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A motivic Grothendieck–Teichmüller group

ISMAËL SOUDÈRES

We prove the Beilinson–Soulé vanishing conjecture for motives attached to the moduli
spaces M0;n of curves of genus 0 with n marked points. As part of the proof, we
also show that these motives are mixed Tate. As a consequence of Levine’s work, we
thus obtain a well-defined category of mixed Tate motives over the moduli space of
curves M0;n . We furthermore show that the morphisms between the moduli spaces
M0;n obtained by forgetting marked points and by embedding boundary components
induce functors between the associated categories of mixed Tate motives. Finally, we
explain how tangential base points fit into these functorialities.

The categories we construct are Tannakian, and therefore have attached Tannakian
fundamental groups, connected by morphisms induced by those between the cate-
gories. This system of groups and morphisms leads to the definition of a motivic
Grothendieck–Teichmüller group.

The proofs of the above results rely on the geometry of the tower of the moduli
spaces M0;n . This allows us to treat the general case of motives over Spec.Z/ with
coefficients in Z , working in Spitzweck’s category of motives. From there, passing
to Q coefficients, we deal with the classical Tannakian formalism and explain how
working over Spec.Q/ yields a more concrete description of the Tannakian groups.
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1 Introduction

M Levine [38] considers a smooth quasiprojective variety X over a number field F .
He shows that when the motive of X in DM=F ;Q.Spec.F// is mixed Tate and satisfies
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the Beilinson–Soulé vanishing property, there is a well-defined Tannakian category of
mixed Tate motives MTM=F ;Q.X/ whose Tannakian Hopf algebra HX is built from a
complex of algebraic cycles that compute the higher Chow groups. Moreover, Levine
proves that the Tannakian group GX D Spec.HX / fits into a short exact sequence

1!GX;geom!GX !GSpec.F/! 1;

where GX;geom can be identified with Deligne–Goncharov’s motivic fundamental group
�mot
1 .X; x/ after a choice of (tangential) base point x 2X.F/.

The above exact sequence admits a Lie coalgebra counterpart

0! LcSpec.F/! LcX ! LcX;geom! 0

by considering the set of indecomposable elements of HX . In [45], the author shows
how, for

X DM0;4 ' P1 n f0; 1;1g;

the explicit algebraic cycles constructed in Soudères [44] describe the coaction of
LcSpec.F/ on LcX;geom .

In order to generalize this work to the moduli space M0;n of curves in genus 0 with
n marked points for any n� 3, the first step is to show that the moduli spaces M0;n

satisfy the Beilinson–Soulé vanishing conjecture.

Working over Spec.F/ allows Levine to relate HM0;n
to a cycle complex computing

motivic cohomology. However, the moduli spaces of curves are well-defined over
Spec.Z/, so there is no reason to restrict ourselves to Spec.F/ when considering the
Beilinson–Soulé vanishing property; rather, we work in the framework of Cisinski and
Déglise (see [14]). Even more generally, the Beilinson–Soulé vanishing property and
the mixed Tate property hold in Spitzweck’s framework (see [50]) of motives over
Spec.Z/ with Z coefficients, as proved in Theorem 3.8 below.

From Theorem 3.8, establishing the Beilinson–Soulé vanishing property for the moduli
space of curves M0;n , we deduce from Spitzweck’s work [50; 49] that there exists
a well-defined triangulated category, DMT=Spec.Z/;Z.M0;n/, of mixed Tate motives
over M0;n (Theorem 4.9).

We consider two families of natural morphisms between the moduli spaces M0;n ,
the first given by forgetting some marked points, and the second by embedding
M0;n1

�M0;n2
as a codimension-1 boundary component of M0;n1Cn2�2 on the
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Deligne–Mumford compactification. Following Grothendieck’s terminology in the
Esquisse d’un programme, we call the collection of moduli spaces M0;n equipped
with these morphisms the “tower” of genus zero moduli spaces.

These morphisms induce functors between the categories DMT=Spec.Z/;Z.M0;n/, and
thence morphisms between the corresponding Tannakian groups when working with Q

coefficients. This leads to the definition of a motivic Grothendieck–Teichmüller group,
which is given in Definition 5.1.

The structure of the paper is as follows:

In Section 2 we review the framework of motivic P1 spectra and the stable motivic
homotopy category SH.S/. We briefly present Spitzweck’s triangulated category
of mixed motives over S , and review some of its properties: the Gysin/localization
triangle, the projective bundle formula and the blow-up formula. We use the versions
derived from the work of Déglise [15], because Spitzweck’s construction relies on an
oriented E1–ring spectrum.

In Section 3 we review the geometry of the spaces M0;n and their Deligne–Mumford
compactifications M0;n . We first prove the triviality of the normal bundle of D0
in M0;n [D0 for any open codimension-1 stratum D0 of M0;n . Then we prove
that the motives associated to the M0;n are mixed Tate over Spec.Z/ and satisfy the
Beilinson–Soulé vanishing property. Section 3 ends with the proof that this result also
holds for the open moduli spaces M0;n .

We begin Section 4 by reviewing the construction of limit motives as developed by
Spitzweck [46; 47] and Ayoub [3]. We also treat the case of motivic tangential base
points. Then we show how limit motives, applied to the moduli space of curves
M0;n and to an open codimension-1 stratum D0 , lead to a natural functor between
DMT=Spec.Z/;Z.M0;n/ and DMT=Spec.Z/;Z.M0;n1

�M0;n2
/. The use of tangential

base points then leads to functors

DMT=Spec.Z/;Z.M0;n/! DMT=Spec.Z/;Z.Spec.Z//:

Functoriality with respect to forgetful morphisms is a consequence of Spitzweck’s
construction. Working over Spec.Z/ with integral coefficients, these categories are
equivalent to categories of perfect representations of affine derived group schemes.
The above functorialities lead to the definition of a motivic Grothendieck–Teichmüller
space in this setting, which concludes Section 4.
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In Section 5 we derive some consequences of the above constructions in more clas-
sical settings. In particular, working with Q coefficients, we obtain a Tannakian
group associated to the Tannakian category given by the heart of the t –structure
of DMT=Spec.Z/;Q.M0;n/. This leads to a motivic Grothendieck–Teichmüller group
defined in terms of automorphisms of group schemes (and not derived group schemes).
Working over Spec.F/, the spectrum of a number field, we show how the Deligne–
Goncharov category of mixed Tate motives over the ring of its integers agrees with
Spitzweck’s construction of mixed Tate motives. We also show how our construction
passes to this context. At the end of the section, we explain the relation between our
construction and Levine’s approach to mixed Tate motives and algebraic cycles.

The final section is devoted to some conjectures on the “geometric” (derived) group
schemes defining the motivic Grothendieck–Teichmüller group and their relation to
Betti and de Rham realizations.

2 A short review of Spitzweck’s category of mixed motives

Let S be a Noetherian separated scheme of finite Krull dimension. In [50], Spitzweck
constructed a E1–ring object MZS in the category Spt†P1.S/ of motivic symmetric
P1–spectra (see [29; 19; 26]). The P1–spectrum MZS serves in particular as the
motivic Eilenberg–Mac Lane spectrum; it is also an oriented ring spectrum. This
means that in SH.S/, it is an algebra over the algebraic cobordism spectrum MGL.
Considering the category ModMZS

of modules over MZS , Spitzweck uses a model
structure on ModMZS

compatible with that on Spt†P1.S/ to define a triangulated
category DMZ.S/ of motives over S with integral coefficients, together with the
adjoint functors

ModMZS
Spt†P1.S/

˝MZS

and
DMZ.S/ SH.S/

˝MZS

The left to right functors ! are forgetful functors, and the tensor products are those
given by the symmetric monoidal structure of Spt†P1.S/ (corresponding to the smash
product ^ in [29]).

Below we recall some definitions and properties needed for our construction of a motivic
Grothendieck–Teichmüller group. Our construction is geometric and is based on the
main distinguished triangles in DMZ.S/ and on the functoriality of its construction. In
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particular, we recall the definition of the Gysin distinguished triangles and the blow-up
formula in Spitzweck’s category below. Thanks to the existence of a first Chern class
in Spitzweck’s category and its relation with the stable motivic homotopy category,
these are in fact direct consequences of Déglise’s work [15]. Working over a number
field and with Q coefficients would remove the need for the following subsections,
because in that context these properties are proved in [54].

2.1 Symmetric spectrum, SH.X/ and mixed motives

Let SmS denote the category of smooth schemes of finite type over S , and SmS jNis

the smooth Nisnevich site over S . We recall below some facts about Spitzweck’s
construction [50]. We are mostly interested in the case where S D Spec.Z/.

Let Spc.S/ be the category of (motivic) spaces over S , that is, of Nisnevich sheaves
over S with values in simplicial sets. Spitzweck’s construction actually uses complexes
of sheaves of abelian groups. Classical comparison functors and the transfer of structures
ensure that his construction passes to motivic spectra. By the Yoneda embedding, any
scheme in SmS is a motivic space (constant in the simplicial direction); any simplicial
set is also a motivic space as a constant sheaf. The terminal object is represented by S
itself.

A pointed (motivic) space is a motivic space X together with a map

xW S !X:

The category of pointed spaces is denoted by Spc
�
.S/. To any space X , one associates

a canonical pointed space XC D X t �. The category Spc
�
.S/ admits a monoidal

structure ˝ induced by the smash product on pointed simplicial sets.

Recall that the simplicial circle is the coequalizer of

�Œ0���Œ1�:

Let S1s be the corresponding pointed space. Moreover, let S1T , the Tate circle, be the
pointed space represented by .P1; f1g/.

Briefly, a symmetric P1–spectrum E is a collection of pointed spaces ED.E0;E1; : : : /
together with structure maps S1T ˝En ! EnC1 and the extra data of a symmetric
group action †n �En!En such that the composition maps

.S1T /
˝p
˝En!EnCp

are †p�†n–equivariant.
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The iterated products of S1s (resp. S1T ) are denoted by Sns (resp. SmT ). Tensoring with
the simplicial circle (resp. the Tate circle) induces a simplicial (resp. Tate) suspension
functor, denoted by †1s (resp. †1T ). In this manner, any motivic space X induces a
symmetric P1–spectrum

†1T XC D .XC; S
1
T ˝XC; S

2
T ˝XC; : : : /:

We denote by Spt†P1.S/ the category of symmetric P1–spectra. The (motivic) stable
homotopy category SH.S/ is obtained from Spt†P1.S/ by inverting stable weak equiv-
alences [26]. In particular, the suspension functors †s and †T are invertible, as are
the A1 weak equivalences.

The category SH.S/ is a triangulated category with shift induced by †1s . In SH.S/,
the suspension functor †s will be denoted by the shift notation Œ1�. Note that S1T is
isomorphic to S1s ˝ .Gm; f1g/ in SH.S/.

In [50, Definition 4.27], Spitzweck defines a P1–spectrum MZS , or simply MZ

when there is no ambiguity about S . The P1–spectrum MZS is an E1–ring object
in Spt†P1.S/. It induces a ring object in SH.S/, again denoted by MZS .

The category of motives DMZ.S/ is defined as the homotopy category of modules (in
P1–spectra) over MZS . For any X 2 SmS , the category DMZ.X/ is defined similarly
as the homotopy category of modules over

MZX D f
�MZS ;

where f W X ! S is the structural morphism and f �W Spt†P1.S/! Spt†P1.X/ is the
pullback functor between categories of spectra. We will usually keep track of the
ground scheme S and write DM=S;Z.X/.

For X f
�!S in SmS , we have a functor

SmX
MX
�!DM=S;Z.X/; Y 7!MX .Y /D†

1
T .YC/˝ f

�MZS D†
1
T .YC/˝MZX :

In DM=S;Z.X/, the tensor unit MZX Df �MZS may also be denoted by ZX .0/ when
we want to emphasize the structural property of its actually being the unit. We may use
MZX when we want to insist that properties of its construction play an important role.

The Tate object MZX .1/D ZX .1/ is defined by

MZX .1/Œ2�D ZX .1/Œ2�D†
1
TZX .0/D .P

1;1/˝MZX ;

Algebraic & Geometric Topology, Volume 18 (2018)



A motivic Grothendieck–Teichmüller group 641

and corresponds as usual to the cone of the morphism

MX .f1g/!MX .P
1/

shifted by �2.

The suspension †n�2ps ı†
p
T is denoted by †n;p .

Remark 2.1 In [50, Section 10], Spitzweck showed that the functor X ! DMZ.X/

satisfies the six-functors formalism.

2.2 An oriented cohomology theory

For a smooth scheme over S , f W X! S , Spitzweck shows [50, Proposition 11.1] that
the ring objects MZS and f �MZS are oriented in the sense of Morel and Vezzosi [53].
In more detail, if P1 denotes the colimit of the Pn , there is a distinguished element

� 2 HomSH.X/.†
1.P1C/; †

2;1f �MZS /

such that the element � restricts to the canonical element induced by the unit of
f �MZS in HomSH.S/.†

1.P1C/; †2;1f �MZS /.

If S is regular, then for any smooth Y !X , the morphism

Pic.Y /! HomSH.S/.†
1.YC/; †

1.P1C//

is an isomorphism and endows DMZ.X/ with an orientation as described by Déglise
in [15, 2.1(Orient) axiom] (see [15, 2.3.2] or [39, Proposition 4.3.8]). Hence, for any
smooth Y !X , there is a morphism called the first Chern class,

c1W Pic.Y /! HomDMZ.X/.MX .Y /;ZX .1/Œ2�/;

which is functorial in Y and has the property that the image of the canonical bundle
on P1X is the canonical projection.

Note that the formal group law attached to the first Chern class is the additive law [50,
Theorem 7.10].

Thanks to Déglise’s work [15], one then obtains the classical properties described in
the following subsection.
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2.3 Distinguished triangles and split formulas in DMZ .X/

From now on, X will always denote a smooth scheme in SmS , where S is at worst the
spectrum of a Dedekind domain of mixed characteristic. We are mostly interested in the
case S D Spec.Z/. Let Y be a smooth scheme in SmX and pW P ! Y a projective
bundle over Y of rank n. We denote by � the canonical line bundle over P and write

c D c1.�/W MX .P /! ZX .1/Œ2�

for the first Chern class. The diagonal

ıi W P ! P �Y � � � �Y P„ ƒ‚ …
iC1 times

composed with p�˝ c˝i gives a morphism

�P;i W MX .P /!MX .Y /.i/Œ2i �:

Proposition 2.2 (projective bundle formula [15, Theorem 3.2]) With the above
notation, the morphism

�P W MX .P /!

nM
iD1

MX .Y /.i/Œ2i �

given by �P D
Pn
iD0 �P;i is an isomorphism.

For any 06 r 6 n, we can now define the embedding

�r W MX .Y /.r/Œ2r�
�.�1/r
���!

nM
iD1

MX .Y /.i/Œ2i �!MX .P /:

Let Z be a smooth closed subscheme of Y such that Z is everywhere of codimension n.
As in other situations, we define the motive of Y with support in Z as

MX;Supp.Z/.Y /DMX .Y=.Y nZ//:

In Proposition 4.3 of [15], Déglise attaches to the pair .Z; Y / a unique isomorphism

(purity) pY;Z W MX;Supp.Z/.Y /!MX .Z/.n/Œ2n�

which is functorial with respect to Cartesian morphisms of such pairs. Furthermore,
when E is a vector bundle over Y of rank n and P D P .E˚ 1/, pP;Y is the inverse
of the morphism

MX .Y /.n/Œ2n�
�n
�!MX .P /!MX;Supp.Y /.P /:
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The purity isomorphism allows us to rewrite the localization distinguished triangle as
follows.

Proposition 2.3 (Gysin triangle [15, Definition 4.6]) Let Y be a smooth scheme
over X and let Z be a smooth closed subscheme of Y such that Z is everywhere of
codimension n. Then there is a distinguished triangle

(1) MX .Y nZ/
j�
�!MX .Y /

i�
�!MX .Z/.n/Œ2n�

@Y;Z
��!MX .Y nZ/Œ1�;

where i� (resp. @X;Z ) is called the Gysin morphism (resp. residue morphism).

The Gysin triangle is functorial, compatible with both the projective bundle isomor-
phisms and the induced embeddings �r . Moreover, Gysin morphisms are multiplicative
with respect to compositions and products [15, Corollaries 4.33 and 4.34].

After generalizing and studying Gysin morphisms f � for projective morphisms
f W Y1! Y2 in SmX [15, Definition 5.12], and after giving a strong dual to MX .Y /
for Y smooth projective over X [15, Theorem. 5.23], Déglise goes on to prove the
following blow-up formula.

Proposition 2.4 (blow-up formula [15, Theorem 5.38]) Let Y be a smooth scheme
over X and Z a smooth closed subscheme of Y purely of codimension n. Let BZ.Y /
be the blow-up of Y with center Z , and let EZ denote the exceptional divisor. Then

MX .BZ.Y //'MX .Y /˚

n�1M
iD1

MX .Z/.i/Œ2i �:

2.4 The Beilinson–Soulé vanishing property

In [38], Levine proved that if X is a smooth variety over a number field F , with
a motive of mixed Tate type, that satisfies the Beilinson–Soulé vanishing property
(see (BS) below), then there exists a well-defined Tannakian (in particular, Q–linear)
category MTM=F ;Q.X/ of mixed Tate motives over X [38, Theorem 3.6.9]. Moreover,
Levine proved the existence of a short exact sequence relating the Tannakian groups
of MTM=F ;Q.F/ and of MTM=F ;Q.X/ [38, Section 6.6]. This short exact sequence
is a motivic avatar of the short exact sequence for étale fundamental groups relating
Gal.F=F/ and �et

1 .X/.

In a similar direction, Spitzweck showed in [49] that DMT=F ;Z.X/, the triangulated
category of mixed Tate motives over X (ie before applying a t –structure and obtaining
MTM.�/), is the category Perf.G�X / of perfect representations of an affine derived
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group scheme over Z provided that X is a smooth connected F –scheme of finite type
(where F is any field) satisfying a weaker Beilinson–Soulé vanishing property (see [49,
Theorem 2.2]). Corollary 8.4 in [50] extends this construction to the case where X is
smooth over S and satisfies the condition of Definition 2.8. Let us give the necessary
definitions and results.

Definition 2.5 For a smooth scheme X over S , let DMT=S;Z.X/ be the full triangu-
lated subcategory of compact objects in the full triangulated subcategory of DM=S;Z.X/

generated by Tate objects ZX .n/ for n 2 Z. When working with R coefficients for
any ring R , we write DMT=S;R.X/.

Spitzweck shows in Corollaries 7.19 and 7.20 of [50] that his construction recovers
motivic cohomology.

Proposition 2.6 [50, 7.19 and 7.20] Let D be a Dedekind domain of mixed charac-
teristic. For a smooth scheme X over S D Spec.D/, we have

HomSH.S/.†
1.XC/;MZS .p/Œk�/' HomDM.S/.MS .X/;ZS .p/Œk�/

' HomDM.X/.ZX .0/;ZX .p/Œk�/

' Hkmot.X; p/;

where Hkmot.X; p/ denotes the motivic cohomology in the sense of Levine [36]. This
recovers the higher Chow groups of X (see [8; 9; 35])

(2) Hkmot.X; p/D CHp.X; 2p� k/:

Definition 2.7 (Beilinson–Soulé vanishing property) Let X be a smooth scheme
over S . One says that X satisfies the Beilinson–Soulé vanishing property (BS) if and
only if

(BS) HomSH.S/.†
1.XC/;MZS .p/Œk�/D 0

for all p > 0 when k < 0 and for all p > 0 when k D 0.

Spitzweck often needs only the following weaker form of this property.

Definition 2.8 (weak Beilinson–Soulé vanishing property) Let X be a smooth
scheme over S . One says that X satisfies the weak Beilinson–Soulé vanishing property
(wBS) if and only if

(wBS) 8p > 0 9N 2 Z 8k < N HomSH.S/.†
1.XC/;MZS .p/Œk�/D 0:
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Remark 2.9 Theorem 7.10 in [50] implies that, for a smooth irreducible S –scheme X ,
where S D Spec.D/ is in particular regular, we have

HomDM.S/.MS .X/;Z.p/Œk�/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 for p < 0;
0 for p D 0 and k ¤ 0;
Z for p D 0 and k D 0;
OX .X/

� for p D 1 and k D 1;
Pic.X/ for p D 1 and k D 2:

Theorem 2.10 S D Spec.Z/ satisfies the Beilinson–Soulé vanishing property (BS).

Proof The work of Borel [10] and Beilinson [7], together with the comparison between
groups of K–theory and motivic cohomology through higher Chow groups, shows
that Spec.Q/ satisfies the (BS) property with Q coefficients. The difference between
Spec.Z/ and Spec.Q/ is concentrated in degree 1 and weight 1. For each prime, the
latter has an extra generator in degree 1 and weight 1. Thus Spec.Z/ satisfies the (BS)
property with Q coefficients. As reviewed in [30, Lemma 24], the (BS) property with
Z coefficients is a consequence of the Beilinson–Soulé vanishing property with Q

coefficients together with the Beilinson–Lichtenbaum conjecture [30, Conjecture 17],
which is equivalent to the Bloch–Kato conjecture (see [51]). Thanks to the work of
V Voevodsky this last conjecture is a now a theorem, proved in [55]. This concludes
the proof.

Remark 2.11 Let F be a number field and P a set of finite places of F . Similar
arguments show that the Beilinson–Soulé vanishing property also holds when S is the
spectrum of the ring OF ;P of P –integers of F , ie when

S D Spec.OF ;P/:

3 Geometry of the moduli spaces M0;n

Let n be an integer greater than or equal to 3, and let M0;n be the moduli space
of curves of genus 0 with n marked points over Spec.Z/. Let M0;n denote its
Deligne–Mumford compactification [17; 33]. This notation will not change when
working over S . In particular, we will consider the case where S D Spec.F/, the
spectrum of a number field. The integer l D n� 3 is the dimension of M0;n , and the
boundary @M0;nDM0;nnM0;n is a strictly normal crossing divisor whose irreducible
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components are isomorphic to M0;n1
�M0;n2

with n1Cn2 D nC 2. If S is a finite
set with n elements, we write M0;S and M0;S for M0;n and M0;n . Note that if
.P1/jS j� denotes the set of all n–tuples of distinct points zs 2 P1 for s 2 S , then we
have

M0;S D PSL2 n.P1/
jS j
� ;

where PSL2 is the algebraic group of automorphisms of P1 acting by Möbius trans-
formations.

Let S D f1; : : : ; ng. Recall that for any subset S 0 of S , there exists a natural map

fS 0 WM0;S !M0;S 0

obtained by forgetting the marked points of S which do not lie in S 0 . This map extends
to a proper morphism

xfS 0 DM0;S !M0;S 0 :

3.1 On the boundary of M0;n

Let D be a codimension-1 irreducible component of @M0;n and D0 its open stratum,

D0 DD n

� [
D0¤D

D\D0
�
;

where the union is over the codimension-1 irreducible components of @M0;n different
from D . We denote the union

M0;n[D0 DM0;n n .@M0;n nD0/

by MD
0;n , and the normal bundle of D0 in MD

0;n by ND0
. The goal of this section is

to prove that ND0
is trivial.

Let S denote the set f1; : : : ; ng. The moduli space M0;S admits a stratification
(see [13]) in which the codimension-0 open stratum is simply M0;S . A point in an
open stratum of codimension k represents a stable curve with n marked points and
k nodes. Since the genus is 0, this is a tree with kC 1 branches, each represented by
a P1 , such that the n marked points are distributed on the kC1 branches in such a way
that each P1 has at least three special points (marked points and intersection points).
Moving inside a stratum makes the marked points move within their branch, but they
cannot move from one branch to another. A point in a codimension-1 open stratum
represents two intersecting copies of P1 , with the marked points distributed over the
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two. Thus D gives a partition of S into two subsets, which completely determines
the open stratum of D . In other words, D is determined by a subset TD of S such
that TD and its complement T CD each contain at least 2 elements. The stratum D is
isomorphic to M0;TD[feg �M0;T c

D[feg
with e not in S .

Fix three elements i0 , i1 and i2 in S . The correspondence between codimension-1
irreducible components of @M0;n and partitions J t J c of S can be made 1-to-1
by imposing the condition jJ \ fi0; i1; i2gj 6 1. We denote the stratum of @M0;n

corresponding to such a J by DJ.

We use the following notation. When emphasizing the indexing set, we write DJS
instead of DJ. The open stratum of DJS is

DJ0;S DD
J
S n

� [
D0¤DJ

S

DJS \D
0

�
;

where the union is over the codimension-1 irreducible components D0 of @M0;S

that are different from DJS . Following the above notation, the union M0;S [D
J
0;S is

denoted by MDJ

0;S . Note that

MDJ

0;S DM0;S n

� [
D0¤DJ

S

DJS \D
0

�
;

where the union is over the same components as above.

Assume that n > 5; thus we can assume that T cD contains at least 3 elements. Let
I D fi0; i1; i2; i3g be a subset of S such that i0 is in T and i1 , i2 and i3 are elements
of T c . Let S0 be S n fi3g. Consider the morphism

�S0�I WM0;S

xfS0
� xfI

����!M0;S0
�M0;I :

Lemma 3.1 Let S D f1; : : : ; ng, T � S , I D i0; i1; i2; i3 and S0 be as above. Then
the image of DT0 by �S0�I satisfies

�S0�I .D
T
0 /�D

T
0;S0
�M0;4:

Proof Let P be a point in DT0 . As P lies in the open stratum, P represents a tree of
P1 having only two branches, with the n marked points distributed over the branches
according to the partition T tT c of S . The forgetful morphisms at worst decrease the
number of branches. Hence xfS0

.P / has at most 2 branches; thus it is at worst in the
open stratum of a codimension-1 irreducible component of M0;S0

. On the one hand,
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since jT j> 2 and i3 … T , xfS0
.P / is in DTS0

, and thus is in DT0;S0
. On the other hand,

T \fi0; i1; i2; i3g D fi0g. Therefore the tree of P1 corresponding to P cannot remain
stable under xfI . Thus xfI .P / represents a single P1 with n marked points, forcing it
to be in M0;4 .

Proposition 3.2 Let n � 4, and let D be a codimension-1 irreducible component
of @M0;n . Then the normal bundle ND0

is trivial.

Proof The proof proceeds by induction on n. The base case nD 4 is clear.

Assuming that n>5, write SDf1; : : : ; ng as above, and let D be DT for some T �S .
The cardinality of S being at least 5, we can assume that jT j> 2 and that jT cj> 3. In
order to have a 1-to-1 correspondence between codimension-1 irreducible components
of @M0;S and partitions of S as described above, we choose i0 in T and i1 and
i2 in T c . Since T c has at least three elements, this set contains a third element i3 ,
different from i1 and i2 .

A result of Keel [32, Lemma 1] shows that the morphism

�S0�I WM0;S

xfS0
� xfI

����!M0;S0
�M0;I

is given by a succession of blow-ups along regular smooth codimension-2 subschemes.
The exceptional divisors of these blow-ups are codimension-1 irreducible components
of @M0;n of the form

DJ[fi3g with J � S0; jJ j> 2 and jJ \fi0; i1; i2gj6 1:

In particular, �S0�I is an isomorphism outside the exceptional divisors. Hence, the
image of MDT

0;S by �S0�I is open in M0;S0
�M0;4 .

As T is also a subset of S0 , let DTS0
be the corresponding codimension-1 component

of @M0;S0
and DT0;S0

its open stratum. Lemma 3.1 above shows that

�S0�I .D
T
0 /�D

T
0;S0
�M0;4:

Thus, the image of �S0�I .MDT

0;S / is open in M0;S0
�M0;4 and is included in

MDT

0;S0
�M0;4 , which is also open in M0;S0

�M0;4 . As a consequence, �S0�I .MDT

0;S /

is open in MDT

0;S0
�M0;4 .

Since �S0�I is an isomorphism away from the exceptional divisors, the triviality of
NDT

0
in MDT

0;S is equivalent to the triviality of the normal bundle of �S0�I .D
T
0 / in

�S0�I .M
DT

0;S /:
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But by the above discussion, this is a consequence of the triviality of NDT
0;S0

in

M
DT

0;S0

0;S0
:

The proposition follows by induction, the base case M0;4 ' P1 with @M0;4 '

f0; 1;1g being trivial.

3.2 The motive of M0;n

In this subsection, let S D Spec.Z/. The main goal here is to prove that the motive
MS .M0;n/

� is a (finite) direct sum of motives of the type ZS .p/Œ2p� with p > 0;

� satisfies the (BS) property (see Theorem 3.5).

The key ingredients are the decomposition of MS .M0;n/ into a direct sum of Tate
motives using the blow-up formula, and the Beilinson–Soulé property for the base
scheme S D Spec.Z/.

Definition 3.3 Let X be a smooth scheme over S . We say that X is effective of Tate
type .p; 2p ) or simply of type ET when MS .X/ is a finite direct sum of motives
ZS .pi /Œ2pi � with pi > 0.

A direct application of the blow-up formula given in Proposition 2.4 gives the following.

Lemma 3.4 Let X be a smooth scheme over S and Z a smooth closed subscheme
of X . We assume that both X and Z are of type ET. Then the blow-up BlZ.X/ of X
with center Z is also of type ET.

Theorem 3.5 Let n be an integer greater or equal to 3. The motive MS .M0;n/ is
isomorphic to

MS .M0;n/D
M
i

ZS .pi /Œ2pi �;

where the direct sum is finite and each pi � 0. Moreover, MS .M0;n/ satisfies (BS);
that is, for any pair of integers p and k such that p > 0 and k < 0 or p > 0 and kD 0,
we have

HomSH.S/.†
1.M0;nC/;MZS .p/Œk�/D HomDM.S/.MS .M0;n/;ZS .p/Œk�/D 0:

Proof Note that the second part of the theorem follows directly from the first part
using Lemma 3.6 below.
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We do the proof of the first part by induction on n.

Note that M0;3 is isomorphic to S D Spec.Z/ and M0;4 is simply P1S . Hence, using
the (BS) property for S D Spec.Z/ (Theorem 2.10) and the projective bundle formula,
we see that M0;3 and M0;4 are of type ET.

Now fix n > 5. Let In be the set f1; : : : ; ng (denoted by S in the previous section).
In [32, Theorems 1 and 2], Keel proved that the morphism

M0;In
!M0;In�1

�M0;I4

is a sequence of blow-ups

M0;In

��!Bn�3! � � � ! Bk! � � � ! B1 DM0;In�1
�M0;I4

;

where BkC1!Bk is the blow-up along disjoint centers isomorphic to some irreducible
components of @M0;In�1

.

As B1 'M0;In�1
�M0;I4

, the induction hypothesis and the Künneth formula show
that B1 is of type ET. But any irreducible component of @M0;In�1

is isomorphic to
M0;n1

�M0;n2
for some n1 and n2 satisfying n1Cn2D n�1C2D nC1; thus the

Künneth formula and the induction hypothesis show that the centers of the blow-up
BkC1! Bk are also of type ET.

Now an argument by induction on k together with the blow-up formula suffice to prove
that Bk is of type ET for all k . Hence M0;In

' Bn�3 is also of type ET.

Note that the above proof is similar to the proof of Proposition 4.4 in [43]. The proof
in [43] uses a cohomological setting, which explains the minus signs in the shifts and
twists in [43]. One could also bypass part of Keel’s result in [32] by observing that the
map

M0;In
!

nY
iD4

M0;f1;2;3;ig

collapses all irreducible components of the form DT with jT \ f1; 2; 3gj 6 1 and
jT j> 3. Normalizing the marked points z1 , z2 and z3 to 1, 1 and 0, respectively,
we see that M0;In

is the result of blowing up .P1/n�3 along the poset given by all the
intersections of the divisors ti D tj and ti D " with i ¤ j and "D 0; 1;1. This is
exactly the situation of [43, Proposition 4.4]. To obtain the above theorem, that proof
only needs to be modified each time it uses the blow-up formula in order to take the
ET type property into account.
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Lemma 3.6 Let X be a smooth scheme over S . Assume that X is effective of Tate
type .p; 2p/. Then MS .X/ satisfies the Beilinson–Soulé property (BS).

Proof By definition, MS .X/ is a direct sum of Tate motives of the form ZS .i/Œ2i �

for i > 0. Using Proposition 2.6, in order to show that MS .X/ satisfies (BS), it is
enough to show that for any i > 0 and pair .p; k/ such that either p > 0 with k < 0
or p > 0 with k D 0, we have

HomDM.S/.ZS .i/Œ2i �;Z.p/Œk�/D 0:

However, the above Hom group is simply

HomDM.S/.ZS .0/;Z.p� i/Œk� 2i�/:

If p � i � 0, one can use Remark 2.9. When p � i > 0, the result follows from the
(BS) property of S D Spec.Z/ given in Theorem 2.10 because k� 2i < 0.

Corollary 3.7 Let n> 4 and let D be an irreducible component of @M0;n . Then D
is of type ET and satisfies the (BS) property. Moreover, if S is a nonempty intersection
of k irreducible codimension-1 components of @M0;n , then S is of type ET and
satisfies the (BS) property.

Proof The closed stratum S is isomorphic to a product

M0;l1C3 �M0;l2C3 � � � � �M0;lkC1C3

with l1Cl2C� � �ClkC1Dn�3�k (see [13]). The corollary follows from the Künneth
formula and Theorem 3.5.

3.3 The motive of M0;n

In this section, we prove that the motives of the open moduli spaces of curves M0;n

are mixed Tate motives satisfying the (BS) property.

Let us first recall some facts about the boundary of M0;n and its stratified structure.
We already recalled that @M0;n DM0;n nM0;n is a normal crossing divisor (see [33,
Theorem. 2.7]). Let S be the intersection of k irreducible codimension-1 components
of @M0;n . Then S is isomorphic to the product of kC 1 moduli spaces of curves

S 'M0;n1
� � � � �M0;nkC1

such that
PkC1
iD1 .ni � 3/D n� 3� k .
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Writing @M0;n as the union of its irreducible components

@M0;n D

N[
iD1

Di ;

we may assume that S D
Tk
iD1Di . The open stratum VS is defined as

VS D S n
�
S \

� N[
iDkC1

Di

��
and is isomorphic (see [13]) to

VS 'M0;n1
� � � � �M0;nkC1

:

Theorem 3.8 Let n be an integer greater than or equal to 3. The motive MS .M0;n/

is in DMT=S;Z.S/, the triangulated category of mixed Tate motives. Moreover, the
motive MS .M0;n/ satisfies (BS), ie we have

HomSH.S/.†
1.M0;nC/;MZS .p/Œk�/D HomDM.S/.MS .M0;n/;ZS .p/Œk�/D 0

for all p > 0 when k < 0 and for all p > 0 when k D 0.

This statement holds in a more general situation. Let X0 be a smooth scheme over S
whose motive MS .X0/ is in DMT=S;Z.S/ and satisfies (BS). Let D D

Sl
iD1Zi be a

strict normal crossing divisor of X0 . Assume that any irreducible component of any
intersection of the Zi has a motive in DMT=S;Z.S/ and satisfies (BS). Let U DX0nD .

Theorem 3.9 MS .U / is in DMT=S;Z.S/ and satisfies (BS).

Proof The proof is a double induction on the dimension n of X0 and l .

Let Z0D
Sl�1
iD1Zi and X DX0 nZ0 . The intersection ZDZl \X is of codimension

d D 1. The Gysin triangle (1) ensures that MS .U / sits in the distinguished triangle

!MS .U /!MS .X/!MS .Z/.d/Œ2d �!MS .U /Œ1�! � � � :

Applying the HomDM.S/ functor, we obtain an exact sequence

Hkmot.X; p/! Hkmot.U; p/D HomDM.S/.M.U /Œ1�;ZS .p/ŒkC 1�/

! HomDM.S/.MS .Z/.d/Œ2d �;ZS .p/ŒkC 1�/D HkC1�2dmot .Z; p� d/:

When n D 1 and l D 1, we have X D X0 and Z D Z1 D D . Hence both are in
DMT=S;Z.S/ and satisfy (BS), which implies the theorem for U .
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When n > 1 or k > 1, we see by induction on l that X is in DMT=S;Z.S/ and
satisfies (BS). Then Z DZl \X is equal to

Z DZl n

� l�1[
iD1

Zi \Zl

�
:

By induction on n, we see that Z is in DMT=S;Z.S/ and satisfies (BS). Thus the
above exact sequence, induced by the Gysin triangle, implies the theorem for U .

Proof of Theorem 3.8 We apply Theorem 3.9 to the case where X DM0;n and
D D @M0;n . In this case, Theorem 3.5 and Corollary 3.7 ensure that the hypotheses
are satisfied. Note that in this case, Z is an open codimension-1 stratum of the
compactification, hence it is isomorphic to a product of open moduli spaces of curves.
One could perform the above induction directly for the moduli spaces of curves.

Remark 3.10 � Any strict normal crossing divisor D of X0 induces a stratification
of X0 where the strata are given by irreducible components of the intersection of
the Zi . Let U DX n

�S
i2I S i

�
be the complement of a union of closed strata defined

by the divisor D . We assume that, in this description of U , I is minimal and the strata
S i have maximal dimension di . This removes some ambiguities in the choices of the
strata and some possible redundancy. Theorem 3.9 remains valid when the strata S i

have a motive in DMT=S;Z.S/ and satisfy (BS).

In this case, the proof goes by induction on the dimension d Dmax.di / of X0 and the
number k of strata of dimension d . As above, the proof relies on the Gysin triangle
and on the long exact sequence for Hkmot . An important point is that closed strata of
dimension 0 are disjoint and that open strata (ie closed strata minus closed strata of
lower dimension) are disjoint.

� The duality and Gysin morphism given by Déglise in [15, Section 5] give an “open
relative motive” MS .X nAIB/, where X is smooth projective and A and B are two
strict normal crossing divisors sharing no common irreducible components. This is
explained by Levine in Part I, Chapter IV, Section 2.3 of [36].

� F Brown, in [11, Section 2.2], uses a partial compactification Mı
o;n of M0;n

attached to a dihedral structure ı on f1; : : : ; ng. Theorem 3.9 also shows that the
motive MS .Mı

0;n/ is also in DMT=S;Z.S/ and satisfies the (BS) property.
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4 A motivic Grothendieck–Teichmüller group

In this section, we define an integral motivic Grothendieck–Teichmüller space

GTh=Spec.Z/.Z/

over Z. For any n > 3, Spitzweck gives an equivalence between DMT=S;Z.M0;n/

and the perfect representations of an affine derived group scheme G�
=Spec.Z/;Z;M0;n

.
These groups sit as middle terms in short exact sequences relating G�

=Spec.Z/;Z;M0;n
,

G�
=Spec.Z/;Z;M0;3

D G�
=Spec.Z/;Z;Spec.Z/ and K�

=Spec.Z/;Z;M0;n
, the last of which rep-

resents a “geometric part”. These exact sequences are compatible with the natural
morphisms in the tower of the M0;n (namely the morphisms forgetting marked points
and embedding codimension-1 components).

Following Grothendieck’s idea developed in [24, Section 2], GTh=Spec.Z/.Z/ is then
defined as the automorphism space of the tower given by the K�

=Spec.Z/;Z;M0;n
.

In the following section, we will give a nonderived version using rational coefficients,
as the Tannakian formalism is available in that context; indeed, in the rational con-
text, the Tannakian formalism associates groups G=Spec.Z/;Q;M0;n

to the categories of
mixed Tate motives over M0;n . In this nonderived setting, the motivic Grothendieck–
Teichmüller group is defined as the automorphism group of the tower of the geometric
parts K=Spec.Z/;Q;M0;n

. Furthermore, working with rational coefficients and over the
spectrum of a number field, Levine [38] showed that the group K=Spec.Q/;Q;M0;n

is identified with Deligne–Goncharov motivic fundamental group �mot
1 .M0;n/ [16],

hence the description of K�
=Spec.Z/;Z;M0;n

as a “geometric part”.

4.1 Tangential base points and normal bundle

In this section we describe the final requirements for developing a motivic Grothendieck–
Teichmüller construction:

A natural functor DMT=S;Z.X n Z/ ! DMT=S;Z.N 0
Z

/ ! DMT=S;Z.Z/, where
N 0

Z
denotes the normal bundle of Z in X minus its zero section This functor

allows us to obtain a derived group morphism

G=Spec.Z/;Z;M0;k�M0;l
!G=Spec.Z/;Z;M0;n

induced by the inclusion of D 'M0;k �M0;l , an irreducible component of M0;n ,
into M0;n . This is a motivic version of the morphism between fundamental groups
presented in [13] in the topological context, or in [40] in the étale case.
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Motivic tangential base points or motivic base points at infinity In general, base
points provide an augmentation to the differential graded (E1 ) algebras underly-
ing the description of mixed Tate categories as comodule categories. In particu-
lar, this is the case in [38], where a relative bar construction makes it possible to
identify K=Spec.Q/;Q;M0;4

with the Deligne–Goncharov fundamental group. The
authors also give sections in the (derived) group setting to the morphism induced
by p�W DMT=S;Z.S/ ! DMT=S;Z.X/ and associated to the structural morphism
pW X ! S . Tangential base points are used to compensate the lack of S –points (such
as in the case of P1 n f0; 1;1g over S D Spec.Z/) and to preserve symmetries.

Unless stated otherwise, in Section 4 we use the ground scheme S D Spec.Z/ with Z

coefficients. Let n be an integer greater than or equal to 4. Let D be an irreducible
component of @M0;n , and D0 its open stratum (see Section 3.1). The open stratum is
isomorphic to

D0 �M0;n1
�M0;n2

with n1Cn2 D nC 2.

Proposition 4.1 There is a natural functor

LDM
D;M0;n

W DM=S;Z.M0;n/! DM=S;Z.D0/

sending Tate objects to Tate objects and hence inducing a natural functor

LD;M0;n
W DMT=S;Z.M0;n/! DMT=S;Z.D0/:

Moreover, its composition with the “structural functor”

p�W DMT=S;Z.S/! DMT=S;Z.M0;n/

is isomorphic to
p�D0
W DMT=S;Z.S/! DMT=S;Z.D0/;

where p�D0
W D0! S is the structural morphism of the open stratum D0 .

This proposition is a consequence of Proposition 15.19 in [46], which we discuss below.
Let X a be a smooth scheme over S and Z i

!X a regular closed embedding such that
Z is smooth over S . In our application, we can also assume that Z is a divisor of X .
Let X0 be the open complement and N 0

Z the normal bundle of Z in X with zero
section removed. In [46], Spitzweck defines, as a consequence of his Proposition 15.19,
a natural functor

LDM
X;Z W DM=S;Z.X

0/! DM=S;Z.N
0
Z/:
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We apply this functor to the situation X D M0;n [ D0 and compose it with the
pullback functor induced by an everywhere-nonzero S –section � W D0!N 0

D0
given

by Proposition 3.2. In order to show that it sends Tate objects to Tate objects, we need
to review the construction of the functor LDM

X;Z . The geometric part of this construction
relies on the (affine) deformation to the normal cone.

The deformation to the normal cone is a key geometric construction needed in the
studies of Gysin maps. It was explicitly used and formalized by W Fulton [22]. It
plays an important role in defining specialization maps, for example in the microlocal
theory of sheaves [31], and it was developed and generalized in [41; 28] to higher
deformations in order to study the A1 structure of cycle modules.

We recall the construction of the deformation to the normal cone. Let X , Z and X0

be smooth schemes over S :

(3)

Z X X0

S

iZ jX0

pZ pX pX0

DX nZ

where iZ is a regular closed embedding. We consider the blow-up BlZ�f0gX �A1S of
X �A1S along Z � f0g,

� W BlZ�f0gX �A1S !X �A1S :

Since everything is defined over the base scheme S , we drop the subscript S (as in A1S )
whenever this does not lead to confusion. The preimage of X �Gm under � is, by
definition, isomorphic to X �Gm . The preimage X � f0g has two components, one
being BlZ X while the other is P .NZ˚OZ/, where NZ denotes the normal bundle of
Z in X . These two branches intersect each other at P .NZ/, which is the exceptional
divisor of BlZ X . The deformation of Z to the normal cone is defined as

D.X;Z/D .BlZ�f0gX �A1/ nBlZ X:

In terms of spectra, if JZ denotes the sheaf of ideals defining Z , the deformation
D.X;Z/ is given by Spec.AX;Z/, where

(4) AX;Z D
M
n2Z

J nZt
�n
�OX Œt; t�1�
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with the convention that J nZ DOX for all n6 0. The geometric situation is described
by the following diagram:

Z NZ D.X;Z/ X �Gm X

Z � f0g X �A1 X �Gm

f0g A1 Gm

iNZ jX�Gm

pNZ �jD.X;Z/ D

f jf0g f f jGm

p!Gm

i0 jGm

�

s0

pNZ

p!X

p!X

In the above diagram, the two “big rectangles” are Cartesian. The map f is smooth be-
cause Z itself is smooth over S ; hence the maps f jf0g and f jGm

are also smooth. This
was observed by J Ayoub in [2] at the beginning of Section 1.6.1, after diagram (1.37).

The open deformation D0.X;Z/ is obtained by removing the strict transform of
Z �A1 from D.X;Z/. This strict transform is the closure of Z �Gm in D.X;Z/.
The properties of D0.X;Z/ are summarized in the Cartesian diagram

(5)

Z N 0
Z D0.X;Z/ X0 �Gm X0

f0g A1 Gm

p0
NZ

f jf0g f p!Gm

i
N 0

Z

j
X0�Gm

if0g

jGm

p
!X0

which is “an open immersion” of the previous one with closed complement given
over f0g and Gm by s0.Z/ and Z , respectively.

From this geometric situation, Spitzweck obtained in [46, Proposition 15.19] an iso-
morphism

(6) i�ZjX0 �MZX0
' p0NZ �

MZN 0
Z

by comparing the inclusions of X ��! X � f0g and X ��! �X � f1g in the strict
transform of X �A1 in D.X; Y /, and similarly for Z .
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Spitzweck next used one of his main results [46, Corollary 15.14] to identify the
homotopy category of modules over p0NZ �

MZN 0
Z

with the full triangulated subcategory
of DM=S;Z.N

0
Z/ generated by homotopy colimits of the pullbacks by p0NZ

of objects
from DM=S;Z.Z/. The composition of DM=S;Z.X

0/!H.i�ZjX0 �– Mod/ with the
previous identification and the one given by (6) gives a functor

LDM
X;Z W DM=S;Z.X

0/! DM=S;Z.N
0
Z/:

Let pX0 W X0! S be the structural morphism. The composition of

p�
X0 W DM=S;Z.S/! DM=S;Z.X

0/

with LX;Z is isomorphic to the map DM=S;Z.S/! DM=S;Z.N
0
Z/ induced by the

structural morphism of N 0
Z , for the following reasons:

� The compatibility with objects lifted from the base is given at the end of [46,
Corollary 15.14].

� The condition of Corollary 15.14, requiring that M ˝ .p0NZ �
MZN 0

Z
/ is isomor-

phic to p0NZ �
ıp0�NZ

.M/ for any M in DMZ.Z/, is satisfied.

� These same two properties ensure that LX;Z sends Tate objects to Tate objects.

This material was also developed in [47], with some further details.

Proof of Proposition 4.1 We apply the above discussion to the case X DM0;n[D0 ,
X0 DM0;n and Z DD0 . Then we compose this functor by the nonzero section of
p0NZ
W N 0

Z!Z given by Proposition 3.2, to obtain

LD;M0;n
W DMT=S;Z.M0;n/! DMT=S;Z.D0/:

Remark 4.2 In this remark, we develop another approach to limit motives: the nearby
cycle functor [3]. This method was used by Ayoub in [4; 5] in the case of a curve over
a field. The following construction agrees with Spitzweck’s; see [47; 46]. We explain
below how deforming to the normal cone allows us to obtain a limit motive functor
from Ayoub’s nearby cycle functor. For the remainder of this remark, we assume that
the hypotheses of Ayoub’s formalism are satisfied; that is, we assume that the functor
DM=S;R.�/ associating to X 2 SmS the triangulated category DM=S;R.X/ (using R
coefficients) comes from a monoidal stable homotopic algebraic derivator on diagrams
of quasiprojective schemes over S . This assumption applies directly to our situation
when working with rational coefficients (RDQ) and Beilinson’s E1–ring spectrum
MQX as in Section 5.1.
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Let us again give diagram (5):

N 0
Z D0.X;Z/ X0 �Gm X0

f0g A1 Gm

S

f jf0g f p!Gm

i
N 0

Z
j

X0�Gm

if0g jGm

p
!X0

D

qGm

which corresponds to the situation of a “specialization functor” over the base A1 as
described by Ayoub [3, Sections 3.1, 3.4 and 3.5]. The nearby cycles functor from
Ayoub gives us

‰f W DM=S;R.X
0
�Gm/! DM=S;R.N

0
Z/:

The limit motives functor is then obtained by composing with p�
!X0 :

LDM‰
X;Z W DM=S;R.X

0/
p�
!X0

���!DM=S;R.X
0
�Gm/

‰f
�!DM=S;R.N

0
Z/:

When X0 DM0;n and Z DD0 , we compose, as previously, this functor with the one
induced by the nonzero section of p0NZ

W N 0
Z!Z given in Proposition 3.2. Thus we

obtain
LDM‰
D;M0;n

W DM=S;R.M0;n/! DM=S;R.D0/:

The compatibility with mixed Tate categories follows from two facts:

(1) Tate objects in DM=S;R.X
0/, denoted by RX0.i/ below, are lifted from the

ones in DM=S;R.S/. Hence, their pullback in DM=S;R.X
0 �Gm/ can be seen

either as lifted from Gm or as lifted from S .

(2) In the first case, the compatibility of the specialization functor with smooth
morphisms [3, Definition 3.1.1] ensures that

‰f .p
�
!Gm

RGm
.i//' f j�

f0g ı‰idA1
.RGm

.i//:

Now, viewing the Tate objects as lifted from S by q�Gm
, we can apply Proposition

3.5.10 in [3], which ensures that

‰idA1
ı q�Gm

� id :

Algebraic & Geometric Topology, Volume 18 (2018)



660 Ismaël Soudères

Hence, the functor

LDM‰
X;Z W DMR.X

0/! DMR.N
0
Z/

sends Tate objects to Tate objects (eventually composing with the natural iso-
morphic transformation). It also ensures that its composition with

pX0 W DM=S;R.S/! DM=S;R.X
0/

is the map DM=S;R.S/! DM=S;R.N
0
Z/ induced by the structural morphism

of N 0
Z .

This gives us the desired functor on mixed Tate categories

LD;M0;n
W DMT=S;Z.M0;n/! DMT=S;Z.D0/:

After this long remark, we come to the more delicate aspect of tangential base points in
general situations. The general situation is the following: X pX

�!S is a smooth scheme
with a strict normal crossing divisor Z D

S
i2I Zi . We denote by ZJ the intersectionT

i2J Zj for J � I . The ZJ are also smooth over S . In our applications, where
X DM0;n and Z D @M0;n , the ZJ are irreducible. We assume this continues to
hold for the following description. If not, the description below still works if extra care
is given to keep track of the various irreducible components of the ZJ .

As before let X0 denote X nZ . Let J be a subset of I and let Z0J be the “open
stratum”

ZJ n

� [
i2InJ

Zi \ZJ

�
:

Let Ni (resp. N 0
i ) denote the normal bundle of Zi in X (resp. with zero section

removed); NJ (resp. N 0
J ) is defined as the fiber product of the Nj jZJ

(resp. N 0
j jZJ

)
over ZJ and NJ 0 (resp. N 0

J 0 ) its restriction to Z0J .

We are interested in generalizing the previous situation by constructing a functor

LX;J W DM=S;Z.X
0/! DM=S;Z.N

0
J 0/

compatible with mixed Tate categories and structural pullback functors. Then we
want to apply this functor to the case where ZJ is an S –point, that is, of maximal
codimension.
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First, we observe that by setting

X 0 DX n

� [
i2InJ

Zi

�
;

we can assume that I D J . In this case, Z0J (resp. NJ 0 , N 0
J 0 ) is simply ZJ (resp.

NJ , N 0
J ). We treat only this situation below.

In the strict normal crossing divisor situation, NJ equals NZJ
, the normal bundle of

ZJ in X . Moreover, locally with affine coordinates, or when NZJ
is trivial, there is

an isomorphism between N 0
J and ZJ �S .Gm/

jJ j .

Lemma 4.3 (consequence of [46, Proposition 15.22]) There is a natural functor

LDM
X;J W DM=S;Z.X

0/! DM=S;Z.N
0
J /

preserving Tate objects. The functor LDM
X;J is compatible with structural pullback

morphisms. Hence we obtain a functor between mixed Tate categories

LX;J W DMT=S;Z .X
0/! DMT=S;Z .N

0
J /

such that its composition with DMT=S;Z.S/! DMT=S;Z.X0/ equals the functor

DMT=S;Z.S/! DMT=S;Z.N
0
J /

induced by the structural morphism of N 0
J .

Review of the proof in [46] The proof consists of a generalization of the isomor-
phism (6),

i�J jX0 �MZX0 ' p0NJ �
MZN 0

J
;

where iJ denotes the regular embedding ZJ !X .

This isomorphism is obtained by taking the fiber product over X �A1 of the defor-
mation D.X;Zj / (resp. D0.X;Zj /) for all Zj . Then Spitzweck’s construction goes
essentially as in the case where there is only one Zj , by observing that MZX0 is the
pullback from MZS by .pX ı jX0/� .

As previously, the compatibility with mixed Tate objects and pullback by structural
morphism relies on [46, Corollary 15.14].
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Remark 4.4 (on higher deformations to the normal cone and the nearby cycle functor)
As previously, especially when working with rational coefficients and the Beilinson
spectrum, one might prefer to use Ayoub’s nearby cycles functor. We now introduce a
higher deformation to the normal cone as presented in [28, Section 3.1.3] following
M Rost [41, Section (10.6)]. Let Jj denote the sheaf of ideals defining the Zj ,
and let k denote the cardinality of J . We consider only the case J D I . We as-
sume that J D f1; : : : ; kg as this induces an easier notation. Then the subalgebra of
OX Œt1; t�11 ; : : : ; tk; t

�1
k
�,

AX;J D
M

.a1;:::;ak/2Zk

J a1

1 � � �J
ak

k
t
a1

1 � � � t
ak

k
;

is quasicoherent over OX Œt1; : : : ; tn�. In the above definition, as previously, we set
J aj

j DOX when aj 6 0. The simultaneous deformation of the Zj is defined as

(7) D.X; J /DD.X IZ1; : : : ; Zk/D Spec.AX;J /:

Inverting the tj , one obtains

AX;J Œt�11 ; : : : ; t�1k �DOX Œt1; t�11 ; : : : ; tk; t
�1
k �:

Hence there is a canonical isomorphism between X�Gk
m and the restriction of D.X; J /

over Gk
m . The following commutative diagram holds:

(8)

D.X; J / D.X; J /jGk
m

X

X �Ak X �Gk
m

Ak Gk
m

fJ

fJ jGk
m

j
Gk

m

p
!Gk

m

p!X

jDj
Gk

m

D

where the square and the parallelograms are Cartesian.

The construction is compatible with permutation of the coordinates on Ak and permu-
tation of the Zj . Inverting only t1; : : : ; tl (with l < k ), we obtain

D.X; J /jGl
m�Ak�l DGl

m �D.X IZlC1; : : : ; Zk/:
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In [28], F Ivorra described the fiber of D.X; J / over t1D � � � D tl D 0. The description
goes by induction on l . For l D 1, ZŒl� is simply Z1 and NŒl� is N1 , the normal
bundle of Z1 in X . For l > 2, let ZŒl� be the intersection

Z1\ � � � \Zl

and let NŒl� be the normal bundle of NŒl�1�jZŒl� in NŒl�1� , which can be written as

NŒl� DN.NŒl�1�; NŒl�1�jZŒl�
/:

Now let DŒl� be the deformation

D.NŒl�INŒl�jZlC1\ZŒl�
; : : : ; NŒl�jZk\ZŒl�

/:

Then we have
D.X; J /jt1D���DtlD0 DD

Œl�:

The fiber over .0; : : : ; 0/, ie when all the tj are zero, is isomorphic to NJ , the normal
bundle of ZJ in X . As a last remark, the description of AX;J shows that the restriction
of D.X IJ / to the diagonal is isomorphic to D.X IZJ /.

Now, as in the case of a simple deformation, one can remove the strict transform of
Z �Ak in D.X; J / and obtain an “open deformation” D0.X; J / whose restriction
to Gk

m is simply X0�Gk
m . Its fiber over .0; : : : ; 0/ is isomorphic to N 0

J (as described
in Spitzweck’s construction above) and its restriction to the diagonal �k gives

N 0
J D0.X; J /j�k

X0 �Gm X0

f0g A1 Gm

S

fJ jf0g fJ p!Gm

i
N 0

Z
j

X0�Gm

if0g jGm

p
!X0

D

qGm

We now proceed as in Remark 4.2 in order to obtain a functor

LDM;‰
X;J W DM=S;Z.X

0/
p�
!X0
���!DM=S;Z.X

0
�Gm/

‰fJ
�!DM=S;Z.N

0
J /:

Compatibilities with mixed Tate categories and pullback by structural morphisms are
as in Remark 4.2.
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Conjecture 1 The geometric construction of the higher deformation to the normal
cone D.X; J / makes it possible to use a succession of specialization functors, each
corresponding to an A1 factor. This procedure does not depend on choices when
considering only the mixed Tate motives categories. In this case, it agrees with our
construction using the diagonal.

We explain now how the functor LX;J W DMT=S;Z .X0/ ! DMT=S;Z .N 0
J / from

Lemma 4.3 leads to a tangential base point or base point at infinity for the moduli
space of curves M0;n . Let n> 4. Let v be a point in M0;n given by a closed stratum
of @M0;n of maximal codimension. The stratum v is the nonempty intersection of
exactly n� 3D dimS .M0;n/ irreducible components of @M0;n :

v D
\

D closed stratum of @M0;n

codim.D/D1
v2D

D D
\
j2J

Dj ;

where J D f1; : : : ; n� 3g corresponds to a numbering of the closed codimension-1
strata D with v 2D . The normal bundle Nv of v in M0;n is trivial because v is a
point.

Definition 4.5 A tangential base point xv of M0;n is the choice of a closed stratum
v of maximal codimension in @M0;n and of a nonzero S –point in N 0

v DN
0
J with the

notation of Lemma 4.3. Here N 0
J 0 D N

0
J because v D ZJ cannot have a nonempty

intersection with any other components of @M0;n .

Proposition 4.6 For any tangential base point xv of M0;n , there is a natural functor

zxDM;�
v W DM=S;Z.M0;n/! DM=S;Z.S/

sending Tate objects to Tate objects and hence inducing a natural functor

zx�v W DMT=S;Z.M0;n/! DMT=S;Z.S/:

Both functors are compatible, in the sense of Lemma 4.3, with the pullback by the
structural functor from DM=S;Z.S/.

Proof The boundary @M0;n can be written as the union of its codimension-1 irre-
ducible components,

@M0;n D

[
i2I

Di :
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The closed stratum v defines a subset J of I by

v D
\
j2J

Dj :

With

X DM0;n n

� [
i2InJ

Di

�
and Zj DDj n

� [
i2InJ

Di \Dj

�
;

Lemma 4.3 gives a functor

LDM
X;J W DM=S;Z.X

0/D DM=S;Z.M0;n/! DM=S;Z.N
0
J /:

The functor zxDM;�
v is obtained by composing LDM

X;J with the pullback of the S –point
in N 0

J . In this application, we have simply ZJ D v and Z0J DZJ .

There is a canonical system of tangential base points over Spec.Z/ on M0;n . A point
v D

T
j2J Dj of this system is given by a closed stratum of maximal codimension

of @M0;n . In order to choose an S –point in its normal bundle, we choose a dihedral
structure ı on the marked points, and vertex coordinates xj corresponding to the
point v (see [11, Definition 2.18]). The chosen vertex coordinates might differ only
by the choice of their numbering. These vertex coordinates induce a basis on NJ .
The sum of the vectors of this basis depends only on the dihedral structure ı ; it is the
S –point in N 0

J attached to v and ı . Changing the dihedral structure ı amounts to
introducing signs rather than taking the sum of the basis vectors (see [11, Section 2.7]).

Definition 4.7 Let Pn;1 denote the set of canonical tangential base points described
in the previous paragraph.

Brown develops his notion of base points at infinity for M0;n in relation to the question
of unipotent closures and periods of the moduli space of curves in genus 0; see [11,
Definition 3.16 and Example 3.17 and before Section 6.3].

Remark 4.8 The results of the above subsection and of Section 3 hold by the same
arguments in a “more classical” motivic category, for instance the one developed by
Cisinski and Déglise [14]: rational coefficients over a general base and the Beilinson
E1–ring spectrum. In Section 5, we will explore the case where the base is either a
number field or the ring of integers of a number field with some primes inverted and
rational coefficients.
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4.2 The motivic short exact sequence

Derived group schemes were studied in particular by B Toën in [52] and M Spitzweck
in [49]. They can be considered as spectra of E1 algebras (with a specific cosimplicial
structure). Now, using [49], we define a derived group scheme associated to the category
DMZ.M0;n/. Recall that S D Spec.Z/. Using Theorems 2.10 and 3.8, we can directly
apply Theorem 8.4 of [50].

Theorem 4.9 [50] Let S D Spec.Z/ and n > 3. There is an affine derived group
scheme G�

=S;Z;n D Spec.An/ over Z such that

Perf.G�=S;Z;n/' DMT=S;Z.M0;n/;

where Perf denotes the category of perfect representations and DMT=S;Z.X/ the
full triangulated subcategory of compact objects in the full triangulated subcate-
gory of DM=S;Z.X/ generated by Tate objects MZX .p/ D ZX .p/ for p 2 Z (see
Definition 2.5). We shall write simply G�

=S;Z for G�
=S;Z;3 .

We similarly define G�
=S;Z;n1;n2

associated to DMT=S;Z.M0;n1
�M0;n2

/. The natu-
ral functors between categories DMT=S;Z.M0;n/ induce morphisms between affine
derived group schemes.

Proposition 4.10 The structural morphism �nWM0;n ! S D Spec.Z/ induces a
surjective morphism

G�=S;Z;n
�n
�!G�=S;Z;3 DG

�

=S;Z

induced by the natural pullback p�n at the category level. Any choice of S –point
x 2 M0;n.S/ provides a morphism xW G�

=S;Z ! G�
=S;Z;n satisfying �n ı x � id.

The equivalent statement holds for G�
=S;Z;n1;n2

, where, by an abuse of notation, the
morphisms between derived groups are denoted the same as the morphisms between
schemes.

Proof In order to pass from functors between categories to morphisms between
the corresponding affine derived group schemes G�

=S;Z;n and G�
=S
.Z/, it is enough

to obtain a morphism between the corresponding E1 algebras An and A3 with
G�
=S;Z;n D Spec.An/ and G�

=S;Z;3 DG
�

=S;Z D Spec.An�1/. Spitzweck [49] describes
the algebra An as essentially the first degree of the Čech resolution of Bn!Z, where
Bn is an E1 algebra in the category of graded complex of abelian groups Cpx.Ab/Z .
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The cosimplicial structure of the Čech resolution induces the group structure of G�
=S;Z;n .

The above construction is functorial in Bn . Hence we only need to obtain the morphism
B3! Bn (the functor Spec is contravariant). Bn is itself obtained from PMZM0;n

,
the periodization of MZM0;n

(see [48]), as

PMZM0;n
D

M
i2Z

†2i;iMZM0;n
:

Let rn be the right adjoint functor to

Cpx.Ab/!ModMZM0;n
;

and let rZ
n be the graded version of rn and right adjoint to

Cpx.Ab/Z! .ModMZM0;n
/Z:

Bn is then defined as rZ
n .PMZM0;n

/. By an abuse of notation, we also write rn and
rZ
n for the corresponding induced functors on the homotopy categories. The following

triangle is commutative:

Cpx.Ab/ ModMZS

ModMZM0;n

��n

and it induces a similar commutative triangle between the homotopy categories. Thus,
the diagram between right adjoints (and their graded versions) is also commutative:

rn D rn�1 ı .�n/�:

Hence we only need to show how the functor ��n induces a natural morphism

PMZS D PMZM0;3
! .�n/�.PMZM0;n

/:

The unit of the adjunction for the functor ��n gives a morphism

MZS ! .�n/�.�n/
�MZS D .�n/�MZM0;n

:

Applying periodization to both sides then concludes the proof.

By the same argument, an S –point xWS!M0;n gives a morphism xWG�
=S;Z!G�

=S;Z;n .
The composition �n ı x is homotopic to the identity, because the relation �n ı x D id
at the scheme level passes through at each stage of the argument by functoriality.

Remark 4.11 The above argument holds for any morphism f W X ! Y in SmS .
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Let K�
=S;Z;n be the kernel of �n . For any n> 4, we obtain a short exact sequence

(SESn) 1!K�=S;Z;n!G�=S;Z;n!G�=S;Z! 1:

Proposition 4.12 The morphism  n;i WM0;n!M0;n�1 forgetting the i th marked
point induces a commutative diagram

1 K�
=S;Z;n G�

=S;Z;n G�
=S;Z 1

1 K�
=S;Z;n�1 G�

=S;Z;n�1 G�
=S;Z 1

�n

�n�1

z n;i  n;i

Permutations of the marked points on M0;n induce an action of the symmetric group
on G�

=S;Z;n and K�
=S;Z;n . A similar statement holds for G�

=S;Z;n1;n2
and K�

=S;Z;n1;n2
.

Proof The functoriality of the pullback functors means that the equivalent of the
right-hand square for the categories DMT=S;Z also commutes. Remark 4.11 above
then ensures that the desired morphisms exist, by arguments similar to those developed
in Proposition 4.10.

By the same arguments, permutations of the marked points act on G�
=S;Z;n .

Proposition 4.13 Let D be an irreducible component of @M0;n and let D0 be its
open stratum (see Section 3.1). Then D0 is isomorphic to

D0 �M0;n1
�M0;n2

with n1Cn2 D nC 2.

The inclusion iDWM0;n1
�M0;n2

!M0;n induces a gluing morphism

in1;n2;DW G
�

=S;Z;n1;n1
!G�=S;Z;n

and a morphism
Q{n1;n2;DW K

�

=S;Z;n1;n2
!K�=S;Z;n:

Moreover, the projections M0;n1
�M0;n2

!M0;ni
induce morphisms

pn1;n2
W G�=S;Z;n1;n2

!G�=S;Z;n1
�G�=S;Z;n2

and

zpn1;n2
W K�=S;Z;n1;n2

!K�=S;Z;n1
�K�=S;Z;n2

:
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The above morphisms make the following diagram commutative:

1 K�
=S;Z;n G�

=S;Z;n G�
=S;Z 1

1 K�
=S;Z;n1;n2

G�
=S;Z;n1;n2

G�
=S;Z 1

K�
=S;Z;n1

�K�
=S;Z;n2

G�
=S;Z;n1

�G�
=S;Z;n2

�n

�n1;n2

Q{n1;n2;D in1;n2;D

zpn1;n2
pn1;n2

D

As previously, by a slight abuse we use the same notation for the morphisms between
derived groups and the corresponding morphisms between the associated schemes.

Proof The morphisms pn1;n2
are obtained as in Proposition 4.10 and Remark 4.11

using the morphisms
M0;n1

�M0;n2
!M0;ni

for i D 1; 2.

In order to obtain a morphism

G�=S;Z;n1;n2
!G�=S;Z;n;

we can proceed as in Proposition 4.12, working directly in terms of periodizations of
MZD0

and MZM0;n
.

Proposition 4.1 gives a functor

DM=S;Z.M0;n/
LDM
M0;n;D0
�����!DM=S;Z.N

0
D0
/

��
�!DM=S;Z.D0/D DM=S;Z.M0;n1

�M0;n2
/;

where N 0
D0

denotes the normal bundle of D0 in M0;n [D0 with the zero section
removed and � is an everywhere-nonzero section of N 0

D0
as in Proposition 3.2. The

arguments of Proposition 4.12 apply to the morphism � . Hence, it is enough to obtain
a morphism

LM0;n;D0
W rZ
n .PMZM0;n

/! rZ
N 0

D0

.PMZN 0
D0

/

induced by LDM
M0;n;D0

. In the above formula, rZ
N 0

D0

denotes the graded version of the
right adjoint to

Cpx.Ab/!ModMZ
N 0

D0

:
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The heart of the construction of LDM
M0;n;D0

is the equivalence (6),

i�D0
jM0;n �.MZM0;n

/' p0ND0
�.MZN 0

D0

/:

Recall that p0ND0

W N 0
D0
!D0 is induced by the defining morphism of the normal bundle

ND0
! D0 . Pushing forward the above equivalence along iD0

W D0!M0;n [D0

gives the morphism in DM=S;Z.MZM0;n[D0
/

(9) .jM0;n
/
�
.MZM0;n

/! .iD0
/
�
ı i�D0

ı .jM0;n
/
�
.MZM0;n

/

' .iD0
/
�
ı .p0ND0

/
�
.MZN 0

D0

/;

where the first map is given by the unit of the adjunction ..iD0
/
�
; .iD0

/�/.

Following the arguments and notations of the previous Proposition 4.12, we now pass
to periodizations and apply rZ

M0;n[D0
. This concludes the proof, since we have

rZ
M0;n[D0

.jZ
M0;n �

.PMZM0;n
//D rZ

n .PMZM0;n
/

and

rZ
M0;n[D0

..iD0
/
�
ı .p0ND0

/
�
.PMZN 0

D0

//D rZ
N 0

D0

.PMZN 0
D0

/:

The compatibility property with structural morphisms in Proposition 4.6 shows that the
short exact sequence

1!K�=S;Z;n!G�=S;Z;n!G�=S;Z! 1

is split by any choice of a tangential S –point of M0;n . We restrict ourselves to the
family of tangential base points in Pn;1 .

Proposition 4.14 Let xv be a tangential base point of M0;n (with n > 4) in Pn;1 .
Then xv induces a splitting

1 K�
=S;Z;n G�

=S;Z;n G�
=S;Z 1:

�n

zxv

Proof The morphism zxv is defined in terms of the E1 algebras An and A3 using
the periodization of MZM0;n

and MZS as in the proof of Proposition 4.13 above. We
see that it splits the above exact sequence due to the compatibility between tangential
base point functors and structural morphism functors given in Proposition 4.6.
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4.3 A motivic Grothendieck–Teichmüller group

Thanks to the above subsection, the motivic short exact sequence (SESn ) is compatible
with the geometry of the tower of M0;n , namely the gluing morphisms Q{n1;n2;D and
the forgetful morphisms z n;i . Following Grothendieck’s ideas [24, Section 2], we
would like to define the motivic Grothendieck–Teichmüller group as the group of
automorphisms of the tower of the K�

=S;Z;n (the geometric part) compatible with the
natural morphisms. However the “derived nature” of these objects requires some
extra care in this definition. In this subsection, we define the motivic Grothendieck–
Teichmüller group space over Z (with Z coefficients).

The affine derived group schemes G�
=S;Z;n and K�

=S;Z;n (as well as those corresponding
to the products M0;n1

�M0;n2
) naturally give simplicial objects in affine derived

schemes using the group structure. This induced simplicial structure is, in fact, given by
the cosimplicial structure of the Čech resolution of Bn!Z. The category of simplicial
objects in derived schemes is a simplicial model category, and we can use the notion of
homotopy automorphism space as defined by B Fresse [21, Part II, Section 2.2]. Very
briefly, the homotopy automorphism space Auth.O�/ of an object O� is a simplicial
monoid whose connected component (its �0 ) gives invertible homotopy classes of
endomorphisms of O� :

�0.Auth.O�//D ŒO�; O��� D AutHo.simple derived affine schemes/.O
�/:

We use Fresse’s definition of the homotopy automorphism space [21, pages 57–58] to
force the equivariance with the action of the permutation groups.

Definition 4.15 Let Authn be the disjoint union of the connected components of
Auth.K�

=S;Z;n/ having a �W K�
=S;Z;n!K�

=S;Z;n as a vertex satisfying

8� 2†n Œ��Œ��D Œ��Œ�� in �0.Auth.K�=S;Z;n//;

where †n denotes the group of permutation on n elements. The spaces Authn1;n2
are

defined similarly with respect to K�
=S;Z;n1;n2

and the induced †n1
�†n2

–action.

First, let GTh;64
=S;Z be simply Auth4 .

The homotopy automorphisms of the tower up to level n are then defined by induction.
Let Mapn!n�1 (resp. Mapn1�n2!k

for k > 4) denote the homotopy mapping space
Map.K�

=S;Z;n; K
�

=S;Z;n�1/ (resp. Map.K�
=S;Z;n1;n2

; K�
=S;Z;k/) as defined in [21, II.2.1,
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page 51]. For a fixed n> 5, GTh;6n
=S;Z is defined in three steps by the homotopy Cartesian

squares which we define below.

We define �GT
h;6n

=S;Z as the “product” of GTh;6n�1
=S;Z and Authn ; the compatibility with

the morphisms forgetting marked points is forced by using the following homotopy
Cartesian squares:

�GT
h;6n

=S;Z Authn

GTh;6n�1
=S;Z

Qn
iD1 Mapn!n�1

hy

where the horizontal (resp. vertical) map is given on the i th factor by composing on
the right (resp. left) by z n;i W K�=S;Z;n!K�

=S;Z;n�1 .

For n1 and n2 with n1Cn2 D nC2, the homotopy automorphisms in Authn1;n2
must

be compatible with projections on M0;n1
and M0;n2

. We define �Aut
h

n1;n2
by the

homotopy Cartesian diagram

�Aut
h

n1;n2
Authn1;n2

Authn1
�Authn2

Mapn1�n2!n1
�Mapn1�n2!n2

hy

where the horizontal (resp. vertical) map is given on the i th factor by composing on
the right (resp. left) by zpni

W K�
=S;Z;n1;n2

!K�
=S;Z;ni

(with i D 1; 2).

Now we force the compatibility with the gluing morphisms Q{n1;n2;DW K
�

=S;Z;n1;n2
!

K�
=S;Z;n . The space GTh;6n

=S;Z is defined by the homotopy Cartesian diagram

GTh;6n
=S;Z

�GT
h;6n

=S;Z

Q
n1Cn2DnC2

�Aut
h

n1;n2

Q
D�@M0;n

Mapn1�n2!n
�

Q
n1Cn2DnC2

Authn1
�Authn2

hy

where the products
Q
D�@M0;n

run through the set of irreducible components of @M0;n

and the maps Mapn1�n2!n
in the above diagram are given by composition with gluing

morphisms Q{n1;n2;D . The maps into Authni
are the projections given by the construction.
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Definition 4.16 (motivic Grothendieck–Teichmüller space over S D Spec.Z/ with Z

coefficients) Let GTh=S .Z/ be the inverse limit of the GTh;6n
=S;Z :

GTh=S .Z/D lim
 ��
.GTh;6n

=S;Z/:

Remark 4.17 In the above definition, GTh=S .Z/ inherits a simplicial structure from
each simplicial set Authn . As in the étale fundamental group setting (see [27]), the
motivic short exact sequence (SESn ) gives an action of G�

=S;Z.Z/ (the integral points
of G�

=S;Z ) on each K�
=S;Z;n and K�

=S;Z;n1;n2
. This action is compatible with permuta-

tions of marked points, gluing morphisms and morphisms forgetting marked points.
Considering homotopy automorphism spaces (and not only their �0 ) makes its possible
to hope for a monomorphism

G�=S;Z.Z/ ,! GTh=S .Z/;

where the simplicial structure of G�
=S;Z.Z/ comes from its group structure.

Considering only the set of homotopy classes of morphisms would force us to consider
�0.G

�

=S;Z.Z// and not G�
=S;Z.Z/.

In order to prove the above statement, which is really a motivic homotopy theory result,
it might be better to begin by investigating more deeply the structure of the affine
derived group scheme K�

=S;Z;n as proposed in Section 6.

Remark 4.18 The approach in [25] only requires that the automorphisms of braid
groups preserve the “inertia subgroups”. While the approach in [25] is more workable,
it is not as precise in its geometric implications as that described here. Remark 6.1
outlines the relation between “inertia subgroups” and morphisms Q{n1;n2;D .

5 Comparison with classical motivic constructions

In this section we explore how the above situation evolves when working in the more
classical setting of rational coefficients, and also when working over a number field.

5.1 Rational coefficients

In this subsection we describe the situation with rational coefficients. The main
advantage is that the t –structure is available, which allows us to use the Tannakian
formalism on the nonderived category of mixed Tate motives.
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In order to work with rational coefficients, one can consider the Beilinson spectrum
HB;S (see [14, Definition 13.1.2]) and work with the homotopy category of modules
over it as our derived category of motives with Q coefficients DM=S;Q.S/ (resp.
DMQ.M0;n/ for n> 4). The proofs of the corresponding statements in the previous
sections go through with identical arguments. Another way to work with rational
coefficients is to work with the rationalization MQS of Spitzweck’s spectrum MZS .
These two approaches are equivalent thanks to Theorems 7.14 and 7.18 in [50], which
give an isomorphism

MQS 'HB;S :

More generally, using pullbacks by structural morphisms, Spitzweck’s work ensures
that MQX 'HB;X .

Let us denote the Tate objects MQX .n/ by QX .n/ when there is no need to insist on
the spectrum they are coming from, and simply by Q.n/ when X is sufficiently clear.
As previously, the derived category of mixed Tate motives DMT=S;Q.X/ is defined as
the full triangulated subcategory of compact objects in the full triangulated subcategory
of DM=S;Q.X/ generated by Tate objects QX .n/ for n 2 Z.

Hence, from the previous section, we have a family of diagrams between derived
categories of mixed Tate motives with rational coefficients (S D Spec.Z/)

(10)

DMT=S;Q.M0;n�1/ DMT=S;Q.S/

DMT=S;Q.M0;n/ DMT=S;Q.S/

DMT=S;Q.M0;n1
�M0;n2

/ DMT=S;Q.S/

 �
n;i

��n�1

��n

LD;M0;n

D

D

zx�
v0

zx�v

for any n> 4, n1Cn2D nC2 and D a closed codimension-1 stratum of M0;n , and
where, in the above diagram, the tangential base points xv and xv0 lie in Pn;1 and in
Pn�1;1 , respectively, and are moreover compatible in the sense that  n;i .v/D v0 and
d n;i .xv/D xv0 at the scheme level.

As remarked in [38], the arguments of [34] go through provided that the Beilinson–
Soulé vanishing property (BS) holds (see also [37]). Thus, when X over S (and
thus S ) satisfies the (BS) property, we obtain a Tannakian category MTM=S .X/ of
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mixed Tate motives over X as the heart of DMT=S;Q by the t –structure (with duality
and tensor structure inherited from those in DMT=S;Q ). The fiber functor is induced
by the weight-graded piece Gr�W :

!W M 7!
M
n

Hom.QX .n/;GrWn .M//:

The diagram (10) is compatible with the t –structure and induces a similar diagram
between Tannakian categories of mixed Tate motives MTM=S;Q.–/. The Tannakian
formalism and the weight filtration allow us to identify the categories MTM=S;Q.–/
with the categories of graded representations of graded pro-unipotent affine algebraic
groups G=S;Q;n and G=S;Q;n1;n2

. The grading of these groups encodes the Gm action
induced by the weight grading.

We may drop the subscript =S when the base scheme is sufficiently clear, and simply
write GQ;n and GQ;n1;n2

. As in the above section, G=S;Q;3 is denoted by G=S;Q
or simply GQ ; it is the Tannakian group scheme associated to MTM=S;Q.S/. The
groups G=S;Q;n are sometime referred to as motivic fundamental groups of M0;n .
However, we prefer to use the expression Tannakian groups of M0;n , as these groups
are obtained from the categories MTM=S;Q.M0;n/ by the Tannakian formalism. Hence
the diagram (10) (over S D Spec.Z/) leads to a diagram of group schemes

(11)

1 K=S;Q;n�1 G=S;Q;n�1 G=S;Q 1

1 K=S;Q;n G=S;Q;n G=S;Q 1

1 K=S;Q;n1;n2
G=S;Q;n1;n2

G=S;Q 1

K=S;Q;n1
�K=S;Q;n2

G=S;Q;n1
�G=S;Q;n2

�n�1

�n

zxv0

zxv
 n;iz n;i

�n1;n2

Q{n1;n2;D in1;n2;D

zpn1;n2
pn1;n2

D

D

where the three first lines are exact.

Definition 5.1 (motivic Grothendieck–Teichmüller group over S D Spec.Z/ with Q

coefficients) Let GTmot
=S
.Q/ be the group of automorphisms g of the tower of groups

.K=S;Q;n/n>4[ .K=S;Q;n1;n2
/n1;n2>4:
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Each element g is given by two collections of morphisms .gn/n>4 and .gn1;n2
/n1;n2>4

such that each gn (resp. gn1;n2
) is an automorphism of K=S;Q;n (resp. K=S;Q;n1;n2

)
and the gn and the gn1;n2

commute with the action of the symmetric group on K=S;Q;n
and also with the morphisms Q{n1;n2;D , zpn1;n2

and z n;i .

5.2 Working over a number field and its ring of integers

Working over the integers gives a very general description of the categories

MTM=S;Q.M0;n/;

which can be applied in various contexts. But working over a number field allows us to
have a more concrete description of the above groups and their Hopf algebraic avatars
(in the Tannakian formalism) in terms of algebraic cycles, as described in [38].

Before explaining this in more detail, let us take the opportunity to compare the
above category MTM=Spec.Z/;Q.Spec.Z// of mixed Tate motives over Z with the one
defined by Goncharov and Deligne in [16], which, by construction, is a subcategory of
MTM=Spec.Q/;Q.Spec.Q//.

The structural morphism pQW Spec.Q/! Spec.Z/ induces a functor of the derived
motivic categories

p�QW DM=Spec.Z/;Q.Spec.Z//! DM=Spec.Z/;Q.Spec.Q//

sending Tate objects to Tate objects. This functor is compatible with the t –structure,
and hence induces a functor between mixed Tate categories

p�QW MTM=SpecZ;Q.Spec.Z//!MTM=Spec.Z/;Q.Spec.Q//

DMTM=Spec.Q/;Q.Spec.Q//:

Using Remark 2.11, the same result holds when Z is replaced by OF ;P , the ring of
P –integers of a number field F (here P denotes a set of finite places of F ); see [16; 23]:

p�F ;P W MTM=S;Q.S/!MTM=S;Q.Spec.F//DMTM=Spec.F/;Q.Spec.F//;

where S D Spec.OF ;P/.

The functor p�F ;P sends the Tate object QS .i/ to QF .i/ and induces the inclusion

O�F ;P ˝QD ExtMTM=S .S/.QS .0/;QS .1//

! F�˝QD ExtMTM=Spec.F/.Spec.F//.QF .0/;QF .1//
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of the extension groups. Hence it induces an equivalence between the category
MTM=S .S/ and the category MTMDG.OF ;P/ previously defined by Deligne and
Goncharov (see [16, Sections 1.4 and 1.7]). Recall that, by definition, the category
MTMDG.OF ;P/ is the Tannakian subcategory of MTM=Spec.F/.Spec.F// such that the
coaction of Ext.QF .0/;QF .1// on the canonical fiber functor factors through OF ;P .
We summarize the above discussion as the following result.

Proposition 5.2 There is an equivalence of categories

MTM=S .S/'MTMDG.OF ;P/:

Now let us work over a number field F , ie with S D Spec.F/. Theorem 3.8 continues
to hold, and the moduli spaces of curves M0;n (n> 3) have a motive in DMT=S;Q.S/
and satisfy the (BS) property. Hence Levine’s results show that the Tannakian group
G=S;Q;n associated to MTM=S .M0;n/ is the spectrum of a Hopf Q algebra H=S;Q;n
built from algebraic cycles (see [38]). More precisely, let V k

=S;Q;n.p/ be the Q–vector
space freely generated by the closed irreducible subvarieties

Z �M0;n � .P
1
n f1g/2p�k �Ap

such that the projection

M0;n � .P
1
n f1g/2p�k �Ap!M0;n � .P

1
n f1g/2p�k

restricted to Z is dominant, flat and equidimensional of dimension 0 (ie quasifinite).

The group †2p�k Ì .Z=2Z/2p�k acts on V k
=S;Q;n.p/ by permutation of the P1 n f1g

factors and by the inversion ti 7! 1=ti on the same factors. Let Alt2p�k be the
corresponding alternating projection. The symmetric group †p acts on V k

=S;Q;n.p/

by permutation of the A1 factors; we let Symp denote the corresponding symmetric
projection.

The vector space N k
=S;Q;n.p/ is defined as Symp ıAlt2p�k.V k=S;Q;n.p//. For fixed p

(and n), they form a complex with differential induced by the intersection with the
faces of .P1 n f1g/2p�k given by ti D 0 and ti D1. Concatenation of factors and
pullback by the diagonal �nWM0;n!M0;n �M0;n induce a product structure on

N=S;Q;n D
M
p>0

�M
k>0

N k
=S;Q;n.p/

�
:

This endows N=S;Q;n with the structure of a differential graded commutative algebra
for the cohomological degree k . The bar construction of N=S;Q;n as a motivic Hopf
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algebra is given in [9; 38]; a short review can be found in [45]. As a consequence of
Levine’s results in [38] and of Theorem 3.8, we obtain the following statement.

Corollary 5.3 [38] Let F be a number field and S D Spec.F/. Let H=S;Q;n be
Hopf algebra given by the H 0 of the bar construction of N=S;Q;n . Then there is an
isomorphism

G=S;Q;n ' Spec.H=S;Q;n/;

where G=S;Q;n is the Tannakian (pro-unipotent graded) group associated to the category
MTM=S;Q.M0;n/. Moreover, in the exact sequence

1 K=S;Q;n G=S;Q;n G=S;Q 1;
�n

zxv

any choice of a (tangential) base point xv in Pn;1 defines an action of the rational
points of G=S;Q on K=S;Q;n coming from the action over Spec.Z/. Furthermore, any
(possibly different) choice of a tangential base point xv0 in Pn;1 identifies K=S;Q;n
with Deligne–Goncharov motivic fundamental group �mot

1 .M0;n; xv0/.

The same holds for Gn1;n2
. Families of base points xv can be chosen in a compatible

way.

The equivalence presented in Proposition 5.2 between the mixed Tate motives over
Spec.Z/ and the Deligne–Goncharov subcategory of mixed Tate motives over Spec.Q/
allow us to obtain the following result.

Corollary 5.4 There is an injective map from the group of rational points

G=Spec.Z/;Q;3.Q/DG=Spec.Z/;Q.Q/

to GTmot
=Spec.Z/.Q/.

Proof As in the étale setting, the short motivic exact sequence

1 K=Spec.Z/;Q;n G=Spec.Z/;Q;n G=Spec.Z/;Q 1
�n

zxv

gives an action of the rational points of G=Spec.Z/;Q on K=Spec.Z/;Q;n , and hence a
morphism

G=Spec.Z/;Q.Q/! Aut.K=Spec.Z/;Q;n/ for any n> 4:
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Similarly, there is an action of G=Spec.Z/;Q.Q/ on the K=Spec.Z/;Q;n1;n2
. These actions

are compatible with the diagram (11) used in the definition of GTmot
=Spec.Z/.Q/, and give

a morphism

(12) G=Spec.Z/;Q.Q/! GTmot
=Spec.Z/.Q/:

Let zxvD E01 denote the standard tangential base point of P1 n f0; 1;1g at 0 associated
to the standard affine coordinate of P1 n1. The work of Brown in [12] shows that the
algebra �mot

1 .M0;4; E01/ of functions over the Deligne–Goncharov motivic fundamental
group is isomorphic to the algebra of functions over G=Spec.Z/;Q . Brown’s result is
purely motivic, and implies that the action of G=Spec.Z/;Q on K=Spec.Z/;Q;4 is faithful
because of Levine’s isomorphism

K=Spec.Z/;Q;4 ' �
mot
1 .M0;4; E01/;

recalled in Corollary 5.3. This implies the injectivity of the above morphism (12).
Brown’s result uses Deligne and Goncharov’s category of mixed Tate motives over
Spec.Z/, which is a subcategory of the category of motives over Spec.Q/. Levine’s iso-
morphism also holds in the category of mixed Tate motives over Spec.Q/. Proposition
5.2 ensures that both results pass to the setting developed here.

The relation between the Betti realization of G=Spec.Z/;Q and the classical pro-unipotent
Grothendieck–Teichmüller group is reviewed in [20, Part I, Outlook, pages 423–424].
The Betti realization is used in particular to identify the pro-unipotent completion of
the free group on two generators with the Betti realization of K=Spec.Z/;Q;4 . A similar
approach could perhaps be used to prove Conjecture 4 in Section 6 below. A more
detailed review of the relations between the pro-unipotent and pro-l completions of the
fundamental group of P1 n f0; 1;1g, the motivic Tannakian group G=Spec.Z/;Q and
the absolute Galois group Gal.Q=Q/ can be found in [1, Section 25].

6 Some open questions

The main goal of this article is the proof of Theorem 3.8, which, thanks to Levine’s
results in [38], yields a Tannakian category of mixed Tate motives over M0;n whose
Tannakian group is given by the spectrum of H=S;Q;n . This now makes it possible
to describe H=S;Q;n by explicit algebraic cycles, hence generalizing the construction
of [44]. This will be the topic of another article.
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Studying the functoriality of these Tannakian groups with respect to the geometric
morphisms between the M0;n and working over Z with Z coefficients is a natural
approach, because the constructions presented in this paper are purely geometric in
nature. However, these results raise a new series of questions concerning a deeper
understanding of K�

=S;Z;n , questions which are more motivic homotopy-theoretic.
Below, we propose some open problems in this direction.

Working with Z coefficients over S D Spec.Z/ forces us to consider the triangulated
categories DMT=Spec.Z/;Z.M0;n/ and affine derived group schemes G�

=S;Z;n . The
geometric part K�

=S;Z;n of G�
=S;Z;n was defined in Section 4.2 as the kernel of the

morphism induced by the structure map

1!K�=S;Z;n!G�=S;Z;n �n
�!G�=S;Z! 1:

A similar definition was given for K�
=S;Z;n1;n2

.

Conjecture 2 The induced morphism

K�=S;Z;n1;n2 pn1;n2
���!K�=S;Z;n1

�K�=S;Z;n2

is an isomorphism. More generally, for X and Y smooth over S satisfying the
(BS) property and having a motive in DMT=S;Z.S/, we conjecture that there is an
isomorphism

K�=S;Z;X�Y 'K
�

=S;Z;X �K
�

=S;Z;Y ;

where we use a clear “extension” of the notation K�
=S;Z;n DK

�

=S;Z;M0;n
.

This conjecture would endow the family of affine derived group schemes K�
=S;Z;n with

an operadic structure given by the gluing morphisms Q{n1;n2;D (along the line of [20,
Part I, Section 4.3.5, page 155]). In order to take the action of the full symmetric group
into account, the K�

=S;Z;n should also have a cyclic operad structure. This is due to
a shift between the arity of the operad and the number n of marked points; it is also
caused by fixing one of the marked points (for example the first one) as a gluing point.

Remark 6.1 Let D0 be an open codimension-1 stratum of M0;n , and let N 0
D0

be its normal bundle with the zero section removed. Due to the triviality of ND0

(Proposition 3.2), the more general statement in Conjecture 2 implies the identification

K�
=S;Z;N 0

D0

'K�=S;Z;D0
�K�=S;Z;Gm

'K�=S;Z;n1
�K�=S;Z;n2

�K�=S;Z;Gm
:
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Hence, the unit of K�
=S;Z;D0

or a (tangential) base point of D0 leads, by means of the
composition with Q{n1;n2;D , to a morphism

K�=S;Z;Gm
!K�

=S;Z;N 0
D0

Q{n1;n2;D
����!K�=S;Z;n:

This gives a reasonable way to also consider automorphisms of K�
=S;Z;Gm

in the
definition of GTh=S .Z/ (resp. GTmot

=S
.Q/). These automorphisms must be compatible

with the above composition and the rest of the tower. This approach provides a very
concrete and geometric foundation for the classical hypothesis that automorphisms
“preserve inertia subgroups” as, for example, in [42; 25].

Conjecture 2 and Remark 6.1 would allow us to consider only homotopy automorphisms
of K�

=S;Z;n and K�
=S;Z;Gm

in the definition of GTh=S .Z/. It would be even better to
define GTh=S .Z/ as the homotopy automorphisms of an “enriched” operad. As above,
the operadic structure takes into account the action of the permutation groups and
the gluing morphisms Q{n1;n2;D . The “enriched part” would take into account the
morphisms forgetting marked points and K�

=S;Z;Gm
.

Because the M0;n are rational K.�; 1/ spaces, the structure of K�
=S;Z;n could be

described more precisely as follows.

Conjecture 3 Let P be a finite set of points in P1 , with jP j > 2. Then the affine
derived group scheme K�

=S;Z;P1nP
is an affine group scheme. Furthermore, the affine

derived group scheme K�
=S;Z;n is an affine group scheme

K�=S;Z;n DK=S;Z;n D Spec.Rn/;

where Rn is a commutative (but not cocommutative) Hopf algebra.

The first step in proving this conjecture would consist in dealing with the cases of Gm ,
P1 n f0; 1;1g DM0;4 and P1 nP . From there, the conjecture for K�

=S;Z;n should
follow by induction because the forgetful morphism M0;n!M0;n�1 has fiber P1nP

with jP j D n� 1. Conjecture 3 would make it possible to consider classical automor-
phisms in the definition of the Grothendieck–Teichmüller space. However, even if
Conjecture 3 holds, the definition of GTh=S .Z/ in terms of homotopy automorphisms
of an “enriched” operad should be preserved, in order to investigate the properties of
the morphism G�

=S;Z.Z/! GTh=S .Z/.

As we already saw in the situation of rational coefficients, a choice of tangential base
points xv in Pn;1 endows the K=Spec.Z/;Q;n with an action of G=Spec.Z/;Q.Q/, giving
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it a motivic structure. As GTmot.Q/ acts on the tower of the K=Spec.Z/;Q;n , it acts
on the tower of their (Betti/de Rham) realizations. The corresponding towers are
respectively denoted by RealBetti.K�/ and Realde Rham.K�/. We expect the following
result.

Conjecture 4 We have the isomorphism

GTmot.Q/' Aut.RealBetti.K�//' GT.Q/:

The weight filtration on the K=Spec.Z/;Q;n induces a weight filtration on GTmot.Q/.
Denote by GRTmot

=Spec.Z/.Q/ the induced sum of graded pieces. With this notation, we
have

GRTmot.Q/' Aut.Realde Rham.K�//' GRT.Q/:

Note that in the above formulas, the second isomorphism is a consequence of the work
of Bar-Natan [6] following Drinfel’d’s work in [18].

Usually, the pro-unipotent version of the Grothendieck–Teichmüller space is a group
scheme GT. In Conjecture 4 above, we only consider its Q–points, because our
definition of GTmot.Q/ and GTh=S .Z/ arises in the context of fixed coefficients (namely
Q and Z coefficients). When working with a general coefficient ring R , however, the
arguments given in this article should yield a more general group scheme definition for
the motivic Grothendieck–Teichmüller group defined here.
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