JDR
Er;Es
.bI q; t/D JDEr;Es.bI q; t/

WD
˚
y1

�
� � �
�
y`�1

�
.y`.Pb/=Pb.q

��k //+
�
+
�
� � �
�	

ev:

It does not depend on the particular choice of the lifts i and yi 2 GL^2 .Z/. The
tilde-normalization �JDEr;Es.bI q; t/ is well defined and is a polynomial in terms of q; t�

with the constant term 1.

(ii) Let us switch to the root system An for slnC1 , setting tD tshtDqk and considering
PC 3 bD

Pn
iD1 bi!i as (dominant) weights for any Am (for slmC1 ) with m� n�1,

where we assume that !n D 0 upon the restriction to An�1 .

Then given T .Er;Es/ as above, there exists a DAHA-superpolynomial HEr;Es.bI q; t; a/
from ZŒq; t˙1; a� satisfying the relations

HEr;Es.bI q; t; aD�tmC1/D �JD
Am

Er;Es .bI q; t/ for any m� n� 1I(1-19)

its a–constant term is automatically tilde-normalized.

Topological connection Let us briefly discuss the conjectural relation of DAHA-super-
polynomials to stable Khovanov–Rozansky polynomials denoted by KhRstab ; see [27;
28; 26; 39]. We consider only the reduced setting (actually not quite developed
topologically).

The passage to the Khovanov–Rozansky polynomials for slN for sufficiently large N

is the substitution a 7! tN
p

q=t . Note the relation to the Heegaard–Floer homology for
N D 0. Equivalently, this passage is ast 7! qN

st in the standard topological parameters
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(also used in the ORS conjecture), which are related to the DAHA parameters as follows:

t D q2
st; q D .qsttst/

2; aD a2
sttst; q2

st D t; tst D
p

q=t ; a2
st D a

p
t=q:(1-20)

For the DAHA-superpolynomials from (1-19),

HEr;Es.�I q; t; a/st D eKhRstab.qst; tst; ast/ where �D !1;(1-21)

and eKhRstab is reduced KhRstab divided by the smallest power of ast and then by q�stt
�

st

such that eKhRstab.ast D 0/ 2 ZCŒqst; tst� with the constant term 1. Here f � gst means
the switch from the DAHA parameters to the standard topological parameters.

Also, the polynomials KhRstab are expected to coincide with the (reduced) physics
superpolynomials based on the BPS states [11; 1; 14; 18] and those obtained in terms
of rational DAHA [22; 21] for torus knots. The latter approach is developed so far only
for torus knots and in the uncolored case; there is some progress for symmetric powers
of the fundamental representation; see [18]. We will not touch the connections with
rational DAHA in this paper. Concerning physics origins, let us mention that using
the Macdonald polynomials at roots of unity q (for t D qk ; k 2 ZC ) instead of Schur
functions in the usual construction of knot operators was suggested in [1].

Betti numbers h.i / D rk H i .J.CEr;Es// We are very much motivated by the DAHA

approach to these numbers. Technically, we generalize the interpretation of Gorsky’s
superpolynomials for torus knots at aD 0 from [19; 20] and the following conjecture
from [8]:

HEr;Es.�I q D 1; t; aD 0/D

2ıX
iD0

h.i/t i=2 for ı D dim J.CEr;Es/:(1-22)

It implies that hodd D 0 (the van Straten–Warmt conjecture). Relation (1-22) will be
generalized below to the whole superpolynomial HEr;Es.�I q; t; a/, which is the main
result of our paper.

2 Geometric superpolynomials

2.1 Modules of semigroups

Let R be the complete local ring of the unibranch germ of the plane curve singularity,
embedded into the normalization ring ODCŒŒz��. The conductor of R is the smallest c
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such that zcO �R; actually it is the ideal .zc/�O , but we will call c the conductor
in this paper. We set K WDC..z//.

The corresponding semigroup �R is formed by the orders of the smallest powers, ie
valuations �.x/ (minimal z–degrees) x 2R. The ı–invariant (the arithmetic genus) is
then ıR D jZC n�Rj. We will call ZC n�R the set of gaps and denote it by GR ; thus
ı D jGRj. Also, cD 2ı .

Compactified Jacobians for projective curves are generally defined as the varieties of
coherent torsion free sheaves of rank one and fixed degree up to isomorphisms. The
Jacobian factor JR , we are going to define, is a local version of the compactified
Jacobian. It is (as a set) formed by all finitely generated R–submodules M � K D
C..z//, of (any) prescribed degree, also called R–lattices.

We define O–degree degOM with respect to O ; it is dimC.O=M/ if M � O . For
arbitrary submodules M� K ,

degO.M/D dimC.O=.O\M//� dimC.M=.O\M//:(2-1)

This definition is a natural counterpart of the degree of a divisor at a given point (here
at z D 0) in the smooth situation. Actually we will mainly need below � degR.M/D

ı� degO.M/.

The valuations �.x/ of the elements x 2M�K form a �R–module �M ; the modules
for semigroups � (with 0) are subsets �� ZC such that �C���. Unless stated
otherwise, we assume that M � O and that it contains the element 1C

Pc�1
iD1�

i
0
zi

(of valuation 0), such an embedding can be achieved by the division by zm for
mDmin.�M/. Here the upper limit c�1 is sufficient in the sum due to the definition
of the conductor. The notation �ı is used for such a normalization in [38], we call it
the standard normalization. See there for these and related definitions and facts.

For a standard M, we will use the notation DM or DŒM� for GR\�M and call it
the set of added gaps or simply the D–set. The square brackets will be used for the
list of its elements. For instance, DR D¿D Œ � corresponds to the (trivial) �–module
�R D � , and DO DGR D Œ1; : : : ; c� 1� for MDO (recall that c� 1 is the last gap
in G ).

Due to the normalization we impose, one has

(2-2) degO.M/D ı� jDMj; � degR.M/D jDMj for standard M:
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Not all �–modules � can be realized as �M for nontorus singularities. Recall that
torus knots T .r; s/ are associated with the rings RDCŒŒzr; zs��. The simplest example
of a nontorus singularity is R D CŒŒz4; z6 C z7�� with � D h4; 6; 13i and c D 16.
Then the sets of added gaps D D Œ2; 15� and D D Œ2; 11; 15� do not come from any
modules M; following [38], we call them nonadmissible. All other D are admissible
in this case (ie can be obtained as DM ).

2.2 JR as a projective variety

Let JRŒD� � JR be the set of modules M with DM D D , JRŒd � D
S
jDjDdJr ŒD�

and xJRŒd � D
S

d 0�d Jr Œd
0� for d � 0. That is, the latter is the set of all standard

submodules of O–degree ı� d or smaller. The set JRŒ0�D JRŒ¿� is the big cell; it is
formed by all invertible modules M (with one generator and of O–degree ı ). Also,
JRŒı�D xJRŒı�D fMDOg and JRŒ> ı�D∅. Finally, we note that the isomorphisms
of a particular submodule M are those induced by the action of the group of units R� .

We can give xJRŒd � the structure of a projective subvariety in JRD xJRŒ0� following [23];
actually they are projective schemes over Z. Generally, the O–degree of zaM for an R–
module M�O and a2ZC is degOMCa. Indeed, degO.z

aM/D jZCn�.zaM/j D

aCjZC n �.M/j.

Given 0� d � ı , let Mı be a standard submodule of O–degree ı�dı for dı� d and
aD dı�d . Then the submodule MD zaMı is of O–degree ı�dıCdı�d D ı�d ,
and one has

z2ıO �M�O and dimC.O=M/D ı� d:

Vice versa, MıD z�aM are standard for any such R–submodules M, where a is the
smallest evaluation �.z/ among all z 2M. Such M for d D 0 are called ı–normalized
modules in [38]; our standard submodules are called there 0–normalized.

Now consider the Grassmanian Gr.O=z2ıO; ıCd/. A subspace of dimension ıCd is
an R–module if and only if it is invariant under the action of R=z2ıO by multiplication.
Thus xJRŒd � is the set of fixed points in Gr.O=z2ıO; ıC d/ under the group action
of .R=z2ıO/? . To obtain the structure we desire, extend the action of .R=z2ıO/?

to
VıCdO=z2ıO and consider the image under the Plücker embedding. The condition

of being a fixed point under the action .R=z2ıO/? defines a linear subspace of the
projective space P .

VıCdO=z2ıO/, so JR is the intersection of the image of the
Plücker embedding of Gr.O=z2ıO; ıC d/ and this linear subspace. Finally, we go
back to our standard modules using the identification maps above.
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There is an alternative intrinsic interpretation of the projective structure of JR . Let us
consider R–submodules �M� K˝C CŒŒu��, finitely generated over CŒŒu��, ie a family
of submodules M (formally) analytically depending on a parameter u. Let �M contain
a principle ideal CŒŒu; z��zp for some p (arbitrarily large).

We define the enhanced (flat) limit �M0 of �M as the linear subspace of K of all linear
combinations of the vectors in �M divided by the smallest possible power of u and
then evaluated at uD 0. This is one of the key definitions in the theory of sheaves and
bundles over curves.

Such a limit obviously contains the straightforward specialization M0 WD �M.uD 0/.
The space �M0�O has a natural structure of a R–submodule by construction. Therefore
it becomes a standard module (an element of JR ) upon the division by a proper power
zn .n� 0/.

As in the definition of the standard normalization, we assume here that �M contains
an element with zero z–valuation; its z–constant term can be any nonzero element
(possibly noninvertible) from CŒŒu��. By the way, one can check that the enhanced limit
will remain the same if the principle ideal CŒŒu; z��zc is added to �M; ie p above can
be assumed to be no greater than the conductor c. This results from a standard theory
of flat limits. Without general theory here, this fact can be justified by enlarging �M
with all linear combinations of the vectors in �M divided by the corresponding minimal
power of u and verifying that this procedure will eventually add CŒŒu; z��zc to M. The
limit �M0 will remain unchanged under such an “enhancement” of �M.

Finally, the boundary of any family of modules considered in JR is the collection of
enhanced limits for all one-parametric subfamilies �M. Using one u is sufficient in
this approach (another general fact).

Proposition 2.1 Let M0 be the enhanced limit �M0 of a u–family �M of modules
invertible over C..u//, where we assume that 02� �M as above. Setting �M0� .z

d 0/D

Ozd 0 for the maximal such d 0 , one has that d 0�d for the number of added gaps for the
standard module M corresponding to M0 and d 0 D d for sufficiently general such �M.

Proof For generic �M, the limit �M0 is of degree 0 relative to R 2O ; we use that JR

is a closed subvariety in Gr.O=z2ıO; ı/. Therefore z�dM0 is standard for d D jDMj

and d 0 � d for any (nongeneric) �M.
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Two examples of enhanced limits To illustrate Proposition 2.1, let us consider RD
hz4; z6C z9; z7i with � D f0; 4; 6; 7; 8; 10; 11; : : : g, G D Œ1; 2; 3; 5; 9�, ı D jGj D 5,
and the conductor cD 10. We take the following family of modules invertible over
C..u//: �MDRŒŒu; z��.u4

Cu.zC z3/Cu3z2/CCŒŒu; z��z10;

which is an invertible R–module over C..u// (but not over CŒŒu�� due to u4 ). Then
its enhanced limit �M0 is a module with the corresponding set of added gaps D D

Œ2; 3; 5; 9�, so d D jDj D 4. However, it is contained in .z5/, which is smaller than
.z4/ guaranteed by the proposition.

Taking here �MDRŒŒu; z��.u.1C z5/C z9/CCŒŒu; z��z10 , the limit �M0 has the same
DD Œ2; 3; 5; 9�. Now it strictly belongs to .z4/, so this is the case of a general position
for such D .

The cardinalities of the D–sets will be associated below with the parameter q . If JRŒD�

are all affine spaces, their dimensions give the powers of t . The third parameter a of
our construction will be due to the flag-length of the flagged Jacobian factors defined
as follows.

2.3 Flagged Jacobian factors

Definition 2.2 For a D–set D and the sequence EgD fgi j 1� i �mg in G nD such
that gi < giC1 , the D–flag is

DD fD0 DD;D1 DD[g1;D2 DD[fg1;g2g; : : : ;Dm DD[fg1; : : : ;gmgg;

provided that all �i D � [Di are standard �–modules. Then the corresponding
flagged Jacobian factor J m

R is defined as the union of the following varieties of flags
of standard submodules M�O :

J m
R ŒD� WD fM D fM0 �M1 � � � � �Mmg; where Di DDMi

g(2-3)

for all 0� i �m; we will sometimes omit m here. If at least one such flag M exists,
we call the corresponding D and f�ig admissible.

Considering D–flags D of length m, we set J m
R Œd > ı�D∅,

(2-4) J m
R Œd � WD

[
D;jD0jDd

J m
R ŒD� � J m

R ;
xJ m
R Œd �D

[
d 0�d

J m
R Œd

0�;
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where d D 0; 1; : : : ; ı . For mD 1, the D–flag D is obtained from D by adding one
gap g and we use the notation J 1

RŒD;g�. When m D 0, we use JRŒD�, which is
from [38].

Let us begin with some general properties of flags M . We note that our usage
of Nakayama’s lemma in Proposition 2.3 below is actually similar to that in [36],
Section 2.1.

For an arbitrary module M, we set M.i/ DM \ ziO , which is obviously an R–
module, and SMDM=mM for the maximal ideal m�R. Accordingly, SM.i/ is the
image of M.i/ in SM. Obviously, dimM.g/=M.gC1/D 1 if and only if g 2�M , and
dim SM.g/= SM.gC1/ � 1.

Proposition 2.3 (i) For a D–flag

DD
˚
D0 �D1 DD0[fg1g � � � � �Dm DD0[fg1; : : : ;gmg

	
from Definition 2.2, all D0[fgig for 1� i �m are D–sets. Let M D fMig be a flag
of (standard ) modules corresponding to a D–flag (admissible). Picking an arbitrary
mi 2Mi such that �.mi/D gi , the space M0˚Cmi is an R–module.

Then for 1 � i � m, we have Mi DM0 ˚Cm1 ˚ � � � ˚Cmi ; mMm �M0 and
dim SM.gi /= SM.giC1/ D 1. The elements mi modulo M0 are uniquely determined up
to proportionality, ie depend only on the flag M .

(ii) Vice versa, for the D–flag D as above, let us assume the existence of a module
Mtop such that DŒMtop� D Dm and dim SM.gi /

top = SM
.giC1/
top D 1 for all i . We do not

impose the admissibility of the whole D . Then Mm DMtop can be extended to a
flag M corresponding to D (so it is admissible) and all such flags can be described as
follows.

(a) For any subspace SM0 � SMtop such that for 1� i �m,

dim SMtop= SM0Dm; dim. SM0C SM
.gi /
top /=. SM0C SM

.giC1/
top /D1; xM0 6� SM

.1/
top ;

let mMtop �M0 �Mtop be a unique lift of SM0 (the Nakayama lemma).

(b) Then for any pullbacks, denoted by xmi , of the generators of the latter quotients to
. SM0C SM

.gi /
top /= SM0 , we take M DfMig, where Mi is a similar lift of the space

SMi D SM0˚C xm1˚� � �˚C xmi to an R–submodule of Mtop containing mMtop .
These imply that DŒM0�DD0 , MiDm DMtop .
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(iii) Continuing (ii), all flags M in (i) are uniquely described by the following data:
(˛ ) the space SM0 � SMtop as above, (ˇ ) the set of elements xmi 2 . SM0C SM

.gi /
top /= SM0

considered up to proportionality. That is, for a fixed Mtop and SM0 as in (ii), such
flags of modules are naturally parametrized by unipotent complex matrices of size
m � m, which is due to the action of the Borel subgroup preserving the full flag
f. SM0C SM

.gi /
top /= SM0g in SMtop= SM0 .

Proof Part (iii) formally follows from (i,ii), including the equivalence of the admissi-
bility of a D–flag D and the existence of the pair fM0;Mmg for D0;Dm such that
mMm �M0 �Mm . Let us justify (i,ii). Below fgig means a single element gi

considered as a set.

First of all, D0[ fgig correspond to certain �–modules for any 1 � i �m. Indeed,
adding gi to Di�1 cannot add anything new to Di (since the corresponding �i is
assumed a �–module). The same holds for D0 [ fgig, since extra elements in the
minimal �–module containing the latter can be only greater than gi , ie can be only in
Di nDi�1

This reasoning is equally applicable to the flags M for admissible D . We claim
that D0 [ fgig is admissible for each gi . Indeed, adding Rmi �Mi to M0 for
an element mi with the valuation �.mi/ D gi cannot create any new valuations
versus �0 but gi , since this does not create them when going from Mi�1 to Mi .
Thus M0CRmi DM0CCmi is an R–module corresponding to D0[fgig.

Next,  mi must belong to M0 for any  2 m. We use that for any N > 0 there
exists an element m0 2M0 such that �. mi �m0/ >N ; thus this difference can be
assumed in M0 .

Similarly, Mi is the linear span of Mi�1 and mi for the elements mi introduced
above, since for every m 2Mi , there exists m0 2Mi�1CRmi such that �.m�m0/

is greater than any given number. Thus m�m0 can be assumed in Mi�1 . We obtain
that adding the elements fmi j 1� i � j g to M0 generates Mj . Combining this claim
for j Dm with mmi 2M0 checked above, we conclude that mMm �M0 .

Part (ii) uses the same arguments and the Nakayama lemma. We lift xmi to arbitrary
elements in M.gi /

top . The corresponding R–modules does not depend on such choices.
Note that the condition SMm D SMtop provides that all Mi are standard (�i 3 0). We
need only to check that these modules have the required D–sets, which results from
the following lemma by induction with respect to the length m of M .
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Lemma 2.4 For two modules M0 �M, where M0 is not necessarily under the stan-
dard normalization, let g2DŒM�, mM�M0 , dim. SM0C SM.g//=. SM0C SM.gC1//D 1

and SMD SM0˚C xm for a pullback xm of the generator of the latter quotient. Then we
claim that M0 is a standard module and DŒM0�DDŒM� n fgg.

Proof The module M is linearly generated by M0 and any lift of xm to M (the
Nakayama lemma). Since dim. SM0C SM.g//=. SM0C SM.gC1// is 1, the gap g cannot
be among the valuations of M0 and this is the only missing gap there versus M, which
gives the required.

Part (iii) follows from (ii). The inequalities dim SM.gi /
top = SM

.giC1/
top > 0 are obviously

necessary and sufficient to ensure the existence of the required SM0 . The rest is a
combination of (i) and (ii).

Thus given a D–flag D as in (i), and Mtop such that

DŒMtop�DDm DD0[fg1; : : : ;gmg;

the inequalities dim SM.gi /
top = SM

.giC1/
top D 1 are equivalent to the admissibility of D . We

note that in all examples we calculated, the admissibility of a D–flag is equivalent to
that of every Di . We cannot justify this in general.

This proposition is of independent interest and can be used to count the dimensions
of JRŒD� and to check (in some cases) that the latter are biregular to affine spaces.

We note that there is a natural (biregular) action of the algebraic group JRŒ¿�D fLg
in JR . Without going into details, Theorem 1 from [38] can be extended to flagged
Jacobian factors as follows. If the GIT quotient J m

R ŒD�=JRŒ¿� is biregular to an affine
space and with the stabilizers of points in J m

R ŒD� of the same dimension, then the latter
space is biregular to some AN . This is not always the case (see the online supplement),
but it is not impossible that J m

R Œd � can be always paved by affine spaces.

2.4 The main conjecture

The flagged Jacobian factor J m
R has a natural structure of a quasiprojective variety.

Accordingly, J m
R ŒD� and xJ m

R Œd � are its subvarieties; the latter is closed. Proposition 2.3
gives that J m

R is a certain subvariety in a proper parahoric Springer fibers in the
terminology from Section 2.2.9 from [44]. They are formed by partial periodic flags
of R–invariant lattices. We do not use them in the present work. By Hi , we will mean
singular (relative) homology with the C–coefficients.
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Conjecture 2.5 Let R be the ring of a unibranch plane curve singularity CEr;Es from
Section 1.3, and HEr;Es.�I q; t; a/ the DAHA uncolored superpolynomial from (1-19).
Recall that ı D jGRj is the arithmetic genus of R; we assume that r1 > s1 .

(i) We conjecture that the relative homology H2iC1. xJ
m
R Œd �;

xJ m
R Œd C 1�/ vanishes for

all i; d � 0, and

HEr;Es.�I q; t; a/D
X

d;i;m

rk
�
H2i. xJ

m
R Œd �;

xJ m
R Œd C 1�/

�
qdCmtı�iam;(2-5)

where 0� d; i � ı , and the range of m is from 0 to s1r2 � � � r`�1, which is the number
of (admissible) D such that dim.JRŒD�/D ı� 1. The right-hand side of (2-5) will be
called Hhom.q; t; a/. Also, we conjecture that J m

R Œd � are paved by affine spaces.

(ii) If all varieties J m
R ŒD� are affine spaces Ai , then their total number for any fixed i; d

gives the corresponding rank rk.H2i/ from (2-5), and this relation reads

HEr;Es.�I q; t; a/D
X
D

qdCmtı�dim.J m
R ŒD�/am;(2-6)

where the summation is over all admissible D–flags D , d D jD0j. Here the cells
J m
R ŒD� contribute to H2i. xJ

m
R Œd �/ � H2i.J

m
R / for i D dim.J m

R ŒD�/, and then to
H2i. xJ

m
R Œd �;

xJ m
R Œd C 1�/. Formula (2-6) can be readily extended to any affine cell

decompositions of J m
R Œd � (not only those via J m

R ŒD�).

(iii) Let 1=t Dp` for prime p and `2N , let F D F1=t be the field with p` elements,
and let jX.F/j be the number of F–points of a scheme X defined over F . One
can assume that R is defined over Z and consider J m

R Œd � as schemes over F . We
conjecture that apart from finitely many p ,

HEr;Es.�I q; t; a/D tı
X
d;m

jJ m
R Œd �.F/jq

dCmam
WDHmod.q; t; a/:(2-7)

If J m
R Œd � are (a) paved by affine spaces over F , and (b) (non)admissible D remain

such over this field, then (2-7) is equivalent to (2-5).

Relative homology Vanishing H2iC1. xJ
m
R Œd �;

xJ m
R ŒdC1�/ generalizes the van Straten–

Warmt conjecture, which claims that odd Betti numbers of JR vanish. This assump-
tion and the exact sequences for relative (singular) homology imply that the natural
maps H2iC1. xJ

m
R Œd C 1�/! H2iC1. xJ

m
R Œd �/ are surjective, which readily gives that

H2iC1. xJ
m
R Œd �/D f0g for any i; d . Using this, the following sequence is exact:

(2-8) 0!H2i. xJ
m
R Œd C 1�/!H2i. xJ

m
R Œd �/!H2i. xJ

m
R Œd �;

xJ m
R Œd C 1�/! 0:
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As an application, (2-5) upon the substitution q D 1 becomes

HEr;Es.�I q D 1; t; a/D
X
i;m

rk H2i.J
m
R /t

ı�iam;

where the special case aD0 is [8, Conjecture 2.4(iii)]. Note that H2i. xJ
m
R Œd �;

xJ m
R ŒdC1�/

are potentially connected with compactly supported cohomology H 2k
c .J m

R Œd �/ for
k D j or k C j D dim J m

R Œd �, though Poincaré duality fails for singular varieties.
Compare with (5-2).

Motivic approach Relation (2-7) readily follows from part (ii). We think that it can
generally hold. In examples, it suffices to take any p` D 1=t such that � remains
the same over F1=t , but we do not know how far this goes. Say that (2-7) holds
for R D F2ŒŒz

4C z5; z6�� under a D 0, but not for F3 , which changes � . However,
RDF3ŒŒz

4; z6Cz7�� is fine, and we note that �.F2ŒŒz
4Cz5; z6��/D �.F3ŒŒz

4; z6Cz7��/.
These rings over C correspond to coinciding DAHA-superpolynomials. See (5-2) for a
reformulation of (2-7) in terms of the weight filtration.

When aD 0 and qD 1, part (iii) is closely related to Theorems 0.1 and 0.2 from [15] in
the case of An for affine Springer fibers. The latter are not always paved by affine spaces
for other types [25]. The An–case is exceptional; the positivity of the orbital integrals
and vanishing odd rational homology are widely expected to hold for anisotropic
centralizers (ie in the nil-elliptic case). This matches well the conjectured positivity of
uncolored DAHA superpolynomials.

Knowing the spectral curve is sufficient here. However, it is far from obvious beyond
the torus case (quasihomogeneous plane curve singularities) that only the topological
type of the singularity matters here. This follows from of our conjecture. The analytic
equivalence of plane curve singularities is generally very different from the topological
perspective. See [29; 4] and Section 5.3 for the identification of affine Springer fibers
of anisotropic type with the compactified Jacobian of rational curves such that R is
the local ring at its unique singular point.

In full generality, with the nonzero parameters q and a in (2-7), we count points in
J m
R Œd �.F/ with q–weights qjDmj , where jDj D ı � degO M for the corresponding

standard M. This seems a new turn in the theory of affine Springer fibers and
related p–adic orbital integrals. Possible (expected) adding colors and the multibranch
generalization of our construction make this even more interesting. Generally, we
think that using the powerful modern theory of topological invariants of plane curve
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singularities can be expected to impact the theory of orbital integrals (at least in
type A) and related part of the fundamental lemma; see Sections 5.3 and 5.4 for further
discussion.

The case R D hz4; z6 C z7i We will stick to admissible pairs fMDM0 �M1g,
where D1DD0[fg1g (corresponding to the coefficient of a1 in the main conjecture).
Recall that Di D�i \G and G D ZC n� . Using the definition of JRŒD0 �D1�D

J 1
RŒD0;g1� directly, we obtain the following lemma.

Lemma 2.6 Provided the admissibility of the �–modules D0 and D1 DD0[fg1g

for g1 62 � [D0 , one has

dim JRŒD0 �D1�� dim JRŒD1�C
ˇ̌
fg 2�0 j g < g1g

ˇ̌
;(2-9)

dim JRŒD0 �D1�D dim JRŒD1�C 1 if g1 < g for all g 2D0;

dim JRŒD0 �D1�D dim JRŒD0� if fg 2G j g > g1g �D0:(2-10)

In the case of RD hz4; z6C z7i, the pairs fD0;g1g that are not included in the latter
two formulas are all governed by the first one where “�” is replaced by “D” there. Thus
these formulas provide all dimensions of the varieties of admissible pairs D0 � D1 .
Using this for such R, one obtains the formulaX
D0�D1

qjD0jC1tı�dim.J m
R ŒD0�D1�/

D qC q2.1C t/C q3.1C 2t C t2/C q4.3t C 2t2
C t3/

C q5.t C 4t2
C 2t3

C t4/C q6.t2
C 4t3

C 2t4
C t5/

Cq7.t3
C 3t4

C 2t5
C t6/C q8.t5

C t6
C t7/;

which matches the coefficient of a1 of the uncolored DAHA superpolynomial for
RD hz4; z6C z7i from [8].

Proof To justify the first inequality, we begin with any parametric family of mod-
ules M0 corresponding to D0 , assuming that they can be extended to Mg1

by adding
certain mg1

with �.mg1
/D g1 and that they are different (as submodules of O) for

different values of parameters. The dimension of the resulting family of modules M1

is no greater than dim JRŒD1�. Given M1 3mg1
, its different submodules M0 can

be only obtained by adding the terms from Cmg1
to the generators mg 2M0 with

�.mg/D g , where g 2D0 such that g < g1 . This gives the required inequality.
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If g1 < D0 , then only m0 D 1C z. � / can be altered by Cmg1
and there is a one-

dimensional family of (pairwise distinct) such submodules M0 inside fixed M1 , which
gives the second formula in (2-9). Here we use that the relations for the coefficients of
the generators m 2M necessary for the equality DM DD allow such a deformation.

Generally, if there several such mg (not just g D 0) with g before g1 , then it is not
true that the increase of dimension for DŒM0� will coincide with the number of such g .
It really occurs with five such admissible pairs fD0;D1g for RD hz4; z6C z13i:

(2-11)

D0 D1 dim0 dim1

Œ2; 9; 15� Œ2; 9; 11; 15� 7 6

Œ2; 7; 11; 15� Œ2; 7; 9; 11; 15� 6 5

Œ2; 9; 11; 15� Œ2; 7; 9; 11; 15� 6 5

Œ2; 3; 7; 9; 11; 15� Œ2; 3; 5; 7; 9; 11; 15� 6 5

Œ1; 2; 5; 7; 9; 11; 15� Œ1; 2; 3; 5; 7; 9; 11; 15� 3 0

where dimi D dim.JRŒDi �/. However, in all these cases, dim.JRŒD0�D1�/ coincides
with dim0 , which is (2-9) with strict equality there.

Finally, formula (2-10) holds because adding any element mg1
2O with such a valuation

g1 to M0 results in the required M1 in this case. All cases from (2-11) are of the latter
type. Thus any admissible pair for R D hz4; z6C z7i satisfies either (2-9) with the
equality there or (2-10). Then one can use the formulas for dim J mD0

R ŒD� from [38].

3 The family CŒŒz4; z2uC zv��

3.1 Dimensions of J m
R ŒD�

It is shown in [38] that the varieties JRŒD� are isomorphic to affine spaces for the
family R D CŒŒz4; z2uC zv ��, where .uv; 2/ D 1, v > 2u and their dimensions are
computed. We will generalize these claims to admissible D–flags and the corresponding
varieties J m

R ŒD�.

To write our formula for the dimensions we will need a few definitions. Let

�D;g WD dim.J 1
RŒD;g�/� dim.JRŒD�/

be the dimension change. Also, we write

�.`/ WD jŒ`;1/ n�j

for the gap counting function. Recall that D D� n� is called a D–set corresponding
to a standard �–module � (ie 0 2�).
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Theorem 3.1 Let R D CŒŒz4; z2uC zv ��, where .uv; 2/ D 1, v > 2u, and D be an
admissible D–flag (with Di corresponding to admissible �i ). Then J m

R ŒD� (with the
notation as above) is isomorphic to an affine space AN with

N D dim.JRŒD0�/C

m�1X
iD0

�Di ;giC1
;

where

�D;g D

8<:
�[fgg.g/� �[fgg.gC 4/ for g � 1 or 3 mod 4;

�[fgg.g/� �[fgg.gC4/

� .�[fgg.gCn/� �[fgg.gC4Cn// for g � 2 mod 4;

and n D n.D/ is the smallest odd number in .� [ v/ \ Œ2u;1/. Here D D Di ,
g D giC1 or D is any admissible D–set such that D[fgg is admissible.

3.2 Basic definitions

Before we proceed with the proof, we will briefly summarize and adjust the approach
taken in [38] to prove that the JRŒD� are affine; our argument relies heavily on his
method. Let � be a �–module and begin by choosing a0; a1; a2 and a3 such that
ai Dminfk 2� j k � i mod 4g. Consider the following elements in O :

(3-1)

m0 D 1C
X

k2Nn�

�0
kzk ; m1 D za1 C

X
k2Œa1;1/n�

�1
k�a1

zk ;

m2 D za2 C

X
k2Œa2;1/n�

�2
k�a2

zk ; m3 D za3 C

X
k2Œa3;1/n�

�3
k�a3

zk ;

where the �–coefficients are treated as variables. The valuation �–module of the
module M generated by fmig will then contain �, since any element of � has the
form aiC4n for some n 2N and because z4 2R. Thus faig form a basis for �.M/

in a natural sense.

An important component of Piontkowski’s method is the observation that �.M/D�

if and only if the relations among the elements mi do not produce elements with
valuation not in �. Thus the syzygies of the set fmig as well as the syzygies of the
set of their leading terms are of importance. Lemma 11 of [38] uses this basic idea to
give an equivalent condition for �.M/D�; it will be provided. We need the notion
of initial vector, which is also from [38], to state the aforementioned lemma:

Definition 3.2 For Er D .r0; : : : ; r3/2R4 , let � Dminf�.rj /Caj g. The initial vector
in.Er/ is as follows: in.Er/D .�j / with �j equal to the monomial of lowest degree in rj

if �.rj /C aj D � and 0 otherwise.
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Lemma 3.3 Let M be an R–module generated by fm0;m1;m2;m3g, and V an
R–submodule in

L3
jD0R such that the initial vectors fin.Er/ j Er 2 V g of V linearly

generate the syzygies of the set .zaj / of CŒ��. Here CŒ�� is the vector space generated
by the elements fzkg for k 2�. We use � Dminf�.rj mj /g Dminf�.rj /C aj g from
Definition 3.2.

Then �.M/D� if and only if, for each Er D .rj / 2 V , the initial terms in
P3

jD0rj mj

cancel, ie �
�P3

jD0rj mj

�
> � , and for every j , there exists pj 2 R such that

�.pj mj / > � and
P3

jD0rj mj D
P3

jD0pj mj . If such pj exist, then the elementP3
jD0pj mj 2M is called a higher-order expression for

P3
jD0rj mj 2M, which is

generally not uniquely determined by the latter element.

We will need the following reduction procedure from [38] for series y 2O . Let y0Dy .
Then define inductively yiC1 D yi if i 62 �, and we also set si D 0 in this case. If
i 2�, then find the monomial ciz

i with power i in yi and the element si 2R such
that simji

D ciz
i C � � � for one of the generators mji

(it can be nonunique). Then we
let yiC1D yi � simji

. The sequence of elements yi 2O converges to an element y1 ,
which has the form

P
k2Nn� dkzk for some coefficients dk .

The key facts from [38] about the reduction procedure are that (a) y1 D 0 if and only
if y 2M, and (b) if y1 D 0, then

P
simji

is a higher-order expression for y .

Definition 3.4 For any element y 2 O , the element y| will be the result of the
reduction procedure applied to y . One has .y|/| D y| .

The reduction procedure depends on the choices above. We can standardize the pro-
cedure by always taking the elements si involved to be of the form .z4/k for some
nonnegative integers k , which then makes the reduction procedure unique. To see
that picking such si is possible, observe that when eliminating ciz

i for i 2�, we can
choose a unique generator mj such that aj � i mod 4. We will call such a procedure
standard, and we will always assume such a standardization in what will follow.

One has x| D xCf for some f 2M. If for two elements x;y 2O , we know that
x| D xC f1 and y| D yC f2 , then the standard reduced form .xC y/| of xC y

is xCyC f1C f2 . Generally, if .xCy/| D xCyC f , the uniqueness guarantees
f D f1C f2 , and we obtain that x|Cy| D .xCy/| for the standardization we will
always impose. Thus | is a C–linear projection.
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Piontkowski proves that JRŒD� are affine by using the previous lemma and the reduction
procedure. In Lemma 3.3, it is sufficient to consider the degrees of syzygies of .zaj /

less than maxfaj j j D 0; : : : ; 3g�3, and there are only finitely many of such syzygies.
Thus it is sufficient to check that only finitely many linear combinations of the fmig

prescribed by the syzygies have higher-order expressions to ensure that �D �.M/.
To obtain the higher-order expressions of these elements the reduction procedure is
used and the resulting elements of O must vanish since these elements are in M. The
coefficients of the higher-order expressions are polynomials in terms of the coefficients
of fmig, which have the form

�
j

k
��i

k C polynomial in ��` ; ` < k:

These expressions must vanish due to the properties of the reduction procedure. Since
they vanish and are linear in the parameters �j

k
; �i

k
, we can express �j

k
in terms of ��

`

for ` < k and �i
k

.

Applying the same process to ��
`

such that ` < k , we can eventually show that JRŒD�

is a graph of a regular function on an affine space An . Since the graph of a regular
function is always isomorphic to the domain of the function, we have that JRŒD�ŠAn .
We will use a similar technique to prove Theorem 3.1.

3.3 The cells J m
R ŒD� are affine

Let D be an admissible D–flag with Eg D fgi j 1 � i � mg. Define E to be the
admissible D–flag of length m�1 such that E0DD0 and Ej DD0[fgi j 1� i � j g

where 1� j �m� 1; ie E is a truncation of D .

Let M be an element of J m�1
R ŒE �, and define

hgm
D zgm C

X
k2Œgm;1/n�m

�
hgm

k�gm
zk :

By adjoining the module Mm DMm�1˚Rhgm
to the end of M , we can extend M

to an element of J m
R ŒD� (of course there are restrictions on the � coefficients which

are addressed below). The other way around, every element of J m
R ŒD� can be obtained

by this procedure from flags of length m� 1.

To ensure that �.Mm/ D �m and that Mm�1 �Mm , we need to use Lemma 3.3
above and Lemma 3.5 below. The hypotheses for these lemmas only concern Mm�1

and gm . For this reason, we can reduce the argument to the case of mD 1.
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From now on we set D DD0 , so it corresponds to an admissible �–module �D�0 .
Accordingly, set g D g1 and D1 DD[fgg, where D1 will be assumed admissible.
Also, we let �0 D�[fgg.

Recall that we let the module generated by the fmig as in (3-1) be denoted by M.
Then we consider adding

h WD zg
C

X
k2Œg;1/n�

�h
k�gzk

to the set of generators fmig and set M0DhM; hi. Note that h will replace m` where
g � ` mod 4.

The modules M and M0 must satisfy �.M/D� and �.M0/D�0 . By Lemma 3.3,
this holds for M if and only if the following elements have higher-order expressions:

T 1
WD .z2u

C zv/m0� z4˛2m2;

T 2
WD z4.u�˛2/m0� .z

2u
C zv/m2;(3-2)

T 3
WD
�
z2uCv

C
1
2
z2v

�
m0� z4˛1mj ;

where ˛i is the unique integer such that aiDˇi.2uCv/Ci.2u/�4˛i for ˇi ; i 2f0; 1g

and j � 2uCv mod 4. To obtain the higher-order expressions, the reduction procedure
is applied to T i . As a result of the reduction procedure polynomial relations among
the � variables are obtained (as discussed before the beginning of the proof). For M0 ,
we use a similar approach. When we consider the syzygies (3-2) in the context of M0 ,
we will denote the resulting T by .T i/0 . See pages 14–17 of [38] concerning the
existence of the higher-order expressions.

Given a module M with �.M/ D �, not every module N with �.N / D �0 is its
extension. In order to understand when M�N , let

F WDmi � .z
4/h 2N ;

where i � g mod 4. Note that �.F / > ai , which gives a new type of syzygy (not
from [38]); there is one such syzygy for each pair M�N .

Let us take i such that g � i mod 4. Then replacing ai with g results in a basis
for �0 ; let us check this. If there were ` such that ` � ai mod 4, g < ` < ai and
` 62�, then the presence of g in �0 implies that ` 2�0 since �0 is a �–module. This
contradicts �0 D�[fgg. Thus gC 4D ai , as required.
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The following lemma provides necessary and sufficient conditions for M�N when
�.N /D�0 and �.M/D�. It is important to distinguish performing the reduction
procedure with respect to M or N and we will use |1 to denote reduction with respect
to the generators (3-1) of M and |2 for reduction with respect to (3-1) except with
the changes necessary for N .

Lemma 3.5 Suppose M and N are standard R–modules in O such that �.M/D�

and �.N /D�[fgg. Furthermore, suppose that N contains the generators mj of M
from (3-1) satisfying g 6� j mod 4. Then M�N if and only if F|2 D 0.

Proof Since g 2 �.N /, we see that h 2 N for some choice of values for the vari-
ables �h

k
and that h is a normalized generator of N . For some i , we have that

g � ai mod 4 (ie g replaces ai in the basis for �.M/). Observe that M �N if and
only if mi 2 N , which will happen if and only if .mi/

|2 D 0. The first step in the
reduction of mi is F , and so .mi/

|2 D 0 if and only if F|2 D 0.

Let us now return to considering M �M0 with �.M/D � and �.M0/D �0 . We
only need to consider the equations resulting from F|2 since the equations resulting
from �.M/ D � and �.M0/ D �0 are already solved for in [38]. We may write
F|2 D

P1
kD1zckzaiCk . Recall that the only powers of z present in F|2 are those

greater than ai that are not in �. By Lemma 3.5, we have F|2 D 0, which implies
zck D 0. Similar to the analysis of .T j /|1 from the discussion before the proof, the zck

are in the form

zck D �
i
k ��

h
k C .a polynomial in terms of ��p for p < k/:

For a given k , we can then express �h
k

in terms of ��p for p < k . This gives that
J 1
RŒD;g� is an affine space because it is a graph of a regular function on an affine

space. Since the �0.g C 4/ equations zck D 0 are solvable, we see that �D;g �

�0.g/� �0.gC 4/. The exact value of �D;g depends on the congruence class of g

modulo 4. We will now obtain the formulas for the dimensions.

3.4 Calculating dimensions

We are going now to justify the dimension formulas in Theorem 3.1. Recall that our
approach extends the formulas and techniques used in [38] to the case of flags of
modules.
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First assume g is odd. Since 2uC v is odd, it is either congruent to 1 or 3 mod 4. If
g 6� 2uCv mod 4, then T i D .T i/0 for all i , and hence we do not need to impose any
further relations on the coefficients. Thus �D;g D �0.g/� �0.gC 4/ in this case.

When g � 2uC v mod 4, we have .T 3/0 D z2uCvg0 � z4˛hh and T i D .T i/0 for
i 6D 3. At the bottoms of pages 15 and 16 of [38], it is shown that a higher-order
expression exists for T 3 when the smallest odd number n2�\ Œ2u;1/ is less than or
equal to v . When n> v it is also shown that we can use the higher-order expressions
of T 1 and T 2 to obtain a higher-order expression for T 3 (without imposing any new
relations among the �–parameters). Hence �D;g D �0.g/��0.gC4/. This finishes
the proof when g � 1 or 3 mod 4.

In the last case, g � 2 mod 4 implies that

.T 1/0 D .z2u
C zv/m0� z4˛hh;

.T 2/0 D z4.u�˛h/m0� .z
2u
C zv/h;

(3-3)

and T 3 D .T 3/0 . Following [38], �0.2u/ equations for the �–parameters result
from the coefficients of ..T 1/0/|2 , and �0.gC n/ distinct equations result from the
coefficients of ..T 2/0/|2 . We claim that the �0.2u/ equations from ..T 1/0/|2 are
equal to those from .T 1/|1 , and all of the �0.a2Cn/ equations from .T 2/|1 can be
obtained from the coefficients of ..T 2/0/|2 . To prove this we introduce the following
definition and lemma.

Let P be any power series in z whose coefficients are polynomials in the � variables.
We let I.P / be the ideal generated by the coefficients of P in the polynomial ring
over the � variables. We have the following basic result concerning I and |2 .

Lemma 3.6 I..rP /|2/� I.P |2/, where r is a polynomial in R.

Proof Since |2 is linear, it is sufficient to prove the lemma when r is a monomial.
The reduction procedure for rP is exactly the same as for P until the first k such that
k 62� 3 kC �.r/. Beyond this range, a multiple of the coefficient of zk in P |2 may
be added to the remaining coefficients of .rP /|2 . Because of such k , all coefficients
of .rP /|2 will be coefficients of P |2 plus some multiples of the previous coefficients
of P |2 . Thus we have I Œ.rP /|2 �� I ŒP |2 �.

On page 14 of [38], we see that the valuations of T 1 , T 2 , .T 1/0 and .T 2/0 are greater
than 2u and therefore greater than g . Let us use this.
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Lemma 3.7 If M�M0 , then .T 1/|1 D .T 1/|2 and .T 2/|1 D .T 2/|2 .

Proof Observe that .T 1/|1�.T 1/|2D r0m0Cr1m1Cr2FCr3m3 , where the ri 2R.
When we apply |2 to the left-hand side, we get

..T 1/|1 � .T 1/|2/|2 D .T 1/|1 � .T 1/|2

since .T 1/|1 has valuations greater than g , which implies the left-hand side is an
eigenvector of |2 . Applying |2 to the right-hand side, we have

.r0m0C r1m1C r2F C r3m3/
|2 D .r2F /|2

since m0;m1;m3 are in M0 . Hence we have

.T 1/|1 � .T 1/|2 D .r2F /|2 :

Note that r2 may be a power series, but only a truncation of it determines .r2F /|2

because terms with valuation greater than the conductor will all eventually be eliminated.
Therefore, by Lemma 3.6, we have I..r2F /|2/ � I.F|2/. Now M �M0 , which
means F|2 D 0 by Lemma 3.5, and so we have .r2F /|2 D 0. The proof for T 2 is
identical because T 2 has valuation greater than 2u.

Now we prove that .T 1/|1 D ..T 1/0/|2 when M �M0 . Notice that T 1 � .T 1/0 D

�z4˛2F , where ˛2 and ˛h are defined in (3-2) and (3-3), respectively, and we have
used that ˛h D ˛2C 1. Thus

.T 1/|2 � ..T 1/0/|2 D .�z4˛2F /|2 :

By Lemmas 3.5 and 3.6 we have .�z4˛2F /|2 D 0 so by the previous Lemma 3.7 we
have .T 1/|1 D ..T 1/0/|2 .

To prove the equations from .T 2/|1 are redundant we first observe that T 2�z4.T 2/0D

�.z2uC zv/F . This implies that

.T 2/|2 � .z4.T 2/0/|2 D .�.z2u
C zv/F /|2 :

Again, by Lemmas 3.5 and 3.6, we see that .�.z2uCzv/F /|2 D 0. By Lemma 3.7, we
have .T 2/|2 D .T 2/|1 , which means .z4.T 2/0/|2 D .T 2/|1 . Finally, by Lemma 3.6,
I..z4.T 2/0/|2/� I...T 2/0/|2/, which readily implies that the equations from .T 2/|1

are redundant.
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Thus we have shown that the �0.2u/C �0.a2 C n/ equations from .T 1/|1 and
.T 2/|1 are actually redundant. So, as required,

�D;g D �0.g/� �0.a2/� �0.2u/� �0.gC n/C �0.2u/C �0.a2C n/

D �0.g/� �0.a2/� .�0.gC n/� �0.a2C n//

D �[fgg.g/� �[fgg.gC 4/� .�[fgg.gC n/� �[fgg.gC 4C n//:

4 Numerical support

We provide here dimensions of cells for some basic examples and the corresponding
nonadmissible D–flags D . It is important to know whether these dimensions, non-
admissible D and admissible ones with nonaffine J m

r ŒD� are topological properties
of the singularity. We found no counterexamples, but formally this can be wrong
even if our main conjecture holds. Zariski proved in Chapter IV, Section 3 of [45]
that � D h4; 6; 13C 2vi for v � 0 uniquely determines the corresponding analytic
singularity (ie that each equisingularity class is one point), but generally such questions
can be (very) involved. Also, these examples seem absolutely necessary for (restarting)
the theory of Jacobian factors beyond torus knots, which is of obvious importance for
topology and geometry of plane curve singularities and for orbital integrals.

4.1 Two simplest cables

We begin with formula (2-6) for the knots Cab.13; 2/T .3; 2/ and Cab.15; 2/T .3; 2/.
Here one can use the general Theorem 3.1 or the special Lemma 2.6. The latter can be
extended to any m for these two cases (with minor adjustments).

Recall that RD hz4; z6Cz7i; � D h4; 6; 13i and RD hz4; z6Cz9i; � D h4; 6; 15i in
these cases. The first DAHA superpolynomial is as follows:

ErD f3; 2g; EsD f2; 1g; T D Cab.13; 2/T .3; 2/I

HEr;Es.�I q; t; a/D

1C qt C q8t8
C q2.t C t2/C a3.q6

C q7t C q8t2/C q3.t C t2
C t3/

C q4.2t2
C t3
C t4/C q5.2t3

C t4
C t5/C q6.2t4

C t5
C t6/C q7.t5

C t6
C t7/

C a2
�
q3
C q4.1C t/C q5.1C 2t C t2/C q6.2t C 2t2

C t3/C q7.2t2
C 2t3

C t4/

C q8.t3
C t4
C t5/

�
C a

�
qC q2.1C t/C q3.1C 2t C t2/C q4.3t C 2t2

C t3/C q5.t C 4t2
C 2t3

C t4/

Cq6.t2
C 4t3

C 2t4
C t5/C q7.t3

C 3t4
C 2t5

C t6/C q8.t5
C t6
C t7/

�
:
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D–sets dim

¿ 8
15 7
11, 15 6
7, 11, 15 6
9, 15 7
9, 11, 15 5
7, 9, 11, 15 4
3, 7, 9, 11, 15 4
5, 9, 11, 15 5
5, 7, 9, 11, 15 3
3, 5, 7, 9, 11, 15 2
1, 5, 7, 9, 11, 15 4

D–sets dim

1, 3, 5, 7, 9, 11, 15 2
2, 7, 11, 15 6
2, 9, 15 7
2, 9, 11, 15 6
2, 7, 9, 11, 15 5
2, 3, 7, 9, 11, 15 4
2, 5, 9, 11, 15 5
2, 5, 7, 9, 11, 15 3
2, 3, 5, 7, 9, 11, 15 1
1, 2, 5, 7, 9, 11, 15 3
1, 2, 3, 5, 7, 9, 11, 15 0

Table 1: Dimensions for � D h4; 6; 13i , mD 0

Here and henceforth, we use [8]. Let us list the necessary information to verify (2-6).
For the greatest possible mD 3, there are only three admissible D–sets D0 that can
occur in such a (long) flag. Namely, these flags and the dimensions dim J 3

RŒD� are

(4-1)
D0 D Œ9; 11; 15�; Eg D .2; 5; 7/; dimD 8  q6t0a3;

D0 D Œ7; 9; 11; 15�; Eg D .2; 3; 5/; dimD 7  q7t1a3;

D0 D Œ5; 7; 9; 11; 15�; Eg D .1; 2; 3/; dimD 6  q8t2a3
I

we show their contributions to the corresponding superpolynomial.

Tables 1, 2, 3 show D0 , the corresponding Eg and the dimensions of J m
R ŒD� for all

admissible flags as mD 0; 1; 2.

There are no admissible extensions of degree 4, so we haveX
D

qjDjCmtı�dim.J m
R ŒD;D

0�/am
D

1C qt C q2.t C t2/C q3.t C t2
C t3/C q4.2t2

C t3
C t4/

Cq5.2t3
C t4
C t5/C q6.2t4

C t5
C t6/C q7.t5

C t6
C t7/C q8t8

C a3
�
q6
C q7t C q8t2

�
C a2

�
q3
C q4.1C t/C q5.1C 2t C t2/C q6.2t C 2t2

C t3/

Cq7.2t2
C 2t3

C t4/C q8.t3
C t4
C t5/

�
C a

�
qC q2.1C t/C q3.1C 2t C t2/C q4.3t C 2t2

C t3/C q5.t C 4t2
C 2t3

C t4/

Cq6.t2
C 4t3

C 2t4
C t5/C q7.t3

C 3t4
C 2t5

C t6/C q8.t5
C t6
C t7/

�
;

which coincides with HEr;Es.�I q; t; a/ from Section 3.1 of [8].
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D–sets g dim

¿ 15 8
15 9 8
15 11 7
11, 15 7 7
11, 15 9 6
7, 11, 15 2 7
7, 11, 15 9 6
9, 15 2 8
9, 15 11 7
9, 11, 15 2 7
9, 11, 15 5 6
9, 11, 15 7 5
7, 9, 11, 15 2 6
7, 9, 11, 15 3 5
7, 9, 11, 15 5 4
3, 7, 9, 11, 15 2 5
3, 7, 9, 11, 15 5 4
5, 9, 11, 15 2 6
5, 9, 11, 15 7 5
5, 7, 9, 11, 15 1 5

D–sets g dim

5, 7, 9, 11, 15 2 4
5, 7, 9, 11, 15 3 3
3, 5, 7, 9, 11, 15 1 3
3, 5, 7, 9, 11, 15 2 2
1, 5, 7, 9, 11, 15 2 5
1, 5, 7, 9, 11, 15 3 4
1, 3, 5, 7, 9, 11, 15 2 2
2, 7, 11, 15 9 6
2, 9, 15 11 7
2, 9, 11, 15 5 7
2, 9, 11, 15 7 6
2, 7, 9, 11, 15 3 6
2, 7, 9, 11, 15 5 5
2, 3, 7, 9, 11, 15 5 4
2, 5, 9, 11, 15 7 5
2, 5, 7, 9, 11, 15 1 4
2, 5, 7, 9, 11, 15 3 3
2, 3, 5, 7, 9, 11, 15 1 1
1, 2, 5, 7, 9, 11, 15 3 3

Table 2: Dimensions for � D h4; 6; 13i , mD 1

For RDCŒŒt4; t6Ct9�� corresponding to the �Dh4; 6; 15i and cable Cab.15; 2/T .3; 2/,
the situation is very similar. We checked that
1X

mD0

X
fD0DD;:::;Dmg

qjDjCmtı�dim.J m
R ŒD�/am

DHf3;2g;f2;3g.�I q; t; a/D

1C qt C q9t9
C q2.t C t2/C q3.t C t2

C t3/C a3
�
q6
C q7t C q8t2

C q9t3
�

C q4.2t2
C t3
C t4/C q5.2t3

C t4
C t5/C q6.2t4

C t5
C t6/

Cq7.2t5
C t6
C t7/C q8.t6

C t7
C t8/

C a2
�
q3
C q4.1C t/C q5.1C 2t C t2/C q6.2t C 2t2

C t3/

Cq7.2t2
C 2t3

C t4/C q8.2t3
C 2t4

C t5/C q9.t4
C t5
C t6/

�
C a

�
qC q2.1C t/C q3.1C 2t C t2/

Cq4.3t C 2t2
C t3/C q5.t C 4t2

C 2t3
C t4/C q6.t2

C 4t3
C 2t4

C t5/

Cq7.t3
C 4t4

C 2t5
C t6/C q8.t4

C 3t5
C 2t6

C t7/C q9.t6
C t7
C t8/

�
:
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D–sets Eg dim

15 9, 11 8
11, 15 7, 9 7
7, 11, 15 2, 9 7
9, 15 2, 11 8
9, 11, 15 2, 5 8
9, 11, 15 2, 7 7
9, 11, 15 5, 7 6
7, 9, 11, 15 2, 3 7
7, 9, 11, 15 2, 5 6
7, 9, 11, 15 3, 5 5

D–sets Eg dim

3, 7, 9, 11, 15 2, 5 5
5, 9, 11, 15 2, 7 6
5, 7, 9, 11, 15 1, 2 6
5, 7, 9, 11, 15 1, 3 5
5, 7, 9, 11, 15 2, 3 4
3, 5, 7, 9, 11, 15 1, 2 3
1, 5, 7, 9, 11, 15 2, 3 5
2, 9, 11, 15 5, 7 7
2, 7, 9, 11, 15 3, 5 6
2, 5, 7, 9, 11, 15 1, 3 4

Table 3: Dimensions for � D h4; 6; 13i , mD 2

See the same section of [8]. Note that formulas (3.1) and (3.2) there for the DAHA–Betti
polynomials are obtained from the superpolynomials as aD 0; q D 1.

4.2 The case of � D h4; 14; 31i

We checked the main conjecture in many cases for the series .4; 2u; v/ of Puiseux
exponents. This example is of importance because quite a few features of Theorem 3.1
(and our proof) cannot be seen for the subfamily .4; 6; v/. For � D h4; 14; 31i, we
list all admissible D–flags D and the dimensions dim J m

R ŒD� for mD 3 (the greatest
possible value). The calculation of dimensions at the maximal m as a matter of fact
includes a lot of information about the dimensions for previous lengths m, so this
is a good test of our conjecture. However, we restrict ourselves with a3 here due to
practical reasons. The total number of admissible D is 1071, but there are “only” 85

such D–flags of the top length for mD 3. The dimensions are in Tables 4 and 5 (its
continuation) in the same format as above. Compare them with the coefficients of a3

of the corresponding superpolynomial from [8], which we provide:

RDCŒŒz4; z14
C z17�� ; T D Cab.31; 2/T .7; 2/I

Hf7;2g;f2;3g.�I q; t; a/D

1CqtCq2tCq3tCq2t2Cq3t2C2q4t2Cq5t2Cq6t2Cq3t3Cq4t3C2q5t3C2q6t3C2q7t3C

q8t3Cq9t3Cq4t4Cq5t4C2q6t4C2q7t4C3q8t4C2q9t4C2q10t4Cq5t5Cq6t5C2q7t5C

2q8t5C3q9t5C3q10t5C3q11t5Cq6t6Cq7t6C2q8t6C2q9t6C3q10t6C3q11t6C4q12t6C

q7t7Cq8t7C2q9t7C2q10t7C3q11t7C3q12t7C4q13t7Cq8t8Cq9t8C2q10t8C2q11t8C

3q12t8C 3q13t8C 4q14t8C q9t9C q10t9C 2q11t9C 2q12t9C 3q13t9C 3q14t9C 4q15t9C
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q10t10 C q11t10 C 2q12t10 C 2q13t10 C 3q14t10 C 3q15t10 C 3q16t10 C q11t11 C q12t11 C

2q13t11C2q14t11C3q15t11C3q16t11C2q17t11C q12t12C q13t12C2q14t12C2q15t12C

3q16t12 C 2q17t12 C q18t12 C q13t13 C q14t13 C 2q15t13 C 2q16t13 C 3q17t13 C q18t13 C

q14t14 C q15t14 C 2q16t14 C 2q17t14 C 2q18t14 C q15t15 C q16t15 C 2q17t15 C 2q18t15 C

q19t15Cq16t16Cq17t16C2q18t16Cq19t16Cq17t17Cq18t17C2q19t17Cq18t18Cq19t18C

q20t18C q19t19C q20t19C q20t20C q21t21

Ca3
�
q6Cq7tCq8tCq9tCq8t2Cq9t2C2q10t2Cq11t2Cq12t2Cq9t3Cq10t3C2q11t3C

2q12t3C 2q13t3C q10t4C q11t4C 2q12t4C 2q13t4C 3q14t4C q11t5C q12t5C 2q13t5C

2q14t5C 3q15t5C q12t6C q13t6C 2q14t6C 2q15t6C 3q16t6C q13t7C q14t7C 2q15t7C

2q16t7C 3q17t7C q14t8C q15t8C 2q16t8C 2q17t8C 2q18t8C q15t9C q16t9C 2q17t9C

2q18t9Cq19t9Cq16t10Cq17t10C2q18t10Cq19t10Cq17t11Cq18t11C2q19t11Cq18t12C

q19t12C q20t12C q19t13C q20t13C q20t14C q21t15
�

Ca2
�
q3Cq4Cq5Cq4tC2q5tC3q6tC2q7tCq8tCq5t2C2q6t2C4q7t2C4q8t2C4q9t2C

2q10t2Cq11t2Cq6t3C2q7t3C4q8t3C5q9t3C6q10t3C5q11t3C3q12t3Cq7t4C2q8t4C

4q9t4C 5q10t4C 7q11t4C 7q12t4C 5q13t4C q8t5C 2q9t5C 4q10t5C 5q11t5C 7q12t5C

8q13t5C 6q14t5C q9t6C 2q10t6C 4q11t6C 5q12t6C 7q13t6C 8q14t6C 6q15t6C q10t7C

2q11t7C4q12t7C5q13t7C7q14t7C8q15t7C6q16t7Cq11t8C2q12t8C4q13t8C5q14t8C

7q15t8C8q16t8C5q17t8Cq12t9C2q13t9C4q14t9C5q15t9C7q16t9C7q17t9C3q18t9C

q13t10C 2q14t10C 4q15t10C 5q16t10C 7q17t10C 5q18t10C q19t10C q14t11C 2q15t11C

4q16t11C5q17t11C6q18t11C2q19t11Cq15t12C2q16t12C4q17t12C5q18t12C4q19t12C

q16t13C 2q17t13C 4q18t13C 4q19t13C q20t13C q17t14C 2q18t14C 4q19t14C 2q20t14C

q18t15C 2q19t15C 3q20t15C q19t16C 2q20t16C q21t16C q20t17C q21t17C q21t18
�

Ca
�
qCq2Cq3Cq2tC2q3tC3q4tC2q5tCq6tCq3t2C2q4t2C4q5t2C4q6t2C4q7t2C

2q8t2Cq9t2Cq4t3C2q5t3C4q6t3C5q7t3C6q8t3C5q9t3C4q10t3Cq11t3Cq5t4C2q6t4C

4q7t4C5q8t4C7q9t4C7q10t4C7q11t4C2q12t4Cq6t5C2q7t5C4q8t5C5q9t5C7q10t5C

8q11t5C9q12t5C3q13t5Cq7t6C2q8t6C4q9t6C5q10t6C7q11t6C8q12t6C10q13t6C

3q14t6C q8t7C 2q9t7C 4q10t7C 5q11t7C 7q12t7C 8q13t7C 10q14t7C 3q15t7C q9t8C

2q10t8C4q11t8C5q12t8C7q13t8C8q14t8C10q15t8C3q16t8Cq10t9C2q11t9C4q12t9C

5q13t9C7q14t9C8q15t9C9q16t9C2q17t9Cq11t10C2q12t10C4q13t10C5q14t10C7q15t10C

8q16t10C7q17t10Cq18t10Cq12t11C2q13t11C4q14t11C5q15t11C7q16t11C7q17t11C

4q18t11C q13t12C 2q14t12C 4q15t12C 5q16t12C 7q17t12C 5q18t12C q19t12C q14t13C

2q15t13C4q16t13C5q17t13C6q18t13C2q19t13Cq15t14C2q16t14C4q17t14C5q18t14C

4q19t14C q16t15C 2q17t15C 4q18t15C 4q19t15C q20t15C q17t16C 2q18t16C 4q19t16C

2q20t16Cq18t17C2q19t17C3q20t17Cq19t18C2q20t18Cq21t18Cq20t19Cq21t19Cq21t20
�
:

4.3 The series .6; 8; v/

The series with Puiseux exponents .4; 2u; v/ above corresponds to the somewhat special
links Cab.2uCv; 2/T .u; 2/; torus knots and cables for .2pC1; 2/ are known to have
some special symmetries.
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D–sets Eg dim

27, 37, 41 10, 23, 33 21
27, 33, 37, 41 10, 23, 29 20
27, 29, 33, 37, 41 10, 23, 25 19
25, 27, 29, 33, 37, 41 10, 21, 23 18
21, 25, 27, 29, 33, 37, 41 10, 17, 23 18
17, 21, 25, 27, 29, 33, 37, 41 10, 13, 23 18
23, 27, 33, 37, 41 10, 19, 29 20
23, 27, 29, 33, 37, 41 10, 19, 25 19
23, 25, 27, 29, 33, 37, 41 10, 19, 21 17
21, 23, 25, 27, 29, 33, 37, 41 10, 17, 19 16
17, 21, 23, 25, 27, 29, 33, 37, 41 10, 13, 19 16
13, 17, 21, 23, 25, 27, 29, 33, 37, 41 9, 10, 19 16
19, 23, 27, 29, 33, 37, 41 10, 15, 25 19
19, 23, 25, 27, 29, 33, 37, 41 10, 15, 21 17
19, 21, 23, 25, 27, 29, 33, 37, 41 10, 15, 17 15
17, 19, 21, 23, 25, 27, 29, 33, 37, 41 10, 13, 15 14
13, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 9, 10, 15 14
9, 13, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 5, 10, 15 15
15, 19, 23, 25, 27, 29, 33, 37, 41 10, 11, 21 17
15, 19, 21, 23, 25, 27, 29, 33, 37, 41 10, 11, 17 15
15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 10, 11, 13 13
13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 9, 10, 11 12
9, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 5, 10, 11 13
5, 9, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 10, 11 14
11, 15, 19, 21, 23, 25, 27, 29, 33, 37, 41 7, 10, 17 15
11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 7, 10, 13 13
11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 7, 9, 10 11
9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 5, 7, 10 11
5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 7, 10 12
7, 11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 3, 10, 13 14
7, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 3, 9, 10 12
7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 3, 5, 10 11
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 3, 10 11
10, 17, 21, 25, 27, 29, 33, 37, 41 6, 13, 23 18
10, 23, 27, 33, 37, 41 6, 19, 29 20
10, 23, 27, 29, 33, 37, 41 6, 19, 25 19
10, 23, 25, 27, 29, 33, 37, 41 6, 19, 21 18
10, 21, 23, 25, 27, 29, 33, 37, 41 6, 17, 19 17
10, 17, 21, 23, 25, 27, 29, 33, 37, 41 6, 13, 19 17
10, 13, 17, 21, 23, 25, 27, 29, 33, 37, 41 6, 9, 19 16
10, 19, 23, 27, 29, 33, 37, 41 6, 15, 25 19
10, 19, 23, 25, 27, 29, 33, 37, 41 6, 15, 21 18
10, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 15, 17 16

Table 4: Dimensions for � D h4; 14; 31i , mD 3 (I)

Algebraic & Geometric Topology, Volume 18 (2018)



DAHA and plane curve singularities 369

D–sets Eg dim

10, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 13, 15 15
10, 13, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 9, 15 14
9, 10, 13, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 5, 6, 15 14
10, 15, 19, 23, 25, 27, 29, 33, 37, 41 6, 11, 21 17
10, 15, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 11, 17 16
10, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 11, 13 14
10, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 9, 11 12
9, 10, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 5, 6, 11 12
5, 9, 10, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 6, 11 13
10, 11, 15, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 7, 17 15
10, 11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 7, 13 13
10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 6, 7, 9 10
9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 5, 6, 7 9
5, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 6, 7 10
7, 10, 11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 3, 6, 13 13
7, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 3, 6, 9 10
7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 3, 5, 6 8
5, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 3, 6 8
6, 10, 17, 21, 25, 27, 29, 33, 37, 41 2, 13, 23 18
6, 10, 17, 21, 23, 25, 27, 29, 33, 37, 41 2, 13, 19 17
6, 10, 13, 17, 21, 23, 25, 27, 29, 33, 37, 41 2, 9, 19 16
6, 10, 19, 23, 27, 29, 33, 37, 41 2, 15, 25 19
6, 10, 19, 23, 25, 27, 29, 33, 37, 41 2, 15, 21 18
6, 10, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 15, 17 17
6, 10, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 13, 15 16
6, 10, 13, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 9, 15 15
6, 9, 10, 13, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 5, 15 14
6, 10, 15, 19, 23, 25, 27, 29, 33, 37, 41 2, 11, 21 17
6, 10, 15, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 11, 17 16
6, 10, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 11, 13 15
6, 10, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 9, 11 13
6, 9, 10, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 5, 11 12
5, 6, 9, 10, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 2, 11 12
6, 10, 11, 15, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 7, 17 15
6, 10, 11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 7, 13 14
6, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 7, 9 11
6, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 5, 7 9
5, 6, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 2, 7 9
6, 7, 10, 11, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 3, 13 13
6, 7, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 3, 9 10
6, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 2, 3, 5 7
5, 6, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41 1, 2, 3 6

Table 5: Dimensions for � D h4; 14; 31i , mD 3 (II)
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We will now consider the series .6; 8; v/ for odd v � 9 from (1-17) with the link
Cab.25C .v � 9/; 2/T .4; 3/. The corresponding ring, semigroup, ı–invariant, and
Euler number of JR are

RDCŒŒz6; z8
C zv ��; � D h6; 8; 25C .v� 9/i;

ı D 18C 1
2
.v� 9/; e.JR/D 227C 25

2
.v� 9/:

Piontkowski [38] provides the Euler number, the total number of �–modules, which is
273C 25

2
.v�9/, and the number of nonadmissible ones. The latter is 46 for any v . The

difference 273C 25
2
.v�9/�46 is exactly the Euler number, since all admissible cells in

the decomposition from [38] are diffeomorphic to AN in the case under consideration
and the homology can be readily calculated.

For our conjecture, we need to know the set of all �–modules �, those that are nonad-
missible, and the dimensions dim.JRŒD�/. It is not too difficult to find all nonadmissible
modules following [38], but they are not provided in his paper. There are “generic”
nonadmissible modules and three exceptional ones, which we are going to describe.

We examine the elements

T
pq
ij D �imp ��j mq 2M;

where DDDM is the set of gaps of M, i < j 2� , p> q 2�MD �.M/, �.�i/D i ,
and �.mp/D p , where we use the valuation �W O!ZC . Recall that modules M are
submodules in ODCŒŒz�� with an element of valuation 0.

We will assume that the leading z–monomial in �i ;mk has the coefficient 1. For
instance, m0 D 1C

P
p>0 �

p
0

zp . The choice of these elements is of course nonunique
(higher terms can be added to them).

Proposition 4.1 All nonadmissible M for R D CŒŒt6; t8C tv �� can be described as
follows. In the differences from Section 4.3, let

.a/ q D 0; p D 2; 4; 10I .b/ q D 2; p D 4I .c/ p > q 2 f0; 2; 4g:

Then, let us impose the following relations for i; j in Section 4.3:

i CpC 1 62�M and i Cp D j C q for i; j 2 �:(4-2)

Here the latter results in the inequalities �.T pq
ij /� 1CpC 1, which can be only strict

due to the former since T
pq
ij 2M.

The nonadmissibility of M of type (a) or (b) occurs if and only if there exist no
mp;mq 2M in Section 4.3 satisfying (4-2) for all possible choices of i; j there. In
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the case of (c), the absence of m0;m2;m4 2M must be checked for each of the three
choices of p; q there altogether and every possible i; j satisfying Section 4.3.

Let us list the D–sets (the sets of gaps) for all 46 nonadmissible modules M. In
Table 6, .v � 9/ must be added to all gaps in the second half of the first column
(clearly visible). The second column contains the smallest p > 0 in D that ensures
the nonadmissibility in the case of (a), the letters b or c stand for the remaining three
exceptional cases. The third column contains the first g D gmin D i CpC 1 62D such
that its absence in D contradicts the absence of the previous gaps g0i 0CpC 1< gmin

in D , which is for a given pair from .a; b; c/. Such a gap is provided only for the pair
.0; 2/ in the case of (c).

The nonadmissibility can occur only if there are at least two possible pairs .i; j /
satisfying (4-2). The corresponding conditions are simple equalities for the differences
�1

p � �
1
q , where mp D zp C �1

pzpC1C � � � . If the difference �1
p � �

1
q takes different

values for different pairs .i; j /, then the module cannot be admissible. In the case
of c , such a contradiction can be reached only if three such sequences of equalities
are considered together, ie for �1

0
��1

2
, �1

0
��1

4
, and �1

2
��1

4
. Generally, higher-order

z–expansions can be necessary here, ie �i>1
p may occur; however this is not the case

with .6; 8; v/.

Using this table and the list of all 273C25
2
.v�9/ modules �, we checked Conjecture 2.5

for t D 1 (ie ignoring the dimensions) for quite a few v . Here and in all calculations we
performed it appeared sufficient to replace the admissibility of D by the admissibility
of all Di (separately), a potentially weaker condition. Generalizing [38], we verified
here that all subvarieties J m

R ŒD� are diffeomorphic to proper AN, so we are in the
situation of (2-6).

Let us provide some details. Recall that the D–flag of length m originated at D is by
definition the sequence of D–sets for �–modules:

DD
˚
D0 DD; D1 DD[fg1g; : : : ;Dm DD[fg1;g2; : : : ;gmg

	
;(4-3)

where the inequalities g1 < g2 < � � � < gm 2 G nD are imposed. Let us illustrate
numerically the importance of this very ordering in our definition of D–flags.

As it results from Proposition 2.3, each set D[fgig corresponds to a certain �–module
for any 1� i �m. However, apart from torus knots, these conditions (imposed together)
are generally significantly weaker than the conditions we need. The �–modules Di

from (4-3) are not always admissible (coming from some M) if all D[fgig are.
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D–sets under f � gC .v� 9/ p g

10, 35 10 19
10, 27, 35 10 19
10, 29, 35 10 19
2, 10, 27, 35 2 19
4, 10, 29, 35 4 17
10, 23, 29, 35 10 19
10, 27, 29, 35 10 19
2, 10, 27, 29, 35 2 19
4, 10, 23, 29, 35 4 17
4, 10, 27, 29, 35 4 17
10, 21, 27, 29, 35 10 19
10, 23, 27, 29, 35 10 19
2, 4, 10, 27, 29, 35 2 19
2, 10, 21, 27, 29, 35 2 19
2, 10, 23, 27, 29, 35 2 19
4, 10, 19, 27, 29, 35 4 17
4, 10, 21, 27, 29, 35 4 17
4, 10, 23, 27, 29, 35 4 17
10, 21, 23, 27, 29, 35 10 19
2, 4, 10, 19, 27, 29, 35 4 17
2, 4, 10, 21, 27, 29, 35 2 19
2, 4, 10, 23, 27, 29, 35 2 19
2, 10, 17, 23, 27, 29, 35 2 19

D–sets under f � gC .v� 9/ p g

2, 10, 21, 23, 27, 29, 35 2 19
4, 10, 19, 21, 27, 29, 35 4 17
4, 10, 19, 23, 27, 29, 35 4 17
4, 10, 21, 23, 27, 29, 35 4 17
10, 15, 21, 23, 27, 29, 35 10 19
2, 4, 10, 17, 23, 27, 29, 35 2 19
2, 4, 10, 19, 21, 27, 29, 35 4 17
2, 4, 10, 19, 23, 27, 29, 35 4 17
2, 4, 10, 21, 23, 27, 29, 35 2 19
2, 10, 15, 21, 23, 27, 29, 35 2 19
2, 10, 17, 21, 23, 27, 29, 35 2 19
4, 10, 15, 21, 23, 27, 29, 35 4 17
4, 10, 19, 21, 23, 27, 29, 35 4 17
2, 4, 10, 15, 21, 23, 27, 29, 35 2 19
2, 4, 10, 17, 19, 23, 27, 29, 35 b 21
2, 4, 10, 17, 21, 23, 27, 29, 35 2 19
2, 4, 10, 19, 21, 23, 27, 29, 35 4 17
2, 10, 15, 17, 21, 23, 27, 29, 35 2 19
4, 10, 15, 19, 21, 23, 27, 29, 35 4 17
2, 4, 10, 15, 17, 21, 23, 27, 29, 35 2 19
2, 4, 10, 15, 19, 21, 23, 27, 29, 35 4 17
2, 4, 10, 17, 19, 21, 23, 27, 29, 35 c 11
2, 4, 10, 15, 17, 19, 21, 23, 27, 29, 35 c 11

Table 6: Nonadmissible modules for .6; 8; v/

We set �.D/D 1; 0 correspondingly for admissible and nonadmissible D and �.D/DQm
iD1 �.Di/, where Di DDMi

. Then �.D/D 1 is equivalent to the admissibility of D
(in the example under consideration). We expect this implication to hold in general, but
cannot prove this at the moment. Thus �.D/D 1 implies that

Qm
iD1 �.D [ gi/D 1,

but the latter condition is not generally insufficient for the former.

Namely, if the admissibility of D–flags were defined as
Qm

iD1 �.D[fgig/D 1 instead
of �.D/D 1, ie separately for each and every D[fgig, then there would be 14 extra
(wrong) terms (with multiplicities) in (4-4) below. This clearly demonstrates that our
flags are generally more subtle than using “marks” for torus knots in [16] and other
related works.

The smallest example is as follows. Using Table 6 with v D 9, the set of all gi

for D D Œ10; 17; 19; 23; 27; 29; 35� such that D [ fgig is admissible is f2; 4; 11; 21g.
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However, D[f2; 4g D Œ2; 4; 10; 17; 19; 23; 27; 29; 35� is a nonadmissible D–set (it is
marked by b in the table).

Finally, we arrive at the following identity:

(4-4)
1X

mD0

X
DDfD0;:::;Dmg

�.D/qjD0jCmam
D

1C qC 2q2
C 3q3

C 5q4
C 7q5

C 10q6
C 12q7

C 16q8
C 19q9

C 22q10

C24q11
C 25q12

C 24q13
C 22q14

C 17q15
C 11q16

C 5q17
C q18

C a
�
qC 2q2

C 4q3
C 7q4

C 12q5
C 18q6

C 26q7
C 35q8

C 46q9
C 56q10

C66q11
C 72q12

C 74q13
C 70q14

C 59q15
C 41q16

C 21q17
C 5q18

�
C a2

�
q3
C 2q4

C 5q5
C 9q6

C 16q7
C 24q8

C 36q9
C 48q10

C 62q11

C74q12
C 82q13

C 83q14
C 76q15

C 58q16
C 34q17

C 10q18
�

C a3
�
q6
C 2q7

C 5q8
C 9q9

C 15q10
C 22q11

C 31q12
C 38q13

C44q14
C 44q15

C 38q16
C 26q17

C 10q18
�

C a4
�
q10
C 2q11

C 4q12
C 6q13

C 9q14
C 11q15

C 11q16
C 9q17

C 5q18
�

C a5
�
q15
C q16

C q17
C q18

�
:

The latter sum exactly coincides with HEr;Es.�I q; t D 1; a/ from formula (4) in Sec-
tion 3.2 of [8], where

ErD f4; 2g; EsD f3; 1g; T D Cab.25; 2/T .4; 3/:

Also see formula (3.4) there for the corresponding DAHA–Betti polynomial, which is
the a–constant term of (4-4) upon the substitution q 7! 1=t and multiplication by t18 :

1C 5t C 11t2
C 17t3

C 22t4
C 24t5

C 25t6
C 24t7

C 22t8
C 19t9

C16t10
C 12t11

C 10t12
C 7t13

C 5t14
C 3t15

C 2t16
C t17

C t18:

Here we use the superduality.

We also checked that J m
R ŒD� are always affine spaces, found formulas for the di-

mensions of J
mD0;1
R ŒD� and correspondingly verified (2-6) for the coefficients of

superpolynomials of a0; a1 in the considered case.
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4.4 Beyond “Piontkowski”

Examples are given in [38] where his approach does not work because the corresponding
cells Jr ŒD� are nonaffine spaces. Thus the count of such cells and knowing their dimen-
sions is insufficient for obtaining the Betti numbers and the Euler number of Jr . Some
“negative” examples are provided in the table after Theorem 13 in [38]. We found that
not always the cells in his table are really nonaffine, but the phenomenon he discovered
is of course important. It is unclear whether nonaffine cells and nonadmissible D

and D are topological. This is of obvious interest due to our main conjecture and
because of the exciting link to orbital integral in type A.

We mostly consider a relatively simple singularity with Puiseux exponents .6; 9; 10/ and
the cable Cab.19; 3/T .3; 2/. Its ring is RDCŒŒt6; t9Ct10��, the valuation semigroup is
�Dh6; 9; 19i and ıD jN n�j D 21 in this case. See [8, Section 3.2] for details and the
formula for the DAHA superpolynomial; the DAHA–Betti polynomial (aD 0; q D 1) is
formula (3.3) there, which does provide correct Betti numbers for the corresponding JR .

This example is transitional in a sense; all cells are still affine spaces, but the justification
of this fact (straightforward, using computers) becomes more involved. We considered
some deformations of parameters of R and think that Table 7 depends only on the
corresponding � (ie this table is of a topological nature) but this is not clear.

The simplest example of nonaffine JRŒD� in this case given in [38] is

D D Œ3; 7; 10; 13; 16; 17; 20; 22; 23; 26; 29; 32; 35; 41�;

but we found that the corresponding JRŒD� is biregular to A14 . The only problem with
this and two other similar sets D (our program obtained) is that the natural �–variables
Piontkowski uses (as do we) are inconvenient to parametrize JRŒD�; a certain (linear)
change of variables is necessary. The other two D–sets with a similar behavior (when
a straight elimination of the �–variables is insufficient) are

Œ3; 10; 13; 16; 20; 22; 23; 26; 29; 32; 35; 41�;

Œ3; 10; 13; 16; 17; 20; 22; 23; 26; 29; 32; 35; 41�:

All three (and any other cells) are affine spaces in this case. The next example of a
nonaffine cell from [38] is for CŒŒt6; t9C t13��; we confirm it. See Appendix A in the
online supplement.

We note that our program routinely calculates jJRŒD�.F3/j for “suspicious” D to
double check the direct verification of the affineness of the cells (mostly automated).
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22, 41 2, 3, 5, 8, 11, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 41 1, 3, 4, 7, 10, 13, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
22, 35, 41 3, 5, 8, 11, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 32, 41 2, 3, 8, 11, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 35, 41 2, 3, 5, 8, 11, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
16, 22, 35, 41 1, 4, 7, 10, 13, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 35, 41 1, 3, 4, 7, 10, 13, 16, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 29, 35, 41 3, 8, 11, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 32, 35, 41 3, 5, 11, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
16, 22, 32, 35, 41 3, 5, 8, 11, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 29, 35, 41 3, 4, 7, 10, 13, 16, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 32, 35, 41 2, 3, 8, 11, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 26, 32, 35, 41 1, 4, 7, 10, 13, 16, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 29, 32, 35, 41 4, 7, 10, 13, 16, 20, 22, 23, 26, 29, 32, 35, 41
13, 16, 22, 32, 35, 41 3, 11, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 13, 16, 22, 32, 35, 41 3, 8, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 26, 32, 35, 41 3, 8, 11, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 29, 32, 35, 41 3, 5, 11, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 22, 23, 29, 32, 35, 41 3, 4, 7, 10, 13, 16, 22, 23, 26, 29, 32, 35, 41
3, 22, 26, 29, 32, 35, 41 4, 7, 10, 13, 16, 22, 23, 26, 29, 32, 35, 41
13, 16, 22, 29, 32, 35, 41 3, 14, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 13, 16, 22, 29, 32, 35, 41 3, 11, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 23, 29, 32, 35, 41 3, 11, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 26, 29, 32, 35, 41 3, 8, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 20, 22, 26, 29, 32, 35, 41 3, 7, 10, 13, 16, 22, 23, 26, 29, 32, 35, 41
3, 22, 23, 26, 29, 32, 35, 41 7, 10, 13, 16, 22, 23, 26, 29, 32, 35, 41
10, 13, 16, 22, 29, 32, 35, 41 3, 16, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 10, 13, 16, 22, 29, 32, 35, 41 3, 14, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 20, 22, 26, 29, 32, 35, 41 3, 14, 16, 20, 22, 23, 26, 29, 32, 35, 41
3, 16, 22, 23, 26, 29, 32, 35, 41 3, 11, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 17, 22, 23, 26, 29, 32, 35, 41 3, 7, 10, 13, 16, 22, 26, 29, 32, 35, 41
3, 20, 22, 23, 26, 29, 32, 35, 41 7, 10, 13, 16, 22, 26, 29, 32, 35, 41
10, 13, 16, 22, 26, 29, 32, 35, 41 3, 17, 20, 22, 23, 26, 29, 32, 35, 41
3, 10, 13, 16, 22, 26, 29, 32, 35, 41 3, 16, 20, 22, 23, 26, 29, 32, 35, 41
3, 14, 20, 22, 23, 26, 29, 32, 35, 41 3, 16, 17, 22, 23, 26, 29, 32, 35, 41

Table 7: Nonadmissible D for � D h6; 9; 19i

These cardinalities must be 3dim for affine cells. The prime 3 is a “place of good
reduction” for this R. The reduction is bad modulo p D 2 and one needs to switch to

Algebraic & Geometric Topology, Volume 18 (2018)



376 Ivan Cherednik and Ian Philipp

the topologically equivalent ring CŒŒt6C t7; t9�� before replacing C 7! F2 . We omit
general analysis of places of bad reduction in this paper.

We will not discuss much the flags here, but let us mention that all cells are affine for
J mD1
R ŒD� (their dimensions are all calculated) in the case of RDCŒŒt6; t9C t10��. The

list of (all) 70 nonadmissible D (ie for mD 0) will be provided. The total number
of modules � is 447D 377C 70 in this case, and the Euler number is e.JR/D 377.
Accordingly, we checked (numerically) the coincidence from (2-6) in the following
two cases: (a) for all a when t D 1 (for the admissibility of D understood as the
admissibility of all Di in this flag), and (b) for the coefficients of H.�I q; t; a/ from [8]
of a0;1 .

The calculation in (a) greatly demonstrates the role of admissibility and the implications
of the ordering g1 < � � � < gm , which are quite nontrivial combinatorially. The
corresponding reduction of the superpolynomial for RDCŒŒt6; t9C t10�� is

H.�Iq; t D 1;a/D

1CqC2q2
C3q3

C5q4
C7q5

C10q6
C13q7

C17q8
C21q9

C25q10
C29q11

C33q12

C36q13
C37q14

C37q15
C34q16

C28q17
C20q18

C12q19
C5q20

Cq21

Ca5
�
q15
Cq16

C2q17
C2q18

C3q19
C2q20

Cq21
�

Ca4
�
q10
C2q11

C4q12
C7q13

C11q14
C15q15

C19q16

C22q17
C23q18

C21q19
C13q20

C5q21
�

Ca
�
qC2q2

C4q3
C7q4

C12q5
C18q6

C27q7
C37q8

C50q9
C63q10

C78q11
C91q12

C105q13
C113q14

C118q15
C114q16

C100q17
C76q18

C48q19
C22q20

C5q21
�

Ca3
�
q6
C2q7

C5q8
C9q9

C16q10
C24q11

C36q12
C47q13

C61q14
C71q15

C81q16
C82q17

C76q18
C57q19

C32q20
C10q21

�
Ca2

�
q3
C2q4

C5q5
C9q6

C16q7
C25q8

C38q9
C53q10

C71q11
C90q12

C109q13

C126q14
C138q15

C143q16
C134q17

C111q18
C75q19

C38q20
C10q21

�
:

5 Some perspectives

The topics below are mostly open projects, but we believe that this section can be
of interest; the relation to orbital integrals, affine Springer fibers and the motivic
reformulation (5-2) of (2-7) are the key. We will first address the absence of colors and
links in our main conjecture and related issues.
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5.1 Adding colors

In contrast to [9] and previous paper, we restrict this one to algebraic uncolored knots
and only type A is addressed in our conjecture. Let us briefly comment on this. Adding
colors is expected via the curves in [31], so algebraic links are/seem necessary for this.
Apart from rectangle Young diagrams, the coefficients of DAHA-superpolynomials are
nonpositive, which is an obvious challenge for the geometric interpretation. This is the
same for links (included uncolored ones). The Jacobian factors become ind-schemes
for algebraic links and we need to follow [25] (divide by certain split tori) to make
them proper.

One can try to bypass the nonpositivity issues switching to some Hilbert schemes
instead of our flagged Jacobians, which corresponds to the unreduced topological
setting. This can be similar to [36; 13]; see also Conjecture 5.3(ii) from [9].

Superpolynomials beyond An Our flagged Jacobian factors are related to the Hitchin
and affine Springer fibers. The hope is that the DAHA-superpolynomials can be directly
and geometrically determined by spectral curves for types Bn;Cn;Dn via the corre-
sponding flagged Jacobian factors and/or Hilbert schemes. The rank stabilization was
conjectured in [6]; the name “hyperpolynomials” is used instead of superpolynomials
for non-A types. The spectral curves are generally nonunibranch, so the passage to
links is necessary here. A certain confirmation is the following observation.

It is true in all known examples that H.bI q; t;u; aD 0/ for the hyperpolynomials from
Section 4.2 of [6] depend only on the corresponding knot and the color b . This holds
for the hyperpolynomials of type C;D calculated there for T .3; 2/;T .7; 2/;T .4; 3/

and b D !1; 2!1; !2 . The hyperpolynomials of type D are the specialization of those
of type C upon uD 1 (see (4.7) there; u is the second t for B;C ). The same holds
for type B under q2 7! q , u 7! t .

Furthermore, the hyperpolynomials Had
r;s.q; t; a/ for the Deligne–Gross series (ex-

tending the series E6;7;8 ) introduced in Section 4.2 of [10] coincide at a D 0 with
Hr;s.�I q; t; a D 0/ of type A. The existence of Had

r;s was confirmed only partially
in [10] (and only for T .3; 2/;T .4; 3/). These Had

r;s are mysterious from the viewpoint
of [6], since there can be no rank stabilization here. We hope that our present paper
can shed some light on this.
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5.2 Perfect DAHA modules

A challenge is an interpretation of DAHA superpolynomials for arbitrary algebraic knots,
similar to that in [17] for torus ones via perfect modules of rational DAHA. See also
Theorem 9.5 from [22]. There are some obstacles.

One can use here the classification results from [41; 40; 43] in terms of K–theory or
homology (for the rational and trigonometric DAHA) of Iwahoric Springer fibers. See
paper [41] for general theory, including a comprehensive analysis in type A.

Following Gorsky, let us consider the root system As�1 for a given torus knot T .r; s/

(so we adjust its rank to the knot) and take e D e1C� � �C es�1C zrf� in the notations
from Section 4.1 from [40]. Then H�.Ye/ for the corresponding Iwahoric Springer
fiber Ye can be supplied with a natural structure of the perfect HH–module for tDq�r=s

of dimension rs�1 , which is a very explicit quotient of the polynomial representation
of rational DAHA. This module becomes simpler with q; t (via K–theory), but the
grading then will be missing.

The coefficients of am in the superpolynomial are associated with isotypic components
of this HH–module for the wedge mth powers of the standard s � 1 dimensional
representation of W DSs . This construction is quite combinatorial; Gorsky relates am

to m–sets of marks, which are corners in Dyck paths below the diagonal in the s�r–
rectangle. In the absence of marks (when aD 0), the space of W –coinvariants is the
image of the projection of H�.Ye/ onto H�.Xe/ for the affine Springer fiber Xe (see
also Section 5.3 below).

The number of marks corresponds to m in our J m
R . The latter is a special subvariety

of the parahoric Springer fiber of full m–subflags starting from the top, defined as
the space of flags of R–modules fMi j i D 0; : : : ;mg, where mMm � Mi and
dimC.MiC1=Mi/D 1; here m �R is the maximal ideal. They can be extended to
full periodic flags via the forgetful map from Ye to the parahoric one.

This construction involves the root system As�1 , and the topological r $ s sym-
metry of the superpolynomial generally becomes far from obvious. Our geometric
superpolynomials are defined directly in terms of the singularity and are manifestly
r$s–symmetric.

Furthermore, the (finite-dimensional) spaces H�.Ye/ for arbitrary nil-elliptic (aniso-
tropic) e are not generally related to any DAHA-modules unless in the torus case.
These spaces are needed for general unibranch plane curve singularities, but their
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dimensions and other features are very different from those of the finite-dimensional
modules. It is not impossible that they can appear as some “remarkable” subspaces in
infinite-dimensional HH–modules, but this is questionable.

5.3 Affine Springer fibers

Conjecture 2.5 leads to the following connection with the orbital integrals from the
fundamental lemma (in the geometric setting). We will mainly follow Section 2.4
from [44]. The example from Section 2.4.2 there is for the spectral curve yr D xs [30],
which can be actually generalized to any (germs of) plane curve singularities C such
that the Jacobian factor JR at .0; 0/ has the Piontkowski-type decomposition with
affine cells only.

The following discussion will be mostly restricted to type A in the anisotropic case.
Note that fractional ideals of R of degree zero are considered in [44] (and in the
fundamental lemma) in the definition of the compactified Jacobians.

Let 1=t D p` be the cardinality of a finite field F . The choice t D 1=jF j is standard
when connecting the q; t–theory of spherical functions with the p–adic theory (see
eg [5]), though using q instead of 1=t is equally fine due to the superduality of the
DAHA superpolynomials.

Because we stick to the unibranch case,  2 g.F..x/// is assumed nil-elliptic: no
split tori over a local field F..x// in the stabilizer G ( D e was used above). The
affine Springer fiber X is then formed by the classes of g in the affine Grassmannian
G.F..x///=G.F ŒŒx��/ over the field F such that Ad�1

g . /2 g.F ŒŒx��/. Here Lie.G/D g;
see eg [44]. Yun denotes the corresponding parahoric ones by XP; , which contain
our flagged Jacobian factors (though we do not need any g;G ). The Iwahoric Springer
fibers are for P D I in his notation.

The affine Springer fiber X can be naturally identified with the compactified Jacobians
for rational curves with the local ring R at its (unique) singularity; see eg [29; 4].
A general construction is from [4]. Let G be a factorizable Lie group schemes over
a smooth projective curve E , defined by the conditions H 1.E;Lie.G // D f0g D
H 0.E;Lie.G // for the corresponding sheaf of Lie algebras Lie.G / ! E . For a
scheme subtorus T � G such that its generic fiber is a maximal torus, embeddings
f W T ,! G become conjugations over sufficiently general open U �E : specifically,
f .�/D ��1�� for � 2H 0.U;T / and meromorphic sections � D �U of G over U .
LCech cohomology is used.
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Assuming that �i exist for open Ui such that E D
S

i Ui , the map

ff g 3 f 7!
˚
�i�
�1
j 2H 0.Ui \Uj ;G /

	
!H 1.E;T /

is an isomorphism. Actually, we use this map in the opposite direction, from H 1.E;T /

to ff g. Here H 1.E;T / is the generalized Jacobian of the cover F ! E if T D

O�
F
� G . Note that E can be only CP1 or an elliptic curve; generalized Prim varieties

appear for the latter.

Let F be rational with exactly one singular point that is the whole fiber Fo over some
o 2 E D CP1 ; here Go must be G . Then f .T / can be obtained as g�1T g for
rational sections g of G such that g are regular at Eno and g�1T g are regular at Fo .
Thus such g form an open subset in the affine Springer fiber X at o for a sufficiently
general section  of Lie.T / regular at o. For any fiber Fo , the map g 7! g�1T g

goes through the quotient L nX for the group L of rational sections of F regular
at F nFo ; see [44, Theorem 2.9] and [25].

Type A is not necessary here, but we need this in our paper (and anisotropic G ).
Recall that our flagged Jacobian factors deviate from the usual ones. First, we consider
only standard R–modules. Second, admissible D–flags DD ŒD0�D1DD0[fg1g�

� � � � Dm� are subtle; Di must be D–sets and the ordering g1 < g2 < � � � < gm is
imposed. This ordering and the admissibility are quite nontrivial geometrically.

5.4 Motivic approach

Our construction results in the following generalization of orbital integrals:

tı
X
D

qmCjD0jam
jJ m

R ŒD�.F1=t /j

in type A (the nil-elliptic case), where the summation is over all admissible D–flags D .
Their interpretation as “natural” orbital integrals is one of the main challenges triggered
by this work. It seems doable due to an entirely geometric nature of our approach. Let
us also mention here potential adding colors to our construction, another challenge for
us and the specialists in orbital integrals.

For sufficiently general prime p , there is solid evidence that such sums coincide with
the DAHA superpolynomials HC.�I q; t; a/ associated with the singularity C , which
is stated in (2-7). For q D 1 and aD 0, we arrive at orbital integrals O . They are
expected to be jF j–integral and positive, which matches our main conjecture.
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It is not impossible that all classes ŒJ m
R Œd �� in K0.Sch=C/ are sums of classes ŒA1�N

over ZC , the strongest possible (motivic) assumption. This would match known and
conjectured properties of HC . It is possible that J m

R Œd � are always paved by affine
spaces (even when J m

R ŒD� are not all affine); see Appendix A in the online supplement.

If (2-7) holds, then DAHA superpolynomials provide all virtual Hodge numbers of
J m
R Œd �. This results from part (3) of Theorem 1 from the appendix by N M Katz in [24].

Following it, let E.X Ix;y/D
P

r;ser;sxr ys for a separated scheme X=C of finite
type and virtual Hodge numbers er;s D

P
i.�1/ihr;s.grrCs

W
.H i

c .X
an;C///:

Then (2-7) gives that X D J m
R Œd � is strongly polynomial-count and the following

formula holds:

(5-1) .xy/ıHEr;Es.�Iq;1=.xy/;a/D
X
d;m

E.J m
R Œd �Ix;y/q

dCmam

D

X
d;m;i;r

.�1/iqdCmam.xy/r rk.gr2r
W .H

i
c .J

m
R Œd �;C///;

which directly links the DAHA superpolynomials to the weight filtration in H i
c .X

an;C/.
We use that R can be assumed over Z and then J m

R Œd � are defined over a localization
of Z by finitely many primes.Thus er;sD 0 for r ¤ s (ie this is a Tate–Hodge structure)
and the right-hand side in (2-7) can be replaced by the following Hwt.q; t; a/:

HEr;Es.�I q; t; a/D
X

d;m;i;r

.�1/iqdCmtı�r am rk.gr2r
W .H

i
c .J

m
R Œd �;C///:(5-2)

Conclusion In spite of some similarity between (5-2) and [22, Theorem 9.5], we do
not see how they can be connected. First, t2

st D q=t is used there for the weight filtration
instead of t in (5-2). Second, our construction does not require affine Springer fibers
and picking the corresponding isotypic components in their homology. Lie groups do
not appear in our approach; in a sense, this corresponds to the “endoscopy part” of
the fundamental lemma. Third, related to the second, our admissible flags are new
and different from those in [22]. Fourth, our approach is fully computational and we
calculate well beyond torus knots and the series in [38]; the examples provided in [36]
were only for some simple torus knots. In spite of these differences, the ORS conjecture
can be still compatible with our one, but this is not clear.

Conceptually, nested Hilbert schemes from [36] and similar objects in related areas of
geometry/topology and physics result in some infinite Poincaré series. Generally the
“ultimate” problem is to transform them into polynomials or some finite expressions
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so that the resulting coefficients are positive integers. The latter positivity is generally
much more subtle than the positivity (if any) of the coefficients of the initial series.
In this paper, we provide the conjectural geometric interpretation for the DAHA super-
polynomials via the Jacobian factors instead of Hilbert schemes, which is therefore
ultimate in the sense above. There is recent progress with the geometric interpretation
of the positivity conjecture for DAHA superpolynomials colored by symmetric or wedge
powers, but so far not with arbitrary rectangles.

We note that not many formulas are known for the stable KhR–polynomials (the
celebrated Khovanov polynomials for sl2 are exceptional). They are mostly for
T .2mC 1; 2/ and no formulas are known for iterated nontorus knots. Thus checking
our geometric superpolynomials versus the DAHA ones is actually the only way for
iterated torus knots; though see [8] for some conditional verifications of our topological
conjecture using the reduction to the Khovanov polynomials.

We do not pay any special attention to torus knots in our work. For such knots, we
generalize the approach from [19; 20], where aD 0. Our usage of standard modules is
the key; this is not fully understood geometrically, but we already have some motivic
interpretation of complete geometric superpolynomials (with all three parameters). We
note that even for torus knots, our flagged Jacobian factors are new. The conditions
on the corresponding �–modules � in their definition are not clear by now from the
viewpoint of usual flagged constructions.

We plan to approach arbitrary colored algebraic links and possibly reach arbitrary root
systems our further papers. It is a must if we want to realize the potential of DAHA in
full and for connections with p–adic orbital integrals. Also, there is a realistic program
of justifying our conjecture (related to [31]). It requires knowing the behavior of our
geometric superpolynomials under monoidal-type transformations of the corresponding
singularities. All of them must be considered here, not only those for torus knots.
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