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Second mod 2 homology of Artin groups

TOSHIYUKI AKITA

YE LIU

In this paper, we compute the second mod 2 homology of an arbitrary Artin group,
without assuming the K.�; 1/ conjecture. The key ingredients are (A) Hopf’s formula
for the second integral homology of a group and (B) Howlett’s result on the second
integral homology of Coxeter groups.

20F36, 20J06; 20F55

1 Introduction

An Artin group (or an Artin–Tits group) is a finitely presented group with at most one
simple relation between a pair of generators. Examples includes finitely generated
free abelian groups, free groups of finite rank, Artin’s braid groups with finitely many
strands, right-angled Artin groups, etc. Artin groups appear in diverse branches of
mathematics such as singularity theory, low-dimensional topology, geometric group
theory, the theory of hyperplane arrangements, etc.

Artin groups are closely related to Coxeter groups. For a Coxeter graph � and the
corresponding Coxeter system .W .�/;S/, we associate an Artin group A.�/ obtained
by, informally speaking, dropping the relations that each generator has order 2 from
the standard presentation of W .�/. The symmetric group Sn is the Coxeter group
associated to the Coxeter graph of type An�1 , and the braid group Br.n/ is the
corresponding Artin group. The Coxeter group W .�/ can be realized as a reflection
group acting on a convex cone U (called Tits cone) in Rn with nD #S the rank of W .
Let A be the collection of reflection hyperplanes. The complement

M.�/D
�
int.U /C

p
�1R

�
n

[
H2A

H ˝C

admits the free W .�/–action, and the resulting orbit space N.�/DM.�/=W .�/ has
the fundamental group isomorphic to A.�/; see van der Lek [20]. The celebrated
K.�; 1/ conjecture states that N.�/ is a K.A.�/; 1/ space. See Section 2.3 for a list
of � for which the K.�; 1/ conjecture is proved.
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Existing results about (co)homology of Artin groups all focus on particular types Artin
groups for which the K.�; 1/ conjecture has been proved. There are very few properties
that can be said for (co)homology of all Artin groups (except for their first integral
homology, which is simply the abelianization). In this paper, we compute the second
mod 2 homology of all Artin groups without assuming an affirmative solution of the
K.�; 1/ conjecture. Our main tools are Hopf’s formula on the second homology (or
the Schur multiplier) of groups, together with Howlett’s theorem (Theorem 3.2) on
the second integral homology of Coxeter groups. We are inspired by Korkmaz and
Stipsicz [19], who computed the second integral homology of the mapping class groups
of oriented surfaces using Hopf’s formula.

Our main result is the following.

Theorem 1.1 Let A.�/ be the Artin group associated to a Coxeter graph � . Then

H2.A.�/IZ2/Š Zp.�/Cq.�/
2

;

where p.�/ and q.�/ are nonnegative integers associated to � (see Theorem 2.6 for
definitions).

As a corollary, we obtain a sufficient condition that the classifying map cW N.�/!

K.A.�/; 1/ induces an isomorphism

c�W H2.N.�/IZ/!H2.A.�/IZ/:

Furthermore, we conclude that the induced homomorphism

c�˝ idZ2
W H2.N.�/IZ/˝Z2!H2.A.�/IZ/˝Z2

is always an isomorphism. This gives affirmative evidence for the K.�; 1/ conjecture.

A part of this paper is based on the second author’s PhD thesis.

2 Preliminaries

We collect relevant definitions and properties of Coxeter groups and Artin groups. We
refer to [2; 17] for Coxeter groups and [23; 24; 25] for Artin groups.

2.1 Coxeter groups

Let S be a finite set. A Coxeter matrix over S is a symmetric matrix M D.m.s; t//s;t2S

such that m.s; s/D1 for all s 2S , and m.s; t/Dm.t; s/2f2; 3; � � � g[f1g for distinct
s; t 2 S . It is convenient to represent M by a labeled graph � , called the Coxeter
graph of M , defined as follows:
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� the vertex set is V .�/D S ;

� the edge set is E.�/D ffs; tg � S jm.s; t/� 3g;

� the edge fs; tg is labeled by m.s; t/ if m.s; t/� 4.

Let �odd be the subgraph of � with V .�odd/D V .�/ and E.�odd/D ffs; tg 2E.�/ j

m.s; t/ oddg inheriting labels from � . By abuse of notation, we frequently regard �
(hence also �odd ) as its underlying 1–dimensional CW-complex.

Definition 2.1 Let � be a Coxeter graph and S its vertex set. The Coxeter system
associated to � is the pair .W .�/;S/, where the Coxeter group W .�/ is defined by
the standard presentation

W .�/D hS j .st/m.s;t/ D 1 for all s; t 2 S with m.s; t/¤1i:

Each generator s 2 S of W has order 2. For distinct s; t 2 S , the order of st is
precisely m.s; t/ if m.s; t/¤1. In the case where m.s; t/D1, the element st has
infinite order.

However, in this paper, we adopt an equivalent definition. For two letters s; t and an
integer m� 2, we shall use the following notation of the word of length m consisting
of s and t in an alternating order:

.st/m WD

m‚…„ƒ
sts � � � :

For example, .st/2 D st , .st/3 D sts and .st/4 D stst .

Definition 2.2 Let � be a Coxeter graph and S its vertex set. The Coxeter group
associated to � is the group defined by the presentation

W .�/D hS jRW [QW i:

The sets of relations are RW D fR.s; t/ j m.s; t/ <1g and QW D fQ.s/ j s 2 Sg,
where R.s; t/ WD .st/m.s;t/.ts/

�1
m.s;t/

and Q.s/ WD s2 .

Note that since R.s; t/DR.t; s/�1 , we may reduce the relation set RW by introducing
a total order on S and put RW WD fR.s; t/ jm.s; t/<1; s< tg. We have the following
presentation with fewer relations:

W .�/D hS jRW [QW i:

We shall omit the reference to � if there is no ambiguity. The rank of W is defined to
be #S .
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Let .W;S/ be a Coxeter system. For a subset T � S , let WT denote the subgroup
of W generated by T , called a parabolic subgroup of W . In particular, WS DW and
W¿ D f1g. It is known that .WT ;T / is the Coxeter system associated to the Coxeter
graph �T (the full subgraph of � spanned by T inheriting labels); see Théorème 2 in
Chapter IV of [2].

2.2 Artin groups

The Artin group A.�/ associated to a Coxeter graph � is obtained from the presentation
of W .�/ by dropping the relation set QW .

Definition 2.3 Given a Coxeter graph � (hence a Coxeter system .W;S/), we intro-
duce a set † D fas j s 2 Sg in one-to-one correspondence with S . Then the Artin
system associated to � is the pair .A.�/;†/, where A.�/ is the Artin group of type �
defined by the presentation

A.�/D h† jRAi;

where RA D fR.as; at / jm.s; t/ <1g and R.as; at /D .asat /m.s;t/.atas/
�1
m.s;t/

.

As in the Coxeter group case, we introduce a total order on S and put RA WDfR.as; at / j

m.s; t/ <1; s < tg. We have the following presentation with fewer relations:

A.�/D h† jRAi:

There is a canonical projection pW A.�/!W .�/, as 7! s .s 2 S/, whose kernel is
called the pure Artin group of type � .

We say that an Artin group A.�/ is of finite type (or spherical type) if the associated
Coxeter group W .�/ is finite; otherwise, A.�/ is of infinite type (or nonspherical type).

2.3 K.�; 1/ conjecture

Consider a Coxeter graph � and the associated Coxeter system .W;S/ with rank
#S D n. Recall that W can be realized as a reflection group acting on a Tits cone
U �Rn ; see [24]. Let A be the collection of the reflection hyperplanes. Put

M.�/ WD
�
int.U /C

p
�1Rn

�
n

[
H2A

H ˝C:

Then W acts on M.�/ freely and properly discontinuously. Denote the orbit space by

(2-1) N.�/ WDM.�/=W:
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It is known that:

Theorem 2.4 [20] The fundamental group of N.�/ is isomorphic to the Artin
group A.�/.

In general, N.�/ is only conjectured to be a classifying space of A.�/.

Conjecture 2.5 Let � be an arbitrary Coxeter graph. Then the orbit space N.�/ is a
K.�; 1/ space, hence a classifying space of the Artin group A.�/.

This conjecture is proved to hold for a few classes of Artin groups. Here is a list of
such classes known so far:

� Artin groups of finite type [12].

� Artin groups of large type [14].

� 2–dimensional Artin groups [7].

� Artin groups of FC type [7].

� Artin groups of affine types zAn , zCn [21].

� Artin groups of affine type zBn [5].

� Artin groups A.�/ such that the K.�; 1/ conjecture holds for all A.�T / where
T � S and �T does not contain 1–labeled edges [13].

� Artin groups whose corresponding Coxeter system .W;S/ has the following
property: every finite irreducible parabolic subgroup WT is either S4 , Z2 or a
dihedral group [6].

2.4 First and second homology of N.�/

Clancy and Ellis [8] computed the second integral homology of N.�/ using the Salvetti
complex for an Artin group. We recall their result and follow their notation.

Let us first fix some notation. Let � be a Coxeter graph with vertex set S . Define
Q.�/D ffs; tg � S jm.s; t/ is eveng and P .�/D ffs; tg � S jm.s; t/D 2g. Write
fs; tg � fs0; t 0g if two such pairs in P .�/ satisfy s D s0 and m.t; t 0/ is odd. This
generates an equivalence relation on P .�/, denoted by �. Let P .�/=� be the set of
equivalence classes. An equivalence class is called a torsion class if it is represented by
a pair fs; tg 2 P .�/ such that there exists a vertex v 2 S with m.s; v/Dm.t; v/D 3.
In the above situation, Clancy and Ellis proved the following theorem.
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Theorem 2.6 [8] Let � be a Coxeter graph and N.�/ as in (2-1). Then

H2.N.�/IZ/Š Zp.�/
2
˚Zq.�/;

where

p.�/ WD number of torsion classes in P .�/=�;

q1.�/ WD number of nontorsion classes in P .�/=�;

q2.�/ WD #.Q.�/�P .�//D #ffs; tg � S jm.s; t/� 4; m.s; t/ is eveng;

q3.�/ WD rank H1.�oddIZ/;

q.�/ WD q1.�/C q2.�/C q3.�/:

Remark Note that H1.N.�/IZ/ŠH1.A.�/IZ/ is isomorphic to the abelianization
of A.�/, which is a free abelian group with rank equal to rank H0.�oddIZ/, the
number of connected components of �odd .

3 Second mod 2 homology of Artin groups

The (co)homology of the orbit space N.�/ coincides with that of the Artin group A.�/,
provided the K.�; 1/ conjecture for A.�/ holds. There are many results about
(co)homology of N.�/ in the literature, for example, [10; 9; 4; 5]. The K.�; 1/

conjecture is known to hold in these cases.

In this section, nevertheless, we shall work on the second homology of arbitrary Artin
groups without assuming that the K.�; 1/ conjecture holds. Our main result is the
following theorem.

Theorem 3.1 Let � be an arbitrary Coxeter graph and A.�/ the associated Artin
group. Then the second mod 2 homology of A.�/ is

H2.A.�/IZ2/Š Zp.�/Cq.�/
2

;

where p.�/ and q.�/ are as in Theorem 2.6.

The outline of our proof is as follows. In Section 3.1, we state Howlett’s theorem on
the second integral homology group H2.W .�/IZ/ of the Coxeter group W .�/. Next,
in Section 3.2, we recall Hopf’s formula of the second homology of a group. The
key of the proof is that, by virtue of Hopf’s formula, we are able to find explicitly
a set �.W / of generators of H2.W .�/IZ/ (Section 3.3), as well as a set �.A/
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of generators of H2.A.�/IZ/ (Section 3.4). On the other hand, Howlett’s theorem
implies that �.W / forms a basis of H2.W .�/IZ/, which is an elementary abelian
2–group of rank p.�/C q.�/. Furthermore, we will show that the homomorphism
p�W H2.A.�/IZ/!H2.W .�/IZ/ induced by the projection pW A.�/!W .�/ maps
�.A/ onto �.W /. Hence p� is actually an epimorphism and becomes an isomorphism
when tensored with Z2 .

3.1 Howlett’s theorem

As previously mentioned, we shall study the homomorphism p�W H2.A.�/IZ/!

H2.W .�/IZ/ induced by the projection pW A.�/!W .�/. A reason for doing so is
that we have the following theorem of Howlett:

Theorem 3.2 [16] The second integral homology of the Coxeter group W .�/ asso-
ciated to a Coxeter graph � is

H2.W .�/IZ/Š Zp.�/Cq.�/
2

;

where p.�/ and q.�/ are as in Theorem 2.6.

Remark The original statement in [16] was

H2.W .�/IZ/Š Z�n1.�/Cn2.�/Cn3.�/Cn4.�/
2

;

where
n1.�/ WD #S;

n2.�/ WD #ffs; tg 2E.�/ jm.s; t/ <1g;

n3.�/ WD #P .�/=�;

n4.�/ WD rank H0.�oddIZ/:

For a Coxeter graph � , the above numbers are related to those used by Clancy–Ellis as
follows:

�n1.�/C n2.�/C n3.�/C n4.�/D p.�/C q.�/:

In fact, n1.�/D #V .�odd/, n2.�/D q2.�/C #E.�odd/ and n3.�/D p.�/C q1.�/.
The above equation follows from the Euler–Poincaré theorem applied to �odd :

#V .�odd/� #E.�odd/D rank H0.�oddIZ/� rank H1.�oddIZ/:
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Example 3.3 We shall make use of the following example later.

Let � D I2.m/. Thus W .�/DD2m is the dihedral group of order 2m. Theorem 3.2
shows that

H2.W .�/IZ/Š

�
Z2 if m is even;
0 if m is odd:

See Corollary 10.1.27 of [18] for a complete list of integral homology of dihedral groups.

3.2 Hopf’s formula

Hopf’s formula gives a description of the second integral homology of a group. We
first recall some notation. For a group G , the commutator of x;y 2G is the element
Œx;y� D xyx�1y�1 . The commutator subgroup ŒG;G� of G is the subgroup of G

generated by all commutators. In general, for any subgroups H and K of G , we
define ŒH;K� as the subgroup of G generated by all Œh; k� for h 2H , k 2K .

Theorem 3.4 (Hopf’s formula) If a group G has a presentation hS jRi, then

H2.GIZ/Š
N \ ŒF;F �

ŒF;N �
;

where F D F.S/ is the free group generated by S and N D N.R/ is the normal
closure of R (the subgroup of F normally generated by the relation set R).

See Section II.5 of [3] for a topological proof. Moreover, Hopf’s formula admits the
following naturality; see Section II.6, Exercise 3(b) of [3].

Proposition 3.5 Let G D F=N D hS j Ri and G0 D F 0=N 0 D hS 0 j R0i as in
Theorem 3.4. Suppose a homomorphism ˛W G ! G0 lifts to z̨W F ! F 0 . Then the
following diagram commutes:

H2.GIZ/ N \ ŒF;F �=ŒF;N �

H2.G
0IZ/ N 0\ ŒF 0;F 0�=ŒF 0;N 0�

H2.˛/

Š

Š

˛�

where ˛� is induced by z̨ .
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For simplicity, we denote by hxiG D xŒF;N � 2 F=ŒF;N � the coset of ŒF;N � repre-
sented by x 2 F and hx;yiG D Œx;y�ŒF;N � 2 ŒF;F �=ŒN;F � for x;y 2 F . Thanks
to Hopf’s formula, second homology classes of G can be regarded as hxiG for
x 2N \ ŒF;F �.

To see what the representatives look like, we make the following simple observations,
which we learned from [19].

Lemma 3.6 The group N=ŒF;N � is abelian.

Proof Note that N=ŒF;N � is a quotient group of N=ŒN;N � and the latter is the
abelianization of N .

Thus we write the group N=ŒF;N � additively. It is clear hniG D�hn�1iG for n 2N .

Lemma 3.7 In the abelian group N=ŒF;N �, for n 2N and f 2 F , we have

hniG D hf nf �1
iG :

Proof Since Œf; n� 2 ŒF;N �, we have

hf; niG D hf nf �1n�1
iG D hf nf �1

iG � hniG D 0:

Therefore, a coset in N=ŒF;N � is represented by an element of the form
Q

r2R rn.r/

for n.r/ 2 Z. Hopf’s formula implies that a second homology class of G can be
represented by an element

Q
r2R rn.r/ 2 ŒF;F �.

Lemma 3.8 Let G DF=N as in Theorem 3.4. If x;y; z 2F such that Œx;y�; Œx; z� 2
N \ ŒF;F �, then

hx;yziG D hx;yiG Chx; ziG ; hx;y
�1
iG D�hx;yiG :

Proof Note that Œx;yz�D Œx;y�yŒx; z�y�1 . Then in the abelian group N=ŒF;N �,

hx;yziG D hx;yiG ChyŒx; z�y
�1
iG :

For the last term, we have hyŒx; z�y�1iG D hx; ziG since

Œx; z��1yŒx; z�y�1
D ŒŒx; z��1;y� 2 ŒN;F �:

Hence the first equality holds. The second follows immediately from the first.
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3.3 Hopf’s formula applied to Coxeter groups

The aim of this subsection is to construct an explicit set �.W / of generators of
H2.W .�/IZ/. Combined with Howlett’s theorem (Theorem 3.2), we show that �.W /

is a basis of H2.W .�/IZ/.

Let us describe the construction of �.W /. Let � be a Coxeter graph and .W;S/ the
associated Coxeter system with S totally ordered. Then W D hS jRW [QW i is as
in Definition 2.2. Let FW D F.S/ be the free group on S and NW DN.RW [QW /

the normal closure of RW [QW . Therefore, W D FW =NW . Using Hopf’s formula,
we identify H2.W IZ/Š .NW \ ŒFW ;FW �/=ŒFW ;NW �. We shall construct three sets
�i.W / � .NW \ ŒFW ;FW �/=ŒFW ;NW � .i D 1; 2; 3/. In view of Lemma 3.6 and
Lemma 3.7, a second homology class of W is of the form hxiW with x expressed
by a word

Q
R.s;t/2RW

R.s; t/n.s;t/
Q

Q.s/2QW
Q.s/n.s/ 2 ŒFW ;FW �. We decom-

pose hxiW D hx1iW Chx2iW Chx3iW , as in the proof of Theorem 3.15, such that
hxiiW is generated by �i.W /. Then �.W /D�1.W /[�2.W /[�3.W / generates
H2.W IZ/. Now we exhibit respectively the constructions of �i.W / .i D 1; 2; 3/.

3.3.1 Construction of �1.W / Let

�1.W /D fhs; tiW j s; t 2 S; s < t; m.s; t/D 2g:

Recall that hs; tiW D Œs; t �ŒFW ;NW � 2 .NW \ ŒFW ;FW �/=ŒFW ;NW � and R.s; t/D

Œs; t � when m.s; t/D 2. Note that the above expression may have repetitions. In fact,
we have the following.

Proposition 3.9 #�1.W /� p.�/C q1.�/.

Proof We shall show that hs; tiW D hs; t 0iW in �1.W / if fs; tg � fs; t 0g in P .�/.
Suppose s < t and s < t 0 with fs; tg � fs; t 0g in P .�/; that is, m.s; t/Dm.s; t 0/D 2

and m.t; t 0/ is odd. Then in NW =ŒFW ;NW �,

hs;R.t; t 0/iW D hs; .t t
0
� � � t/.t 0t � � � t 0/�1

iW D hs; tiW � hs; t
0
iW ;

where the latter equality follows from Lemma 3.8. On the other hand,

hs;R.t; t 0/iW D hsR.t; t
0/s�1R.t; t 0/�1

iW

D hsR.t; t 0/s�1
iW ChR.t; t

0/�1
iW

D hR.t; t 0/iW � hR.t; t
0/iW D 0;
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where the second equality follows from Lemma 3.8 and the third from Lemma 3.7.
Thus we conclude hs; tiW D hs; t 0iW . Similarly, hs; tiW D hs0; tiW in �1.W / if
fs; tg � fs0; tg in P .�/. Hence #�1.W /� # .P .�/=�/D p.�/C q1.�/.

3.3.2 Construction of �2.W / Let

�2.W /D fhR.s; t/iW j s; t 2 S; s < t; m.s; t/� 4; m.s; t/ is eveng:

Recall that R.s; t/ D .st/m.s;t/.ts/
�1
m.s;t/

. Note that when m.s; t/ is even, R.s; t/

is in the kernel of the abelianization map AbW FW ! FW =ŒFW ;FW �, and hence
R.s; t/ 2 ŒFW ;FW �. The following result is obvious.

Proposition 3.10 #�2.W /� q2.�/.

3.3.3 Construction of �3.W / The construction of �3.W / requires more prepa-
ration. Recall that �odd is the subgraph of � considered as a 1–dimensional CW-
complex with 0–cells S and 1–cells fhs; ti j s; t 2 S; s < t; m.s; t/ oddg oriented by
@hs; ti D t � s . We define a group

CW D f.˛; ˇ/ 2 C1.�odd/˚ 2C0.�odd/ j @˛ D ˇg;

where 2C0.�odd/ D f2
 j 
 2 C0.�odd/g is the group of 0–chains with all coeffi-
cients even, and DW is the subgroup of CW generated by .2hs; ti;�2sC 2t/ for all
1–cells hs; ti.

Consider the homomorphism

ˆW W CW !
NW \ ŒFW ;FW �

ŒFW ;NW �

defined by

ˆW

� X
s<t

m.s;t/ odd

n.s; t/hs; ti;
X
s2S

2n.s/s

�
D

� Y
s<t

m.s;t/ odd

R.s; t/n.s;t/
Y
s2S

Q.s/n.s/
�

W

:

The definition is indeed valid by the following easy lemma.

Lemma 3.11 The following are equivalent:

(A)
� X

s<t
m.s;t/ odd

n.s; t/hs; ti;
X
s2S

2n.s/s

�
2 CW ,

(B)
Y
s<t

m.s;t/ odd

R.s; t/n.s;t/
Y
s2S

Q.s/n.s/ 2 ŒFW ;FW �.
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Proof We suppress the ranges since they should be clear:

(A)() @
�X

n.s; t/hs; ti
�
D

X
2n.s/s

()

X
2n.s/sC

X
n.s; t/.s� t/D 0

() Ab
�Y

R.s; t/n.s;t/
Y

Q.s/n.s/
�
D 0() (B);

where Ab is the abelianization map as above, and we write FW =ŒFW ;FW � additively.
Note that Ab.R.s; t//D s� t if m.s; t/ is odd.

The following is a consequence of Example 3.3.

Proposition 3.12 DW lies in the kernel of ˆW .

Proof It suffices to show that any generator .2hs; ti;�2sC2t/ of DW is mapped to the
identity by ˆW , or equivalently, the word ..st/m.ts/

�1
m /2.s2/�1t2 lies in ŒFW ;NW �

when m is odd. Let s; t 2 S with m WDm.s; t/ odd; consider the parabolic subgroup
W 0 WD Wfs;tg of W , which is isomorphic to the dihedral group D2m of order 2m.
From Example 3.3, we know H2.W

0IZ/ D 0. On the other hand, Hopf’s formula
applied to W 0 shows that H2.W

0IZ/Š .NW 0\ ŒFW 0 ;FW 0 �/=ŒFW 0 ;NW 0 �. Therefore,
the word ..st/m.ts/

�1
m /2.s2/�1t2 2NW 0\ ŒFW 0 ;FW 0 � represents the trivial homology

class. That is to say,

..st/m.ts/
�1
m /2.s2/�1t2

2 ŒFW 0 ;NW 0 �� ŒFW ;NW �:

As a consequence, the homomorphism ˆW factors through

CW � CW =DW ! .NW \ ŒFW ;FW �/=ŒFW ;NW �:

Let Z1.�oddIZ/ denote the group of 1–cycles of �odd with integral coefficients and
Z1.�oddIZ2/ the group of 1–cycles of �odd with coefficients in Z2 . Define a homo-
morphism „W W CW !Z1.�oddIZ2/ by .˛; @˛/ 7! x̨ , where ˛ 2 C1.�odd/ such that
@˛ 2 2C0.�odd/ and x̨ 2 C1.�oddIZ2/ is the mod 2 reduction of ˛ . The condition
@˛ 2 2C0.�odd/ asserts that x̨ is indeed a 1–cycle of �odd with coefficients in Z2 .

Proposition 3.13 The homomorphism „W W CW !Z1.�oddIZ2/ factors through an
isomorphism:

CW

CW =DW Z1.�oddIZ2/

„W

Š
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Proof The homomorphism „W is obviously an epimorphism, and

.˛; @˛/ 2 Ker „W () x̨ D 0 2Z1.�oddIZ2/

() ˛ 2 2C1.�odd/

() .˛; @˛/ 2 DW :

Hence Ker „W D DW .

Via the isomorphism in Proposition 3.13, we obtain a homomorphism

‰W W Z1.�oddIZ2/!
NW \ ŒFW ;FW �

ŒFW ;NW �
;

which fits into the following commutative diagram:

(3-1)

CW NW \ ŒFW ;FW �=ŒFW ;NW �

CW =DW Z1.�oddIZ2/

ˆW

‰W

Š

We fix a basis �.�oddIZ/ of Z1.�oddIZ/ Š Zq3.�/ once and for all and denote by
�.�oddIZ2/ the basis of Z1.�oddIZ2/ŠZq3.�/

2
obtained from �.�oddIZ/ by mod 2

reduction Z1.�oddIZ/� Z1.�oddIZ2/.

Define �3.W / to be the image of �.�oddIZ2/ under ‰W :

�3.W /D‰W .�.�oddIZ2//:

To be precise,

�3.W /D

�� Y
s<t

m.s;t/ odd

R.s; t/n.s;t/
�

W

ˇ̌̌̌ X
s<t

m.s;t/ odd

n.s; t/hs; ti 2�.�oddIZ2/

�
:

Proposition 3.14 #�3.W /� q3.�/.

Let �.W /D�1.W /[�2.W /[�3.W /. We conclude that:

Theorem 3.15 �.W / is a basis of H2.W IZ/.

Proof Since #�.W /� p.�/C q.�/ and H2.W IZ/Š Zp.�/Cq.�/
2

(Theorem 3.2),
it suffices to show that �.W / generates H2.W IZ/. An arbitrary homology class
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in H2.W IZ/ is represented by the coset hx1x2x3iW with

x1 D

Y
s<t; m.s;t/D2

Œs; t �n.s;t/;

x2 D

Y
s<t; m.s;t/�4

m.s;t/ even

R.s; t/n.s;t/;

x3 D

Y
s<t; m.s;t/ odd

R.s; t/n.s;t/
Y

Q.s/2QW

Q.s/n.s/;

with x1;x2;x3 2 ŒFW ;FW �. Thus hx1x2x3iW Dhx1iW Chx2iW Chx3iW . We claim
that hxiiW is generated by �i.W /. In fact, the claim for i D 1; 2 is straightforward.
For i D 3, let

˛ D
X

s<t; m.s;t/ odd

n.s; t/hs; ti; ˇ D
X
s2S

2n.s/s:

Thus .˛; ˇ/ 2 CW by Lemma 3.11 with ˆW .˛; ˇ/ D hx3iW . By the commutative
diagram (3-1), the mod 2 reduction x̨ 2 Z1.�oddIZ2/ of ˛ is mapped to hx3iW

by ‰W . This proves the claim.

Remark It is worth noting that in the previous proof, we have managed to get rid of
the relations Q.s/ without altering the homology class hx3iW . This will be crucial in
the proof of Theorem 3.20.

3.4 Hopf’s formula applied to Artin groups

Now we turn to the Artin group case. The arguments here are parallel to those in the
Coxeter group case.

Let � be a Coxeter graph with the vertex set S totally ordered and A D A.�/ the
Artin group of type � with the presentation A D h† j RAi given in Definition 2.3.
Let FA D F.†/ be the free group on † and NA the normal closure of RA . Hopf’s
formula yields H2.AIZ/Š .NA\ ŒFA;FA�/=ŒFA;NA�. For the same reason as before,
a second homology class of A is represented by a coset hxiA with x of the formQ

R.as ;at /2RA
R.as; at /

n.s;t/ 2 ŒFA;FA�.

We construct a set �.A/ of generators of H2.AIZ/ using the same method as in the
previous subsection.
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3.4.1 Constructions of �1.A/ and �2.A/ The constructions of �1.A/ and �2.A/

are exactly parallel to those in the Coxeter case. Let

�1.A/D fhas; at iA j s; t 2 S; s < t; m.s; t/D 2g;

�2.A/D fhR.as; at /iA j s; t 2 S; s < t; m.s; t/� 4; m.s; t/ is eveng:

The same reasoning shows that:

Proposition 3.16 #�1.A/� p.�/C q1.�/; #�2.A/� q2.�/.

3.4.2 Construction of �3.A/ Consider the homomorphism

‰AW Z1.�oddIZ/!
NA\ ŒFA;FA�

ŒFA;NA�

defined by

‰A

� X
s<t

m.s;t/ odd

n.s; t/hs; ti

�
D

� Y
s<t

m.s;t/ odd

R.as; at /
n.s;t/

�
A

:

The definition is valid by the following lemma.

Lemma 3.17 The following are equivalent:

(A)
X
s<t

m.s;t/ odd

n.s; t/hs; ti 2Z1.�oddIZ/,

(B)
Y
s<t

m.s;t/ odd

R.as; at /
n.s;t/

2 ŒFA;FA�.

Proof We suppress again the ranges:

(A)() @
�X

n.s; t/hs; ti
�
D 0

()

X
n.s; t/.t � s/D 0

() Ab
�Y

R.as; at /
n.s;t/

�
D 0() (B);

where AbW FA! FA=ŒFA;FA� is the abelianization map. Note that Ab.R.as; at //D

as � at if m.s; t/ is odd.
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Recall that we have chosen a basis �.�oddIZ/ for Z1.�oddIZ/. Let �3.A/ be the
image of �.�oddIZ/ under ‰A :

�3.A/D‰A.�.�oddIZ//:

To be precise,

�3.A/D

�� Y
s<t

m.s;t/ odd

R.as; at /
n.s;t/

�
A

ˇ̌̌̌ X
s<t

m.s;t/ odd

n.s; t/hs; ti 2�.�oddIZ/

�
:

Proposition 3.18 #�3.A/� q3.�/.

Let �.A/D�1.A/[�2.A/[�3.A/; hence #�.A/� p.�/C q.�/.

Theorem 3.19 �.A/ is a set of generators of H2.AIZ/.

Proof The proof is similar to that of Theorem 3.15, so we omit it.

3.5 Proof of main results

Theorem 3.1 will follow from the next more precise theorem.

Theorem 3.20 The projection pW A.�/!W .�/ induces an epimorphism between
the second integral homologies:

p�W H2.A.�/IZ/� H2.W .�/IZ/:

Proof The epimorphism pW A! W defined by p.as/ D s lifts to zpW FA ! FW .
Then by Proposition 3.5, we obtain the explicit formulation

p�W H2.AIZ/Š
NA\ ŒFA;FA�

ŒFA;NA�
!

NW \ ŒFW ;FW �

ŒFW ;NW �
ŠH2.W IZ/;� Y

R.as ;at /2RA

R.as; at /
n.s;t/

�
A

7!

� Y
R.s;t/2RW

R.s; t/n.s;t/
�

W

:

We claim that p� maps �i.A/ onto �i.W /. The claim is obvious for i D 1; 2. As
for the case i D 3, consider the following diagram:

�.�oddIZ/ �3.A/

�.�oddIZ2/ �3.W /

‰A

mod 2 p�

‰W
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Take ˛ D
P

s<t; m.s;t/ odd n.s; t/hs; ti 2�.�oddIZ/; then

p� ı‰A.˛/D

� Y
s<t

m.s;t/ odd

R.s; t/n.s;t/
�

W

2
NW \ ŒFW ;FW �

ŒFW ;NW �
:

Recall the construction of ˆW ; we have ˆW .˛; @˛/D p� ı‰A.˛/. Thus we obtain

‰W .x̨/D p� ı‰A.˛/

by the commutative diagram (3-1). This proves that p� maps �3.A/ into �3.W /,
and the above diagram commutes. Since the mod 2 reduction restricts to a bijection
�.�oddIZ/ ! �.�oddIZ2/, and since the horizontal maps are onto by definition,
p�W �3.A/!�3.W / is onto. The proof is complete.

Proof of Theorem 3.1 Consider the composition of epimorphisms

(3-2) Z�.A/
�
�!H2.AIZ/

p�
��!H2.W IZ/;

where Z�.A/ is the free abelian group generated by �.A/ and �.!/D! for ! 2�.A/.
Taking the tensor product with Z2 for terms in the above sequence (3-2), we have

Z�.A/
2

�˝idZ2
�����!H2.AIZ/˝Z2

p�˝idZ2
������!H2.W IZ/˝Z2;

where Z�.A/
2

is the elementary abelian 2–group generated by �.A/ with rank #�.A/�
p.�/C q.�/ and H2.W IZ/˝ Z2 Š Zp.�/Cq.�/

2
(Theorem 3.2). Since tensoring

with Z2 preserves surjectivity, this forces #�.A/D p.�/C q.�/, and both maps are
in fact isomorphisms. Thus H2.A.�/IZ/˝Z2 ŠZp.�/Cq.�/

2
. On the other hand, we

have the following exact sequence by the universal coefficient theorem:

0!H2.AIZ/˝Z2!H2.AIZ2/! Tor.H1.AIZ/;Z2/! 0;

where Tor.H1.A.�/IZ/;Z2/ D 0 since H1.A.�/IZ/ is torsion free (Theorem 2.6
and the Remark following). Now we conclude H2.A.�/IZ2/ŠZp.�/Cq.�/

2
and finish

the proof of Theorem 3.1.

As a byproduct of the proof, we have the following corollaries. Recall that M.�/ is
the complement of the complexified arrangement of reflection hyperplanes associated
to the Coxeter group W .�/. The orbit space N.�/DM.�/=W .�/ has fundamental
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group �1.N.�//ŠA.�/. Let cW N.�/!K.A.�/; 1/ be the classifying map. Then c

always induces an isomorphism c�W H1.N.�/IZ/! H1.A.�/IZ/ and an epimor-
phism c�W H2.N.�/IZ/!H2.A.�/IZ/. We give a sufficient condition on � such
that c induces an isomorphism c�W H2.N.�/IZ/!H2.A.�/IZ/.

Corollary 3.21 If � is such that

� P .�/=� consists of torsion classes,

� � D �odd ,

� � is a tree,

then
H2.A.�/IZ/Š Zp.�/

2
:

Hence c induces an isomorphism c�W H2.N.�/IZ/!H2.A.�/IZ/.

Proof Since N.�/ is path-connected and has fundamental group �1.N.�//ŠA.�/,
there is an exact sequence (see for example, Section II.5, Theorem 5.2 of [3])

(3-3) �2.N.�//
h2
�!H2.N.�/IZ/

c�
�!H2.A.�/IZ/! 0;

where h2 is the Hurewicz homomorphism. Suppose that � satisfies the three conditions;
then q1.�/D q2.�/D q3.�/D 0. Theorem 2.6 implies that H2.N.�/IZ/Š Zp.�/

2
.

Then by Theorem 3.20, H2.A.�/IZ/ sits in the sequence

Zp.�/
2

� H2.A.�/IZ/� Zp.�/
2

:

The composition must be an isomorphism; hence H2.A.�/IZ/Š Zp.�/
2

. As a result,
c� must be an isomorphism.

Corollary 3.22 If the three conditions in Corollary 3.21 are satisfied, then pW A!W

induces an isomorphism

p�W H2.AIZ/!H2.W IZ/:

Proof This follows from Howlett’s Theorem 3.2, Theorem 3.20 and Corollary 3.21.

Corollary 3.23 For any Coxeter graph � , the induced map c�W H2.N.�/IZ/ !

H2.A.�/IZ/ becomes an isomorphism after tensoring with Z2 .
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Proof By right-exactness of the tensor functor, taking the tensor product with Z2

preserves the exactness of (3-3):

�2.N.�//˝Z2

h2˝idZ2
������!H2.N.�/IZ/˝Z2

c�˝idZ2
������!H2.A.�/IZ/˝Z2! 0:

Note that c�˝ idZ2
is an isomorphism as a consequence of Theorem 3.1 and Clancy–

Ellis’ Theorem 2.6.

Example 3.24 The Coxeter graphs of affine type zDn .n� 4/ and zEi .i D 6; 7; 8/ all
satisfy the conditions in Corollary 3.21. Therefore, we compute the second integral
homology of the associated Artin groups as follows:

H2.A. zDn/IZ/Š

�
Z6

2
for nD 4;

Z3
2

for n� 5;
H2.A. zEi/IZ/Š Z2 for i D 6; 7; 8:

Besides the above cases, the Coxeter graphs of certain hyperbolic Coxeter groups also
provide plenty of examples satisfying the conditions in Corollary 3.21. We point out
that to the best of the authors’ knowledge, the K.�; 1/ conjecture has not been proved
in the above-mentioned cases.

3.6 Homological stability

We mention a corollary concerning homological stability in the end of this paper.
Consider a family of Coxeter graphs f�igi�1 starting from �1 with a base vertex s1 ,
and each �i .i � 2/ is obtained by adding a vertex si connected to si�1 by an unlabeled
edge. The embedding �i ,! �iC1 of Coxeter graphs induces an inclusion of Coxeter
groups W .�i/ ,!W .�iC1/, as well as an inclusion of Artin groups A.�i/ ,!A.�iC1/;
see [20; 22]. It is known that the families of Artin groups fA.An/g, fA.Bn/g and
fA.Dn/g possess integral cohomological stability [1; 11]. Hepworth proved a more
general result for Coxeter groups.

Theorem 3.25 [15] The map Hk.W .�n�1//!Hk.W .�n// is an isomorphism for
2k � n with arbitrary constant coefficient.

As for the sequence of Artin groups fA.�i/g, it is not difficult to see that the first
integral homology admits stability. We prove a stability result for the second mod 2

homology of the sequence fA.�i/g.

Theorem 3.26 The map H2.A.�n�1/IZ2/!H2.A.�n/IZ2/ is an isomorphism for
n� 4.

Algebraic & Geometric Topology, Volume 18 (2018)



566 Toshiyuki Akita and Ye Liu

Proof Consider the commutative diagram

(3-4)

H2.A.�n�1/IZ2/ H2.A.�n/IZ2/

H2.A.�n�1/IZ/˝Z2 H2.A.�n/IZ/˝Z2

H2.W .�n�1/IZ/˝Z2 H2.W .�n/IZ/˝Z2

p�˝ idZ2
p�˝ idZ2

where the commutativity of the upper square follows from the naturality of the universal
coefficient theorem and that of the lower from tensoring the following commutative
diagram with Z2 :

(3-5)

H2.A.�n�1/IZ/ H2.A.�n/IZ/

H2.W .�n�1/IZ/ H2.W .�n/IZ/

p� p�

Since all vertical maps in (3-4) are isomorphisms and the bottom horizontal map is an
isomorphism when n� 4 (Theorem 3.25), the top horizontal map is an isomorphism
when n� 4.

Corollary 3.27 If �n satisfies the three conditions in Corollary 3.21, then the map
H2.A.�n�1/IZ/!H2.A.�n/IZ/ is an isomorphism for n� 4.

Proof This follows from Corollary 3.22, Theorem 3.25 and the diagram (3-5).
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