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On the third homotopy group of Orr’s space

EMMANUEL DROR FARJOUN

ROMAN MIKHAILOV

K Orr defined a Milnor-type invariant of links that lies in the third homotopy group
of a certain space K! . The problem of nontriviality of this third homotopy group
has been open. We show that it is an infinitely generated group. The question of
realization of its elements as links remains open.

55Q52, 57M25

1 Introduction

In [12] John Milnor defines his x�–invariants of links, which extract numerical values
from the lower central series quotients of the link group and the homotopy classes of
the link longitudes. His questions motivated generations of research concerning these
invariants. While most of Milnor’s original questions have been answered (see, for
instance, K Orr [13; 14], Igusa and Orr [9], Cochran [5], Habegger and Lin [8]), one key
question remains open. Milnor asked if we can extract similar invariants from �=�! .
The first candidate for a transfinite Milnor invariant was given by Orr in [13], where he
suggested a possible domain for these invariants, a space he denoted K! . A transfinite
Milnor invariant is then an element in the third homotopy group, �3, of this space.
Extensions and refinements were introduced by J P Levine in [11], as mentioned toward
the end of this introduction.

The space defined by Orr, denoted by K! , is the mapping cone of the natural map

K.F; 1/!K. yF ; 1/:

Here yF is the pronilpotent completion of F , ie yF D limF=
i.F /, where f
i.F /gi�1

is the lower central series of F . Let L � S3 be a link, G D �1.S
3 nL/ its group

and f W F ! G a meridian homomorphism, where F is the free group with rank
equal to the number of components of L. Assume that all Milnor’s x�–invariants of L

are zero. This means in fact that the homomorphism f induces isomorphisms of all
finite lower central quotients and therefore an isomorphism yF ' yG. Thus we have a
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map S3 nL!K. yF ; 1/, which extends to a map S3!K! . The homotopy class of
this map in �3.K!/ defines an invariant �!; see Orr [14] for details and discussion.
The main aim of the present note is to show that the third homotopy group �3.K!/ is
nontrivial, in fact that it is infinitely generated.

The space K! is simply connected. This follows from the fact that, for a finitely
generated group G, the pronilpotent completion yG is normally generated by the images
of G under the natural injection G! yG; see Section 2.2 and observe that this is not
true for a free group of infinite rank; see Bousfield [2]. For the case G D F , the free
group with at least two generators, it is shown in [2] that H2. yF / is uncountable; hence
the same is true for �2.K!/'H2.K!/'H2. yF /. Cochran and Orr conjectured that
the relevant third homotopy group is nonvanishing: Cochran [4] wrote: “Bousfield has
shown that �2.K!/ is infinitely generated and it appears likely that the same will hold
for all the homotopy groups of K! .”

In light of Orr’s Milnor-type invariant in �3.K!/ the question about nontriviality of
higher homotopy groups of K! is of interest, and is open. The following is the main
result of the present note.

Theorem 1.1 The third homotopy group �3.K!/ is infinitely generated.

Since we cannot see why H3.K!/ is not zero, we concentrate attention on the kernel
of the Hurewicz map in dimension three in order to carry out the argument. In fact, we
prove that the kernel of the (surjective) Hurewicz homomorphism �3.K!/!H3.K!/

is infinitely generated.

Observe that the nontriviality of �3.K!/ does not imply the existence of links with
nonzero invariants �! . In order to solve that realization problem, another space K1

was defined by Levine [11]. The definition of K1 is similar to K! , the difference
being that the algebraic closure is used instead of the pronilpotent completion. Any
element from �3.K1/ can be realized as an invariant for a certain link; however, the
problem of whether the Levine group �3.K1/ is nonzero is still very much open. The
claim, without proof, in Orr’s thesis [13] that all elements in his group �3.K!/ are
realizable as links is still unsubstantiated. In fact, there is a well-defined map relating
Levine’s group and Orr’s: l W �3.K1/! �3.K!/. It is not hard to see from Levine’s
arguments that the elements in the image of this map are exactly the realizable elements.
We do not know whether this map l is surjective. In light of our results below it is
probably not surjective.
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2 Preliminaries

2.1 Whitehead exact sequence

In order to get a hold on �3.K!/ we use an approach due to J H C Whitehead, who
defined a certain exact sequence relating the homology and homotopy groups of a space
which has a transparent form for 1–connected spaces such as K! . Recall the definition
of Whitehead’s universal quadratic functor, �2, introduced in [15, Chapter II]. For
an abelian group A, the group �2.A/ is generated by the symbols 
 .x/, one for
each x 2A, subject to the defining relations

(1) 
 .�x/D 
 .x/;

(2) 
 .xCyC z/� 
 .xCy/� 
 .yC z/� 
 .xC z/C 
 .x/C 
 .y/C 
 .z/D 0.

It follows from [7] that this group is naturally isomorphic to the fourth homology group

�2.A/ŠH4 K.A; 2/:

It follows directly form the generator-relation definition that a surjection of abelian
groups induces a surjection on the �2 construction. This is used repeatedly in what
follows, for example, in the proof in Section 3 of the main theorem.

Let us now recall a natural exact sequence associated to a connected pointed space X ,
due to Whitehead. Let X be a pointed connected CW-complex with skeletal filtration

sk1.X /� sk2.X /� � � � :

In [15], Whitehead constructs the long exact sequence

(2-1) � � � ! �4.X /
Hur4
��!H4.X /! �3.X /! �3.X /

Hur3
��!H3.X /! 0;

where
�3.X / WD im

�
�3.sk2.X //! �3.sk3.X //

�
and Huri is the i th Hurewicz homomorphism.

There is a natural map �2.�2.X //! �3.X /, constructed as follows. Let �WS3! S2

be the Hopf map and let x 2 �2.X / be expressed as the composition

S2
! sk2.X / ,! sk3.X /:

Then the composition

S3 �
!S2

! sk2.X / ,! sk3.X /

defines an element ��.x/ 2 �3.X /. According to [15, Section 13], for a simply
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connected space X , the natural homomorphism

(2-2) �1W�
2.�2.X //! �3.X /; 
 .x/ 7! ��.x/

is an isomorphism of groups.

In more direct terms, for a simply connected space X , the portion

(2-3) �4.X /!H4.X /!H4K.�2.X /; 2/! �3.X /
Hur3
��!H3.X /! 0

of Whitehead’s exact sequence is a portion of the Leray–Serre spectral sequence of the
integral homology of the (2–connected cover) fiber sequence X Œ2�!X!K.�2.X /; 2/.
In particular, we have an isomorphism �2.�2.X //Š �3.X /ŠH4K.�2.X /; 2/ for
any 1–connected space X .

It follows directly from Whitehead’s exact sequence that in order to estimate �3.X / for
a 1–connected space, we might consider the cokernel of the natural map of Whitehead

wX � wW H4.X /! �2.�2.X //ŠH4K.H2.X /; 2/:

The evaluation of this cokernel for X DK! is thus our main concern from now on.

2.2 Completions

The proof of the following lemma follows the argument of Bousfield given in detail
in [1]. We include it here for completeness of exposition, in a more general form.

Lemma 2.1 Let H be a group and fx1; : : : ;xng a finite set of elements of H . Let

H DN1 DN2 D � � �

be a central series of H such that ŒH;Ni �DNiC1 for i D 1; 2; : : : . Suppose that, for
every i � 1, the quotient H=Ni is normally generated by X �Ni D fx1Ni ; : : : ;xnNig.
Consider the inverse limit

� WD limH=Ni

and the associated natural map hW H ! �. The group � is normally generated by the
elements h.X /D fh.x1/; : : : ; h.xn/g.

Proof The normal generation condition implies that, for every u 2Ni , where i � 2,
there exist elements u1; : : : ;un 2Ni�1 such that

u� Œu1;x1� � � � Œun;x1� mod NiC1:
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Let aD .a1N1; a2N2; : : : / 2 �, where aiC1 � ai mod Ni , ai 2H , i � 1. Suppose
that a1 2N1. We claim that there exist elements g1; : : : ;gn 2 � such that

(2-4) aD Œg1; h.x1/� � � � Œgn; h.xn/�:

We construct n elements .gi/1�i�n in the inverse limit as a sequence of elements in
the corresponding quotient groups:

gi D .y
i
1N1;y

i
2N2; : : : / 2 � for 1� i � n;

with the elements yi
j constructed by induction as follows. Since a12N1, the element a2

also lies in N1. There exist elements u1; : : : ;un 2N1 such that

a2 � Œu1;x1� � � � Œun;xn� mod N3:

We set yi
1
D yi

2
WD ui . Then

a2 � Œy
1
2 ;x1� � � � Œy

n
2 ;xn� mod N3:

Suppose we have constructed elements yi
1
; : : : ;yi

k
for 1� i � n such that

yi
jC1 � yi

j mod Nj for 1� j � k � 1;

aj � Œy
1
j ;x1� � � � Œy

n
j ;xn� mod NjC1 for 1� j � k;

and
akC1 � Œy

1
k ;x1� � � � Œy

n
k ;xn� mod NkC1:

There exists rkC2 2NkC1 such that

akC1 D Œy
1
k ;x1� � � � Œy

n
k ;xn�rkC2:

Now we find elements vi 2Nk such that

rkC2 � Œv1;x1� � � � Œvn;xn� mod NkC2:

We set yi
kC1
WD yi

k
vi for 1� i � n. It follows that

akC1 � Œy
1
kC1;x1� � � � Œy

n
kC1;xn� mod NkC2:

Now the result follows from the condition that H=N1 is normally generated by elements
x1N1; : : : ;xnNn and the presentation (2-4).

Remark Let G be a finitely generated group and f
i.G/gi�1 its lower central series.
The completion map G! yG WD limG=
i.G/ induces isomorphisms of lower central
quotients G=
i.G/

�
��! yG=
i. yG/ for i � 1; see [1]. Hence, by Lemma 2.1, yG is

normally generated by images of G.
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2.3 The second homology of nilpotent completions

We need certain information on the second homology groups, to be used in the proof
of the main theorem. In this paragraph we recall a useful relation between the second
homology H2.G/ of a finitely generated group and that of its nilpotent completion
H2. yG/. Let F be as above a finitely generated free group. Bousfield shows in [2]
that H2. yF / is uncountable. In fact, H2. yF / maps onto the exterior square of 2–adic
integers. An exposition of Bousfield’s method of study, the homology of pronilpotent
completions, is given in [10]. Let G be a finitely presented group, F a free group and
F !G an epimorphism, and let RD kerfF !Gg. The quotients

Bk.G/ WD
R\ 
k.F /

ŒR;F; : : : ;F„ ƒ‚ …
k�1

�

are known as Baer invariants of G and are naturally isomorphic to the first (nonadditive)
derived functors of the k th lower central quotients G=
k.G/. They form a tower of
groups.

We will need the following property (see [10, Lemma 6.1]):

Proposition 2.2 Assume that

lim1Bk.G/D 0:

Then the cokernel of the natural map H2. yF /!H2. yG/ is isomorphic to a quotient of
the homology group H2.G/, as in the diagram:

H2.G/

�� ## ##

H2. yF / // H2. yG/ // coker

The condition holds, for example, for all finitely presented groups G with finite H2.G/.

3 Proof of Theorem 1.1

We first prove a statement similar to the claim of the main theorem but regarding a
simpler, virtually nilpotent group G, rather than the free group F above. We will then
compare K! to the following space cofG and complete the proof of the main theorem.
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Given any group G we consider the space cofG defined as the cofiber of

K.G; 1/!K. yG; 1/:

Thus cofF is just Orr’s space K! .

In all our cases this cofiber space will be simply connected, since we only consider
groups G for which yG is normally generated by the images of G. Notice that it is the
case for any finitely generated group (see Remark).

Let G be given by

G D ha; b j ba
D b�1; a2

D 1i D ZÌC2;

where C2 D ha j a
2 D 1i is the two-element cyclic group acting nontrivially on the

integers Z.

We are interested in the third homotopy group of cofG . Note that by an easy computation
below, the third homology H3.cofG/ is infinitely generated, and thus the third homotopy
group of this space does not vanish, since the space is simply connected. But we need
a more precise statement as follows.

Proposition 3.1 Let G be the semidirect product as above. The kernel of the Hurewicz
map

�3.cofG/�H3.cofG/

is infinitely generated.

Proof Our proof is based on the naturality of Whitehead’s map wW H4.X / !

�2.H2.X // with respect to the following zigzagging sequence of maps involving
rational completion, denoted by Q1:

cofG! cof Q1K.Z2˝QÌC2; 1/!Q1K.Q˚n ÌC2; 1/:

Spaces and maps including cof and cofG in this sequence are discussed below. The
functor Q1 is the Q–completion in the sense of Bousfield and Kan [3].

Our interest of course is in the value of the cokernel of w for the space on the left. We
estimate the cokernel of w for the left-hand space cofG by reducing the calculations
to an estimate the cokernel of w for the rightmost space.

We will show shortly that in the above sequence of spaces, the two maps on the left
induce isomorphisms on the said cokernel of the Whitehead map w while the map on
the right induces (again, on the said cokernels) a surjection onto an infinitely generated
group (= the cokernel for the space on the right-hand side), thus completing the proof.
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Recall that to prove the current proposition, using the above exact sequence of White-
head for the case of 1–connected spaces it is enough to show that the cokernel of the
natural map H4.cofG/! �2.�2.cofG// is infinitely generated. However, since the
space cofG is simply connected we have H2.cofG/Š�2.cofG/; thus we shall consider
the second homology in what follows.

First notice that the nilpotent completion of G is just a semidirect product of the 2–adic
integers with the cyclic group C2 , namely, yG Š Z2 ÌC2. This follows from a direct
computation of the nilpotent quotients as a semidirect product.

Now we consider the map on the right in the above zigzag of maps. The spaces and map
are defined using the following cofiber sequence. Its usefulness follows from the fact
that integral homology groups of cofG turns out to be rational vector spaces, by direct
computation as in the lemma below. This allows us to pass to rational completions and
work with vector spaces over the rational numbers:

The first map on the left in the zigzag and its domain and codomain are defined in the
following cofibration sequences diagram where the commutative square on the left is
induced by the maps of C2–modules Z!Q and Z2! Z2˝Q:

K.ZÌC2; 1/ //

��

K.Z2 ÌC2; 1/ //

��

cofG

��

K.QÌC2; 1/ // K.Z2˝QÌC2; 1/ // cof

Lemma 3.2 The cofiber spaces cofG and cof defined above are simply connected
and their homotopy and homology groups are naturally vector spaces over the field of
rational numbers Q. In addition, the above induced map cofG ! cof is a homotopy
equivalence.

Proof Both spaces cofG and cof are simply connected: this is because their funda-
mental groups are clearly abelian and their first homology groups vanish, for example
by the calculation below.

The homology groups Hi.ZÌC2/ can be computed using the usual spectral sequence
for the group extension Z ,!ZÌC2�C2. The second stage of this spectral sequence
stabilizes by the existence of the splitting map C2 ,! .ZÌC2/:

E2
i;j D

8̂̂̂<̂
ˆ̂:

Hi.C2; hbi/D Z=2 if .i; j /D .2k; 1/; k � 0

Hi.C2/D Z=2 if .i; j /D .2kC 1; 0/; k � 0;

Z if .i; j /D .0; 0/;
0 otherwise.
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In particular, we get

Hi.ZÌC2/D

�
Z=2˚Z=2 for i odd;
0 for i even> 0:

In the same way we compute the homology groups Hi.Z2 Ì C2/. In this case, the
spectral sequence has the form

E2
i;j D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

ƒ2k.Z2/ if .i; j /D .0; 2k/; k � 1;

Hi.C2; hbi/D Z=2 if .i; j /D .2k; 1/; k � 0;

Hi.C2/D Z=2 if .i; j /D .2kC 1; 0/; k � 0;

Z if .i; j /D .0; 0/;
0 otherwise.

In particular,

Hi.Z2 ÌC2/D

�
Z=2˚Z=2 for i odd;
ƒ2k.Z2/ for i D 2k; k � 1:

The monomorphism hbi D Z ,! Z2 induces isomorphisms of homology groups

Hi.C2; hbi/'Hi.C2;Z2/:

Hence, the homology groups of cofG are

Hi.cofG/D

�
ƒ2k.Z2/ for i D 2k; k � 1;

0 for i D 2kC 1:

Similarly, the homology groups of cof are

Hi.cof/D
�
ƒ2k.Z2˝Q/ for i D 2k; k � 1;

0 for i D 2kC 1:

Note that all exterior powers � 2 of Z2 are Q–vector spaces. To see this, we present
the exterior power as a natural quotient of the tensor power, and after tensoring it
with Z= l , where l � 2, one obtains a finite cyclic group, whose image in the exterior
power is zero. That is, the exterior powers � 2 of Z2 are divisible. Since these groups
are torsion-free, we conclude that they are Q–vector spaces. Thus the map cofG! cof
is a homology equivalence. Since cofG and cof are simply connected, cofG ! cof is
a homotopy equivalence.

This completes our discussion of the first map in the above zigzag of maps.

We now turn our attention to the second map. This map arises from the fact proven in
Lemma 3.2. As we saw in Lemma 3.2 the homology of cof is a vector space over the
field Q.
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Spaces here are virtually nilpotent, hence their Q–completions are the same as Q–
localizations, in particular, the Q–homology groups of their Q–completions are the
same as those of the spaces (see [6, Proposition 3.4]). Thus the map above that defines
the space cof as homotopy quotient, namely,

K.Z2˝QÌC2; 1/! cof;

factors through the rational completion-localization of the domain. The second map is
this canonical factorization.

Lemma 3.3 The second map K.Z2˝QÌC2; 1/! cof above induces an isomorphism
homology with rational coefficients.

Proof This follows directly from the fact that the cobase in the cofibration that defines
cof, namely, the space K.Q Ì C2; 1/, has trivial homology with coefficients in Q

by a direct computation via the usual H.�;Q/ spectral sequence whose E2
p;q term

vanishes anywhere except at .p; q/D .0; 0/. Put otherwise, the group G is isomorphic
to the free product C2 �C2 of two cyclic groups whose Q–homology vanishes by the
usual pushout Mayer–Vietoris argument.

It follows from the lemma above that to estimate the cokernel of the Whitehead natural
transformation H4! �2H2 for the 1–connected space cofG we work entirely with
vector spaces over Q and we need to estimate the following cokernel of Whitehead’s
map w for the third space in the above zigzag. Using the computation in the proof of
Lemma 3.2 we need to estimate

coker.ƒ4.Z2˝Q/! �2ƒ2.Z2˝Q//:

We show that this cokernel maps onto an infinitely generated group by comparing it to
the cokernel of the Whitehead map of another space, the fourth in the zigzag above, as
follows:

To build the map on the right of our zigzag we note that for any n, there is an epimor-
phism Z2˝Q!Q˚n which induces a map between groups

.Z2˝Q/ÌC2!Q˚n ÌC2;

where the action by C2 in both semidirect products is given by negation. The group
Q˚nÌC2 is Q–perfect, ie its abelianization is a torsion group. We have a map between
Q–completions

Q1K.Z2˝QÌC2; 1/!Q1K.Q˚n ÌC2; 1/:
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As noted above, both spaces K.Z2˝QÌC2; 1/ and K.Q˚n ÌC2; 1/ are virtually
nilpotent, hence their Q–completions are the same as Q–localizations, in particular,
the Q–homology groups of their Q–completions are the same as those of the spaces
(see [6, Proposition 3.4]).

Recall that the �2 functor sends epimorphisms to epimorphisms. The natural maps
between Whitehead sequences

H4Q1K.Z2˝QÌC2; 1/ //

��

�2.H2Q1K.Z2˝QÌC2; 1//

��

H4Q1K.Q˚n ÌC2; 1/ // �2.H2Q1K.Q˚n ÌC2; 1//

are the following:

ƒ4.Z2˝Q/ //

����

�2.ƒ2.Z2˝Q//

����

ƒ4.Q˚n/ // �2.ƒ2.Q˚n//

Now observe that for nD2; 3, the group ƒ4.Q˚n/ is zero, but the group �2.ƒ2.Q˚n//

is infinitely generated. Therefore, the cokernel of the upper horizontal map in the last
diagram must be an infinitely generated group.

We conclude that the cokernel of the map

H4.cofG/! �2.�2.cofG//

is an infinite divisible group as claimed.

Proof of Theorem 1.1 We use the statement in Proposition 3.1 about cofG for the
semidirect product G as above to deduce a similar statement about the free group F .
Consider a free group F of rank 2 and an epimorphism F ! G , and construct the
map between cofibers:

K.F; 1/

��

// K. yF ; 1/ //

��

K!

��

K.G; 1/ // K. yG; 1/ // cofG

In light of H1.F /ŠH1. yF / above we have an isomorphism H2. yF /'H2.K!/. The
cokernel of the natural map

H2. yF /'H2.K!/!H2.cofG/Dƒ
2.Z2/
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is isomorphic, by Proposition 2.2, to a quotient of H2.G/D 0 (see Section 2); hence
we conclude that H2. yF /!H2.cofG/ is an epimorphism. Hence the middle vertical
map in the natural map between Whitehead exact sequences is a surjection:

H4. yF / //

��

�2.H2. yF // // //

����

coker 1-1
//

?
����

�3.K!/

��

H4.cofG/ // �2.H2.cofG// // // coker 1-1
// �3.cofG/

It is clear now that the arrow with a question mark must be a surjection: since the map
H2. yF /!H2.cofF /DH2K! is an epimorphism, the same is true for �2.H2. yF //!

�2.H2.cofG//, and we conclude that the map

H4. yF /! �2.H2. yF //

has a cokernel which maps onto an infinite divisible group. Theorem 1.1 now follows
from the Whitehead exact sequence for the simply connected space K!:

H4. yF /! �2.H2. yF //! �3.K!/!H3. yF /! 0:

4 Localization of virtually nilpotent spaces

Here we deduce from the above results that, for a virtually nilpotent group G, the
HZ–localization of K.G; 1/ is not, in general, a K.�; 1/. In fact we consider the
simplest possible nontrivial example of such a group, namely, the semidirect product G

above. Recall from [6] that, for a virtually nilpotent space X , the arithmetic square

XZ

��

// XP

��

XQ
// XP;Q

is, up to homotopy, a fiber square. Here P D
L

Z=p over all primes and, for a ring R,
XR is the HR–localization.

Consider X DK.G; 1/, where G is the group from the previous proof, ie G DZÌC2.
Clearly, G is virtually nilpotent, and it has an infinite cyclic subgroup of index two.
Thus the space X is virtually nilpotent and therefore the arithmetic square for X is a
fiber square. Since the group G is Q–acyclic, XQ is contractible and the arithmetic
square degenerates to the fiber sequence

XZ!XZ=2!XZ=2;Q:
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Clearly we can ignore all primes from P except for p D 2.

The Z=2–localization XZ=2 coincides with the Z=2–completion and is equivalent to
K.Z2ÌC2; 1/. The space K.Z2ÌC2; 1/ is virtually nilpotent; hence its Q–localization
coincides with its Q–completion. Therefore

�i.XZ/' �iC1.Q1K.Z2 ÌC2; 1//;

for all i � 2. The natural map Z2 ÌC2! Z2˝QÌC2 induces an isomorphism of
Q–homology groups; hence

�i.XZ/' �iC1.Q1K.Z2˝QÌC2; 1//:

It follows from the previous section that the kernel of the third Hurewicz homomorphism
for the space Q1K.Z2˝QÌC2; 1/ contains an infinitely generated subgroup; hence
�2.XZ/¤ 0.
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