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A characterization for asymptotic dimension growth
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We give a characterization for asymptotic dimension growth. We apply it to CAT.0/
cube complexes of finite dimension, giving an alternative proof of Wright’s result on
their finite asymptotic dimension. We also apply our new characterization to geodesic
coarse median spaces of finite rank and establish that they have subexponential
asymptotic dimension growth. This strengthens a recent result of S̆pakula and Wright.
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1 Introduction

The concept of asymptotic dimension was first introduced by Gromov [16] in 1992
as a coarse analogue of the classical topological covering dimension. It started to
attract much attention in 1998 when Yu [31] proved that the Novikov higher signature
conjecture holds for groups with finite asymptotic dimension (FAD). A lot of groups and
spaces are known to have finite asymptotic dimension. Among those are, for instance,
finitely generated abelian groups, free groups of finite rank, Gromov hyperbolic groups
(see Gromov [15] and Roe [25]), mapping class groups (see Bestvina, Bromberg and
Fujiwara [6]), CAT.0/ cube complexes of finite dimension (see Wright [30]) — see
Bell and Dranishnikov [4] for an excellent survey of these and other results. Recently
Behrstock, Hagen and Sisto [2] introduced the powerful new notion of hierarchically
hyperbolic spaces and showed that these have finite asymptotic dimension, recovering
a number of the above results, including, notably, mapping class groups and a number
of CAT.0/ cube complexes.

On the other hand, there are many groups and spaces with infinite asymptotic dimension.
Examples are the wreath product Z oZ, the Grigorchuk group (see Smith [28]), the
Thompson groups, etc. Generalizing FAD, Dranishnikov [14] defined the asymptotic
dimension growth for a space; if the asymptotic dimension growth function is eventually
constant then the space has FAD. Dranishnikov showed that the wreath product of a
finitely generated nilpotent group with a finitely generated FAD group has polynomial
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asymptotic dimension growth. He also showed that polynomial asymptotic dimension
growth implies Yu’s Property A, and, hence, the coarse Baum–Connes conjecture,
provided the space has bounded geometry; see Yu [32]. Later, Ozawa [23] extended
this result to spaces with subexponential growth; see also Oppenheim [22]. Bell [3]
analyzed how the asymptotic dimension growth function is affected by various group-
theoretical constructions.

In this paper, we give an alternative characterization for the asymptotic dimension
growth function which is inspired by Brown and Ozawa’s proof of Property A for
Gromov’s hyperbolic groups [10, Theorem 5.3.15], which is in turn inspired by
Kaimanovich [18]. We use this to study two notable examples: CAT.0/ cube complexes
of finite dimension and coarse median spaces of finite rank.

The techniques used to study these examples are developments of those used by S̆pakula
and Wright [29] to establish Property A for uniformly locally finite coarse median
spaces of finite rank. As a byproduct, we obtain a new proof of finite asymptotic
dimension for CAT.0/ cube complexes which allows one to explicitly construct the
required controlled covers. This compares with Wright’s original proof [30], which is
discussed below.

CAT.0/ cube complexes are a nice class of nonpositively curved spaces, first studied by
Gromov [15], who gave a purely combinatorial condition for recognizing the nonpositive
curvature of cube complexes. Many well-known groups act properly on CAT.0/ cube
complexes. For instance, right-angled Artin groups, many small cancellation groups,
and Thompson’s groups admit such actions. This makes it possible to deduce properties
of these groups from the corresponding properties of the CAT.0/ cube complexes.

In 2010, Wright [30] proved that the asymptotic dimension of a CAT.0/ cube complex
X is bounded by its dimension. He proved this by constructing a family of "–Lipschitz
cobounded maps to CAT.0/ cube complexes of (at most) the same dimension indexed by
"> 0. We use our characterization for finite asymptotic dimension to give a direct proof
of this result. Namely, we construct uniformly bounded covers with suitable properties.
Being more explicit, this proof loses, however, the sharp bound on the asymptotic
dimension. Thus, we give an alternative proof of the following nonquantitative variant
of Wright’s theorem:

Theorem 1.1 Let X be a CAT.0/ cube complex of finite dimension; then X has
finite asymptotic dimension.

The key point in our approach is to analyze the normal cube path distance on the cube
complex, introduced by Niblo and Reeves [19]. We consider the ball with respect
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to the normal cube path distance rather than to the ordinary edge-path distance. We
decompose such a ball into intervals and use induction on the dimension in order
to construct some “separated” net satisfying a suitable consistency property. In the
process, we give a detailed analysis of normal balls and normal spheres (ie balls and
spheres with respect to the normal cube path distance). See Section 4 for all details.

Our second application is to coarse median spaces, a coarse variant of classical median
spaces introduced by Bowditch [7]. The notion of a coarse median group leads to a
unified viewpoint on several interesting classes of groups, including Gromov’s hyper-
bolic groups, mapping class groups, and CAT.0/ cubical groups. Bowditch showed
that hyperbolic spaces are exactly coarse median spaces of rank 1, and mapping class
groups are examples of coarse median spaces of finite rank [7]. He also established
interesting properties for coarse median spaces such as rapid decay, the property of
having quadratic Dehn function, etc.

Intuitively, a coarse median space is a metric space equipped with a ternary operator
(called the coarse median), in which every finite subset can be approximated by a finite
median algebra. In these approximations the coarse median is approximated by an
actual median with the distortion being controlled by the metric. This extends Gromov’s
observation that, in a ı–hyperbolic space, finite subsets can be well approximated by
finite trees.

Recently, S̆pakula and Wright [29] proved that a coarse median space with finite rank
and at most exponential volume growth has Property A. Following their proof and
using our characterization for asymptotic dimension growth, we obtain the following
result:

Theorem 1.2 Let X be a geodesic coarse median space with finite rank and at most
exponential volume growth, then X has subexponential asymptotic dimension growth.

Hierarchically hyperbolic spaces are examples of coarse median spaces — see Behrstock,
Hagen and Sisto [1] — hence our theorem is broader in scope, though with a weaker
conclusion, than the finite asymptotic dimension result proven in Behrstock, Hagen
and Sisto [2]. We expect the following general result:

Conjecture 1.3 Every geodesic coarse median space with finite rank has finite asymp-
totic dimension.

By a result of Ozawa [23], subexponential asymptotic dimension growth implies
Property A; thus, our theorem strengthens the result of [29].
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The paper is organized as follows. In Section 2, we give some preliminaries on
asymptotic dimension growth, CAT.0/ cube complexes, and coarse median spaces. In
Section 3, we provide a characterization of the asymptotic dimension growth function,
and, as a special case, give a characterization of finite asymptotic dimension. Sections 4
and 5 deal with CAT.0/ cube complexes: in Section 4, we study normal balls and
spheres which are essential in our approach to prove Theorem 1.1 in Section 5. Section 6
deals with the coarse median case, and we prove Theorem 1.2 there.
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2 Preliminaries

2.1 Asymptotic dimension

The notion of asymptotic dimension was first introduced by Gromov in 1993 [16] as a
coarse analogue of the classical Lebesgue topological covering dimension. See also [4].

Let .X; d/ be a metric space and r > 0. We call a family U D fUig of sub-
sets in X r –disjoint if d.U;U 0/ > r for any U ¤ U 0 in U , where d.U;U 0/ D

inffd.x;x0/ W x 2 U;x0 2 U 0g. We writeG
r–disjoint

Ui

for the union of fUig. A family V is said to be uniformly bounded if mesh.V/ D
supfdiam.V / W V 2 Vg is finite. Let U D fUig be a cover of X and r > 0. We define
the r –multiplicity of U , denoted by mr .U/, to be the minimal integer n such that
for any x 2X, the ball B.x; r/ intersects at most n elements of U . As usual, m.U/
denotes the multiplicity of a cover U , that is, the maximal number of elements of U
with a nonempty intersection.

The Lebesgue number L.U/ of the cover U is defined to be

inf
x2X

supfr > 0 j 9U 2 U such that B.x; r/� U g:
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Definition 2.1 [16] We say that the asymptotic dimension of a metric space X does
not exceed n and we write asdim X 6 n if, for every r > 0, the space X can be
covered by nC 1 subspaces X0;X1; : : : ;Xn and each Xi can be further decomposed
into some r –disjoint uniformly bounded subspaces:

X D

n[
iD0

Xi ; Xi D

G
r–disjoint

j2N

Xij and sup
i;j

diam Xij <1:

We say asdim X D n if asdim X 6 n and asdim X is not less than n.

Example 2.2 [21; 25; 5] (1) asdim Zn = n for all n 2N , where Z is the group
of integers.

(2) Those ı–hyperbolic spaces of bounded geometry, eg word hyperbolic groups,
have finite asymptotic dimension. (The result in [5] actually shows something
more general with a weakening of the bounded geometry condition.)

From the definition, it is easy to see that the asymptotic dimension of a subspace is at
most that of the ambient space. There are other equivalent definitions of asymptotic
dimension. We list one here for a later use, and guide the reader to [4] for others.

Proposition 2.3 [4] Let X be a metric space; then asdim X 6 n if and only if for
any r > 0, there exists a uniformly bounded cover U of X such that mr .U/6 nC 1.

2.2 Asymptotic dimension growth

Let us consider the direct sum of infinitely many copies of the integers G D
L
1Z.

Since for any n 2N the group Zn is contained in G , by the above-mentioned results
G has infinite asymptotic dimension. In order to deal with such groups/spaces, Dran-
ishnikov studied the following concept as a generalization of the property of having a
finite asymptotic dimension:

Definition 2.4 [14] Let .X; d/ be a metric space. Define a function

adX .�/Dminfm.U/ W U is a uniformly bounded cover of X; L.U/ > �g� 1;

which is called the asymptotic dimension function of X.

Clearly adX is nondecreasing, and

lim
�!1

adX .�/D asdim.X /:

By definition, the asymptotic dimension of X is less than or equal to n for some finite n

if and only if adX is eventually constant and adX 6 n. If X has infinite asymptotic
dimension, then both sides of the above equation are infinite.
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Like in the case of the volume function, the growth type of the asymptotic dimension
function is more essential than the function itself. Recall that for f; gW RC!RC , we
write f �g if there exists k 2N such that f .x/6 kg.kxCk/Ck for any x> k . We
write f Ð g if both f � g and g� f . It is clear that Ð is an equivalence relation. We
define the growth type of f to be the Ð–equivalence class of f . Define the asymptotic
dimension growth of X to be the growth type of adX .

By a result of Bell and Dranishnikov, the growth type of the asymptotic dimension
function is a quasi-isometric invariant.

Proposition 2.5 [3; 14] Let X and Y be two discrete metric spaces with bounded ge-
ometry. If X and Y are quasi-isometric, then adX � adY . In particular, the asymptotic
dimension growth is well-defined for finitely generated groups.

We give an alternative (equivalent) definition of the asymptotic dimension growth that
is used in our characterization.

Lemma 2.6 Let X be a metric space, and define�adX .�/Dminfm�.U/ W U is a uniformly bounded cover of X g� 1:

Then �adX � adX .

Proof Given � > 0, suppose U is a uniformly bounded cover of X with L.U/ > �.
For any U 2 U , define the inner �–neighbourhood of U to be

N��.U /DX nN�.X nU /;

where N� denotes the usual �–neighbourhood of the set, and we define

N��.U/D fN��.U / W U 2 Ug:

Since L.U/ > �, the set N��.U/ is still a cover of X and it is uniformly bounded. By
definition, it is obvious that m�.N��.U//6 m.U/, which yields �adX � adX .

Conversely, suppose U is a uniformly bounded cover of X. Consider N�.U/, which
has Lebesgue number not less than �. It is easy to show m.N�.U//6 m�.U/, which
implies adX �

�adX .

By the preceding lemma, we can use either adX or �adX to define the asymptotic
dimension growth. Recall that if there exists a polynomial (subexponential) function
f such that adX � f , then X is said to have polynomial (subexponential) asymptotic
dimension growth.

Dranishnikov has shown that polynomial asymptotic dimension growth implies Yu’s
Property A, and he gave a class of groups having this property.
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Proposition 2.7 [14] Let N be a finitely generated nilpotent group and G be a
finitely generated group with finite asymptotic dimension. Then the wreath product
N oG has polynomial asymptotic dimension growth. In particular, ZoZ has polynomial
asymptotic dimension growth.

2.3 CAT.0/ cube complexes

We recall basic notions and results on the structure of CAT.0/ cube complexes. We
omit some details and most of the proofs but direct the readers to [9; 13; 15; 19; 27]
for more information.

A cube complex is a polyhedral complex in which each cell is isometric to a Euclidean
cube and the gluing maps are isometries. The dimension of the complex is the maximum
of the dimensions of the cubes. For a cube complex X, we can associate it with the
intrinsic pseudometric dint , which is the minimal pseudometric on X such that each
cube embeds isometrically. When X has finite dimension, dint is a complete geodesic
metric on X. See [9] for a general discussion on polyhedral complex and the associated
intrinsic metric.

There is also another metric associated with X. Let X .1/ be the 1–skeleton of X, that
is a graph with the vertex set V D X .0/ . We equip V with the edge-path metric d ,
which is the minimal number of edges in a path connecting two given vertices. Clearly,
when X .1/ is connected, d is a geodesic metric on V . For x;y 2 V , the interval is
defined by Œx;y� D fz 2 V W d.x;y/ D d.x; z/C d.x;y/g, that is, it consists of all
points on any geodesic between x and y .

A geodesic metric space .X; d/ is CAT.0/ if all geodesic triangles in X are slimmer
than the comparative triangle in the Euclidean space. For a cube complex .X; dint/,
Gromov has given a combinatorial characterization of the CAT.0/ condition [15]: X

is CAT.0/ if and only if it is simply connected and the link of each vertex is a flag
complex (see also [9]).

Another characterization of the CAT.0/ condition was obtained by Chepoi [13] (see
also [26]): a cube complex X is CAT.0/ if and only if for any x; y; z 2 V , the
intersection Œx;y�\ Œy; z�\ Œz;x� consists of a single point �.x;y; z/, which is called
the median of x , y and z . In this case, we call the graph X .1/ a median graph, and
V equipped with the ternary operator m is indeed a median algebra [17]. In particular,
the following equations hold for all x;y; z;u; v 2 V :

M1. �.x;x;y/D x ;
M2. �.�.x/; �.y/; �.z//D �.x;y; z/, where � is any permutation of fx;y; zg;
M3. �.�.x;y; z/;u; v/D �.�.x;u; v/; �.y;u; v/; z/.

Obviously, �.x;y; z/ 2 Œx;y� and Œx;y�D fz 2 V W �.x;y; z/D zg.
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Lemma 2.8 Let x;y; z; w 2 V be such that z; w 2 Œx;y�. Then z 2 Œx; w� implies
w 2 Œz;y�.

Proof Since z 2 Œx; w� and w 2 Œx;y�, we have �.z;x; w/D z and �.x; w;y/Dw .
So

�.z; w;y/D �.�.z;x; w/; w;y/D �.�.z; w;y/; �.x; w;y/; w/

D �.�.z; w;y/; w;w/D w;

which implies w 2 Œz;y�.

Lemma 2.9 For x;y; z 2 V and d.z;y/D 1, either Œx; z�� Œx;y� or Œx;y�� Œx; z�.

Proof By Chepoi’s result [13], X .1/ is a median graph, hence it is weakly modular
(see [13]). So d.x;y/¤ d.x; z/, which implies d.x;y/D d.x; z/C 1 or d.x; z/D

d.x;y/C 1, ie Œx; z�� Œx;y� or Œx;y�� Œx; z�.

We can equip a CAT.0/ cubical complex X with a set of hyperplanes [12; 19; 20; 27].
Each hyperplane does not intersect itself, and divides the space into two halfspaces.
Given two hyperplanes h and k , if the four possible intersections of halfspaces are all
nonempty, then we say h crosses k , denoted by h t k . This occurs if and only if h

and k cross a common cube C (also denoted by h t C ). Furthermore [27], given any
finite collection of pairwise intersecting hyperplanes, there exists a cube which all of
them cross. Thus, the dimension of X, if it is finite, is the maximal number of pairwise
intersecting hyperplanes. We can also define intervals in the language of hyperplanes:
Œx;y� consists of points which lie in all halfspaces containing both x and y .

We call a subset Y � V convex if Œx;y�� Y for any x;y 2 Y . Obviously, halfspaces
are convex since any geodesic crosses a hyperplane at most once [19; 27]. This also
implies

d.x;y/D #f hyperplane h W h separates x from yg:

2.4 Coarse median spaces

According to Gromov, hyperbolic spaces can be considered locally as a coarse version
of trees, in the sense that every finite subset can be approximated by a finite tree in
a controlled way [15]. If one wants to approximate a space locally by finite median
algebras (graphs), this would turn to the definition of coarse median spaces introduced
by Bowditch. See [7; 8; 33] for details.

Definition 2.10 [7] Let .X; �/ be a metric space, and �W X 3 ! X be a ternary
operation. We say that .X; �; �/ is a coarse median space and � is a coarse median
on X if the following conditions hold:
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C1. There exist constants K;H.0/ > 0 such that for all a; b; c; a0; b0; c0 2X,

�.�.a; b; c/; �.a0; b0; c0//6 K.�.a; a0/C �.b; b0/C �.c; c0//CH.0/:

C2. There exists a function H W N ! Œ0;C1/ with the following property: for a
finite subset A � X with 1 6 jAj 6 p , there exists a finite median algebra
.…; �…; �…/ and maps � W A! …, �W …! X such that for all x;y; z 2 …

and a 2A,

�.��….x;y; z/; �.�x; �y; �z//6 h.p/

and
�.a; ��a/6 h.p/:

We refer to K and H as the parameters of .X; �; �/. Furthermore, if there exists
d 2N such that we can always choose the median algebra … in condition (C2) above
of rank at most �, then we say X has (coarse) rank at most �.

A finitely generated group is said to be coarse median if some Cayley graph is a coarse
median space.

Note that, by definition, a coarse median on a group is not required to be equivariant
under the group action.

Remark 2.11 According to Bowditch, without loss of generality, we may always
assume that � satisfies the median axioms (M1) and (M2): for all a; b; c 2X,

M1. �.a; a; b/D a;

M2. �.a; b; c/D �.b; c; a/D �.b; a; c/.

A large class of groups and spaces have been shown to be coarse median, including
Gromov’s hyperbolic groups, right-angled Artin groups, mapping class groups, CAT.0/
cube complexes, etc [7]. Bowditch has proved that coarse median groups have the
property of rapid decay [8], quadratic Dehn’s function [7], etc. This yielded a unified
way to prove these properties for the above-listed groups. Recently, S̆pakula and Wright
have proved that coarse median spaces of finite rank and of at most exponential volume
growth have Yu’s Property A [29].

3 Characterization for asymptotic dimension growth

In this section, we establish a characterization for asymptotic dimension growth and
obtain several interesting consequences of this main result. For instance, we get a
characterization for a group to have finite asymptotic dimension.
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Recall a metric space .X; d/ is uniformly discrete if there exists some constant C > 0

such that d.x;y/ > C for x ¤ y 2 X. Without loss of generality, we can always
assume the metric only takes integer values.

Theorem 3.1 Let .X; d/ be a uniformly discrete metric space, and f W RC!RC be
a function. Then the following are equivalent:

(1) adX � f .

(2) There exists a function gW RC!RC which has the same growth type as f such
that 8l 2N , 8k D 1; 2; : : : ; 3l , 8x 2X, we can assign a subset S.x; k; l/�X

satisfying:
(i) 8l 2N , 9Rl > 0 such that S.x; k; l/� B.x;Rl/ for all k D 1; : : : ; 3l .

(ii) 8l 2 N , 8k; k 0 with 1 6 k 6 k 0 6 3l , 8x 2 X, we have S.x; k; l/ �

S.x; k 0; l/.
(iii) 8x;y 2X with d.x;y/6 l , we have:

� S.x; k�d.x;y/; l/�S.x; k; l/\S.y; k; l/ for kDd.x;y/C1; : : : ; 3l .
� S.x; kCd.x;y/; l/�S.x; k; l/[S.y; k; l/ for kD1; : : : ; 3l�d.x;y/.

(iv) 8l 2N , 8k D 1; 2; : : : ; 3l , 8x 2X, we have #S.x; k; l/6 g.l/.

Proof (1)D) (2) By Lemma 2.6, we can assume there exists a function gW RC!RC
with g Ð f such that for all l 2N , there exists a uniformly bounded cover Ul of X

with m3l.Ul/6 g.l/. Given such a cover Ul D fUi W i 2 Ig we will construct the sets
S.x; k; l/ as follows. For each i 2 I , choose xi 2 Ui and, for k D 1; 2; : : : ; 3l and
x 2X, define

S.x; k; l/D fxi W B.x; k/\Ui ¤∅g:

Now let us check the four properties in condition (2):

(i) If B.x; k/ \ Ui ¤ ∅, we can choose w 2 B.x; k/ \ Ui . Now d.w;xi/ 6
mesh.Ul/, so d.x;xi/6 kCmesh.Ul/6 3l Cmesh.Ul/. In other words,

S.x; k; l/� B.x;Rl/

where Rl D 3l Cmesh.Ul/.

(ii) This is immediate by our definition of the sets S.x; k; l/.

(iii) For all x;y 2X with d.x;y/6 l and k D d.x;y/C 1; : : : ; 3l , we have

S.x; k � d.x;y/; l/D fxi W B.x; k � d.x;y//\Ui ¤∅g:

Now if B.x; k�d.x;y//\Ui ¤∅, we can choose z 2B.x; k�d.x;y//\Ui ,
ie z 2 Ui and d.z;x/6 k � d.x;y/. So d.z;y/6 k , ie z 2 B.y; k/\Ui . So
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B.y; k/\Ui ¤∅, which implies

S.x; k � d.x;y/; l/� S.x; k; l/\S.y; k; l/:

On the other hand, suppose that xj 2 S.x; k 0; l/[ S.y; k 0; l/ for some k 0 D

1; : : : ; 3l�d.x;y/. We can assume that xj 2S.y; k 0; l/, ie B.y; k 0/\Uj ¤∅,
which implies B.x; k 0C d.x;y//\Uj ¤∅. So we have

S.x; k 0C d.x;y/; l/� S.x; k 0; l/[S.y; k 0; l/:

(iv) For all l 2N k D 1; 2; : : : ; 3l and x 2X, we have

#S.x; k; l/D #fxi W B.x; k/\Ui ¤∅g6 m3l.Ul/6 g.l/:

(2)D) (1) Now, given sets S.x; k; l/, we construct a sequence of covers Ul with
the required properties. For l 2N , let H D

S
x2X S.x; l; l/. For h 2H , we define

Ah D fy W h 2 S.y; l; l/g. We define Ul D fAh W h 2 H g. This is a cover of X

since 8x 2 X, if we take h 2 S.x; l; l/, then x 2 Ah . Since 9Rl > 0 such that
S.x; l; l/ � B.x;Rl/, we know that d.h;y/ 6 Rl for all y 2 Ah , which implies
mesh.Ul/ 6 Rl . Finally, let us analyze ml.Ul/. For x 2 X, consider h 2 H with
B.x; l/\Ah¤∅. Take y 2B.x; l/\Ah , ie d.y;x/6 l and h 2 S.y; l; l/. Now, by
the assumptions in condition (2), we have

S.y; l; l/� S.x; l C d.x;y/; l/� S.x; 2l; l/:

So ml.Ul/6 #S.x; 2l; l/6 g.l/. Finally, by Lemma 2.6, we have

adX Ð �adX 6 g Ð f:

Taking in the preceding theorem a constant function f , we obtain a characterization
for finite asymptotic dimension.

Corollary 3.2 Let .X; d/ be a uniformly discrete metric space and n 2N . Then the
following are equivalent:

(1) asdim X 6 n.
(2) 8l 2 N , 8k D 1; 2; : : : ; 3l , 8x 2 X, we can assign a subset S.x; k; l/ � X,

satisfying:
(i) 8l 2N , 9Rl > 0 such that S.x; k; l/� B.x;Rl/ for all k D 1; : : : ; 3l .

(ii) 8l 2 N , 8k; k 0 with 1 6 k 6 k 0 6 3l , 8x 2 X, we have S.x; k; l/ �

S.x; k 0; l/.
(iii) 8x;y 2X with d.x;y/6 l , we have:

� S.x; k�d.x;y/; l/�S.x; k; l/\S.y; k; l/ for kDd.x;y/C1; : : : ; 3l .
� S.x; kCd.x;y/; l/�S.x; k; l/[S.y; k; l/ for kD1; : : : ; 3l�d.x;y/.

(iv) 8l 2N , 8k D 1; 2; : : : ; 3l , 8x 2X, we have #S.x; k; l/6 nC 1.
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Now we turn to the case when X is a graph, and obtain a characterization for finite
asymptotic dimension which is easier to check.

Corollary 3.3 Given a graph X D .V;E/ with vertices V and edges E , and equipped
with the edge-path length metric d , the following are equivalent:

(1) asdim X 6 n.

(2) 8l 2 N , 8k D 1; 2; : : : ; 3l , 8x 2 X, we can assign a subset S.x; k; l/ � X,
satisfying:
(i) 8l 2N , 9Rl > 0 such that S.x; k; l/� B.x;Rl/ for all k D 1; : : : ; 3l .

(ii) 8l 2 N , 8k; k 0 with 1 6 k 6 k 0 6 3l , 8x 2 X, we have S.x; k; l/ �

S.x; k 0; l/.
(iii) 8x;y 2X with d.x;y/D 1 (ie with x and y connected by an edge), we

have S.y; k; l/� S.x; kC 1; l/ for all k D 1; 2; : : : ; 3l � 1.
(iv) 8l 2N , #S.x; 2l; l/6 nC 1.

Remark 3.4 The only distinction between the above two corollaries is that in Corollary
3.3, assumption (2)(iii) is required only for endpoints of an edge, rather than for an
arbitrary pair of points as in Corollary 3.2. We point out that the preceding corollaries
can be generalized to the case of arbitrary asymptotic dimension growth. We will not
use such a generalization, so we omit it.

Proof of Corollary 3.3 (1)D) (2) is implied directly by Corollary 3.2, so we focus
on (2)D) (1).

Following the proof of (2)D) (1) in Theorem 3.1, let HD
S

x2X S.x; l; l/ for all l 2N .
And for all h 2 H , define Ah D fy W h 2 S.y; l; l/g. Define Ul D fAh W h 2 H g.
For all x2X, if we take h2S.x; l; l/ then x2Ah . So Ul is a cover of X. By condition
(2)(i), there is Rl > 0 such that S.x; l; l/� B.x;Rl/, we know d.h;y/6 Rl for all
y 2Ah , which implies mesh.Ul/6 Rl . Finally, let us analyze ml.Ul/. For all x 2X,
consider h 2 H with B.x; l/ \ Ah ¤ ∅. Take y 2 B.x; l/ \ Ah , ie d.y;x/ 6 l

and h 2 S.y; l; l/. By the definition of the edge-path length metric d , we know that
there exists a sequence of vertices y D y0;y1; : : : ;yk D x such that yi 2 V for all
i D 0; 1; : : : ; k , d.yi ;yiC1/D 1 for all i D 0; 1; : : : ; k � 1 and k 6 l . Now, by the
hypothesis, we know

S.y; l; l/� S.y1; l C 1; l/� S.y2; l C 2; l/� � � � � S.yk ; l C k; l/D S.x; kC l; l/

� S.x; 2l; l/:

So fh 2H WB.x; l/\Ah ¤∅g � S.x; 2l; l/, which implies ml.Ul/6 #S.x; 2l; l/6
nC 1.
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4 Normal cube path and normal distance

In the next two sections, we focus on CAT.0/ cube complexes, and prove Theorem 1.1.
We prove it by constructing a uniformly bounded cover with suitable properties. Such
a construction relies deeply on the analysis of normal balls and spheres, which we give
in this section.

Normal cube paths, which were introduced by Niblo and Reeves [19] play a key role
in the construction of the cover. They determine a distance function on the vertices
and the balls and spheres defined in terms of this distance are essential in our proof of
Theorem 1.1.

Throughout this section we fix a CAT.0/ cube complex X with a fixed vertex x0 . The
1–skeleton X .1/ of X is a graph with vertex set V DX .0/ and edge set E , which give
us the edge metric d on V . This is the restriction of the `1 metric to the 0–skeleton.

4.1 Normal cube paths

Given a cube C 2X, we denote by St.C / the union of all cubes which contain C as a
subcube.

Definition 4.1 [19] Let fCig
n
iD0

be a sequence of cubes such that each cube has
dimension at least 1, and Ci�1\Ci consists of a single point, denoted by vi .

� Call fCig
n
iD0

a cube path if Ci is the (unique) cube of minimal dimension
containing vi and viC1 , ie vi and viC1 are diagonally opposite vertices of Ci .
Define v0 to be the vertex of C0 diagonally opposite to v1 , and vnC1 to be
the vertex of Cn diagonally opposite to vn . The so-defined vertices fvig

nC1
iD0

are called the vertices of the cube path, and we say the cube path is from v0

to vnC1 .

� The length of a cube path is the number of the cubes in the sequence.

� A cube path is called normal if Ci \St.Ci�1/D vi .

Normal cube paths in CAT.0/ cube complexes behave like geodesics in trees. More
precisely, in [19], the existence and uniqueness of normal cube paths connecting any
pair of vertices is established. See also [24].

Proposition 4.2 [19] For any two vertices x;y 2 V , there exists a unique normal
cube path from x to y . (Note that the order is important here since in general normal
cube paths are not reversible).
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Proposition 4.3 [19] The intersection of a normal cube path and a hyperplane is
connected. In other words, a normal cube path crosses a hyperplane at most once.

Proposition 4.4 [19; 11] Let fCig
n
iD0

and fDj g
m
jD0

be two normal cube paths
in X, and let fvig

nC1
iD0

and fwj g
mC1
jD0

be the vertices of these normal cube paths. If
d.v0; w0/6 1 and d.vnC1; wmC1/6 1, then for all k , we have d.vk ; wk/6 1.

We omit the proofs for the above three propositions; the readers can find them in the
original paper. However, let us recall the construction of the normal cube path from x

to y as follows: Consider all the hyperplanes separating x from y and adjacent to x .
The key fact is that these hyperplanes all cross a unique cube adjacent to x lying in the
interval from x to y . This cube is defined to be the first cube on the normal cube path;
then one proceeds inductively to construct the required normal cube path.

We will also need the following lemma, abstracted from [19]. Recall that h t C for
a hyperplane h and a cube C means the intersection of h and C is nonempty (see
Section 2.3).

Lemma 4.5 Let fCig
n
iD0

be the normal cube path and h be a hyperplane. If h t Ci ,
then there exists a hyperplane k such that k t Ci�1 and h does not intersect with k .

Proof Otherwise, 8k t Ci�1 , we have h t k . Now by Lemma 2.15 in [19], we know
that there exists a cube C 2 X, such that all such k t C and h t C , and Ci�1 is a
face of C . Moreover, C contains an edge e of Ci since h t C . So St.Ci�1/\Ci

contains e , which is a contradiction to the definition of normal cube path.

Now for any two vertices of X, we consider all the hyperplanes separating them, with
a partial order by inclusion. More explicitly, for any x;y 2 V , let H.x;y/ be the set
of hyperplanes separating x and y . For any h 2 H.x;y/, let h� be the halfspace
containing x . Define h 6 k if h� � k� . Note that the definition depends on the
vertices we choose, and we may change them under some circumstances, but still write
h� for abbreviation. To avoid ambiguity, we point out the vertices if necessary. We
write h< k to mean a strict containment h� ¨ k� .

Lemma 4.6 For any h; k 2H.x;y/, the hyperplanes h and k do not intersect if and
only if h 6 k or k 6 h.

Proof We only need to show the necessity. Let fCig
n
iD0

be the normal cube path
from x to y , and choose i and j so that h t Ci and k t Cj . Since h and k do not
intersect, i ¤ j . Assume i < j . Obviously, x 2 h� \ k� and y 2 hC \ kC . Since
h t Ci and k t Cj , by Proposition 4.3 we have viC1 2 hC \ k� . Since h does not
intersect with k , we have h�\ kC D∅, which implies h� � k� .
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Combining the above two lemmas, we have the following result on the existence of
chains in H.x;y/.

Proposition 4.7 Let fCig
n
iD0

be the normal cube path from x to y , and h be a
hyperplane such that h t Cl . Then there exists a chain of hyperplanes h0 < h1 < � � �<

hl�1 < hl D h such that hi t Ci .

Proof By Lemma 4.5, there exists a hyperplane k such that k t Cl�1 and h does
not intersect with k . Define hl�1 D k . Inductively, we can define a sequence of
hyperplanes as required. Then the conclusion follows by Lemma 4.6.

Finally, we give a lemma used in the proof of the consistency part of our main theorem.

Lemma 4.8 Let x0;x;y 2 V with Œx0;y� � Œx0;x�, and let x0 and y0 be the nth

vertex on the normal cube path from x0 to x , and to y . If x0 ¤ y0 , then x0 62 Œx0;y�.

Proof Otherwise, x0 2 Œx0;y�. By the construction of the normal cube path, we know
x0 is also the nth vertex on the normal cube path from x0 to y , since y 2 Œx0;x�. In
other words, x0 D y0 , which is a contradiction to the assumption.

4.2 Normal metric

We define a new metric on V DX .0/ using normal cube paths [19; 24].

Definition 4.9 For any x;y 2V , define dnor.x;y/ to be the length of the normal cube
path from x to y . We call dnor the normal metric on V .

One needs to verify that dnor is indeed a metric. It is easy to see that dnor.x;y/> 0,
and dnor.x;y/D 0 if and only if x D y . Note that the normal cube path from x to y

is not the one from y to x in general, so the symmetric relation is not that obvious. In
order to show the symmetric relation and the triangle inequality, we give the following
characterization:

Lemma 4.10 For x;y 2 V , let < be the relation defined as above. Then

dnor.x;y/D supfmC 1 W h0 < h1 < � � �< hm; hi 2H.x;y/g:

Proof Suppose fCig
n
iD0

is the normal cube path from x to y , so dnor.x;y/D nC 1.
Denote the right-hand side of the equality in the lemma by n0 . Now for any chain
h0 < h1 < � � �< hm in H.x;y/, by Proposition 4.3, hi intersects with just one cube,

Algebraic & Geometric Topology, Volume 18 (2018)



508 Goulnara Arzhantseva, Graham A Niblo, Nick Wright and Jiawen Zhang

denoted by Ck.i/ . Obviously, if h; k t Ci , then h t k . So k.i/ ¤ k.j / if i ¤ j ,
which implies m 6 n, so n0 6 n.

On the other hand, for any h t Cn , by Proposition 4.7, we have a chain of hyperplanes
h0 < h1 < � � �< hn�1 < hn D h such that hi t Ci , which implies n 6 n0 .

Proposition 4.11 dnor is indeed a metric on V .

Proof By Lemma 4.10 dnor.x;y/ is the maximal length of a chain in the poset
H.x;y/. Since H.y;x/ is the opposite poset of H.x;y/ we deduce that dnor.x;y/D

dnor.y;x/. For x;y; z 2 V , H.x;y/4H.y; z/ D H.x; z/, where 4 is the sym-
metric difference operation. The inclusions of H.x;y/ \ H.x; z/ into H.x;y/

and H.y; z/ \ H.x; z/ into H.y; z/ are both order-preserving, and therefore, by
Lemma 4.10, we have dnor.x; z/6 dnor.x;y/C dnor.y; z/.

4.3 Normal balls and normal spheres

Recall that for any two points x and y in V DX .0/ , the interval between them is

Œx;y�D fz 2 V W d.x;y/D d.x; z/C d.z;y/g:

In other words, Œx;y� is the set of vertices on the union of all the edge geodesics from
x to y . A subset Y � V is called convex if Œx;y�� Y for any x;y 2 Y .

Now let B.x; n/ be the closed ball in the edge metric with centre x 2 V and radius n.
Generally, B.x; n/ is not convex (for example, take X D Z2 ). However, as we will
see, for the normal metric balls are convex. More precisely, we define the normal ball
with centre x 2 V and radius n to be

Bnor.x; n/D fy 2 V W dnor.x;y/6 ng

and the normal sphere with centre x 2 V and radius n to be

Snor.x; n/D fy 2 V W dnor.x;y/D ng:

Lemma 4.12 Bnor.x; n/ is convex for all x 2 V and n 2N .

Proof Given z; w 2 Bnor.x; n/, and a geodesic 
 from z to w , if 
 ª Bnor.x; n/,
we can assume u is the first vertex on 
 which is not in Bnor.x; n/, which implies
dnor.x;u/D nC 1. Let z0 be the vertex preceding u on 
 , so dnor.x; z

0/D n (since
dnor.z

0;u/D 1). Since d.z0;u/D 1, there exists a unique hyperplane h separating z0

from u, so H.x;u/DH.x; z0/t fhg. Now, according to Lemma 4.10, there exists
a chain h0 < � � � < hn�1 < h in H.x;u/ with hi 2 H.x; z0/. Since every geodesic
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intersects with any hyperplane at most once (see for example [27]), w 2 hC , which
implies h0 < � � � < hn�1 < h is also a chain in H.x; w/. This is a contradiction to
dnor.x; w/6 n, by Lemma 4.10.

Since the intersection of two convex sets is still convex, we have the following corollary:

Corollary 4.13 For any x0;x 2 V and n 2N , the set Œx0;x�\Bnor.x0; n/ is convex.

In this section, from now on, we fix a basepoint x0 in X.

It is well known that for a convex subset Y in a CAT.0/ cube complex and a point
v 62 Y , there is a unique point in Y which is closest to v (see for example [9]). This
statement is true both for the intrinsic CAT.0/ metric on the cube complex and the
edge metric on the vertex set, and we have a dual statement for the normal distance:

Proposition 4.14 There exists a unique point v 2 Œx0;x�\Bnor.x0; n/ such that

Œx0;x�\Bnor.x0; n/� Œx0; v�:

The point v is characterized by

d.x0; v/Dmaxfd.x0; v
0/ W v0 2 Œx0;x�\Bnor.x0; n/g:

Furthermore, if dnor.x0;x/> n, then v 2 Œx0;x�\Snor.x0; n/, which implies that v is
also the unique point in Œx0;x�\Snor.x0; n/ such that

d.x0; v/Dmaxfd.x0; v
0/ W v0 2 Œx0;x�\Snor.x0; n/g:

Proof If there exist z ¤ w 2 Œx0;x� \ Bnor.x0; n/ such that d.x0; z/ D d.x0; w/

attains the maximum, consider the median m D �.z; w;x/. By Corollary 4.13,
m 2 Œz; w� � Œx0;x� \ Bnor.x0; n/, so d.m;x0/ D d.z;x0/ D d.w;x0/. On the
other hand, m 2 Œz;x�\ Œw;x�, so mD z D w , which is a contradiction.

By Corollary 4.13,
Œx0; v�� Œx0;x�\Bnor.x0; n/:

Conversely, for any u2 Œx0;x�\Bnor.x0; n/, let mD�.u; v;x/2 Œu; v�. By Corollary
4.13, m 2 Œx0;x� \ Bnor.x0; n/. Also, m 2 Œv;x�, so d.m;x0/ > d.v;x0/, which
implies mD v by the choice of v , ie �.u; v;x/D v , so v 2 Œu;x�. Now, by Lemma 2.8,
u 2 Œx0; v�.

Now for x and n satisfying dnor.x0;x/ > n, if v 2 Œx0;x�\Bnor.x0; n� 1/, take a
geodesic 
 from v to x , and let v D y0;y1; : : : ;yk D x be the vertices on 
 . Since
dnor.x0;x/> n, we have x ¤ v , which implies k > 0. Now, for y1 , since y1 2 Œv;x�,
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d.x0; v/ < d.x0;y1/. By the definition of v , we know y1 62 Œx0;x�\Bnor.x0; n/, so
y1 62 Bnor.x0; n/. However, since d.v;y1/D dnor.v;y1/D 1, we have

dnor.x0;y1/6 dnor.x0; v/C dnor.v;y1/6 n;

which is a contradiction.

To use the above proposition more flexibly, we give another characterization of v ,
which can also be viewed as an alternative definition of v . In the rest of this subsection,
we fix x 2 V and n 2N with dnor.x0;x/> n, where x0 is the chosen basepoint.

Proposition 4.15 Let v be the unique point in Œx0;x�\Bnor.x0; n/ such that

Œx0;x�\Bnor.x0; n/� Œx0; v�I

then v is the nth vertex on the normal cube path from x0 to x .

To prove this result, let us focus on subsets in H.x0;x/. Recall that H.x0;x/ is
endowed with the relation 6, as defined prior to Lemma 4.6.

Definition 4.16 A subset A�H.x0;x/ is closed (under <) if k 2 A for all h 2 A

and k < h.

Lemma 4.17 Let zv be the nth vertex on the normal cube path from x0 to x ; then
H.x0; zv/ is maximal in the following sense: for any closed A � H.x0;x/ which
contains chains only with lengths at most n, A�H.x0; zv/.

Proof We proceed by induction on n. Suppose that the lemma holds for n � 1,
and let v0 be the .n�1/st vertex on the normal cube path from x0 to x . Given a
closed A�H.x0;x/ containing chains only with lengths at most n, and a maximal
chain h0 < h1 < � � � < hm in A, if m 6 n� 2, then the closed set fh 2 A W h 6 hmg

contains chains only with lengths at most n � 1; by induction, it is contained in
H.x0; v

0/�H.x0; zv/. Now, for mD n�1, similarly, fh2A W h 6 hn�2g�H.x0; v
0/,

which implies hi t Ci for i D 0; 1; : : : ; n� 2. So hn�1 t Ck for some k > n� 1. If
k ¤ n� 1, then by Proposition 4.7 and the closeness of A we get a chain in A with
length greater than n, which is a contradiction. So hn�1 t Cn�1 , ie hn�1 2H.x0; zv/.

Proof of Proposition 4.15 Let zv denote the nth vertex on the normal cube path from
x0 to x . By Proposition 4.14, zv 2 Œx0;x� \ Bnor.x0; n/ � Œx0; v�, which implies
H.x0; zv/ � H.x0; v/. However, H.x0; v/ is closed and contains chains only with
lengths at most n according to Lemma 4.10, so H.x0; v/�H.x0; zv/ by Lemma 4.17,
which implies H.x0; v/DH.x0; zv/. So H.v; zv/DH.x0; v/4H.x0; zv/D∅, which
implies v D zv .
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Finally, we characterize those points in Œx0;x� which lie in Œx0;x�\Snor.x0; n/. This
will be used in the next subsection to decompose the intersection into a union of
intervals.

Let Cn�1 be the nth cube on the normal cube path from x0 to x , and let v be the nth

vertex on the cube path as above. Let Hn be the set of all hyperplanes intersecting
with Cn�1 .

Proposition 4.18 For w 2 Œx0;x�, the following are equivalent:

(1) w 2 Œx0;x�\Snor.x0; n/.

(2) 9h 2 Hn such that h crosses the last cube on the normal cube path from x0

to w .

(3) 9h 2Hn such that h separates w from x0 and w 2 Œx0; v�.

Proof (1)D) (3) By Proposition 4.14, w 2 Œx0; v�. Since dnor.x0; w/ D n, by
Lemma 4.10, the maximum length of chains in H.x0; w/ is n. Take such a chain
h0< h1< � � �< hn�1 in H.x0; w/�H.x0; v/. Obviously, hi intersects with different
cubes, which implies hi t Ci . So hn�1 2Hn , and it separates w from x0 .

(3)D) (2) Since h separates w from x0 , h must cross some cube C on the normal
cube path from x0 to w . Since h 2 Hn , we know there is a chain h0 < h1 < � � � <

hn�1 D h in H.x0; v/, which is also a chain in H.x0; w/. So h cannot cross the
first n� 1 cubes of the normal cube path from x0 to w . If h does not cross the last
cube, then dnor.x0; w/ > n. However, w 2 Œx0; v� implies H.x0; w/�H.x0; v/, so
by Lemma 4.10, dnor.x0; v/ > n, which is a contradiction.

(2)D) (1) This is immediate, by Lemma 4.10.

We have another description for Hn , which is implied by Proposition 4.7 directly.

Lemma 4.19 For h 2H.x0;x/, h 2Hn if and only if the maximal length of chains
in fk 2H.x0;x/ W k 6 hg is n.

4.4 Decomposition of Œx0; x� \ Snor.x0; n/

We want to decompose the set Œx0;x�\ Snor.x0; n/, so that we can proceed by the
induction on dimension in the proof of Theorem 1.1.

Throughout this subsection, we fix x 2 V and n 2 N with dnor.x0;x/ > n, and let
v be as defined in Proposition 4.14. At the end of the preceding subsection, we have
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defined Hn to be the set of all hyperplanes intersecting with Cn�1 , where fCig is the
normal cube path from x0 to x .

Now we decompose Œx0;x�\ Snor.x0; n/ into a union of intervals with dimensions
lower than Œx0;x�, and the number of these intervals can be controlled by the dimension
of Œx0;x�. This will make it possible to do induction on the dimension.

Definition 4.20 For h 2Hn , we define

Fh D fw 2 Œx0;x�\Snor.x0; n/ W h separates w from x0g:

By Proposition 4.18, we immediately obtain the following two lemmas:

Lemma 4.21 We have

Fh D fw 2 Œx0;x� W h crosses the last cube on the normal cube path from x0 to wg

D fw 2 Œx0; v� W h separates w from x0g:

Lemma 4.22 Œx0;x�\Snor.x0; n/D
S

h2Hn
Fh:

By definition, we know

Fh D Œx0;x�\Bnor.x0; n/\fv
0
W h separates v0 from x0g;

which implies that Fh is convex. Moreover, we will show that Fh is actually an
interval.

Lemma 4.23 Let xh 2 Fh be the point minimizing d.x0;xh/. Then Fh D Œxh; v�.

Proof Since Fh is convex and xh; v 2 Fh , so Œxh; v� � Fh . On the other hand,
for all z 2 Fh , let m D �.x0; z;xh/. So, m 2 Fh and d.x0;m/ 6 d.x0;xh/. By
the choice of xh , we know that d.x0;m/ D d.x0;xh/, which implies m D xh , so
xh 2 Œx0; z�. By Proposition 4.14, xh; z 2 Œx0; v�. Thus, by Lemma 2.8, z 2 Œxh; v�.

Proposition 4.24 Œx0;x�\Snor.x0; n/D
S

h2Hn
Œxh; v� and dimŒxh; v� < dimŒx0;x�.

Proof We only need to show dimŒxh; v� < dimŒx0;x�. For any hyperplane k crossing
Œxh; v�, by Proposition 4.18, k t h. So dimŒxh; v� < dimŒx0;x�.

Now we give another characterization for xh , which is useful in the proof of the
consistency condition of Theorem 1.1.
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Lemma 4.25 Let xh be the closest point to x0 on Fh ; then xh is the unique point in
Bnor.x0; n/ such that h separates x0 from xh , and for any hyperplane k t h, k does
not separate xh from x0 .

Proof Since xh 2Fh , we have xh 2 Œx0;x�\Bnor.x0; n/ and h separates x0 from xh .
Now, for any hyperplane k t h, if k separates xh from x0 , we have xh 2 hC\ kC

and x0 2 h� \ k� . Choose zxh 2 Œx0;xh� such that zxh 2 hC \ k� . Since k does
not separate zxh from x0 , we have d.x0; zxh/ < d.x0;xh/. However, by Lemma 4.21,
zxh 2 Fh , which is a contradiction.

It remains to show that xh is the unique point satisfying these conditions. Otherwise,
let yxh be another point satisfying the hypothesis in the lemma and yxh ¤ xh . Let k

be a hyperplane separating yxh from xh , and assume xh 2 k� . Obviously, k ¤ h. If
k t h, by hypothesis, k does not separate xh from x0 , as well as yxh from x0 , which
is a contradiction since k separates yxh from xh . So k does not cross h, which implies
h� ¨ k� by Lemma 4.6. However, yxh 2 kC , so by Lemma 4.10, dnor.x0;xh/ <

dnor.x0; yxh/. This is a contradiction since dnor.x0;xh/> n as h separates x0 from xh .

4.5 S̆pakula and Wright’s construction

We conclude this section with a recent application of normal cube paths, which were
invoked by S̆pakula and Wright [29] in order to provide a new proof that finite-
dimensional CAT.0/ cube complexes have Yu’s Property A. The key to their proof
was the construction of a family of maps hl with the property that, for any interval and
any neighbourhood of an endpoint of the interval, the maps push that neighbourhood
into the interval itself. These maps were defined in terms of the normal cube paths as
follows:

Definition 4.26 (the h maps) Given l 2 N , we define hl W X ! X as follows.
For x 2 X, let hl.x/ be the 3l th vertex on the normal cube path from x to x0 if
dnor.x;x0/> 3l , and let it be x0 if dnor.x;x0/ < 3l .

Lemma 4.27 [29] Let hl be defined as above and y2B.x; 3l/. Then hl.y/2 Œx0;x�.

Proof We only need to show that every halfspace containing x and x0 contains also
z D hl.y/. For any hyperplane h such that one of the associated halfspaces, say hC ,
contains x and x0 , either y 2 hC or y 2 h� . In the former case, z 2 hC , so we only
need to check the case that h separates x and x0 from y .
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Denote by C0;C1; : : : ;Cm the normal cube path from y to x0 , and denote by y D

v0; v1; : : : ; vm D x0 the vertices on this cube path. We shall argue that any hyperplane
separating y from x and x0 is “used” within the first d.x;y/ steps on the cube path.
Suppose that the cube Ci does not cross any hyperplane h with h separating y from x

and x0 . Hence every hyperplane k t Ci separates y and x from x0 and viC1 . If there
was a hyperplane l separating y from x and x0 before Ci , then necessarily l separates
y and viC1 from x and x0 , hence l crosses all the hyperplanes k crossing Ci . This
contradicts the maximality of this step on the normal cube path. Thus, there is no
such l , and so all the hyperplanes h separating y from x and x0 must be crossed
within the first d.x;y/ steps.

Since z is the 3l th vertex on the cube path and d.x;y/ 6 3l , all the hyperplanes h

separating y from x and x0 must have been crossed before z . Thus, any such h

actually also separates y from x , x0 and z .

We will use the remarkable properties of the h maps to construct the S sets defined in
our characterization of finite asymptotic dimension in the next section.

5 Finite-dimensional CAT.0/ cube complexes

Throughout this section, we fix a CAT.0/ cube complex X of finite dimension � and
equipped with a basepoint x0 2X. We will make use of the characterization obtained
in Corollary 3.3 in order to prove Theorem 1.1.

5.1 Constructing the sets S.x; k; l/

By Corollary 3.3, in order to prove X has finite asymptotic dimension, we need to find
a constant N 2N such that for all l 2N , k D 1; 2; : : : ; 3l and x 2X, we can assign
a subset S.x; k; l/�X satisfying:

(i) 8l 2N , 9Rl > 0 such that S.x; k; l/� B.x;Rl/ for k D 1; : : : ; 3l .

(ii) 8l 2N , 8k; k 0 with 1 6 k 6 k 0 6 3l , 8x 2X, S.x; k; l/� S.x; k 0; l/.

(iii) 8x;y 2X with d.x;y/D1, S.y; k; l/�S.x; kC1; l/ for kD1; 2; : : : ; 3l�1.

(iv) 8l 2N , #S.x; 2l; l/6 N C 1.

Now, for l 2N , k D 1; 2; : : : ; 3l and x 2X, we define

zS.x; k; l/D hl.B.x; k//:

It is easy to show that f zS.x; k; l/g satisfies (i)–(iii), but it does not satisfy (iv) above,
so we need some modification. Intuitively, we construct S.x; k; l/ as a uniformly
separated net in zS.x; k; l/. To be more precise, we require the following lemma:
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Lemma 5.1 There exist two constants N and K , only depending on the dimension �,
such that for all l 2N and x2V , there are subsets Cx� Œx0;x� and maps px W Œx0;x�!

P.Cx/, where P.Cx/ denotes the power set of Cx , satisfying:

� If d.x;y/D 1 and y 2 Œx0;x�, then Cx \ Œx0;y�D Cy , and pxjŒx0;y� D py .

� For z 2 Œx0;x� and w 2 px.z/, we have d.z; w/6 Kl .

� 8z 2 Œx0;x�, #.B.z;M l/\Cx/6 N , where M D 3�C 3CK .

We postpone the proof of the above lemma and first show how to use it to construct
S.x; k; l/ (and, hence, to conclude the proof of Theorem 1.1).

Proof of Theorem 1.1 Let N and K be the constants in Lemma 5.1. For all l 2N ,
k D 1; 2; : : : ; 3l and x 2 X, let zS.x; k; l/ D hl.B.x; k// be as above, and by
Lemma 4.27, we know zS.x; k; l/� Œx0;x�. Recall that px W Œx0;x�! P.Cx/ assigns
a subset of Cx to each point y of the interval Œx0;x�. Now given a subset Y of the
interval, px.Y / is a collection of subsets of Cx and we denote by

S
px.Y / the union

of these subsets px.y/ for y 2 Y .

Now we define
S.x; k; l/D

[
px. zS.x; k; l//:

Now the only thing left to complete the proof is to verify the conditions in Corollary 3.3:

(i) By the definition of hl , we know d.y; hl.y// 6 3�l for all y 2 B.x; k/. So
d.z;x/6 .3�C 3/l for any z 2 zS.x; k; l/. For such z and any w 2 px.z/, by
Lemma 5.1, we know d.z; w/6 Kl , which implies

S.x; k; l/� B.x; .3�C 3CK/l/D B.x;M l/:

(ii) For all l 2N , k and k 0 with 1 6 k 6 k 06 3l , and x 2X, we have zS.x; k; l/�
zS.x; k 0; l/. Now, immediately from the definition, S.x; k; l/� S.x; k 0; l/.

(iii) For all x;y 2X with d.x;y/D1, by Lemma 2.9, y 2 Œx0;x� or x 2 Œx0;y�. As-
sume the former. Let kD1; 2; : : : ; 3l�1. Obviously, zS.y; k; l/� zS.x; kC1; l/,
so we have

S.y; k; l/D
[

py. zS.y; k; l//D
[

pxjŒx0;y�.
zS.y; k; l//D

[
px. zS.y; k; l//

�

[
px. zS.x; kC 1; l//D S.x; kC 1; l/:

Here we use the first part of Lemma 5.1 in the second equation. On the other
hand, zS.x; k; l/� zS.y; kC 1; l/, so we have

Algebraic & Geometric Topology, Volume 18 (2018)



516 Goulnara Arzhantseva, Graham A Niblo, Nick Wright and Jiawen Zhang

S.x; k; l/D
[

px. zS.x; k; l//�
[

px. zS.y; kC 1; l//

D

[
pxjŒx0;y�.

zS.y; kC 1; l//

D

[
py. zS.y; kC 1; l//D S.y; kC 1; l/:

Here we use the first part of Lemma 5.1 in the fourth equality.

(iv) By (i), we know that S.x; k; l/�B.x;M l/ for all k D 1; 2; : : : ; 3l . Hence, by
definition, S.x; k; l/� B.x;M l/\Cx . Now, by the third part of Lemma 5.1,
we have #S.x; k; l/6 N .

The last thing is to prove Lemma 5.1. We use the analysis in Section 4 to construct Cx

and px inductively. Recall that in Section 4 (Proposition 4.24), for any l; n 2N and
any x 2X, we have

Œx0;x�\Snor.x0; nl/D
[

h2Hnl

Œxh; v�;

with #Hnl 6 � and dimŒxh; v� < dimŒx0;x�. In order to carry out induction on the
dimension of Œx0;x�, we require a stronger version of Lemma 5.1, which is more
flexible on the choice of endpoints of intervals. More explicitly, we have:

Lemma 5.2 There exist two constants N and K , only depending on the dimension �,
such that 8l 2 N , 8xx;x 2 V , 9Cxx;x � Œxx;x� and a map pxx;x W Œxx;x� ! P.Cxx;x/
satisfying:

� If d.x;y/D 1 and y 2 Œxx;x�, then Cxx;x\ Œxx;y�DCxx;y , and pxx;xjŒxx;y�Dpxx;y .

� For z 2 Œxx;x� and w 2 pxx;x.z/, we have d.z; w/6 Kl .

� 8z 2 Œxx;x�, #.B.z;M l/\Cxx;x/6 N , where M D 3�C 3CK .

It is obvious that Lemma 5.1 is implied by Lemma 5.2 (one just needs to take xx D x0 ).
Now we prove Lemma 5.2.

Proof of Lemma 5.2 Fix an l 2N . We will carry out induction on dimŒxx;x�.

Given any xx;x 2 V with dimŒxx;x�D 1, we define

Cxx;x D fy 2 Œxx;x� W dnor.xx;y/ 2 lNg;

where lN D f0; l; 2l; 3l; : : :g. Since dimŒxx;x� D 1, Œxx;x� is indeed isometric to an
interval in R. We define pxx;x W Œxx;x� ! P.Cxx;x/ as follows: for any y 2 Œxx;x�,
pxx;x.y/ consists of a single point which is at distance lbdnor.xx;y/= lc from xx in
Œxx;y�, where b�c is the function of taking integer part. Now it is obvious that:
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� If d.x;y/D 1 and y 2 Œxx;x�, then Cxx;x\ Œxx;y�DCxx;y and pxx;xjŒxx;y�Dpxx;y .

� For z 2 Œxx;x� and w 2 pxx;x.z/, we have d.z; w/6 l .

� 8z 2 Œxx;x�, #.B.z;M l/\Cxx;x/6 3M .

Suppose for any xx;x 2 V with dimŒxx;x�6 �� 1, we have defined Cxx;x � Œxx;x� and
a map pxx;x W Œxx;x�! P.Cxx;x/ satisfying:

� If d.x;y/D 1 and y 2 Œxx;x�, then Cxx;x\ Œxx;y�DCxx;y and pxx;xjŒxx;y�Dpxx;y .

� For z 2 Œxx;x� and w 2 pxx;x.z/, we have d.z; w/6 1
2
.�� 1/�l .

� 8z 2 Œxx;x�, #.B.z;M l/\Cxx;x/6 .3M /��1.�� 1/!.

Now we focus on xx;x 2 V with dimŒxx;x�D �. For any n 2N with nl 6 dnor.xx;x/,
by Proposition 4.24,

Œxx;x�\Snor.xx; nl/D
[

h2H x
nl

Fx
h D

[
h2H x

nl

Œxh; v
x
nl �;

where vx
nl

is the farthest point from xx in Œxx;x� \ Snor.xx; nl/, H x
nl

is the set of
hyperplanes crossing the nl th cube of the normal cube path from xx to x , and we
also have dimŒxh; v

x
nl
� < dimŒxx;x�. By induction, Cxh;v

x
nl

and pxh;v
x
nl

have already
been defined. Now we define

C n
xx;x D

[
h2H x

nl

Cxh;v
x
nl

and

Cxx;x D

bdnor.xx;x/= lc[
nD0

C n
xx;x :

For any z 2 Œxx;x�, let zz be the nl th vertex on the normal cube path from xx to z , where
nD bdnor.xx; z/= lc, so dnor.zz; z/6 l , which implies d.zz; z/6 �l and

zz 2 Œxx;x�\Snor.xx; nl/D
[

h2H x
nl

Œxh; v
x
nl �:

Now we define

pxx;x.z/D
[˚

pxh;v
x
nl
.zz/ W h 2H x

nl and zz 2 Œxh; v
x
nl �
	
;

and we need to verify the requirements hold for Cxx;x and pxx;x .

First, suppose d.x;y/D 1 and y 2 Œxx;x�, and let h0 be the hyperplane separating x

from y . Given n 2N such that Œxx;y�\Snor.xx; nl/¤∅, by Proposition 4.15, vx
nl

is
the nl th vertex on the normal cube path from xx to x , and vy

nl
is the nl th vertex on the
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normal cube path from xx to y . Due to the fellow-traveller property, Proposition 4.4,
d.vx

nl
; v

y

nl
/6 1. By Proposition 4.14, we have

v
y

nl
2 Snor.xx; nl/\ Œxx;y�� Snor.xx; nl/\ Œxx;x�� Œxx; vx

nl �:

Recall that H.z; w/ denotes the set of all hyperplanes separating z from w . Obviously,

H.xx;x/DH.xx;y/[fh0g;

which implies H
y

nl
�H x

nl
�H

y

nl
[fh0g, by Lemmas 4.10 and 4.19.

If h02H x
nl

then Fx
h0\Œxx;y�D∅ by Proposition 4.18. On the other hand, for all h2H

y

nl
,

by Lemma 4.25, yh is the unique point in Bnor.xx; nl/ such that h separates xx from yh ,
and for any hyperplane k t h, k does not separate y from xx . This implies yh D xh

since H
y

nl
�H x

nl
, so we can do induction for the new “basepoint” yhDxh and vy

nl
; vx

nl
,

since d.vx
nl
; v

y

nl
/6 1 and vy

nl
2 Œxh; v

x
nl
�. This implies

Cxh;v
x
nl
\ Œxh; v

y

nl
�D Cxh;v

y

nl
:

Since Cxh;v
x
nl
� Œxh; v

x
nl
�, we have

Cxh;v
x
nl
\ Œxx;y�D Cxh;v

x
nl
\ Œxh; v

x
nl �\ Œxx;y�D Cxh;v

x
nl
\ Œxh; �.xh; v

x
nl ;y/�:

Claim �.xh; v
x
nl
;y/D v

y

nl
:

Indeed, if vx
nl
D v

y

nl
, then it holds naturally. If vx

nl
¤ v

y

nl
, then by Lemma 4.8,

vx
nl
62 Œxx;y�. Since d.vx

nl
; v

y

nl
/D 1, so vx

nl
2 Œv

y

nl
;y� or vy

nl
2 Œvx

nl
;y�. But the former

cannot hold since Œvy

nl
;y�� Œxx;y�, so vy

nl
2 Œvx

nl
;y�, which implies

v
y

nl
2 Œxh;y�\ Œxh; v

x
nl �\ Œv

x
nl ;y�;

ie vy

nl
D �.xh; v

x
nl
;y/.

By the claim,
Cxh;v

x
nl
\ Œxx;y�D Cxh;v

x
nl
\ Œxh; v

y

nl
�D Cxh;v

y

nl
:

Now, for the above n, we have

C n
xx;x \ Œxx;y�D

[
h2H x

nl

.Cxh;v
x
nl
\ Œxx;y�/D

[
h2H

y

nl

.Cxh;v
x
nl
\ Œxx;y�/

D

[
h2H

y

nl

Cxh;v
y

nl
D

[
h2H

y

nl

Cyh;v
y

nl
D C n

xx;y :

Since C n
xx;x � Œxx;x�\Snor.xx; nl/, we have
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Cxx;x \ Œxx;y�D

bdnor.xx;x/= lc[
nD0

C n
xx;x \ Œxx;y�D

[
n2Jx

C n
xx;x \ Œxx;y�

D

[
n2Jy

C n
xx;x \ Œxx;y�D

[
n2Jy

C n
xx;y D Cxx;y ;

where Jx D fn W Œxx;x�\ Snor.xx; nl/ ¤ ∅g and Jy D fn W Œxx;y�\ Snor.xx; nl/ ¤ ∅g.
For all z 2 Œxx;y�, one needs to show that pxx;x.z/D pxx;y.z/. Let zz be the nl th vertex
on the normal cube path from xx to z , where nDbdnor.xx; z/= lc. By the analysis above,
we know

d.vx
nl ; v

y

nl
/6 1; v

y

nl
2 Œvx

nl ;y�; xh D yh; H
y

nl
�H x

nl �H
y

nl
[fh0g:

For h 2H x
nl

with zz 2 Œxh; v
x
nl
�, we have h 2H

y

nl
, ie h¤ h0 since zz 2 Œxx;y�. Now, for

such h,
zz 2 Œxx;y�\ Œxh; v

x
nl �D Œxh; v

y

nl
�D Œyh; v

y

nl
�;

where the first equality comes from the claim above. Inductively, we know, for such h,

pxh;v
x
nl
.zz/D pyh;v

y

nl
.zz/:

Now, by definition,

pxx;x.z/D
[˚

pxh;v
x
nl
.zz/ W h 2H x

nl and zz 2 Œxh; v
x
nl �
	

D

[˚
pxh;v

x
nl
.zz/ W h 2H

y

nl
and zz 2 Œxh; v

x
nl �
	

D

[˚
pyh;v

y

nl
.zz/ W h 2H

y

nl
and zz 2 Œyh; v

y

nl
�
	

D pxx;y.z/:

Second, for any z 2 Œxx;x� and w 2 pxx;x.z/, assume that w 2 pxh;v
x
nl
.zz/ for some h 2

H x
nl

and zz 2 Œxh; v
x
nl
� as in the definition. By induction, we know d.zz; w/6 1

2
.��1/�l

since dimŒxh; v
x
nl
�6 �� 1. So

d.z; w/6 d.z; zz/C d.zz; w/6 �l C 1
2
.�� 1/�l D 1

2
�.�C 1/l:

Third, for any z 2 Œxx;x�, consider B.z;M l/ \ Cxx;x . Suppose n 2 N satisfying
B.z;M l/\Cxx;x \Snor.xx; nl/¤ ∅, so B.z;M l/\

�S
h2H x

nl
Œxh; v

x
nl
�
�
¤ ∅, which

means there exists some h 2 H x
nl

such that B.z;M l/\ Œxh; v
x
nl
� ¤ ∅. For such n

and h, let z0 D �.z;xh; v
x
nl
/ 2 Œxh; v

x
nl
�. Obviously,

B.z;M l/\ Œxh; v
x
nl �� B.z0;M l/\ Œxh; v

x
nl �:

By induction, we have

#.B.z;M l/\Cxh;v
x
nl
/6 #.B.z0;M l/\Cxh;v

x
nl
/6 .3M /��1.�� 1/!:
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Now, for the above z , there exist at most 3M values of n such that

B.z;M l/\ Œxx;x�\Snor.xx; nl/¤∅I

and for such n, since #H x
nl

6 �, there exist at most � hyperplanes h such that
B.z;M l/\ Œxx;x�\ Œxh; v

x
nl
�¤∅. So we have

#.B.z;M l/\Cxx;x/6
X

n
B.z;Ml/\Œxx;x�\Snor.xx;nl/¤∅

#.B.z;M l/\C n
xx;x/

6
X

n as above

X
h2H x

nl

#.B.z;M l/\Cxh;v
x
nl
/

6 3M � � � .3M /��1.�� 1/!D .3M /��!:

Now we take KD 1
2
.��1/� and N D .3M /��!D .3KC9�C9/��!; then the lemma

holds for these constants.

6 Coarse median spaces

In this section, we discuss the coarse median case, and prove Theorem 1.2. We fix a
coarse median space X with geodesic metric � and coarse median � with parameters
K and H and finite rank �. The definitions and notations are the same as in Section 2.4.
According to Remark 2.11, we also assume that the coarse median � satisfies (M1)
and (M2). We recall:

Theorem 6.1 [29] Any geodesic uniformly locally finite coarse median space of
finite rank and at most exponential growth has Property A.

Our result, Theorem 1.2, says that any coarse median space as above has subexponential
asymptotic dimension growth. Thus, combining with Ozawa’s result [23], our theorem
yields a strengthening of Theorem 6.1.

To prove Theorem 1.2, we use several notations and lemmas from [29]. We use the
notation x �s y for �.x;y/6 s . Given r > 0 and a; b 2X, the coarse interval Œa; b�r
is defined to be

Œa; b�r D fz 2X W �.a; b; z/�r zg:

By a result of Bowditch [8], there exists a constant � > 0, depending only on the
parameters K and H , such that �.x;y; z/ 2 Œx;y�� for all x;y; z 2X.

Also recall that the median axiom (M3) holds in the coarse median case up to a constant

 > 0 depending only on the parameters K and H : for all x;y; z;u; v 2X, we have

�.�.x;y; z/;u; v/�
 �.�.x;u; v/; �.y;u; v/; z/:
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Actually we can take 
 D 3K.3KC 2/H.5/C .3KC 2/H.0/.

Given r; t; � > 0, denote

L1.r/D .KC 1/r CK�C 
 C 2H.0/;

L2.r; �/D .KC 1/r C �CH.0/;

L3.r; t/D 3�K�r t C r:

We need the following lemmas from [29]:

Lemma 6.2 [29] Let X be a coarse median space, r > 0, and let a; b 2 X and
x 2 Œa; b�� . Then Œa;x�r � Œa; b�L1.r/ .

Lemma 6.3 [29] Let X be a geodesic coarse median space of rank at most �. For
every � > 0 and t > 0, there exists rt > 0, such that for all r > rt and a; b 2X, there
exists h 2 Œa; b�L1.r/ such that

� �.a; h/6 L3.r; t/, and

� B.a; r t/\ Œa; b�� � Œa; h�L2.r;�/ .

Lemma 6.4 [29] Let X be a coarse median space. Fix � > 0. There exist constants
˛; ˇ > 0, depending only on the parameters of the coarse median structure and � , such
that the following holds: Let a; b; h;m 2 X and r > 0 satisfy m 2 Œa; h�L2.r;�/ and
h 2 Œa; b�L1.r/ . Then p D �.m; b; h/ satisfies �.h;p/6 ˛r Cˇ .

Proof of Theorem 1.2 The proof is based on the construction used in [29] to prove
Property A, and for the reader’s convenience, we give a sketch of their proof. In fact
we will verify the stronger conditions on the S sets required to apply Theorem 3.1.
Fix a basepoint x0 2 X, and let ˛ and ˇ be the constants from Lemma 6.4. First
apply Lemma 6.3 for � D � and all t 2 N to obtain a sequence rt 2 N such that
the conclusion of the lemma holds. Furthermore, we can choose the rt inductively to
arrange the sequence t 7! lt D .t rt �H.0//=.3K/ for t 2N is increasing.

Now fix x 2 X, t 2 N and k 2 f1; 2; : : : ; 3ltg. For any y 2 B.x; k/, Lemma 6.3
applied for aD y , b D x0 and r D rt produces a point hy 2 Œy;x0�L1.rt / . We define

S.x; k; lt /D fhy 2X W y 2 B.x; k/g:

We need to verify these sets satisfy condition (2) in the statement of Theorem 3.1, ie
we need to show there exists a subexponential function f W R!R, satisfying:

(i) 8t 2N , 9Rt > 0 such that S.x; k; lt /� B.x;Rt / for all k D 1; : : : ; 3lt .
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(ii) 8t 2 N , 8k; k 0 with 1 6 k 6 k 0 6 3lt , 8x 2 X, we have S.x; k; lt / �

S.x; k 0; lt /.

(iii) 8x;y 2X with �.x;y/6 lt , we have:
� S.x; k��.x;y/; lt /�S.x; k; lt /\S.y; k; lt /, for kD�.x;y/C1; : : : ; 3lt .
� S.x; kC�.x;y/; lt /�S.x; k; lt /\S.y; k; lt /, for kD1; : : : ; 3lt��.x;y/.

(iv) 8t 2N , 8k D 1; 2; : : : ; 3lt , 8x 2X, we have #S.x; k; lt /6 f .lt /.

By the construction, (ii)–(iii) hold naturally. For (i), by Lemma 6.3, we know

S.x; k; lt /� B.x; lt CL3.rt ; t//:

The only thing left is to find a subexponential function f such that condition (iv) holds.
The following argument follows totally from the proof in [29], and we omit some
calculation. The readers can turn to their original paper for more details.

Take y 2 B.x; k/, with the notation as above. Let my D �.x;y;x0/. Then, by
Lemma 6.3, one can deduce that my 2 Œy; hy �L2.rt ;�/ . Now, since hy 2 Œy;x0�L1.rt / ,
Lemma 6.4 implies the point py D �.my ;x0; hy/ 2 Œmy ;x0�� satisfies �.hy ;py/ 6
˛rt Cˇ . As my D �.x;y;x0/ 2 Œx;x0�� , Lemma 6.2 now implies py 2 Œx;x0�L1.�/ .
Consequently, we have �.x;py/63ltC3�K�t rtCrtC˛rtCˇ , which depends linearly
on lt . Now, by Proposition 9.8 in [8], the number of possible points py is bounded
by P .lt / for some polynomial P depending only on H , K , � and the uniform local
finiteness of X. Since X has at most exponential growth, it follows that #S.x; k; lt /

is at most P .lt /c
0crt for some constants c; c0 > 1. Take f .lt / D P .lt /c

0crt and
recall that, in the limit, rt= lt ! 0. We extend f to a function on RC by setting
f .r/ WD f .lt / for r 2 .lt�1; lt �. This completes the proof.
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