
msp
Algebraic & Geometric Topology 18 (2018) 387–408

Inertia groups of high-dimensional complex projective spaces

SAMIK BASU

RAMESH KASILINGAM

For a complex projective space the inertia group, the homotopy inertia group and
the concordance inertia group are isomorphic. In complex dimension 4nC 1 , these
groups are related to computations in stable cohomotopy. Using stable homotopy
theory, we make explicit computations to show that the inertia group is nontrivial in
many cases. In complex dimension 9 , we deduce some results on geometric structures
on homotopy complex projective spaces and complex hyperbolic manifolds.

57R55, 57R60; 55P25, 55P42

1 Introduction

The study of manifolds in differential topology presents itself through four different
classes of equivalence: homotopy equivalence, homeomorphism, PL homeomorphism
and diffeomorphism. The classification of manifolds up to these equivalences is a
fundamental question in geometry and topology.

One of the first results in this subject is that of Milnor [22] that there exist smooth
manifolds which are homeomorphic to S7 but not diffeomorphic. This raises the
possibility of nondiffeomorphic smooth structures for a given a topological manifold.
We refer to these as inequivalent smoothings. For example, the 7–sphere has 28
inequivalent smoothings.1

A smooth manifold homeomorphic to Sm is known as a smooth homotopy m–sphere.2

The existence of smooth homotopy m–spheres was studied in the amazing work of
Kervaire and Milnor [16]. The set of diffeomorphism classes of smooth homotopy
spheres ‚m for m � 5 forms a group under the operation of connected sum. It was
shown that there exist exotic spheres in a vast majority of dimensions but also that in
each dimension there are only finitely many. The proof of the result points to a curious

1This actually occurs as a consequence of the results of Kervaire and Milnor [16].
2We know that if m � 5 as an m–manifold homotopy equivalent to Sm is actually homeomorphic

to Sm .
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connection to the stable homotopy groups of spheres (denoted by �sn for n� 0) whose
values are mysterious but are computable using algebraic techniques, especially in low
dimensions.

A possible way to change smooth structure on a smooth manifold Mm , without
changing its homeomorphism type, is to take its connected sum Mm #†m with a
smooth homotopy sphere †m . This induces a group action of ‚m on the set of smooth
structures on the topological manifold M. The collection of smooth homotopy spheres
†m which admit a diffeomorphism Mm #†m!Mm forms a subgroup I.M/ of ‚m ,
called the inertia group of Mm .

The calculation of I.M/ for an arbitrary manifold M has proven to be a hard problem
in general but there are results in certain cases. Tamura [27] constructed explicit
nontrivial elements in the inertia group for certain 3–sphere bundles over S4 . Examples
with nontrivial inertia group are also constructed by Brown and Steer [4]. In every
dimension m, Winkelnkemper [30] proved that there exists a manifold Mm such
that I.Mm/D‚m . Levine [21] constructed certain nontrivial elements in the inertia
group for many manifolds, most notably for simply connected nonspin manifolds in
dimensions 8nC 2.

There are certain cases when the inertia group is 0. It was proved by Schultz [26] that
I.Sp�Sq/D 0 when pCq � 5. Kawakubo [14] proved that I.CPm/D 0 for m� 8.
Limitations on the size of the inertia group have been given by Wall [29], Browder [3],
Kosiński [19] and Novikov [24]. There is no systematic approach for computing the
inertia groups in general, and many problems are open. In this paper we are interested
in the problem: What are the inertia groups of CPm if m� 9?

Analogous to the inertia group, for a manifold M one may define the homotopy
inertia group Ih.M/ and the concordance inertia group Ic.M/. Ih.M/ (resp. Ic.M/)
consists of those † 2 I.M/ for which the diffeomorphism M #†ŠM is homotopic
(resp. concordant) to the identity. Kasilingam [12] proved that for a complex projective
space all these groups are the same.

The concordance inertia groups may be understood using homotopy theory. In dimen-
sions 8nC2, there is a Z=2 summand of �s8nC2 generated by �8nC2 that corresponds
to an exotic sphere †8nC22‚8nC2 . Farrell and Jones [8] proved that CP 4nC1#†8nC2

is not concordant to CP 4nC1 using certain relations in KO� , the cohomology theory
induced by real K–theory. Hence this also implies that the element †8nC2 does not
lie in the inertia group.
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In this paper we try to compute the inertia groups of CP 4nC1 using stable cohomotopy.
We prove:

Theorem A (a) I.CP 9/Š Z=2 or Z=4 as a subgroup of ‚18 D Z=2˚Z=8.

(b) I.CP 13/� Z=2.

(See Theorem 3.11.) This is the first example of a nontrivial inertia group among the
inertia groups of complex projective spaces.3 These provide examples of exotic spheres
whose ˛–invariant is 0 and where connected sum with projective spaces does not
change the smooth structure. For the projective space CP 9 , we also get examples of
exotic spheres with ˛–invariant 0 which change the smooth structure. The techniques
involved are explicit calculations using Spanier–Whitehead duality and the knowledge
of the stable homotopy groups of spheres in low dimensions at the prime 2.

We also make computations at odd primes p , making use of the nontriviality of certain
elements in the stable homotopy groups proved by Lee [20] and deduce:

Theorem B There are infinitely many values of n for which there exist nontrivial
elements in the inertia group of CP 4nC1 .

(For a more accurate statement see Theorem 3.11.)

Computations of the inertia groups carry with them a number of geometric applications.
Using previously known results on the triviality of the inertia group I.CPm/ for m� 8,
it is possible to classify, up to diffeomorphism, all closed smooth manifolds homeo-
morphic to the complex projective n–space for n D 3 and 4; see Kasilingam [13].
Kasilingam [12] showed that a way to generate exotic spheres which are not in the
inertia group4 in dimensions 8nC 2 is by considering exotic spheres with a nontrivial
˛–invariant.5 The exotic spheres outside the inertia group for complex projective
spaces have consequences for complex hyperbolic manifolds; see Farrell and Jones [8].

In this paper, from the inertia group of CP 9 , we deduce examples of three inequivalent
smooth structures of CP 9 , different from the standard one, such that one admits a
metric of nonnegative scalar curvature and the other two do not (see Theorem 4.3).
The example relies on the construction of an element outside the inertia group whose

3The reader may observe that CP 4nC1 is a spin manifold.
4These are defined to be Farrell–Jones spheres.
5These are defined as Hitchin spheres.
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˛–invariant is 0. These examples extend the results in [12] to dimension 18. Following
this example, we construct examples of closed negatively curved Riemannian 18–
manifolds which are homeomorphic but not diffeomorphic to complex hyperbolic
manifolds (see Theorem 4.4).

Organization of the paper In Section 2, we introduce some preliminaries on the
inertia group I.CPm/ and prove a result relating this to a computation in stable
cohomotopy for dimension mD 4nC 1. In Section 3, we make some computations in
stable homotopy related to the above question and prove the nontriviality of I.CP 4nC1/
for the different values of n. Finally, Section 4 contains some geometric applications.

Notation Denote by O D colimnO.n/, TopD colimn Top.n/ and GD colimnG.n/
the direct limit of the groups of orthogonal transformations, homeomorphisms and
homotopy equivalences, respectively. In this paper all manifolds will be closed, smooth,
oriented and connected, and all homeomorphisms and diffeomorphisms are assumed to
preserve orientation, unless otherwise stated.

2 Inertia groups of complex projective spaces

In this section we recall some basic facts about inertia groups, specializing to the case
of complex projective spaces, and provide the background of the arguments in the rest
of the paper. We start by recalling some terminology from [16]:

Definition 2.1 (a) A homotopy m–sphere †m is an oriented, smooth, closed man-
ifold homotopy equivalent to the standard unit sphere Sm in RmC1 .

(b) A homotopy m–sphere †m is said to be exotic if it is not diffeomorphic to Sm .

(c) Two homotopy m–spheres †m1 and †m2 are said to be equivalent if there exists
an orientation-preserving diffeomorphism f W †m1 !†m2 .

The set of equivalence classes of homotopy m–spheres is denoted by ‚m . The
equivalence class of †m is denoted by [†m ]. When m � 5, ‚m forms an abelian
group with group operation given by connected sum # and the zero element represented
by the equivalence class of Sm . M Kervaire and J Milnor [16] showed that each ‚m
is a finite group.

Definition 2.2 Let M be a topological manifold. Let .N; f / be a pair consisting
of a smooth manifold N together with a homeomorphism f W N ! M. Two such
pairs .N1; f1/ and .N2; f2/ are concordant provided there exists a diffeomorphism
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gW N1! N2 such that the composition f2 ı g is topologically concordant to f1 , ie
there exists a homeomorphism F W N1 � Œ0; 1�!M � Œ0; 1� such that F jN1�0 D f1

and F jN1�1 D f2 ıg . The set of all such concordance classes is denoted by C.M/.

Note that there is a homeomorphism hW Mm #†m !Mm for m � 5 which is the
inclusion map outside of homotopy sphere †m and well defined up to topological
concordance. We will denote the class of .Mm #†m; h/ in C.M/ by ŒMm #†m�.
(Note that ŒMm #Sm� is the class of .Mm; idMm/.)

Definition 2.3 Let Mm be a closed smooth m–dimensional manifold. The inertia
group I.M/�‚m is defined as the set of † 2‚m for which there exists a diffeomor-
phism �W M !M #†.

The homotopy inertia group Ih.M/ is defined as the set of all † 2 I.M/ such that
there exists a diffeomorphism M !M #† which is homotopic to idW M !M #†.

The concordance inertia group Ic.M/ is defined as the set of all † 2 Ih.M/ such that
M #† is concordant to M.

We recall the following theorem about complex projective spaces:

Theorem 2.4 [12, Theorem 4.2] For n� 1, Ic.CP n/D Ih.CP n/D I.CP n/.

Next we recall a reformulation of inertia groups via homotopy theory. Let fM W Mm!

Sm be a degree 1 map. Note that fM is well defined up to homotopy. Composition
with fM defines a homomorphism

f �M W ŒS
m;Top=O�! ŒMm;Top=O�;

and in terms of the identifications

‚m D ŒS
m;Top=O� and C.Mm/D ŒMm;Top=O�

given by [17, pages 25 and 194], f �M becomes Œ†m� 7! ŒMm #†m�. Therefore the
concordance inertia group Ic.M/ can be identified with Ker.f �M /.

Recall that the based homotopy classes ŒX;G� can be identified with the 0th sta-
ble cohomotopy group z�0.X/. We also write f �M for the induced homomorphism
ŒSm; G�D z�0.Sm/D�sm! ŒMm; G�D z�0.Mm/ by a degree 1 map fM W Mm!Sm .

Now recollect some facts from smoothing theory [5]. The natural inclusions of H –
spaces O � Top�G induce H –space maps �W G!G=O and  W Top=O!G=O
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such that
 �W ‚8nC2 D �8nC2.Top=O/! �8nC2.G=O/

is an isomorphism for n � 1. The homotopy groups of G are the stable homotopy
groups of spheres �sm ; ie �m.G/D �sm for m� 1. For n� 1,

��W �
s
8nC2! �8nC2.G=O/

is an isomorphism.

Theorem 2.5 Let M 8nC2 be a closed, smooth 8nC2–manifold homotopy equivalent
to CP 4nC1 with n� 1. Then Ic.M/D Ker.ˆ/, where

ˆW ‚8nC2
 �
�!�8nC2.G=O/

��1
�
�! z�0.S8nC2/

f �M
�! z�0.M 8nC2/:

The proof of Theorem 2.5 requires two facts we prove below:

Lemma 2.6 Let M 2m be a closed smooth 2m–manifold homotopy equivalent to
CPm with m � 1. Then the homomorphism  �W ŒM

2m;Top=O� 7! ŒM 2m; G=O� is
monic.

Proof Consider the Barratt–Puppe sequence for the inclusion i W CPm�1 ,! CPm ,
which induces the exact sequence on taking homotopy classes Œ�; �.G=Top/�

� � � ! ŒSCPm�1; �.G=Top/�!ŒS2m; �.G=Top/�
f �CP m
���! ŒCPm; �.G=Top/�
i�
�! ŒCPm�1; �.G=Top/�! � � � ;

and, by identifying

ŒS2m; �.G=Top/�D ŒS2mC1; G=Top�D L2mC1.e/D 0;

where Lk.e/ is the simply connected surgery obstruction group, and

ŒCP 1; �.G=Top/�D 0;

we can prove that ŒCPm; �.G=Top/� D 0 for all m. Now consider the long exact
sequence associated to the fibration Top=O!G=O!G=Top,

� � � ! ŒM 2m; �.G=Top/�! ŒM 2m;Top=O�  ��! ŒM 2m; G=O�! ŒM 2m; G=Top�;

and using the fact that ŒM 2m; �.G=Top/�D ŒCPm; �.G=Top/�D 0, we have that the
homomorphism  � is monic.
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Lemma 2.7 Let M 2m be a closed, smooth 2m–manifold homotopy equivalent to
CPm with m� 1. Then the homomorphism ��W ŒM

2m; G�! ŒM 2m; G=O� is monic.

Proof Since M 2m is homotopy equivalent to CPm , let gW M 2m ! CPm be a
homotopy equivalence. The induced map g�W ŒCPm;��! ŒM 2m;�� fits into the
following commutative diagram:

ŒCPm; G�
��
//

g�Š

��

ŒCPm; G=O�

g�Š

��

ŒM 2m; G�
��
// ŒM 2m; G=O�

Brumfiel [6, page 77] has shown that

��W ŒCP
m; G�! ŒCPm; G=O�

is monic for all m � 1. This implies that the homomorphism ��W ŒM
2m; G� !

ŒM 2m; G=O� is monic.

Proof of Theorem 2.5 Consider the following commutative diagram:

ŒS2m;Top=O�D‚2m
f �

M2m
//

 �
��

ŒM 2m;Top=O�D C.M 2m/

 �
��

ŒS2m; G=O�
f �

M2m
// ŒM 2m; G=O�

ŒS2m; G�D �s2m

f �
M2m

//

��

OO

ŒM 2m; G�

��

OO

Recall that the concordance class ŒM 2m # †� 2 ŒM 2m;Top=O� of M 2m # † is
f �
M2m.Œ†�/ when m > 2, and that ŒM 2m� D ŒM 2m # S2m� is the zero element of

this group. Now Lemmas 2.6 and 2.7, used in conjunction with a simple diagram chase
for m D 4nC 1, show that Ic.M 8nC2/ D Ker.ˆ D f �M ı �

�1
� ı �/, thus proving

Theorem 2.5.

Identifying the group ‚8nC2 with z�0.S8nC2/ in view of Theorem 2.5 we consider
the following question, related to inertia groups:

Problem 2.8 What is the kernel of f �
CP 4nC1 W z�

0.S8nC2/! z�0.CP 4nC1/?

We explore some cases of this question in the next section.
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3 Computations in stable homotopy

In this section we make computations relating to Problem 2.8. We work in the category
of spectra. Throughout this section we use the notation X for both the space and the
spectrum †1X and the notation fX; Y g for the stable homotopy classes of maps from
X to Y .

Recall [7; 11] that there are models of the category of spectra which are a closed
symmetric monoidal category with monoidal structure given by the smash product
^ and the mapping spectrum denoted by F.�;�/. The sphere spectrum S0 is the
unit of the monoidal structure. In this category, for a spectrum X one may form the
dual spectrum DX D F.X; S0/. This notion appeared earlier for finite spectra as the
Spanier–Whitehead dual of X [2].

One notes that if X is a finite cellular spectrum then so is the dual DX. We briefly
recall this construction. Let the cellular structure on X be given by X D colimnX .n/

such that X .n/ is obtained from X .n�1/ by attaching a cell of dimension an . That is,
there are cofibre sequences

San�1!X .n�1/!X .n/:

The dual structure on DX is given by DXD colimnD.X=X .n//, with cofibre sequences

S�an�1!D.X=X .n//!D.X=X .n�1//

obtained by dualizing the cofibre

San !X=X .n�1/!X=X .n/! SanC1:

Thus, in the colimit DX D colimnD.X=X .n//, D.X=X .n�1// is obtained from
D.X=X .n// by attaching a cell of dimension �an . Therefore, DX is also a finite
cellular spectrum with a �n–cell for every n–cell of X.

Note that z�0.X/ Š fX;S0g. Note also that fX;S0g D �0F.X; S
0/ D �0D.X/.

Therefore, for a map f W X ! Y of spectra, the map z�0.f /W z�0.Y / ! z�0.X/ is
equivalent to the map �0.D.f //W �0D.Y / ! �0D.X/ induced by the dual map
D.f /W D.Y /!D.X/.

For Problem 2.8 we wish to compute z�0.f /, where f W CP 4nC1 ! S8nC2 is the
usual degree 1 map. Our approach is to compute �0.D.f //.
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3.1 Computations in dimension 18

We begin by noting that DCP 9 has the filtration

(3-1) S�18DD.CP 9=CP 8/!D.CP 9=CP 7/!� � �!D.CP 9=CP 0/DD.CP 9/

and there are cofibre sequences, for 1� k � 8,

S�2k�1!D.CP 9=CP k/!D.CP 9=CP k�1/! S�2k :

The degree 1 map CP 9! S18 dualises to the inclusion of the bottom cell S�18!
D.CP 9/. Thus we are interested in the question: which elements of �s18 D �0S

�18

map to 0 under the map above? Recall that the homotopy group �0S�18 D �s18 D
Z=2˚Z=8. The Z=2 summand is generated by the element �18 [1]. From [8] it
follows that this element maps nontrivially into �0DCP 9 . Therefore the question
remains about the other summand, Z=8. In this computation we need formulas for the
action of the Steenrod operations on the cohomology of CP n . We recall them below:

Proposition 3.1 In H�.CP nIZ=2/ we have the formulas

Sq2.xk/D xkC1 () k is odd;

Sq4.xk/D xkC2 () k � 2 or 3 .mod 4/:

Recall that the Steenrod operation Sq2 detects the Hopf map �, which in our notation
is h1 , and Sq4 detects the map � , which in our notation is h2 (modulo 2h2 ). We
prove:

Proposition 3.2 The map �s18 D �0S
�18! �0.D.CP 9=CP 3// is injective.

Proof We compute this map using the filtration (3-1). Note that the group �s18 is
2–torsion so it suffices to work in the 2–local category. We use the notation in [25,
Appendix 3.3]. In terms of this notation, �s18 is Z=2fh1P 2h1g˚Z=8fh2h4g. It helps
to note that the element h2h4 is indecomposable in the algebra �s� of stable homotopy
groups (since the element h4 supports the differential d2.h4/Dh0h23 and all the hidden
extensions in the range are written in Corollary 4.4.50).

We start proceeding along the sequence (3-1) with the spectrum D.CP 9=CP 7/. This
fits into a cofibre

S�17! S�18!D.CP 9=CP 7/:

The map S�17! S�18 2 �s1 DZ=2fh1g. Whether it is nontrivial or not is determined
by the action of the Steenrod operation Sq2 on the cone and hence determined by the
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action of Sq2 on CP 9=CP 7 . Note from Proposition 3.1 that Sq2.x8/D 0. Therefore
the map is trivial and D.CP 9=CP 7/ ' S�18 _ S�16 . It follows that the map from
�s18! �0D.CP 9=CP 7/ is injective.

The next term is D.CP 9=CP 6/. We have the cofibre sequence

(3-2) S�15!D.CP 9=CP 7/!D.CP 9=CP 6/:

The map S�15 ! D.CP 9=CP 7/ ' S�18 _ S�16 is an element of �s1 ˚ �
s
3 D

Z=2fh1g ˚ Z=8fh2g. Note that on CP 9=CP 6 the Steenrod operations satisfy the
formulas Sq2.x7/D x8 and Sq4.x7/D x9 . Thus the 16–cell in CP 9=CP 6 attaches
onto the 14–cell by h1 and the 18–cell attaches via h2 onto the 14–cell (or some
other odd multiple which does not change the computations below). Therefore the map
S�15! S�16 _S�18 is given by .h1; h2/. On �0 , we have the sequence

�s15
.h1;h2/
���!�s16˚�

s
18! �0D.CP

9=CP 6/:

Observe that multiplication by h2 from �s15 to �s18 is 0. This may be read off from
[25, Table A.3.1a] and the fact that h4 , h0h4 and h20h4 support nontrivial differentials
(see also [18, Figure 5.11]). It follows that the map from �s18! �0D.CP 9=CP 6/ is
injective.

The next term in the sequence (3-1) is D.CP 9=CP 5/ and is formed from D.CP 9=CP 6/

by the cofibre

S�13!D.CP 9=CP 6/!D.CP 9=CP 5/:

The group �s13 D 0 and so the map from �s18! �0D.CP 9=CP 5/ is injective.

Next we analyse the cofibre

S�11!D.CP 9=CP 5/!D.CP 9=CP 4/

and compute the image �s11DZ=8fPh2g!�0D.CP 9=CP 5/. Note that the methods
above imply that D.CP 9=CP 5/ is the cofibre

(3-3) S�13 _S�15 A
�!S�16 _S�18!D.CP 9=CP 5/;

where the matrix A is given by �
h2 h1
0 h2

�
:
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The map S�11!D.CP 9=CP 5/ may be described by a map S�11! S�12 _S�14

(hence in �s1 ˚ �
s
3 D Z=2fh1g ˚ Z=8fh2g) together with a choice of null homo-

topy after composition by A to S�15 _ S�17 . The choice of null homotopy lies in
fS�11; S�16 _S�18g D �s5˚�

s
7 D Z=16fh3g.

The map S�11 ! S�12 _ S�14 is also the attaching map of the �10–cell for the
spectrum D.CP 7=CP 4/. Hence one may try to compute its homotopy class via
Steenrod operations. From the formulas in Proposition 3.1 we have Sq2.x5/D x6 and
Sq4.x5/D 0. So the map onto the �12–cell is h1 and the map onto the �14–cell is
some even multiple of h2 . It follows from the formulas in [23, Proposition 5.2] that
the second map is 0.

Now take a class a 2 �s11 , so that a is some multiple of Ph2 . To compute its image
onto �s12 ˚ �

s
14 , one has to multiply by the class .h1; 0/. Notice that h1Ph2 D 0.

Therefore the image must be zero.

Our case of interest is the image in �s18 . This can be computed using Toda brackets.
More precisely, the image �s11! �0D.CP 9=CP 5/ lies in the image of

�0.S
�16
_S�18/! �0D.CP

9=CP 5/;

which is computed as the image of the set h�s11; .h1; 0/; Ai. We obtain the image onto
�s18 � �0D.CP

9=CP 5/ as the projection of h�s11; .h1; 0/; Ai 2 �
s
16˚�

s
18 onto �s18 .

As h2 � �s15 and �s11 � h3 are 0 (from [25, Table A.3.1a]), the indeterminacy of the
bracket maps to 0 in �s18 . Now, the �14–cell is the only cell in D.CP 9=CP 5/ which
attaches nontrivially down to the �18–cell and the map from S�11 is null-homotopic
on the �14–cell, so the above bracket projected down to �s18 must contain 0. Hence
the map from �s18! �0D.CP 9=CP 4/ is injective.

The next term in the sequence (3-1) is D.CP 9=CP 3/. This fits into a cofibre

S�9!D.CP 9=CP 4/!D.CP 9=CP 3/

and we compute the image �s9 D Z=2fh32 D h
2
1h3; h1c0; P h1g ! �0D.CP 9=CP 4/.

Compose the map S�9!D.CP 9=CP 4/!S�10 to the top cell. This can be detected
by computing Sq2 . As Sq2.x4/ D 0, this map is null-homotopic. Therefore the
attaching map goes down to D.CP 9=CP 5/, which we compute using the cofibre (3-3).

The map S�9 ! D.CP 9=CP 5/ is given by a map S�9 ! S�12 _ S�14 (hence
in �s3 ˚ �

s
5 D Z=8fh2g) and a choice of null homotopy after composition by A to

S�15_S�17 . The choice of null homotopy lies in fS�9; S�16_S�18g D �s7˚�
s
9 D
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Z=16fh3g˚Z=2fh32; h1c0; P h1g. We have Sq2.x4/D 0 and hence the map is of the
form 2kh2 . From the formulas in [23, Proposition 5.2] it follows that k D 1. Now
take a class a 2 �s9 . Note h2 ��s9 D 0. Thus the image in �s12 is 0.

Our interest is the image in �s18 . This can again be computed using Toda brackets
as in the previous case. The image onto �s18 must be obtained by map onto the
factor S�14 which is the only factor which attaches down to the �18–cell. But the
attachment of S�9 onto this cell is 0 and hence the entire Toda bracket is forced to
contain zero. Also the indeterminacy may be computed to be 0. Hence the map from
�s18! �0D.CP 9=CP 3/ is injective.

The above computation implies that the classes in �s18 survive in the sequence all the
way up to �0D.CP 9=CP 3/. However, in the next step we obtain a nontrivial kernel.
We use some formulas for Toda brackets from [18].

Theorem 3.3 The class 4h2h4 2 �s18 maps to 0 in �0.D.CP 9=CP 2//. It follows
that the kernel of the map �s18! �0.DCP 9/ is at least Z=2.

Proof The second statement follows from the first and the fact that h2h4 represents
an element of order 8 in �s18 . Thus we need prove only the first. We have the cofibre

S�7!D.CP 9=CP 3/!D.CP 9=CP 2/:

We compute the image �s7 D Z=16fh3g ! �0D.CP 9=CP 3/. Compose the map
S�7!D.CP 9=CP 3/! S�8 to the top cell. This composite is h1 by the formula
Sq2.x3/D x4 in Proposition 3.1. The map h1W �s7! �s8 has kernel Z=8f2h3g.

First we prove that the map �s7 ! �0D.CP 7=CP 3/ has kernel Z=8f2h3g. That is,
we show that 2h3 maps to 0 in the latter group. Note from the proof of Proposition 3.2
that none of the cells in dimension �8, �10 or �12 attach to the �14–cell. Thus we
have D.CP 7=CP 3/'D.CP 6=CP 3/_S�14 .

Observe that the �8–cell of D.CP 7=CP 3/ does not attach to the �10–cell. Together
with the fact that �s12 and �s13 are 0, we get that �0D.CP 6=CP 3/!�0.S

�8_S�10/

is an isomorphism. Now observe that the composite map S�7 ! S�8 _ S�10 is
h1 on the first factor and h2 on the second factor. Hence the kernel of the map
�s7! �0D.CP 6=CP 3/ is Z=8f2h3g.

Observe that Proposition 5.6 of [23] implies that the 14–cell in CP 7=CP 2 does not
attach to the cells in dimension 8, 10 or 12, and attaches onto the 6–cell by the
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map 2h3 . Hence the map S�7! D.CP 6=CP 3/_ S�14! S�14 is given by 2h3 .
Thus the map �s7! �s14 is multiplication by 2h3 , which is 0. Thus we have that the
kernel of the map �s7! �0D.CP 7=CP 3/ is Z=8f2h3g.

Next we extend the above result to the map �s7 ! �0D.CP 8=CP 3/. The map
2h3W S

0! S�7 factors in the diagram as below:

S0
2h3
//

h3   

S�7 // D.CP 8=CP 3/ // S�8

S�7

2

OO

˛
// D.CP 8=CP 4/

OO

We prove that the composite

S0
h3
�!S�7 ˛

�!D.CP 8=CP 4/

is 0. The above argument shows that

S0
h3
�!S�7 ˛

�!D.CP 8=CP 4/!D.CP 7=CP 4/'D.CP 6=CP 4/_S�14

is 0. It remains to compute the map onto

�s16 D �0S
�16;

the bottom cell of D.CP 8=CP 4/. This may be computed via the cofibre

S�16!D.CP 8=CP 4/
q
�!D.CP 7=CP 4/! S�15

as an element of the sum of Toda brackets hh3; q ı ˛; D.CP 6=CP 4/! S�15i and
hh3; q ı˛; S

�14! S�15i.

We use that the attachment of the �6–cell to the �14–cell is 2h3 , as noted above.
Thus the attachment of ˛ onto the �14–cell is given by 4h3 . Hence the latter bracket
equals hh3; 2h3; h1i D 2h1h4 D 0 modulo trivial indeterminacy.

The first bracket above is the 4–fold bracket hh3; 2h2; h1; h2i. The indeterminacy of
this bracket lies in the three-fold Toda bracket hPh2; h1; h2i. Note that this bracket
is in the kernel of the map �s16! �0D.CP 8=CP 4/ killed by the attachment of the
�10–cell. Modulo the above indeterminacy, the bracket hh3; 2h2; h1; h2i is a multiple
of 2 and hence 0. Thus, the kernel of �s7! �0D.CP 8=CP 3/ is 2h3 .

The class 2h3 maps to 0 under S�7 ! D.CP 9=CP 3/! D.CP 8=CP 3/. Thus it
maps to �0S�18 . We prove that it maps to the class 4h2h4 under this map. We have
the factorization, as above:
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S0
2h3
//

h3   

S�7 // D.CP 9=CP 3/ // S�8

S�7

2

OO

˛
// D.CP 9=CP 4/

OO

We write D.CP 9=CP 4/ as the cofibre

†�1D.CP 6=CP 4/_S�15! S�16 _S�18!D.CP 9=CP 4/

!D.CP 6=CP 4/_S�14! S�15 _S�17:

Hence the map onto �s18 is a sum of Toda brackets hh3; ˛; D.CP 6=CP 4/! S�17i

and hh3; ˛; S�14! S�17i. The latter map is the Toda bracket hh3; 4h3; h2i D 2h2h4
modulo trivial indeterminacy.

For the first map, note that the attaching map D.CP 6=CP 4/! S�17 restricting to
the bottom cell S�12 is trivial and on the top cell is h3 as computed by the Steenrod
operation Sq8.x5/ D x9 . Therefore the first map is hh3; 2h2; h3i. This bracket is
computed in [18, page 251] as 2h2h4 .

Therefore the sum of the two maps is 4h2h4 . It follows that the element 4h2h4 maps
to 0 in �0D.CP 9=CP 2/. This completes the proof.

It follows from the above result that the kernel of �s18! fCP
9; S0g is at least Z=2

and is a subgroup of Z=8. We prove that it cannot be Z=8, so that the kernel can be
Z=2 or Z=4.

Theorem 3.4 The class h2h4 2 �s18 maps to a nontrivial class in fCP 9; S0g.

Proof We use some computations from [28]. Recall that the element h2h4 is denoted
by �� . For such a stable class, the sphere of origin is the first sphere where this class
desuspends to. For the class �� the sphere of origin is S12 and it desuspends to the
class �12W S30! S12 . The class �� also desuspends to ��16W S

34! S16 .

From Lemma 12.14 of [28] we know that H.��16/D �31 .mod 2�31/. The latter maps
isomorphically to the stable range and is equivalent to (an odd multiple of) the map
h2 2 �

s
3 . We have the commutative diagram:

(3-4)

ŒS34; S16�
H#

//

��

ŒS34; S31�

��

Š
// fS18; S15g

��

Œ†16CP 9; S16�
H#
// Œ†16CP 9; S31�

Š
// fCP 9; S15g
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In terms of the Spanier–Whitehead duality the last map is induced by ��15S�18!
��15DCP 9 from the inclusion of the bottom cell. Note that the map D.CP 9=CP 6/!
DCP 9 is an isomorphism on ��15 . From the cofibre sequence (3-2), we have the
exact sequence

� � � ! ��15S
�15
! ��15S

�18
˚��15S

�16
! ��15D.CP

9=CP 6/! � � � :

The left map sends 1 2 Z to .h2; h1/ 2 ��15S�18˚��15S�16 . It follows that 2h2
maps to 0 in ��15D.CP 9=CP 6/ and the class h2 maps nontrivially. Hence, in the
diagram (3-4) the element ��16 in the top-left corner maps to a nontrivial element in the
bottom-right group fCP 9; S15g. Therefore it maps nontrivially in Œ†16CP 9; S16�.

Next we show that this implies that the image in fCP 9; S0g is nontrivial. We have the
diagram:

Œ†16CP 9=CP 7; S16� //

��

fCP 9=CP 7; S0g

��

Œ†16CP 9; S16� //

��

fCP 9; S0g

��

Œ†16CP 7; S16�
Š

// fCP 7; S0g

Note that the vertical arrows are exact. It follows that the kernel of Œ†16CP 9; S16�!
fCP 9; S0g is isomorphic to the kernel of Œ†16CP 9=CP 7; S16�! fCP 9=CP 7; S0g.
We have observed in the proof of Proposition 3.2 that CP 9=CP 7' S16_S18 . Hence,
Œ†16CP 9=CP 7; S16�Š ŒS32; S16�˚ ŒS34; S16�, so that the above kernel is the direct
sum

Ker
�
ŒS32; S16�! fS16; S0g

�
˚Ker

�
ŒS34; S16�! fS18; S0g

�
:

The element ��16 2 �34S
16 maps to �� 2 �s18 and so does not lie in the kernel above.

It follows that the image of ��16 maps nontrivially to fCP 9; S0g. Thus the element
h2h4 is mapped nontrivially in fCP 9; S0g.

Summarizing the computations in Proposition 3.2 and Theorems 3.3 and 3.4, we have
the following result for Problem 2.8:

Corollary 3.5 The kernel Ker.f �
CP 9/ � �

s
18 D Z=2˚Z=8 is nontrivial but not the

entire group Z=8. It is either Z=2 or Z=4 as a subgroup of Z=8.

Algebraic & Geometric Topology, Volume 18 (2018)



402 Samik Basu and Ramesh Kasilingam

3.2 Computations in higher dimensions

We follow up the computations in Section 3.1 by demonstrating that there are many
examples where the inclusion of the bottom cell in D.CP 8nC2/ carries a nontrivial ker-
nel in �0 . The methods here are easier, involving computations of Steenrod operations
and the existence of certain stable homotopy classes.

The next example after 18 is 26. Recall from [25] that the group �s26 Š Z=2f�26g˚

Z=2fh22gg˚Z=3fˇ2g. We know that the class �26 survives to CP 13 from [8]. We
have the following result:

Theorem 3.6 The class h22g maps to 0 in �0D.CP 13=CP 11/. It follows that the
kernel of the map �s26! �0.DCP 13/ is at least Z=2.

Proof As in Section 3.1, we have the filtration

S�26 DD.CP 13=CP 12/!D.CP 13=CP 11/! � � � !D.CP 13=CP 0/DD.CP 13/

and the map S�26!D.CP 13/ is the inclusion of the bottom cell. We show that h22g
is in the kernel. It suffices to work 2–locally. We have the cofibre

S�25! S�26!D.CP 13=CP 11/:

The map S�25 ! S�26 is an element of �s1 D Z=2fh1g and, since Sq2.x12/ D 0
in the cohomology of CP n , the map is trivial. It follows that D.CP 13=CP 11/ '
S�26 _S�24 . Next we have the cofibre

S�23!D.CP 13=CP 11/!D.CP 13=CP 10/:

The map S�23!D.CP 13=CP 11/ is given by a pair of maps to S�26 and S�24 . We
note the Steenrod squares Sq2.x11/D x12 and Sq4.x11/D x13 in the cohomology
of CP n . Therefore the map is given by .h1; h2/. On �0 we have the sequence

�s23
.h1;h2/
���!�s24˚�

s
26! �0D.CP

13=CP 10/:

Now note that h2g represents a nontrivial element in �s23 and h1h2g D 0. Thus
h22g is in the image of the left-hand map and hence maps to 0 in �0D.CP 13=CP 10/.
Therefore, h22g maps to 0 in �0DCP 13 , proving the theorem.

We have the corresponding result for the Problem 2.8.

Corollary 3.7 The kernel Ker.f �
CP 13/� �

s
26 D Z=2˚Z=2˚Z=3 is nontrivial and

contains a summand Z=2.
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Next we show that techniques as in Theorem 3.6 exist in many high dimensions. More
precisely, we demonstrate examples in higher dimensions where the map S�8n�2!
D.CP 8nC2/ has a nontrivial kernel on �0 using some p–local computations. We
use a result from [20]: For p � 7 the classes ˛1ˇr1
t are nontrivial in the stable
homotopy groups of S0 for 2� t � p� 1 and r � p� 2 (in dimension n.t; p; r/D
Œ2.tp3�t�p2/C2r.p2�1�p/�2�). With these assumptions, ˇr1
t is also nontrivial
in dimension n.t; p; r/� .2p� 3/.

We note:

Proposition 3.8 In H�.CP nIZ=p/, P 1.xk/¤ 0 if and only if p does not divide k .

In the next theorem, note that if .p � 1/.t � r/C r � 3 .mod 4/ then n.t; p; r/ �
2 .mod 8/.

Theorem 3.9 Suppose that p is a prime �7, 2� t �p�1 and r �p�2. Assume that
p does not divide t C r . Then the map �s

n.t;p;r/
! �0D.CP n.t;p;r/=2/ has nontrivial

p–torsion in the kernel.

Proof Note that the condition p does not divide tCr implies that n.t; p; r/�2.p�1/
is not divisible by p . We work p–locally. The first nontrivial element in �s�˝Z.p/
in positive dimension is ˛1 in dimension 2p� 3, and this is detected by the Steenrod
operation P 1 .

Constructing D.CP n.t;p;r/=2/ cell by cell as above in the p–local category, the first
possible nontrivial attaching map is the map

S�n.t;p;r/C2p�3!D.CP n.t;p;r/=2=CP .n.t;p;r/�2.p�1//=2/:

The assumption that p does not divide t C r implies that, in CPN for N � 0,

P 1.x.n.t;p;r/�2.p�1//=2/D xn.t;p;r/=2:

Therefore the map S�n.t;p;r/C2p�3!D.CP n.t;p;r/=2=CP .n.t;p;r/�2.p�1//=2/ is given
by ˛1 on the bottom cell. Now, in the long exact sequence of homotopy groups

� � � ! �sn.t;p;r/�.2p�3/! �0D.CP
n.t;p;r/=2=CP .n.t;p;r/�2.p�1//=2/

! �0D.CP
n.t;p;r/=2=CP .n.t;p;r/�2.p�1//=2/! � � � ;

the nontrivial element ˇr1
t maps to the nontrivial element ˛1ˇr1
t . It follows that the
nontrivial element ˛1ˇr1
t 2�

s
n.t;p;r/

goes to 0 in �0D.CP n.t;p;r/=2/. This completes
the proof.
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Remark 3.10 The above conditions are easily satisfied. For example, if t D 3, r D 1
and p � 7, we have n.t; p; r/D 6p3� 2p� 10, which is � 2 .mod 8/.

The following result is an immediate consequence of stringing together Theorems 2.4
and 2.5, Corollaries 3.5 and 3.7, and Theorem 3.9.

Theorem 3.11 (i) I.CP 9/D Z2 or Z4 .

(ii) I.CP 13/� Z=2.

(iii) Suppose that p is a prime � 7, 2 � t � p � 1 and r � p � 2. Assume
that p does not divide t C r and .p � 1/.t � r/ C r � 3 .mod 4/. Then
I.CP n.t;p;r/=2/� Z=p .

4 Geometric structures of inequivalent smooth structures

In this section we explore some consequences of the computations in the previous
section. It is known that inequivalent smoothings need not share certain basic geometric
properties with the standard smooth structure. Hitchin [10] has shown that certain
homotopy spheres do not admit a Riemannian metric of positive scalar curvature, while
the round metric on the standard Sm has positive sectional curvature. In this section,
we also show that there exist two smooth structures on CP 9 such that one admits a
metric of nonnegative scalar curvature and the other does not.

Let Ker.dR/ denote the kernel of the Adams d –invariant dRW �
s
8nC2! Z=2; see [1].

Under the isomorphism ‚8nC2 Š �
s
8nC2 , the Adams d –invariant dRW �

s
8nC2!Z=2

may be identified with the ˛–invariant homomorphism ˛W ‚8nC2! Z=2; see [10].
Therefore Ker.dR/ consists of homotopy 8nC2–spheres which bound spin manifolds.

In [12], we studied the Adams d –invariant and asked the following question to deter-
mine the inertia group I.CP 4nC1/:

Question 4.1 Let f W CP 4nC1! S8nC2 be any degree 1 map with n� 1.

Does there exist an element � 2Ker.dR/� �
s
8nC2 D‚8nC2 such that the following is

true:

.?/ If any map hW SqC8nC2! Sq represents �, then

h ı†qf W †qCP 4nC1! Sq

is not null-homotopic.
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The following theorem shows that the answer to the above question is yes for nD 2,
where the Adams d –invariant dRW �

s
18DZ=2fh1P 2h1g˚Z=8fh2h4g!Z=2 is such

that Ker.dR/D Z8fh2h4g; see [1]. From Theorem 3.11 we readily deduce:

Proposition 4.2 I.CP 9/ is properly contained in Ker.dR/D Z=8.

Picking up an element in Ker.dR/ which is not in I.CP 9/, we have a class fS18; S0g
which maps nontrivially in fCP 9; S0g. Thus, for every representative SqC18! Sq ,
the corresponding map †qCP 9!Sq is not null-homotopic. This answers Question 4.1
in the case nD 2.

The existence of classes outside the inertia group for CP 9 also has the following
consequence:

Theorem 4.3 There exist three homotopy 18–spheres †181 , †182 and †183 such that
the following is true:

(i) The manifolds CP 9 , CP 9 #†181 , CP 9 #†182 and CP 9 #†183 are pairwise
nondiffeomorphic.

(ii) The manifolds CP 9 #†182 and CP 9 #†183 do not admit a metric of nonnegative
scalar curvature but CP 9 #†181 does.

Proof We start with the first statement. Let †181 , †182 and †183 be homotopy spheres in
‚18Š�

s
18DZ2fh1P 2h1g˚Z8fh2h4g represented by the classes h2h4 , h1P 2h1 and

h1P
2h1Ch2h4 , respectively. Note that †18i … I.CP

9/ by Theorem 3.4, where i D 1,
2 or 3, and †181 2Ker.dR/ but †182 , †183 …Ker.dR/. If CP 9 #†18i is diffeomorphic
to CP 9 # †18j , then †18i # .†18j /

�1 2 I.CP 9/. But, †18i # .†18j /
�1 equals †18

k

or .†18
k
/�1 , where k ¤ i , j . This implies that the manifolds CP 9 , CP 9 #†181 ,

CP 9 #†182 and CP 9 #†183 are pairwise nondiffeomorphic. This proves (i).

Now we turn to (ii). Since †18i … Ker.dR/, where i D 2 or 3, and CP 9 is a spin
manifold equipped with its natural metric (the Fubini study metric) of positive scalar
curvature, the ˛–invariant satisfies ˛.CP 9/D 0 and ˛.†18i /¤ 0; see [10]. Therefore,

˛.CP 9 #†18i /D ˛.CP
9/C˛.†18i /¤ 0:

We now proceed by contradiction. Suppose there exists a nonnegative scalar curvature
Riemannian metric g on CP 9#†18i . The nonvanishing of the ˛–invariant and the well-
known deformation properties of scalar curvature [15] now imply that the Riemannian
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manifold .CP 9 #†18i ; g/ must be scalar-flat and CP 9 #†18i has a nontrivial parallel
spinor. Therefore the Riemannian manifold .CP 9 #†18i ; g/ has special holonomy [10].
This is a contradiction, since CP 9 #†18i has generic holonomy. Hence CP 9 #†182
and CP 9 #†183 do not admit a metric of nonnegative scalar curvature. Now consider
the connected sum CP 9 #†181 and, by using the fact ˛.†181 / D 0, it follows that
CP 9 #†181 admits a metric of positive scalar curvature [9]. This proves (ii).

Another application is the following result, which is an immediate consequence of
Theorem 4.3 and [12, Theorem 1.4]:

Theorem 4.4 Let †181 , †182 and †183 be the specific homotopy 18–spheres posited in
Theorem 4.3. Given a positive real number � , there exists a closed complex hyperbolic
manifold M 18 of complex dimension 9 such that the following is true:

(i) The manifolds M 18 , M 18 #†181 , M 18 #†182 and M 18 #†183 are pairwise
nondiffeomorphic.

(ii) Each of the manifolds M 18 # †181 , M 18 # †182 and M 18 # †183 supports a
negatively curved Riemannian metric whose sectional curvatures all lie in the
closed interval Œ�4� �;�1C ��.
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[19] A Kosiński, On the inertia group of � –manifolds, Amer. J. Math. 89 (1967) 227–248
MR

[20] C-N Lee, Detection of some elements in the stable homotopy groups of spheres, Math.
Z. 222 (1996) 231–245 MR

[21] J Levine, Inertia groups of manifolds and diffeomorphisms of spheres, Amer. J. Math.
92 (1970) 243–258 MR

[22] J Milnor, On manifolds homeomorphic to the 7–sphere, Ann. of Math. 64 (1956)
399–405 MR

[23] R E Mosher, Some stable homotopy of complex projective space, Topology 7 (1968)
179–193 MR

[24] S P Novikov, Homotopically equivalent smooth manifolds, I, Izv. Akad. Nauk SSSR
Ser. Mat. 28 (1964) 365–474 MR In Russian; translated in Amer. Math. Soc. Transl.
48 (1965) 271–396

[25] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 2nd edition,
AMS Chelsea 347, Amer. Math. Soc., Providence, RI (2004) MR

Algebraic & Geometric Topology, Volume 18 (2018)

http://dx.doi.org/10.1007/BF01232234
http://msp.org/idx/mr/1269425
http://dx.doi.org/10.2307/1971103
http://dx.doi.org/10.2307/1971103
http://msp.org/idx/mr/577131
http://dx.doi.org/10.1016/0001-8708(74)90021-8
http://msp.org/idx/mr/0358873
http://dx.doi.org/10.1090/S0894-0347-99-00320-3
http://msp.org/idx/mr/1695653
https://doi.org/10.1515/forum-2013-0072
http://msp.org/idx/mr/3393386
http://dx.doi.org/10.1007/s12044-016-0269-4
http://dx.doi.org/10.1007/s12044-016-0269-4
http://msp.org/idx/mr/3489166
http://dx.doi.org/10.3792/pja/1195520972
http://dx.doi.org/10.3792/pja/1195520972
http://msp.org/idx/mr/0235581
http://dx.doi.org/10.4310/jdg/1214432678
http://dx.doi.org/10.4310/jdg/1214432678
http://msp.org/idx/mr/0365409
http://dx.doi.org/10.2307/1970128
http://msp.org/idx/mr/0148075
http://msp.org/idx/mr/0645390
https://doi.org/10.1090/fim/007
http://msp.org/idx/mr/1407034
http://dx.doi.org/10.2307/2373121
http://msp.org/idx/mr/0214085
http://dx.doi.org/10.1007/BF02621865
http://msp.org/idx/mr/1429336
http://dx.doi.org/10.2307/2373505
http://msp.org/idx/mr/0266243
http://dx.doi.org/10.2307/1969983
http://msp.org/idx/mr/0082103
http://dx.doi.org/10.1016/0040-9383(68)90026-8
http://msp.org/idx/mr/0227985
http://mi.mathnet.ru/izv2959
http://msp.org/idx/mr/0162246
http://msp.org/idx/mr/860042


408 Samik Basu and Ramesh Kasilingam

[26] R Schultz, On the inertia group of a product of spheres, Trans. Amer. Math. Soc. 156
(1971) 137–153 MR

[27] I Tamura, Sur les sommes connexes de certaines variétés différentiables, C. R. Acad.
Sci. Paris 255 (1962) 3104–3106 MR

[28] H Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics
Studies 49, Princeton Univ. Press (1962) MR

[29] C T C Wall, Classification of .n�1/–connected 2n–manifolds, Ann. of Math. 75
(1962) 163–189 MR

[30] H E Winkelnkemper, On the action of ‚n , I, Trans. Amer. Math. Soc. 206 (1975)
339–346 MR

Department of Mathematical and Computational Science, Indian Association for the Cultivation
of Science
Kolkata, India

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute
Bangalore, India

mcssb@iacs.res.in, mathsramesh1984@gmail.com

Received: 13 November 2016 Revised: 10 July 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0002-9947-1971-0275453-9
http://msp.org/idx/mr/0275453
http://msp.org/idx/mr/0143221
http://msp.org/idx/mr/0143217
http://dx.doi.org/10.2307/1970425
http://msp.org/idx/mr/0145540
https://doi.org/10.2307/1997161
http://msp.org/idx/mr/0413136
mailto:mcssb@iacs.res.in
mailto:mathsramesh1984@gmail.com
http://msp.org
http://msp.org

	1. Introduction
	2. Inertia groups of complex projective spaces
	3. Computations in stable homotopy
	3.1. Computations in dimension 18
	3.2. Computations in higher dimensions

	4. Geometric structures of inequivalent smooth structures
	References

