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Classifying spaces for 1–truncated compact Lie groups

CHARLES REZK

A 1–truncated compact Lie group is any extension of a finite group by a torus. In
this note we compute the homotopy types of Map�.BG;BH / , Map.BG;BH / , and
Map.EG;BGH / for compact Lie groups G and H with H 1–truncated, showing
that they are computed entirely in terms of spaces of homomorphisms from G to H .
These results generalize the well-known case when H is finite, and the case when H

is compact abelian due to Lashof, May, and Segal.

55R91; 55P92, 55R35, 55R37

1 Introduction

By a 1–truncated compact Lie group H , we mean one whose homotopy groups vanish
in dimensions 2 and greater. Equivalently, H is a compact Lie group with identity
component H0 a torus (isomorphic to some U.1/d ), ie an extension of a finite group
by a torus.

The class of 1–truncated compact Lie groups includes (i) all finite groups, and (ii) all
compact abelian Lie groups, both of which are included in the class of (iii) all groups
which are isomorphic to a product of a compact abelian Lie group with a finite group,
or equivalently, a product of a torus with a finite group.

The goal of this paper is to extend certain results, which were already known for finite
groups, compact abelian Lie groups, or products thereof, to all 1–truncated compact
Lie groups.

We write Hom.G;H / for the space of continuous homomorphisms, equipped with
the compact-open topology. Our first theorem relates this to the space of based maps
between classifying spaces.

1.1 Theorem For G;H compact Lie groups with H 1–truncated, the evident map

BW Hom.G;H /!Map�.BG;BH /

is a weak equivalence.
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Using this, we will derive an unbased variant.

1.2 Theorem For G;H compact Lie groups with H 1–truncated, there is a weak
equivalence

Hom.G;H /�H EH !Map.BG;BH /:

Here H acts on Hom.G;H / by conjugation: h �� D h�h�1 .

When H is discrete, these are well known and classical results. The case of H an
abelian compact Lie group is proved by Lashof, May and Segal [7]; both the finite and
compact abelian Lie cases are discussed by May in [10, Theorems 5 and 10].

1.3 Remark For G and H compact, there is a homeomorphism (see Proposition 7.1)

Hom.G;H /�
a

Œ�WG!H �

H=CH .�/;

where the coproduct is over conjugacy classes of homomorphisms, and CH .�/ is the
centralizer of �.G/ in H . When H is a 1–truncated compact Lie group, we see from
Theorem 1.1 that Map�.BG;BH / is therefore weakly equivalent to this coproduct,
and from Theorem 1.2 that there is a weak equivalence

Map.BG;BH /�
a

Œ�WG!H �

BCH .�/:

Finally, we will give a description of the fixed points of the equivariant classifying
space BGH , which represents G–equivariant H–principal bundles, in the case that G

and H are compact Lie groups and H is 1–truncated.

1.4 Theorem For G;H compact Lie groups with H 1–truncated, the map

��W BGH !Map.EG;BGH /

induced by restriction along � W EG!� is a G–equivariant weak equivalence.

The case when H is finite or compact abelian is proved in [10].

1.5 Remark For any closed subgroup G0 �G , taking G0 fixed points gives rise to
maps

.BGH /G
0

!Map.EG;BGH /G
0 �
 �Map.EG;BH /G

0

�Map.BG0;BH /;
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and Theorem 1.4 amounts to saying that for any G0 , the first map in this sequence
is a weak equivalence. (The middle map arises from a G–equivariant weak equiva-
lence Map.EG;BH /! Map.EG;BGH /; see the proof of Lemma 6.4.) It is stan-
dard (see Lashof and May [6, Theorem 10]) that, for arbitrary compact G and H ,
.BGH /G

0

is weakly equivalent to
`
Œ�WG0!H �BCH .�/, while if H is also 1–truncated,

Theorem 1.2 and Remark 1.3 imply that Map.BG0;BH / is also weakly equivalent to the
same coproduct, thus giving an abstract weak equivalence .BGH /G

0

�Map.BG0;BH /.
The point of Theorem 1.4 is to show that the map �� exhibits this equivalence.

The map of Theorem 1.4 in a certain sense classifies the formation of the G–Borel quo-
tient. That is, given a G–equivariant map f W X ! BGH classifying a G–equivariant
principal H–bundle P ! X , the G–equivariant map ��f W X !Map.EG;BGH /

is adjoint to a nonequivariant map X �G EG ! BGH which classifies the bundle
P �G EG ! X �G EG ; see [10]. As a consequence of the theories of classifying
spaces, we obtain the following.

1.6 Corollary Let G and H be compact Lie groups with H 1–truncated. Then for a
paracompact G–space X , formation of the G–Borel quotient gives rise to a bijection
between (i) equivalence classes of G–equivariant principal H–bundles over X , and
(ii) equivalence classes of principal H–bundles over X �G EG .

1.7 Remark For comparison, there are well-known results (stemming from work of
Dwyer and Zabrodsky [3] and Notbohm [12]) on spaces of maps from (rather than to)
the classifying space of a p–toral group (a p–toral group is an extension of a finite p–
group by a torus). For instance, [12, Theorem 1.3] may be interpreted as saying that for
an arbitrary compact Lie group H and p–toral G , the map BGH !Map.EG;BGH /

(see Theorem 1.4) induces an isomorphism in mod p homology on fixed points for all
closed subgroups of G (this interpretation is given as [10, Theorem 9]).

Organization of the paper The proof of Theorem 1.1 is the probably the most inter-
esting part of the paper. It is carried out in Sections 2–4. The key ingredient is the use
of the nerve N.H;V / of the “exponential crossed module” (see Example 2.3) of the
1–truncated compact Lie group H . We first show that the simplicial space N.H;V / is
a Reedy fibrant model for the usual simplicial nerve NH of H (see Corollary 3.8), and
so can be used to compute maps from BG to BH in terms of maps of simplicial spaces
from NG to N.H;V /. The proof is completed in Section 4 by showing that, in a certain
sense, the difference between Hom.G;H / and the space MapsTop.NG;N.H;V // of
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maps between simplicial spaces is measured precisely by the continuous 2–cocycles
on G with values in V , modulo boundaries of 1–cocycles. Because G is compact,
Haar measure gives a contracting homotopy (see Proposition 4.2) on the complex of
continuous chains on G . A sketch by the author of this proof originally appeared as an
answer to a question on the site MathOverflow.1

Our approach gives a uniform proof of Theorem 1.1 for all 1–truncated compact Lie
groups H ; furthermore, even in the case of abelian H , it is somewhat more direct than
the one given in [7].

We derived the unbased Theorem 1.2 from the based version Theorem 1.1 in Section 5
by comparing associated fibrations over BH .

The result on equivariant classifying spaces, Theorem 1.4, is proved in Section 6.
The proof relies on an explicit model, built as the nerve of a certain topological
category, of the restriction of the universal .G;H /–bundle to the fixed-point subspace
.BGH /G � BGH . The explicit model we use appears to be essentially of the type
described by Guillou, May and Merling [4].

In Section 7, we give for the convenience of the reader a proof of the identification of
Hom.G;H / as mentioned in Remark 1.3.

Conventions In this paper, we write Top for the category of compactly generated
weak Hausdorff spaces (CGWH), the standard convenient category of spaces. This
category is cartesian closed, and we write Map.X;Y / for the internal function object,
ie continuous maps with the k–ification of the compact-open topology. We make use of
the “usual” model structure on Top, in which weak equivalences are weak equivalences
on homotopy groups, and fibrations are Serre fibrations.

Acknowledgments I thank Peter May for comments on a draft of this paper. The
author was supported under NSF grant DMS-1406121.

2 Nerve of a topological crossed module

2.1 Crossed modules

Recall that a crossed module consists of
1“Equivariant classifying spaces from classifying spaces”, http://mathoverflow.net/q/223546.
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Classifying spaces for 1–truncated compact Lie groups 529

� groups H and V ,

� a homomorphism �W V !H ,

� a homomorphism ˛W H ! Aut.V / such that
(i) �.˛.h/.v//D h�.v/h�1 , and

(ii) ˛.�.v//.v0/D vv0v�1 for h 2H and v; v0 2 V .

A topological crossed module is one in which V and H are topological groups and
� and ˛ are continuous. We typically write .H;V / for the crossed module, leaving �
and ˛ understood. Note that we will often consider crossed modules in which V is an
abelian group, in which case we will switch to additive notation for V , though not for H .

2.2 Example Given any group H , there is a unique crossed module, denoted .H; 0/,
for which V is the trivial group.

2.3 Example (exponential crossed module) The following example is the crucial
one for this paper. Suppose H is a 1–truncated compact Lie group. We set:

� V WD TeH , the Lie algebra of H , which is a group under addition of vectors.

� � WD expW V !H , the exponential map; this is a homomorphism since H0 is
abelian.

� ˛ WD adW H ! GL.V /, the adjoint action.

We typically write the group law of V additively, so the identities for the crossed
module structure become

exp.ad.h/.v//D h exp.v/h�1; ad.exp.v//.v0/D vC v0� v D v0:

The following features of this case will be significant:

(1) ˛ D adW H ! GL.V / factors through the quotient group H=H0 ;

(2) � D expW V !H is a covering map;

(3) the underlying space of V is contractible.

2.4 Nerve of a crossed module

The nerve of a topological crossed module N.H;V / is the simplicial space defined as
follows; except for the topology, this is as in [1, Section 3.1]. The space N.H;V /n in
degree n is the space of tuples�

.hij /0�i�j�n; .vijk/0�i�j�k�n

�
; hij 2H; vijk 2 V

satisfying the identities
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(1) hii D e and viij D vijj D e for all i � j ,

(2) hik D �.vijk/hij hjk for all i � j � k ,

(3) vik`vijk D vij` ˛.hij /.vjk`/ for all i � j � k � `.

The action of simplicial operators ıW Œn�! Œm� is the evident one: .ıh/ijDhı.i/;ı.j/ and
.ıv/ijk D vı.i/;ı.j/;ı.k/ . A standard argument shows that, as a space, N.H;V /n �

H n�V .
n
2/ , eg via the projection to coordinates h0i , 1� i �n, and v0ij , 1� i < j �n.

Note that N.H;V /0 D �; ie N.H;V / is a reduced simplicial space.

2.5 Example The nerve of N.H; 0/ is precisely the usual nerve of the group H ; we
write N.H / WDN.H; 0/.

2.6 Simplicial spaces and the Reedy model structure

We write sTop for the category of simplicial spaces, ie functors �op! Top. We are
going to use the Reedy model structure on sTop. We will need to use the following
features of this model structure:

(1) Weak equivalences f W X ! Y in sTop are precisely the levelwise weak equiv-
alences; ie fnW Xn! Yn is a weak equivalence for all n� 0.

(2) An object X is cofibrant (Reedy cofibrant) if and only if the latching space
inclusions 
nW LnX !Xn are cofibrations in Top.

(3) An object Y is fibrant (Reedy fibrant) if and only if the matching space projections
ınW Yn!MnY are fibrations in Top.

(4) The model structure is topological. In particular, if X is a cofibrant simplicial
space and Y ! Y 0 is a weak equivalence between fibrant simplicial spaces, then
MapsTop.X;Y /!MapsTop.X;Y

0/ is a weak equivalence of spaces.

We will need to examine latching and matching spaces in a bit more detail.

2.7 Latching and matching spaces

We recall the notion of latching and matching spaces. For simplicial spaces X W �op!

Top and all n� 0, we have natural maps of spaces

LnX

n
�!Xn

ın
�!MnX;

where
LnX D colim.�op

=Œn�
/<n

X; Mn D lim.�op
Œn�=

/<n
X;

called the latching and matching spaces of X .
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2.8 Latching spaces for the nerve of a group

2.9 Proposition Let G be a topological group, and NG 2 sTop its nerve. Then
for each n � 0, the latching inclusion 
nW Ln.NG/! .NG/n is isomorphic to the
inclusion

f.g1; : : : ;gn/ j gi D e for some ig !Gn:

In particular, NG is Reedy cofibrant if feg !G is a cofibration in Top.

The proof of this is standard.

2.10 Matching spaces for the nerve of a crossed module

We describe the matching projections for the nerve of a topological crossed module.

2.11 Proposition Consider N WDN.H;V / the nerve of a topological crossed module.
We write Mn WDMnN for its matching spaces.

(0) ı0W N0!M0 is the isomorphism of 1–point spaces.

(1) ı1W N1!M1 is the projection H !�.

(2) M2 �H�3 , and there is a pullback square

N2

ı2

��

// V

�

��

M2
.h01;h02;h12/ 7!h02h�1

12
h�1

02

// H

(3) There is a commutative diagram

N3
//

ı3

��

feg

��

M3
//

��

Ker � //

��

feg

��

H�3 �V �3
�
// V

�
// H

in which all squares are pullback squares, and � is given by

.h01; h12; h23; v012; v013; v023; v123/ 7! v023v012˛.h01/.v123/
�1v�1

013:

(� 4) ınW Nn!Mn is an isomorphism for n� 4.
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Proof This is straightforward. In (3), one shows directly that the right-hand lower
square, bottom rectangle, and left rectangle are pullbacks.

Recall that a simplicial space X is Reedy fibrant if each of the maps ınW Xn!MnX

is a fibration of spaces.

2.12 Corollary If .H;V / is a topological crossed module such that � is a covering
map, then N.H;V / is Reedy fibrant.

Proof This is immediate using Proposition 2.11. Note that the condition that � be a
covering map in Proposition 2.11(3) implies that ı3 is an open and closed embedding.

In particular, Corollary 2.12 applies to our main Example 2.3.

3 Maps between reduced simplicial spaces

A simplicial space X 2 sTop is said to be reduced if X0��. We write sTopred
� sTop

for the full subcategory of reduced simplicial spaces. Note that reduced simplicial
spaces are canonically based, so we may in fact regard sTopred as a full subcategory of
simplicial based spaces sTop� .

3.1 Realization of reduced simplicial spaces

We recall the geometric realization functor k�kW sTop! Top, defined so that kXk is
the coend of the functor �op ��! Top given by .Œm�; Œn�/ 7!Xm ��

n , where �n

is the topological n–simplex.

3.2 Proposition The restriction of the geometric realization functor to a functor
k�kW sTopred

! Top� admits a right adjoint rW Top�! sTopred defined by

.rY /n WDMap�.�
n=Sk0�

n;Y /;

where Sk0�
n ��n is the set of vertices of the simplex. The adjunction is compatible

with the topological enrichment, and so gives a natural homeomorphism

MapsTop.X;rY /�Map�.kXk;Y /

for X 2 sTopred and Y 2 Top� .

Proof This is a straightforward consequence of the observation that, for reduced
simplicial spaces X , we see that kXk is isomorphic to the coend (in Top� ) of
.Œm�; Œn�/ 7!Xm ^ .�

n=Sk0�
n/.
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3.3 Proposition For any Y 2 Top� , the simplicial space rY is Reedy fibrant.

Proof The matching space projection has the form

Map�.�
n=Sk0�

n;Y /!Map�.@�
n=Sk0�

n;Y /;

which is clearly a fibration.

For a topological group H , we consider the classifying space BH WD kNHk.

3.4 Proposition If H is a topological group with identity element a nondegenerate
basepoint (ie feg !H has the HEP ), then the map

�W NH !rkNHk D rBH

given by the unit map of the adjunction of Proposition 3.2 is a levelwise weak equiva-
lence of simplicial spaces.

Proof In degree 0, the map � is the isomorphism of one-point spaces. In degree 1, it
has the form

H !Map�.�
1=f0; 1g; kNHk/��BH:

A standard argument (eg using the usual simplicial model for the universal fibration [9])
shows that this is a weak equivalence.

For n� 2, we reduce to the nD 1 case using the fact that In=Sk0�
n!�n=Sk0�

n

is a homotopy equivalence of pointed spaces, and thus

Map�.�
n=Sk0�

n; kNHk/!Map�.In=Sk0�
n; kNHk/� .�BG/�n

is a weak equivalence, where In��
n is the union of the edges with vertices fk�1; kg

for all k D 1; : : : ; n.

3.5 Map.X;N.H;V // computes Map�.kXk;BH /

Now we fix a 1–truncated compact Lie group H and the corresponding exponential
crossed module .H;V / of Example 2.3. We have a map of reduced simplicial spaces

NH
.�;�/
���!N.H;V /�rkNHk

in which � is the evident inclusion NH D N.H; 0/ � N.H;V / and � the unit map
of the adjunction of Proposition 3.2. Observe that both � and � are levelwise weak
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equivalences (� because V is contractible, � by Proposition 3.4). Furthermore, both
N.H;V / (see Corollary 2.12) and rkNHk (see Proposition 3.3) are Reedy fibrant.

Using the Reedy model structure on simplicial spaces, we can factor the above map as

(3.6) NH
j
�! .NH /f

.�0;�0/
����!N.H;V /�rkNHk

so that .NH /f is Reedy fibrant and j is a levelwise weak equivalence, whence �0

and �0 are also levelwise weak equivalences.

3.7 Proposition For X a Reedy cofibrant simplicial space with X0 D �, and .H;V /
the exponential crossed module of a 1–truncated compact Lie group H , we have
that MapsTop.X;N.H;V // is weakly equivalent to Map�.kXk; kNHk/. Furthermore,
��W MapsTop.X;NH /!MapsTop.X;N.H;V // is a weak equivalence of spaces if and
only if ��W MapsTop.X;NH /!MapsTop.X;rkNHk/ is.

Proof This is straightforward using the factorization (3.6), the fact that Reedy model
structure is compatible with the topological enrichment, and the adjunction from
Proposition 3.2.

3.8 Corollary If .H;V / is as above, and G is a topological group such that feg!G

is a cofibration, then Map�.BG;BH / is weakly equivalent to MapsTop.NG;N.H;V //,
and

BW Hom.G;H /!Map�.BG;BH /

is a weak equivalence if and only if

��W MapsTop.NG;NH /!MapsTop.NG;N.H;V //

is a weak equivalence.

Proof Use Proposition 3.7 with X DNG , which is Reedy cofibrant by Proposition 2.9.
It is straightforward to see that MapsTop.NG;NH /!Hom.G;H / (evaluation at spaces
in degree 1) is a homeomorphism, and so the map B coincides with �� .

3.9 Remark If H is a discrete group, then NH is already Reedy fibrant, in which case
we can immediately derive the well-known fact that BW Hom.G;H /!Map�.BG;BH /

is a weak equivalence for any such topological group G .
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4 Proof of Theorem 1.1 Based mapping space

As above, we assume that H is a 1–truncated compact Lie group. We will now also
assume that G is a compact Lie group. By Corollary 3.8, we have reduced Theorem 1.1
to showing that MapsTop.NG;NH /!MapsTop.NG;N.H;V // is a weak equivalence.

Let E WDMapsTop.NG;N.H;V //. Using Proposition 2.11 and the identification of
the latching inclusions LnNG!Gn (see Proposition 2.9), we see that E is precisely
the space of pairs

.�; �/ 2Map.G;H /�Map.G �G;V /

such that

(1) �.e/D e and �.g; e/D 0D �.e;g/ for g 2G ,

(2) �.g1g2/D expŒ�.g1;g2/��.g1/�.g2/ for g1;g2 2G ,

(3) �.g1g2;g3/C�.g1;g2/D �.g1;g2g3/Cad.�.g1//Œ�.g2;g3/� for g1;g2;g3 2G.

Explicitly, this corresponds to the map NG ! N.H;V / which (in the notation of
Section 2.1) sends .gij / 2 .NG/n to .hij ; vijk/ 2N.H;V /n with hij D �.gij / and
vijk D �.gij ;gjk/.

Let E0 WD MapsTop.NG;NH /. The map E0 ! E is precisely inclusion into the
subspace consisting of points of the form .�; 0/.

For a continuous map �W G!H , we write �W G!H=H0 for the composite with the
quotient map H !H=H0 . Note that if .�; �/ 2E , then � is a continuous homomor-
phism of groups. Since H=H0 is discrete, we obtain coproduct decompositions

E D
a



E
 ; E0
D

a



E0

 ; 
 2 Hom.G;H=H0/:

Thus, we must show that for each such 
 , the inclusion E0

 �E
 is a weak equivalence.

In fact, we can give an explicit (strong) deformation retraction of E
 to E0

 , which relies

on the existence of a contracting homotopy of the complex C �.G;Vad
 / of normalized
continuous cochains on G with values in the representation ad 
 W G!Aut.V /, which
may be constructed explicitly using an invariant measure on the compact group G . We
spell out the details we need below.

Fix 
 2Hom.G;H=H0/. Let C 1

 �Map.G;V / be the subspace of functions �W G!V

such that
�.e/D 0:
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Let Z2

 �Map.G �G;V / be the subspace of functions �W G �G! V such that

�.g; e/D 0D �.e;g/; g 2G;

and

�.g1g2;g3/C �.g1;g2/D �.g1;g2g3/C ad 
 .g1/Œ�.g2;g3/�; g1;g2;g3 2G:

Both Z2

 and C 1


 are topological real vector spaces. Define continuous and linear maps

d W C 1

 !Z2


 ; H W Z2

 ! C 1




by
d�.g1;g2/ WD �.g1/��.g1g2/C ad 
 .g1/�.g2/;

H�.g/ WD

Z
G

x�1�.x;g/ dx;

where we use right-invariant Haar measure on G normalized so that
R

G dx D 1.

4.1 Lemma The composite dH W Z2

 !Z2


 is the identity map.

Proof For g 2G and v 2 V , write gv for ad 
 .g/.v/ below. Given � 2Z2

 , we have

dH�.g1;g2/D

Z
G

�
x�1�.x;g1/�x�1�.x;g1g2/Cg1x�1�.x;g2/

�
dx

D

Z
G

�
x�1�.x;g1/�x�1Œ�.xg1;g2/C �.x;g1/�x�.g1;g2/�

Cg1x�1�.x;g2/
�

dx

D �.g1;g2/�

Z
G

g1.xg1/
�1�.xg1;g2/ dxC

Z
G

g1x�1�.x;g2/ dx

D �.g1;g2/;

where the last cancellation is by right invariance of the measure.

4.2 Proposition The inclusion E0

 �E
 admits a strong deformation retraction.

Proof Define Kt W E
 !E
 for 0� t � 1 by Kt .�; �/ WD .�t ; �t /, with

�t .g/ WD expŒtH�.g/��.g/;

�t .g1;g2/ WD �.g1;g2/� t dH�.g1;g2/:

We have K0 D idE
 , Kt jE
0

 D idE0



, and K1.E
 / � E0


 as desired, the last using
Lemma 4.1.
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The proof of Theorem 1.1 follows using Proposition 3.7 and the remarks above.

4.3 Remark If H is an abelian group, then adW H ! Aut.V / is trivial. In this case,
the proof of Proposition 4.2 directly gives a deformation retraction of E0 �E .

5 Proof of Theorem 1.2 Unbased mapping space

Given simplicial spaces X and Y , we have an internal function object Map.X;Y / 2
sTop, characterized so that Map.X;�/ is the right adjoint to .�/�X . We have that

Map.X;Y /n DMapsTop.X �N Œn�;Y /;

where Œn� is the n–arrow category. In particular, Map.X;Y /0 �MapsTop.X;Y /.

Formation of the internal function object is compatible with realization: there are
canonical maps

(5.1) �W kMap.X;Y /k!Map.kXk; kY k/;

natural in X and Y . This map exists exactly because k�kW sTop!Top, the realization
functor, preserves finite products and is characterized as the map adjoint to

kMap.X;Y /k� kXk � � kMap.X;Y /�Xk
jevalj
���! kY k:

Given topological groups G and H , we consider the function object Map.NG;NH /.
We have an evident isomorphism

Map.NG;NH /�N Fun.G;H /;

where Fun.G;H / is the internal category in Top of functors and natural transformations
from G to H . Explicitly, this has

� objects � 2 Hom.G;H /, and

� morphisms �0
h
�! �1 , where h 2H and �1 D h�0h�1 ,

and thus homeomorphisms N Fun.G;H /n DMap.NG;NH /n D Hom.G;H /�H�n .

Write .H Õ H / for the translation category of the left action of H on itself, viewed
as a category object in Top. This has

� objects h0 2H , and

� morphisms h0
h
�! h1 , where h 2H and h1 D hh0 .
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We have homeomorphisms N.H Õ H /n D H�.nC1/ . The group H acts on the
category .H Õ H / by ı �h0Dh0ı

�1 (on objects) and ı �.h0
h
�!h1/Dh0ı

�1 h
�!h1ı

�1

(on morphisms), where ı 2H .

We let EH WD kN.H Õ H /k, a contractible H space with free H–action.

5.2 Lemma There is a homeomorphism kMap.NG;NH /k� .Hom.G;H /�EH /=H,
where H acts on Hom.G;H / by conjugation.

Proof of Theorem 1.2 We have a commutative diagram

kMap.NG;NH /k
�
//

˛

��

Map.kNGk; kNHk/

ˇ

��

kMap.�;NH /k
�

// Map.k�k; kNHk/

where the vertical maps are induced by restriction along �!NG , and the lower hori-
zontal map is the evident homeomorphism (both source and target are homeomorphic
to BH ). We claim that � is a weak equivalence.

By Lemma 5.2 we see that ˛W .Hom.G;H /�EH /=H ! BH is a fiber bundle with
fiber Hom.G;H /. Since ˇW Map.BG;BH /! BH is also a fibration, and the base
space BH is path connected, � is a weak equivalence if and only if its restriction to the
fiber over the base point is, which is precisely the weak equivalence Hom.G;H /!

Map�.BG;BH / of Theorem 1.1.

6 Proof of Theorem 1.4 Equivariant classifying space

6.1 Recollections on equivariant bundles

A G–equivariant principal H–bundle (or .G;H /–bundle), is a principal H–bundle
� W P !X , together with actions of G on P and X , compatible with � , such that G

acts via maps of principal H–bundles. We will always assume that both G and H are
compact Lie groups.

This definition is somewhat anomalous in that .G;H /–bundles are not characterized
by a property which is local in X . Thus, we say that a .G;H /–bundle is locally trivial
if it looks locally like

.G �H /�ƒ� U !G �G0 U;
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where G0 �G is a closed subgroup, ƒ� WD f.g; �.g// j g 2G0g is the graph of some
homomorphism �W G0 ! H , and ƒ �

�! G0 acts on a space U . The key result is
that if G and H are compact and X is completely regular,2 then any .G;H /–bundle
over X is locally trivial; see [5, Corollary 1.5].

A .G;H /–bundle P !X is numerable if it admits a locally trivializing cover which
itself admits a subordinate partition of unity by G–invariant functions. Over a paracom-
pact base X , every locally trivial bundle is numerable; see [5, Corollary 1.13]. There
is a universal .G;H /–bundle EGH ! BGH , which classifies equivalence classes of
numerable bundles; see [5], [6], and also [8] for a recent and more general treatment.

We will be mainly concerned with the case of .G;H /–bundles � W P!X such that G

acts trivially on X . In such a case, there is a natural function

� W P ! Hom.G;H /

defined so that �.p/.
 / 2 H is the unique ı 2 H such that .
; ı/ � p D p . When
P ! X is locally trivial, the map � is seen to be continuous. Observe that � is
G�H–equivariant, where this group acts on Hom.G;H / by conjugation: .
; ı/ �� D
ı�.
 /�1��.
 /ı�1 .

6.2 Lemma For any locally trivial .G;H /–bundle � W P!X over a G–fixed base X,
the map � W P ! Hom.G;H / is a Serre fibration.

Proof This will follow by showing that .�; �/W P ! Hom.G;H /�X is actually a
fiber bundle. Since � is locally trivial, we can reduce to the case when � has the form
� W .G �H /=ƒ� �U ! U , where ƒ� �G �H is the graph of some homomorphism
�W G!H . Then

.�; �/D �� idU W .G �H /=ƒ� �U ! Hom.G;H /�U;

where �W .G �H /=ƒ� ! Hom.G;H / sends Œ
; ı� 7! ı�.
 /�1�.ı�.
 /�1/�1 . Be-
cause Hom.G;H / is topologically a coproduct of orbits under H–conjugation (see
Remark 1.3 and Proposition 7.1), we see that � is isomorphic to the composite of a
projection map .G �H /=ƒ�!H=CH .�/ (induced by .
; ı/ 7! ı�.
 /�1 ) with an
open and closed immersion, and thus is a fibration.

2Completely regular means that points are closed, and any point and disjoint closed subset are separated
by a real valued function.
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6.3 Outline of the proof

To prove that the map BGH!Map.EG;BGH / (induced by restriction along EG!�)
is a G–equivariant weak equivalence, it suffices to show that it induces a weak equiva-
lence of spaces .BGH /G

0

!Map.EG;BGH /G
0

for all closed subgroups G0�G . With-
out loss of generality, we may assume G0DG since, when the group action is restricted
to the subgroup G0 , we have that BGH is a BG0H and EG is an EG0 . Thus, we will
show that .BGH /G!Map.EG;BGH /G is an equivalence, using the following.

6.4 Lemma Suppose we are given a .G;H /–bundle P ! X over a space X with
trivial G–action, together with maps

(1) ˛W X ! .BGH /G � BGH classifying the G–equivariant H–bundle P ! X ,
ie covered by a .G;H /–bundle map P !EGH , and

(2) �W X ! Map.BG;BH /, whose adjoint z�W X �BG D .X �EG/=G ! BH

classifies the H–bundle .P �EG/=G ! .X �EG/=G , ie is covered by an
H–bundle map .P �EG/=G!EH .

Then the diagram

(6.5)

X
˛

//

�

��

.BGH /G

��

Map.BG;BH /
�
// Map.EG;BGH /G

commutes up to homotopy, where the bottom map is induced by a G–equivariant
map �W BH ! BGH (with G acting trivially on BH ) which classifies the universal
H–bundle viewed as a G–equivariant H–bundle with trivial G–action.

Furthermore, the bottom map of the diagram is a weak equivalence.

Proof The adjoints of both composite maps X!Map.EG;BGH /G are G–equivariant
maps .X�EG/=G!BGH , which in either case are covered by maps .P�EG/=G!

EGH of .G;H /–bundles. The homotopy-commutativity of the diagram follows from
the universal property of BGH as the classifying space for such bundles.

To see that the bottom map of the diagram is a weak equivalence, note that it may be
constructed as follows. Choose any G �H equivariant map EH !EGH (unique up
to homotopy by the defining property of EGH ), and take the quotient with respect to
the free H–actions, obtaining a G–equivariant map �W BH ! BGH which classifies
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the universal bundle as stated. By construction, � is a G–equivariant map which is a
weak equivalence on underlying spaces.

For any G–space X and subgroup G0 � G , the fixed-point space Map.EG;X /G
0

is the space of ordinary homotopy fixed points of the G0–action on X ; as a con-
sequence, Map.EG;�/ takes a map of G–spaces which is a weak equivalence of
underlying spaces, to a G–equivariant weak equivalence. In particular, we see that
Map.EG;BH / ! Map.EG;BGH / is a G–equivariant weak equivalence. Taking
G–fixed points gives an equivalence

Map.BG;BH /�Map.EG;BH /G!Map.EG;BGH /G ;

which is the map in the diagram.

The strategy is as follows. Fix compact Lie groups G and H , and take �W X !
Map.BG;BH / in Lemma 6.4 to be isomorphic to the map .Hom.G;H /�EH /=H!

Map.BG;BH / described in Section 5 which, for 1–truncated H , gives the weak
equivalence of Theorem 1.2. We will

(1) construct a certain .G;H /–bundle P !X (where G acts trivially on X ),

(2) prove that a map ˛W X !BGH classifying P!X induces a weak equivalence
X
�
�! .BGH /G � BGH , and

(3) construct a bundle map .P �EG/=G!EH covering z�W X �BG!BH , the
adjoint to � .

Thus by Lemma 6.4, both ˛ and � fit in a homotopy commutative square (6.5). It
follows that if H is 1–truncated, Theorem 1.2 implies that � is a weak equivalence,
from which it follows that the right-hand vertical arrow is a weak equivalence, which
is the desired result. Note: the hypothesis that H is 1–truncated is used only to show
that � (which exists for arbitrary H ) is a weak equivalence.

6.6 Step 1: Construction of P ! X

As in the previous section, we consider categories Fun.G;H / and .H Õ H / (internal
to Top), where G and H are compact Lie groups. Consider the topological category C

defined as the fiber product

C WD Fun.G;H /�H .H Õ H /
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via the evident restriction functors Fun.G;H /! Fun.feg;H /DH and .H Õ H /!

.H Õ �/DH . (Here H represents a topological category with one object.)

The group G �H acts on C via

.
; ı/ � .�0; h0/D .�0; �0.
 /h0ı
�1/

on objects, and

.
; ı/ � .�0
h
�! �1; h0

h
�! h1/D .�0

h
�! �1; �0.
 /h0ı

�1 h
�! �1.
 /h1ı

�1/

on morphisms, for .
; ı/ 2G �H . (This works exactly because h�0.
 /D �1.
 /h.)
The evident projection functor C ! Fun.G;H / is invariant under the G�H–action
on C , with respect to the trivial action on Fun.G;H /.

We set P WD kNCk and X WD kN Fun.G;H /k, with P !X induced by the evident
projection functor. It is straightforward to show that the induced G�H–action on P is
compatible with the projection map to X and that H acts freely on P with P=H �X .
In particular, P !X has the structure of a G–equivariant principal H–bundle.

We note an equivalent description of C , and hence of P . Let

C 0 WD Hom.G;H /�N.H Õ H /;

where Hom.G;H / is viewed as a topological category with only identity maps. There is
an isomorphism C 0!C of topological categories, given on objects and morphisms by

.�; h0/ 7! .h0�h�1
0 ; h0/; .�; h0

h
�! h1/ 7! .h0�h�1

0
h
�! h1�h�1

1 ; h0
h
�! h1/:

The G�H–action on C 0 induced by this isomorphism is described by

.
; ı/ � .�; h0/D .ı�.
 /
�1��.
 /ı�1; h0�.
 /ı

�1/;

.
; ı/ � .�; h0
h
�! h1/D .ı�.
 /

�1��.
 /ı�1; h0�.
 /ı
�1 h
�! h1�.
 /ı

�1/:

In particular, the projection functor C 0! Hom.G;H / induces a G�H–equivariant
map P!Hom.G;H / (using the conjugation G�H–action on Hom.G;H /), and this
map is a nonequivariant weak equivalence since P � kNC 0k � Hom.G;H /�EH .

6.7 Step 2: The weak equivalence ˛W X ! .BG H /G

Choose any X !BGH classifying the P !X constructed above (this exists because
X is paracompact and completely regular, so numerable), and so covered by a G�H–
equivariant map P ! EGH . Since the action of G on X is trivial, these factor
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through ˛W X ! .BGH /G and ˛0W P ! p�1..BGH /G/, where pW EGH !BGH is
the universal bundle.

6.8 Lemma The map ˛0W P ! p�1..BGH /G/ is a weak equivalence of underlying
spaces.

Proof The map ˛0 fits in the commutative diagram

P
˛0

//

�
$$

p�1..BGH /G/

�
vv

Hom.G;H /

where by Lemma 6.2, both maps marked � are Serre fibrations. The fibers of these �
over � 2 Hom.G;H / are EH and .EGH /ƒ� , respectively, both of which are con-
tractible spaces. Thus ˛0 is a weak equivalence (as are both � ).

It follows that ˛W X ! .BGH /G is a weak equivalence as it is obtained by the quotient
of ˛0 by free H–actions.

6.9 Step 3: The bundle map covering �W X ! Map.BG;BH /

We have a commutative square of functors

C � .G Õ G/D Fun.G;H /�H .H Õ H /� .G Õ G/ //

��

.H Õ H /

��

Fun.G;H /� .G Õ G/ // H

where the vertical arrows are the evident projections, the top horizontal arrow is given by

.�0; h0;g0/ 7! .�0.g0/h0/;

.�0
h
�! �1; h0

h
�! h1;g0

g
�! g1/ 7! .�0.g0/h0

h�0.g/D�1.g/h
�����������! �1.g1/h1/:

on objects and morphisms, and the bottom horizontal arrow is given by

.�0;g0/ 7! �;

.�0
h
�! �1;g0

g
�! g1/ 7! .�

h�0.g/D�1.g/h
�����������! �/:

The group G acts on the objects on the left-hand side of the square, where G acts
on C as described above, by the tautological right action on .G Õ G/, and trivially
on Fun.G;H /. The horizontal arrows are invariant under this G–action.
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Thus, taking geometric realizations of nerves and passing to quotients by G–actions,
we obtain a commutative square

.P �EG/=G //

��

EH

��

.X �EG/=G // BH

which is evidently a map of H–bundles. Under the identification .X �EG/=G �

X �BG � N.Fun.G;H /�G/, we see that the bottom arrow is isomorphic to that
obtained from the evaluation functor Fun.G;H /�G!H , and thus is adjoint to the
map �W X !Map.BG;BH / described earlier.

7 The space of homomorphisms between compact Lie groups

Recall that Hom.G;H / denotes the space of homomorphisms equipped with the
compact-open topology. We give a proof of the following fact, which is standard but
not easily read from the literature with which the author is familiar.

7.1 Proposition Let G and H be Lie groups, with G compact. The map

.�; hC.�// 7! h�h�1
W

a
Œ��

H=C.�/! Hom.G;H /;

where C.�/D fh 2H j �.g/hD h�.g/ for all g 2Gg and Œ�� runs over a set of H–
conjugacy classes in Hom.G;H /, is a homeomorphism. In particular, Hom.G;H / is
locally compact, and thus a CGWH space.

Proof We quote a classical theorem of Montgomery and Zippin [11, page 216]: for
every compact subgroup K of a Lie group L, there exists a neighborhood U of K

such that every closed subgroup of L in U is L–conjugate to a subgroup of K .
Applied to LDG�H and KDƒ� D f.g; �.g// j g 2Gg, the graph of a continuous
homomorphism �W G!H , we obtain a neighborhood U �G �H of ƒ� such that
if ƒ�0 2 U for �0 2 Hom.G;H /, then �0 is H–conjugate to � ; see [2, Lemma 38.1].

There exists a neighborhood V of e 2H such that ƒ� � f.g; h/ j h�.g/�1 2 V g �U .
To see this, use the homeomorphism ˛W G �H ! G �H , ˛.g; h/D .g; h�.g/�1/,
together with the tube lemma applied to G � feg � ˛.U /.
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By definition, the set V 0 WD ff W G!H j f .G/� V g is an open subset of C.G;H /,
the space of continuous maps G!H equipped with the compact-open topology. The
space C.G;H / is a topological group under pointwise multiplication in H ; to prove
this, use the fact that G , H , and finite products thereof are locally compact, so the
relevant evaluation maps are continuous. Therefore, the translated subset V 0� is open in
C.G;H /. Tracing through the definitions, we see that any continuous homomorphism
G!H in V 0� must be conjugate to � .

Thus, we have shown that conjugacy classes are open subsets of Hom.G;H /.

Now consider the map of the proposition. Each H=C.�/ maps bijectively to a con-
jugacy class in Hom.G;H /. As H is Hausdorff, so is C.G;H / and hence so is the
subspace Hom.G;H /. Therefore, each H=C.�/! Hom.G;H / gives a homeomor-
phism to its image, since H=C.�/ is compact. Because the image is also open, the
homeomorphism of the proposition follows.

As an immediate consequence, we see that Hom.G;H / is a coproduct of compact
Hausdorff spaces, and thus locally compact.
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