
msp
Algebraic & Geometric Topology 18 (2018) 797–826

Moduli of formal A–modules under change of A

ANDREW SALCH

We develop methods for computing the restriction map from the cohomology of the
automorphism group of a height dn formal group law (ie the height dn Morava
stabilizer group) to the cohomology of the automorphism group of an A–height n

formal A–module, where A is the ring of integers in a degree d field extension
of Qp . We then compute this map for the quadratic extensions of Qp and the height 2

Morava stabilizer group at primes p > 3 . We show that the these automorphism
groups of formal modules are closed subgroups of the Morava stabilizer groups, and
we use local class field theory to identify the automorphism group of an A–height
1–formal A–module with the ramified part of the abelianization of the absolute
Galois group of K , yielding an action of Gal.Kab=Knr/ on the Lubin–Tate/Morava
E–theory spectrum E2 for each quadratic extension K=Qp . Finally, we run the
associated descent spectral sequence to compute the V .1/–homotopy groups of the
homotopy fixed-points of this action; one consequence is that, for each element in
the K.2/–local homotopy groups of V .1/ , either that element or an appropriate dual
of it is detected in the Galois cohomology of the abelian closure of some quadratic
extension of Qp .

11S31, 14L05, 55N22, 55P42, 55Q10

1 Introduction

Let K be a p–adic number field with ring of integers A, and let GA
1=n

denote an
“A–height n formal A–module” over Fp , that is, GA

1=n
is a (one-dimensional) formal

group law equipped with complex multiplication by A, and its underlying formal group
law has p–height dn, where d D ŒK WQp �. (In the base case KDQp , the group G

yZp

1=n

is simply a p–height n formal group law over Fp .) The automorphism group of the
underlying formal group law of GA

1=n
is the well-known height dn Morava stabilizer

group, whose cohomology is the input for many spectral sequences computing stable
homotopy groups of spheres and other spectra; see Devinatz and Hopkins [4; 5] for
one approach, and Ravenel [19, Chapter 6] for another. Among the automorphisms
of the underlying formal group law GA

1=n
, some automorphisms commute with the

complex multiplication by A, and others do not; hence the automorphism group
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of GA
1=n

is naturally a subgroup of the height dn Morava stabilizer group. (It is even a
closed subgroup; see Proposition 4.3 and also this paper’s companion and sequel paper
Salch [24].)

In this paper we develop methods for computing the restriction map from the cohomol-
ogy of the height dn Morava stabilizer group to the cohomology of Aut.GA

1=n
/. In

particular, in Theorem 2.9 we compute the continuous linear dual Hopf algebra of the
group ring of Aut.GA

1=n
/ (recall that, if AD yZp , this linear dual Hopf algebra is called

the height n Morava stabilizer algebra; see Ravenel [19, Section 6.3]), as well as the
map from the height dn Morava stabilizer algebra to the linear dual of the group ring of
Aut.GA

1=n
/, induced by the inclusion of Aut.GA

1=n
/ into the Morava stabilizer group.

The rest of the paper consists of applications of Theorem 2.9. We make the cohomology
computations for nD 1 and d D 2 and p > 3; that is, for each quadratic extension
K=Qp , we compute the restriction map in cohomology from the cohomology of the
height 2 Morava stabilizer group to the cohomology of Aut.GA

1
/ŠA� . Here A is again

the ring of integers of K . Up to isomorphism, there are only three quadratic extensions
of Qp , one of which is unramified (and its relevant cohomological computation is
Theorem 3.5), and two of which are totally ramified (and their relevant cohomological
computations are Theorems 3.6 and 3.7).

By local class field theory, the norm residue symbol map is an isomorphism A� Š�!

Gal.Kab=Knr/, where Knr is the compositum of the unramified extensions of K , and
Kab the compositum of the abelian extensions of K ; see Theorem 4.1 for a quick
review of this fact. The natural isomorphism Aut.GA

1
/ Š A� , composed with the

norm residue symbol, embeds A� as a closed (by Proposition 4.3) subgroup of the
height 2 Morava stabilizer group; hence, by the work of Goerss and Hopkins and
Miller (see [7]), there exists an action of Gal.Kab=Knr/ on (a model for) the Lubin–
Tate/Morava E–theory spectrum E2 for each quadratic extension K=Qp , and by
Devinatz and Hopkins [5], there exists a descent spectral sequence whose input is the
(continuous) Galois cohomology of Kab=Knr and whose output is the homotopy fixed
point spectrum E

h Gal.K ab=K nr/
2

. In Theorem 5.2, we run this spectral sequence after
smashing with the Smith–Toda complex V .1/ at each prime p > 3, and we compute
the resulting map from the homotopy groups of LK.2/V .1/ to the homotopy groups of
the homotopy fixed-point spectrum V .1/^Eh Gal.K ab=K nr/

2
.

One interesting consequence is that the map

(1) ��.LK.2/V .1//! ��.V .1/^E
h Gal.Qp.�p2�1

/ab=Qp.�p2�1
/nr/ÌGal.F

p2=Fp/

2
/
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is injective on the sub-Fp Œv
˙1
2
�–module of ��.LK.2/V .1// generated by 1 and the

element �2 (from Hopkins’s chromatic splitting conjecture, from Miller, Ravenel and
Wilson [14], etc), and the map (1) is zero on the other May/Chevalley–Eilenberg
generators of ��.LK.2/V .1//. Here �p2�1 denotes a primitive .p2�1/st root of unity.

Another interesting consequence is Corollary 4.6: the product of the restriction maps

(2) H�c .Aut.G
yZp

1=2
/IFp2/!

Y
ŒK WQp�D2

H�c .Gal.Kab=Knr/IFp2/

is injective in cohomological degrees � 1, and for each May/Chevalley–Eilenberg basis
element x 2 H�c .Aut.G

yZp

1=2
/IFp2/, either x or the Poincaré dual of x has nonzero

image1 under the map (2). (The product in the map (2) is taken over all isomorphism
classes of quadratic extensions of Qp .) More generally, given a grading-homogeneous
element x 2 ��.LK.2/V .1//, either x or the (modulo 1� v2 ) Poincaré dual class of
x is detected in ��.E

Gal.K ab=K nr/
2

/ for some quadratic extension K=Q. I do not know
yet if anything like this phenomenon generalizes to higher heights or to smaller primes.

This paper is a complete (and much improved) rewrite of much older material I wrote
when I was in graduate school. I am grateful to T Lawson for suggesting a Galois
descent argument used in the proof of Theorem 5.2; to D Ravenel for teaching me a
great deal about formal modules and stable homotopy when I was a graduate student;
to the anonymous referee for helpful comments and ideas which improved this paper;
and to J Greenlees for his editorial help.

Conventions 1.1 � In this paper, all formal groups and formal modules are im-
plicitly assumed to be one-dimensional.

� Throughout, we will use Hazewinkel’s generators for BP� (and, more generally,
for the classifying ring V A of A–typical formal A–modules, where A is a
discrete valuation ring).

� By a “p–adic number field” we mean a finite field extension of the p–adic
rationals Qp .

� When a ground field k is understood from context, we will write ƒ.x1; : : : ;xn/

for the exterior/Grassmann k –algebra with generators x1; : : : ;xn , and we will
write P .x1; : : : ;xn/ for the polynomial k –algebra on the generators x1; : : : ;xn .

1An appealingly coordinate-free way to describe this situation was suggested by the anonymous referee:
the kernel of the map (2) is a Lagrangian, in the sense of symplectic linear algebra, for the duality pairing
on the domain.
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800 Andrew Salch

� We make use of standard conventions when dealing with Hopf algebroids, as in
Ravenel [19, Appendix 1]: we write �L; �RW A! � for the left and right unit
maps of a Hopf algebroid .A; �/, and if a 2A, we sometimes also write a as
shorthand for �L.a/ 2 � .

� When G is an affine group scheme over a field k , we write kŒG�� for the
Hopf algebra corepresenting G , and given a kŒG��–comodule M , we write
H�.GIM / for the group scheme cohomology Ext�

kŒG��–comod.k;M /.
� When G is a profinite group and M a discrete G –module, we write H�c .GIM /

for the usual continuous cohomology of G , ie

H�c .GIM /D colimN H�.G=N IM N /;

where the colimit is taken over all finite-index normal subgroups N of G .

2 Moduli of formal A–modules under change of A

The basic definition is:

Definition 2.1 Let A be a commutative ring, and let R be a commutative A–algebra.
A formal A–module over R is a formal group law G.X;Y / 2RŒŒX;Y �� together with
a ring homomorphism �W A! End.G/ such that �.a/.X /� aX mod X 2 .

The addition in End.G/ is the formal addition given by G , and the multiplication
is composition. Chapter 21 of [9] is a good reference for formal A–modules; the
paper [18] is a faster (but more abbreviated) introduction. Another reference which
gives at least an attempt at an introductory account is [23].

The classical results on p–height and p–typicality (as in [12]) were generalized to
formal A–modules, for A a discrete valuation ring (all but the first claim is proven by
M Hazewinkel in Chapter 21 of [9]; the first claim is easier, and not directly used in
this paper, but a proof can be found in [22]):

Theorem 2.2 Let A be a discrete valuation ring of characteristic zero, with finite
residue field. Then the classifying Hopf algebroid .LA;LAB/ of formal A–modules
admits a retract .V A;V AT / with the following properties:

� The inclusion .V A;V AT / ,! .LA;LAB/ and the retraction .LA;LAB/ ,!

.V A;V AT / are maps of graded Hopf algebroids, and are mutually homotopy-
inverse (that is, they induce an equivalence — but not an isomorphism! — on the
associated stacks).

Algebraic & Geometric Topology, Volume 18 (2018)



Moduli of formal A–modules under change of A 801

� If F is a formal A–module over a commutative A–algebra R and the underlying
formal group law of F admits a logarithm logF .X /, then the classifying map
LA!R factors through the retraction map LA!V A if and only if logF .X /DP

n�1 ˛nX qn

for some ˛1; ˛2; : : : 2R˝Z Q, where q is the cardinality of the
residue field of A.

� V A Š AŒvA
1
; vA

2
; : : : � with vA

n in grading degree 2.qn � 1/, and V AT Š

V AŒtA
1
; tA

2
; : : : � with tA

n in grading degree 2.qn� 1/.

� The generators fvA
i g for V A , called the Hazewinkel generators, are defined as

follows: we fix a uniformizer � for A, and let vA
0
D� . The universal A–typical

formal A–module has logarithm of the form

(3) log.x/D
X
i�0

�A
i xqi

;

and the equation

(4) ��A
h D

h�1X
iD0

�A
i .v

A
h�i/

qi

;

can be solved recursively for elements vA
1
; vA

2
; : : : 2 V A ; these are the Haze-

winkel generators.

� We have a formula

(5) �A
h D

X
i1C���CirDh

��rvA
i1
.vA

i2
/q

i1
� � � .vA

ir
/q

i1C���Cir�1
;

where � is the uniformizer and q the cardinality of the residue field of A, and
all ij are positive integers.

Definition 2.3 Let A be a discrete valuation ring of characteristic zero, with uni-
formizer � , and with finite residue field. Let R be a commutative A–algebra, and let
G be a formal A–module over R.

� We say that G is A–typical if the classifying map LA!R factors through the
retraction LA! V A .

� If G is A–typical, n is a nonnegative integer and R is a field, then we say
that G has A–height � n if the classifying map V A!R factors through the
quotient map V A! V A=.�; vA

1
; : : : ; vA

n�1
/. We say that G has A–height n if

G has A–height � n but not A–height � nC 1. If G has A–height � n for
all n, then we say that G has A–height 1.
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� The inclusion V A!LA associates, to each formal A–module, an A–typical
formal A–module typ.G/ which is isomorphic to it. If G is an arbitrary (not
necessarily A–typical) formal A–module, we say that G has A–height n if
typ.G/ has A–height n.

The following is proven in [9]:

Proposition 2.4 Let p be a prime number.

� Every formal group law over a commutative yZp –algebra admits the unique
structure of a formal yZp –module. Consequently, there is an equivalence of
categories between formal group laws over commutative yZp –algebras, and
formal yZp –modules. Under this correspondence, a formal yZp –module is yZp –
typical if and only if its underlying formal group law is p–typical. If G is a
formal yZp –module of yZp –height n, then its underlying formal group law has
p–height n.

� If L and K are finite extensions of Qp with rings of integers B and A, respec-
tively, if L=K is a field extension of degree d , and if G is a formal B –module
of B –height n, then the underlying formal A–module of G has A–height dn.

� In particular, if K=Qp is a field extension of degree d , if K has ring of integers
A and if G is a formal A–module of A–height n, then the underlying formal
group law of G has p–height dn. Consequently, the only formal groups which
admit complex multiplication by A have underlying formal groups of p–height
divisible by d .

Definition 2.5 Let G be an A–typical formal A–module over a commutative A–
algebra R given by power series G.X;Y / 2RŒŒX;Y �� and �.a/.X / 2RŒŒX �� for each
a2A. The strict automorphism group scheme of G , written strictAut.G/, is the group
scheme which sends a commutative A–algebra S to the group of strict automorphisms
of G˝R S , ie the group (under composition) of formal power series f .X / 2 S ŒŒX ��

such that

� f .X /�X mod X 2 ,

� f .G.X;Y //DG.f .X /; f .Y //, and

� f .�.a/.X //D �.a/.f .X // for all a 2A.

By the usual functor-of-points argument, the strict automorphism scheme strictAut.G/
of G is corepresented by the Hopf algebra R˝V A V AT ˝V A R, where R is a V A –
algebra via the ring map V A!R classifying G , and (as is the usual convention — see
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eg Chapter 6 of [19]) V AT is a left V A –algebra via the left unit map �LW V
A!V AT

and V AT is a right V A –algebra via the right unit map �RW V
A! V AT . (Recall that

the left and right unit maps classifying the underlying A–typical formal A–module
of the source and target of the universal strict isomorphism of A–typical formal A–
modules.) We will write RŒstrictAut.G/�� for the corepresenting Hopf algebra of
strictAut.G/.

It is worth being careful about notation: strictAut.G/ is a profinite group scheme but
often fails to be proconstant, so it is not always the case that RŒstrictAut.G/�� is the
continuous R–linear dual of the group ring RŒstrictAut.G/.R/�, even when R is a
field.

In Definition 2.6 we introduce a new notation which we find very convenient:

Definition 2.6 Let K be a p–adic number field with ring of integers A and residue
field k , and let n be a positive integer.

� We write zGA
1=n

for the formal A–module over kŒvA
n � classified by the map

V A! kŒvA
n � sending vA

n to vA
n and sending vA

i to zero if i ¤ n.

� Let k 0 be a field extension of k and ˛ 2 .k 0/� . We write ˛GA
1=n

for the formal
A–module over k 0 classified by the map V A!k 0 sending vA

n to ˛ and sending
vA

i to zero if i ¤ n.

Proposition 2.7 Let K be a p–adic number field with ring of integers A. Let k be
the residue field of A, let q be the cardinality of k and let � be a uniformizer for A.
Let n be a positive integer. Then, as a quotient of V AT ŠAŒvA

1
; vA

2
; : : : �ŒtA

1
; tA

2
; : : : �,

the Hopf algebra corepresenting strictAut. zGA
1=n
/ is

kŒvA
n �Œt

A
1 ; t

A
2 ; : : : �=.t

A
i .v

A
n /

qi

� vA
n .t

A
i /

qn

8i/:

Proof Ravenel [18] proves the formula

(6)
X

F
i;j�0�L.v

A
i /.t

A
j /

qi

�

X
F
i;j�0�R.v

A
i /

qj

tA
j mod �;

where
P

F is the formal sum, ie the sum using the formal group law underlying the
universal A–typical formal A–module (the sum is well defined because there are only
finitely many terms in each grading degree). We are following the usual convention
that vA

0
D � and tA

0
D 1. As a consequence of (6),

V A �R
�! kŒvA

n �˝V A V AT D V AT=�L.v
A
0 ; v

A
1 ; : : : ; v

A
n�2; v

A
n�1; v

A
nC1; v

A
nC2; : : : /

Algebraic & Geometric Topology, Volume 18 (2018)
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is determined by

(7)
X
i�0

F tA
i �R.v

A
n /

qi

D

X
j�0

FvA
n .t

A
j /

qn

:

By induction on degree, we get

tA
i �R.v

A
n /

qi

D vA
n .t

A
i /

qn

in kŒvA
n �˝V A V AT ˝V A kŒvA

n �, since there is at most one formal summand in each
grading degree on each side of (7). This gives us the relation in the statement of the
theorem.

Lemma 2.8 Let L=K be a finite field extension of degree d and ramification degree e ,
with K and L p–adic number fields with rings of integers A and B , respectively. Let
` denote the residue field of B . Then the ring map

(8) V AT Š V AŒtA
1 ; t

A
2 ; : : : �! V B ŒtB

1 ; t
B
2 ; : : : �Š V BT

classifying the strict formal A–module isomorphism underlying the universal strict
formal B –module isomorphism sends tA

i to tB
ie=d

if i is divisible by the residue degree
d=e of L=K , and sends tA

i to zero if i is not divisible by the residue degree d=e .

Furthermore, let n be a positive integer. Then the map

(9) �W V AT ! `ŒstrictAut. zGB
1=n/�

�

classifying the universal strict automorphism of zGB
1=n

sends vA
dn

to

�A

�e
B

.vB
n /
.qne�1/=.qn�1/;

where q is the cardinality of the residue field of B , and �A and �B are uniformizers
for A and B , respectively. Furthermore, the kernel of the map (9) contains �L.v

A
i /

and �R.v
A
i / for all i ¤ dn.

Proof The claim about the behavior of the map (8) on the generators tA
1
; tA

2
; : : : is a

generalization of Lemma 3.11(a) of [18]. Proving this claim requires some explanation
of how the generators tA

1
; tA

2
; : : : in V AT work; see eg the proof of [19, Theorem

A.2.1.27(d)]. Write GB
univ for the universal B–typical formal B–module, and write

logGB
univ
.X /D

P
n�0 �

B
n X qn

for its logarithm. Then GB
univ is the source of the universal

strict isomorphism of B –typical formal B –modules; write GB
univ;0 for its target. Then

GB
univ;0 has logarithm logGB

univ;0
.X /D

P
n�0 �R.�

B
n /X

qn

, where �RW V
A! V AT is
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the right unit map. The universal strict isomorphism f W GB
univ!GB

univ;0 has inverse
given by the formal sum

(10) f �1.X /D

GB
univX

n�0

tB
n X qn

:

The map (8) is determined as follows: for any p–adic number ring C , if we let FC

denote the underlying formal group law of the universal C –typical formal C –module,
then the log coefficients �C

0
; �C

1
; : : : are the coefficients in the unique power series

logFC
.X /D

X
n�0

�C
n X qn

C

satisfying the conditions

�C
0 D 1 and FC .X;Y /D log�1

FC
.logFC

.X /C logFC
.Y //;

where qC is the cardinality of the residue field of C . Now, if we write

� Knr for the maximal unramified extension of K contained in L,

� Anr for the ring of integers of Knr , and

� 
 0W V Anr ! V B for the map classifying the underlying Anr –typical formal
Anr –module of the universal B –typical formal B –module,

then, by the definition of 
 0 , applying 
 0 to the coefficients of FAnr yields FB . In
particular, 
 0 applied to logFAnr

.X / yields logFB
.X /. Since L=Knr is totally ramified,

qB D qAnr D q , and consequently we have equalities of power seriesX
n�0


 0.�Anr
n /X qn

D 
 0.logFAnr
.X //D logFB

.X /D
X
n�0

�B
n X qn

;

ie 
 0 sends �Anr
n to �B

n for all n. Hence the map of Hopf algebroids


 W .V Anr ;V AnrT /! .V B;V BT /

sends �R.�
Anr
n / to �R.�

B
n / for all n, ie solving (10) yields that 
 .tAnr

n /D tB
n .

The unramified case is similar: the map V A!V Anr sends �A
n to �Anr

ne=d
if n is divisible

by the residue degree d=e D ŒKnr WK�, and sends �A
n to zero if n is not divisible by

the residue degree, and solving (10) yields that the map

k.˛/ŒstrictAut.˛GA
1=dn/�

�
Š k.˛/ŒtA

1 ; t
A
2 ; : : : �=.t

A
i ˛

qei�1
� .tA

i /
qen

8i/

! `Œt
Anr
1
; t

Anr
2
; : : : �=.t

Anr
i ˛qei�1

� .t
Anr
i /q

en

8i/Š `ŒstrictAut.˛GAnr
1=en

/��
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sends tA
n to t

Anr
ne=d

if n is divisible by the residue degree d=e D ŒKnr WK�, and sends
tA
n to zero if n is not divisible by the residue degree.

Now for the claim about the kernel of the map (9): we break the problem into two
parts, an unramified part and a totally ramified part. From Lemma 3.11(b) of [18],
we have that the map 
 W V A ! V Anr classifying the underlying A–typical formal
A–module of the universal Anr –typical formal Anr –module sends vA

n to vAnr
ne=d

if the
residue degree d=e divides n, and 
 .vA

n /D 0 if d=e does not divide n.

Meanwhile, the map 
 0W V Anr ! V B can be computed using (4):

(11) 
 0
� h�1X

iD0

�
Anr
i .v

Anr
h�i
/q

i

�
D
�A

�B

h�1X
iD0

�B
i .v

B
h�i/

qi

;

and the fact that 
 0.�Anr
i /D �B

i . Modulo vB
1

, vB
2

, : : : , vB
n�2

, vB
n�1

, vB
nC1

, vB
nC2

, : : : ,
(5) reads

�B
h D

�
�
�h=n
B

.vB
n /
.qh�1/=.qn�1/ if n j h;

0 if n−h;

and consequently (11) reads

h�1X
iD0

�B
i 

0.v

Anr
h�i
/q

i

D
�A

�B

�
�.h�n/=n
B

.vB
n /
.qh�n�1/=.qn�1/.vB

n /
qh�n

D
�A

�
h=n
B

.vB
n /
.qh�1/=.qn�1/:

Now an easy induction gives us that 
 0.vA
h
/ has positive �B –adic valuation, and

hence is zero in `ŒstrictAut. zGB
1=n
/�� , as long as h < en, and when h D en we

get the formula 
 0.vAnr
en / D .�A=�

e
B
/.vB

n /
.qen�1/=.qn�1/ , which, combined with the

unramified computation above, immediately yields that the map (9) sends vA
dn

to
.�A=�

e
B
/.vB

n /
.qne�1/=.qn�1/ , as claimed.

Now for a slightly more involved induction: suppose we have shown that �.vAnr
n.eCa/

/D0

for aD 1; : : : ; j � 1. Then equations (5) and (11) yield the equation

�.v
Anr
n.eCj/

/C�B
jn�.v

Anr
ne /

qnj

D
�A

�
eCj
B

.vB
n /
.qn.eCj /�1/=.qn�1/;

ie

(12) �.v
Anr
n.eCj/

/D

�
�A

�
eCj
B

�

�
�A

�e
B

�qnj

1

�
j
B

�
.vB

n /
.qn.eCj /�1/=.qn�1/;
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and the right-hand side of (12) is zero, since the scalars �A and �B live in the residue
field of B , which is the finite field with q elements, hence the qth power map is the
identity. So �.vAnr

n.eCj/
/ D 0 for all j > 0; an easy computation using equations (5)

and (11) also yields that �.vAnr
j /D 0 for j > en not divisible by n.

An easy consequence of equation (6) is that �L.vi/ is congruent to �R.vi/ modulo
.�L.v

A
0
/; �L.v

A
1
/; : : : ; �L.v

A
i�1
//. Hence �R.vi/ is in the kernel of � for all i < dn.

Now we carry out an induction to show that �.�R.v
A
i //D 0 for all i > dn as well:

suppose that we have already shown that �.�R.v
A
dnCj

// D 0 for j D 1; : : : ; i � 1.
Then, reducing formula (6) modulo the kernel of � , we haveX

F
j�0�L.v

A
dn/.t

A
j /

qen

D

X
F
j�0;i�dn�R.v

A
i /

qje=d

tA
j

(using the fact that the cardinality of the residue field of A is qe=d ), and in grading
degree 2.qdnCi � 1/, this equation reads

(13) �L.v
A
dn/.t

A
i /

qen

D �R.v
A
dn/

qie=d

tA
i C

F �R.v
A
dnCi/:

If i is not divisible by the residue degree d=e of L=K , then we have already shown
that �.tA

i /D 0, and consequently (13) implies that �.�R.v
A
dnCi

//D 0, as desired. So
suppose instead that i is divisible by the residue degree d=e . We already know that

�.�R.v
A
dn//D �.�L.v

A
dn//D

�A

�e
B

.vB
n /
.qne�1/=.qn�1/;

and that

(14) tB
ie=d .v

B
n /

qie=d

D vB
n .t

B
ie=d /

qn

in `ŒstrictAut. zGB
1=n
/�� . Hence,

(15)
�A

�e
B

.vB
n /
.qne�1/=.qn�1/.tB

ie=d /
qen

D �.�L.v
A
dn/.t

A
i /

qen

/

D �.�R.v
A
dn/

qie=d

tA
i C

F �R.v
A
dnCi//

D �.�R.v
A
dn/

qie=d

tA
i /C

F �.�R.v
A
dnCi//

D

�
�A

�e
B

.vB
n /
.qne�1/=.qn�1/

�qie=d

tB
ie=d C

F �.�R.v
A
dnCi//;

with the third equality due to the formal group law on `ŒstrictAut. zGB
1=n
/�� being

precisely the one classified by � . We have .�A=�
e
B
/q D �A=�

e
B

, since �A=�
e
B

is an
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element of `Š Fq , and repeated use of (14) then implies that

(16)
�A

�e
B

.vB
n /
.qne�1/=.qn�1/.tB

ie=d /
qen

D

�
�A

�e
B

.vB
n /
.qne�1/=.qn�1/

�qie=d

tB
ie=d ;

and consequently (15) implies that �.�R.v
A
dnCi

//D 0, completing the inductive step.

Lemma 2.8 shows that the map

�W V AT ! `ŒstrictAut. zGB
1=n/�

�

factors through the projection V AT ! k˝V A V AT ˝V A k D kŒstrictAut. zGA
1=dn

/�� ,
where k is the residue field of A. This gives us a well-defined map of Hopf algebras

kŒstrictAut. zGA
1=dn/�

�
! `ŒstrictAut. zGB

1=n/�
�;

which we compute in Theorem 2.9:

Theorem 2.9 Let L=K be a finite field extension of degree d , with K and L p–adic
number fields with rings of integers A and B , respectively. Let k and ` be the residue
fields of A and B , let e be the ramification degree of L=K , let q be the cardinality
of `, and let �A and �B be uniformizers for A and B , respectively. Let n be a positive
integer.

Then the underlying formal A–module of zGB
1=n

is zGA
1=dn

. Furthermore, if `0 is a
field extension of ` and ˇ 2 .`0/� , then the underlying formal A–module of ˇGB

1=n
is

˛GA
1=dn

, where
˛ D

�A

�e
B

ˇ.q
en�1/=.qn�1/:

Furthermore, the ring map

(17) k.˛/ŒstrictAut.˛GA
1=dn/�

�
D k.˛/ŒtA

1 ; t
A
2 ; : : : �=.t

A
i ˛

qei�1
� .tA

i /
qen

8i/

! `ŒtB
1 ; t

B
2 ; : : : �=.t

B
i ˇ

qi�1
� .tB

i /
qn

8i/D `ŒstrictAut.ˇGB
1=n/�

�

classifying the strict formal A–module automorphism of ˛GA
1=dn

underlying the uni-
versal strict formal B–automorphism of ˇGB

1=n
sends tA

i to tA
ie=d

if i is divisible by
the residue degree d=e of L=K , and sends tA

i to zero if i is not divisible by the residue
degree d=e .

Proof These claims all follow from Proposition 2.7 and Lemma 2.8.
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3 The n D 1; d D 2 case

Recall the following computation from Theorem 6.3.22 of [19] (this computation is
also carried out again, in detail, in the present paper’s companion paper [24]):

Theorem 3.1 (cohomology of the height 2 Morava stabilizer group at large primes)
Let k be a finite field of characteristic p > 3. Then

H�;�c .strictAut.1G
yZp

1=2
/I k/Šƒ.�2/˝k kf1; h10; h11; �2h10; �2h11; �2h10h11g;

with bidegrees as follows:

(18)

cohomology class cohomology degree internal degree

1 0 0

h10 1 2.p� 1/

h11 1 2p.p� 1/

�2 1 0

h10�2 2 2.p� 1/

h11�2 2 2p.p� 1/

h10�2 2 2.p� 1/

h11�2 2 2p.p� 1/

h10h11�2 3 0

h10�2�2 3 2.p� 1/

h11�2�2 3 2p.p� 1/

h10h11�2�2 4 0

where the cup products in Fpf1; h10; h11; h10�2; h11�2; h10h11�2g are all zero aside
from the Poincaré duality cup products, ie each class has the obvious dual class such
that the cup product of the two is h10h11�2 , and the remaining cup products are all
zero. The internal/topological degrees are defined modulo jv2j D 2.p2� 1/.

In the cobar complex for the Hopf algebra Fp Œ1G
yZp

1=2
�� , we have cocycle representatives

h10 D Œt1�;(19)

h11 D Œt
p
1
�;(20)

�2 D Œt2C t
p
2
� t

pC1
1

�;(21)

h10�2 D Œt1˝ t2� t1˝ t
p
2
C t1˝ t

pC1
1
C t2

1 ˝ t
p
1
�;(22)

h11�2 D Œt
p
1
˝ t

p
2
� t

p
1
˝ t2C t

p
1
˝ t

pC1
1
C t

2p
1
˝ t1�:(23)
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Proposition 3.2 Let K be a p–adic number field with ring of integers A. Let k be
the residue field of A, let � be a uniformizer for A, let k 0 be a field extension of k ,
and let ˛ 2 .k 0/� . Then the profinite group scheme ˛GA

1
is the proconstant group

scheme taking the value 1C �A, the group (under multiplication) of 1–units in A.
That is, the Hopf algebra k 0Œ˛GA

1
�� is the continuous k 0–linear dual of the topological

group ring k 0Œ1C�A�.

Proof It follows from the Barsotti–Tate module generalization of the well-known
Dieudonné–Manin classification of p–divisible groups over algebraically closed fields
(see [13]; also see [17] for a nice treatment of the theory of Barsotti–Tate modules) that

˛GA
1
˝k0
xk 0 Š ˇGA

1
˝k
xk 0 for all ˛; ˇ 2 k 0 , where xk 0 is the algebraic closure of k 0 ,

and that strictAut.˛GA
1
˝k0
xk 0/ is the proconstant group scheme with value 1C�A.

So we just need to show that strictAut.˛GA
1
/ is already proconstant.

Theorem 2.9 gives us that

k 0ŒstrictAut.˛GA
1 /�
�
Š k 0Œt1; t2; : : : �=.ti˛

qi�1
� t

q
i 8i/;

where q is the cardinality of k . Our argument is essentially the same as that of the
proof of Theorem 6.2.3 in Ravenel’s book [19]: an affine profinite group scheme
� � � !G2!G1!G0 over a field k is proconstant if and only if the corepresenting
Hopf algebroid kŒGn�

� has a k –linear basis fyigi2I of idempotent elements such that
yiyj D 0 for all i ¤ j (see eg [26]). In the case of strictAut.˛GA

1
/, it is profinite by

virtue of being the limit (over n) of the strict automorphism group scheme of a formal
A–module n–bud, and the strict automorphism group scheme of a formal A–module
n–bud is corepresented by the Hopf algebra

k 0Œt1; t2; : : : ; tm�=.ti˛
qi�1
� t

q
i W i D 1; : : : ;m/;

where m is the integer floor of logq n. This Hopf algebra splits, as a k 0–algebra,
as the tensor product of copies of k 0Œti �=.ti˛

qi�1 � t
q
i / for various i . The map of

k 0–algebras k 0Œs�=.s� sq/! k 0Œti �=.ti˛
qi�1� t

q
i / sending s to ˛.1�qi /=.q�1/ti is an

isomorphism of k 0–algebras, and k 0Œs�=.s�sq/ admits a k 0–linear basis of idempotents
whose pairwise products are all zero, namely, 1� sq�1 and �

Pq�1
jD1

.ais/j for i D

1; : : : ; q� 1 (this basis is taken from Theorem 6.2.3 of [19]), where a is any generator
for F�q Š k� � .k 0/� . So strictAut.˛GA

1
/ is indeed “already” (ie without any need to

change base to an algebraic closure) proconstant over k 0 .

Theorem 3.3 is easy and classical, essentially a part of local class field theory:
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Theorem 3.3 Let p > 3, and let K=Qp be a quadratic extension with ring of inte-
gers A. Let � be a uniformizer for A and let k be the residue field of A. Then the
continuous group cohomology of the profinite group 1C�A of 1–units in A is

H�c .1C�AI k/Šƒ.h1; h2/;

with h1 and h2 in cohomological degree 1.

Proof By Proposition II.5.5 in [15], the p–adic exponential and logarithm maps yield
an isomorphism of profinite groups between 1C�A and the group �A under addition.
As a profinite abelian group, �AŠAŠ yZp�

yZp , and it is classical that the continuous
cohomology H�c .

yZpI k/D colimn!1H�.Z=pnZI k/ is the colimit of the sequence
of graded abelian groups

H�.Z=pZI k/ //

Š

��

H�.Z=p2ZI k/ //

Š

��

H�.Z=p3ZI k/ //

Š

��

� � �

ƒ.h/˝k kŒb� // ƒ.h/˝k kŒb� // ƒ.h/˝k kŒb� // � � �

where the horizontal maps send h to h and b to 0, ie H�c .
yZpI k/ is an exterior algebra

on one generator.

Proposition 3.4 is well known, and not difficult; see eg Section I.6.6 of [21].

Proposition 3.4 Let p> 2. Then there are, up to isomorphism, exactly three quadratic
extensions of Qp : the unramified extension Qp.�p2�1/, where �p2�1 is a primitive
.p2�1/st root of unity; and two totally ramified extensions Qp.

p
p/ and Qp.

p
ap/,

where a is any integer satisfying 1� a< p which does not have a square root in Fp .

Theorem 3.5 Let p > 3. Then

H�;�c .strictAut.1G
yZpŒ�p2�1

�

1
/IFp/Šƒ.h20; h21/;

with h20 and h21 each in cohomological degree 1 and internal degree 0, and the
restriction map

ƒ.�2/˝k kf1; h10; h11; �2h10; �2h11; �2h10h11g ŠH�;�c .strictAut.1G
yZp

1=2
/I k/

res
�!H�;�c .strictAut.1G

yZpŒ�p2�1
�

1
/IFp/Šƒ.h20; h21/;
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induced by the inclusion of the profinite subgroup

strictAut.1G
yZpŒ�p2�1

�

1
/� strictAut.1G

yZp

1=2
/;

is the map of graded Fp –algebras determined by

res.�2/D h20C h21; res.h10�2/D 0;

res.h10/D 0; res.h11�2/D 0;

res.h11/D 0; res.h10h11�2/D 0:

Proof We will use cocycle representatives (19)–(23) for cohomology classes in
H
�;�
c .strictAut.1G

yZp

1=2
/I k/. In the cobar complex for Fp ŒstrictAut.1G

yZpŒ�p2�1
�

1
/�� ,

one easily computes that t2 and t
p
2

are 1–cocycles (since Theorem 2.9 describes
Fp ŒstrictAut.1G

yZpŒ�p2�1
�

1
/�� as a quotient Hopf algebra of Fp ŒstrictAut.1G

yZp

1=2
/�� , we

can use Ravenel’s formulas for the comultiplication on S.2/Š Fp ŒstrictAut.1G
yZp

1=2
/��

from Section 6.3 of [19], and simply reduce them modulo t1; t3; t5; : : : to get the
comultiplication on Fp ŒstrictAut.1G

yZpŒ�p2�1
�

1
/�� ) which are, modulo coboundaries,

Fp –linearly independent; hence t2 and t
p
2

represent two linearly independent classes in
H 1.strictAut.1G

yZpŒ�p2�1
�

1
/IFp/, so, by Theorem 3.3, the cohomology classes of t2 and

t
p
2

are a minimal set of Fp –algebra generators for H
�;�
c .strictAut.1G

yZpŒ�p2�1
�

1
/IFp/.

We write h20 and h21 for the cohomology classes of t2 and t
p
2

, respectively. Apply-
ing Theorem 2.9, the map res is simply reduction modulo t1; t3; t5; : : : on cocycle
representatives; hence, res.�2/D h20Ch21 and res vanishes on all other generators
for the ring H

�;�
c .strictAut.1G

yZp

1=2
/I k/.

Theorem 3.6 Let p > 3. Then

H�;�c .strictAut.1G
yZpŒ
p

p�

1
/IFp/Šƒ.h10; h20/;

with h10 and h20 each in cohomological degree 1, h10 in internal degree 2.p � 1/

and h20 in internal degree 0, and the restriction map

ƒ.�2/˝k kf1; h10; h11; �2h10; �2h11; �2h10h11g ŠH�;�c .strictAut.1G
yZp

1=2
/I k/

res
�!H�;�c .strictAut.1G

yZpŒ
p

p�

1
/IFp/Šƒ.h10; h20/;

induced by the inclusion of the profinite subgroup

strictAut.1G
yZpŒ
p

p�

1
/� strictAut.1G

yZp

1=2
/;
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is the map of graded Fp –algebras determined by

res.�2/D 2h20; res.h10�2/D 0;

res.h10/D h10; res.h11�2/D 0;

res.h11/D h10; res.h10h11�2/D 0:

Proof This is a very similar computation to Theorem 3.5. We use cocycle rep-
resentatives (19)–(23) for the Fp –algebra generators of H

�;�
c .strictAut.1G

yZp

1=2
/I k/.

Theorem 2.9 tells us that, as a quotient of the Hopf algebra

Fp ŒstrictAut.1G
yZp

1=2
/�� Š Fp Œt1; t2; : : : �=.t

p2

i � ti/;

the Hopf algebra Fp ŒstrictAut.1G
yZpŒ
p

p�

1
/�� is Fp Œt1; t2; : : : �=.t

p
i �ti/. The 1–cocycles

t1 and t2�
1
2
t2
1

in the cobar complex for Fp ŒstrictAut.1G
yZpŒ
p

p�
1

/�� are easily seen to
be Fp –linearly independent modulo coboundaries, so Theorem 3.3 again implies that
the cohomology classes of t1 and t2�

1
2
t2
1

are a minimal set of Fp –algebra generators
for H

�;�
c .strictAut.1G

yZpŒ
p

p�
1

/IFp/.

Reducing cocycles (19)–(21) modulo .tp
1
� t1; t

p
2
� t2/ immediately yields the given

formulas for res.�2/, res.h10/ and res.h11/. For res.h10�2/, we see that reducing (22)
modulo .tp

1
�t1; t

p
2
�t2/ yields the 2–cocycle t1˝t2

1
Ct2

1
˝t1 , which is the coboundary

of 1
3
t3
1

, so res.h10�2/D 0, and a similar computation yields res.h11�2/D 0.

Theorem 3.7 Let p > 3, and choose an integer a such that 0< a< p and such that
a does not have a square root in Fp . Then Fp2 has a .pC1/st root ! of a, and the
underlying formal yZp –module of !G

yZp.
p

ap/
1

is 1G
yZp

1=2
, and

H�;�c .strictAut.!G
yZp.
p

ap/

1
/IFp/Šƒ.h10; h20/;

with h10 and h20 each in cohomological degree 1, h10 in internal degree 2.p � 1/

and h20 in internal degree 0, and the restriction map

ƒ.�2/˝F
p2

Fp2f1; h10; h11; �2h10; �2h11; �2h10h11g

ŠH�;�c .strictAut.1G
yZp

1=2
˝Fp

Fp2/IFp2/

res
�!H�;�c .strictAut.!G

yZpŒ
p

ap�

1
/IFp2/Šƒ.h10; h20/;

induced by the inclusion of the profinite subgroup

strictAut.!G
yZpŒ
p

p�

1
/� strictAut.1G

yZp

1=2
˝Fp

Fp2/;
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is the map of graded Fp –algebras determined by

res.�2/D 2h20; res.h10�2/D 0;

res.h10/D h10; res.h11�2/D 0;

res.h11/D !
p�1h10; res.h10h11�2/D 0:

Proof This is a very similar computation to Theorem 3.6. The existence of ! in Fp2 is
very easy: a is a .p�1/st root of unity since a2 Fp ; hence, ! is a .pC1/.p�1/st root
of unity; hence, ! is fixed by the square of the Frobenius on the algebraic closure Fp .
So ! 2 Fp2 .

We use cocycle representatives (19)–(23) for the Fp2 –algebra generators of

H�;�c .strictAut.1G
yZp

1=2
˝Fp

Fp2/IFp2/:

Theorem 2.9 tells us that, as a quotient of the Hopf algebra

Fp ŒstrictAut.1G
yZp

1=2
˝Fp

Fp2/�� Š Fp2 Œt1; t2; : : : �=.t
p2

i � ti/;

the Hopf algebra Fp2 ŒstrictAut.!G
yZpŒ
p

ap�

1
/�� is Fp2 Œt1; t2; : : : �=.t

p
i �!

pi�1ti/, ie

Fp2 Œt1; t2; : : : �=.t
p
i �!

p�1ti for i odd, t
p
i � ti for i even/:

The 1–cocycles t1 and t2�
1
2
!p�1t2

1
in the cobar complex for

Fp2 ŒstrictAut.!G
yZpŒ
p

ap�

1
/��

are again easily seen to be Fp –linearly independent modulo coboundaries, so Theorem
3.3 again implies that the cohomology classes of t1 and t2�

1
2
!p�1t2

1
are a minimal

set of Fp –algebra generators for H
�;�
c .strictAut.!G

yZpŒ
p

ap�
1

/IFp2/.

Reducing cocycles (19)–(21) modulo .tp
1
�!p�1t1; t

p
2
� t2/ immediately yields the

given formulas for res.h10/, res.h11/ and res.�2/. For res.h10�2/, we see that reduc-
ing (22) modulo .tp

1
�!p�1t1; t

p
2
� t2/ yields the 2–cocycle !p�1.t1˝ t2

1
C t2

1
˝ t1/,

which is the coboundary of 1
3
!p�1t3

1
, so res.h10�2/D 0, and a similar computation

yields res.h11�2/D 0.
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4 Relations with local class field theory

The profinite group scheme Aut.1G
yZp

1=n
˝Fp

Fpn/ is isomorphic to the constant profinite
group scheme on the group of units O�D1=n;Qp

in the maximal order in the central
division algebra over Qp of Hasse invariant 1=n; see Remark 4.2. This group of units
O�D1=n;Qp

plays an important role in attempts to generalize classical local class field
theory to a “nonabelian local class field theory” capable of describing the representations
of Gal.Qp=Qp/ of degree > 1 (the degree 1 representations are already described by
classical local class field theory; see Theorem 4.1 for the reason why). The book [8] is a
standard reference for the nonabelian generalizations, and there one can read about the
successes that have been had in producing certain nonabelian generalizations of local
class field theory which describe `–adic representations of Gal.Qp=Qp/ for `¤ p .

It is a much more difficult problem, however, to produce a nonabelian local class
field theory which describes p–adic representations of Gal.Qp=Qp/, and much less is
known about this case; this is one of the major goals of research in the theory of p–adic
Galois representations. One issue that makes p–adic representations more difficult is the
dramatic failure of semisimplicity for integral p–adic representations of Gal.Qp=Qp/

and related categories of representations: the group O�
D1=n;Qp

— whose `–adic rep-
resentations are closely related to `–adic degree n representations of Gal.Qp=Qp/

for ` ¤ p by the local Langlands correspondences; see [8] — has a great deal of
nonvanishing mod p cohomology, ie the cohomology of the height n Morava stabilizer
group.

In this section, motivated by a remark of E Artin,2 we compute the restriction map
induced in cohomology by the inclusion of Gal.Kab=Knr/ as a subgroup of O�D1=2;Qp

for all quadratic extensions K=Qp , with p > 3; this inclusion is constructed using
local class field theory in Proposition 4.3.

Recall (from eg Serre’s chapter on local class field theory in [2]) Artin reciprocity for
p–adic number fields:

Theorem 4.1 Let K be a p–adic number field with ring of integers A. Let � denote
a uniformizer for A, let k denote the residue field of A, and let Kab , Ktr and Knr

2“My own belief is that we know it already, though no one will believe me — that whatever can be said
about non-Abelian class field theory follows from what we know now, since it depends on the behavior of
the broad field over the intermediate fields — and there are sufficiently many Abelian cases,” Artin, 1946;
the quotation appears in [3], which refers the reader to page 312 of [6].
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denote the compositum of all the finite abelian, tamely ramified abelian and unramified
Galois extensions of K , respectively, in some fixed algebraic closure for K . Then there
exist commutative diagrams of profinite groups with exact rows

1 //

��

A�Š
//

��

K�
�

//

��

Z

�
��

// 1

��

1 // Gal.Kab=Knr/ // Gal.Kab=K/ // Gal.Knr=K/ // 1

1 //

��

1C�AŠ //

��

A�Š
//

��

k�Š

��

// 1

��

1 // Gal.Kab=Ktr/ // Gal.Kab=Knr/ // Gal.Ktr=Knr/ // 1

where 1C � is the group (under multiplication) of 1–units in A, where � is the
limit, over all finite abelian extensions L=K , of the norm residue symbol maps
K�=NL=K L� Š�! Gal.L=K/, and where � agrees with the embedding of Z into
its profinite completion under the composite

Z! Gal.Knr=K/ Š�!Gal.xk=k/ Š�! yZ:

Remark 4.2 By the computation of the Brauer group Br.K/ŠQ=Z of a local field K

(again, see Serre’s chapter on local class field theory in [2]), every finite-rank central
division algebra over K is classified, up to isomorphism, by some rational number
r=s 2 Q=Z, called the Hasse invariant of the division algebra; if r=s is a reduced
fraction, then s2 is the rank of the division algebra. It is well known (again, see Serre’s
chapter on local class field theory in [2], or [13]) that the endomorphism ring of an
A–height n formal A–module over the algebraic closure of k is isomorphic to the
maximal order (ie maximal compact subring) in the central division algebra with Hasse
invariant 1=n; and, furthermore, every degree n field extension of K embeds, by a
ring homomorphism, into that division algebra. Here A is the ring of integers of K

and k is the residue field of A.

Since the profinite group scheme Aut.1G
yZp

1=n
/ is already proconstant after base change

to Fpn (this is Theorem 6.2.3 of [19]), it is unnecessary to base change all the way
to Fp ; the above results from local class field theory provide an embedding of A� Š

Gal.Kab=Knr/ into Aut.1G
yZp

1=n
˝Fp

Fpn/ for each field extension K=Qp of degree n.
Here A again denotes the ring of integers of K .
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Proposition 4.3 Let K=Qp be a field extension of degree n. Let A denote the ring
of integers of K , and let � denote a uniformizer for A and k the residue field of A.
Let q be the cardinality of k , and let ! denote a ..qen� 1/=.qn� 1//th root of �e=p

in Fpn . Let

iK W Gal.Kab=Knr/ ,! Aut.1G
yZp

1=n
˝Fp

Fpn/

be the homomorphism of profinite groups defined as the composite of the norm residue
symbol Gal.Kab=Knr/ Š�!A�ŠAut.!GA

1
/ with the natural embedding Aut.!GA

1
/ ,!

Aut.1G
yZp

1=n
/ of Aut.!GA

1
/ as the automorphisms of the underlying formal yZp –module

of !GA
1

(which is 1G
yZp

1=n
, by Theorem 2.9) which preserve the complex multiplication

by A.

Then the image of iK is a closed subgroup of Aut.1G
yZp

1=n
˝Fp

Fpn/.

Proof Let Ga denote the automorphism group of the underlying formal yZp –module
a–bud of

1G
yZp

1=n˝Fp
Fpn ;

so that Aut.1G
yZp

1=n
˝Fp

Fpn/ is, as a profinite group, the limit of the sequence of finite
groups � � � !G3!G2!G1 . Let Ha denote the subgroup of Aut.1G

yZp

1=n
˝Fp

Fpn/

consisting of those automorphisms whose underlying formal yZp –module a–bud auto-
morphism commutes with the complex multiplication by A, ie those whose underlying
formal yZp –module a–bud automorphism is an automorphism of the underlying formal

A–module a–bud of !GA
1

. The index of Ha in Aut.1G
yZp

1=n
˝Fp

Fpn/ is at most the
cardinality of Ga , hence is finite. Now we use the theorem of Nikolov and Segal
from [16]: every finite-index subgroup of a topologically finitely generated profinite
group is an open subgroup. The group Aut.1G

yZp

1=n
˝Fp

Fpn/ is topologically finitely
generated since

� its pro-p–subgroup strictAut.1G
yZp

1=n
˝Fp

Fpn/ is a p–adic analytic Lie group,
hence topologically finitely generated (see [11], or Theorem 5.11 of [10] for an
English-language summary of the relevant result), and

� Aut.1G
yZp

1=n
˝Fp

Fpn/ is a split extension of the finite group F�pn by the topolog-
ically finitely generated group strictAut.1G

yZp

1=n
If ˝Fp

Fpn/.

So Ha is an open subgroup of Aut.1G
yZp

1=n
˝Fp

Fpn/. Every open subgroup of
a profinite group is also closed; consequently, each Ha is a closed subgroup of
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Aut.1G
yZp

1=n
˝Fp

Fpn/, and consequently so is the intersection
T

a Ha . But
T

a Ha is the
group of all formal power series which are automorphisms of 1G

yZp

1=n
˝Fp

Fpn and whose
polynomial truncations, of any length, commute with the complex multiplication by A.
Consequently

T
a Ha DAut.!GA

1
/ is a closed subgroup of Aut.1G

yZp

1=n
˝Fp

Fpn/.

Definition 4.4 Let p be a prime number, n a positive integer and i an integer. The
profinite group scheme Aut.1G

yZp

1=n
˝Fp

Fpn/ is proconstant (see Remark 4.2); in this
definition, and in the rest of the paper, we will write Aut.1G

yZp

1=n
˝Fp

Fpn/ to mean the
profinite group given by evaluating that group scheme on Fpn (ie Aut.1G

yZp

1=n
˝Fp

Fpn/

is the usual Morava stabilizer group, as in Chapter 6 of [19]).

We write Fpn.i/ for Fpn with the action of Aut.1G
yZp

1=n
˝Fp

Fpn/ given by the i th

power of the cyclotomic character, ie a given element z 2 Aut.1G
yZp

1=n
˝Fp

Fpn/ acts
on Fpn.i/ by multiplication by xzi , where xz is the image of z under the reduction
map Aut.1G

yZp

1=n
˝Fp

Fpn/! F�pn , ie xz is the leading term of z as a power series in
Fpn ŒŒX ��.

In particular, strictAut.1G
yZp

1=n
˝Fp

Fpn/ acts trivially on Fpn.i/ for all i ,

Aut.1G
yZp

1=n
˝Fp

Fpn/

acts trivially on Fpn.0/ and Fpn.i/D Fpn.i Cpn� 1/.

Now we use the computations in Theorems 3.5, 3.6 and 3.7 to make the same coho-
mological computations, but with coefficients twisted by powers of the cyclotomic
character, as in Definition 4.4. This cohomology with twisted coefficients is exactly
what we need in order to compute the E2 –terms of the descent spectral sequences of
Theorem 5.2.

Theorem 4.5 Let p > 3. Then, for each of the three isomorphism classes of quadratic
extensions K=Qp (see Proposition 3.4), the cohomology algebra

H�c .Gal.Kab=Knr/IFp2.0//

is an exterior algebra on two generators in cohomological degree 1, and:

� If K=Qp is unramified, then H�c .Gal.Kab=Knr/IFp2.i// is isomorphic as a
bigraded Fp2 –vector space to H�c .Gal.Kab=Knr/IFp2.0// if i is divisible by
p2� 1, and H�c .Gal.Kab=Knr/IFp2.i//Š 0 if i is not divisible by p2� 1.
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� If K=Qp is totally ramified, then H�c .Gal.Kab=Knr/IFp2.i// is isomorphic as
a bigraded Fp2 –vector space to H�c .Gal.Kab=Knr/IFp2.0// if i is divisible by
p� 1, and H�c .Gal.Kab=Knr/IFp2.i//Š 0 if i is not divisible by p� 1.

Meanwhile, H�c .Aut.1G
yZp

1=2
/IFp2.i// is isomorphic as a bigraded Fp2 –vector space to

H�c .Gal.Kab=Knr/IFp2.0// if i is divisible by p2�1, and H�c .Aut.1G
yZp

1=2
/IFp2.i//Š

0 if i is not divisible by p2� 1.

Finally, the inclusion

iK W Gal.Kab=Knr/ ,!O�D1=2;Qp
Š Aut.1G

yZp

1=2
˝Fp

Fp2/

constructed in Proposition 4.3 induces the following restriction map in cohomology in
the three cases:

K=Qp unramified The map

ƒ.�2/˝F
p2

Fp2f1; h10; h11; �2h10; �2h11; �2h10h11g

ŠH�c
�
Aut.1G

yZp

1=2
/IFp2.i.p2

� 1//
�

res
�!H�c .Gal.Kab=Knr/IFp2.i.p2

� 1///Šƒ.h20; h21/

sends �2 to h20C h21 and is zero on all other generators.

K D Qp.
p

p/ The map

ƒ.�2/˝F
p2

Fp2f1; h10; h11; �2h10; �2h11; �2h10h11g

ŠH�c
�
Aut.1G

yZp

1=2
/IFp2.i.p2

� 1//
�

res
�!H�c .Gal.Kab=Knr/IFp2.i.p2

� 1///Šƒ.h10; h20/

sends �2 to 2h20 , sends h10 and h11 to h10 , and is zero on all other generators.

K D Qp.
p

ap/ for a a nonsquare in yZ�
p The map

ƒ.�2/˝F
p2

Fp2f1; h10; h11; �2h10; �2h11; �2h10h11g

ŠH�c
�
Aut.1G

yZp

1=2
/IFp2.i.p2

� 1//
�

res
�!H�c .Gal.Kab=Knr/IFp2.i.p2

� 1///Šƒ.h10; h20/

sends �2 to 2h20 , sends h10 to h10 and h11 to !p�1h10 , and is zero on all other
generators. (Here ! 2 Fp2 is a .pC1/st root of a.)
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(See Theorem 3.1 for the multiplicative structure of H�c
�
strictAut.1G

yZp

1=2
IFp2.0//

�
and the cohomological degrees of its generators.)

Proof If A has residue field k and G is a formal A–module over a field extension
of k , then we have the short exact sequence of profinite groups

(24) 1! strictAut.G/! Aut.G/! k�! 1;

since the strict automorphisms are simply the automorphisms whose leading coefficient
(in k� ) is 1. So the quotient map

Aut.aGA
1 /= strictAut.aGA

1 /! Aut.1G
yZp

1=2
/= strictAut.1G

yZp

1=2
/

is simply the monomorphism k� ,! F�
p2 , where k is the residue field of k . Conse-

quently:

� if K=Qp is unramified, the action of Aut.aGA
1
/= strictAut.aGA

1
/ on Fp2.i/ is

trivial if and only if i is divisible by p2� 1, and

� if K=Qp is totally ramified, the action of Aut.aGA
1
/= strictAut.aGA

1
/ on Fp2.i/

is trivial if and only if i is divisible by p� 1.

The rest follows easily from Theorems 3.5, 3.6 and 3.7, and the (immediately collapsing)
Lyndon–Hochschild–Serre spectral sequence for the extension of profinite groups (24).

Corollary 4.6 (how much of the cohomology of the height 2 Morava stabilizer group
is visible in the cohomology of Galois groups?) The product

(25) H�c .Aut.1G
yZp

1=2
/IFp2.0//!

Y
ŒK WQp�D2

H�c .Gal.Kab=Knr/IFp2.0//

of the restriction maps from Theorem 4.5 is injective in cohomological degrees � 1.
Furthermore, for each May/Chevalley–Eilenberg basis element

x 2H�c .Aut.1G
yZp

1=2
/IFp2.0//;

either x or the Poincaré dual of x has nonzero image under the map (25).

5 Topological consequences

Remark 5.1 As a consequence of Proposition 4.3, if K=Qp is a degree n ex-
tension, then Gal.Kab=Knr/ is a closed subgroup of the Morava stabilizer group
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Aut.1G
yZp

1=n
˝Fp

Fpn/. Consequently we can use the machinery of [5] to construct

and compute the homotopy fixed-point spectrum E
h Gal.K ab=K nr/
n using a homotopy

fixed-point spectral sequence

H�c .Gal.Kab=Knr/I��.En//) ��.E
h Gal.K ab=K nr/
n /;

ie

(26) H�c .Aut.G/I��.En//) ��.E
h Aut.G/
n /

where G is a formal A–module, with A the ring of integers of K .

We carry this out in the quadratic case for p > 3, in Theorem 5.2, after smashing
with V .1/.

It is worth explaining the relationship of spectral sequence (26) to the ideas suggested
by Ravenel [18], who asked there whether there exist certain “algebraic extensions of
the sphere spectrum” which would imply the existence of a spectral sequence whose
input is the cohomology of the classifying Hopf algebroid of formal A–modules, ie
the cohomology of the moduli stack of formal A–modules, and whose output would
be the stable homotopy groups of a spectrum which resembles the sphere spectrum
(indeed, it would be an “algebraic extension of the sphere spectrum”). The paper [25]
shows that Ravenel’s algebraic extensions of the sphere spectrum do not exist, except
in trivial cases. However, the input for spectral sequence (26) is the cohomology of a
formal neighborhood of a point in the moduli stack of formal A–modules, while the
output is the stable homotopy groups of a spectrum which resembles the K.n/–local
sphere spectrum. So we regard spectral sequence (26) as a kind of “local substitute”
for the (nonexistent) spectral sequence Ravenel asked about in [18].

Theorem 5.2 Let p > 3. For each of the three isomorphism classes of quadratic
extensions of Qp (see Proposition 3.4), we compute the V .1/–homotopy groups of the
homotopy fixed-point spectrum Eh Gal.K ab=K nr/ÌGal.F

p2=Fp/
2

:

K=Qp unramified We have

��.V .1/^E
h Gal.K ab=K nr/ÌGal.F

p2=Fp/

2
/Šƒ.h20; h21/˝Fp

Fp Œv
˙1
2 �;

with homotopy degrees jh20j D jh21j D �1 and jv2j D 2.p2 � 1/. The natural map
from the homotopy groups of the K.2/–local Smith–Toda V .1/ is the ring map

��.LK.2/V .1//Šƒ.�2/˝Fp
Fpf1; h10; h11; �2h10; �2h11; �2h10h11g˝Fp

Fp Œv
˙1
2 �

!ƒ.h20; h21/˝Fp
Fp Œv

˙1
2 �Š ��.V .1/^E

h Gal.K ab=K nr/ÌGal.F
p2=Fp/

2
/
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sending v2 to v2 , sending �2 to h20C h21 and sending h10 , h11 , �2h10 , �2h11 and
�2h10h11 to zero.

K D Qp.
p

p/ ��.V .1/^E
h Gal.K ab=K nr/ÌGal.F

p2=Fp/

2
/Šƒ.h10; h20/˝Fp

Fp Œb
˙1�,

with homotopy degrees jh10j D 2p � 3 and jh20j D �1 and jbj D 2.p � 1/. The
natural map from the homotopy groups of the K.2/–local Smith–Toda V .1/ is the ring
map

��.LK.2/V .1//Šƒ.�2/˝Fp
Fpf1; h10; h11; �2h10; �2h11; �2h10h11g˝Fp

Fp Œv
˙1
2 �

!ƒ.h10; h20/˝Fp
Fp Œv

˙1
2 �Š ��.V .1/^E

h Gal.K ab=K nr/ÌGal.F
p2=Fp/

2
/

sending v2 to bpC1 , sending �2 to 2h20 , sending h10 to h10 , sending h11 to h10bp�1

and sending �2h10 , �2h11 and �2h10h11 to zero.

K D Qp.
p

ap/, with a a nonsquare ��.V .1/^E
h Gal.K ab=K nr/
2

/ is isomorphic to
ƒ.h10; h20/˝F

p2
Fp2 Œb˙1�, with homotopy degrees jh10j D 2p� 3 and jh20j D �1

and jbj D 2.p � 1/. The natural map from the homotopy groups of the K.2/–local
Smith–Toda V .1/ base-changed to Fp2 is the ring map

��.V .1/^E
h Aut.1G

yZp

1=2
˝Fp F

p2 /

2
/

Šƒ.�2/˝F
p2

Fp2f1; h10; h11; �2h10; �2h11; �2h10h11g˝F
p2

Fp2 Œv˙1
2 �

!ƒ.h10; h20/˝F
p2

Fp2 Œv˙1
2 �Š ��.V .1/^E

h Gal.K ab=K nr/
2

/

sending v2 to bpC1 , sending �2 to 2h20 , sending h10 to h10 , sending h11 to
!p�1h10bp�1 with ! a .p�1/st root of a and sending �2h10 , �2h11 and �2h10h11

to zero.

Proof See [4; 5] for the equivalence

LK.n/S 'E
h Aut.1G

yZp

1=n
˝Fp Fpn /ÌGal.Fpn=Fp/

n :

Since V .1/ is E.1/–acyclic, LK.2/V .1/ is weakly equivalent to LE.2/V .1/, so we get
weak equivalences LK.2/V .1/'LE.2/V .1/'V .1/^LE.2/S since E.2/–localization
is smashing; see [20] for the proof of Ravenel’s smashing conjecture. Since V .1/ is
finite, .En ^ V .1//hG ' EhG

n ^ V .1/, and now we use the X D V .1/ case of the
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conditionally convergent descent spectral sequence (see eg 4.6 of [1], or [5])

E
s;t
2
ŠH s

c .GI .En/t .X //) �t�s..En ^X /hG/;

dr W E
s;t
r !EsCr;tCr�1

r :

In the case nD 2 and X D V .1/, we have .E2/� ŠW .Fp2/ŒŒu1��Œu
˙1� with v1 acting

by u1u1�p , and consequently .E2/�.V .1//ŠFp2 Œu˙1�. One needs to know the action
of Aut.1G

yZp

1=2
˝Fp

Fp2/ or Aut.!GA
1
/Š Gal.Kab=Knr/ on Fp2 Œu˙1� to compute the

E2 –term of the spectral sequence; but Aut.1G
yZp

1=2
˝Fp

Fp2/ has the finite-index pro-p–
subgroup strictAut.1G

yZp

1=2
˝Fp

Fp2/, and similarly, Aut.!GA
1
/Š Gal.Kab=Knr/ has

the finite-index pro-p–subgroup strictAut.!GA
1
/ŠGal.Kab=Ktr/. As a pro-p–group

admits no nontrivial continuous action on a one-dimensional vector space over a field
of characteristic p , we only need to know the actions of

Aut.1G
yZp

1=2˝Fp
Fp2/= strictAut.1G

yZp

1=2˝Fp
Fp2/Š F�

p2 ;

Aut.!GA
1 /= strictAut.!GA

1 /Š Gal.Ktr=Knr/Š k�;

on Fp2 Œu˙1�; ie for each j , the Aut.1G
yZp

1=2
˝Fp

Fp2/–module Fp2fuj g is Fp2.i/ for
some i , as in Definition 4.4; specifically it is Fp2.j / (see Section 1 of [4]).

Hence Theorem 4.5 provides the E2 –term of the descent spectral sequence for nD 2

and X D V .1/ in each of the four cases

G D Aut.1G
yZp

1=2
˝Fp

Fp2/;

G D Aut.1G
yZp

1=2
˝Fp

Fp2/Ì Gal.Fp2=Fp/;

G D Gal.Kab=Knr/;

G D Gal.Kab=Knr/Ì Gal.Fp2=Fp/;

and in each case, there is a horizontal vanishing line of finite height already at the
E2 –page of the spectral sequence (this is computed in Theorem 4.5), hence the spectral
sequence converges strongly.

The E2 –term of the descent spectral sequence, along with the map of E2 –terms
induced by the inclusion of the closed subgroup

Gal.Knr=Kab/� Aut.1G
yZp

1=2
˝Fp

Fp2/;

is computed in Theorem 4.5. In the case of G D Aut.1G
yZp

1=2
˝Fp

Fp2/ and G D

Gal.Kab=Knr/ for KDQp.�p2�1/ and KDQp.
p

p/, we computed the cohomology
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of a Gal.Fp2=Fp/–form of the Hopf algebra Fp2 ŒG�� in Theorems 3.1, 3.5 and 3.6;
since the nonabelian Galois cohomology group H 1.Gal.Fp2=Fp/IGLn.Fp2// clas-
sifying Gal.Fp2=Fp/–forms of n–dimensional Fp2 –vector spaces vanishes (this is a
well-known generalization of Hilbert’s Theorem 90), the invariants of the Gal.Fp2=Fp/–
action on H�c .G/ agree, up to isomorphism of graded Fp –vector spaces, with the
results of Theorems 3.1, 3.5 and 3.6 (this Galois descent argument was suggested to
me by T Lawson). There is no room for differentials in the descent spectral sequences,
so E2 ŠE1 in each spectral sequence.

In Theorem 5.2, we have indexed ��.LK.2/V .1// with the homotopy degrees:

homotopy class degree

1 0

h10 2p� 3

h11 2p2� 2p� 1

�2 �1

h10�2 2p� 4

h11�2 2p2� 2p� 2

homotopy class degree

h10�2 2p� 4

h11�2 2p2� 2p� 2

h10h11�2 �3

h10�2�2 2p� 5

h11�2�2 2p2� 2p� 3

h10h11�2�2 �4

It is possible that classes with these names (eg �2 , from [14]) differ by some power of
v2 from the classes with these names used by others in the field; the necessary power
of v2 is easily found by comparing grading degrees.

As an amusing way to restate some of the conclusions of Theorem 5.2, we can write
some Galois cohomology rings as natural quotients of the homotopy groups of the
K.2/–local Smith–Toda complex V .1/:

Corollary 5.3 Let p > 3 and let K=Qp be a quadratic extension. Then the mod p

continuous cohomology H�c .Gal.Kab=Knr/IFp/ of the Galois group Gal.Kab=Knr/

satisfies the isomorphisms of graded algebras

� H�c .Gal.Kab=Knr/IFp/Š ��.LK.2/V .1//=.1� v2; h10; h11/˝Fp
ƒ.h2/ with

h2 in degree 1 if K=Qp is unramified, and

� H�c .Gal.Kab=Knr/IFp/Š��.LK.2/V .1//=.1�v2; h10�h11; �2h10/ if K=Qp

is totally ramified and �2=p is a square modulo p .

Throughout, � denotes a uniformizer for the ring of integers of K , and we have
regraded ��.LK.2/V .1// so that its grading is by K.2/–Adams filtration, not by
homotopy degree.
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