
msp
Algebraic & Geometric Topology 18 (2018) 723–766

Incomplete Tambara functors

ANDREW J BLUMBERG

MICHAEL A HILL

For a “genuine” equivariant commutative ring spectrum R , �0.R/ admits a rich
algebraic structure known as a Tambara functor. This algebraic structure mirrors the
structure on R arising from the existence of multiplicative norm maps. Motivated
by the surprising fact that Bousfield localization can destroy some of the norm maps,
in previous work we studied equivariant commutative ring structures parametrized
by N1 operads. In a precise sense, these interpolate between “naive” and “genuine”
equivariant ring structures.

In this paper, we describe the algebraic analogue of N1 ring structures. We introduce
and study categories of incomplete Tambara functors, described in terms of certain
categories of bispans. Incomplete Tambara functors arise as �0 of N1 algebras, and
interpolate between Green functors and Tambara functors. We classify all incomplete
Tambara functors in terms of a basic structural result about polynomial functors. This
classification gives a conceptual justification for our prior description of N1 operads
and also allows us to easily describe the properties of the category of incomplete
Tambara functors.

55P91, 55N91; 18B99, 19A22

1 Introduction

Much of the richness and subtlety of equivariant stable homotopy theory arises from the
complexity of the notion of a commutative ring spectrum (ie multiplicative cohomology
theory) in this context. Although one can define an equivariant commutative ring spec-
trum as an equivariant spectrum with a homotopy-coherent multiplication parametrized
by an E1 operad (regarded as a G–trivial equivariant operad), much more power comes
from considering multiplications parametrized by “genuine” equivariant E1 operads.
Such commutative ring spectra have a coherent collection of multiplicative norm maps,
studied extensively first by Greenlees and May [5] and utilized to great effect in the
work of Hill, Hopkins, and Ravenel [8] resolving the Kervaire invariant one problem.

One of the most surprising observations emerging from the recent renewed interest
in equivariant stable homotopy is the discovery that Bousfield localization does not
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724 Andrew J Blumberg and Michael A Hill

necessarily preserve the existence of these multiplicative norms; see Hill and Hopkins
[7; 6]. Succinctly, Bousfield localization does not necessarily take genuine equivariant
commutative ring spectra to genuine equivariant commutative ring spectra. For formal
reasons, the localization of a genuine equivariant commutative ring spectra is equipped
with a homotopy-coherent multiplication, but the question of which norm maps survive
is considerably more complicated.

In order to understand exactly what kinds of structures are preserved, in previous work
we introduced the more general notion of an N1 operad, an operad in G–spectra
which interpolates between the naive E1 operads which parametrize a coherently
homotopy commutative multiplication and the genuine G–E1 operads whose algebras
are genuine equivariant commutative ring spectra; see Blumberg and Hill [3]. Algebras
in spectra over N1 operads are equivariant commutative ring spectra that admit families
of multiplicative norms. One of the most surprising results in our study of N1 operads
and their algebras was that homotopically, the entire story is essentially discrete. The
homotopy type of an N1 operad is completely determined by an “indexing system”, a
coherent collection of finite H–sets for each subgroup H of G . In addition to their
role classifying N1 operads, indexing systems also parametrize exactly which norms
arise in algebras over an N1 operad. For example, the trivial N1 operad gives only a
coherently commutative multiplication, while a G–E1 operad gives compatible norm
maps for all pairs of subgroups H �K .

Definition 1.1 A symmetric monoidal coefficient system is a contravariant functor

CW Orb
op
G
! Sym

from the opposite of the orbit category of G to the category of symmetric monoidal
categories and strong symmetric monoidal functors.

The prototype of a symmetric monoidal coefficient system is Set , the functor which
assigns to G=H the category of finite H–sets, viewed as a symmetric monoidal category
under disjoint union. The functoriality here is most easily seen by replacing SetH with
the equivalent category of finite G–sets over G=H , and we will implicitly work in this
formulation. An indexing system is a sub-coefficient system of this coefficient system
which has properties analogous to closure under composition.

Definition 1.2 An indexing system is a full symmetric monoidal sub-coefficient system
C of Set that contains all trivial sets and is closed under
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(1) levelwise finite limits and

(2) “self-induction”: if H=K 2 C.H / and T 2 C.K/, then H �K T 2 C.H /.

To reduce clutter, we write C.H / for C.G=H /.

The set I of indexing systems forms a poset under inclusion, and one of the basic
results in [3] is that there is a fully faithful functor

CW Ho.N1–Operad/! I:

We conjecture there that this functor is in fact an equivalence of categories.

The purpose of this paper is to study the analogous story in algebra, which provides a
conceptual explanation of the homotopically discrete behavior of N1 operads. Via �0 ,
the structure of the equivariant stable category is mirrored in the abelian category of
Mackey functors. Mackey functors which have a commutative multiplication, typically
referred to as commutative Green functors, mirror the structure of a homotopy-coherent
multiplication on an equivariant spectrum. Mackey functors that admit a commutative
multiplication and in addition multiplicative norm maps, known as Tambara functors,
mirror the structure of a genuine equivariant commutative ring spectrum. Although the
theory of these sorts of algebraic equivariant ring objects is well developed, there has
not been any study of the algebraic analogue of the algebras over the intermediate N1

operads, namely commutative Green functors which have some, but not necessarily all,
multiplicative norm maps. This paper introduces these “incomplete Tambara functors”
and explores their basic properties.

Tambara [15] originally defined his TNR–functors as product-preserving functors from
a category of “bispans”, now called “polynomials”, of finite G–sets into the category
of sets. Here, a “bispan” is an isomorphism class of diagrams of the form

(1) X
h
 �A

g
�!B

f
�!Y;

where isomorphisms are isomorphisms of diagrams which are the identity on X and
on Y . The set of all such isomorphisms forms the morphisms from X to Y in the
category of bispans, and in this category, disjoint union of finite G–sets forms the
product. Category theorists have generalized this approach, describing the category of
polynomials in a wide variety of contexts such as locally Cartesian closed categories or
categories with pullbacks. Any arrow in the category of polynomials in a category C
can be decomposed as Tf ıNg ıRh , where the definitions of these maps are reviewed
below. The choices of letters reflect the underlying structure: R gives the restriction
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in a Mackey functor, T the transfer, and N the norm, a generalization of the Evens
transfer in group cohomology. Our incomplete Tambara functors arise by restricting
the map g in (1) to live in a particular subcategory. The fact that such a restriction is
well defined comes from the following theorem, which holds for polynomials in any of
the contexts normally studied.

Theorem 1.3 Let C be a locally Cartesian closed category or more generally a category
with pullbacks, and let D be a wide, pullback stable subcategory of C . Then the
subgraph of the category of polynomials in C with all objects and with only morphisms
of the form

X
h
 �A

g
�!B

f
�!Y;

where g 2 D , is a subcategory.

We call this subcategory the “polynomials in C with exponents in D”. This theorem
shows that we can find interesting generalizations of Tambara’s construction by consid-
ering the wide, pullback stable subcategories of the category of finite G–sets. We have
a complete classification of the wide, pullback stable subcategories which are of most
interest to us, and this is the major result of Section 3.

Theorem 1.4 There is an isomorphism between the poset of indexing systems and the
poset of wide, pullback stable, finite coproduct complete subcategories of SetG .

Loosely speaking, an indexing system describes all of the norm maps which arise in the
study of algebras over an N1 operad, and this theorem shows that from a categorical
point of view, these are all that we should have expected.

Functors out of the category of polynomials in SetG with exponents in various wide,
pullback stable subcategories gives our notion of incomplete Tambara functors.

Definition 1.5 (see Definition 4.1) For an indexing system O , the category of
O–Tambara functors is the category of functors from polynomials with exponents
in O to abelian groups.

In Sections 4 and 5, we describe the basic constructions and explore some of the
properties of the category of incomplete Tambara functors. In particular, we describe
the result of localization in the category of incomplete Tambara functors, building on
work of Nakaoka [13].

Next, in Section 6 we study “change” functors and in particular focus on the analogue
of the norm-restriction adjunction in this context.
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Incomplete Tambara functors 727

Finally, we explain the connection between O–ring spectra and O–Tambara functors,
for O an N1 operand. We have the following theorem, proved in Section 4.

Theorem 4.14 Let O be an N1 operad and R an O–algebra in orthogonal G–spectra.
Then �0.R/ is an O–Tambara functor.

In fact, the functor �0 translates the G–symmetric monoidal structure on the equivariant
stable category associated to an N1 operad O (as in Blumberg and Hill [2]) to the
G–symmetric monoidal structure on Mackey functors specified by O . However, to be
precise about this, we need to study the homological algebra of O–Tambara functors.
More generally, because they are central to the behavior of localization on commutative
rings in equivariant stable homotopy theory, we expect that the theory of the homological
algebra of O–Tambara functors will be an important aspect of developing equivariant
derived algebraic geometry. We intend to carry out this work in a subsequent paper.

Remark 1.6 We work in this paper in an additively complete setting, meaning that
all of our flavors of Tambara functors will have an underlying Mackey functor. This
is motivated by our goals in equivariant spectra, where our objects of study are multi-
plicative structures put on genuine G–spectra. Allowing additive incompleteness as
well adds very interesting consequences, and we will return to this in a future paper.

1.1 Notation

We will use the symbol O abusively to refer either to an N1 operad or to an indexing
system; when O refers to an N1 operad, we will use the same symbol to describe the
associated indexing system. If O is an indexing system, then we say that an H–set T

is “admissible for O” if T 2O.H /.

If S is a G–set and s 2 S , let Gs D Stab.s/ denote the stabilizer subgroup.
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2 Polynomials with restricted exponents

A polynomial (or bispan) in a category C is an isomorphism class of composites
X  S ! T ! Y . The collection of polynomials forms a category with composition
given by pullback. Tambara functors can be described as certain functors out of this
category. Given a subcategory D � C , a natural question when considering incomplete
Tambara functors is to consider polynomials in C with the “middle” map S ! T

required to be in D . In this section, we discuss the basic theory of polynomials with
restricted exponents; we also establish some technical results about polynomials with
restricted exponents that we need in the remainder of the paper. The main result of this
section (Theorem 2.10) provides natural criteria on D that describe when the resulting
collection of polynomials itself forms a category.

2.1 Review of polynomials

Much of the background material here is taken from work of Gambino and Kock,
although everything works in Weber’s context as well [4; 16]. Following their conven-
tions, we work in a locally Cartesian closed category C . In particular, this means that for
any morphism f W X ! Y , the pullback functor f �W C=Y ! C=X has both adjoints:

†f a f
�
a…f :

The left adjoint is called the “dependent sum” and the right the “dependent product”.
In the category of finite G–sets, the dependent sum is simply “disjoint union of the
fibers over y ”, while the dependent product is the “product of the fibers over y ”.

In any locally Cartesian closed category C , we can define the category of polynomials.

Definition 2.1 If C is a locally Cartesian closed category, let PC be the category with
objects the objects of C and with morphisms isomorphism classes of “bispans”

X  S ! T ! Y:

Here isomorphisms of bispans are specified by isomorphisms S ! S 0 and T ! T 0

such that following diagram commutes:

S //

Š

��

xx

T

Š

��

&&
X Y

S 0

ff

// T 0

88
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Remark 2.2 In fact, we have a bicategory of polynomials in C , where the diagram
expressing an isomorphism defines a 2–cell provided the central square is a pullback.
For the remainder of this subsection, the statements remain true if we work in the
bicategorical setting.

Composition of bispans is most easily expressed by choosing a convenient set of
generating morphisms.

Definition 2.3 If f W S ! T is a map in C , then let

(1) Rf D ŒT
f
 � S 1

�! S 1
�! S � 2 PC.T;S/,

(2) Nf D ŒS
1
 �S

f
�!T 1

�!T � 2 PC.S;T /,

(3) Tf D ŒS
1
 � S 1

�! S
f
�! T � 2 PC.S;T /.

We will refer to maps of this form as basic polynomials.

These maps generate the category PC . First, we have an identification

(2) ŒX
f
 �S

g
�!T

h
�!Y �D Th ıNg ıRf :

We will say that the order of maps T , N , R given by (2) is the “canonical ordering”, and
we need only show that any other composite of basic maps can be brought into this form.
We do this by establishing commutation relations. The argument goes back to Tambara
in the context of finite G–sets [15]. In the locally Cartesian closed category context,
these were shown by Gambino and Kock and in the context of categories with pullbacks,
by Weber. We summarize the commutation relations in a series of propositions.

Proposition 2.4 [15; 4; 16] We have

Ng ıNg0 DNgıg0 ; Th ıTh0 DNhıh0 ; and Rf ıRf 0 DRf 0ıf :

Proposition 2.5 [15; 4; 16] If

X 0
g0
//

f 0

��

X

f
��

Y 0
g
// Y

is a pullback diagram, then we have

Rf ıNg DNg0 ıRf 0 and Rf ıTg D Tg0 ıRf 0 :

Algebraic & Geometric Topology, Volume 18 (2018)



730 Andrew J Blumberg and Michael A Hill

The most confusing relations involve swapping norms and transfers, as this uses the
much less familiar construction of an exponential diagram. Recall that an exponential
diagram is a diagram isomorphic to one of the form

X

g

��

A
h
oo X �Y

Q
g A

g0

��

f 0
oo

Y
Q

g A
h0

oo

where
Q

g A h0
�! Y is the dependent product of A h

�!X along g , where g0 is the
canonical quotient map, and where f 0W X �Y

Q
g A is a kind of evaluation map

arising as the counit of the adjunction. Weber shows that alternatively, we can describe
exponential diagrams as the terminal objects in the category of diagrams of the form

X

g

��

A
h
oo X �Y Q

g0

��

f 0
oo

Y Q
h0

oo

where the outermost rectangle is a pullback diagram [16, Proposition 2.2.3].

Proposition 2.6 [15; 4; 16] If

X

g

��

A
h
oo X �Y

Q
g A

g0

��

f 0
oo

Y
Q

g A
h0

oo

is an exponential diagram, then we have

Ng ıTh D Th0 ıNg0 ıRf 0 :

For our purposes, a key fact is that the outer rectangle of an exponential diagram is
actually a pullback diagram.

2.2 Polynomials with restricted exponents

We can now describe several natural subcategories of the category of polynomials.
Recall that a subcategory of C is wide if it contains all of the objects, and essentially
wide if every object of C is isomorphic to an object in the subcategory.
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Definition 2.7 If D � C is a wide subcategory, then let PC
D by the wide subgraph

of PC with morphisms the isomorphism classes of bispans

X  S
f
�!T ! Y;

with f 2 D . We call this the polynomials in C with exponents in D .

When C D SetG , we will write PG
D instead of the more awkward PSetG

D .

The somewhat surprising result is that PC
D is a subcategory of PC under the hypothesis

of pullback stability. We begin by recalling the notion of a pullback stable subcategory.

Definition 2.8 If C is a category that admits pullbacks, then we say that a subcategory
D � C is pullback stable if whenever

A

f
��

// B

g
��

C // D

is a pullback diagram and g 2 D , the map f is also in D .

We have two elementary results which we use quite often.

Proposition 2.9 Let D be a pullback stable subcategory of a category C that admits
pullbacks. Then:

(1) If A 2 ob.D/ and f W B!A is an isomorphism in C , then f is in D .

(2) If D contains a terminal object � of C , then D is a wide subcategory.

Proof For the first part, observe that

B
f
//

f
��

A

id
��

A
id
// A

is a pullback diagram. For the second, observe that

B //

id
��

�

id
��

B // �

is a pullback diagram.

With this, we can prove a surprising result that PC
D is actually a subcategory when D

is pullback stable and wide.

Algebraic & Geometric Topology, Volume 18 (2018)
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Theorem 2.10 If D is a wide, pullback stable subcategory, then the subgraph PC
D is a

subcategory of PC .

Proof We show this using the generating morphisms Rf , Ng , and Th . Since by
assumption D is wide, for any f and h, the morphisms Rf and Th are also in PC

D ,
while Ng is if and only if g 2 D . Therefore, it suffices to show that the composite of
any such morphisms is again of the form

Th ıNg ıRf ;

where g 2 D .

Since the maps f and h that specify Rf and Th are arbitrary morphisms in C , any
composite involving only basic maps of this form will again be an element in PC

D .
Thus, we need to show that composites with Ng for g 2 D are again in PC

D . Since D
is a subcategory, we have Ng ıNg0 is again in PC

D provided g;g0 2 D .

Proposition 2.6 shows that Ng ıTh can be written as Tf 0 ıNg0 ıRh0 , where g0 is the
pullback of g in the relevant exponential diagram. This shows that Ng ıTh is again
in PC

D .

Finally, Proposition 2.5 shows that Rf ıNg D Ng0 ıRf 0 , where g0 is the pullback
of g along f . This shows that Rf ıNg is again in PC

D , and thus it is a subcategory.

Corollary 2.11 If D1 �D2 � C are wide, pullback stable subcategories, then we have
an inclusion of subcategories

PC
D1
� PC

D2
:

Proposition 2.12 If D is a wide, pullback stable, symmetric monoidal subcategory
of SetG , then PG

D has finite products and the products are created in PG .

Proof The product in PG is induced by the disjoint union of G–sets: if S and T are
G–sets and iS W S ! S qT and iT W T ! S qT are the inclusions, then

S
RiS
 ���S qT

RiT
���!T

is a product diagram in PG . We must show that if F D Th ıNg ıRf is any morphism
in PG then RiS

ıF and RiT
ıF are in PG

D if and only if F is in PG
D .

By assumption, F is a polynomial of the form

A
f
 �B

g
�!C

h
�!S qT:
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Since we are considering equivariant maps and since we are mapping into a disjoint
union, C decomposes as C0qC1 , where h.C0/ � S and h.C1/ � T . Our map h

is then the disjoint union of maps hi D hjCi
. Similarly, B and g decompose as

B D B0qB1 , where g.Bi/� Ci and if gi D gjBi
, then g D g0qg1 .

We now can directly compute RiS
ıF :

RiS
ıTh ıNg ıRf D Th0

ıRiC0
ıNg ıRf D Th0

ıNg0
ıRiB0

ıRf :

Thus RiS
ıF is in PG

D if and only if g0 2 D and similarly for RiT
ıF . Since D

is a pullback stable symmetric monoidal subcategory, g D g0q g1 is in D if and
only if g0;g1 2 D .

Remark 2.13 Proposition 2.12 holds much more generally: if C is a disjunctive
category in the sense of Barwick [1], ie one in which any map to the coproduct splits
as a coproduct of maps to the summands, then the same argument given goes through.

2.3 Adjunctions between categories of polynomials

We can determine sufficient conditions for when adjunctions in the ambient categories
give rise to adjunctions in the polynomials with exponents in a suitable subcategory.
Our motivation is generalizing the classical result that an adjoint pairx?G

H
DG �H .�/W SetH � SetG

Wi�H

induces by precomposition an adjoint pair on the categories of Mackey functors:

i�H D
�x?G

H

��
WMackeyG � MackeyH WCoIndG

H D .i
�
H /
�:

Strickland shows that this holds in the categories of Tambara functors, a result we will
generalize in Theorem 6.4 below. For now, we continue to work in the more abstract
context.

Definition 2.14 We say that a subcategory D � C is essentially a sieve if for all
f 0W a0! b in C with b in D , there is an isomorphism a0! a and a map f W a! b

in D making a commutative diagram:

a0

Š

��

f 0
// b

a
f

??

Algebraic & Geometric Topology, Volume 18 (2018)
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Remark 2.15 This is the strong form of the “not evil” version of a sieve. Instead of
asking that the maps form a kind of ideal under composition, we ask instead that it be
closed under precomposition with an isomorphic map. In particular, D is not a wide
subcategory of the slice category in C over its objects, but it is essentially wide. Just as
a sieve is a kind of union of the slice categories over its objects, this is essentially so.

The prototypical example comes from the category of finite G–sets.

Proposition 2.16 The image of the induction functor
x?G

H
is essentially a sieve in SetG .

Proof We must show that if f 0W T 0!
x?G

H
S is any G–map, then there is an H–set T ,

an H–map f W T ! S , and an isomorphism T 0!
x?G

H
T such that the diagram

T 0
f 0
//

Š

��

x?G

H
S

x?G

H
T

"f

==

commutes. Let T be the pullback in H–sets

T //

��

S

��

i�
H

T 0
f 0
// i�

H

x?G

H
S

where the map from S is the unit of the adjunction. Let f be the map T !S given by
the pullback, and then by construction, the desired diagram commutes. By checking on
orbits, we see that the natural map

x?G

H
T ! T 0 is also an equivariant isomorphism.

With this definition, we can describe sufficient conditions for a pair of adjoint functors
on C to descend to a pair of adjoint functors on PC

D .

Theorem 2.17 Let F W C � C0 WG be an adjoint pair with the following properties:

(1) The image of F is essentially a sieve.

(2) F and G both restrict to functors F W D! D0 and GW D0! D .

(3) F detects maps in D: for any f 2 C , its image F.f / is in D0 if and only if f
is in D .

Then F and G induce an adjoint pair:

GW PC0
D0 � PC

D WF:
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Proof We first describe the natural transformations on Hom objects. If

G.X /
f
 �A

g
�!B

h
�!Y

is in PC
D , then we take this to

X
f�
 �F.A/

F.g/
���!F.B/

F.h/
���!F.Y /:

Since F descends to a functor D! D0 , this is a morphism of PC0
D0 .

For the other direction, since the image of F is essentially a sieve, any morphism of
the form

X
f 0
 �A0

g0
�!B0 h0

�!F.Y /

can be rewritten as

X
f
 �F.A/

F.g/
���!F.B/

F.h/
���!F.Y /:

We take this arrow to
G.X /

f�
 �A

g
�!B

h
�!Y:

Since g 2 D if and only if F.g/ 2 D0 , this is a morphism in PC
D .

These constructions are natural and clearly inverses to each other.

Remark 2.18 We note that we only require that F and G descend to functors be-
tween D and D0 , not that they give an adjoint pair. In particular, we will see below
(Proposition 6.2) that these conditions are satisfied by restriction and induction for
certain subcategories of finite G–sets, even when these functors are not adjoint.

3 Pullback stable subcategories of SetG

Our incomplete Tambara functors are controlled by suitable subcategories of the
category SetG of finite G–sets. In this section, we develop the basic properties of
pullback stable subcategories of SetG that we will need for our subsequent work. In
particular, we show that there is an equivalence of posets between the poset of pullback
stable subcategories of SetG and the poset of indexing systems; this classification
result gives a “span-theoretic” explanation for the importance of indexing systems in
our work on N1 operads.

3.1 Basic properties of pullback stable subcategories

We now restrict attention to pullback stable subcategories of SetG . This ambient
category is very well behaved, and we will see that simple assumptions give surprisingly
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strong results. Many of the results in this subsection work more generally; for clarity we
restrict ourselves to this basic case, and leave the (easy) generalizations to the interested
reader. Additionally, motivated by our study below of incomplete Tambara functors,
we restrict attention to those pullback stable subcategories of D which are symmetric
monoidal subcategories. (Here recall that the symmetric monoidal structure on SetG

is given by the coproduct, disjoint union.) In particular, we are assuming that given
maps f W X ! Y and gW X 0! Y 0 in D , then D contains the map XqX 0! Y qY 0 .
Restricting to this setting has a very surprising consequence.

Proposition 3.1 If D is a pullback stable, symmetric monoidal subcategory of SetG

that contains ∅!�, then D contains all monomorphisms.

Proof Since D contains the terminal object and is pullback stable, by Proposition 2.9
we conclude that it is wide. Next, any monomorphism S ! T can be written as

∅qS ! .T �S/qS Š T:

Since D is pullback stable, for any finite G–set S , pulling back the map ∅!� along
the terminal map T �S!� implies that the initial map ∅! T �S is in D . Since D
is symmetric monoidal, we can now conclude that any monomorphism is in D .

The pullback stable subcategories D of finite G–sets we consider will have an additional
property: they have all finite coproducts and the coproducts are created in SetG . We
will refer to this property by saying that D is a finite coproduct complete subcategory
of SetG . Note that any a coproduct complete subcategory of SetG is in fact a symmetric
monoidal subcategory, since the coproduct in SetG is the symmetric monoidal product.
From the point of view of the resulting Tambara functors, we will see that this is a very
natural condition due to the following simple lemma.

Lemma 3.2 Let D be a pullback stable subcategory of SetG . Then the following are
equivalent:

(1) The category D is a wide and finite coproduct complete subcategory of SetG .

(2) The category D is a symmetric monoidal subcategory that contains the maps
∅!� and �q�! �.

Proof If D is wide and finite coproduct complete as a subcategory of SetG , then in
particular, ∅!� and �q�! � are in D .

For the converse, since � 2 D , by Proposition 2.9, D is a wide subcategory. Then
Proposition 3.1 implies that all monomorphisms are in D . In particular, empty
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coproducts are in D . Next, for any finite G–set T , the coproduct T qT in SetG is
the coproduct in D . To see this, consider the following pullback diagram:

T qT //

��

T

��

�q� // �

Pullback stability implies that the fold map T qT ! T is in D . Since the canonical
inclusions i1; i2W T ! T q T are injections, they are in D . Moreover, it is clear
that this holds for arbitrary finite coproducts of T . Finally, for an arbitrary finite
coproduct, we can write the required universal map out as a composite of iterated
fold maps and the symmetric monoidal product of maps. That is, given T qS , the
universal map to Z given T ! Z and S ! Z can be expressed as the composite
S qT !ZqZ!Z .

Definition 3.3 An indexing subcategory of SetG is a wide, pullback stable, finite
coproduct complete subcategory.

Pullback stability itself implies a partial converse to Lemma 3.2.

Proposition 3.4 Let D be a pullback stable subcategory of SetG and assume that`
i Ti is the coproduct in D . If f W S !

`
i Ti is in D , then so are f jSi

, where
Si D f

�1.Ti/.

Proof The restrictions to these summands are just the pullbacks along the inclusions
of Ti into the coproduct.

In particular, the conditions of being a wide, pullback stable, and finite coproduct
complete subcategory of SetG are extremely stringent: we can completely recover any
subcategory of SetG of this form out of a subcategory of the orbit category of G .

Definition 3.5 Let D be a subcategory of SetG . We define OrbD to be the full
subcategory of D obtained by restricting the objects to the orbits G=H (for H �G )
that are contained in D .

Remark 3.6 When DD SetG , this is the ordinary orbit category, so we can rewrite
OrbD as D\Orb .

Proposition 3.7 If D is an indexing subcategory of SetG , then D is the finite coprod-
uct completion of OrbD in SetG: it is the smallest subcategory of SetG containing
OrbD that has all finite coproducts.
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Proof Let f W S ! T be a map in D . Decomposing T into orbits, we write T D`
G=Hi , and let Si D f

�1.G=Hi/. Finally, let fi D f jSi
.

Since D is closed under pullbacks, Proposition 3.4 implies that if f 2 D , then so
are each of the fi . If D is a symmetric monoidal subcategory, then we also have the
converse, since if each fi 2 D , then so is their coproduct f . It therefore suffices to
consider T DG=H is an orbit.

Decomposing S into orbits, we can write S D
`

G=Hj . Now let fj D f jG=Hj
. If

each fj is in D , then since D is coproduct complete, we have that f D
`
fj is

in D . Since D is an indexing subcategory, Proposition 3.1 shows that for all j , the
inclusion G=Hj ,! S is in D . If f is in D , then the composite of this inclusion
with f , namely fj , is also in D .

Putting these pieces together, we see that any map in D is a sum of maps in D between
orbits and conversely any sum of maps between orbits in D is again in D . In particular,
f is in D if and only if it is in the finite coproduct completion of OrbD .

Remark 3.8 This should be viewed as an analogue of the classical result that SetG is
the finite coproduct completion of the full orbit category Orb .

Proposition 3.7 provides a conceptual understanding of what our incomplete Tambara
functors look like; for this restricted class of pullback stable subcategories, everything
is determined by which maps are in OrbD .

3.2 Subcategories of SetG from indexing systems

In this subsection, we explain how an indexing system determines a wide, pullback
stable, and finite coproduct complete subcategory of SetG . Recall (see Definition 1.2)
that an indexing system is a full symmetric monoidal sub-coefficient system C of Set

that contains all trivial sets and is closed under finite limits and self-induction, in the
sense that if H=K 2 C.H / and T 2 C.K/, then H �K T 2 C.H /. (Recall also that
we refer to the sets specified by O as the admissible sets of O .)

Definition 3.9 For an indexing system O , let SetG
O denote the wide subgraph of SetG

where f W S ! T is in SetG
O if and only if for all s 2 S ,

Gf .s/=Gs 2O.Gf .s//:

The orbit-stabilizer theorem immediately gives an equivalent formulation of the condi-
tion for maps to be in SetG

O .
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Proposition 3.10 A map f W S ! T is in SetG
O if and only if for all s 2 S , we have

Gf .s/ � s 2O.Gf .s//:

The fact that O is an indexing system implies that SetG
O is in fact a category.

Theorem 3.11 The graph SetG
O forms a category.

Proof Since trivial sets are admissible for any subgroup of G , the graph SetG
O contains

the identity map for each object. Therefore, it suffices to show that given two morphisms
f1W S1! S2 and f2W S2! S3 in SetG

O , the composite f2 ıf1 is also in SetG
O .

Let s 2 S1 be any element. By assumption,

Gf1.s/=Gs 2O.Gf1.s// and Gf2ıf1.s/=Gf1.s/ 2O.Gf2ıf1.s//:

Since admissible sets are closed under self-induction, we conclude that

Gf2ıf1.s/=Gs ŠGf2ıf1.s/ �Gf1.s/
Gf1.s/=Gs 2O.Gf2ıf1.s//;

and therefore the composite is also in the category.

Since the condition of being a map in SetO
G

is determined orbit-by-orbit and by
assumption ∅ 2O.H / for all H , the following is immediate.

Proposition 3.12 For any indexing system O , the category SetG
O is a finite coproduct

complete subcategory of SetG .

Finally, we show that SetG
O is pullback stable. For this, we need to check that the maps

in SetG
O are closed under induction, in the following sense.

Proposition 3.13 A map f W S ! T is in SetH
i�
H

O if and only if

G �H f W G �H S !G �H T 2 SetG
O :

Proof We observe that the stabilizer of the points in G �H S can be determined by
those of S :

GŒ.g;s/� D gGsg�1:

If we let F DG �H f , then we have an identification

GF.g;s/=G.g;s/ D gGf .s/g
�1=gGsg�1

D g�Gf .s/=Gs;

where g�W SetGs Š�!SetgGsg�1

is the multiplication by g map. In general, U is an
admissible Gs–set if and only if g�U is an admissible gGsg�1–set, from which the
result follows.
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Theorem 3.14 For any indexing system O , the subcategory SetG
O is pullback stable.

Proof Consider a pullback diagram in SetG

U
h
//

k
��

S

f
��

V
g
// T

where the map f W S ! T is in SetG
O and where g is arbitrary. We will show that k

is a map in SetG
O . First, we reduce to the case that T DG=G is the terminal object.

Consider an element u 2 U . By assumption, we have that

H WDGf ıh.u/ DGgık.u/;

and by naturality, H contains Gu , Gh.u/ , and Gk.u/ . Proposition 3.10 shows that
it suffices to work H–equivariantly, and we need only look at the points which map
to t D g.k.u//D f .h.u// 2 T . Hence we can replace our original diagram with an
H–equivariant one:

H � k.u/�H � h.u/
h
//

k
��

H � h.u/

f

��

H � k.u/
g

// ftg

The problem is therefore reduced to showing that if G=H is an admissible G–set and
if G=K is arbitrary, then G=K �G=H !G=K is in SetG

O . However, the projection
map is isomorphic to the map

G �K .i�K G=H !K=K/:

Since G=H is an admissible G–set, i�
K

G=H is an admissible K–set for any sub-
group K , and therefore by Proposition 3.13, this map is in SetG

O .

Remark 3.15 Roughly speaking, the preceding results imply that SetG
O is essentially

the finite coproduct completion of the subcategory determined by objects isomorphic
to the union of the essential images of the induction functors SetH ! SetG restricted
to O.H /.

We close this subsection with an extremely important observation which we will need
in our study of the change of groups. Since the action map is the pullback of G=H!�

along T !�, the following is immediate.
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Corollary 3.16 If G=H is admissible for O , then for any T , the action map

�T W G �H i�H T ! T

is in SetG
O .

3.3 An intrinsic formulation of indexing systems

The main result of this subsection is that all wide, pullback stable, finite coproduct
complete subcategories of SetG are of the form SetG

O for some O . This characterization
provides an intrinsic description of the data of an indexing system. We begin with a
trivial observation.

Lemma 3.17 If O �O0 , then we have an inclusion

SetG
O � SetG

O0 :

As a consequence of Lemma 3.17, SetG
.�/

is a functor from the poset of indexing
systems to the poset of wide, pullback stable, finite coproduct complete subcategories
of SetG .

Theorem 3.18 The functor
SetG

.�/W O 7! SetG
O

gives an isomorphism between the poset of indexing systems and the poset of indexing
subcategories of SetG .

We prove this by explicitly constructing an inverse to this functor in a series of lemmas
that constitute the remainder of the section. In the following discussion, let D be a
wide, pullback stable, finite coproduct complete subcategory of SetG .

Lemma 3.19 If D is as above, then there is a coefficient system of categories OD

specified at G=H by the assignment

OD.G=H /D D=G=H ;

where D=G=H denotes the overcategory of G=H in D .

Proof First, the pullback stability of D implies that for any map of finite G–sets
f W S ! T , pullback along f induces a functor

D=T ! D=S :

Since the restriction maps in Set come from pulling back along maps of orbits, the
result follows.
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Next, we show that OD is a symmetric monoidal coefficient system. First, observe
that since the forgetful functor D=T ! D creates all colimits, the fact that D is finite
coproduct complete in SetG implies that the analogous result for D=T holds.

Lemma 3.20 The slice categories D=T are all finite coproduct complete as subcate-
gories of SetG

=T
.

Since the coproduct is the symmetric monoidal product, this has the following immediate
consequences.

Corollary 3.21 For any T , the slice category D=T is a symmetric monoidal subcate-
gory of SetG

=T
.

Corollary 3.22 For D as above, OD is a symmetric monoidal coefficient system
of Set .

Another consequence of the slice categories D=T being finite coproduct complete is
that when T is an orbit, D=T is a full subcategory. This is the only place in this
subsection where we use specific properties of the category SetG .

Proposition 3.23 The slice category D=G=H is a full subcategory of SetH .

Proof Let T !G=H and S !G=H be two elements in the overcategory D=G=H .
These are isomorphic in the overcategory to maps of the form G �H T 0!G=H and
G �H S 0!G=H , where T 0 and S 0 are the respective corresponding H–sets. A map
of finite G–sets T ! S over G=H is the same data (by the equivalence of categories)
as an H–map T 0! S 0 . Choosing orbit decompositions of T 0 and S 0 shows that any
f W T 0! S 0 is isomorphic to one of the forma

i j̀

fi;j W

a
i j̀

T 0i;j !
a

i

S 0i ;

where T 0i;j and S 0i are H–orbits for all i and j . It therefore suffices to show that
whenever G=K!G=H and G=J !G=H are in D , then every map of orbits

H=K!H=J

induces up to a map in D . Since any such map is H–isomorphic to a canonical quotient
H=K!H=J where K � J , without loss of generality, we may assume our map of
orbits is of this form.

Here is where the properties of finite G–sets appear. Consider the pullback

G=K �G=H G=J !G=J
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of the map G=K!G=H along the map G=J !G=H . By assumption, this map is
in D . However, G=K �G=H G=J !G=J is isomorphic to the obvious map

G �J .i
�
J H=K/!G=J:

(The appearance of H here is made more transparent by considering instead the
equivalent H–equivariant isomorphism and inducing back up. This also shows that
this isomorphism takes place in the overcategory of G=H .) Since J=K is a summand
of i�

J
H=K , we have that G=K is a summand of G�J i�

J
H=K , and the inclusion of this

summand is automatically in D . Composing these two maps shows that G=K!G=J

is in D as desired.

Remark 3.24 This is a very surprising asymmetry in the argument here: at no point
did we actually use that S !G=H was in D . This indicates that maps in OrbD are
much weirder than expected at first blush. Thinking of this as the statement “if T is
admissible for H , then its restriction is admissible for any subgroup of H ” makes this
phenomenon less confusing.

Lemma 3.25 For any D as above, the symmetric monoidal coefficient system OD is
an indexing system.

Proof We verify the conditions from Definition 1.2. Proposition 3.23 shows that this
is a full symmetric monoidal sub-coefficient system, so we need only verify that it is
closed under finite limits and under self-induction.

To show that OD.H / is closed under finite limits, we show it is closed under subobjects
and under products. Both of these follow immediately from pullback stability. By
Proposition 3.1, if T1q T2 ! G=H is in D , then the restrictions T1 ! G=H and
T2! G=H are both in D as well, showing closure under subobjects. For products,
if S;T ! G=H are in D , then the map S �G=H T ! S ! G=H is a composite of
maps in D and hence in D .

Closure under self-induction is actually just the statement that D forms a category,
since induction along a map G=H ! G=K is just postcomposition. Stipulating that
T ! G=K and G=K ! G=H are both in D is equivalent to the statements that
T 0 2 OD.K/, where T 0 is the inverse image of eK , and H=K 2 OD.H /. Then
the composite T ! G=K ! G=H is in D , which is equivalent to the fact that
H �K T 0 2OD.H /.

Algebraic & Geometric Topology, Volume 18 (2018)



744 Andrew J Blumberg and Michael A Hill

Corollary 3.26 The assignment
D 7!OD

gives a functor from the poset of indexing subcategories of SetG to the poset of indexing
systems.

To complete the proof of Theorem 3.18, it suffices to show that the functor constructed
in Corollary 3.26 is an inverse to SetG

.�/
on objects; since the categories in question

are posets, functors inducing a bijection on objects participate in an equivalence of
categories. The next two lemmas complete this verification.

Lemma 3.27 For any D as above,

DD SetG
OD
:

Proof Proposition 3.7 shows that any indexing subcategory D is completely deter-
mined by its full subcategory OrbD . Since SetG

OD
is an indexing subcategory, we need

only show that
OrbD DOrbOD :

By definition, K=H 2OD.K/ if and only if G=H !G=K is in OrbD , and again by
definition, K=H 2 OD.K/ if and only if G=H ! G=K is in OrbO . This gives the
desired equality.

Lemma 3.28 For any indexing system O ,

ODOSetG
O
:

Proof Consider the slice category over G=H of SetG
O . Any object T ! G=H in

the slice category over G=H is isomorphic in the slice category to an object of the
form G �H T 0! G=H , where T 0! � is the canonical map. By Proposition 3.13,
T !G=H is in SetG

O if and only if T 0!� is in SetH
i�
H

O . However, it is immediate
from the definition that T 0!� is in SetH

i�
H

O if and only if T 0 2 i�
H
O.H /D O.H /,

proving the desired result.

4 Incomplete Tambara functors

In this section, we use the work of the preceding sections to define incomplete Tam-
bara functors in terms of indexing systems. Specifically, we construct a category
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of incomplete Tambara functors that corresponds to any indexing system O via the
functor SetG

.�/
described above.

Using Theorem 2.10, we can in fact define D–Tambara functors for any wide, pullback
stable, symmetric monoidal subcategory of SetG .

Definition 4.1 Let D be a wide, pullback stable, symmetric monoidal subcategory
of SetG . A semi-D–Tambara functor is a product-preserving functor

PG
D ! Set:

A D–Tambara functor is a semi-D–Tambara functor that is (abelian) group valued.

When DD SetG
O , we will call (semi-)D–Tambara functors simply (semi-)O–Tambara

functors.

In PG
D , the morphism sets have a natural commutative monoid structure given by

disjoint union:

ŒX  S ! T ! Y �C ŒX  S 0! T 0! Y �D ŒX  S qS 0! T qT 0! Y �:

Following Tambara, we can therefore group complete this category by group completing
each of these morphism sets [15]. This is analogous to the passage from the category of
spans of finite G–sets to the Burnside category. Using Tambara’s original argument, we
then obtain a characterization of D–Tambara functors in terms of the group completion.

Proposition 4.2 [15] For any semi-D–Tambara functor T , there is a unique D–
Tambara structure on the group completion of T . A D–Tambara functor is an additive
functor from the group completion of PG

D to abelian groups.

The definition of D–Tambara functors in terms of polynomials with exponents in a wide,
pullback stable subcategory of SetG makes proving structural theorems remarkably
straightforward. However, a priori, it is not clear how to understand the structure on
D–Tambara functors in terms of the structure of D . We now explain how properties of D
give rise to familiar structures on D–Tambara functors, culminating in a characterization
of O–Tambara functors as Green functors with additional structure in Theorem 4.13.

We begin by looking at the consequence of the simple observation that every wide,
pullback stable subcategory of SetG contains SetG

iso , the category of finite G–sets and
isomorphisms.
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Proposition 4.3 A SetG
iso–Tambara functor is a Mackey functor.

Proof Any bispan of the form

X  S Š
�!T ! Y

is canonically isomorphic (via the isomorphism S ! T ) to one of the form

X  S id
�!S ! Y:

The category of such bispans is the ordinary category of spans of G–sets.

This implies that D–Tambara functors are Mackey functors with extra structure.

Corollary 4.4 For any wide, pullback stable subcategory D of SetG , a D–Tambara
functor has an underlying Mackey functor.

The next simplest case is when D is the collection of finite G–sets and monomorphisms.
This situation was analyzed by Hoyer in his thesis, so we just cite the result here.

Proposition 4.5 [9] A SetG
mono–Tambara functor is a “pointed Mackey functor”: a

Mackey functor M together with a map from the Burnside Mackey functor A to M .

The pointedness of SetG
mono–Tambara functors arises from the fact that SetG has an

initial object ∅, and hence for any T , there is a distinguished morphism ∅! T in
the category of polynomials with exponents in SetG

mono , namely

∅ ∅! T D
�!T:

The canonical map from the empty set, together with the isomorphisms, generates all
of SetG

mono as a symmetric monoidal category. To build the rest of SetG , we need to
also include the projections G=H !G=K for H �K and the fold maps T qT ! T .

First, we study the consequences of including the fold map in D ; the proof of the
following proposition is exactly the same as that given by Tambara, so we omit it.

Proposition 4.6 [15, 2.3] Let D be a wide, pullback stable subcategory such that
for some T , the fold map T q T ! T is in D . Then the following hold for any
(semi-)D–Tambara functor R:

(1) For all S ! T , R.S/ is a nonunital, commutative (semi-)ring.
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(2) For all S1
f
�! S2 ! T , the restriction map Rf is a nonunital, commutative

(semi-)ring map.

(3) For all S1
f
�!S2! T , the norm map Nf is a map of multiplicative monoids.

(4) For finite G–sets over S1
f
�!S2! T , the Frobenius relation holds:

a �Tf .b/D Tf .Rf .a/ � b/:

If moreover ∅! T is in D , then all the results in the previous list are instead for unital
(semi-)rings.

Corollary 4.7 If ∅!� and �q�! � are in D , then any D–Tambara functor R

has an underlying Green functor.

This last corollary gives us a description of O–Tambara functors as enhanced Green
functors, which parallels the situation with N1 ring spectra.

Corollary 4.8 Let O be any indexing system. An O–Tambara functor has an underly-
ing Green functor.

Remark 4.9 Strickland’s “green” condition on maps in his formulation of Green
functors is exactly the condition that the map be in the wide, pullback stable symmetric
monoidal subcategory of SetG containing ∅!� and �q�! �. This is equivalent
to being in SetG

Otr , where Otr is the indexing system of trivial sets.

At this point, we have almost all of the structure present in an O–Tambara functor. We
only need to understand the effect of the inclusion of the maps G=H ! G=K in D .
For this, it can be helpful to recall an alternative formulation to the axioms for the
norms in a Tambara functors (analogous to the Weyl double coset formulation of the
compatibility of transfers and restrictions). This has been described in detail in work
of Mazur, but we reproduce it here for clarity [11, Theorem 3.5]. The compatibility
with addition was proved by Tambara to show that certain formulae relating transfers
and the Evens norm hold universally.

Proposition 4.10 [15; 11, Theorem 3.5] There is a universal formula expressing the
norm of a sum:

N K
H .aC b/D Tfs

ıNgs
ıRhs

.a˚ b/;

Algebraic & Geometric Topology, Volume 18 (2018)



748 Andrew J Blumberg and Michael A Hill

where hs is the composite of

G�K .K=H �Map.K=H;�q�// ��1
���!G�K .K=H �K=H �Map.K=H;�q�//

with the evaluation map

G �K .K=H �K=H �Map.K=H;�q�// 1�eval
���!G=H qG=H;

where

gsW G �K .K=H �Map.K=H;�q�/!G �K Map.K=H;�q�/

is the canonical quotient and where

fsW G �K Map.K=H;�q�/!�

is the canonical map.

In particular, this formula depends only on H �K .

Proof The composite N K
H
ı .�C�/ is the composite N�K=H

ı Tr , where the map
�K=H W G=H ! G=K is the canonical quotient and rW G=H qG=H ! G=H is the
fold map. Since the composite in question is the pullback along the map G=K!G=G

of the case where K DG , it suffices to consider only this case. Here, it is not difficult
to check from the definition that

G=H

�G=H

��

G=H qG=H
r
oo G=H �Map.G=H;�q�/

hs
oo

gs

��

� Map.G=H;�q�/
fs

oo

is an exponential diagram, and this gives the required formula by Proposition 2.6.

We pause here to stress that since we are assuming that our exponents be drawn from a
category that is pullback stable, the compatibility of norms with sums is automatically
satisfied in the sense that the map gs defined in the statement of the proposition is
again in our category. Put another way, when we rewrite gs as a coproduct of orbits
mapping to a coproduct of orbits, then Ngs

becomes a composite of multiplications
and norms for various pairs of subgroups. By pullback stability, all of the norms for
various pair of subgroups which show up here are norms we are already considering.

There is a similar description for the norm composed with the transfer.
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Proposition 4.11 [11, Theorem 3.5] There is a universal formula expressing the
norm of a transfer:

N G
K TrK

H .a/D Tft
ıNgt

ıRht
.a/;

where
ht W G=K �MapK .G;K=H /!G=H

is defined by ht .gK; �/D g�.g/, where

gt W G=K �MapK .G;K=H /!MapK .G;K=H /

is the canonical quotient and where

ft W MapK .G;K=H /!�

is the unique map.

The following is then immediate from the construction.

Proposition 4.12 If G=H !G=K is in D , then a D–Tambara functor R has a norm
map

R.G=H /!R.G=K/

that satisfies the universal formulae specified by Propositions 4.10 and 4.11.

If G=KqG=K ! G=K is in D as well, then this norm is a map of multiplicative
monoids, and if ∅!G=K is in D , then it is unital.

Putting this together, we can give an alternate formulation of an O–Tambara functor.
This is an extremely useful characterization, as it allows us to use the proofs of many
results in the literature on ordinary Tambara functors to deduce results about O–Tambara
functors.

Theorem 4.13 Let O be an indexing system. An O–Tambara functor is a commutative
Green functor R together with norm maps of multiplicative monoids

N K
H W R.G=H /!R.G=K/

for each G=H !G=K 2OrbO that satisfy the Tambara reciprocity relations given in
Propositions 4.10 and 4.11.

Proof Since SetG
O is a wide, pullback stable, coproduct complete subcategory of SetG ,

any O–Tambara functor is a Green functor plus norm maps. Proposition 4.12 shows that

Algebraic & Geometric Topology, Volume 18 (2018)



750 Andrew J Blumberg and Michael A Hill

if H �K is such that G=H !G=K 2 SetG
O , then we have a norm map satisfying the

desired properties. Finally, any map in SetG
O can be written as a composite of iterated

fold maps and disjoint unions of maps of the form G=H !G=K , so by naturality, to
such a composite we associate the corresponding product of norm maps. These steps
are clearly reversible, again using that any map in SetG and in SetG

O can be written as
a coproduct of disjoint unions of maps of orbits.

As a straightforward corollary of this result, we obtain the following consistency result
connecting O–Tambara functors to N1 ring spectra.

Theorem 4.14 Let O be an N1 operad and R an O–algebra in orthogonal G–spectra.
Then �0.R/ is an O–Tambara functor.

We include one final example of an interesting kind of D–Tambara functor. Consider
the category SetG

epi of finite G–sets and epimorphisms. This is visibly a wide, pullback
stable, and symmetric monoidal subcategory of SetG . More generally, SetG

epi\SetG
O

is a wide, pullback stable, symmetric monoidal subcategory of SetG . Moreover, it
contains �q�! �. On the other hand, it is notably missing ∅!�, which means
that it is not one of the categories we have considered before. This lets us give what
may be the first elementary definition of a nonunital Tambara functor:

Definition 4.15 A nonunital Tambara functor is a SetG
epi–Tambara functor.

A nonunital O–Tambara functor is a .SetG
epi\SetG

O /–Tambara functor.

Proposition 4.16 A nonunital O–Tambara functor R is a nonunital, commutative
Green functor R together with maps of multiplicative monoids

N K
H W R.G=H /!R.G=K/

for all G=H !G=K 2 SetG
O that satisfy the relations of Propositions 4.10 and 4.11.

5 Categorical properties of incomplete Tambara functors

In this section, we describe formal properties of the category of O–Tambara functors.
We begin by describing limits and colimits in O–Tambara functors. We then turn to a
study of “change” functors associated to changing the indexing system. Finally, we
conclude with discussions of ideals of O–Tambara functors and localization phenomena.
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5.1 Limits and colimits in O–Tambara functors

Since (semi-)D–Tambara functors are simply product-preserving functors into a com-
plete and cocomplete category, the category of all such functors is clearly complete.
Additionally, since the limit of a sequence of groups in the categories of abelian groups
and of commutative monoids agree (and agree with the underlying limit in sets), the
category of D–Tambara functors is also complete.

Proposition 5.1 The category of D–Tambara functors has all limits, where

.lim Ri/.T /D lim.Ri.T //:

Moreover, since limits commute with filtered colimits in this setting, we immediately
deduce the existence of filtered colimits.

Proposition 5.2 The category of D–Tambara functors has filtered colimits which are
formed objectwise.

The case of arbitrary colimits is much more subtle, and it depends very heavily only
which (if any) fold maps are in D . The case that D D SetG

iso is classical, and here
colimits are also formed objectwise. We restrict attention to O–Tambara functors from
now on. The following is immediate from work of Strickland.

Theorem 5.3 The category of O–Tambara functors is cocomplete. The box product is
the coproduct of O–Tambara functors.

Proof For coproducts, Strickland (following unpublished work of Tambara) shows
that there is a canonical way to define norms on the box product of two Tambara
functors in a way that is compatible with the norms on the factors [14, Proposition 9.1].
The proof proceeds by constructing explicit norm maps and verifying that they satisfy
the appropriate relations. Thus, by Theorem 4.13, the proof goes through without
change for our restricted class of norm maps, since all of the consistency relations also
take place in that category.

Next, Strickland’s argument for [14, Propositions 10.5 and 10.6] makes no reference
of the forms of the polynomials, and hence holds in general to show that O–Tambara
functors have coequalizers. Since O–Tambara functors have infinite coproducts con-
structed as filtered colimits of finite coproducts, the result now follows.
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Since (semi-)O–Tambara functors are a diagram category, there are enough “free”
objects. In particular, we can form a resolution of any O–Tambara functor by partic-
ularly simply ones, which allows for more direct computation. However, these are
not immediately amenable to homological algebra constructions, as many of these fail
to be flat as Mackey functors (see Warning 5.5). Performing an analysis similar to
the passage from a rigid O–Tambara functor to a more homotopical “N1–algebra in
Mackey functors” fixes this, but we will not focus on that in this paper.

Definition 5.4 If H �G , let

AOŒxH �D PG
O .G=H;�/

be the O–Tambara functor represented by G=H .

The notation here is chosen to draw attention to the parallels with ordinary free com-
mutative rings.

By the Yoneda lemma, we have a natural isomorphism

O–Tamb.AOŒxH �;R/ŠR.G=H /;

so in particular, given any O–Tambara functor R, we can find a free Tambara functor
of the form

AOŒxH1
; : : : � WDAOŒxH1

�� � � �

which maps surjectively onto R: for all finite G–sets T ,

AOŒxH1
; : : : �.T /� R.T /:

In fact, by taking the generating set to be all of R.G=H / as H varies, we can produce
this functorially in R. This allows us to form simplicial resolutions of any O–Tambara
functor by frees.

Warning 5.5 If O is nontrivial, then in general, the underlying Mackey functors
for AOŒxH � will not be projective. An illuminating example is given by G D C2 and
O the complete coefficient system. Then we can describe AOŒxG �DAOŒx� as

AOŒx�.G=G/

res
��

ZŒt �=.t2� 2t/Œx; nx�=t.nx�x2/

vv
AOŒx�.G=e/

tr

BB

ZŒx�

AA
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where the restriction map takes nx to x2 and is the identity on x . The transfer map
is just multiplication by t . (The norm map is induced by x 7! nx , together with the
Tambara relations). As a Mackey functor, this can be rewritten asM

n2N

A˚
M
j2J

I ;

where I is the augmentation ideal of A and where J is a Z–basis for the ideal generated
by nx�x2 in ZŒnx;x�. This has infinite homological dimension.

5.2 O–ideals

Just as in the commutative ring and classical Tambara cases, the kernel of a map
between O–Tambara functors has extra structure. We can define an O–Tambara ideal
in an O–Tambara functor, generalizing work of Nakaoka [12].

Definition 5.6 Let R be an O–Tambara functor. An O–ideal is a sub-Mackey functor
J such that

(1) the multiplication on R makes J an R–bimodule, and

(2) J is a sub-nonunital O–Tambara functor of R.

Remark 5.7 At first blush, the nonunital condition is somewhat weird. When one
recalls that the norm associated to the unique map ∅! T is the multiplicative unit 1

in R.T /, however, then we see that by excluding this map from our possible maps, we
are simply not requiring that J .T / contain 1.

Example 5.8 If ODOtr is the trivial indexing system, then an O–ideal is simply the
obvious notion of an ideal in a Green functor.

Example 5.9 If O is the complete indexing system, then an O–ideal is a Tambara
ideal in the sense of Nakaoka [12].

Example 5.10 If O is any indexing system, then an O–ideal is simply an ideal in the
underlying Green functor which is closed under all norms maps indexed by elements
in OrbO. In other words, it is an ideal in the underlying Green functor which is
simultaneously a sub-nonunital Tambara functor.

Tambara ideals have the feature that the quotient by them is automatically an O–Tambara
functor. The proof is identical to Nakaoka’s, so we omit it.
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Proposition 5.11 (see [12, Proposition 2.6]) If J is an O–Tambara ideal of R, then
R=J has an O–Tambara functor structure such that the natural map R! R=I is a
map of O–Tambara functors.

Given any collection of subsets of R.T / as T varies, we have a smallest O–ideal
containing them. Informally, it is the closure of these sets under all sums, products,
restrictions, transfers, and norms. Some of the most naturally occurring subsets also
result in the most pathological O–ideals, namely those subsets which are simply the
entirety of R.T / for some collection of G–sets T .

Definition 5.12 If F is a family of subgroups of G , then let IO
F be the O–ideal of

the Burnside ring generated by A.G=H / for H 2 F .

Example 5.13 If O is the trivial indexing system, then IO
F .G=K/ is the subgroup

of A.G=K/ generated by elements the form K=H where H 2 F .

The quotients A=IO
F show up as various left adjoints to the forgetful functor applied

to the zero Tambara functor, as described in Proposition 6.10 below. Topologically,
when ODOtr is the trivial indexing system, then IOtr

F is �0.EFC/. More generally,
when O is the indexing system associated to an N1 operad O , the ring A=IO

F is �0

of the nullification functor killing all cells induced up from elements in the family
applied to the zero sphere in the category of O–algebras.

5.3 Change of structure

If D � D0 , then applying Corollary 2.11 gives us an inclusion

PG
D � PG

D0 :

We apply this in the case of O�O0 and to the obvious inclusion SetG
iso � SetG

O . These
gives us restriction functors.

Proposition 5.14 If O �O0, then there is a canonical forgetful functor

iO
0

O W O
0–Tamb!O–Tamb

given by precomposition with the inclusion. This commutes with all colimits and limits.

Proof The only statement requiring proof is that this commutes with limits and
colimits. For limits, we observe that these are formed in the underlying category of
Mackey functors, and hence are preserved. The same is visibly true for filtered colimits.
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More general colimits of O–Tambara functors are built out of the box product of the
underlying Mackey functors, and hence are preserved.

Remark 5.15 From the point of view of structure on the resulting underlying Green
functor, the forgetful functor simply forgets all norms in O0 that are not also norms in O .

Since the restriction is given by the inclusion of a subcategory and it commutes with
all limits and colimits, it has both adjoints.

Proposition 5.16 If O �O0, then the restriction

iO
0

O W O
0–Tamb!O–Tamb

has a left adjoint given by left Kan extension along the inclusion PG
O � PG

O0 which we
write as

O0˝O .�/W O–Tamb!O0–Tamb

and a right adjoint given by the right Kan extension along PG
O �PG

O0 which we write as

FO.O0;�/W O–Tamb!O0–Tamb:

Proposition 5.17 The category O0–Tamb is the category of monadic algebras and
comonadic coalgebras in O–Tamb for the monad (respectively comonad) determined
by the forgetful functor at its adjoints.

Proof Since the forgetful functor has both adjoints, it preserves all limits and colimits.
Since an isomorphism of O0–Tambara functors is simply a map of O0–Tambara functors
that is an isomorphism on the underlying Mackey functors, we see that the forgetful
functor reflects isomorphisms. The Beck monadicity theorem gives the result.

The functor O0˝O .�/ in Proposition 5.16 has a simple conceptual description. We
freely adjoin norms corresponding to maps in O which are not in O0 and all of
their transfers, and then we impose relations reflecting the norms being multiplica-
tive homomorphisms, norms factoring through the Weyl invariants, and the universal
“Tambara reciprocity” formulae reviewed in Propositions 4.10 and 4.11. The other
adjoint FO.O0;�/ is significantly weirder, but it can readily be determined by using
the fact that the assignment T 7! PG

O .T;�/ forms a co-O–Tambara functor in the
category of O–Tambara functors.

We also have adjunctions connecting O–Tambara functors and the underlying Mackey
functor.
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Proposition 5.18 For any O , there is a canonical, strong symmetric monoidal forgetful
functor

U W O–Tamb!Mackey:

Proof Compose with the inclusion PG
iso � PG

O . Since the box product in O–Tambara
functors is formed in the underlying Mackey functors, we conclude this is strong
symmetric monoidal.

Corollary 5.19 If O is any N1 operad, then the forgetful functor

U W O–Tamb!Mackey

has a left adjoint SymO.�/ given by left Kan extension along the inclusion PG
iso � PG

O .

Since SymO.�/ is the left Kan extension, we know exactly what it does to repre-
sentable Mackey functors, the projective generators of the category of Mackey functors.
Following the notation of Definition 5.4, we let

A � fxH g

denote the Mackey functor represented by G=H . We then have a natural isomorphism

SymO.A � fxH g/ŠAŒxH �:

This makes it very easy to compute SymO.M / for any Mackey functor M .

Proposition 5.20 If P1 ! P0 ! M is the start of a projective resolution of M ,
then SymO induces an isomorphism

SymO.M /Š SymO.P0/�SymO.P1/A:

Remark 5.21 Here the observation in Warning 5.5 comes into play: the underlying
Mackey functor for a free O–Tambara functor is essentially never projective. This
means care must be taken when performing homological algebra constructions. These
results should be seen as the algebra incarnation of the topological result that the
G–spectrum underlying an equivariant commutative ring spectrum is almost never
cofibrant.

5.4 Localization of O–Tambara functors

The free O–Tambara functors of Definition 5.4 allow us to invert arbitrary collections
of elements in O–Tambara functors.
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Definition 5.22 Let R be an O–Tambara functor and let

S D f.ai ;Ti/ j i 2 I; ai 2R.Ti/g

be a collection of elements in the values of R at various finite G–sets. Then we say
that a map �W R! B of O–Tambara functors inverts S if

�.ai/ 2 B.Ti/
� for all i 2 I:

It is clear that if �W R! B inverts S and if  W B! B0 is any map of O–Tambara
functors, then  ı � inverts S . Thus the subgraph of the category of O–Tambara
functors under R that invert S is a subcategory provided it is nonempty. Luckily, the
terminal O–Tambara functor provides an example.

Proposition 5.23 The zero O–algebra inverts any set S for any R.

Theorem 5.24 Let R be an O–Tambara functor and let

S D f.ai ;Ti/ j i 2 I; ai 2R.Ti/g

be a collection of elements in the values of R at various finite G–sets. Then the category
of maps �W R! B of O–Tambara functors which invert S has an initial object.

Proof If the cardinality of I is infinite, then we simply consider the directed set of
finite subsets of I and form the colimit over this. It therefore suffices to show this
if jI j <1. By induction on jI j, it therefore suffices to show that we can invert a
single element a 2R.T /.

Consider the O–Tambara functor

ROŒxT � WDR � AOŒxT �:

In the category of O–Tambara functors under R, this represents the functor which
takes B to B.T /. Although in general the value of the box product on a finite G–set
is very difficult to understand, we need only describe several expected elements. The
unit of the free-forget adjunction between O–Tambara functors and Mackey functors is
a map of Mackey functors the form

AT ,!AOŒxT �;

and the unit of this O–Tambara functor is a map A ,!AOŒxT �. Together, this gives a
map of Mackey functors

A˚AT ,!AOŒxT �:
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The reader should think of this as the inclusion of the unit and the degree-1 monomials.
In particular, there is a canonical element xT in AOŒxT �.T / which is given by the
span T  T ! T in AT .T /. The Yoneda lemma says that any map out of AOŒxT �

is completely determined by its value on this element.

Boxing AOŒxT � with R and evaluating at T then gives us an element

ax 2ROŒxT �.T /:

By the Yoneda lemma, this choice of element gives us a map of O–Tambara functors

AOŒxT �!ROŒxT �;

and hence a map of O–Tambara functors under R

ROŒyT �!ROŒxT �:

At this point, the construction is standard. Let a�1R be the pushout in O–Tambara
functors under R

ROŒyT �

��

// ROŒxT �

��

R // a�1R

where the map from ROŒyT �! R is the R–algebra map adjoint to the element 1

in R.T /. If �W R! B is a map of O–Tambara functors, then by construction, a map
from a�1R to B is an element b 2 B.T / such that �.a/b D 1 2 B.T /. Thus a�1R

satisfies the named universal property.

Inverting an element in an O–Tambara functor can be an extremely weird operation.
For example, it can produce the zero ring for frustratingly many examples.

Example 5.25 If a 2 I �A is any element in the augmentation ideal of the Burnside
ring, then the localized Tambara functor a�1A is always zero.

Just as topologically, it can also be difficult to know whether the localization of R

in the category of R modules is the same as the localization described above for the
category of R–algebras. Consider a set S as above. If each Ti , where i 2 I , has a
trivial G–action, then we can copy the arguments of Hill and Hopkins and of Nakaoka
to show the following [7].
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Theorem 5.26 Let a 2 R.G=G/. If for all � W G=H ! G=K 2 OrbO , the element
N� ıResG

K .a/ divides a power of ResG
H .a/, then the ordinary sequential colimit

R a�
�!R a�

�!� � �

computes the localization a�1R.

To make a similar statement for inverting elements in R.T / for T not a trivial G–set,
we must consider the various change-of-group functors relating an O–Tambara functor
and an i�

H
O–Tambara functor.

6 Change functors

In this section we study the adjunction induced on categories of O–Tambara functors
associated to a group homomorphism H !G ; we are most interested in the situation
where H �G is a subgroup. As one would expect, the situation is precisely analogous
to the situation for O–algebras in spectra; there is a “norm-forget” adjunction involving
the admissible sets specified by O (see Proposition 6.18 below). The structure we
describe here is in fact similarly an aspect of an incomplete G–symmetric monoidal
structure on Mackey functors, under which the commutative monoids are precisely the
O–Tambara functors. We intend to describe this structure in detail in a subsequent paper.

6.1 Change of groups

Observe that induction on SetH gives a faithful embedding of SetH into SetG , and
thus gives us a faithful embeddingx?G

H
W PH

i�
H

O ,! PG
O :

Since the product in polynomials is the disjoint union and since induction is strong
symmetric monoidal for disjoint unions, this is a product-preserving embedding. The
following is then immediate.

Proposition 6.1 Precomposing with
x?G

H
gives the restriction functor

i�H W O–TambG! i�HO–TambH :

This functor always has a right adjoint. For this, we need to apply Theorem 2.17. This
requires a very basic analysis of the images of the restriction and induction functors
when applied to our categories SetG

O .
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Proposition 6.2 For any O , the image of
x?G

H
restricted to SetH

i�
H

O is essentially a
sieve in SetG

O .

Proof Proposition 2.16 shows that in SetG , the image of
x?G

H
is essentially a sieve. Any

map isomorphic to a map in SetG
O is in SetG

O , and this together with Proposition 3.13
implies the result.

We have the analogous result for the restriction functors.

Proposition 6.3 The restriction functor i�
H
W SetG! SetH restricts to give a functor

SetG
O ! SetH

i�
H

O .

Proof Let f W S!T be a map in SetG
O , and let s2S . When we consider the H–orbit

of s , the stabilizer of s in H is H \Gs , and similarly for f .s/. We therefore need to
show that if Gf .s/ � s is an admissible Gf .s/–set, then .H \Gf .s// � s is an admissible
.H \Gf .s//–set. However, if we consider the restriction of Gf .s/ � s to H \Gf .s/ ,
then .H \Gf .s// � s is visibly a disjoint summand. Since the restriction of admissible
sets are admissible and since summands of admissible sets are admissible, we conclude
that .H \Gf .s// is admissible.

Theorem 6.4 For all subgroups H and for all indexing systems O , the functor i�
H

has a right adjoint CoIndG
H given by

CoIndG
H R.T / WDR.i�H T /:

Proof We have an adjoint pair
x?G

H
a i�

H
on the category of finite G–sets. To conclude

the result, we check the three conditions from Theorem 2.17. The first condition is
Proposition 2.16. The second condition is Propositions 6.2 and 6.3. The third condition
is Proposition 3.13. Theorem 2.17 then shows that we have an induced adjoint pair
i�
H
a
x?G

H
on polynomials:

i�H W P
G
O � PH

i�
H

O W
x?G

H
:

Since both i�
H

and
x?G

H
are product-preserving functors, the result follows.

It is obvious that the functor CoIndG
H R is a Green functor. The somewhat surprising

part of Theorem 6.4 is that we have norm maps. These are built in the most naïve way
possible: simply use the norm for the restriction of our map to H

Nf WDNi�
H
f :
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The example of H D feg shows this quite transparently, as we can build on the
representation theory story implicit in the underlying Mackey functor.

Example 6.5 If R is a commutative ring (which is an i�e O–Tambara functor any O ),
then

CoIndG
H R.T /DMap.T;R/

with the coordinatewise addition and multiplication. Just as the transfer maps are “sum
over cosets”, the norm maps are “multiply over cosets”:

N G
H .f /D

Y
gH2G=H

f .gH /:

The composite functor CoIndG
H ı i�

H
is also readily determined, and this lets us also

generalize this functor.

Proposition 6.6 The composite CoIndG
H ı i�

H
on O–Tambara functors is isomorphic

to the functor
mG=H .R/ WDRG=H ;

where RG=H .T /DR.G=H �T /.

Corollary 6.7 For any indexing system O and for any finite G–set T , the assignment

mT .R/ WDRT

gives an endofunctor of the category of O–Tambara functors.

Proof Since RT1qT2
ŠRT1

�RT2
and since the category of O–Tambara functors is

closed under limits, it suffices to show this for T DG=H . This is Proposition 6.6.

The functor mT can also be described as the Kan extension along the functor on
polynomials given by T ��. For formal reasons, its left adjoint should be the functor
that is Kan extension along the internal Hom object F.T;�/. Since R 7! RG=H is
the composite CoIndG

H ı i�
H

, then the left adjoint will be the composite of i�
H

with its
left adjoint.

We now wish to build a left adjoint to the forgetful functor. Formally, such a left adjoint
will be given by the left Kan extension along the inclusion, and work of Kelly and
Lack shows that the left Kan extension of any product-preserving functor along

x?G

H
is

again product preserving [10, Proposition 2.5]. This shows that nG
H

in the following
definition is well defined.
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Definition 6.8 Let
nG

H W i
�
HO–TambH !O–TambG

be the left Kan extension along the inclusion
x?G

H
W PH

i�
H

O ,! PG
O .

By the universal property of the left Kan extension, the following is immediate.

Proposition 6.9 The functor nG
H

is the left adjoint to the restriction functor i�
H

.

In general, this is a very difficult functor to understand. We pause here to give a short
example that shows how pathological this can be. Let 0 be the zero Green functor.
This has a unique O–Tambara functor structure for any O .

Proposition 6.10 For any H �G and for any O , we have

nG
H 0DA=IO

F.H /;

where F.H / is the family of subgroups of G subconjugate to H .

Proof Both sides have the same universal property: the space of maps out of them is
either a point or empty, with the latter occurring exactly when the restriction to H of
the target is nonzero.

We can use the functor nG
H

to give another formulation of inverting classes, building a
result analogous to the colimit formulation of inversion.

Proposition 6.11 If R is an O–Tambara functor and a 2 R.G=H /, then a�1R is
isomorphic to the pushout in O–Tambara functors of the diagram:

nG
H

i�
H

R
�

//

nG
H
�
��

R

nG
H
.a�1i�

H
R/

Proof Both the pushout and the localization of R have the same universal property.

This allows us to refine Theorem 5.26.

Theorem 6.12 Let a 2R.G=H /. If for all � W H=K!H=J 2Orbi�
H

O , the element
N� ıResH

K .a/ divides a power of ResH
J .a/, then
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(1) the sequential colimit R0

i�H R a�
�! i�H R a�

�!� � �

computes the localization a�1i�
H

R, and

(2) a�1R is the pushout of the diagram:

nG
H

i�
H

R
�
//

nG
H
�
��

R

nG
H

R0

Proof The first part is simply a restatement of Theorem 5.26. The second part follows
from the first from Proposition 6.11.

6.2 Identifying nG
H

In general, identifying the Mackey functor underlying nG
H

R is difficult. We can single
out, however, distinguished cases where such an identification is possible. We begin
with a construction in Mackey functors, due to Mazur for cyclic p–groups and Hoyer
for all finite groups.

Definition 6.13 [9, Definition 2.3.2] Let N G
H
WMackeyH !MackeyG be the left

Kan extension along the coinduction map

FH .G;�/W SetH
! SetG :

Remark 6.14 Since the coinduction functor FH .G;�/ is a strong symmetric monoidal
functor for the Cartesian product, this definition also gives a functor

N G
H W GreenH ! GreenG :

We will therefore blur the distinction between which functor we mean at will.

Theorem 6.15 If G=H is admissible for O , then we have a natural isomorphism of
functors

U ı nG
H .�/ŠN G

H ıU.�/W O–TambH !MackeyG :

Proof Our proof closely follows Hoyer’s proof for the case of ordinary Tambara
functors. We include the details, since there is a single point where care must be taken.
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Since nG
H
.T / is built as a left Kan extension, we can think of an element as an

equivalence class of pairs

.Th ıNg ıRf ;m/ 2 PG
O .G �H X;Y /�T .X /:

The coend equivalence relations say that whenever a map like Ng is induced up from H ,
we can move it across:

.T"f 0 ıN"g0 ıR"h0 ;m/D .1;Tf 0 ıNg0 ıRh0.m//:

We use these to bring the bispan

G �H X
f
 �S

g
�!T

h
�!Y

into a more canonical form, giving a better spanning set for our coend.

Since any map to an induced object is isomorphic to an induced map, we can replace
our bispan with an equivalent one:

G �H X
"f
 �G �H S 0

�T ı"g0
���!T

h
�!Y;

where �T is the counit of the adjunction. Since G=H is admissible, Corollary 3.16
shows that �T is in SetG

O , and in particular, the factorization � ı"g0 takes place in the
category SetG

O . This is the only point in Hoyer’s argument where the fact that we were
in SetG

O arises. Now, any element

.Th ıNg ıRf ;m/ 2 PG
O .G �H X;Y /�T .X /

is equivalent to one of the form

.Th ıN�;Ng0 ıRf 0m/ 2 PG
O .G �H i�H T;Y /�T .i�H T /:

This shows that pairs .Th ıN�;m/ form a spanning set for the coend defining nG
H

T .

A similar argument shows that any element

.Th ıRf ;m/ 2 PG
iso.MapH .G;X /;Y /�M .X /

can be brought into the form

.Th ıR�;Rf 0m/ 2 PG
iso.MapH .G; i

�
H S/;Y /�M .i�H S/:

The natural transformation is defined by

.Th ıN�;m/ 7! .Th ıR�;m/I

Hoyer shows that this is well defined and an isomorphism of Mackey functors [9,
Theorem 2.3.3].
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Corollary 6.16 The composite N G
H
ı i�

H
is naturally isomorphic to the left Kan

extension along the functor F.G=H;�/.

This motivates the following definition.

Definition 6.17 If T is a finite G set, then let

N T
WMackeyG!MackeyG

be left Kan extension along the functor S 7! F.T;S/.

Since
F.T1qT2;S/Š F.T1;S/�F.T2;S/;

we have a natural isomorphism of functors

N T1qT2 ŠN T1 � N T2 :

Proposition 6.18 For all admissible G–sets T , we have an adjoint pair of functors on
O–Tambara functors:

N T
amT :

Proof The assignment T 7!N T takes disjoint unions to categorical coproducts, and
similarly, T 7! mT takes disjoint unions to categorical products. This reduces the
proposition to checking on orbits G=H . Now we have a natural isomorphism

N G
H ı i�H ŠN G=H

arising from the natural isomorphism FH .G; i
�
H
.�//Š F.G=H;�/. The result then

follows from Theorem 6.15.
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